Claggett, Peter; Jantz, Claire A.; Goetz, S.J.; Bisland, C.
2004-01-01
Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations. ?? 2004 Kluwer Academic Publishers.
Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin
2004-06-01
Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.
Building Futurism into the Institution's Strategic Planning and Human Resource Development Model.
ERIC Educational Resources Information Center
Groff, Warren H.
A process for building futurism into the institution's strategic planning and human resource development model is described. It is an attempt to assist faculty and staff to understand the future and the formulation and revision of professional goals in relation to an image of the future. A conceptual framework about the changing nature of human…
NASA Technical Reports Server (NTRS)
Rosenberg, Leigh; Hihn, Jairus; Roust, Kevin; Warfield, Keith
2000-01-01
This paper presents an overview of a parametric cost model that has been built at JPL to estimate costs of future, deep space, robotic science missions. Due to the recent dramatic changes in JPL business practices brought about by an internal reengineering effort known as develop new products (DNP), high-level historic cost data is no longer considered analogous to future missions. Therefore, the historic data is of little value in forecasting costs for projects developed using the DNP process. This has lead to the development of an approach for obtaining expert opinion and also for combining actual data with expert opinion to provide a cost database for future missions. In addition, the DNP cost model has a maximum of objective cost drivers which reduces the likelihood of model input error. Version 2 is now under development which expands the model capabilities, links it more tightly with key design technical parameters, and is grounded in more rigorous statistical techniques. The challenges faced in building this model will be discussed, as well as it's background, development approach, status, validation, and future plans.
Effective Planning of the Future of the Arctic
NASA Astrophysics Data System (ADS)
Sentsov, A.; Bolsunovskaya, Yu; Bolsunovskaya, L.
2014-08-01
The problems of the Arctic region have become the most important ones in the world. Political risks hinder the industrial development of the region. This paper addresses the problem of planning and modeling the future of this region. It presents the problems of developing a model of the future due to the ideologies and strategies of two main actors in the Arctic, the United States and the Russian Federation. The effects of a bipolar perception of the future of the region and of the whole world are shown. A model of the effective planning of the future of the Arctic region is proposed.
NASA Astrophysics Data System (ADS)
Kim, Y.; Woo, J. H.; Choi, K. C.; Lee, J. B.; Song, C. K.; Kim, S. K.; Hong, J.; Hong, S. C.; Zhang, Q.; Hong, C.; Tong, D.
2015-12-01
Future emission scenarios based on up-to-date regional socio-economic and control policy information were developed in support of climate-air quality integrated modeling research over East Asia. Two IPCC-participated Integrated Assessment Models(IAMs) were used to developed those scenario pathways. The two emission processing systems, KU-EPS and SMOKE-Asia, were used to convert these future scenario emissions to comprehensive chemical transport model-ready form. The NIER/KU-CREATE (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment) served as the regional base-year emission inventory. For anthropogenic emissions, it has 54 fuel classes, 201 sub-sectors and 13 pollutants, including CO2, CH4, N2O, SO2, NOx, CO, NMVOC, NH3, OC, BC, PM10, PM2.5, and mercury. Fast energy growth and aggressive penetration of the control measures make emissions projection very active for East Asia. Despite of more stringent air pollution control policies by the governments, however, air quality over the region seems not been improved as much - even worse in many cases. The needs of more scientific understanding of inter-relationship among emissions, transport, chemistry over the region are very high to effectively protect public health and ecosystems against ozone, fine particles, and other toxic pollutants in the air. After developing these long-term future emissions, therefore, we also tried to apply our future scenarios to develop the present emissions inventory for chemical weather forecasting and aircraft field campaign. On site, we will present; 1) the future scenario development framework and process methodologies, 2) initial development results of the future emission pathways, 3) present emission inventories from short-term projection, and 4) air quality modeling performance improvements over the region.
Potential barge transportation for inbound corn and grain
DOT National Transportation Integrated Search
1997-12-31
This research develops a model for estimating future barge and rail rates for decision making. The Box-Jenkins and the Regression Analysis with ARIMA errors forecasting methods were used to develop appropriate models for determining future rates. A s...
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.
This volume contains the prepared papers and discussions of a National Academy of Sciences - National Research Council Symposium on the Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing. The purpose of the symposium was to examine the past, present, and future contributions of animals to human health…
Callina, Kristina Schmid; Johnson, Sara K; Tirrell, Jonathan M; Batanova, Milena; Weiner, Michelle B; Lerner, Richard M
2017-06-01
There were two purposes of the present research: first, to add to scholarship about a key character virtue, hopeful future expectations; and second, to demonstrate a recent innovation in longitudinal methodology that may be especially useful in enhancing the understanding of the developmental course of hopeful future expectations and other character virtues that have been the focus of recent scholarship in youth development. Burgeoning interest in character development has led to a proliferation of short-term, longitudinal studies on character. These data sets are sometimes limited in their ability to model character development trajectories due to low power or relatively brief time spans assessed. However, the integrative data analysis approach allows researchers to pool raw data across studies in order to fit one model to an aggregated data set. The purpose of this article is to demonstrate the promises and challenges of this new tool for modeling character development. We used data from four studies evaluating youth character strengths in different settings to fit latent growth curve models of hopeful future expectations from participants aged 7 through 26 years. We describe the analytic strategy for pooling the data and modeling the growth curves. Implications for future research are discussed in regard to the advantages of integrative data analysis. Finally, we discuss issues researchers should consider when applying these techniques in their own work.
Projecting Electricity Demand in 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.
2014-07-01
This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly datamore » for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.« less
Global Weather Prediction and High-End Computing at NASA
NASA Technical Reports Server (NTRS)
Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San
2003-01-01
We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.
Integrated Electronic Warfare Systems Aboard the United States Navy 21st Century Warship
2009-12-01
automated operation using a Human-In-the-Loop that could be integrated into existing and future combat systems. A model was developed that demonstrates...complete range of automated operation using a Human-In-the-Loop that could be integrated into existing and future combat systems. A model was developed...44 1. Base Case Model
ED QUEST: A Model Procedure for Futures Planning in Educational Organizations.
ERIC Educational Resources Information Center
Adams, Charles F.
Most educational planning models are weak at identifying future events and assessing their impact on education. At best they assume a surprise-free future in which present trends continue unabated and interrelationships among social, economic, political, and technological forces stay the same. The ED QUEST model was developed to ameliorate these…
ERIC Educational Resources Information Center
Kopilov, Sergey N.; Dorozhkin, Evgenij M.; Tarasyuk, Olga V.; Osipova, Irina V.; Lazareva, Natalia V.
2016-01-01
The relevance of the problem stems from the necessity to develop and implement the formation model for structural components of future technicians' professional competencies during their studies of general professional disciplines. The purpose of the article is to carry out a theoretical study, to develop and approbate a model that forms the…
Squires, Hazel; Chilcott, James; Akehurst, Ronald; Burr, Jennifer; Kelly, Michael P
2016-04-01
To identify the key methodological challenges for public health economic modelling and set an agenda for future research. An iterative literature search identified papers describing methodological challenges for developing the structure of public health economic models. Additional multidisciplinary literature searches helped expand upon important ideas raised within the review. Fifteen articles were identified within the formal literature search, highlighting three key challenges: inclusion of non-healthcare costs and outcomes; inclusion of equity; and modelling complex systems and multi-component interventions. Based upon these and multidisciplinary searches about dynamic complexity, the social determinants of health, and models of human behaviour, six areas for future research were specified. Future research should focus on: the use of systems approaches within health economic modelling; approaches to assist the systematic consideration of the social determinants of health; methods for incorporating models of behaviour and social interactions; consideration of equity; and methodology to help modellers develop valid, credible and transparent public health economic model structures.
NASA Astrophysics Data System (ADS)
Cullis, James D. S.; Walker, Nicholas J.; Ahjum, Fadiel; Juan Rodriguez, Diego
2018-02-01
Many countries, like South Africa, Australia, India, China and the United States, are highly dependent on coal fired power stations for energy generation. These power stations require significant amounts of water, particularly when fitted with technology to reduce pollution and climate change impacts. As water resources come under stress it is important that spatial variability in water availability is taken into consideration for future energy planning particularly with regards to motivating for a switch from coal fired power stations to renewable technologies. This is particularly true in developing countries where there is a need for increased power production and associated increasing water demands for energy. Typically future energy supply options are modelled using a least cost optimization model such as TIMES that considers water supply as an input cost, but is generally constant for all technologies. Different energy technologies are located in different regions of the country with different levels of water availability and associated infrastructure development and supply costs. In this study we develop marginal cost curves for future water supply options in different regions of a country where different energy technologies are planned for development. These water supply cost curves are then used in an expanded version of the South Africa TIMES model called SATIM-W that explicitly models the water-energy nexus by taking into account the regional nature of water supply availability associated with different energy supply technologies. The results show a significant difference in the optimal future energy mix and in particular an increase in renewables and a demand for dry-cooling technologies that would not have been the case if the regional variability of water availability had not been taken into account. Choices in energy policy, such as the introduction of a carbon tax, will also significantly impact on future water resources, placing additional water demands in some regions and making water available for other users in other regions with a declining future energy demand. This study presents a methodology for modelling the water-energy nexus that could be used to inform the sustainable development planning process in the water and energy sectors for both developed and developing countries.
GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Future scenarios can be developed through a combination of modifications to the land-cover/use maps used to parameterize hydr...
ERIC Educational Resources Information Center
Bolton, William; Clyde, Albert
This document provides guidelines for the development of interdisciplinary assignments to help prepare learners for the developing needs of industry; it also contains a collection of model assignments produced by 12 British colleges. An introduction explains how to use the document and offers a checklist for the development of interdisciplinary…
National facilities study. Volume 3: Mission and requirements model report
NASA Technical Reports Server (NTRS)
1994-01-01
The National Facility Study (NFS) was initiated in 1992 by Daniel S. Goldin, Administrator of NASA as an initiative to develop a comprehensive and integrated long-term plan for future facilities. The resulting, multi-agency NFS consisted of three Task Groups: Aeronautics, Space Operations, and Space Research and Development (R&D) Task Groups. A fourth group, the Engineering and Cost Analysis Task Group, was subsequently added to provide cross-cutting functions, such as assuring consistency in developing an inventory of space facilities. Space facilities decisions require an assessment of current and future needs. Therefore, the two task groups dealing with space developed a consistent model of future space mission programs, operations and R&D. The model is a middle ground baseline constructed for NFS analytical purposes with excursions to cover potential space program strategies. The model includes three major sectors: DOD, civilian government, and commercial space. The model spans the next 30 years because of the long lead times associated with facilities development and usage. This document, Volume 3 of the final NFS report, is organized along the following lines: Executive Summary -- provides a summary view of the 30-year mission forecast and requirements baseline, an overview of excursions from that baseline that were studied, and organization of the report; Introduction -- provides discussions of the methodology used in this analysis; Baseline Model -- provides the mission and requirements model baseline developed for Space Operations and Space R&D analyses; Excursions from the baseline -- reviews the details of variations or 'excursions' that were developed to test the future program projections captured in the baseline; and a Glossary of Acronyms.
Stephen R. Shifley; Hong S. He; Heike Lischke; Wen J. Wang; Wenchi Jin; Eric J. Gustafson; Jonathan R. Thompson; Frank R. Thompson; William D. Dijak; Jian Yang
2017-01-01
Context. Quantitative models of forest dynamics have followed a progression toward methods with increased detail, complexity, and spatial extent. Objectives. We highlight milestones in the development of forest dynamics models and identify future research and application opportunities. Methods. We reviewed...
Fire risk in San Diego County, California: A weighted Bayesian model approach
Kolden, Crystal A.; Weigel, Timothy J.
2007-01-01
Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.
NASA Astrophysics Data System (ADS)
Nguyen, Tien M.; Guillen, Andy T.
2017-05-01
This paper describes static Bayesian game models with "Pure" and "Mixed" games for the development of an optimum Program and Technical Baseline (PTB) solution for affordable acquisition of future space systems. The paper discusses System Engineering (SE) frameworks and analytical and simulation modeling approaches for developing the optimum PTB solutions from both the government and contractor perspectives.
NASA Astrophysics Data System (ADS)
Ascott, M.; Macdonald, D.; Lapworth, D.; Tindimugaya, C.
2017-12-01
Quantification of the impact of climate change on water resources is essential for future resource planning. Unfortunately, climate change impact studies in African regions are often hindered by the extent in variability in future rainfall predictions, which also diverge from current drying trends. To overcome this limitation, "scenario-neutral" methods have been developed which stress a hydrological system using a wide range of climate futures to build a "climate response surface". We developed a hydrological model and scenario-neutral framework to quantify climate change impacts on river flows in the Katonga catchment, Uganda. Using the lumped catchment model GR4J, an acceptable calibration to historic daily flows (1966 - 2010, NSE = 0.69) was achieved. Using a delta change approach, we then systematically changed rainfall and PET inputs to develop response surfaces for key metrics, developed with Ugandan water resources planners (e.g. Q5, Q95). Scenarios from the CMIP5 models for 2030s and 2050s were then overlain on the response surface. The CMIP5 scenarios show consistent increases in temperature but large variability in rainfall increases, which results in substantial variability in increases in river flows. The developed response surface covers a wide range of climate futures beyond the CMIP5 projections, and can help water resources planners understand the sensitivity of water resource systems to future changes. When future climate scenarios are available, these can be directly overlain on the response surface without the need to re-run the hydrological model. Further work will consider using scenario-neutral approaches in more complex, semi-distributed models (e.g. SWAT), and will consider land use and socioeconomic change.
Framing the Future. Re-framing the Future: A Report on the Long-Term Impacts of Framing the Future.
ERIC Educational Resources Information Center
Mitchell, John
Australia's Framing the Future (FTF) project was designed to develop a model of staff development to support implementation of the National Training Framework (NTF). A survey of FTF project managers found these long-term impacts: implementation of training packages and other aspects of NTF, new forms of collaboration between industry and training…
Future Shop: A Model Career Placement & Transition Laboratory.
ERIC Educational Resources Information Center
Floyd, Deborah L.; And Others
During 1988-89, the Collin County Community College District (CCCCD) conducted a project to develop, implement, and evaluate a model career laboratory called a "Future Shop." The laboratory was designed to let users explore diverse career options, job placement opportunities, and transfer resources. The Future Shop lab had three major components:…
A Futures Curriculum for Symmetry.
ERIC Educational Resources Information Center
Dickmann, Leonore W.
The paper describes a model to aid curriculum developers as they design futures curricula. The objective is to demonstrate how curricula can be holistic in perspective and balanced in provision for student future-focused role image as well as subject matter. The model, based on symmetry (within the individual and the curriculum), has seven facets:…
NASA Astrophysics Data System (ADS)
Vacquie, Laure; Houet, Thomas
2016-04-01
In the last century, European mountain landscapes have experienced significant transformations. Natural and anthropogenic changes, climate changes, touristic and industrial development, socio-economic interactions, and their implications in terms of LUCC (land use and land cover changes) have directly influenced the spatial organization and vulnerability of mountain landscapes. This study is conducted as part of the SAMCO project founded by the French National Science Agency (ANR). It aims at developing a methodological approach, combining various tools, modelling platforms and methods, to identify vulnerable regions to landslide hazards accounting for futures LUCC. It presents an integrated approach combining participative scenarios and a LULC changes simulation models to assess the combined effects of LUCC and climate change on landslide risks in the Cauterets valley (French Pyrenees Mountains) up to 2100. Through vulnerability and risk mapping, the objective is to gather information to support landscape planning and implement land use strategies with local stakeholders for risk management. Four contrasting scenarios are developed and exhibit contrasting trajectories of socio-economic development. Prospective scenarios are based on national and international socio-economic contexts relying on existing assessment reports. The methodological approach integrates knowledge from local stakeholders to refine each scenario during their construction and to reinforce their plausibility and relevance by accounting for local specificities, e.g. logging and pastoral activities, touristic development, urban planning, etc. A process-based model, the Forecasting Scenarios for Mountains (ForeSceM) model, developed on the Dinamica Ego modelling platform is used to spatially allocate futures LUCC for each prospective scenario. Concurrently, a spatial decision support tool, i.e. the SYLVACCESS model, is used to identify accessible areas for forestry in scenario projecting logging activities. The method results in the development of LULC maps providing insights into a range of alternative futures using a scope of socio-economic and environmental conditions. A landslides assessment model, the ALICE model is then used as a final tool to analyze the potential impacts of simulated LUCC on landslide risks and the consequences in terms of vulnerability, e.g. changes in disaster risk allocation or characterization, degree of perturbation. This assessment intends to provide insights onto the potential future development of the valley to help identify areas at stake and to guide decision makers to help the risk management. Preliminary results show strong differences of futures land use and land cover maps that have significant influence on landslides hazards.
Pervin, Lia; Islam, Md Saiful
2015-02-01
The aim of this study was to develop a system dynamics model for computation of yields and to investigate the dependency of yields on some major climatic parameters, i.e. temperature and rainfall, for Beta vulgaris subsp. (sugar beet crops) under future climate change scenarios. A system dynamics model was developed which takes account of the effects of rainfall and temperature on sugar beet yields under limited irrigation conditions. A relationship was also developed between the seasonal evapotranspiration and seasonal growing degree days for sugar beet crops. The proposed model was set to run for the present time period of 1993-2012 and for the future period 2013-2040 for Lethbridge region (Alberta, Canada). The model provides sugar beet yields on a yearly basis which are comparable to the present field data. It was found that the future average yield will be increased at about 14% with respect to the present average yield. The proposed model can help to improve the understanding of soil water conditions and irrigation water requirements of an area under certain climatic conditions and can be used for future prediction of yields for any crops in any region (with the required information to be provided). The developed system dynamics model can be used as a supporting tool for decision making, for improvement of agricultural management practice of any region. © 2014 Society of Chemical Industry.
2001-07-01
hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model
Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.
2016-01-01
Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.
Predictive Modeling of the CDRA 4BMS
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, James
2016-01-01
Fully predictive models of the Four Bed Molecular Sieve of the Carbon Dioxide Removal Assembly on the International Space Station are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.
Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127
NASA Astrophysics Data System (ADS)
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik
2015-05-01
This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of 'best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.
Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future unc...
Design 2000: Theory-Based Design Models of the Future.
ERIC Educational Resources Information Center
Richey, Rita C.
The influence of theory on instructional-design models of the future is explored on the basis of the theoretical developments of today. Anticipated model changes are expected to result from disparate theoretical thinking in areas such as chaos theory, constructivism, situated learning, cognitive-learning theory, and general systems theory.…
Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-27
... the Advance Notice FICC is proposing to replace the prepayment model component (``Prepayment Model... calculations. The cash flow of a TBA CUSIP is the sum of all discounted future monthly cash flows. The future... prepayment model developed by the Office of Thrift Supervision (``OTS''); this particular model is no longer...
ERIC Educational Resources Information Center
Foust, Gretchen E.; Goslee, Patricia A.
2014-01-01
The Professional Development School (PDS) model, a successful collaborative partnership model between university teacher education programs and P-12 schools, focuses on ''preparing future educators, providing current educators with ongoing professional development, encouraging joint school-university faculty investigation of education-related…
Helicopter aeroelastic stability and response - Current topics and future trends
NASA Technical Reports Server (NTRS)
Friedmann, Peretz P.
1990-01-01
This paper presents several current topics in rotary wing aeroelasticity and concludes by attempting to anticipate future trends and developments. These topics are: (1) the role of geometric nonlinearities; (2) structural modeling, and aeroelastic analysis of composite rotor blades; (3) aeroelastic stability and response in forward flight; (4) modeling of coupled rotor/fuselage aeromechanical problems and their active control; and (5) the coupled rotor-fuselage vibration problem and its alleviation by higher harmonic control. Selected results illustrating the fundamental aspects of these topics are presented. Future developments are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh
Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less
Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; ...
2016-06-16
Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less
The potential impacts of development on wildlands in El Dorado County, California
Shawn C. Saving; Gregory B. Greenwood
2002-01-01
We modeled future development in rapidly urbanizing El Dorado County, California, to assess ecological impacts of expanding urbanization and effectiveness of standard policy mitigation efforts. Using raster land cover data and county parcel data, we constructed a footprint of current development and simulated future development using a modified stochastic flood-fill...
Measuring the emergence of tobacco dependence: the contribution of negative reinforcement models.
Eissenberg, Thomas
2004-06-01
This review of negative reinforcement models of drug dependence is part of a series that takes the position that a complete understanding of current concepts of dependence will facilitate the development of reliable and valid measures of the emergence of tobacco dependence. Other reviews within the series consider models that emphasize positive reinforcement and social learning/cognitive models. This review summarizes negative reinforcement in general and then presents four current negative reinforcement models that emphasize withdrawal, classical conditioning, self-medication and opponent-processes. For each model, the paper outlines central aspects of dependence, conceptualization of dependence development and influences that the model might have on current and future measures of dependence. Understanding how drug dependence develops will be an important part of future successful tobacco dependence measurement, prevention and treatment strategies.
Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea.
Kim, Hyunsu; Kim, Yoo-Keun; Song, Sang-Keun; Lee, Hwa Woon
2016-11-15
The influence of changes in future urban growth (e.g., land use changes) on the future climate variability in the Seoul metropolitan area (SMA), Korea was evaluated using the WRF model and an urban growth model (SLEUTH). The land use changes in the study area were simulated using the SLEUTH model under three different urban growth scenarios: (1) current development trends scenario (SC 1), (2) managed development scenario (SC 2) and (3) ecological development scenario (SC 3). The maximum difference in the ratio of urban growth between SC 1 and SC 3 (SC 1 - SC 3) for 50years (2000-2050) was approximately 6.72%, leading to the largest differences (0.01°C and 0.03ms(-1), respectively) in the mean air temperature at 2m (T2) and wind speed at 10m (WS10). From WRF-SLEUTH modeling, the effects of future urban growth (or future land use changes) in the SMA are expected to result in increases in the spatial mean T2 and WS10 of up to 1.15°C and 0.03ms(-1), respectively, possibly due to thermal circulation caused by the thermal differences between urban and rural regions. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Seginer, Rachel
2008-01-01
Drawing on the importance of future orientation for adolescent development this analysis presents a model describing how future orientation is affected by high challenge (or resilience) in the face of political violence. The analysis consists of three parts. The first two present future orientation conceptualization and the psychological processes…
Kohlberg's Moral Development Model: Cohort Influences on Validity.
ERIC Educational Resources Information Center
Bechtel, Ashleah
An overview of Kohlberg's theory of moral development is presented; three interviews regarding the theory are reported, and the author's own moral development is compared to the model; finally, a critique of the theory is addressed along with recommendations for future enhancement. Lawrence Kohlberg's model of moral development, also referred to…
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.
2014-12-01
The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.
Yamakado, Minoru; Nagao, Kenji; Imaizumi, Akira; Tani, Mizuki; Toda, Akiko; Tanaka, Takayuki; Jinzu, Hiroko; Miyano, Hiroshi; Yamamoto, Hiroshi; Daimon, Takashi; Horimoto, Katsuhisa; Ishizaka, Yuko
2015-01-01
Plasma free amino acid (PFAA) profile is highlighted in its association with visceral obesity and hyperinsulinemia, and future diabetes. Indeed PFAA profiling potentially can evaluate individuals’ future risks of developing lifestyle-related diseases, in addition to diabetes. However, few studies have been performed especially in Asian populations, about the optimal combination of PFAAs for evaluating health risks. We quantified PFAA levels in 3,701 Japanese subjects, and determined visceral fat area (VFA) and two-hour post-challenge insulin (Ins120 min) values in 865 and 1,160 subjects, respectively. Then, models between PFAA levels and the VFA or Ins120 min values were constructed by multiple linear regression analysis with variable selection. Finally, a cohort study of 2,984 subjects to examine capabilities of the obtained models for predicting four-year risk of developing new-onset lifestyle-related diseases was conducted. The correlation coefficients of the obtained PFAA models against VFA or Ins120 min were higher than single PFAA level. Our models work well for future risk prediction. Even after adjusting for commonly accepted multiple risk factors, these models can predict future development of diabetes, metabolic syndrome, and dyslipidemia. PFAA profiles confer independent and differing contributions to increasing the lifestyle-related disease risks in addition to the currently known factors in a general Japanese population. PMID:26156880
Madan-Swain, Avi; Hankins, Shirley L; Gilliam, Margaux Barnes; Ross, Kelly; Reynolds, Nina; Milby, Jesse; Schwebel, David C
2012-03-01
This article considers the development of research competencies in professional psychology and how that movement might be applied to training in pediatric psychology. The field of pediatric psychology has a short but rich history, and experts have identified critical competencies. However, pediatric psychology has not yet detailed a set of research-based competencies. This article initially reviews the competency initiative in professional psychology, including the cube model as it relates to research training. Next, we review and adapt the knowledge-based/foundational and applied/functional research competencies proposed by health psychology into a cube model for pediatric psychology. We focus especially on graduate-level training but allude to its application throughout professional development. We present the cube model as it is currently being applied to the development of a systematic research competency evaluation for graduate training at our medical/clinical psychology doctoral program at the University of Alabama at Birmingham. Based on the review and synthesis of the literature on research competency in professional psychology we propose future initiatives to develop these competencies for the field of pediatric psychology. The cube model can be successfully applied to the development of research training competencies in pediatric psychology. Future research should address the development, implementation, and assessment of the research competencies for training and career development of future pediatric psychologists.
Preliminary Guidelines for Installation Product Line Land Management Suite (LMS) Product Developers
2005-01-01
land use patterns might call a storm simulation model available as a CDF service to evaluate the ability of the pattern to maintain water quality ...Analysis GIS data Server Internal DIAS objects External DIAS objects External CDF services Fort Future DIAS Model GUI Figure 10. A Fort Future DIAS...31 iv ERDC/CERL TR-05-1 Are Programs that Analyze Data Being Developed as CDF Services
Predicting past and future diameter growth for trees in the northeastern United States
James A. Westfall
2006-01-01
Tree diameter growth models are widely used in forestry applications, often to predict tree size at a future point in time. Also, there are instances where projections of past diameters are needed. A relative diameter growth model was developed to allow prediction of both future and past growth rates. Coefficients were estimated for 15 species groups that cover most...
ERIC Educational Resources Information Center
Collazo, Andres; And Others
Since a great number of variables influence future educational outcomes, forecasting possible trends is a complex task. One such model, the cross-impact matrix, has been developed. The use of this matrix in forecasting future values of social indicators of educational outcomes is described. Variables associated with educational outcomes are used…
The Past, Present, and Future of Computational Models of Cognitive Development
ERIC Educational Resources Information Center
Schlesinger, Matthew; McMurray, Bob
2012-01-01
Does modeling matter? We address this question by providing a broad survey of the computational models of cognitive development that have been proposed and studied over the last three decades. We begin by noting the advantages and limitations of computational models. We then describe four key dimensions across which models of development can be…
Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions
NASA Technical Reports Server (NTRS)
Moore, Gregory; Broduer, Steve (Technical Monitor)
2001-01-01
Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.
Hierarchical models of very large problems, dilemmas, prospects, and an agenda for the future
NASA Technical Reports Server (NTRS)
Richardson, J. M., Jr.
1975-01-01
Interdisciplinary approaches to the modeling of global problems are discussed in terms of multilevel cooperation. A multilevel regionalized model of the Lake Erie Basin is analyzed along with a multilevel regionalized world modeling project. Other topics discussed include: a stratified model of interacting region in a world system, and the application of the model to the world food crisis in south Asia. Recommended research for future development of integrated models is included.
The sensitivity of the ESA DELTA model
NASA Astrophysics Data System (ADS)
Martin, C.; Walker, R.; Klinkrad, H.
Long-term debris environment models play a vital role in furthering our understanding of the future debris environment, and in aiding the determination of a strategy to preserve the Earth orbital environment for future use. By their very nature these models have to make certain assumptions to enable informative future projections to be made. Examples of these assumptions include the projection of future traffic, including launch and explosion rates, and the methodology used to simulate break-up events. To ensure a sound basis for future projections, and consequently for assessing the effectiveness of various mitigation measures, it is essential that the sensitivity of these models to variations in key assumptions is examined. The DELTA (Debris Environment Long Term Analysis) model, developed by QinetiQ for the European Space Agency, allows the future projection of the debris environment throughout Earth orbit. Extensive analyses with this model have been performed under the auspices of the ESA Space Debris Mitigation Handbook and following the recent upgrade of the model to DELTA 3.0. This paper draws on these analyses to present the sensitivity of the DELTA model to changes in key model parameters and assumptions. Specifically the paper will address the variation in future traffic rates, including the deployment of satellite constellations, and the variation in the break-up model and criteria used to simulate future explosion and collision events.
NASA Technical Reports Server (NTRS)
Remer, Donald S.; Sherif, Josef; Buchanan, Harry R.
1993-01-01
This paper develops a cost model to do long range planning cost estimates for Deep Space Network (DSN) support of future space missions. The paper focuses on the costs required to modify and/or enhance the DSN to prepare for future space missions. The model is a function of eight major mission cost drivers and estimates both the total cost and the annual costs of a similar future space mission. The model is derived from actual cost data from three space missions: Voyager (Uranus), Voyager (Neptune), and Magellan. Estimates derived from the model are tested against actual cost data for two independent missions, Viking and Mariner Jupiter/Saturn (MJS).
Use of hydrologic and hydrodynamic modeling for ecosystem restoration
Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.
2011-01-01
Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.
NASA Astrophysics Data System (ADS)
Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella; Sotiropoulos, Andreas; Spanos, Ioannis; Milonas, Panayiotis; Michaelakis, Antonios
2017-04-01
Establishment and seasonal abundance of a region for Invasive Mosquito Species (IMS) are related to climatic parameters such as temperature and precipitation. In this work the current state is assessed using data from the European Climate Assessment and Dataset (ECA&D) project over Greece and Italy for the development of current spatial risk databases of IMS. Results are validated from the installation of a prototype IMS monitoring device that has been designed and developed in the framework of the LIFE CONOPS project at key points across the two countries. Since climate models suggest changes in future temperature and precipitation rates, the future potentiality of IMS establishment and spread over Greece and Italy is assessed using the climatic parameters in 2050's provided by the NASA GISS GCM ModelE under the IPCC-A1B emissions scenarios. The need for regional climate projections in a finer grid size is assessed using the Weather Research and Forecasting (WRF) model to dynamically downscale GCM simulations. The estimated changes in the future meteorological parameters are combined with the observation data in order to estimate the future levels of the climatic parameters of interest. The final product includes spatial distribution maps presenting the future suitability of a region for the establishment and seasonal abundance of the IMS over Greece and Italy. Acknowledgement: LIFE CONOPS project "Development & demonstration of management plans against - the climate change enhanced - invasive mosquitoes in S. Europe" (LIFE12 ENV/GR/000466).
Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition
NASA Technical Reports Server (NTRS)
Ewing, Anthony; Adams, Charles
2004-01-01
Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.
Brooks, Merrian; Miller, Elizabeth; Abebe, Kaleab; Mulvey, Edward
2018-03-06
Future orientation (FO), an essential construct in youth development, encompassing goals, expectations for life, and ability to plan for the future. This study uses a multidimensional measure of future orientation to assess the relationship between change in future orientation and change in substance use over time. Data were from the Pathways to Desistence study. Justice involved youth (n = 1,354), ages 14 to 18 at time of recruitment, completed interviews every six months for three years. Multiple measures were chosen a priori as elements of future orientation. After evaluating the psychometrics of a new measure for future orientation, we ran mixed effects cross-lagged panel models to assess the relationship between changes in future orientation and substance use (tobacco, marijuana, hard drugs, and alcohol). There was a significant bidirectional relationship between future orientation and all substance use outcomes. Adjusted models accounted for different sites, sex, age, ethnicity, parental education, and proportion of time spent in a facility. In adjusted models, higher levels of future orientation resulted in smaller increases in substance use at future time points. Future orientation and substance use influence each other in this sample of adolescent offenders. Treating substance use disorders is also likely to increase future orientation, promoting positive youth development more generally. This study expands our understanding of the longitudinal relationship between changes in future orientation and changes in levels of substance use in a sample of justice involved youth with high levels of substance use, a group of considerable clinical and policy interest.
NASA Astrophysics Data System (ADS)
Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.
2016-12-01
One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.
NASA Astrophysics Data System (ADS)
Caffarra, Amelia; Zottele, Fabio; Gleeson, Emily; Donnelly, Alison
2014-05-01
In order to predict the impact of future climate warming on trees it is important to quantify the effect climate has on their development. Our understanding of the phenological response to environmental drivers has given rise to various mathematical models of the annual growth cycle of plants. These models simulate the timing of phenophases by quantifying the relationship between development and its triggers, typically temperature. In addition, other environmental variables have an important role in determining the timing of budburst. For example, photoperiod has been shown to have a strong influence on phenological events of a number of tree species, including Betula pubescens (birch). A recently developed model for birch (DORMPHOT), which integrates the effects of temperature and photoperiod on budburst, was applied to future temperature projections from a 19-member ensemble of regional climate simulations (on a 25 km grid) generated as part of the ENSEMBLES project, to simulate the timing of birch budburst in Ireland each year up to the end of the present century. Gridded temperature time series data from the climate simulations were used as input to the DORMPHOT model to simulate future budburst timing. The results showed an advancing trend in the timing of birch budburst over most regions in Ireland up to 2100. Interestingly, this trend appeared greater in the northeast of the country than in the southwest, where budburst is currently relatively early. These results could have implications for future forest planning, species distribution modeling, and the birch allergy season.
Predictive Modeling of the CDRA 4BMS
NASA Technical Reports Server (NTRS)
Coker, Robert F.; Knox, James C.
2016-01-01
As part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.
Byrd, Kristin B.; Kreitler, Jason R.; Labiosa, William B.
2011-01-01
The U.S. Geological Survey Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that uses scenarios to evaluate where, when, and to what extent future population growth, urban growth, and shoreline development may threaten the Puget Sound nearshore environment. This tool was designed to be used iteratively in a workshop setting in which experts, stakeholders, and decisionmakers discuss consequences to the Puget Sound nearshore within an alternative-futures framework. The PSEPM presents three possible futures of the nearshore by analyzing three growth scenarios developed out to 2060: Status Quo—continuation of current trends; Managed Growth—adoption of an aggressive set of land-use management policies; and Unconstrained Growth—relaxation of land-use restrictions. The PSEPM focuses on nearshore environments associated with barrier and bluff-backed beaches—the most dominant shoreforms in Puget Sound—which represent 50 percent of Puget Sound shorelines by length. This report provides detailed methodologies for development of three submodels within the PSEPM—the Shellfish Pollution Model, the Beach Armoring Index, and the Recreation Visits Model. Results from the PSEPM identify where and when future changes to nearshore ecosystems and ecosystem services will likely occur within the three growth scenarios. Model outputs include maps that highlight shoreline sections where nearshore resources may be at greater risk from upland land-use changes. The background discussed in this report serves to document and supplement model results displayed on the PSEPM Web site located at http://geography.wr.usgs.gov/pugetSound/.
Emotional distress impacts fear of the future among breast cancer survivors not the reverse.
Lebel, Sophie; Rosberger, Zeev; Edgar, Linda; Devins, Gerald M
2009-06-01
Fear of the future is one of the most stressful aspects of having cancer. Research to date has conceptualized fear of the future as a precursor of distress or stress-response symptoms. Yet it is equally plausible that distress would predict increased fear of the future or that they would have a reciprocal influence on each other. The purpose of the present study was to examine the bidirectional relations between fear of the future and distress as well as intrusion and avoidance among breast cancer survivors at 3, 7, 11, and 15 months after diagnosis. We used a bivariate latent difference score model for dynamic change to examine these bidirectional relationships among 146 early-stage breast cancer survivors. Using Lisrel version 8.80, we examined four models testing different hypothesized relationships between fear of the future and distress and intrusion and avoidance. Based on model fit evaluation, our data shows that decreases in distress over time lead to a reduction of fear of the future but that changes in fear do not lead to changes in distress. On the other hand, there is no relationship between changes in fear of the future and intrusion and avoidance over time. Ongoing fear of the future does not appear to be a necessary condition for the development of stress-response symptoms. Future studies need to explore the role of distressing emotions in the development and exacerbation of fear of the future among cancer survivors.
NASA Astrophysics Data System (ADS)
Kline, Jeffrey D.; Moses, Alissa; Burcsu, Theresa
2010-05-01
Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide vegetation data and models to evaluate the integrated effects of disturbances and management activities on natural resource conditions in Oregon and Washington (USA). In this initial analysis, we characterized the spatial distribution of forest and range land development in a four-county pilot study region in central Oregon. The empirical model describes the spatial distribution of buildings and new building construction as a function of population growth, existing development, topography, land-use zoning, and other factors. We used the model to create geographic information system maps of likely future development based on human population projections to inform complementary landscape analyses underway involving vegetation, habitat, and wildfire interactions. In an example application, we use the model and resulting maps to show the potential impacts of future forest and range land development on mule deer ( Odocoileus hemionus) winter range. Results indicate significant development encroachment and habitat loss already in 2000 with development located along key migration routes and increasing through the projection period to 2040. The example application illustrates a simple way for policymakers and public lands managers to combine existing data and preliminary model outputs to begin to consider the potential effects of development on future landscape conditions.
How Qualitative Methods Can be Used to Inform Model Development.
Husbands, Samantha; Jowett, Susan; Barton, Pelham; Coast, Joanna
2017-06-01
Decision-analytic models play a key role in informing healthcare resource allocation decisions. However, there are ongoing concerns with the credibility of models. Modelling methods guidance can encourage good practice within model development, but its value is dependent on its ability to address the areas that modellers find most challenging. Further, it is important that modelling methods and related guidance are continually updated in light of any new approaches that could potentially enhance model credibility. The objective of this article was to highlight the ways in which qualitative methods have been used and recommended to inform decision-analytic model development and enhance modelling practices. With reference to the literature, the article discusses two key ways in which qualitative methods can be, and have been, applied. The first approach involves using qualitative methods to understand and inform general and future processes of model development, and the second, using qualitative techniques to directly inform the development of individual models. The literature suggests that qualitative methods can improve the validity and credibility of modelling processes by providing a means to understand existing modelling approaches that identifies where problems are occurring and further guidance is needed. It can also be applied within model development to facilitate the input of experts to structural development. We recommend that current and future model development would benefit from the greater integration of qualitative methods, specifically by studying 'real' modelling processes, and by developing recommendations around how qualitative methods can be adopted within everyday modelling practice.
Sustainable Futures is a voluntary program that encourages industry to use predictive models to screen new chemicals early in the development process and offers incentives to companies subject to TSCA section 5.
Li, Ke; Zhang, Peng; Crittenden, John C; Guhathakurta, Subhrajit; Chen, Yongsheng; Fernando, Harindra; Sawhney, Anil; McCartney, Peter; Grimm, Nancy; Kahhat, Ramzy; Joshi, Himanshu; Konjevod, Goran; Choi, Yu-Jin; Fonseca, Ernesto; Allenby, Braden; Gerrity, Daniel; Torrens, Paul M
2007-07-15
To encourage sustainable development, engineers and scientists need to understand the interactions among social decision-making, development and redevelopment, land, energy and material use, and their environmental impacts. In this study, a framework that connects these interactions was proposed to guide more sustainable urban planning and construction practices. Focusing on the rapidly urbanizing setting of Phoenix, Arizona, complexity models and deterministic models were assembled as a metamodel, which is called Sustainable Futures 2100 and were used to predict land use and development, to quantify construction material demands, to analyze the life cycle environmental impacts, and to simulate future ground-level ozone formation.
McDonnell Douglas Helicopter Company independent research and development: Preparing for the future
NASA Technical Reports Server (NTRS)
Haggerty, Allen C.
1988-01-01
During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.
Intel Teach to the Future: A Partnership for Professional Development.
ERIC Educational Resources Information Center
Metcalf, Teri; Jolly, Deborah
This paper describes a public/private partnership program designed to provide staff development to help classroom teachers integrate technology in the curriculum by using the train-the-trainer model. The Intel[R] Teach to the Future Project was developed by Intel[R] in collaboration with other public and private sector partners, and has been…
McMeekin, Tom; Bowman, John; McQuestin, Olivia; Mellefont, Lyndal; Ross, Tom; Tamplin, Mark
2008-11-30
This paper considers the future of predictive microbiology by exploring the balance that exists between science, applications and expectations. Attention is drawn to the development of predictive microbiology as a sub-discipline of food microbiology and of technologies that are required for its applications, including a recently developed biological indicator. As we move into the era of systems biology, in which physiological and molecular information will be increasingly available for incorporation into models, predictive microbiologists will be faced with new experimental and data handling challenges. Overcoming these hurdles may be assisted by interacting with microbiologists and mathematicians developing models to describe the microbial role in ecosystems other than food. Coupled with a commitment to maintain strategic research, as well as to develop innovative technologies, the future of predictive microbiology looks set to fulfil "great expectations".
Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Phuyal, Khem P.
2014-01-01
This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB) using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate projections. The EP models developed from a previous study were based on the satellite vegetation index, site geophysical and biophysical features, and weather and climate drivers. The future climate data used in this study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0 ‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feedstock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland biomass productivity >2750 kg ha−1 year−1) with a slight increasing trend in the future. The spatially averaged EPs for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha−1 year−1 for current site potential (2000–2008 average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha−1 year−1 for site potential, 2020, 2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in the future. These future grassland productivity estimation maps can help land managers to understand and adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of potential biofuel feedstock areas.
Advancing coupled human-earth system models: The integrated Earth System Model Project
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.
2012-12-01
As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems. While these initial experiments have relied on offline coupling methodologies, current and future experiments are utilizing a single model code developed to integrate GCAM into CESM as a component of the land model. This unique capability facilitates many new applications to scientific questions arising from human and biogeophysical systems interaction. Future developments will further integrate the energy system decisions and greenhouse gas emissions as simulated in GCAM with the appropriate climate and land system components of CESM.
Future aircraft networks and schedules
NASA Astrophysics Data System (ADS)
Shu, Yan
2011-07-01
Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents computational results of these large-scale instances. To validate the models and solution algorithms developed, this thesis also compares the daily flight schedules that it designs with the schedules of the existing airlines. Furthermore, it creates instances that represent different economic and fuel-prices conditions and derives schedules under these different conditions. In addition, it discusses the implication of using new aircraft in the future flight schedules. Finally, future research in three areas---model, computational method, and simulation for validation---is proposed.
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research
Carter-Harris, Lisa; Davis, Lorie L.; Rawl, Susan M.
2017-01-01
Purpose To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Methods Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Results Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. Conclusion This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development. PMID:28304262
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.
Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M
2016-11-01
To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.
Ko, Emily M; Havrilesky, Laura J; Alvarez, Ronald D; Zivanovic, Oliver; Boyd, Leslie R; Jewell, Elizabeth L; Timmins, Patrick F; Gibb, Randall S; Jhingran, Anuja; Cohn, David E; Dowdy, Sean C; Powell, Matthew A; Chalas, Eva; Huang, Yongmei; Rathbun, Jill; Wright, Jason D
2018-05-01
Health care in the United States is in the midst of a significant transformation from a "fee for service" to a "fee for value" based model. The Medicare Access and CHIP Reauthorization Act of 2015 has only accelerated this transition. Anticipating these reforms, the Society of Gynecologic Oncology developed the Future of Physician Payment Reform Task Force (PPRTF) in 2015 to develop strategies to ensure fair value based reimbursement policies for gynecologic cancer care. The PPRTF elected as a first task to develop an Alternative Payment Model for thesurgical management of low risk endometrial cancer. The history, rationale, and conceptual framework for the development of an Endometrial Cancer Alternative Payment Model are described in this white paper, as well as directions forfuture efforts. Copyright © 2018 Elsevier Inc. All rights reserved.
LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi
2015-01-01
In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.
Multifactor valuation models of energy futures and options on futures
NASA Astrophysics Data System (ADS)
Bertus, Mark J.
The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.
Development of Water Quality Modeling in the United States
This presentation describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions. Water quality modeling has a relatively long history in the United States. While its origins lie in the work...
NASA Astrophysics Data System (ADS)
Felkner, John Sames
The scale and extent of global land use change is massive, and has potentially powerful effects on the global climate and global atmospheric composition (Turner & Meyer, 1994). Because of this tremendous change and impact, there is an urgent need for quantitative, empirical models of land use change, especially predictive models with an ability to capture the trajectories of change (Agarwal, Green, Grove, Evans, & Schweik, 2000; Lambin et al., 1999). For this research, a spatial statistical predictive model of land use change was created and run in two provinces of Thailand. The model utilized an extensive spatial database, and used a classification tree approach for explanatory model creation and future land use (Breiman, Friedman, Olshen, & Stone, 1984). Eight input variables were used, and the trees were run on a dependent variable of land use change measured from 1979 to 1989 using classified satellite imagery. The derived tree models were used to create probability of change surfaces, and these were then used to create predicted land cover maps for 1999. These predicted 1999 maps were compared with actual 1999 landcover derived from 1999 Landsat 7 imagery. The primary research hypothesis was that an explanatory model using both economic and environmental input variables would better predict future land use change than would either a model using only economic variables or a model using only environmental. Thus, the eight input variables included four economic and four environmental variables. The results indicated a very slight superiority of the full models to predict future agricultural change and future deforestation, but a slight superiority of the economic models to predict future built change. However, the margins of superiority were too small to be statistically significant. The resulting tree structures were used, however, to derive a series of principles or "rules" governing land use change in both provinces. The model was able to predict future land use, given a series of assumptions, with 90 percent overall accuracies. The model can be used in other developing or developed country locations for future land use prediction, determination of future threatened areas, or to derive "rules" or principles driving land use change.
Estimating Traffic Accidents in Turkey Using Differential Evolution Algorithm
NASA Astrophysics Data System (ADS)
Akgüngör, Ali Payıdar; Korkmaz, Ersin
2017-06-01
Estimating traffic accidents play a vital role to apply road safety procedures. This study proposes Differential Evolution Algorithm (DEA) models to estimate the number of accidents in Turkey. In the model development, population (P) and the number of vehicles (N) are selected as model parameters. Three model forms, linear, exponential and semi-quadratic models, are developed using DEA with the data covering from 2000 to 2014. Developed models are statistically compared to select the best fit model. The results of the DE models show that the linear model form is suitable to estimate the number of accidents. The statistics of this form is better than other forms in terms of performance criteria which are the Mean Absolute Percentage Errors (MAPE) and the Root Mean Square Errors (RMSE). To investigate the performance of linear DE model for future estimations, a ten-year period from 2015 to 2024 is considered. The results obtained from future estimations reveal the suitability of DE method for road safety applications.
Building the Workforce of the Future
ERIC Educational Resources Information Center
González-Rivera, Christian
2016-01-01
"Building the Workforce of the Future" is an in-depth, independent report on the first eighteen months of Career Pathways, New York City's sweeping new strategy for workforce development. In November 2014, Mayor de Blasio launched a sweeping new approach to workforce development in New York City. Unlike the previous model, which…
Climate change and growth scenarios for California wildfire
A.L. Westerling; B.P. Bryant; H.K. Preisler; T.P. Holmes; H.G. Hildalgo; T. Das; S.R. Shrestha
2011-01-01
Large wildfire occurrence and burned area are modeled using hydroclimate and landsurface characteristics under a range of future climate and development scenarios. The range of uncertainty for future wildfire regimes is analyzed over two emissions pathways (the Special Report on Emissions Scenarios [SRES] A2 and B1 scenarios); three global climate models (Centre...
Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K
2017-05-15
Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve. Copyright © 2017 Elsevier B.V. All rights reserved.
Working for a sustainable future: healthcare leaders provide input for new model.
2003-06-01
With each tick of the clock, healthcare leaders are coming face to face with a pressing quandary: How can they best guide their organizations to success and sustainability in a rocky and ever-changing healthcare environment? A new "model of sustainability," developed with input from nine CEOs of top medical institutions, may provide some guidance. The model includes six leadership imperatives that underscore critical approaches to supporting the hospital of the future: Build strong organization-wide leadership, become the employer of choice, generate financial strength, redesign structures and processes, develop productive physician relationships, and engage consumers.
The State and Future of the Primary Care Behavioral Health Model of Service Delivery Workforce.
Serrano, Neftali; Cordes, Colleen; Cubic, Barbara; Daub, Suzanne
2018-06-01
The growth of the Primary Care Behavioral Health model (PCBH) nationally has highlighted and created a workforce development challenge given that most mental health professionals are not trained for primary care specialization. This work provides a review of the current efforts to retrain mental health professionals to fulfill roles as Behavioral Health Consultants (BHCs) including certificate programs, technical assistance programs, literature and on-the-job training, as well as detail the future needs of the workforce if the model is to sustainably proliferate. Eight recommendations are offered including: (1) the development of an interprofessional certification body for PCBH training criteria, (2) integration of PCBH model specific curricula in graduate studies, (3) integration of program development skill building in curricula, (4) efforts to develop faculty for PCBH model awareness, (5) intentional efforts to draw students to graduate programs for PCBH model training, (6) a national employment clearinghouse, (7) efforts to coalesce current knowledge around the provision of technical assistance to sites, and (8) workforce specific research efforts.
Synchronous orbit power technology needs
NASA Technical Reports Server (NTRS)
Slifer, L. W., Jr.; Billerbeck, W. J.
1979-01-01
The needs are defined for future geosynchronous orbit spacecraft power subsystem components, including power generation, energy storage, and power processing. A review of the rapid expansion of the satellite communications field provides a basis for projection into the future. Three projected models, a mission model, an orbit transfer vehicle model, and a mass model for power subsystem components are used to define power requirements and mass limitations for future spacecraft. Based upon these three models, the power subsystems for a 10 kw, 10 year life, dedicated spacecraft and for a 20 kw, 20 year life, multi-mission platform are analyzed in further detail to establish power density requirements for the generation, storage and processing components of power subsystems as related to orbit transfer vehicle capabilities. Comparison of these requirements to state of the art design values shows that major improvements, by a factor of 2 or more, are needed to accomplish the near term missions. However, with the advent of large transfer vehicles, these requirements are significantly reduced, leaving the long lifetime requirement, associated with reliability and/or refurbishment, as the primary development need. A few technology advances, currently under development, are noted with regard to their impacts on future capability.
A Future Fair: Building Tomorrow Today.
ERIC Educational Resources Information Center
Weatherly, Myra S.
1992-01-01
Gifted intermediate-level students in Greenville, South Carolina, held a Future Fair in which students completed projects and developed critical and creative thinking skills as they investigated real problems. Projects such as models, inventions, photo essays, and creative writing focused on future schools, art, fashions, space travel, and other…
Hanchett, Marilyn
2012-05-01
The Association for Professionals in Infection Control and Epidemiology, Inc, developed its first model of infection preventionist (IP) competency in 2011. The model is based on the principles of patient safety, professional and practice standards, and core competencies identified through research conducted by the Certification Board of Infection Control and Epidemiology, Inc. In addition, the model highlights 4 domains that are predicted to be key areas for future competency development. Performance improvement (PI) and implementation represent 1 of the 4 forward-focused domains. Concurrently, the inclusion of implementation science (IS) in the competency model is consistent with the research goals established by the Association for Professionals in Infection Control and Epidemiology, Inc, in its 2020 strategic plan. This article explains the importance of PI and IS and describes their relevance to the current and future IP role development. Significant challenges such as role delineation and compression are discussed. The need for the IP to acquire new competencies at integrating, as well as differentiating, PI and IS are explored in terms of emerging issues and trends. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research
Chan, Anthony W. S.
2013-01-01
The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model. PMID:24174443
NASA Astrophysics Data System (ADS)
Buotte, P.; Law, B. E.; Hicke, J. A.; Hudiburg, T. W.; Levis, S.; Kent, J.
2017-12-01
Fire and beetle outbreaks can have substantial impacts on forest structure, composition, and function and these types of disturbances are expected to increase in the future. Therefore understanding the ecological impacts of these disturbances into the future is important. We used ecosystem process modeling to estimate the future occurrence of fire and beetle outbreaks and their impacts on forest resilience and carbon sequestration. We modified the Community Land Model (CLM4.5) to better represent forest growth and mortality in the western US through multiple avenues: 1) we increased the ecological resolution to recognize 14 forest types common to the region; 2) we improved CLM4.5's ability to handle drought stress by adding forest type-specific controls on stomatal conductance and increased rates of leaf shed during periods of low soil moisture; 3) we developed and implemented a mechanistic model of beetle population growth and subsequent tree mortality; 4) we modified the current fire module to account for more refined forest types; and 5) we developed multiple scenarios of harvest based on past harvest rates and proposed changes in land management policies. We ran CLM4.5 in offline mode with climate forcing data. We compare future forest growth rates and carbon sequestration with historical metrics to estimate the combined influence of future disturbances on forest composition and carbon sequestration in the western US.
Development of a Turbofan Engine Simulation in a Graphical Simulation Environment
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Guo, Ten-Heui
2003-01-01
This paper presents the development of a generic component level model of a turbofan engine simulation with a digital controller, in an advanced graphical simulation environment. The goal of this effort is to develop and demonstrate a flexible simulation platform for future research in propulsion system control and diagnostic technology. A previously validated FORTRAN-based model of a modern, high-performance, military-type turbofan engine is being used to validate the platform development. The implementation process required the development of various innovative procedures, which are discussed in the paper. Open-loop and closed-loop comparisons are made between the two simulations. Future enhancements that are to be made to the modular engine simulation are summarized.
High Speed Research Program Structural Acoustics Multi-Year Summary Report
NASA Technical Reports Server (NTRS)
Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.
2005-01-01
This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.
Working with South Florida County Planners to Understand and Mitigate Uncertain Climate Risks
NASA Astrophysics Data System (ADS)
Knopman, D.; Groves, D. G.; Berg, N.
2017-12-01
This talk describes a novel approach for evaluating climate change vulnerabilities and adaptations in Southeast Florida to support long-term resilience planning. The work is unique in that it combines state-of-the-art hydrologic modeling with the region's long-term land use and transportation plans to better assess the future climate vulnerability and adaptations for the region. Addressing uncertainty in future projections is handled through the use of decisionmaking under deep uncertainty methods. Study findings, including analysis of key tradeoffs, were conveyed to the region's stakeholders through an innovative web-based decision support tool. This project leverages existing groundwater models spanning Miami-Dade and Broward Counties developed by the USGS, along with projections of land use and asset valuations for Miami-Dade and Broward County planning agencies. Model simulations are executed on virtual cloud-based servers for a highly scalable and parallelized platform. Groundwater elevations and the saltwater-freshwater interface and intrusion zones from the integrated modeling framework are analyzed under a wide range of long-term climate futures, including projected sea level rise and precipitation changes. The hydrologic hazards are then combined with current and future land use and asset valuation projections to estimate assets at risk across the range of futures. Lastly, an interactive decision support tool highlights the areas with critical climate vulnerabilities; distinguishes between vulnerability due to new development, increased climate hazards, or both; and provides guidance for adaptive management and development practices and decisionmaking in Southeast Florida.
NASA Astrophysics Data System (ADS)
Chabi, A.
2015-12-01
ackground: Reduced Emissions from Deforestation and Degradation (REDD+), being developed through the United Nations Framework Convention on Climate Change (UNFCCC) requires information on the carbon/nitrogen stocks in the plant biomass for predicting future climate under scenarios development. The development of land use scenarios in West Africa is needed to predict future impacts of change in the environment and the socio-economic status of rural communities. The study aims at developing land use scenario based on mitigation strategy to climate change as an issue of contributing for carbon and nitrogen sequestration, the condition 'food focused' as a scenario based crop production and 'financial investment' as scenario based on an economic development pathway, and to explore the possible future temporal and spatial impacts on vegetation carbon/nitrogen sequestration/emission and socio-economic status of rural communities. Preliminary results: BEN-LUDAS (Benin-Land Use DyNamic Simulator) model, carbon and nitrogen equations, remote sensing and socio-economic data were used to predict the future impacts of each scenario in the environment and human systems. The preliminary results which are under analysis will be presented soon. Conclusion: The proposed BEN-LUDAS models will help to contribute to policy decision making at the local and regional scale and to predict future impacts of change in the environment and socio-economic status of the rural communities. Keywords: Land use scenarios development, BEN-LUDAS, socio-economic status of rural communities, future impacts of change, assessment, West African Sudan savanna watershed, Benin
MATHEMATICAL MODELING OF PESTICIDES IN THE ENVIRONMENT: CURRENT AND FUTURE DEVELOPMENTS
Transport models, total ecosystem models with aggregated linear approximations, evaluative models, hierarchical models, and influence analysis methods are mathematical techniques that are particularly applicable to the problems encountered when characterizing pesticide chemicals ...
Pharmacy Educator Motives to Pursue Pedagogical Knowledge.
Baia, Patricia; Strang, Aimee F
2016-10-25
Objective. To investigate motives of pharmacy educators who pursue pedagogical knowledge through professional development programs and to develop a model of motivation to inform future development. Methods. A mixed-methods approach was used to study both qualitative and quantitative data. Written narratives, postmodule quizzes, and survey data were collected during a 5-year period (2010-2014) from pharmacy educators who participated in an online professional development program titled Helping Educators Learn Pedagogy (HELP). Grounded theory was used to create a model of motivation for why pharmacy educators might pursue pedagogical knowledge. Results. Participants reported being driven intrinsically by a passion for their own learning (self-centered motivation) and by the need to improve student learning (student-centered motivation) and extrinsically by program design, funding, and administrator encouragement. Conclusion. A new model of pharmacy educator motivation to pursue pedagogy knowledge, Pedagogical Knowledge Acquisition Theory (PKAT), emerged as a blended intrinsic and extrinsic model, which may have value in developing future professional development programs.
Pharmacy Educator Motives to Pursue Pedagogical Knowledge
Strang, Aimee F.
2016-01-01
Objective. To investigate motives of pharmacy educators who pursue pedagogical knowledge through professional development programs and to develop a model of motivation to inform future development. Methods. A mixed-methods approach was used to study both qualitative and quantitative data. Written narratives, postmodule quizzes, and survey data were collected during a 5-year period (2010-2014) from pharmacy educators who participated in an online professional development program titled Helping Educators Learn Pedagogy (HELP). Grounded theory was used to create a model of motivation for why pharmacy educators might pursue pedagogical knowledge. Results. Participants reported being driven intrinsically by a passion for their own learning (self-centered motivation) and by the need to improve student learning (student-centered motivation) and extrinsically by program design, funding, and administrator encouragement. Conclusion. A new model of pharmacy educator motivation to pursue pedagogy knowledge, Pedagogical Knowledge Acquisition Theory (PKAT), emerged as a blended intrinsic and extrinsic model, which may have value in developing future professional development programs. PMID:27899828
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.
Prospective memory: A comparative perspective
Crystal, Jonathon D.; Wilson, A. George
2014-01-01
Prospective memory consists of forming a representation of a future action, temporarily storing that representation in memory, and retrieving it at a future time point. Here we review the recent development of animal models of prospective memory. We review experiments using rats that focus on the development of time-based and event-based prospective memory. Next, we review a number of prospective-memory approaches that have been used with a variety of non-human primates. Finally, we review selected approaches from the human literature on prospective memory to identify targets for development of animal models of prospective memory. PMID:25101562
Kärki, Anne; Sävel, Jaana; Sallinen, Merja; Kuusinen, Jere
2013-01-01
ICT innovations are constantly developed, and there is no lack of elderly customers, as the number of the elderly is dramatically increasing. Elderly are willing to use ICT to increase their own safety and social activity, but they need trust on the reliability, accessibility and other ethical aspects of ICT including the maintenance of privacy and self-determination. Ethical standards for ICT are usually not considered. "Ethicted" characterizes an ICT service or product as ethically evaluated. As a standardized procedure, it will not only increase the acceptability of ICT, but also provide services for ICT developers. In the future scenario, ICT under development should be evaluated by using a process model that is specifically built to find the lacks in ethical aspects. The model would then be tested by end-users, the formal and informal care givers, to receive direct feedback for redeveloping solutions. As final outcomes, there should be standards for ICT in elderly care and a service for ICT developers to utilize the evaluation model. This future scenario work included partners from 6 EU member countries. The combination of academic research and industrial/commercial interest of ICT developers should and can bring new value to assistive ICT for elderly care.
NASA Astrophysics Data System (ADS)
Rosner, A.; Letcher, B. H.; Vogel, R. M.
2014-12-01
Predicting streamflow in headwaters and over a broad spatial scale pose unique challenges due to limited data availability. Flow observation gages for headwaters streams are less common than for larger rivers, and gages with records lengths of ten year or more are even more scarce. Thus, there is a great need for estimating streamflows in ungaged or sparsely-gaged headwaters. Further, there is often insufficient basin information to develop rainfall-runoff models that could be used to predict future flows under various climate scenarios. Headwaters in the northeastern U.S. are of particular concern to aquatic biologists, as these stream serve as essential habitat for native coldwater fish. In order to understand fish response to past or future environmental drivers, estimates of seasonal streamflow are needed. While there is limited flow data, there is a wealth of data for historic weather conditions. Observed data has been modeled to interpolate a spatially continuous historic weather dataset. (Mauer et al 2002). We present a statistical model developed by pairing streamflow observations with precipitation and temperature information for the same and preceding time-steps. We demonstrate this model's use to predict flow metrics at the seasonal time-step. While not a physical model, this statistical model represents the weather drivers. Since this model can predict flows not directly tied to reference gages, we can generate flow estimates for historic as well as potential future conditions.
DOT National Transportation Integrated Search
2014-05-12
This document details the process that the Volpe National Transportation Systems Center (Volpe) used to develop travel forecasting models for the Federal Highway Administration (FHWA). The purpose of these models is to allow FHWA to forecast future c...
National Mobile Inventory Model (NMIM)
The National Mobile Inventory Model (NMIM) is a free, desktop computer application developed by EPA to help you develop estimates of current and future emission inventories for on-road motor vehicles and nonroad equipment. To learn more search the archive
Insights into future air quality: Analysis of future emissions scenarios using the MARKAL model
This presentation will provide an update on the development and evaluation of four Air Quality Futures (AQF) scenarios. These scenarios represent widely different assumptions regarding the evolution of the U.S. energy system over the next 40 years. The primary differences between...
HSR Model Deformation Measurements from Subsonic to Supersonic Speeds
NASA Technical Reports Server (NTRS)
Burner, A. W.; Erickson, G. E.; Goodman, W. L.; Fleming, G. A.
1999-01-01
This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.
Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets
NASA Astrophysics Data System (ADS)
Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale
2017-05-01
The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.
Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets.
Panagos, Panos; Ballabio, Cristiano; Meusburger, Katrin; Spinoni, Jonathan; Alewell, Christine; Borrelli, Pasquale
2017-05-01
The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha -1 h -1 yr -1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, G.M.; Johnson, N.S.; Chapman, D.
The purpose of the three-part study was to assist Materials Management Service (MMS) planners in evaluation of the anticipated social impact of proposed oil and gas development on the environment. The purpose of the report is primarily to analyze the econometric models of the Dornbusch study. The authors examine, in detail, key aspects of the gravity, consumer surplus, and economic effects (input-output) models. The purpose is two-fold. First, the authors evaluate the performance of the model in satisfying the objective for which it was developed: analyzing economic impacts of OCS oil and gas development in California. Second, the authors evaluatemore » the applicability of the modeling approach employed in the Dornbusch study for analyzing potential OCS development impacts in Washington and Oregon. At the end of the report, the authors offer suggestions for any future study of economic impacts of OCS development in Washington and Oregon. The recommendations concern future data gathering procedures and alternative modeling approaches for measuring economic impacts.« less
NASA Technical Reports Server (NTRS)
Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan
2011-01-01
Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.
Computational Nanotechnology of Molecular Materials, Electronics and Machines
NASA Technical Reports Server (NTRS)
Srivastava, D.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
This viewgraph presentation covers carbon nanotubes, their characteristics, and their potential future applications. The presentation include predictions on the development of nanostructures and their applications, the thermal characteristics of carbon nanotubes, mechano-chemical effects upon carbon nanotubes, molecular electronics, and models for possible future nanostructure devices. The presentation also proposes a neural model for signal processing.
ERIC Educational Resources Information Center
Rasmussen, Randy C.; Jensen, Carl
San Juan School District, a rural school district in the southeast corner of Utah, implemented the Rural Futures Development (RFD) Strategy program to develop greater public involvement in the education process. Geographically one of the largest school districts (approximately 8,000 square miles) in the U.S., San Juan serves Anglos who mainly live…
NASA Astrophysics Data System (ADS)
Han, B.; Flores, A. N.; Benner, S. G.
2017-12-01
In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of changes in precipitation versus temperature as a driver of scarcity, and potential shortcomings of the current water management framework in the region.
Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.
2015-12-31
The application uses predictions of future annual precipitation from five climate models and two future greenhouse gas emissions scenarios and provides results that are averaged over three future periods—2025 to 2049, 2050 to 2074, and 2075 to 2099. Results are presented in ensemble form as the mean, median, maximum, and minimum values among the five climate models for each greenhouse gas emissions scenario and period. These predictions of future annual precipitation are substituted into either the precipitation variable or a water balance equation for runoff to calculate potential future peak flows. This application is intended to be used only as an exploratory tool because (1) the regression equations on which the application is based have not been adequately tested outside the range of the current climate and (2) forecasting future precipitation with climate models and downscaling these results to a fine spatial resolution have a high degree of uncertainty. This report includes a discussion of the assumptions, uncertainties, and appropriate use of this exploratory application.
2011-04-01
a ‘strategy as process’ manner to develop capabilities that are flexible, adaptable and robust. 3.4 Future structures The need for agile...to develop models of the future security environment 3.4.10 Planning Under Deep Uncertainty Future structures The need for agile, flexible and... Organisation NEC Network Enabled Capability NGO Non Government Organisation NII Networking and Information Infrastructure PVO Private Voluntary
The Global Change Assessment Model: A potential component of ABaCAS?
In this presentation, we discuss the role that Integrated Assessment Models (IAMs) may play in developing very different scenarios of the future. We discuss a particular IAM, the Global Change Assessment Model (GCAM) and provide examples of it can be used to develop the types of ...
USDA-ARS?s Scientific Manuscript database
Hydrologic models are used to simulate the responses of agricultural systems to different inputs and management strategies to identify alternative management practices to cope up with future climate and/or geophysical changes. The Agricultural Policy/Environmental eXtender (APEX) is a model develope...
NASA Technical Reports Server (NTRS)
Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.
1992-01-01
A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.
NASA Astrophysics Data System (ADS)
Post, David
2010-05-01
In a water-scarce country such as Australia, detailed, accurate and reliable assessments of current and future water availability are essential in order to adequately manage the limited water resource. This presentation describes a recently completed study which provided an assessment of current water availability in Tasmania, Australia, and also determined how this water availability would be impacted by climate change and proposed catchment development by the year 2030. The Tasmania Sustainable Yields Project (http://www.csiro.au/partnerships/TasSY.html) assessed current water availability through the application of rainfall-runoff models, river models, and recharge and groundwater models. These were calibrated to streamflow records and parameterised using estimates of current groundwater and surface water extractions and use. Having derived a credible estimate of current water availability, the impacts of future climate change on water availability were determined through deriving changes in rainfall and potential evapotranspiration from 15 IPCC AR4 global climate models. These changes in rainfall were then dynamically downscaled using the CSIRO-CCAM model over the relatively small study area (50,000 square km). A future climate sequence was derived by modifying the historical 84-year climate sequence based on these changes in rainfall and potential evapotranspiration. This future climate sequence was then run through the rainfall-runoff, river, recharge and groundwater models to give an estimate of water availability under future climate. To estimate the impacts of future catchment development on water availability, the models were modified and re-run to reflect projected increases in development. Specifically, outputs from the rainfall-runoff and recharge models were reduced over areas of projected future plantation forestry. Conversely, groundwater recharge was increased over areas of new irrigated agriculture and new extractions of water for irrigation were implemented in the groundwater and river models. Results indicate that historical average water availability across the project area was 21,815 GL/year. Of this, 636 GL/year of surface water and 38 GL/year of groundwater are currently extracted for use. By 2030, rainfall is projected to decrease by an average of 3% over the project area. This decrease in rainfall and concurrent increase in potential evapotranspiration leads to a decrease in water availability of 5% by 2030. As a result of lower streamflows, under current cease-to-take rules, currently licensed extractions are projected to decrease by 3% (19 GL/year). This however is offset by an additional 120 GL/year of extractions for proposed new irrigated agriculture. These new extractions, along with the increase in commercial forest plantations lead to a reduction in total surface water of 1% in addition to the 5% reduction due to climate change. Results from this study are being used by the Tasmanian and Australian governments to guide the development of a sustainable irrigated agriculture industry in Tasmania. In part, this is necessary to offset the loss of irrigated agriculture from the southern Murray-Darling Basin where climate change induced reductions in rainfall are projected to be far worse.
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.
Models of Community Colleges in Mainland China
ERIC Educational Resources Information Center
Zhang, Yi
2017-01-01
This chapter provides an overview of community colleges in mainland China, addressing briefly the recent history of community college development, defining these institutions, detailing various models with examples, and discussing challenges faced by these institutions and recommendations for future development.
Capabilities and performance of the new generation ice-sheet model Elmer/Ice
NASA Astrophysics Data System (ADS)
Gagliardini, O.; Zwinger, T.; Durand, G.; Favier, L.; de Fleurian, B.; Gillet-chaulet, F.; Seddik, H.; Greve, R.; Mallinen, M.; Martin, C.; Raback, P.; Ruokolainen, J.; Schäfer, M.; Thies, J.
2012-12-01
Since the Fourth IPCC Assessment Report, and its conclusion about the inability of ice-sheet flow models to forecast the current increase of polar ice sheet discharge and associated contribution to sea-level rise, a huge development effort has been undertaken by the glaciological community. All around the world, models have been improved and, interestingly, a significant number of new ice-sheet models have emerged. Among them, the parallel finite-element model Elmer/Ice (based on the open-source multi-physics code Elmer) was one of the first full-Stokes models used to make projections of the future of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve dedicated local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger scale problems, earning the status of an ice-sheet model. In this presentation, we summarise the almost 10 years of development performed by different groups. We present the components already included in Elmer/Ice, its numerical performance, selected applications, as well as developments planed for the future.
Investigation of Models and Estimation Techniques for GPS Attitude Determination
NASA Technical Reports Server (NTRS)
Garrick, J.
1996-01-01
Much work has been done in the Flight Dynamics Analysis Branch (FDAB) in developing algorithms to met the new and growing field of attitude determination using the Global Positioning SYstem (GPS) constellation of satellites. Flight Dynamics has the responsibility to investigate any new technology and incorporate the innovations in the attitude ground support systems developed to support future missions. The work presented here is an investigative analysis that will produce the needed adaptation to allow the Flight Dynamics Support System (FDSS) to incorporate GPS phase measurements and produce observation measurements compatible with the FDSS. A simulator was developed to produce the necessary measurement data to test the models developed for the different estimation techniques used by FDAB. This paper gives an overview of the current modeling capabilities of the simulator models and algorithms for the adaptation of GPS measurement data and results from each of the estimation techniques. Future analysis efforts to evaluate the simulator and models against inflight GPS measurement data are also outlined.
In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.
2012-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.
In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions
Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.
2014-01-01
The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mayer, A. S.; Halvorsen, K. E.; Robles-Morua, A.; Kossak, D.
2016-12-01
A series of iterative participatory modeling workshops were held in Sonora, México with the goal of developing water resources management strategies in a water-stressed basin subject to hydro-climatic variability and change. A model of the water resources system, consisting of watershed hydrology, water resources infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants used the final version of the water resources systems model to select from supply-side and demand-side water resources management strategies. The performance of the strategies was based on the reliability of meeting current and future demands at a daily time scale over a year's period. Pre- and post-workshop surveys were developed and administered. The survey questions focused on evaluation of participants' modeling capacity and the utility and accuracy of the models. The selected water resources strategies and the associated, expected reliability varied widely among participants. Most participants could be clustered into three groups with roughly equal numbers of participants that varied in terms of reliance on expanding infrastructure vs. demand modification; expectations of reliability; and perceptions of social, environmental, and economic impacts. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region. The pre- and post-survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
NASA Technical Reports Server (NTRS)
Cheng-Campbell, Meg; Scott, Ryan T.; Torres, Samantha; Murray, Matthew; Moyer, Eric
2017-01-01
At the NASA Ames Research Center in California, the next generation of space biologists are working to understand the effects of long duration space flight on model organisms, and are developing ways to protect the health of future astronauts.
Climate change and health modeling: horses for courses.
Ebi, Kristie L; Rocklöv, Joacim
2014-01-01
Mathematical and statistical models are needed to understand the extent to which weather, climate variability, and climate change are affecting current and may affect future health burdens in the context of other risk factors and a range of possible development pathways, and the temporal and spatial patterns of any changes. Such understanding is needed to guide the design and the implementation of adaptation and mitigation measures. Because each model projection captures only a narrow range of possible futures, and because models serve different purposes, multiple models are needed for each health outcome ('horses for courses'). Multiple modeling results can be used to bracket the ranges of when, where, and with what intensity negative health consequences could arise. This commentary explores some climate change and health modeling issues, particularly modeling exposure-response relationships, developing early warning systems, projecting health risks over coming decades, and modeling to inform decision-making. Research needs are also suggested.
Characterization and design of the FutureGen 2.0 carbon storage site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Tyler; Bonneville, Alain; Sullivan, Charlotte
2016-10-01
The objective of the FutureGen 2.0 Project was to demonstrate, at the commercial scale, the technical feasibility of implementing carbon capture and storage (CCS) in a deep saline formation in Illinois, USA. Over approximately 5 years, the FutureGen Alliance conducted a detailed site-selection process and identified a site for carbon sequestration storage in Morgan County, Illinois. The storage site was fully characterized, including the collection of seismic data and the drilling and characterization of a stratigraphic borehole. The characterization data provided critical input for developing a site-specific conceptual model and subsequent numerical modeling simulations. The modeling simulations, coupled with themore » upstream designs of the pipeline and power plant supported the development of a detailed 90 percent design that included the injection wells and associated control and monitoring infrastructure. Collectively, all these data were used by the FutureGen Alliance to develop the required documentation to support the applications for four underground injection control (UIC) permits (one for each proposed well). In August 2014, the U.S. Environmental Protection Agency issued four, first-of-their-kind, Class VI UIC permits for carbon sequestration in the United States to the FutureGen Alliance. The information and data generated under this project have been made publically available through reports and publications, including this journal and others.« less
Modeling potential movements of the emerald ash borer: the model framework
Louis R. Iverson; Anantha Prasad; Jonathan Bossenbroek; Davis Sydnor; Mark W. Schwartz
2010-01-01
The emerald ash borer (EAB, Agrilus planipennis Fairmaire) is threatening to decimate native ashes (Fraxinus spp.) across North America and, so far, has devastated ash populations across sections of Michigan, Ohio, Indiana, and Ontario. We are attempting to develop a computer model that will predict EAB future movement by adapting a model developed...
ERIC Educational Resources Information Center
Peacock, Christopher
2012-01-01
The purpose of this research effort was to develop a model that provides repeatable Location Management (LM) testing using a network simulation tool, QualNet version 5.1 (2011). The model will provide current and future protocol developers a framework to simulate stable protocol environments for development. This study used the Design Science…
L3:PHI.CMD.P13.02 Support for CILC L1 Milestone Using STAR-CCM+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R.; Gurecky, William L.
2016-10-07
This report documents work performed to support Consortium for the Advanced Simulation of LWRs (CASL) modeling of Chalk River Unidentified Deposit (CRUD) Induced Power Shift (CIPS) and CRUD Induced Local Corrosion (CILC) using the Cicada package. The work documented here is intended to complement current and future CIPS and CILC modeling activities in CASL. We provide tools for crud and corrosion-related simulation and analysis by developing a better understanding of the interplay between the coupled physics that describe the phenomena at different time and length scales. We intend to use these models to better inform future simulation capability and development.
van der Fels-Klerx, H J; Booij, C J H
2010-06-01
This article provides an overview of available systems for management of Fusarium mycotoxins in the cereal grain supply chain, with an emphasis on the use of predictive mathematical modeling. From the state of the art, it proposes future developments in modeling and management and their challenges. Mycotoxin contamination in cereal grain-based feed and food products is currently managed and controlled by good agricultural practices, good manufacturing practices, hazard analysis critical control points, and by checking and more recently by notification systems and predictive mathematical models. Most of the predictive models for Fusarium mycotoxins in cereal grains focus on deoxynivalenol in wheat and aim to help growers make decisions about the application of fungicides during cultivation. Future developments in managing Fusarium mycotoxins should include the linkage between predictive mathematical models and geographical information systems, resulting into region-specific predictions for mycotoxin occurrence. The envisioned geographically oriented decision support system may incorporate various underlying models for specific users' demands and regions and various related databases to feed the particular models with (geographically oriented) input data. Depending on the user requirements, the system selects the best fitting model and available input information. Future research areas include organizing data management in the cereal grain supply chain, developing predictive models for other stakeholders (taking into account the period up to harvest), other Fusarium mycotoxins, and cereal grain types, and understanding the underlying effects of the regional component in the models.
In this presentation, we will provide an update on the development and evaluation of the Air Quality Futures (AQF) scenarios. These scenarios represent widely different assumptions regarding the evolution of the U.S. energy system over the next 40 years. The four AQF scenarios di...
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
USEPA Resistance Management Model development
The US EPA requires registrants of plant incorporated protectant (PIP) crops to provide information relating to the time frame for pest resistance development related to the control traits of the crop. Simulation models are used to evaluate the future conditions for resistance de...
The International Reference Ionosphere Today and in the Future
NASA Technical Reports Server (NTRS)
Bilitza, Dieter; McKinnell, Lee-Ane; Reinisch, Bodo; Fuller-Rowell,Tim
2010-01-01
The international reference ionosphere (IRI) is the internationally recognized and recommended standard for the specification of plasma parameters in Earth's ionosphere. It describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 to 1,500 km. A joint working group of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) is in charge of developing and improving the IRI model. As requested by COSPAR and URSI, IRI is an empirical model being based on most of the available and reliable data sources for the ionospheric plasma. The paper describes the latest version of the model and reviews efforts towards future improvements, including the development of new global models for the F2 peak density and height, and a new approach to describe the electron density in the topside and plasmasphere. Our emphasis will be on the electron density because it is the IRI parameter most relevant to geodetic techniques and studies. Annual IRI meetings are the main venue for the discussion of IRI activities, future improvements, and additions to the model. A new special IRI task force activity is focusing on the development of a real-time IRI (RT-IRI) by combining data assimilation techniques with the IRI model. A first RT-IRI task force meeting was held in 2009 in Colorado Springs. We will review the outcome of this meeting and the plans for the future. The IRI homepage is at http://www.IRI.gsfc.nasa.gov
Sensitivity of Regional Hydropower Generation to the Projected Changes in Future Watershed Hydrology
NASA Astrophysics Data System (ADS)
Kao, S. C.; Naz, B. S.; Gangrade, S.
2015-12-01
Hydropower is a key contributor to the renewable energy portfolio due to its established development history and the diverse benefits it provides to the electric power systems. With the projected change in the future watershed hydrology, including shift of snowmelt timing, increasing occurrence of extreme precipitation, and change in drought frequencies, there is a need to investigate how the regional hydropower generation may change correspondingly. To evaluate the sensitivity of watershed storage and hydropower generation to future climate change, a lumped Watershed Runoff-Energy Storage (WRES) model is developed to simulate the annual and seasonal hydropower generation at various hydropower areas in the United States. For each hydropower study area, the WRES model use the monthly precipitation and naturalized (unregulated) runoff as inputs to perform a runoff mass balance calculation for the total monthly runoff storage in all reservoirs and retention facilities in the watershed, and simulate the monthly regulated runoff release and hydropower generation through the system. The WRES model is developed and calibrated using the historic (1980-2009) monthly precipitation, runoff, and generation data, and then driven by a large set of dynamically- and statistically-downscaled Coupled Model Intercomparison Project Phase 5 climate projections to simulate the change of watershed storage and hydropower generation under different future climate scenarios. The results among different hydropower regions, storage capacities, emission scenarios, and timescales are compared and discussed in this study.
Dengue: recent past and future threats
Rogers, David J.
2015-01-01
This article explores four key questions about statistical models developed to describe the recent past and future of vector-borne diseases, with special emphasis on dengue: (1) How many variables should be used to make predictions about the future of vector-borne diseases?(2) Is the spatial resolution of a climate dataset an important determinant of model accuracy?(3) Does inclusion of the future distributions of vectors affect predictions of the futures of the diseases they transmit?(4) Which are the key predictor variables involved in determining the distributions of vector-borne diseases in the present and future?Examples are given of dengue models using one, five or 10 meteorological variables and at spatial resolutions of from one-sixth to two degrees. Model accuracy is improved with a greater number of descriptor variables, but is surprisingly unaffected by the spatial resolution of the data. Dengue models with a reduced set of climate variables derived from the HadCM3 global circulation model predictions for the 1980s are improved when risk maps for dengue's two main vectors (Aedes aegypti and Aedes albopictus) are also included as predictor variables; disease and vector models are projected into the future using the global circulation model predictions for the 2020s, 2040s and 2080s. The Garthwaite–Koch corr-max transformation is presented as a novel way of showing the relative contribution of each of the input predictor variables to the map predictions. PMID:25688021
Simulated hydrologic response to climate change during the 21st century in New Hampshire
Bjerklie, David M.; Sturtevant, Luke P.
2018-01-24
The U.S. Geological Survey, in cooperation with the New Hampshire Department of Environmental Services and the Department of Health and Human Services, has developed a hydrologic model to assess the effects of short- and long-term climate change on hydrology in New Hampshire. This report documents the model and datasets developed by using the model to predict how climate change will affect the hydrologic cycle and provide data that can be used by State and local agencies to identify locations that are vulnerable to the effects of climate change in areas across New Hampshire. Future hydrologic projections were developed from the output of five general circulation models for two future climate scenarios. The scenarios are based on projected future greenhouse gas emissions and estimates of land-use and land-cover change within a projected global economic framework. An evaluation of the possible effect of projected future temperature on modeling of evapotranspiration is summarized to address concerns regarding the implications of the future climate on model parameters that are based on climate variables. The results of the model simulations are hydrologic projections indicating increasing streamflow across the State with large increases in streamflow during winter and early spring and general decreases during late spring and summer. Wide spatial variability in changes to groundwater recharge is projected, with general decreases in the Connecticut River Valley and at high elevations in the northern part of the State and general increases in coastal and lowland areas of the State. In general, total winter snowfall is projected to decrease across the State, but there is a possibility of increasing snow in some locations, particularly during November, February, and March. The simulated future changes in recharge and snowfall vary by watershed across the State. This means that each area of the State could experience very different changes, depending on topography or other factors. Therefore, planning for infrastructure and public safety needs to be flexible in order to address the range of possible outcomes indicated by the various model simulations. The absolute magnitude and timing of the daily streamflows, especially the larger floods, are not considered to be reliably simulated compared to changes in frequency and duration of daily streamflows and changes in accumulated monthly and seasonal streamflow volumes. Simulated current and future streamflow, groundwater recharge, and snowfall datasets include simulated data derived from the five general circulation models used in this study for a current reference time period and two future time periods. Average monthly streamflow time series datasets are provided for 27 streamgages in New Hampshire. Fourteen of the 27 streamgages associated with daily streamflow time series showed a good calibration. Average monthly groundwater recharge and snowfall time series for the same reference time period and two future time periods are also provided for each of the 467 hydrologic response units that compose the model.
Evaluation model of wind energy resources and utilization efficiency of wind farm
NASA Astrophysics Data System (ADS)
Ma, Jie
2018-04-01
Due to the large amount of abandoned winds in wind farms, the establishment of a wind farm evaluation model is particularly important for the future development of wind farms In this essay, consider the wind farm's wind energy situation, Wind Energy Resource Model (WERM) and Wind Energy Utilization Efficiency Model(WEUEM) are established to conduct a comprehensive assessment of the wind farm. Wind Energy Resource Model (WERM) contains average wind speed, average wind power density and turbulence intensity, which assessed wind energy resources together. Based on our model, combined with the actual measurement data of a wind farm, calculate the indicators using the model, and the results are in line with the actual situation. We can plan the future development of the wind farm based on this result. Thus, the proposed establishment approach of wind farm assessment model has application value.
Mechanical model development of rolling bearing-rotor systems: A review
NASA Astrophysics Data System (ADS)
Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng
2018-03-01
The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.
NASA Astrophysics Data System (ADS)
Watanabe, Yukinobu; Kin, Tadahiro; Araki, Shouhei; Nakayama, Shinsuke; Iwamoto, Osamu
2017-09-01
A comprehensive research program on deuteron nuclear data motivated by development of accelerator-based neutron sources is being executed. It is composed of measurements of neutron and gamma-ray yields and production cross sections, modelling of deuteron-induced reactions and code development, nuclear data evaluation and benchmark test, and its application to medical radioisotopes production. The goal of this program is to develop a state-of-the-art deuteron nuclear data library up to 200 MeV which will be useful for the design of future (d,xn) neutron sources. The current status and future plan are reviewed.
Innovations in projecting emissions for air quality modeling ...
Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
ICLUS is a project for developing scenarios broadly consistent with global-scale, peer-reviewed storylines of population growth and economic development, which are used by climate change modelers to develop projections of future climate.
Assimilating the Future for Better Forecasts and Earlier Warnings
NASA Astrophysics Data System (ADS)
Du, H.; Wheatcroft, E.; Smith, L. A.
2016-12-01
Multi-model ensembles have become popular tools to account for some of the uncertainty due to model inadequacy in weather and climate simulation-based predictions. The current multi-model forecasts focus on combining single model ensemble forecasts by means of statistical post-processing. Assuming each model is developed independently or with different primary target variables, each is likely to contain different dynamical strengths and weaknesses. Using statistical post-processing, such information is only carried by the simulations under a single model ensemble: no advantage is taken to influence simulations under the other models. A novel methodology, named Multi-model Cross Pollination in Time, is proposed for multi-model ensemble scheme with the aim of integrating the dynamical information regarding the future from each individual model operationally. The proposed approach generates model states in time via applying data assimilation scheme(s) to yield truly "multi-model trajectories". It is demonstrated to outperform traditional statistical post-processing in the 40-dimensional Lorenz96 flow. Data assimilation approaches are originally designed to improve state estimation from the past to the current time. The aim of this talk is to introduce a framework that uses data assimilation to improve model forecasts at future time (not to argue for any one particular data assimilation scheme). Illustration of applying data assimilation "in the future" to provide early warning of future high-impact events is also presented.
Amplified Arctic warming by phytoplankton under greenhouse warming.
Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho
2015-05-12
Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.
Amplified Arctic warming by phytoplankton under greenhouse warming
Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho
2015-01-01
Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494
Modeling Cultural Context for Aspiring Women Educational Leaders
ERIC Educational Resources Information Center
Sperandio, Jill
2010-01-01
Purpose: The purpose of the paper is to discuss and examine the development of frameworks and models to guide future research into studies of women's paths to educational leadership worldwide. Design/methodology/approach: A grounded theory approach to the development of a model of the factors and their interaction that determine the path to…
Modelling ecological systems in a changing world
Evans, Matthew R.
2012-01-01
The world is changing at an unprecedented rate. In such a situation, we need to understand the nature of the change and to make predictions about the way in which it might affect systems of interest; often we may also wish to understand what might be done to mitigate the predicted effects. In ecology, we usually make such predictions (or forecasts) by making use of mathematical models that describe the system and projecting them into the future, under changed conditions. Approaches emphasizing the desirability of simple models with analytical tractability and those that use assumed causal relationships derived statistically from data currently dominate ecological modelling. Although such models are excellent at describing the way in which a system has behaved, they are poor at predicting its future state, especially in novel conditions. In order to address questions about the impact of environmental change, and to understand what, if any, action might be taken to ameliorate it, ecologists need to develop the ability to project models into novel, future conditions. This will require the development of models based on understanding the processes that result in a system behaving the way it does, rather than relying on a description of the system, as a whole, remaining valid indefinitely. PMID:22144381
Emergence of a Common Modeling Architecture for Earth System Science (Invited)
NASA Astrophysics Data System (ADS)
Deluca, C.
2010-12-01
Common modeling architecture can be viewed as a natural outcome of common modeling infrastructure. The development of model utility and coupling packages (ESMF, MCT, OpenMI, etc.) over the last decade represents the realization of a community vision for common model infrastructure. The adoption of these packages has led to increased technical communication among modeling centers and newly coupled modeling systems. However, adoption has also exposed aspects of interoperability that must be addressed before easy exchange of model components among different groups can be achieved. These aspects include common physical architecture (how a model is divided into components) and model metadata and usage conventions. The National Unified Operational Prediction Capability (NUOPC), an operational weather prediction consortium, is collaborating with weather and climate researchers to define a common model architecture that encompasses these advanced aspects of interoperability and looks to future needs. The nature and structure of the emergent common modeling architecture will be discussed along with its implications for future model development.
Integrated urban systems model with multiple transportation supply agents.
DOT National Transportation Integrated Search
2012-10-01
This project demonstrates the feasibility of developing quantitative models that can forecast future networks under : current and alternative transportation planning processes. The current transportation planning process is modeled : based on empiric...
The Integrated Landscape Modeling partnership - Current status and future directions
Mushet, David M.; Scherff, Eric J.
2016-01-28
The Integrated Landscape Modeling (ILM) partnership is an effort by the U.S. Geological Survey (USGS) and U.S. Department of Agriculture (USDA) to identify, evaluate, and develop models to quantify services derived from ecosystems, with a focus on wetland ecosystems and conservation effects. The ILM partnership uses the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) modeling platform to facilitate regional quantifications of ecosystem services under various scenarios of land-cover change that are representative of differing conservation program and practice implementation scenarios. To date, the ILM InVEST partnership has resulted in capabilities to quantify carbon stores, amphibian habitat, plant-community diversity, and pollination services. Work to include waterfowl and grassland bird habitat quality is in progress. Initial InVEST modeling has been focused on the Prairie Pothole Region (PPR) of the United States; future efforts might encompass other regions as data availability and knowledge increase as to how functions affecting ecosystem services differ among regions.The ILM partnership is also developing the capability for field-scale process-based modeling of depressional wetland ecosystems using the Agricultural Policy/Environmental Extender (APEX) model. Progress was made towards the development of techniques to use the APEX model for closed-basin depressional wetlands of the PPR, in addition to the open systems that the model was originally designed to simulate. The ILM partnership has matured to the stage where effects of conservation programs and practices on multiple ecosystem services can now be simulated in selected areas. Future work might include the continued development of modeling capabilities, as well as development and evaluation of differing conservation program and practice scenarios of interest to partner agencies including the USDA’s Farm Service Agency (FSA) and Natural Resources Conservation Service (NRCS). When combined, the ecosystem services modeling capabilities of InVEST and the process-based abilities of the APEX model should provide complementary information needed to meet USDA and the Department of the Interior information needs.
Beyond speculative robot ethics: a vision assessment study on the future of the robotic caretaker.
van der Plas, Arjanna; Smits, Martijntje; Wehrmann, Caroline
2010-11-01
In this article we develop a dialogue model for robot technology experts and designated users to discuss visions on the future of robotics in long-term care. Our vision assessment study aims for more distinguished and more informed visions on future robots. Surprisingly, our experiment also led to some promising co-designed robot concepts in which jointly articulated moral guidelines are embedded. With our model, we think to have designed an interesting response on a recent call for a less speculative ethics of technology by encouraging discussions about the quality of positive and negative visions on the future of robotics.
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
Future Air Traffic Growth and Schedule Model, Supplement
NASA Technical Reports Server (NTRS)
Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.
2004-01-01
The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.
Stress and deformation modeling of multiple rotary combustion engine trochoid housings
NASA Technical Reports Server (NTRS)
Lychuk, W. M.; Bradley, S. A.; Vilmann, C. R.; Passerello, C. E.; Lee, C.-M.
1986-01-01
This paper documents the development of the capability to produce finite element models of alternate trochoid housing configurations. The effort needed to produce these models is greatly reduced by the use of a newly developed specialized finite element preprocessor which is described. The results of static stress comparisons conducted on a Mazda trochoid housing are presented. Planned future development of this modeling capability to operational situations is also presented.
From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venugopalan, R.
2010-07-22
We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.
Evaluation of future base-flow water-quality conditions in the Hillsborough River, Florida
Fernandez, Mario; Goetz, C.L.; Miller, J.E.
1984-01-01
A one-dimensional, steady-state, water-quality model was developed for a 30.0 mile reach of the Hillsborough River to evaluate water-quality conditions to be expected from future development. The model was calibrated and verified using data collected under critical base-flow conditions in April and December 1978. Dissolved organic nitrogen, nitrate nitrogen, and total and fecal coliforms were modeled for most of the study reach. Model results were used to evaluate the impacts of two typical housing developments on water-quality conditions in Tampa Reservoir. One development is located in the Cypress Creek basin and the other near the upper end of the study reach. Model results show development in the Hillsborough River basin may cause increased total and fecal coliform conditions. Simulated total coliforms at the Tampa water treatment plant for 1-, 3-, and 5-square-mile developments located in the Cypress Creek basin were 3,000, 5,400, and 8,300 colonies per 100 milliliters. Similar developments, however, located near the upper end of the study reach were 2,000, 3,600, and 5,100 colonies per 100 milliliters. Simulated fecal coliforms were 360, 700, and 100 and 180, 350, and 510 colonies per 100 milliliters, respectively. Other constituents modeled showed only minor increases in concentrations. (USGS)
Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Nina; Zhou, Nan; Fridley, David
The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specificmore » section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.« less
Land Cover and Climate Change May Limit Invasiveness of Rhododendron ponticum in Wales.
Manzoor, Syed A; Griffiths, Geoffrey; Iizuka, Kotaro; Lukac, Martin
2018-01-01
Invasive plant species represent a serious threat to biodiversity precipitating a sustained global effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of many invasive species are likely to be modified in the future by land cover and climate change. Thus, invasion management can be made more effective by forecasting the potential spread of invasive species. Rhododendron ponticum (L.) is an aggressive invasive species which appears well suited to western areas of the UK. We made use of MAXENT modeling environment to develop a current distribution model and to assess the likely effects of land cover and climatic conditions (LCCs) on the future distribution of this species in the Snowdonia National park in Wales. Six global circulation models (GCMs) and two representative concentration pathways (RCPs), together with a land cover simulation for 2050 were used to investigate species' response to future environmental conditions. Having considered a range of environmental variables as predictors and carried out the AICc-based model selection, we find that under all LCCs considered in this study, the range of R. ponticum in Wales is likely to contract in the future. Land cover and topographic variables were found to be the most important predictors of the distribution of R. ponticum . This information, together with maps indicating future distribution trends will aid the development of mitigation practices to control R. ponticum .
NASA Astrophysics Data System (ADS)
Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.
2017-12-01
The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.
Optimized ISRU Propellants for Propulsion and Power Needs for Future Mars Colonization
NASA Astrophysics Data System (ADS)
Rice, Eric E.; Gustafson, Robert J.; Gramer, Daniel J.; Chiaverini, Martin J.; Teeter, Ronald R.; White, Brant C.
2003-01-01
In recent studies (Rice, 2000, 2002) conducted by ORBITEC for the NASA Institute for Advanced Concepts (NIAC), we conceptualized systems and an evolving optimized architecture for producing and utilizing Mars-based in-situ space resources utilization (ISRU) propellant combinations for future Mars colonization. The propellants are to be used to support the propulsion and power systems for ground and flight vehicles. The key aspect of the study was to show the benefits of ISRU, develop an analysis methodology, as well as provide guidance to propellant system choices in the future based upon what is known today about Mars. The study time frame included an early unmanned and manned exploration period (through 2040) and two colonization scenarios that are postulated to occur from 2040 to 2090. As part of this feasibility study, ORBITEC developed two different Mars colonization scenarios: a low case that ends with a 100-person colony (an Antarctica analogy) and a high case that ends with a 10,000-person colony (a Mars terraforming scenario). A population growth model, mission traffic model, and infrastructure model were developed for each scenario to better understand the requirements of future Mars colonies. Additionally, propellant and propulsion systems design concepts were developed. Cost models were also developed to allow comparison of the different ISRU propellant approaches. This paper summarizes the overall results of the study. ISRU proved to be a key enabler for these colonization missions. Carbon monoxide and oxygen, proved to be the most cost-effective ISRU propellant combination. The entire final reports Phase I and II) and all the details can be found at the NIAC website www.niac.usra.edu.
Multimodal network models for robust transportation systems.
DOT National Transportation Integrated Search
2009-10-01
Since transportation infrastructure projects have a lifetime of many decades, project developers must consider : not only the current demand for the project but also the future demand. Future demand is of course uncertain and should : be treated as s...
A stochastic forest fire model for future land cover scenarios assessment
M. D' Andrea; P. Fiorucci; T.P. Holmes
2011-01-01
Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and...
ERIC Educational Resources Information Center
Ibrahim, Noraini; Aziz, Azliza Haniem Abdul; Nambiar, Radha M. K.
2013-01-01
Teaching is the foundation of our educational system. As such teachers are privileged with the responsibility of nurturing the young and inadvertently, shaping the future. To this end, the Malaysian government is fully cognizant that our future is dependent on the development of a highly skilled and innovative workforce serving as the critical…
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
Harmonisation of Global Land-Use Scenarios for the Period 1500-2100 for IPCC-AR5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtt, George; Chini, Louise Parsons; Frolking, Steve
2009-06-01
In preparation for the fifth Intergovernmental Panel on Climate Change climate change assessment (IPCC-AR5), the international community is developing new advanced computer models (CMs) to address the combined effects of human activities (e.g. land-use and fossil fuel emissions) on the carbon-climate system. In addition, four Representative Concentration Pathway (RCP) scenarios of the future (2005-2100) are being developed by four Integrated Assessment Modeling teams (IAMs) to be used as input to the CMs for future climate projections. The diversity of requirements and approaches among CMs and IAMs for tracking land-use changes (past, present, and future), presents major challenges for treating land-usemore » comprehensively and consistently between these communities. As part of an international working group, we have been working to meet these challenges by developing a "harmonized" set of land-use change scenarios that smoothly connects gridded historical reconstructions of land-use with future projections, in a format required by CMs. This approach to harmonizing the treatment of land-use between two key modeling communities, CMs and IAMs, represents a major advance that will facilitate more consistent and fuller treatments of land-use/land-use change effects including both CO2 emissions and corresponding land-surface changes.« less
The Community Water Model (CWATM) / Development of a community driven global water model
NASA Astrophysics Data System (ADS)
Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide
2017-04-01
With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In a bigger framework of nexus - water, energy, food, ecosystem - CWATM will be coupled to the existing IIASA models including the Integrated Assessment Model MESSAGE and the global land and ecosystem model GLOBIOM in order to realize an improved assessments of water-energy-food-ecosystem nexus and associated feedback. Our vision for the short to medium term work is to introduce water quality (e.g., salinization in deltas and eutrophication associated with mega cities) into CWATM and to consider qualitative and quantitative measures of transboundary river and groundwater governance into an integrated modelling framework.
Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States
Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang
2012-01-01
The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.
Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui
2016-04-01
Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. Copyright © 2016 Elsevier B.V. All rights reserved.
Trajectories of Future Land Use for Earth System Modeling of the Northeast United States
NASA Astrophysics Data System (ADS)
Rosenzweig, B.; Vorosmarty, C. J.; Lu, X.; Kicklighter, D. W.
2015-12-01
The U.S. Northeast includes some of the nation's most populated cities and their supporting hinterlands, with an urban corridor spanning from Maine to Virginia. The megaregion's centuries-long history of landscape transformations has had enduring impact on the region's hydrology, ecosystems and socioeconomy. Driven by policy decisions made in the next decade, future landscape changes will also interplay with climate change, with multi-decadal effects that are currently poorly understood. While existing national and global land cover trajectories will play an important role in understanding these future impacts, they do not allow for investigation of many issues of interest to regional stakeholders, such as local zoning and suburban sprawl, the development of a regional food system, or varying rates of natural lands protection. Existing land cover trajectories also do not usually provide the detail needed as input drivers for earth system models, such as disaggregated vegetation types or harmonized time series of infrastructure management. We discuss the development of a simple land use/land cover allocation scheme to develop such needed trajectories, their implementation for 4 regional socioeconomic pathways developed collaboratively with regional stakeholders, and their preliminary use in regional ecosystem modeling.
ERIC Educational Resources Information Center
Bryant, Alison L.; Schulenberg, John; Bachman, Jerald G.; O'Malley, Patrick M.; Johnston, Lloyd D.
Relations among academic achievement, school bonding, school misbehavior, and cigarette use from eighth to twelfth grade were examined in two national and panel samples of youth from the Monitoring the Future project (N=3,056). A series of competing conceptual models developed a priori was tested using structural equation modeling (SEM). The…
ERIC Educational Resources Information Center
Lehrl, Simone; Kluczniok, Katharina; Rossbach, Hans-Guenther; Anders, Yvonne
2017-01-01
The present study examines how attending the German model project "Kindergarten of the Future in Bavaria" (KiDZ), which provided 138 children (aged 3 to 6) with traditional preschool stimulation combined with cognitive and domain-specific stimulation, is associated with children's competencies in mathematics over time to age 12 compared…
Alternative futures of proactive tools for a citizen's own wellbeing.
Meristö, Tarja; Tuohimaa, Hanna; Leppimäki, Sami; Laitinen, Jukka
2009-01-01
The aim of this paper is to create the basis for a vision of an empowered citizen who can control his/her life, especially in relation to health and personal wellbeing with the use of new ICT-tools. The methods used in the study are based on futures studies, especially on scenario methodology. Alternative future paths, i.e. scenarios are constructed using the scenario filter model that we have developed, with market, technology and society perspectives. Scenarios not resulting in the vision are described in what if - analysis as well. The scenarios are combined with Viherä's model on citizen's skills, access and motivation to use new ICT-tools. The concept COPER is targeted to different user groups with an adaptable user interface and its development is user centered. We will consider the effects and the appropriate elements of COPER in every scenario, as well as the possibilities and challenges nursing will confront. As a result we will gain information of the characteristic of COPER that advance the vision. For the future development of COPER the alternative scenarios give the basis for flexibility planning, too.
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo
2015-04-01
Alpine hydropower systems are an important source of renewable energy for many countries in Europe. In Switzerland, for instance, they represent the most important domestic source of renewable energy (around 55%). However, future hydropower production may be threatened by unprecedented challenges, such as a decreasing water availability, due to climate change (CC) and associated glacier retreat, and uncertain operating conditions, such as future power needs and highly fluctuating demand on the energy market. This second aspect has gained increasingly relevance since the massive introduction of solar and wind generating systems in the portfolios of many European countries. Because hydropower systems have the potential to provide backup storage of energy to compensate for fluctuations that are typical, for instance, of solar and wind generation systems, it is important to investigate how the increased demand for flexible operation, together with climate change challenge and fluctuating markets, can impact their operating policies. The Swiss Competence Center on Supply of Electricity (www.sccer-soe.ch) has been recently established to explore new potential paths for the development of future power generation systems. In this context, we develop modelling and optimization tools to design and assess new operation strategies for hydropower systems to increase their reliability, flexibility, and robustness to future operation conditions. In particular, we develop an advanced modelling framework for the integrated simulation of the operation of hydropower plants, which accounts for CC-altered streamflow regimes, new demand and market conditions, as well as new boundary conditions for operation (e.g., aquatic ecosystem conservation). The model construction consists of two primary components: a physically based and spatially distributed hydrological model, which describes the relevant hydrological processes at the basin scale, and an agent based decision model, which describes the behavior of hydropower operators. This integrated model allows to quantitatively explore possible trajectories of future evolution of the hydropower systems under the combined effect of climate and socio-economic drivers. In a multi-objective perspective, the model can test how different hydropower operation strategies perform in terms of power production, reliability and flexibility of supply, profitability of operation, and ecosystem conservation. This contribution presents the methodological framework designed to formulate the integrated model, its expected outcomes, and some preliminary results on a pilot study.
McGowan, Conor P.; Allan, Nathan; Servoss, Jeff; Hedwall, Shaula J.; Wooldridge, Brian
2017-01-01
Assessment of a species' status is a key part of management decision making for endangered and threatened species under the U.S. Endangered Species Act. Predicting the future state of the species is an essential part of species status assessment, and projection models can play an important role in developing predictions. We built a stochastic simulation model that incorporated parametric and environmental uncertainty to predict the probable future status of the Sonoran desert tortoise in the southwestern United States and North Central Mexico. Sonoran desert tortoise was a Candidate species for listing under the Endangered Species Act, and decision makers wanted to use model predictions in their decision making process. The model accounted for future habitat loss and possible effects of climate change induced droughts to predict future population growth rates, abundances, and quasi-extinction probabilities. Our model predicts that the population will likely decline over the next few decades, but there is very low probability of quasi-extinction less than 75 years into the future. Increases in drought frequency and intensity may increase extinction risk for the species. Our model helped decision makers predict and characterize uncertainty about the future status of the species in their listing decision. We incorporated complex ecological processes (e.g., climate change effects on tortoises) in transparent and explicit ways tailored to support decision making processes related to endangered species.
NASA Astrophysics Data System (ADS)
Nguyen, Tien M.; Guillen, Andy T.
2017-05-01
This paper describes cooperative and non-cooperative static Bayesian game models with complete and incomplete information for the development of optimum acquisition strategies associated with the Program and Technical Baseline (PTB) solutions obtained from Part 1 of this paper [1]. The optimum acquisition strategies discussed focus on achieving "Affordability" by incorporating contractors' bidding strategies into the government acquisition strategies for acquiring future space systems. The paper discusses System Engineering (SE) frameworks, analytical and simulation approaches and modeling for developing the optimum acquisition strategies from both the government and contractor perspectives for Firm Fixed Price (FFP) and Fixed Price Incentive Firm (FPIF) contract types.
Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe
Guis, Helene; Caminade, Cyril; Calvete, Carlos; Morse, Andrew P.; Tran, Annelise; Baylis, Matthew
2012-01-01
Vector-borne diseases are among those most sensitive to climate because the ecology of vectors and the development rate of pathogens within them are highly dependent on environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of ruminants in Europe, is often cited as an illustration of climate's impact on disease emergence, although no study has yet tested this association. Here, we develop a framework to quantitatively evaluate the effects of climate on BT's emergence in Europe by integrating high-resolution climate observations and model simulations within a mechanistic model of BT transmission risk. We demonstrate that a climate-driven model explains, in both space and time, many aspects of BT's recent emergence and spread, including the 2006 BT outbreak in northwest Europe which occurred in the year of highest projected risk since at least 1960. Furthermore, the model provides mechanistic insight into BT's emergence, suggesting that the drivers of emergence across Europe differ between the South and the North. Driven by simulated future climate from an ensemble of 11 regional climate models, the model projects increase in the future risk of BT emergence across most of Europe with uncertainty in rate but not in trend. The framework described here is adaptable and applicable to other diseases, where the link between climate and disease transmission risk can be quantified, permitting the evaluation of scale and uncertainty in climate change's impact on the future of such diseases. PMID:21697167
Regional temperature models are needed for characterizing and mapping stream thermal regimes, establishing reference conditions, predicting future impacts and identifying critical thermal refugia. Spatial statistical models have been developed to improve regression modeling techn...
Moore, John R; Watt, Michael S
2015-08-01
Wind is the major abiotic disturbance in New Zealand's planted forests, but little is known about how the risk of wind damage may be affected by future climate change. We linked a mechanistic wind damage model (ForestGALES) to an empirical growth model for radiata pine (Pinus radiata D. Don) and a process-based growth model (cenw) to predict the risk of wind damage under different future emissions scenarios and assumptions about the future wind climate. The cenw model was used to estimate site productivity for constant CO2 concentration at 1990 values and for assumed increases in CO2 concentration from current values to those expected during 2040 and 2090 under the B1 (low), A1B (mid-range) and A2 (high) emission scenarios. Stand development was modelled for different levels of site productivity, contrasting silvicultural regimes and sites across New Zealand. The risk of wind damage was predicted for each regime and emission scenario combination using the ForestGALES model. The sensitivity to changes in the intensity of the future wind climate was also examined. Results showed that increased tree growth rates under the different emissions scenarios had the greatest impact on the risk of wind damage. The increase in risk was greatest for stands growing at high stand density under the A2 emissions scenario with increased CO2 concentration. The increased productivity under this scenario resulted in increased tree height, without a corresponding increase in diameter, leading to more slender trees that were predicted to be at greater risk from wind damage. The risk of wind damage was further increased by the modest increases in the extreme wind climate that are predicted to occur. These results have implications for the development of silvicultural regimes that are resilient to climate change and also indicate that future productivity gains may be offset by greater losses from disturbances. © 2015 John Wiley & Sons Ltd.
Predicting future glacial lakes in Austria using different modelling approaches
NASA Astrophysics Data System (ADS)
Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus
2017-04-01
Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers intermediate results from the FUTURELAKES project, which aims at generating the first nation-wide data set on future glacial lakes in Austria.
NASA Astrophysics Data System (ADS)
Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel
2012-02-01
During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.
Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel
2012-02-01
During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.
Post-processing of multi-hydrologic model simulations for improved streamflow projections
NASA Astrophysics Data System (ADS)
khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid
2016-04-01
Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.
Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research
ERIC Educational Resources Information Center
Fried, Leanne; Mansfield, Caroline; Dobozy, Eva
2015-01-01
This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…
NASA Astrophysics Data System (ADS)
Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.
2017-12-01
A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.
2000-06-20
smoothing and regression which includes curve fitting are two principle forecasting model types utilized in the vast majority of forecasting applications ... model were compared against the VA Office of Policy and Planning forecasting study commissioned with the actuarial firm of Milliman & Robertson (M & R... Application to the Veterans Healthcare System The development of a model to forecast future VEV needs, utilization, and cost of the Acute Care and
The Esophagiome: concept, status, and future perspectives.
Gregersen, Hans; Liao, Donghua; Brasseur, James G
2016-09-01
The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.
Spacecraft Internal Acoustic Environment Modeling
NASA Technical Reports Server (NTRS)
Chu, S. Reynold; Allen, Chris
2009-01-01
The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.
Contribution of future urbanisation expansion to flood risk changes
NASA Astrophysics Data System (ADS)
Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin
2016-04-01
The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to drive urban expansion based on numerous policies visions to mitigate future flood risk along the Meuse River. In particular, we assess the impacts on future flood risk of the prohibition of urban development in high and/or medium flood hazard zones. Acknowledgements The research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation.
NASA Astrophysics Data System (ADS)
Wu, Xushu; Wang, Zhaoli; Guo, Shenglian; Liao, Weilin; Zeng, Zhaoyang; Chen, Xiaohong
2017-04-01
One major threat to cities at present is the increased inundation hazards owing to changes in climate and accelerated human activity. Future evolution of urban inundation is still an unsolved issue, given large uncertainties in future environmental conditions within urbanized areas. Developing model techniques and urban inundation projections are essential for inundation management. In this paper, we proposed a 2D hydrodynamic inundation model by coupling SWMM and LISFLOOD-FP models, and revealed how future urban inundation would evolve for different storms, sea level rise and subsidence scenarios based on the developed model. The Shiqiao Creek District (SCD) in Dongguan City was used as the case study. The model ability was validated against the June 13th, 2008 inundation event, which occurred in SCD, and proved capable of simulating dynamic urban inundation. Scenario analyses revealed a high degree of consistency in the inundation patterns among different storms, with larger magnitudes corresponding to greater return periods. Inundations across SCD generally vary as a function of storm intensity, but for lowlands or regions without drainage facilities inundations tend to aggravate over time. In riverfronts, inundations would exacerbate with sea level rise or subsidence; however, the inland inundations are seemingly insensitive to both factors. For the combined scenario of 100-yr storm, 0.5 m subsidence and 0.7 m sea level rise, the riverside inundations would occur much in advance, whilst catastrophic inundations sweep across SCD. Furthermore, the optimal low-impact development found for this case study includes 0.2 km2 of permeable pavements, 0.1 km2 of rain barrels and 0.7 km2 of green roofs.
Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.
Christensen, A. J.; Srinivasan, V.; Hart, J. C.; ...
2018-03-17
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, A. J.; Srinivasan, V.; Hart, J. C.
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have ledmore » to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. Lastly, this survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.« less
Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy
2018-05-01
Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in "big data" analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields.
Christensen, A J; Srinivasan, Venkatraman; Hart, John C; Marshall-Colon, Amy
2018-01-01
Abstract Sustainable crop production is a contributing factor to current and future food security. Innovative technologies are needed to design strategies that will achieve higher crop yields on less land and with fewer resources. Computational modeling coupled with advanced scientific visualization enables researchers to explore and interact with complex agriculture, nutrition, and climate data to predict how crops will respond to untested environments. These virtual observations and predictions can direct the development of crop ideotypes designed to meet future yield and nutritional demands. This review surveys modeling strategies for the development of crop ideotypes and scientific visualization technologies that have led to discoveries in “big data” analysis. Combined modeling and visualization approaches have been used to realistically simulate crops and to guide selection that immediately enhances crop quantity and quality under challenging environmental conditions. This survey of current and developing technologies indicates that integrative modeling and advanced scientific visualization may help overcome challenges in agriculture and nutrition data as large-scale and multidimensional data become available in these fields. PMID:29562368
A simulation model for forecasting downhill ski participation
Daniel J. Stynes; Daniel M. Spotts
1980-01-01
The purpose of this paper is to describe progress in the development of a general computer simulation model to forecast future levels of outdoor recreation participation. The model is applied and tested for downhill skiing in Michigan.
Research and Development Trend of Shape Control for Cold Rolling Strip
NASA Astrophysics Data System (ADS)
Wang, Dong-Cheng; Liu, Hong-Min; Liu, Jun
2017-09-01
Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape control system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll optimization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully industrial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general, the four expected development trends of shape control for cold rolling strip in the future are intelligentization, coordination, refinement, and standardization. The proposed research provides new breakthrough directions for improving shape quality.
2011 Souris River flood—Will it happen again?
Nustad, Rochelle A.; Kolars, Kelsey A.; Vecchia, Aldo V.; Ryberg, Karen R.
2016-09-29
The Souris River Basin is a 61,000 square kilometer basin in the provinces of Saskatchewan and Manitoba and the state of North Dakota. Record setting rains in May and June of 2011 led to record flooding with peak annual streamflow values (762 cubic meters per second [m3/s]) more than twice that of any previously recorded peak streamflow and more than five times the estimated 100 year postregulation streamflow (142 m3/s) at the U.S. Geological Survey (USGS) streamflow-gaging station above Minot, North Dakota. Upstream from Minot, N. Dak., the Souris River is regulated by three reservoirs in Saskatchewan (Rafferty, Boundary, and Alameda) and Lake Darling in North Dakota. During the 2011 flood, the city of Minot, N. Dak., experienced devastating damages with more than 4,000 homes flooded and 11,000 evacuated. As a result, the Souris River Basin Task Force recommended the U.S. Geological Survey (in cooperation with the North Dakota State Water Commission) develop a model for estimating the probabilities of future flooding and drought. The model that was developed took on four parts: (1) looking at past climate, (2) predicting future climate, (3) developing a streamflow model in response to certain climatic variables, and (4) combining future climate estimates with the streamflow model to predict future streamflow events. By taking into consideration historical climate record and trends in basin response to various climatic conditions, it was determined flood risk will remain high in the Souris River Basin until the wet climate state ends.
ERIC Educational Resources Information Center
Tough, David T.
2009-01-01
The purpose of this online study was to create a ranking of essential core competencies and technologies required by AET (audio engineering technology) programs 10 years in the future. The study was designed to facilitate curriculum development and improvement in the rapidly expanding number of small to medium sized audio engineering technology…
Oil and gas development footprint in the Piceance Basin, western Colorado
Martinez, Cericia D.; Preston, Todd M.
2018-01-01
Understanding long-term implications of energy development on ecosystem functionrequires establishing regional datasets to quantify past development and determine relationships to predict future development. The Piceance Basin in western Colorado has a history of energy production and development is expected to continue into the foreseeable future due to abundant natural gas resources. To facilitate analyses of regional energy development we digitized all well pads in the Colorado portion of the basin, determined the previous land cover of areas converted to well pads over three time periods (2002–2006, 2007–2011, and 2012–2016), and explored the relationship between number of wells per pad and pad area to model future development. We also calculated the area of pads constructed prior to 2002. Over 21 million m2 has been converted to well pads with approximately 13 million m2 converted since 2002. The largest land conversion since 2002 occurred in shrub/scrub (7.9 million m2), evergreen (2.1 million m2), and deciduous (1.3 million m2) forest environments based on National Land Cover Database classifications. Operational practices have transitioned from single well pads to multi-well pads, increasing the average number of wells per pad from 2.5 prior to 2002, to 9.1 between 2012 and 2016. During the same time period the pad area per well has increased from 2030 m2 to 3504 m2. Kernel density estimation was used to model the relationship between the number of wells per pad and pad area, with these curves exhibiting a lognormal distribution. Therefore, either kernel density estimation or lognormal probability distributions may potentially be used to model land use requirements for future development. Digitized well pad locations in the Piceance Basin contribute to a growing body of spatial data on energy infrastructure and, coupled with study results, will facilitate future regional and national studies assessing the spatial and temporal effects of energy development on ecosystem function.
Future climate impacts on maize farming and food security in Malawi
NASA Astrophysics Data System (ADS)
Stevens, Tilele; Madani, Kaveh
2016-11-01
Agriculture is the mainstay of Malawi’s economy and maize is the most important crop for food security. As a Least Developed Country (LDC), adverse effects of climate change (CC) on agriculture in Malawi are expected to be significant. We examined the impacts of CC on maize production and food security in Malawi’s dominant cereal producing region, Lilongwe District. We used five Global Circulation Models (GCMs) to make future (2011 to 2100) rainfall and temperature projections and simulated maize yields under these projections. Our future rainfall projections did not reveal a strong increasing or decreasing trend, but temperatures are expected to increase. Our crop modelling results, for the short-term future, suggest that maize farming might benefit from CC. However, faster crop growth could worsen Malawi’s soil fertility problem. Increasing temperature could drive lower maize yields in the medium to long-term future. Consequently, up to 12% of the population in Lilongwe District might be vulnerable to food insecurity by the end of the century. Measures to increase soil fertility and moisture must be developed to build resilience into Malawi’s agriculture sector.
Current capabilities and future directions in computational fluid dynamics
NASA Technical Reports Server (NTRS)
1986-01-01
A summary of significant findings is given, followed by specific recommendations for future directions of emphasis for computational fluid dynamics development. The discussion is organized into three application areas: external aerodynamics, hypersonics, and propulsion - and followed by a turbulence modeling synopsis.
A Future-Oriented, Globally Based Curriculum Model for Industrial Technology.
ERIC Educational Resources Information Center
Hacker, Michael
1982-01-01
Presents a future-oriented curriculum approach for industrial technology programs. Major global issues provide the basic structure for curriculum development. These issues include energy management, resource management, technological advancement, and international relations. Rationales for industrial technology are discussed and a curriculum…
NASA Astrophysics Data System (ADS)
Gu, Y.; Wylie, B. K.; Phuyal, K.
2012-12-01
In previous studies, we used vegetation condition information from archival records of satellite data (i.e., 10-year time series of Normalized Difference Vegetation Index (NDVI) data), site geophysical and biophysical features (e.g., elevation, slope and aspect, and soils), and weather and climate drivers to build ecosystem performance (EP) models to dynamically monitor EP (DMEP) in the Greater Platte River Basin (GPRB). Ecosystem performance is a surrogate approach for measuring ecosystem productivity. We estimated ecosystem site potentials (i.e., long-term ecosystem productivities), weather-based expected EP (EEP), and rangeland conditions based on these EP models. Validation of the EP results using ground observations (e.g., percentage of bare soil, LANDFIRE maps, stocking rate, and crop yield data) demonstrated the reliability of these EP models. We used this DMEP method to identify grasslands that are potentially suitable for cellulosic biofuel feedstock (e.g., switchgrass) development in the GPRB. The objectives of this study are to (1) project the future grassland EP; (2) assess the changes and trends of the future EP; and (3) examine the future sustainability of the identified biofuel feedstock areas in the GPRB. We used the EP models and future climate projections to estimate future (e.g., 2050 and 2099) climate-based projections of grassland performance in the GPRB. The future climate data were derived from the National Center for Atmospheric Research (NCAR) Community Climate System Model 3.0 (CCSM3) "SRES A1B" (a "middle" emissions path) obtained from the "Bias Corrected and Downscaled WCRP CMIP3 Climate Projections" archive (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections). Results show that, under climate scenario A1B, the potential biofuel feedstock areas in the more mesic Eastern part of the GPRB will remain productive in the future (the spatially averaged EPs for these areas are 3335 kg ha-1 year-1, 3355 kg ha-1 year-1, and 3341 kg ha-1 year-1 for the site potential, the 2050 EEP, and the 2099 EEP, respectively). Therefore, the identified potential biofuel feedstock areas will continue to be sustainable for future biofuel development. On the other hand, the identified non-biofuel grasslands in the drier Western part of the GPRB would be expected to stay unproductive, with a slight decline in the EP trend in the future (spatially averaged EPs are 1983 kg ha-1 year-1, 1977 kg ha-1 year-1, and 1964 kg ha-1 year-1 for the site potential, the 2050 EEP, and the 2099 EEP, respectively). Thus, these areas will continue to be unsuitable for biofuel feedstock development in the future. The resulting future grassland EEP maps can be used as a reference by land managers to assess the future sustainability and feasibility of the potential biofuel feedstock areas.
A stochastic Forest Fire Model for future land cover scenarios assessment
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Fiorucci, P.; Holmes, T. P.
2010-10-01
Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.
Validation of Solar Sail Simulations for the NASA Solar Sail Demonstration Project
NASA Technical Reports Server (NTRS)
Braafladt, Alexander C.; Artusio-Glimpse, Alexandra B.; Heaton, Andrew F.
2014-01-01
NASA's Solar Sail Demonstration project partner L'Garde is currently assembling a flight-like sail assembly for a series of ground demonstration tests beginning in 2015. For future missions of this sail that might validate solar sail technology, it is necessary to have an accurate sail thrust model. One of the primary requirements of a proposed potential technology validation mission will be to demonstrate solar sail thrust over a set time period, which for this project is nominally 30 days. This requirement would be met by comparing a L'Garde-developed trajectory simulation to the as-flown trajectory. The current sail simulation baseline for L'Garde is a Systems Tool Kit (STK) plug-in that includes a custom-designed model of the L'Garde sail. The STK simulation has been verified for a flat plate model by comparing it to the NASA-developed Solar Sail Spaceflight Simulation Software (S5). S5 matched STK with a high degree of accuracy and the results of the validation indicate that the L'Garde STK model is accurate enough to meet the potential future mission requirements. Additionally, since the L'Garde sail deviates considerably from a flat plate, a force model for a non-flat sail provided by L'Garde sail was also tested and compared to a flat plate model in S5. This result will be used in the future as a basis of comparison to the non-flat sail model being developed for STK.
Turbulence Modeling: Progress and Future Outlook
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.; Huang, George P.
1996-01-01
Progress in the development of the hierarchy of turbulence models for Reynolds-averaged Navier-Stokes codes used in aerodynamic applications is reviewed. Steady progress is demonstrated, but transfer of the modeling technology has not kept pace with the development and demands of the computational fluid dynamics (CFD) tools. An examination of the process of model development leads to recommendations for a mid-course correction involving close coordination between modelers, CFD developers, and application engineers. In instances where the old process is changed and cooperation enhanced, timely transfer is realized. A turbulence modeling information database is proposed to refine the process and open it to greater participation among modeling and CFD practitioners.
NASA Astrophysics Data System (ADS)
Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.
2012-04-01
Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.
Conway, Declan; Dessai, Suraje; Stainforth, David A.
2018-01-01
Abstract Decision‐Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi‐method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder‐identified decision‐critical metrics are examined: a basin‐wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade‐offs emerge between intrabasin and basin‐wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long‐term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision‐making under deep uncertainty. PMID:29706676
Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A
2018-02-01
Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.
NASA Astrophysics Data System (ADS)
Bhave, Ajay Gajanan; Conway, Declan; Dessai, Suraje; Stainforth, David A.
2018-02-01
Decision-Making Under Uncertainty (DMUU) approaches have been less utilized in developing countries than developed countries for water resources contexts. High climate vulnerability and rapid socioeconomic change often characterize developing country contexts, making DMUU approaches relevant. We develop an iterative multi-method DMUU approach, including scenario generation, coproduction with stakeholders and water resources modeling. We apply this approach to explore the robustness of adaptation options and pathways against future climate and socioeconomic uncertainties in the Cauvery River Basin in Karnataka, India. A water resources model is calibrated and validated satisfactorily using observed streamflow. Plausible future changes in Indian Summer Monsoon (ISM) precipitation and water demand are used to drive simulations of water resources from 2021 to 2055. Two stakeholder-identified decision-critical metrics are examined: a basin-wide metric comprising legal instream flow requirements for the downstream state of Tamil Nadu, and a local metric comprising water supply reliability to Bangalore city. In model simulations, the ability to satisfy these performance metrics without adaptation is reduced under almost all scenarios. Implementing adaptation options can partially offset the negative impacts of change. Sequencing of options according to stakeholder priorities into Adaptation Pathways affects metric satisfaction. Early focus on agricultural demand management improves the robustness of pathways but trade-offs emerge between intrabasin and basin-wide water availability. We demonstrate that the fine balance between water availability and demand is vulnerable to future changes and uncertainty. Despite current and long-term planning challenges, stakeholders in developing countries may engage meaningfully in coproduction approaches for adaptation decision-making under deep uncertainty.
The Emergence of Simulation and Gaming.
ERIC Educational Resources Information Center
Becker, Henk A.
1980-01-01
Describes the historical and international development of simulation and gaming in terms of simulation as analytical models, and games as communicative models; and forecasts possible futures of simulation and gaming. (CMV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, K. A.; Hostick, D. J.; Belzer, D. B.
The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.
Uden, Daniel R.; Allen, Craig R.; Bishop, Andrew A.; Grosse, Roger; Jorgensen, Christopher F.; LaGrange, Theodore G.; Stutheit, Randy G.; Vrtiska, Mark P.
2015-01-01
In the present period of rapid, worldwide change in climate and landuse (i.e., global change), successful biodiversity conservation warrants proactive management responses, especially for long-distance migratory species. However, the development and implementation of management strategies can be impeded by high levels of uncertainty and low levels of control over potentially impactful future events and their effects. Scenario planning and modeling are useful tools for expanding perspectives and informing decisions under these conditions. We coupled scenario planning and statistical modeling to explain and predict playa wetland inundation (i.e., presence/absence of water) and ponded area (i.e., extent of water) in the Rainwater Basin, an anthropogenically altered landscape that provides critical stopover habitat for migratory waterbirds. Inundation and ponded area models for total wetlands, those embedded in rowcrop fields, and those not embedded in rowcrop fields were trained and tested with wetland ponding data from 2004 and 2006–2009, and then used to make additional predictions under two alternative climate change scenarios for the year 2050, yielding a total of six predictive models and 18 prediction sets. Model performance ranged from moderate to good, with inundation models outperforming ponded area models, and models for non-rowcrop-embedded wetlands outperforming models for total wetlands and rowcrop-embedded wetlands. Model predictions indicate that if the temperature and precipitation changes assumed under our climate change scenarios occur, wetland stopover habitat availability in the Rainwater Basin could decrease in the future. The results of this and similar studies could be aggregated to increase knowledge about the potential spatial and temporal distributions of future stopover habitat along migration corridors, and to develop and prioritize multi-scale management actions aimed at mitigating the detrimental effects of global change on migratory waterbird populations.
The Future of Water Security in Metropolitan Region of Sao Paulo Through Different Climate Scenarios
NASA Astrophysics Data System (ADS)
Gesualdo, G. C.; Oliveira, P. T. S.; Rodrigues, D. B. B.
2017-12-01
Achieving a balance between water availability and demand is one of the most pressing environmental challenges in the twenty-first century. This challenge is exacerbated by, climate change, which has already affected the water balance of landscapes globally by intensifying runoff, reducing snowpacks, and shifting precipitation regimes. Understanding these changes is crucial to identifying future water availability and developing sustainable management plans, especially in developing countries. Here, we address the developing country water balance challenge by assessing the influence of climate change on the water availability in the Jaguari basin, Southeastern Brazil. The Jaguari basin is one of the main sources of freshwater for 9 million people in the Metropolitan Region of São Paulo. This region represents about 7% of the Brazil's Gross Domestic Product. The critical importance of the water balance challenge in this area has been highlighted recently when a major drought in southeastern Brazil revealed the vulnerability of current water management systems. Still today, the per capita water availability in the region remains severely limited. To help address this water balance challenge, we use a modeling approach to predict future water vulnerabilities of this region under different climate scenarios. Here, we calibrated and validated a lumped conceptual model using HYMOD to evaluate future scenarios using downscaled climate models resulting from HadGEM2-ES and MIROC5 GCMs forced by RCP4.5 and RCP8.5 scenarios. We also present future directions which include bias correction from long-term weather station data and an empirical uncertainty assessment. Our results provide an important overview of climate change impacts on streamflow and future water availability in the Jaguari basin, which can be used to guide the basin`s water security plans and strategies.
Islam, M M Majedul; Iqbal, Muhammad Shahid; Leemans, Rik; Hofstra, Nynke
2018-03-01
Microbial surface water quality is important, as it is related to health risk when the population is exposed through drinking, recreation or consumption of irrigated vegetables. The microbial surface water quality is expected to change with socio-economic development and climate change. This study explores the combined impacts of future socio-economic and climate change scenarios on microbial water quality using a coupled hydrodynamic and water quality model (MIKE21FM-ECOLab). The model was applied to simulate the baseline (2014-2015) and future (2040s and 2090s) faecal indicator bacteria (FIB: E. coli and enterococci) concentrations in the Betna river in Bangladesh. The scenarios comprise changes in socio-economic variables (e.g. population, urbanization, land use, sanitation and sewage treatment) and climate variables (temperature, precipitation and sea-level rise). Scenarios have been developed building on the most recent Shared Socio-economic Pathways: SSP1 and SSP3 and Representative Concentration Pathways: RCP4.5 and RCP8.5 in a matrix. An uncontrolled future results in a deterioration of the microbial water quality (+75% by the 2090s) due to socio-economic changes, such as higher population growth, and changes in rainfall patterns. However, microbial water quality improves under a sustainable scenario with improved sewage treatment (-98% by the 2090s). Contaminant loads were more influenced by changes in socio-economic factors than by climatic change. To our knowledge, this is the first study that combines climate change and socio-economic development scenarios to simulate the future microbial water quality of a river. This approach can also be used to assess future consequences for health risks. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Berlin, Joey
2017-07-01
Physicians participating in MACRA have a unique opportunity to create and submit their own alternative payment models to the government and take command of their own future payments. At least one Texas physician is taking a crack at developing his own model.
Computer-Based Resource Accounting Model for Automobile Technology Impact Assessment
DOT National Transportation Integrated Search
1976-10-01
A computer-implemented resource accounting model has been developed for assessing resource impacts of future automobile technology options. The resources tracked are materials, energy, capital, and labor. The model has been used in support of the Int...
Transition Models for Engineering Calculations
NASA Technical Reports Server (NTRS)
Fraser, C. J.
2007-01-01
While future theoretical and conceptual developments may promote a better understanding of the physical processes involved in the latter stages of boundary layer transition, the designers of rotodynamic machinery and other fluid dynamic devices need effective transition models now. This presentation will therefore center around the development of of some transition models which have been developed as design aids to improve the prediction codes used in the performance evaluation of gas turbine blading. All models are based on Narasimba's concentrated breakdown and spot growth.
Mac Giollabhui, Naoise; Nielsen, Johanna; Seidman, Sam; Olino, Thomas M; Abramson, Lyn Y; Alloy, Lauren B
2018-01-05
Hopelessness is implicated in multiple psychological disorders. Little is known, however, about the trajectory of hopelessness during adolescence or how emergent future orientation may influence its trajectory. Parallel process latent growth curve modelling tested whether (i) trajectories of future orientation and hopelessness and (ii) within-individual change in future orientation and hopelessness were related. The study was comprised of 472 adolescents [52% female, 47% Caucasian, 47% received free lunch] recruited at ages 12-13 who completed measures of future orientation and hopelessness at five annual assessments. The results indicate that a general decline in hopelessness across adolescence occurs quicker for those experiencing faster development of future orientation, when controlling for age, sex, low socio-economic status in addition to stressful life events in childhood and adolescence. Stressful childhood life events were associated with worse future orientation at baseline and negative life events experienced during adolescence were associated with both an increase in the trajectory of hopelessness as well as a decrease in the trajectory of future orientation. This study provides compelling evidence that the development of future orientation during adolescence is associated with a faster decline in hopelessness.
Gambling and the Reasoned Action Model: Predicting Past Behavior, Intentions, and Future Behavior.
Dahl, Ethan; Tagler, Michael J; Hohman, Zachary P
2018-03-01
Gambling is a serious concern for society because it is highly addictive and is associated with a myriad of negative outcomes. The current study applied the Reasoned Action Model (RAM) to understand and predict gambling intentions and behavior. Although prior studies have taken a reasoned action approach to understand gambling, no prior study has fully applied the RAM or used the RAM to predict future gambling. Across two studies the RAM was used to predict intentions to gamble, past gambling behavior, and future gambling behavior. In study 1 the model significantly predicted intentions and past behavior in both a college student and Amazon Mechanical Turk sample. In study 2 the model predicted future gambling behavior, measured 2 weeks after initial measurement of the RAM constructs. This study stands as the first to show the utility of the RAM in predicting future gambling behavior. Across both studies, attitudes and perceived normative pressure were the strongest predictors of intentions to gamble. These findings provide increased understanding of gambling and inform the development of gambling interventions based on the RAM.
From the past to the future: Integrating work experience into the design process.
Bittencourt, João Marcos; Duarte, Francisco; Béguin, Pascal
2017-01-01
Integrating work activity issues into design process is a broadly discussed theme in ergonomics. Participation is presented as the main means for such integration. However, a late participation can limit the development of both project solutions and future work activity. This article presents the concept of construction of experience aiming at the articulated development of future activities and project solutions. It is a non-teleological approach where the initial concepts will be transformed by the experience built up throughout the design process. The method applied was a case study of an ergonomic participation during the design of a new laboratory complex for biotechnology research. Data was obtained through analysis of records in a simulation process using a Lego scale model and interviews with project participants. The simulation process allowed for developing new ways of working and generating changes in the initial design solutions, which enable workers to adopt their own developed strategies for conducting work more safely and efficiently in the future work system. Each project decision either opens or closes a window of opportunities for developing a future activity. Construction of experience in a non-teleological design process allows for understanding the consequences of project solutions for future work.
Spacecraft Internal Acoustic Environment Modeling
NASA Technical Reports Server (NTRS)
Allen, Christopher; Chu, S. Reynold
2008-01-01
The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles to ensure compliance with acoustic requirements and thus provide a safe and habitable acoustic environment for the crews, and to validate developed models via building physical mockups and conducting acoustic measurements.
NASA Astrophysics Data System (ADS)
Rajaud, A.; De Noblet-Ducoudré, N.
2015-12-01
More and more reforestation projects are undertaken at local to continental scales to fight desertification, to address development challenges, and to improve local living conditions in tropical semi-arid regions. These regions are very sensitive to climatic changes and the potential for maintaining tree-covers will be altered in the next decades. Therefore, reforestation planning needs predicting the future "climatic tree-cover potential": the optimum tree-fraction sustainable in future climatic states. Global circulation models projections provide possible future climatologies for the 21st century. These can be used at the global scale to force a land-surface model, which in turn simulates the vegetation development under these conditions. The tree cover leading to an optimum development may then be identified. We propose here to run a state-of-the-art model and to assess the span and the relevance of the answers that can be obtained for reforestation planning. The ORCHIDEE vegetation model is chosen here to allow a multi-criteria evaluation of the optimum cover, as it returns surface climate state variables as well as vegetation functioning and biomass products. It is forced with global climate data (WFDEI and CRU) for the 20th century and models projections (CMIP5 outputs) for the 21st century. At the grid-cell resolution of the forcing climate data, tree-covers ranging from 0 to 100% are successively prescribed. A set of indicators is then derived from the model outputs, meant for modulating reforestation strategies according to the regional priorities (e.g. maximize the biomass production or decrease the surface air temperature). The choice of indicators and the relevance of the final answers provided will be collectively assessed by the climate scientists and reforestation project management experts from the KINOME social enterprise (http://en.kinome.fr). Such feedback will point towards the model most urging needs for improvement.
Technosocial Modeling of IED Threat Scenarios and Attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, Paul D.; Brothers, Alan J.; Coles, Garill A.
2009-03-23
This paper describes an approach for integrating sociological and technical models to develop more complete threat assessment. Current approaches to analyzing and addressing threats tend to focus on the technical factors. This paper addresses development of predictive models that encompass behavioral as well as these technical factors. Using improvised explosive device (IED) attacks as motivation, this model supports identification of intervention activities 'left of boom' as well as prioritizing attack modalities. We show how Bayes nets integrate social factors associated with IED attacks into general threat model containing technical and organizational steps from planning through obtaining the IED to initiationmore » of the attack. The social models are computationally-based representations of relevant social science literature that describes human decision making and physical factors. When combined with technical models, the resulting model provides improved knowledge integration into threat assessment for monitoring. This paper discusses the construction of IED threat scenarios, integration of diverse factors into an analytical framework for threat assessment, indicator identification for future threats, and future research directions.« less
NASA Astrophysics Data System (ADS)
Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun
2017-04-01
Uncertainty is an inevitable feature of climate change impact assessments. Understanding and quantifying different sources of uncertainty is of high importance, which can help modeling agencies improve the current models and scenarios. In this study, we have assessed the future changes in three climate variables (i.e. precipitation, maximum temperature, and minimum temperature) over 10 sub-basins across the Pacific Northwest US. To conduct the study, 10 statistically downscaled CMIP5 GCMs from two downscaling methods (i.e. BCSD and MACA) were utilized at 1/16 degree spatial resolution for the historical period of 1970-2000 and future period of 2010-2099. For the future projections, two future scenarios of RCP4.5 and RCP8.5 were used. Furthermore, Bayesian Model Averaging (BMA) was employed to develop a probabilistic future projection for each climate variable. Results indicate superiority of BMA simulations compared to individual models. Increasing temperature and precipitation are projected at annual timescale. However, the changes are not uniform among different seasons. Model uncertainty shows to be the major source of uncertainty, while downscaling uncertainty significantly contributes to the total uncertainty, especially in summer.
Tissue chips - innovative tools for drug development and disease modeling.
Low, L A; Tagle, D A
2017-09-12
The high rate of failure during drug development is well-known, however recent advances in tissue engineering and microfabrication have contributed to the development of microphysiological systems (MPS), or 'organs-on-chips' that recapitulate the function of human organs. These 'tissue chips' could be utilized for drug screening and safety testing to potentially transform the early stages of the drug development process. They can also be used to model disease states, providing new tools for the understanding of disease mechanisms and pathologies, and assessing effectiveness of new therapies. In the future, they could be used to test new treatments and therapeutics in populations - via clinical trials-on-chips - and individuals, paving the way for precision medicine. Here we will discuss the wide-ranging and promising future of tissue chips, as well as challenges facing their development.
2012-09-28
spectral-geotechnical libraries and models developed during remote sensing and calibration/ validation campaigns conducted by NRL and collaborating...geotechnical libraries and models developed during remote sensing and calibration/ validation campaigns conducted by NRL and collaborating institutions in four...2010; Bachmann, Fry, et al, 2012a). The NRL HITT tool is a model for how we develop and validate software, and the future development of tools by
Unnatural selection: talent identification and development in sport.
Abbott, Angela; Button, Chris; Pepping, Gert-Jan; Collins, Dave
2005-01-01
The early identification of talented individuals has become increasingly important across many performance domains. Current talent identification (TI) schemes in sport typically select on the basis of discrete, unidimensional measures at unstable periods in the athlete's development. In this article, the concept of talent is revised as a complex, dynamical system in which future behaviors emerge from an interaction of key performance determinants such as psychological behaviors, motor abilities, and physical characteristics. Key nonlinear dynamics concepts are related to TI approaches such as sensitivity to initial conditions, transitions, and exponential behavioral distributions. It is concluded that many TI models place an overemphasis on early identification rather than the development of potentially talented performers. A generic model of talent identification and development is proposed that addresses these issues and provides direction for future research.
Siemann, Julia; Petermann, Franz
2018-01-01
This review reconciles past findings on numerical processing with key assumptions of the most predominant model of arithmetic in the literature, the Triple Code Model (TCM). This is implemented by reporting diverse findings in the literature ranging from behavioral studies on basic arithmetic operations over neuroimaging studies on numerical processing to developmental studies concerned with arithmetic acquisition, with a special focus on developmental dyscalculia (DD). We evaluate whether these studies corroborate the model and discuss possible reasons for contradictory findings. A separate section is dedicated to the transfer of TCM to arithmetic development and to alternative accounts focusing on developmental questions of numerical processing. We conclude with recommendations for future directions of arithmetic research, raising questions that require answers in models of healthy as well as abnormal mathematical development. This review assesses the leading model in the field of arithmetic processing (Triple Code Model) by presenting knowledge from interdisciplinary research. It assesses the observed contradictory findings and integrates the resulting opposing viewpoints. The focus is on the development of arithmetic expertise as well as abnormal mathematical development. The original aspect of this article is that it points to a gap in research on these topics and provides possible solutions for future models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paradigm Shifts Towards Understanding the Full Story of Mars, a Possible Future
NASA Astrophysics Data System (ADS)
Diniega, S.; Zurek, R.
2017-02-01
A new phase of Mars and planetary science exploration has opened that studies Mars through a holistic lens. We describe the advances needed for achieving this future: in measurement characteristic and type; in technology and access; and in model development.
NASA Astrophysics Data System (ADS)
Myers, B.; Beard, T. D.; Weiskopf, S. R.; Jackson, S. T.; Tittensor, D.; Harfoot, M.; Senay, G. B.; Casey, K.; Lenton, T. M.; Leidner, A. K.; Ruane, A. C.; Ferrier, S.; Serbin, S.; Matsuda, H.; Shiklomanov, A. N.; Rosa, I.
2017-12-01
Biodiversity and ecosystems services underpin political targets for the conservation of biodiversity; however, previous incarnations of these biodiversity-related targets have not relied on integrated model based projections of possible outcomes based on climate and land use change. Although a few global biodiversity models are available, most biodiversity models lie along a continuum of geography and components of biodiversity. Model-based projections of the future of global biodiversity are critical to support policymakers in the development of informed global conservation targets, but the scientific community lacks a clear strategy for integrating diverse data streams in developing, and evaluating the performance of, such biodiversity models. Therefore, in this paper, we propose a framework for ongoing testing and refinement of model-based projections of biodiversity trends and change, by linking a broad variety of biodiversity models with data streams generated by advances in remote sensing, coupled with new and emerging in-situ observation technologies to inform development of essential biodiversity variables, future global biodiversity targets, and indicators. Our two main objectives are to (1) develop a framework for model testing and refining projections of a broad range of biodiversity models, focusing on global models, through the integration of diverse data streams and (2) identify the realistic outputs that can be developed and determine coupled approaches using remote sensing and new and emerging in-situ observations (e.g., metagenomics) to better inform the next generation of global biodiversity targets.
Unified Performance and Power Modeling of Scientific Workloads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shuaiwen; Barker, Kevin J.; Kerbyson, Darren J.
2013-11-17
It is expected that scientific applications executing on future large-scale HPC must be optimized not only in terms of performance, but also in terms of power consumption. As power and energy become increasingly constrained resources, researchers and developers must have access to tools that will allow for accurate prediction of both performance and power consumption. Reasoning about performance and power consumption in concert will be critical for achieving maximum utilization of limited resources on future HPC systems. To this end, we present a unified performance and power model for the Nek-Bone mini-application developed as part of the DOE's CESAR Exascalemore » Co-Design Center. Our models consider the impact of computation, point-to-point communication, and collective communication« less
Flight test derived heating math models for critical locations on the orbiter during reentry
NASA Technical Reports Server (NTRS)
Hertzler, E. K.; Phillips, P. W.
1983-01-01
An analysis technique was developed for expanding the aerothermodynamic envelope of the Space Shuttle without subjecting the vehicle to sustained flight at more stressing heating conditions. A transient analysis program was developed to take advantage of the transient maneuvers that were flown as part of this analysis technique. Heat rates were derived from flight test data for various locations on the orbiter. The flight derived heat rates were used to update heating models based on predicted data. Future missions were then analyzed based on these flight adjusted models. A technique for comparing flight and predicted heating rate data and the extrapolation of the data to predict the aerothermodynamic environment of future missions is presented.
Houben, R.; Cohen, T.; Pai, M.; Cobelens, F.; Vassall, A.; Menzies, N. A.; Gomez, G. B.; Langley, I.; Squire, S. B.; White, R.
2014-01-01
SUMMARY The landscape of diagnostic testing for tuberculosis (TB) is changing rapidly, and stakeholders need urgent guidance on how to develop, deploy and optimize TB diagnostics in a way that maximizes impact and makes best use of available resources. When decisions must be made with only incomplete or preliminary data available, modelling is a useful tool for providing such guidance. Following a meeting of modelers and other key stakeholders organized by the TB Modelling and Analysis Consortium, we propose a conceptual framework for positioning models of TB diagnostics. We use that framework to describe modelling priorities in four key areas: Xpert® MTB/RIF scale-up, target product profiles for novel assays, drug susceptibility testing to support new drug regimens, and the improvement of future TB diagnostic models. If we are to maximize the impact and cost-effectiveness of TB diagnostics, these modelling priorities should figure prominently as targets for future research. PMID:25189546
A Method for Forecasting the Commercial Air Traffic Schedule in the Future
NASA Technical Reports Server (NTRS)
Long, Dou; Lee, David; Gaier, Eric; Johnson, Jesse; Kostiuk, Peter
1999-01-01
This report presents an integrated set of models that forecasts air carriers' future operations when delays due to limited terminal-area capacity are considered. This report models the industry as a whole, avoiding unnecessary details of competition among the carriers. To develop the schedule outputs, we first present a model to forecast the unconstrained flight schedules in the future, based on the assumption of rational behavior of the carriers. Then we develop a method to modify the unconstrained schedules, accounting for effects of congestion due to limited NAS capacities. Our underlying assumption is that carriers will modify their operations to keep mean delays within certain limits. We estimate values for those limits from changes in planned block times reflected in the OAG. Our method for modifying schedules takes many means of reducing the delays into considerations, albeit some of them indirectly. The direct actions include depeaking, operating in off-hours, and reducing hub airports'operations. Indirect actions include using secondary airports, using larger aircraft, and selecting new hub airports, which, we assume, have already been modeled in the FAA's TAF. Users of our suite of models can substitute an alternative forecast for the TAF.
The future of Cash and Counseling: the framers' view.
Mahoney, Kevin J; Fishman, Nancy Wieler; Doty, Pamela; Squillace, Marie R
2007-02-01
This paper reflects on the progress of the original Cash and Counseling states, and shows how this model has spread, how it has evolved over time, and what is left to improve. It then discusses the generalizability of the Cash and Counseling approach beyond long-term care and ventures some thoughts on what still needs to be learned. Finally, this paper suggests some of the contingencies that could affect the diffusion of this innovation. Drawing from ten years of experiences with the fifteen Cash and Counseling states, plus their analyses of current trends and future opportunities and threats, the framers of the Cash and Counseling model reflect on future directions. This paper is essentially a policy-driven analysis of how the Cash and Counseling model has been sustained and disseminated, how it is likely to develop, and what still needs to be learned. The basic Cash and Counseling model appears adaptable to different state environments and populations, but that hypothesis will be severely tested as more and more states seek to replicate. As one step to promote flexibility while capturing and preserving the essence of the model that led to such promising research results, the Cash & Counseling National Program Office developed a "Vision Statement". The Cash and Counseling approach is not for everyone, but it is clearly a choice many participants desire. Its development merits monitoring.
Behavioral medicine: a voyage to the future.
Keefe, Francis J
2011-04-01
This paper discusses trends and future directions in behavioral medicine. It is divided into three sections. The first briefly reviews key developments in the history of behavioral medicine. The second section highlights trends and future directions in pain research and practice as a way of illustrating future directions for behavioral medicine. Consistent with the biopsychosocial model of pain, this section focuses on trends and future directions in three key areas: biological, psychological, and social. The third section describes recent Society of Behavioral Medicine initiatives designed to address some of the key challenges facing our field as we prepare for the future.
Future Air Traffic Growth and Schedule Model User's Guide
NASA Technical Reports Server (NTRS)
Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.
2004-01-01
The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.
SMRT: A new, modular snow microwave radiative transfer model
NASA Astrophysics Data System (ADS)
Picard, Ghislain; Sandells, Melody; Löwe, Henning; Dumont, Marie; Essery, Richard; Floury, Nicolas; Kontu, Anna; Lemmetyinen, Juha; Maslanka, William; Mätzler, Christian; Morin, Samuel; Wiesmann, Andreas
2017-04-01
Forward models of radiative transfer processes are needed to interpret remote sensing data and derive measurements of snow properties such as snow mass. A key requirement and challenge for microwave emission and scattering models is an accurate description of the snow microstructure. The snow microwave radiative transfer model (SMRT) was designed to cater for potential future active and/or passive satellite missions and developed to improve understanding of how to parameterize snow microstructure. SMRT is implemented in Python and is modular to allow easy intercomparison of different theoretical approaches. Separate modules are included for the snow microstructure model, electromagnetic module, radiative transfer solver, substrate, interface reflectivities, atmosphere and permittivities. An object-oriented approach is used with carefully specified exchanges between modules to allow future extensibility i.e. without constraining the parameter list requirements. This presentation illustrates the capabilities of SMRT. At present, five different snow microstructure models have been implemented, and direct insertion of the autocorrelation function from microtomography data is also foreseen with SMRT. Three electromagnetic modules are currently available. While DMRT-QCA and Rayleigh models need specific microstructure models, the Improved Born Approximation may be used with any microstructure representation. A discrete ordinates approach with stream connection is used to solve the radiative transfer equations, although future inclusion of 6-flux and 2-flux solvers are envisioned. Wrappers have been included to allow existing microwave emission models (MEMLS, HUT, DMRT-QMS) to be run with the same inputs and minimal extra code (2 lines). Comparisons between theoretical approaches will be shown, and evaluation against field experiments in the frequency range 5-150 GHz. SMRT is simple and elegant to use whilst providing a framework for future development within the community.
St-Maurice, Justin D; Burns, Catherine M
2017-07-28
Health care is a complex sociotechnical system. Patient treatment is evolving and needs to incorporate the use of technology and new patient-centered treatment paradigms. Cognitive work analysis (CWA) is an effective framework for understanding complex systems, and work domain analysis (WDA) is useful for understanding complex ecologies. Although previous applications of CWA have described patient treatment, due to their scope of work patients were previously characterized as biomedical machines, rather than patient actors involved in their own care. An abstraction hierarchy that characterizes patients as beings with complex social values and priorities is needed. This can help better understand treatment in a modern approach to care. The purpose of this study was to perform a WDA to represent the treatment of patients with medical records. The methods to develop this model included the analysis of written texts and collaboration with subject matter experts. Our WDA represents the ecology through its functional purposes, abstract functions, generalized functions, physical functions, and physical forms. Compared with other work domain models, this model is able to articulate the nuanced balance between medical treatment, patient education, and limited health care resources. Concepts in the analysis were similar to the modeling choices of other WDAs but combined them in as a comprehensive, systematic, and contextual overview. The model is helpful to understand user competencies and needs. Future models could be developed to model the patient's domain and enable the exploration of the shared decision-making (SDM) paradigm. Our work domain model links treatment goals, decision-making constraints, and task workflows. This model can be used by system developers who would like to use ecological interface design (EID) to improve systems. Our hierarchy is the first in a future set that could explore new treatment paradigms. Future hierarchies could model the patient as a controller and could be useful for mobile app development. ©Justin D St-Maurice, Catherine M Burns. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 28.07.2017.
2017-01-01
Background Health care is a complex sociotechnical system. Patient treatment is evolving and needs to incorporate the use of technology and new patient-centered treatment paradigms. Cognitive work analysis (CWA) is an effective framework for understanding complex systems, and work domain analysis (WDA) is useful for understanding complex ecologies. Although previous applications of CWA have described patient treatment, due to their scope of work patients were previously characterized as biomedical machines, rather than patient actors involved in their own care. Objective An abstraction hierarchy that characterizes patients as beings with complex social values and priorities is needed. This can help better understand treatment in a modern approach to care. The purpose of this study was to perform a WDA to represent the treatment of patients with medical records. Methods The methods to develop this model included the analysis of written texts and collaboration with subject matter experts. Our WDA represents the ecology through its functional purposes, abstract functions, generalized functions, physical functions, and physical forms. Results Compared with other work domain models, this model is able to articulate the nuanced balance between medical treatment, patient education, and limited health care resources. Concepts in the analysis were similar to the modeling choices of other WDAs but combined them in as a comprehensive, systematic, and contextual overview. The model is helpful to understand user competencies and needs. Future models could be developed to model the patient’s domain and enable the exploration of the shared decision-making (SDM) paradigm. Conclusion Our work domain model links treatment goals, decision-making constraints, and task workflows. This model can be used by system developers who would like to use ecological interface design (EID) to improve systems. Our hierarchy is the first in a future set that could explore new treatment paradigms. Future hierarchies could model the patient as a controller and could be useful for mobile app development. PMID:28754650
2012-01-01
Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities. PMID:22877154
Sohl, Terry L.; Sayler, Kristi L.; Drummond, Mark A.; Loveland, Thomas R.
2007-01-01
A wide variety of ecological applications require spatially explicit, historic, current, and projected land use and land cover data. The U.S. Land Cover Trends project is analyzing contemporary (1973–2000) land-cover change in the conterminous United States. The newly developed FORE-SCE model used Land Cover Trends data and theoretical, statistical, and deterministic modeling techniques to project future land cover change through 2020 for multiple plausible scenarios. Projected proportions of future land use were initially developed, and then sited on the lands with the highest potential for supporting that land use and land cover using a statistically based stochastic allocation procedure. Three scenarios of 2020 land cover were mapped for the western Great Plains in the US. The model provided realistic, high-resolution, scenario-based land-cover products suitable for multiple applications, including studies of climate and weather variability, carbon dynamics, and regional hydrology.
Hydroclimatic Change in the Congo River Basin: Past, Present and Future169
NASA Astrophysics Data System (ADS)
Aloysius, N. R.
2016-12-01
Tropical regions provide habitat for the world's most diverse fauna and flora, sequester more atmospheric carbon and provide livelihood for millions of people. The hydrological cycle provides vital linkages for maintaining these ecosystem functions, yet, the understanding of its spatiotemporal variability is limited. Research on the hydrological cycle of the Congo River Basin (CRB), which encompasses the second largest rainforests, has been largely ignored. Global Climate Models (GCM) show limited skills in simulating CRB's climate and their future projections vary widely. Yet, GCMs provide the most plausible scenarios of future climate, based upon which changes in hydrologic fluxes can be predicted with the aid hydrological models. In order to address the gaps in knowledge and to highlight the research needs, we i) developed a spatially explicit hydrological model suitable for describing key hydrological processes, ii) evaluated the performance of GCMs in simulating precipitation and temperature in the region, iii) developed a set of climate change scenarios for the CRB and iv) developed a simplified modeling framework to quantify water management options for rain-fed agriculture with the objective of achieving the triple goals of sustainable development: food security, poverty alleviation and ecosystem conservation. The hydrology model, which was validated with observed stream flows at 50 locations, satisfactorily characterizes spatiotemporal variability of key fluxes. Our evaluation of 25 GCM outputs reveal that many GCMs poorly simulate regional precipitation. We implemented a statistical bias-correction method to develop precipitation and temperature projections for two future greenhouse gas emission scenarios. These climate forcings were, then, used to drive the hydrology model. Our results show that the near-term projections are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. Our findings have wider implications for climate change assessment and water resource management, because the region, with high population growth and limited capacity to adapt, are primary targets of land and water grabs. 155
Jane Kapler Smith
2014-01-01
In IMAGINING FIRE FUTURES, students in a high school or college class use model results to develop a vision of the future for Flathead County, Montana. This is a rural area in the northern Rocky Mountains where more than half of the landscape is covered by wildland ecosystems that have evolved with and are shaped by wildland fire.
NEW BIOGENIC VOC EMISSIONS MODEL
We intend to develop new prognostic models for the prediction of biogenic volatile organic compound emissions from forest ecosystems in the face of possible future changes in the climate and the concentration of carbon dioxide in the atmosphere. These models will b...
MECHANISTIC-BASED DISINFECTION AND DISINFECTION BYPRODUCT MODELS
We propose developing a mechanistic-based numerical model for chlorine decay and regulated DBP (THM and HAA) formation derived from (free) chlorination; the model framework will allow future modifications for other DBPs and chloramination. Predicted chlorine residual and DBP r...
Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050
NASA Astrophysics Data System (ADS)
Eyring, V.; KöHler, H. W.; Lauer, A.; Lemper, B.
2005-09-01
In this study the today's fleet-average emission factors of the most important ship exhausts are used to calculate emission scenarios for the future. To develop plausible future technology scenarios, first upcoming regulations and compliance with future regulations through technological improvements are discussed. We present geographically resolved emission inventory scenarios until 2050, based on a mid-term prognosis for 2020 and a long-term prognosis for 2050. The scenarios are based on some very strict assumptions on future ship traffic demands and technological improvements. The four future ship traffic demand scenarios are mainly determined by the economic growth, which follows the IPCC SRES storylines. The resulting fuel consumption is projected through extrapolations of historical trends in economic growth, total seaborne trade and number of ships, as well as the average installed power per ship. For the future technology scenarios we assume a diesel-only fleet in 2020 resulting in fuel consumption between 382 and 409 million metric tons (Mt). For 2050 one technology scenario assumes that 25% of the fuel consumed by a diesel-only fleet can be saved by applying future alternative propulsion plants, resulting in a fuel consumption that varies between 402 and 543 Mt. The other scenario is a business-as-usual scenario for a diesel-only fleet even in 2050 and gives an estimate between 536 and 725 Mt. Dependent on how rapid technology improvements for diesel engines are introduced, possible technology reduction factors are applied to the today's fleet-average emission factors of all important species to estimate future ship emissions. Combining the four traffic demand scenarios with the four technology scenarios, our results suggest emissions between 8.8 and 25.0 Tg (NO2) in 2020, and between 3.1 to 38.8 Tg (NO2) in 2050. The development of forecast scenarios for CO2, NOx, SOx, CO, hydrocarbons, and particulate matter is driven by the requirements for global model studies of the effects of these emissions on the chemical composition of the atmosphere and on climate. The developed scenarios are suitable for use as input for chemical transport models (CTMs) and coupled chemistry-climate models (CCMs).
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.
1980-01-01
The results of the analysis of the external environment of the FBI Fingerprint Identification Division are presented. Possible trends in the future environment of the Division that may have an effect on the work load were projected to determine if future work load will lie within the capability range of the proposed new system, AIDS 3. Two working models of the environment were developed, the internal and external model, and from these scenarios the projection of possible future work load volume and mixture was developed. Possible drivers of work load change were identified and assessed for upper and lower bounds of effects. Data used for the study were derived from historical information, analysis of the current situation and from interviews with various agencies who are users of or stakeholders in the present system.
NASA Astrophysics Data System (ADS)
MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.
2013-12-01
Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.
The present state and future directions of PDF methods
NASA Technical Reports Server (NTRS)
Pope, S. B.
1992-01-01
The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.
Absar, Syeda Mariya; Preston, Benjamin L.
2015-05-25
The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impact, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impact, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However,more » the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impact, adaptation and vulnerability, and increasingly integrated assessment modeling, studies are conducted. Our objective for this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor-Actor-Sector framework. Finally, in addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative subnational socioeconomic futures for the assessment of climate change impacts and adaptation.« less
Parental influences on 7-9 year olds' physical activity: a conceptual model.
Leary, Janie M; Lilly, Christa L; Dino, Geri; Loprinzi, Paul D; Cottrell, Lesley
2013-05-01
Models characterizing parental influence on child and adolescent physical activity (PA) over time are limited. Preschool and Adolescent Models (PM and AM) of PA are available leaving the need to focus on elementary-aged children. We tested current models (PM and AM) with a sample of 7-9 year-olds, and then developed a model appropriate to this specific target population. Parent-child dyads completed questionnaires in 2010-2011. All models were assessed using path analysis and model fit indices. For adequate power, 90 families were needed, with 174 dyads participating. PM and AM exhibited poor fit when applied to the study population. A gender-specific model was developed and demonstrated acceptable fit. To develop an acceptable model for this population, constructs from both the PM (i.e. parental perception of child competency) and AM (i.e., child-reported self-efficacy) were used. For boys, self-efficacy was a strong predictor of PA, which was influenced by various parental variables. For girls, parental PA demonstrated the greatest strength of association with child PA. This new model can be used to promote PA and guide future research/interventions. Future studies, particularly longitudinal designs, are needed to confirm the utility of this model as a bridge between currently available models. Copyright © 2013 Elsevier Inc. All rights reserved.
Determing Credibility of Regional Simulations of Future Climate
NASA Astrophysics Data System (ADS)
Mearns, L. O.
2009-12-01
Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.
An epidemic model for the future progression of the current Haiti cholera epidemic
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Mari, L.; Righetto, L.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.
2012-04-01
As a major cholera epidemic progresses in Haiti, and the figures of the infection, up to December 2011, climb to 522,000 cases and 7,000 deaths, the development of general models to track and predict the evolution of the outbreak, so as to guide the allocation of medical supplies and staff, is gaining notable urgency. We propose here a spatially explicit epidemic model that accounts for the dynamics of susceptible and infected individuals as well as the redistribution of Vibrio cholera, the causative agent of the disease, among different human communities. In particular, we model two spreading pathways: the advection of pathogens through hydrologic connections and the dissemination due to human mobility described by means of a gravity-like model. To this end the country has been divided into hydrologic units based on drainage directions derived from a digital terrain model. Moreover the population of each unit has been estimated from census data downscaled to 1 km x 1 km resolution via remotely sensed geomorphological information (LandScan project). The model directly accounts for the role of rainfall patterns in driving the seasonality of cholera outbreaks. The two main outbreaks in fact occurred during the rainy seasons (October and May) when extensive floodings severely worsened the sanitation conditions and, in turn, raised the risk of infection. The model capability to reproduce the spatiotemporal features of the epidemic up to date grants robustness to the foreseen future development. To this end, we generate realistic scenario of future precipitation in order to forecast possible epidemic paths up to the end of the 2013. In this context, the duration of acquired immunity, a hotly debated topic in the scientific community, emerges as a controlling factor for progression of the epidemic in the near future. The framework presented here can straightforwardly be used to evaluate the effectiveness of alternative intervention strategies like mass vaccinations, clean water supply and educational campaigns, thus emerging as an essential component of the control of future cholera epidemics.
An integrated land change model for projecting future climate and land change scenarios
Wimberly, Michael; Sohl, Terry L.; Lamsal, Aashis; Liu, Zhihua; Hawbaker, Todd J.
2013-01-01
Climate change will have myriad effects on ecosystems worldwide, and natural and anthropogenic disturbances will be key drivers of these dynamics. In addition to climatic effects, continual expansion of human settlement into fire-prone forests will alter fire regimes, increase human vulnerability, and constrain future forest management options. There is a need for modeling tools to support the simulation and assessment of new management strategies over large regions in the context of changing climate, shifting development patterns, and an expanding wildland-urban interface. To address this need, we developed a prototype land change simulator that combines human-driven land use change (derived from the FORE-SCE model) with natural disturbances and vegetation dynamics (derived from the LADS model) and incorporates novel feedbacks between human land use and disturbance regimes. The prototype model was implemented in a test region encompassing the Denver metropolitan area along with its surrounding forested and agricultural landscapes. Initial results document the feasibility of integrated land change modeling at a regional scale but also highlighted conceptual and technical challenges for this type of model integration. Ongoing development will focus on improving climate sensitivities and modeling constraints imposed by climate change and human population growth on forest management activities.
Sentinel site data for model improvement – Definition and characterization
USDA-ARS?s Scientific Manuscript database
Crop models are increasingly being used to assess the impacts of future climate change on production and food security. High quality site-specific data on weather, soils, management, and cultivar are needed for those model applications. Also important, is that model development, evaluation, improvem...
An approach for the anticipatory and participatory management of current and future flood risks
NASA Astrophysics Data System (ADS)
Luther, J.
2012-04-01
Despite the fact that many measures to attenuate flood hazards and reduce vulnerabilities are being implemented, adverse effects of floods are ever-increasing in most parts of the world. On the one hand this holds true for economically and/or demographically growing regions. On the other hand this applies also to areas that face population shrinkage and economic problems. Such flood risks occur in human-environment systems and are subject to dynamics caused by a number of drivers such as climate change, land-use changes, and others. Many drivers evolve slowly over time or show time-lag effects and long return periods. Moreover, certain decisions may determine the control actions of the following decades. At present, current flood risks are mostly determined based on historic developments and the ex post analysis of flood events. Approaches that look at the future dynamics of both hazards and vulnerable elements ex ante in an integrated manner are rare. Instead, future hazard scenarios are often just overlaid with current socio-economic data, which poses a strong inconsistency. Usually the focus lies on rather short-term, specific or local problems. But many developments and measures show their effects only after long time periods and when considering the whole catchment area. This calls for a holistic and long-term view into the future and implies the challenge of dealing with many uncertainties due to the system's complexity. In order to anticipate and react to these developments, this contribution suggests developing a flexible, yet holistic approach to design, analyse and evaluate alternative futures of such human-environment systems. These futures follow a scenario understanding that considers both specific (current) factor constellations as well as consistent assumptions on autonomous developments (so-called development frameworks) and potentials for control (strategic alternatives) of the interacting entities that influence flood risk. Different scenario concepts and the application of respective techniques are thus reviewed and incorporated with regard to their suitability for an integrated management of current and future flood risks. In particular, "hybrid scenarios" with qualitative and quantitative components represented by nested models as well as assumptions across different spatiotemporal scales, respectively, are suggested for dealing with the uncertainties when assessing flood risks throughout a system's possible evolution. The (initially top-down developed) approach and its components will be briefly presented. These "scenario products" could later serve as a stimulus for discussions that bring together different actors and enhance - and eventually legitimise - the scenarios further in a "scenario process": (1) A first step is the conceptualisation of a flood risk system following the SPRC-model. Its physical geographical and anthropogenic factors may either be subject to autonomous trends, target-oriented control, or facultative system behaviour (e.g. dike breaches). With this concept, the integration of different processes and scales is aspired. (2) Secondly, it is conceptually shown how the risk cascade for present and future states of the flood risk system can be calculated based on coupled models ranging from climate change projections to a damage simulation models. (3) Thirdly, ways to develop socioeconomic storylines for the development frameworks and guiding principles for the strategic alternatives are presented and the futures are combined. This involves making plausible and consistent assumptions for many system factors and their drivers and finding ways to harmonise existing data for the same areas and time steps. (4) Fourthly, selected futures can be analysed and evaluated ex ante applying the coupled models of the second step to derive the emerging flood risks. The evaluation addresses, amongst other aspects, the identification of (i) the sensitivity of all scenarios against the current strategic alternative; (ii) the resulting risks when applying different strategic alternatives against one selected scenario; (iii) the efficiency (as cost-effectiveness) and robustness of one selected strategic alternative against the different scenarios; and (iv) the model uncertainty, for example caused by different climate downscaling methods. It is of growing importance to place any scenario/simulation results in a societal or even individual context and confront them with the perspectives of the people potentially affected. Only this yields a holistic picture and may lead to sustainable, comprehensible decisions. The approach is partly exemplified with research conducted in Saxony (Germany) and the Elbe River catchment in Central Europe and concentrates on river or plain floods, neglecting water quality issues.
Development of an Integrated Agricultural Planning Model Considering Climate Change
NASA Astrophysics Data System (ADS)
Santikayasa, I. P.
2016-01-01
The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.
NASA Astrophysics Data System (ADS)
Wang, Jie; Wang, Hao; Ning, Shaowei; Hiroshi, Ishidaira
2018-06-01
Sediment load can provide very important perspective on erosion of river basin. The changes of human-induced vegetation cover, such as deforestation or afforestation, affect sediment yield process of a catchment. We have already evaluated that climate change and land cover change changed the historical streamflow and sediment yield, and land cover change is the main factor in Red river basin. But future streamflow and sediment yield changes under potential future land cover change scenario still have not been evaluated. For this purpose, future scenario of land cover change is developed based on historical land cover changes and land change model (LCM). In addition, future leaf area index (LAI) is simulated by ecological model (Biome-BGC) based on future land cover scenario. Then future scenarios of land cover change and LAI are used to drive hydrological model and new sediment rating curve. The results of this research provide information that decision-makers need in order to promote water resources planning efforts. Besides that, this study also contributes a basic framework for assessing climate change impacts on streamflow and sediment yield that can be applied in the other basins around the world.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Finucane, M.; Brewington, L.
2014-12-01
For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Pencil, Eric J.
2014-01-01
NASAs Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. This presentation is a follow-up to the NEXT project overviews presented in 2009-2010. It reviews the status of the NEXT project, presents the current system performance characteristics, and describes planned activities in continuing the transition of NEXT technology to a first flight. In 2013 a voluntary decision was made to terminate the long duration test of the NEXT thruster, given the thruster design has exceeded all expectations by accumulating over 50,000 hours of operation to demonstrate around 900 kg of xenon throughput. Besides its promise for upcoming NASA science missions, NEXT has excellent potential for future commercial and international spacecraft applications.
An economic model of the manufacturers' aircraft production and airline earnings potential, volume 3
NASA Technical Reports Server (NTRS)
Kneafsey, J. T.; Hill, R. M.
1978-01-01
A behavioral explanation of the process of technological change in the U. S. aircraft manufacturing and airline industries is presented. The model indicates the principal factors which influence the aircraft (airframe) manufacturers in researching, developing, constructing and promoting new aircraft technology; and the financial requirements which determine the delivery of new aircraft to the domestic trunk airlines. Following specification and calibration of the model, the types and numbers of new aircraft were estimated historically for each airline's fleet. Examples of possible applications of the model to forecasting an individual airline's future fleet also are provided. The functional form of the model is a composite which was derived from several preceding econometric models developed on the foundations of the economics of innovation, acquisition, and technological change and represents an important contribution to the improved understanding of the economic and financial requirements for aircraft selection and production. The model's primary application will be to forecast the future types and numbers of new aircraft required for each domestic airline's fleet.
Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2008-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.
Larsen, Peter; Hamada, Yuki; Gilbert, Jack
2012-07-31
Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. Copyright © 2012 Elsevier B.V. All rights reserved.
Applications of the International Space Station Probabilistic Risk Assessment Model
NASA Technical Reports Server (NTRS)
Grant, Warren; Lutomski, Michael G.
2011-01-01
Recently the International Space Station (ISS) has incorporated more Probabilistic Risk Assessments (PRAs) in the decision making process for significant issues. Future PRAs will have major impact to ISS and future spacecraft development and operations. These PRAs will have their foundation in the current complete ISS PRA model and the current PRA trade studies that are being analyzed as requested by ISS Program stakeholders. ISS PRAs have recently helped in the decision making process for determining reliability requirements for future NASA spacecraft and commercial spacecraft, making crew rescue decisions, as well as making operational requirements for ISS orbital orientation, planning Extravehicular activities (EVAs) and robotic operations. This paper will describe some applications of the ISS PRA model and how they impacted the final decision. This paper will discuss future analysis topics such as life extension, requirements of new commercial vehicles visiting ISS.
Remembering the past and planning for the future in rats
Crystal, Jonathon D.
2012-01-01
A growing body of research suggests that rats represent and remember specific earlier events from the past. An important criterion for validating a rodent model of episodic memory is to establish that the content of the representation is about a specific event in the past rather than vague information about remoteness. Recent evidence suggests that rats may also represent events that are anticipated to occur in the future. An important capacity afforded by a representation of the future is the ability to plan for the occurrence of a future event. However, relatively little is known about the content of represented future events and the cognitive mechanisms that may support planning. This article reviews evidence that rats remember specific earlier events from the past, represent events that are anticipated to ccur in the future, and develops criteria for validating a rodent model of future planning. These criteria include representing a specific time in the future, the ability to temporarily disengage from a plan and reactivate the plan at an appropriate time in the future, and flexibility to deploy a plan in novel conditions. PMID:23219951
NASA Astrophysics Data System (ADS)
Wilson, T. S.; Sleeter, B. M.; Sherba, J.; Cameron, D.
2014-12-01
Human land use will increasingly contribute to habitat losses and water shortages in California, given future population projections and associated demand for agricultural land. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within the Mediterranean California ecoregion. Historical land use change estimates were derived from the Farmland Mapping and Monitoring Program (FMMP) dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources (CDWR). Six future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) A2 and B1 scenarios. Resulting spatial land-use scenario outputs were combined based on scenario agreement and a land conversion threat index developed to evaluate vulnerability of existing protected areas. Modeled scenario output of county-level agricultural water use data were also summarized, enabling examination of alternative water use futures. We present results of two separate applications of STSM of land-use change, demonstrating the utility of STSM in analyzing land-use related impacts on water resources as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, land-use change impacts will help to better inform resource management and mitigation strategies.
Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241
Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
Val, Jonatan; Pino, María Rosa; Chinarro, David
2018-03-15
Thermal quality in river ecosystems is a fundamental property for the development of biological processes and many of the human activities linked to the aquatic environment. In the future, this property is going to be threatened due to global change impacts, and basin managers will need useful tools to evaluate these impacts. Currently, future projections in temperature modelling are based on the historical data for air and water temperatures, and the relationship with past temperature scenarios; however, this represents a problem when evaluating future scenarios with new thermal impacts. Here, we analysed the thermal impacts produced by several human activities, and linked them with the decoupling degree of the thermal transfer mechanism from natural systems measured with frequency analysis tools (wavelet coherence). Once this relationship has been established we develop a new methodology for simulating different thermal impacts scenarios in order to project them into future. Finally, we validate this methodology using a site that changed its thermal quality during the studied period due to human impacts. Results showed a high correlation (r 2 =0.84) between the decoupling degree of the thermal transfer mechanisms and the quantified human impacts, obtaining 3 thermal impact scenarios. Furthermore, the graphic representation of these thermal scenarios with its wavelet coherence spectrums showed the impacts of an extreme drought period and the agricultural management. The inter-conversion between the scenarios gave high morphological similarities in the obtained wavelet coherence spectrums, and the validation process clearly showed high efficiency of the developed model against old methodologies when comparing with Nash-Stucliffe criterion. Although there is need for further investigation with different climatic and anthropic management conditions, the developed frequency models could be useful in decision-making processes by managers when faced with future global change impacts. Copyright © 2017 Elsevier B.V. All rights reserved.
Luyten, Patrick; Blatt, Sidney J
2013-04-01
Two-polarities models of personality propose that personality development evolves through a dialectic synergistic interaction between two fundamental developmental psychological processes across the life span-the development of interpersonal relatedness on the one hand and of self-definition on the other. This article offers a broad review of extant research concerning these models, discusses their implications for psychology and psychiatry, and addresses future research perspectives deriving from these models. We first consider the implications of findings in this area for clinical research and practice. This is followed by a discussion of emerging research findings concerning the role of developmental, cross-cultural, evolutionary, and neurobiological factors influencing the development of these two fundamental personality dimensions. Taken together, this body of research suggests that theoretical formulations that focus on interpersonal relatedness and self-definition as central coordinates in personality development and psychopathology provide a comprehensive conceptual paradigm for future research in psychology and psychiatry exploring the interactions among neurobiological, psychological, and sociocultural factors in adaptive and disrupted personality development across the life span.
Role of future scenarios in understanding deep uncertainty in long-term air quality management.
Gamas, Julia; Dodder, Rebecca; Loughlin, Dan; Gage, Cynthia
2015-11-01
The environment and its interactions with human systems, whether economic, social, or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of "deep uncertainty" presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be "technological development" and "change in societal paradigms." These drivers were used as a basis to develop four distinct scenario storylines. The energy and emissions implications of each storyline were then modeled using the MARKAL energy system model. NOx emissions were found to decrease for all scenarios, largely a response to existing air quality regulations, whereas SO2 emissions ranged from 12% greater to 7% lower than 2015 emissions levels. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition to cleaner fuels and energy demand reductions. Application of scenarios in air quality management provides a structured means of sifting through and understanding the dynamics of the many complex driving forces affecting future air quality. Further, scenarios provide a means to identify opportunities and challenges for future air quality management, as well as a platform for testing the efficacy and robustness of particular management options across wide-ranging conditions.
NASA Astrophysics Data System (ADS)
Veldkamp, A.; Baartman, J. E. M.; Coulthard, T. J.; Maddy, D.; Schoorl, J. M.; Storms, J. E. A.; Temme, A. J. A. M.; van Balen, R.; van De Wiel, M. J.; van Gorp, W.; Viveen, W.; Westaway, R.; Whittaker, A. C.
2017-06-01
The development and application of numerical models to investigate fluvial sedimentary archives has increased during the last decades resulting in a sustained growth in the number of scientific publications with keywords, 'fluvial models', 'fluvial process models' and 'fluvial numerical models'. In this context we compile and review the current contributions of numerical modelling to the understanding of fluvial archives. In particular, recent advances, current limitations, previous unexpected results and future perspectives are all discussed. Numerical modelling efforts have demonstrated that fluvial systems can display non-linear behaviour with often unexpected dynamics causing significant delay, amplification, attenuation or blurring of externally controlled signals in their simulated record. Numerical simulations have also demonstrated that fluvial records can be generated by intrinsic dynamics without any change in external controls. Many other model applications demonstrate that fluvial archives, specifically of large fluvial systems, can be convincingly simulated as a function of the interplay of (palaeo) landscape properties and extrinsic climate, base level and crustal controls. All discussed models can, after some calibration, produce believable matches with real world systems suggesting that equifinality - where a given end state can be reached through many different pathways starting from different initial conditions and physical assumptions - plays an important role in fluvial records and their modelling. The overall future challenge lies in the development of new methodologies for a more independent validation of system dynamics and research strategies that allow the separation of intrinsic and extrinsic record signals using combined fieldwork and modelling.
High Resolution Visualization Applied to Future Heavy Airlift Concept Development and Evaluation
NASA Technical Reports Server (NTRS)
FordCook, A. B.; King, T.
2012-01-01
This paper explores the use of high resolution 3D visualization tools for exploring the feasibility and advantages of future military cargo airlift concepts and evaluating compatibility with existing and future payload requirements. Realistic 3D graphic representations of future airlifters are immersed in rich, supporting environments to demonstrate concepts of operations to key personnel for evaluation, feedback, and development of critical joint support. Accurate concept visualizations are reviewed by commanders, platform developers, loadmasters, soldiers, scientists, engineers, and key principal decision makers at various stages of development. The insight gained through the review of these physically and operationally realistic visualizations is essential to refining design concepts to meet competing requirements in a fiscally conservative defense finance environment. In addition, highly accurate 3D geometric models of existing and evolving large military vehicles are loaded into existing and proposed aircraft cargo bays. In this virtual aircraft test-loading environment, materiel developers, engineers, managers, and soldiers can realistically evaluate the compatibility of current and next-generation airlifters with proposed cargo.
Future directions for simulation of recreation use
David N. Cole
2005-01-01
As the case studies in Chapter 4 illustrate, simulation modeling can be a valuable tool for recreation planning and management. Although simulation modeling is already well developed for business applications, its adaptation to recreation management is less developed. Relatively few resources have been devoted to realizing its potential. Further progress is needed in...
ERIC Educational Resources Information Center
Geiger, Vince; Date-Huxtable, Liz; Ahlip, Rehez; Herberstein, Marie; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian; Mulligan, Joanne
2016-01-01
The purpose of this paper is to describe the processes utilised to develop an online learning module within the Opening Real Science (ORS) project--"Modelling the present: Predicting the future." The module was realised through an interdisciplinary collaboration, among mathematicians, scientists and mathematics and science educators that…
Analysis of rocket engine injection combustion processes
NASA Technical Reports Server (NTRS)
Salmon, J. W.; Saltzman, D. H.
1977-01-01
Mixing methodology improvement for the JANNAF DER and CICM injection/combustion analysis computer programs was accomplished. ZOM plane prediction model development was improved for installation into the new standardized DER computer program. An intra-element mixing model developing approach was recommended for gas/liquid coaxial injection elements for possible future incorporation into the CICM computer program.
Modeling Sustainability in Product Development and Commercialization
ERIC Educational Resources Information Center
Carlson, Robert C.; Rafinejad, Dariush
2008-01-01
In this article, the authors present the framework of a model that integrates strategic product development decisions with the product's impact on future conditions of resources and the environment. The impact of a product on stocks of nonrenewable sources and sinks is linked in a feedback loop to the cost of manufacturing and using the product…
Selected Urban Simulations and Games. IFF Working Paper WP-4.
ERIC Educational Resources Information Center
Nagelberg, Mark; Little, Dennis L.
Summary descriptions of selected urban simulations and games that have been developed outside the Institute For The Future are presented. The operating characteristics and potential applications of each model are described. These include (1) the history of development, (2) model and player requirements, (3) a description of the environment being…
ERIC Educational Resources Information Center
Thompson, Richard; Zuroff, David C.
1999-01-01
Proposed a model of the development of self-criticism in adolescent girls in which maternal dissatisfaction leads to maternal coldness. The model was supported in a sample of 54 early adolescent girls and their mothers. Discusses implications of the findings for theory and future research. (SLD)
The School of the Future in the USSR.
ERIC Educational Resources Information Center
Kostyashkin, E. G.
1980-01-01
Considers a model of education in the last decade of the 20th century devised by the Educational Development Forecasting Laboratory of the USSR Academy of Pedagogical Science. New model schools will feature alternation of work and rest periods, more time in the open air, psycho-physical development, optional studies, and greater opportunities for…
Changing patterns of wildlife diseases
McLean, R.G.
2001-01-01
The purpose of this paper was not to analyze the effects of global warming on wildlife disease patterns, but to serve as a springboard for future efforts to identify those wildlife diseases, including zoonotic diseases, that could be influenced the most by warming climates and to encourage the development of models to examine the potential effects. Hales et al. (1999) examined the relationship of the incidence of a vector-borne human disease, Dengue fever, and El Nino southern oscillations for South Pacific Island nations. The development of similar models on specific wildlife diseases which have environmental factors strongly associated with transmission would provide information and options for the future management of our wildlife resources.
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Dee, Dick; Woollen, Jack; Compo, Gilbert P.; Onogi, Kazutoshi; Gelaro, Ron; Bosilovich, Michael G.; daSilva, Arlindo; Pawson, Steven; Schubert, Siegfried;
2012-01-01
In April 2010, developers representing each of the major reanalysis centers met at Goddard Space Flight Center to discuss technical issues - system advances and lessons learned - associated with recent and ongoing atmospheric reanalyses and plans for the future. The meeting included overviews of each center s development efforts, a discussion of the issues in observations, models and data assimilation, and, finally, identification of priorities for future directions and potential areas of collaboration. This report summarizes the deliberations and recommendations from the meeting as well as some advances since the workshop.
Integrating Health and Mental Health Services: A Past and Future History.
Druss, Benjamin G; Goldman, Howard H
2018-04-25
The authors trace the modern history, current landscape, and future prospects for integration between mental health and general medical care in the United States. Research and new treatment models developed in the 1980s and early 1990s helped inform federal legislation, including the 2008 Mental Health Parity and Addiction Equity Act and the 2010 Affordable Care Act, which in turn are creating new opportunities to further integrate services. Future efforts should build on this foundation to develop clinical, service-level, and public health approaches that more fully integrate mental, medical, substance use, and social services.
A New Model that Generates Lotka's Law.
ERIC Educational Resources Information Center
Huber, John C.
2002-01-01
Develops a new model for a process that generates Lotka's Law. Topics include measuring scientific productivity through the number of publications; rate of production; career duration; randomness; Poisson distribution; computer simulations; goodness-of-fit; theoretical support for the model; and future research. (Author/LRW)
NASA Astrophysics Data System (ADS)
Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.
2017-12-01
Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.
NASA Astrophysics Data System (ADS)
Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.
2016-12-01
Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.
Linking Global and Regional Models to Simulate U.S. Air Quality in the Year 2050
The potential impact of global climate change on future air quality in the United States is investigated with global and regional-scale models. Regional climate model scenarios are developed by dynamically downscaling the outputs from a global chemistry and climate model and are...
DSN model for use in strategic planning
NASA Technical Reports Server (NTRS)
Kelly, K. C.; Lin, C. Y.; Mckenzie, M.
1981-01-01
A System Dynamics Model of the DSN to support strategic planning for the Network is addressed. Applications for the model are described, as well as the foundations of system dynamics and the methodology used to develop the model. Activities to date and plans for future work are also discussed.
Modeling human-environmental systems
Morgan Grove; Charlie Schweik; Tom Evans; Glen Green
2002-01-01
This chapter focuses on the integration and development of environmental models that include human decision making. While many methodological and technical issues are common to all types of environmental models, our goal is to highlight the unique characteristics that need to be considered when modeling human-environmental dynamics and to identify future directions for...
The Fast Debris Evolution Model
NASA Astrophysics Data System (ADS)
Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun
The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.
Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis
NASA Technical Reports Server (NTRS)
Putnam, J.; Somers, J.; Wells, J.; Newby, N.; Currie-Gregg, N.; Lawrence, C.
2016-01-01
Introduction: In an effort to improve occupant safety during dynamic phases of spaceflight, the National Aeronautics and Space Administration (NASA) has worked to develop occupant protection standards for future crewed spacecraft. One key aspect of these standards is the identification of injury mechanisms through anthropometric test devices (ATDs). Within this analysis, both physical and computational ATD evaluations are required to reasonably encompass the vast range of loading conditions any spaceflight crew may encounter. In this study the accuracy of publically available mid-size male HIII ATD finite element (FE) models are evaluated within applicable loading conditions against extensive sled testing performed on their physical counterparts. Methods: A series of sled tests were performed at the Wright Patterson Air force Base (WPAFB) employing variations of magnitude, duration, and impact direction to encompass the dynamic loading range for expected spaceflight. FE simulations were developed to the specifications of the test setup and driven using measured acceleration profiles. Both fast and detailed FE models of the mid-size male HIII were ran to quantify differences in their accuracy and thus assess the applicability of each within this field. Results: Preliminary results identify the dependence of model accuracy on loading direction, magnitude, and rate. Additionally the accuracy of individual response metrics are shown to vary across each model within evaluated test conditions. Causes for model inaccuracy are identified based on the observed relationships. Discussion: Computational modeling provides an essential component to ATD injury metric evaluation used to ensure the safety of future spaceflight occupants. The assessment of current ATD models lays the groundwork for how these models can be used appropriately in the future. Identification of limitations and possible paths for improvement aid in the development of these effective analysis tools.
Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis
NASA Technical Reports Server (NTRS)
Putnam, Jacob B.; Sommers, Jeffrey T.; Wells, Jessica A.; Newby, Nathaniel J.; Currie-Gregg, Nancy J.; Lawrence, Chuck
2016-01-01
In an effort to improve occupant safety during dynamic phases of spaceflight, the National Aeronautics and Space Administration (NASA) has worked to develop occupant protection standards for future crewed spacecraft. One key aspect of these standards is the identification of injury mechanisms through anthropometric test devices (ATDs). Within this analysis, both physical and computational ATD evaluations are required to reasonably encompass the vast range of loading conditions any spaceflight crew may encounter. In this study the accuracy of publically available mid-size male HIII ATD finite element (FE) models are evaluated within applicable loading conditions against extensive sled testing performed on their physical counterparts. Methods: A series of sled tests were performed at the Wright Patterson Air force Base (WPAFB) employing variations of magnitude, duration, and impact direction to encompass the dynamic loading range for expected spaceflight. FE simulations were developed to the specifications of the test setup and driven using measured acceleration profiles. Both fast and detailed FE models of the mid-size male HIII were ran to quantify differences in their accuracy and thus assess the applicability of each within this field. Results: Preliminary results identify the dependence of model accuracy on loading direction, magnitude, and rate. Additionally the accuracy of individual response metrics are shown to vary across each model within evaluated test conditions. Causes for model inaccuracy are identified based on the observed relationships. Discussion: Computational modeling provides an essential component to ATD injury metric evaluation used to ensure the safety of future spaceflight occupants. The assessment of current ATD models lays the groundwork for how these models can be used appropriately in the future. Identification of limitations and possible paths for improvement aid in the development of these effective analysis tools.
Cargo Logistics Airlift Systems Study (CLASS). Volume 2: Case study approach and results
NASA Technical Reports Server (NTRS)
Burby, R. J.; Kuhlman, W. H.
1978-01-01
Models of transportation mode decision making were developed. The user's view of the present and future air cargo systems is discussed. Issues summarized include: (1) organization of the distribution function; (2) mode choice decision making; (3) air freight system; and (4) the future of air freight.
The Career Futures Inventory-Revised: Measuring Dimensions of Career Adaptability
ERIC Educational Resources Information Center
Rottinghaus, Patrick J.; Buelow, Kristine L.; Matyja, Anna; Schneider, Madalyn R.
2012-01-01
This study reports the development and initial validation of the "Career Futures Inventory-Revised" (CFI-R) in two large samples of university students. The 28-item CFI-R assesses aspects of career adaptability, including positive career planning attitudes, general outcome expectations, and components of Parsons' tripartite model and…
Assessing the Health of Future Physicians: An Opportunity for Preventive Education
ERIC Educational Resources Information Center
Clair, Jennifer H.; Wilson, Diane B.; Clore, John N.
2004-01-01
Introduction: Research shows that physicians who model prevention are more likely to encourage preventive behaviors in their patients. Therefore, understanding the health of medical students ought to provide insight into the development of health promotion programs that influence the way these future physicians practice medicine. A…
Till, Charlotte; Haverkamp, Jamie; White, Devin; ...
2016-11-22
Climate change has the potential to displace large populations in many parts of the developed and developing world. Understanding why, how, and when environmental migrants decide to move is critical to successful strategic planning within organizations tasked with helping the affected groups, and mitigating their systemic impacts. One way to support planning is through the employment of computational modeling techniques. Models can provide a window into possible futures, allowing planners and decision makers to test different scenarios in order to understand what might happen. While modeling is a powerful tool, it presents both opportunities and challenges. This paper builds amore » foundation for the broader community of model consumers and developers by: providing an overview of pertinent climate-induced migration research, describing some different types of models and how to select the most relevant one(s), highlighting three perspectives on obtaining data to use in said model(s), and the consequences associated with each. It concludes with two case studies based on recent research that illustrate what can happen when ambitious modeling efforts are undertaken without sufficient planning, oversight, and interdisciplinary collaboration. Lastly, we hope that the broader community can learn from our experiences and apply this knowledge to their own modeling research efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Till, Charlotte; Haverkamp, Jamie; White, Devin
Climate change has the potential to displace large populations in many parts of the developed and developing world. Understanding why, how, and when environmental migrants decide to move is critical to successful strategic planning within organizations tasked with helping the affected groups, and mitigating their systemic impacts. One way to support planning is through the employment of computational modeling techniques. Models can provide a window into possible futures, allowing planners and decision makers to test different scenarios in order to understand what might happen. While modeling is a powerful tool, it presents both opportunities and challenges. This paper builds amore » foundation for the broader community of model consumers and developers by: providing an overview of pertinent climate-induced migration research, describing some different types of models and how to select the most relevant one(s), highlighting three perspectives on obtaining data to use in said model(s), and the consequences associated with each. It concludes with two case studies based on recent research that illustrate what can happen when ambitious modeling efforts are undertaken without sufficient planning, oversight, and interdisciplinary collaboration. Lastly, we hope that the broader community can learn from our experiences and apply this knowledge to their own modeling research efforts.« less
ERIC Educational Resources Information Center
Curtis, William H.; And Others
The main purpose of this project was to develop a blueprint for the future growth of the AASA-National Academy for School Executives. The resulting comprehensive model is displayed in outline form through the use of a conceptual framework that includes three major processes -- program planning and development, implementation, and evaluation. Each…
NASA Astrophysics Data System (ADS)
Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu
2014-12-01
To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.
Basic Requirements for Systems Software Research and Development
NASA Technical Reports Server (NTRS)
Kuszmaul, Chris; Nitzberg, Bill
1996-01-01
Our success over the past ten years evaluating and developing advanced computing technologies has been due to a simple research and development (R/D) model. Our model has three phases: (a) evaluating the state-of-the-art, (b) identifying problems and creating innovations, and (c) developing solutions, improving the state- of-the-art. This cycle has four basic requirements: a large production testbed with real users, a diverse collection of state-of-the-art hardware, facilities for evalua- tion of emerging technologies and development of innovations, and control over system management on these testbeds. Future research will be irrelevant and future products will not work if any of these requirements is eliminated. In order to retain our effectiveness, the numerical aerospace simulator (NAS) must replace out-of-date production testbeds in as timely a fashion as possible, and cannot afford to ignore innovative designs such as new distributed shared memory machines, clustered commodity-based computers, and multi-threaded architectures.
Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.
2010-01-01
The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or urban by 2030, and 35% of suitable puma habitat on private land in 1970 will have been lost by 2030. These land-use changes will further isolate puma populations in southern California, but the ability to visualize these changes had provided a new tool for developing proactive conservation solutions.
Fatty Acid Synthase Activity as a Target for c-Met Driven Prostate Cancer
2013-07-01
to aid future studies. Identification is a highly significant finding with regard to the potential for future therapeutic development targeted at...Met trafficking, stability, and ultimately oncogenic potential . Palmitoylation defective mutants will be used in animal models of c-Met driven tumor...growth (Aim 2). In addition, future work toward identifying the enzyme responsible for palmitoylation of c- Met will provide a new specific target
Role of future scenarios in understanding deep uncertainty in ...
The environment and its interactions with human systems, whether economic, social or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of deep uncertainty presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be “technological development” and “change in societal paradigms.” These drivers were used as a basis to develop four distinct scenario storylines. The energy and emission implications of each storyline were then modeled using the MARKAL energy system model. NOX and SO2 emissions were found to decrease for all scenarios, largely a response to existing air quality regulations. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959
NASA Astrophysics Data System (ADS)
Bergant, Klemen; Kajfež-Bogataj, Lučka; Črepinšek, Zalika
2002-02-01
Phenological observations are a valuable source of information for investigating the relationship between climate variation and plant development. Potential climate change in the future will shift the occurrence of phenological phases. Information about future climate conditions is needed in order to estimate this shift. General circulation models (GCM) provide the best information about future climate change. They are able to simulate reliably the most important mean features on a large scale, but they fail on a regional scale because of their low spatial resolution. A common approach to bridging the scale gap is statistical downscaling, which was used to relate the beginning of flowering of Taraxacum officinale in Slovenia with the monthly mean near-surface air temperature for January, February and March in Central Europe. Statistical models were developed and tested with NCAR/NCEP Reanalysis predictor data and EARS predictand data for the period 1960-1999. Prior to developing statistical models, empirical orthogonal function (EOF) analysis was employed on the predictor data. Multiple linear regression was used to relate the beginning of flowering with expansion coefficients of the first three EOF for the Janauary, Febrauary and March air temperatures, and a strong correlation was found between them. Developed statistical models were employed on the results of two GCM (HadCM3 and ECHAM4/OPYC3) to estimate the potential shifts in the beginning of flowering for the periods 1990-2019 and 2020-2049 in comparison with the period 1960-1989. The HadCM3 model predicts, on average, 4 days earlier occurrence and ECHAM4/OPYC3 5 days earlier occurrence of flowering in the period 1990-2019. The analogous results for the period 2020-2049 are a 10- and 11-day earlier occurrence.
Technology Investments in the NASA Entry Systems Modeling Project
NASA Technical Reports Server (NTRS)
Barnhardt, Michael; Wright, Michael; Hughes, Monica
2017-01-01
The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission
Developing Cognitive Models for Social Simulation from Survey Data
NASA Astrophysics Data System (ADS)
Alt, Jonathan K.; Lieberman, Stephen
The representation of human behavior and cognition continues to challenge the modeling and simulation community. The use of survey and polling instruments to inform belief states, issue stances and action choice models provides a compelling means of developing models and simulations with empirical data. Using these types of data to population social simulations can greatly enhance the feasibility of validation efforts, the reusability of social and behavioral modeling frameworks, and the testable reliability of simulations. We provide a case study demonstrating these effects, document the use of survey data to develop cognitive models, and suggest future paths forward for social and behavioral modeling.
Thorne, James; Boynton, Ryan; Flint, Lorraine; Flint, Alan; N'goc Le, Thuy
2012-01-01
This paper outlines the production of 270-meter grid-scale maps for 14 climate and derivative hydrologic variables for a region that encompasses the State of California and all the streams that flow into it. The paper describes the Basin Characterization Model (BCM), a map-based, mechanistic model used to process the hydrological variables. Three historic and three future time periods of 30 years (1911–1940, 1941–1970, 1971–2000, 2010–2039, 2040–2069, and 2070–2099) were developed that summarize 180 years of monthly historic and future climate values. These comprise a standardized set of fine-scale climate data that were shared with 14 research groups, including the U.S. National Park Service and several University of California groups as part of this project. We present three analyses done with the outputs from the Basin Characterization Model: trends in hydrologic variables over baseline, the most recent 30-year period; a calibration and validation effort that uses measured discharge values from 139 streamgages and compares those to Basin Characterization Model-derived projections of discharge for the same basins; and an assessment of the trends of specific hydrological variables that links historical trend to projected future change under four future climate projections. Overall, increases in potential evapotranspiration dominate other influences in future hydrologic cycles. Increased potential evapotranspiration drives decreasing runoff even under forecasts with increased precipitation, and drives increased climatic water deficit, which may lead to conversion of dominant vegetation types across large parts of the study region as well as have implications for rain-fed agriculture. The potential evapotranspiration is driven by air temperatures, and the Basin Characterization Model permits it to be integrated with a water balance model that can be derived for landscapes and summarized by watershed. These results show the utility of using a process-based model with modules representing different hydrological pathways that can be inter-linked.
Assessing the future of air freight
NASA Technical Reports Server (NTRS)
Dajani, J. S.
1977-01-01
The role of air cargo in the current transportation system in the United States is explored. Methods for assessing the future role of this mode of transportation include the use of continuous-time recursive systems modeling for the simulation of different components of the air freight system, as well as for the development of alternative future scenarios which may result from different policy actions. A basic conceptual framework for conducting such a dynamic simulation is presented within the context of the air freight industry. Some research needs are identified and recommended for further research. The benefits, limitations, pitfalls, and problems usually associated with large scale systems models are examined.
Modeling for Integrated Science Management and Resilient Systems Development
NASA Technical Reports Server (NTRS)
Shelhamer, M.; Mindock, J.; Lumpkins, S.
2014-01-01
Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.
Workshop on Engineering Turbulence Modeling
NASA Technical Reports Server (NTRS)
Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)
1992-01-01
Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.
Masante, Dario; Golding, Nicholas; Pigott, David; Day, John C.; Ibañez-Bernal, Sergio; Kolb, Melanie; Jones, Laurence
2017-01-01
The enormous global burden of vector-borne diseases disproportionately affects poor people in tropical, developing countries. Changes in vector-borne disease impacts are often linked to human modification of ecosystems as well as climate change. For tropical ecosystems, the health impacts of future environmental and developmental policy depend on how vector-borne disease risks trade off against other ecosystem services across heterogeneous landscapes. By linking future socio-economic and climate change pathways to dynamic land use models, this study is amongst the first to analyse and project impacts of both land use and climate change on continental-scale patterns in vector-borne diseases. Models were developed for cutaneous and visceral leishmaniasis in the Americas—ecologically complex sand fly borne infections linked to tropical forests and diverse wild and domestic mammal hosts. Both diseases were hypothesised to increase with available interface habitat between forest and agricultural or domestic habitats and with mammal biodiversity. However, landscape edge metrics were not important as predictors of leishmaniasis. Models including mammal richness were similar in accuracy and predicted disease extent to models containing only climate and land use predictors. Overall, climatic factors explained 80% and land use factors only 20% of the variance in past disease patterns. Both diseases, but especially cutaneous leishmaniasis, were associated with low seasonality in temperature and precipitation. Since such seasonality increases under future climate change, particularly under strong climate forcing, both diseases were predicted to contract in geographical extent to 2050, with cutaneous leishmaniasis contracting by between 35% and 50%. Whilst visceral leishmaniasis contracted slightly more under strong than weak management for carbon, biodiversity and ecosystem services, future cutaneous leishmaniasis extent was relatively insensitive to future alternative socio-economic pathways. Models parameterised at narrower geographical scales may be more sensitive to land use pattern and project more substantial changes in disease extent under future alternative socio-economic pathways. PMID:29020041
Purse, Bethan V; Masante, Dario; Golding, Nicholas; Pigott, David; Day, John C; Ibañez-Bernal, Sergio; Kolb, Melanie; Jones, Laurence
2017-01-01
The enormous global burden of vector-borne diseases disproportionately affects poor people in tropical, developing countries. Changes in vector-borne disease impacts are often linked to human modification of ecosystems as well as climate change. For tropical ecosystems, the health impacts of future environmental and developmental policy depend on how vector-borne disease risks trade off against other ecosystem services across heterogeneous landscapes. By linking future socio-economic and climate change pathways to dynamic land use models, this study is amongst the first to analyse and project impacts of both land use and climate change on continental-scale patterns in vector-borne diseases. Models were developed for cutaneous and visceral leishmaniasis in the Americas-ecologically complex sand fly borne infections linked to tropical forests and diverse wild and domestic mammal hosts. Both diseases were hypothesised to increase with available interface habitat between forest and agricultural or domestic habitats and with mammal biodiversity. However, landscape edge metrics were not important as predictors of leishmaniasis. Models including mammal richness were similar in accuracy and predicted disease extent to models containing only climate and land use predictors. Overall, climatic factors explained 80% and land use factors only 20% of the variance in past disease patterns. Both diseases, but especially cutaneous leishmaniasis, were associated with low seasonality in temperature and precipitation. Since such seasonality increases under future climate change, particularly under strong climate forcing, both diseases were predicted to contract in geographical extent to 2050, with cutaneous leishmaniasis contracting by between 35% and 50%. Whilst visceral leishmaniasis contracted slightly more under strong than weak management for carbon, biodiversity and ecosystem services, future cutaneous leishmaniasis extent was relatively insensitive to future alternative socio-economic pathways. Models parameterised at narrower geographical scales may be more sensitive to land use pattern and project more substantial changes in disease extent under future alternative socio-economic pathways.
How to deal with climate change uncertainty in the planning of engineering systems
NASA Astrophysics Data System (ADS)
Spackova, Olga; Dittes, Beatrice; Straub, Daniel
2016-04-01
The effect of extreme events such as floods on the infrastructure and built environment is associated with significant uncertainties: These include the uncertain effect of climate change, uncertainty on extreme event frequency estimation due to limited historic data and imperfect models, and, not least, uncertainty on future socio-economic developments, which determine the damage potential. One option for dealing with these uncertainties is the use of adaptable (flexible) infrastructure that can easily be adjusted in the future without excessive costs. The challenge is in quantifying the value of adaptability and in finding the optimal sequence of decision. Is it worth to build a (potentially more expensive) adaptable system that can be adjusted in the future depending on the future conditions? Or is it more cost-effective to make a conservative design without counting with the possible future changes to the system? What is the optimal timing of the decision to build/adjust the system? We develop a quantitative decision-support framework for evaluation of alternative infrastructure designs under uncertainties, which: • probabilistically models the uncertain future (trough a Bayesian approach) • includes the adaptability of the systems (the costs of future changes) • takes into account the fact that future decisions will be made under uncertainty as well (using pre-posterior decision analysis) • allows to identify the optimal capacity and optimal timing to build/adjust the infrastructure. Application of the decision framework will be demonstrated on an example of flood mitigation planning in Bavaria.
Villarreal, Miguel; Labiosa, Bill; Aiello, Danielle
2017-05-23
The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.
Future land-use related water demand in California
Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard
2016-01-01
Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.
Zloza, Andrew; Karolina Palucka, A; Coussens, Lisa M; Gotwals, Philip J; Headley, Mark B; Jaffee, Elizabeth M; Lund, Amanda W; Sharpe, Arlene H; Sznol, Mario; Wainwright, Derek A; Wong, Kwok-Kin; Bosenberg, Marcus W
2017-09-19
Understanding how murine models can elucidate the mechanisms underlying antitumor immune responses and advance immune-based drug development is essential to advancing the field of cancer immunotherapy. The Society for Immunotherapy of Cancer (SITC) convened a workshop titled, "Challenges, Insights, and Future Directions for Mouse and Humanized Models in Cancer Immunology and Immunotherapy" as part of the SITC 31st Annual Meeting and Associated Programs on November 10, 2016 in National Harbor, MD. The workshop focused on key issues in optimizing models for cancer immunotherapy research, with discussions on the strengths and weaknesses of current models, approaches to improve the predictive value of mouse models, and advances in cancer modeling that are anticipated in the near future. This full-day program provided an introduction to the most common immunocompetent and humanized models used in cancer immunology and immunotherapy research, and addressed the use of models to evaluate immune-targeting therapies. Here, we summarize the workshop presentations and subsequent panel discussion.
An introduction of a new stochastic tropical cyclone model for Japan area
NASA Astrophysics Data System (ADS)
Suzuki, K.; Nakano, S.; Ueno, G.; Mori, N.; Nakajo, S.
2015-12-01
The extreme events such as tropical cyclones (TC), downpours, floods, and so on, have huge influences on the human life in the past, present, and future. In particular, the change in their risks on the human life under the future climate has been concerned by the governments and researchers. Our aim is to estimate the probabilities for frequencies of TC which could attack to Japan under the future climate that calculated by GCMs. For carrying out this subject, it is needed a suitable rare event sampling method to find TCs that land on big cities in Japan. Moreover, it requires sufficient reproductions of TCs for calculation of their probabilities, too. The model for TC reproductions is designed with three parts following the lifecycle of TC; formation, maturity and decay. However, we don't treat the part of maturity with physical equations because the maturity process is complicated to express as a stochastic model. The TC intensity model will take the place of this physical part. Several stochastic TC models have been developed for different purposes and problems. Our model is developed for the establishment of a rare event sampling method. Here, the comparisons of behaviors of TC tracks among several stochastic TC models will be discussed using Best Track data provided by Japan Meteorological Agency and MRI-AGCM data for the present climate.
Identifying traits for genotypic adaptation using crop models.
Ramirez-Villegas, Julian; Watson, James; Challinor, Andrew J
2015-06-01
Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to enhance food productivity and stability and is expected to be one of the most important adaptation strategies to future climate change. Simulation modelling can provide the basis for evaluating the biophysical potential of crop traits for genotypic adaptation. This review focuses on the use of models for assessing the potential benefits of genotypic adaptation as a response strategy to projected climate change impacts. Some key crop responses to the environment, as well as the role of models and model ensembles for assessing impacts and adaptation, are first reviewed. Next, the review describes crop-climate models can help focus the development of future-adapted crop germplasm in breeding programmes. While recently published modelling studies have demonstrated the potential of genotypic adaptation strategies and ideotype design, it is argued that, for model-based studies of genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better grounded in genetic and physiological knowledge. To this aim, two main goals need to be pursued in future studies: (i) a better understanding of plant processes that limit productivity under future climate change; and (ii) a coupling between genetic and crop growth models-perhaps at the expense of the number of traits analysed. Importantly, the latter may imply additional complexity (and likely uncertainty) in crop modelling studies. Hence, appropriately constraining processes and parameters in models and a shift from simply quantifying uncertainty to actually quantifying robustness towards modelling choices are two key aspects that need to be included into future crop model-based analyses of genotypic adaptation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Stoddard, Sarah A; Varela, Jorge J; Zimmerman, Marc A
2015-01-01
Hopeful future expectations have been linked to positive developmental outcomes in adolescence; however, the association between future expectations and bullying perpetration has received less attention. We examined the relationship between future expectations and physical and relational bullying perpetration and tested a mediation model that linked future expectations with bullying through attitude toward violence. Structural equation modeling was used to examine the relationship between future expectations and bullying perpetration (relational and physical) and to test whether these relationships were mediated by attitude toward violence in a sample of U.S. seventh-grade students (Mage = 12.86 years, N = 196, 60% female, 46% African American). Attitude toward violence fully mediated the relationship between future expectations and physical bullying (indirect effects = -0.08, 95% CI [-0.15, -0.01], R = .17). The relationship between future expectations and relational bullying was partially mediated by attitudes toward violence (indirect effects = -0.07, 95% CI [-0.14, -0.002], R = .20). Our findings suggest that future expectations can play a role in reducing attitude toward violence and physical and relational bullying perpetration among youth. Interventions that help support the development of future goals and aspirations could play a vital role in bullying prevention efforts.
NASA Astrophysics Data System (ADS)
Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D. A.; Brogaard, Sara; van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut
2016-11-01
We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) using socio-economic data from the SSPs and climate data from the RCPs (representative concentration pathways). The simulated range of global cropland is 893-2380 Mha in 2100 (± 1 standard deviation), with the main uncertainties arising from differences in the socio-economic conditions prescribed by the SSP scenarios and the assumptions that underpin the translation of qualitative SSP storylines into quantitative model input parameters. Uncertainties in the assumptions for population growth, technological change and cropland degradation were found to be the most important for global cropland, while uncertainty in food consumption had less influence on the results. The uncertainties arising from climate variability and the differences between climate change scenarios do not strongly affect the range of global cropland futures. Some overlap occurred across all of the conditional probabilistic futures, except for those based on SSP3. We conclude that completely different socio-economic and climate change futures, although sharing low to medium population development, can result in very similar cropland areas on the aggregated global scale.
The TEF modeling and analysis approach to advance thermionic space power technology
NASA Astrophysics Data System (ADS)
Marshall, Albert C.
1997-01-01
Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.
VIII. THE PAST, PRESENT, AND FUTURE OF DEVELOPMENTAL METHODOLOGY.
Little, Todd D; Wang, Eugene W; Gorrall, Britt K
2017-06-01
This chapter selectively reviews the evolution of quantitative practices in the field of developmental methodology. The chapter begins with an overview of the past in developmental methodology, discussing the implementation and dissemination of latent variable modeling and, in particular, longitudinal structural equation modeling. It then turns to the present state of developmental methodology, highlighting current methodological advances in the field. Additionally, this section summarizes ample quantitative resources, ranging from key quantitative methods journal articles to the various quantitative methods training programs and institutes. The chapter concludes with the future of developmental methodology and puts forth seven future innovations in the field. The innovations discussed span the topics of measurement, modeling, temporal design, and planned missing data designs. Lastly, the chapter closes with a brief overview of advanced modeling techniques such as continuous time models, state space models, and the application of Bayesian estimation in the field of developmental methodology. © 2017 The Society for Research in Child Development, Inc.
ERIC Educational Resources Information Center
Knezevich, Stephen J.
The primary objectives of the study were to develop a model for a National Academy for School Executives (NASE), to determine the receptivity of school administrators to such a program, and to determine the feasibility of implementing the model within the near future. Four academic task forces studied the structural elements, fiscal requirements,…
Presentation on systems cluster research
NASA Technical Reports Server (NTRS)
Morgenthaler, George W.
1989-01-01
This viewgraph presentation presents an overview of systems cluster research performed by the Center for Space Construction. The goals of the research are to develop concepts, insights, and models for space construction and to develop systems engineering/analysis curricula for training future aerospace engineers. The following topics are covered: CSC systems analysis/systems engineering (SIMCON) model, CSC systems cluster schedule, system life-cycle, model optimization techniques, publications, cooperative efforts, and sponsored research.
A multi-dimensional environment-health risk analysis system for the English regions
NASA Astrophysics Data System (ADS)
Vitolo, Claudia; Scutari, Marco; Ghalaieny, Mohamed; Tucker, Allan; Russell, Andrew
2017-04-01
There is an overwhelming body of evidence that environmental pollution, and air pollution in particular, is a significant threat to health worldwide. While in developed countries the introduction of environmental legislation and sustainable technologies aims to mitigate adverse effects, developing countries are at higher risk. Within the scope of the British Council funded KEHRA project, work is on-going to develop a reproducible and reliable system to assess health risks due to exposure to pollution under climate change and across countries. Our approach is based on the use of Bayesian Networks. We used these graphical models to explore and model the statistical dependence structure of the intricate environment-health nexus. We developed a robust modelling workflow in the R programming language to facilitate reproducibility and tested it on the English regions in the United Kingdom. Preliminary results are encouraging, showing that the model tests generally well in sample (training data spans the period 1981-2005) and has good predictive power when tested out of sample (testing data spans the period 2006-2014). We plan to show the results of this preliminary analysis as well as test the model under future climate change scenarios. Future work will also investigate the transferability of the model from a data-rich (England) to a data-poor environment (Kazakhstan).
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Evolving PBPK applications in regulatory risk assessment: current situation and future goals
The presentation includes current applications of PBPK modeling in regulatory risk assessment and discussions on conflicts between assuring consistency with experimental data in current situation and the desire for animal-free model development.
Is there room for all of us? Renewable energy and Xerospermophilus mohavensis
Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Tomas E.; Vandergast, Amy G.
2013-01-01
Mohave ground squirrels Xerospermophilus mohavensis Merriam are small ground-dwelling rodents that have a highly restricted range in the northwest Mojave Desert, California, USA. Their small natural range is further reduced by habitat loss from agriculture, urban development, military training and recreational activities. Development of wind and solar resources for renewable energy has the potential to further reduce existing habitat. We used maximum entropy habitat models with observation data to describe current potential habitat in the context of future renewable energy development in the region. While 16% of historic habitat has been impacted by, or lost to, urbanization at present, an additional 10% may be affected by renewable energy development in the near future. Our models show that X. mohavensis habitat suitability is higher in areas slated for renewable energy development than in surrounding areas. We provide habitat maps that can be used to develop sampling designs, evaluate conservation corridors and inform development planning in the region.
The Arctic zone: possibilities and risks of development
NASA Astrophysics Data System (ADS)
Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.
2016-09-01
The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.
NASA Technical Reports Server (NTRS)
Seymour, David C.; Martin, Michael A.; Nguyen, Huy H.; Greene, William D.
2005-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
NASA Technical Reports Server (NTRS)
Martin, Michael A.; Nguyen, Huy H.; Greene, William D.; Seymout, David C.
2003-01-01
The subject of mathematical modeling of the transient operation of liquid rocket engines is presented in overview form from the perspective of engineers working at the NASA Marshall Space Flight Center. The necessity of creating and utilizing accurate mathematical models as part of liquid rocket engine development process has become well established and is likely to increase in importance in the future. The issues of design considerations for transient operation, development testing, and failure scenario simulation are discussed. An overview of the derivation of the basic governing equations is presented along with a discussion of computational and numerical issues associated with the implementation of these equations in computer codes. Also, work in the field of generating usable fluid property tables is presented along with an overview of efforts to be undertaken in the future to improve the tools use for the mathematical modeling process.
The caBIG® Life Science Business Architecture Model.
Boyd, Lauren Becnel; Hunicke-Smith, Scott P; Stafford, Grace A; Freund, Elaine T; Ehlman, Michele; Chandran, Uma; Dennis, Robert; Fernandez, Anna T; Goldstein, Stephen; Steffen, David; Tycko, Benjamin; Klemm, Juli D
2011-05-15
Business Architecture Models (BAMs) describe what a business does, who performs the activities, where and when activities are performed, how activities are accomplished and which data are present. The purpose of a BAM is to provide a common resource for understanding business functions and requirements and to guide software development. The cancer Biomedical Informatics Grid (caBIG®) Life Science BAM (LS BAM) provides a shared understanding of the vocabulary, goals and processes that are common in the business of LS research. LS BAM 1.1 includes 90 goals and 61 people and groups within Use Case and Activity Unified Modeling Language (UML) Diagrams. Here we report on the model's current release, LS BAM 1.1, its utility and usage, and plans for future use and continuing development for future releases. The LS BAM is freely available as UML, PDF and HTML (https://wiki.nci.nih.gov/x/OFNyAQ).
ERIC Educational Resources Information Center
Hunter, Lora Rose; Schmidt, Norman B.
2010-01-01
In this review, the extant literature concerning anxiety psychopathology in African American adults is summarized to develop a testable, explanatory framework with implications for future research. The model was designed to account for purported lower rates of anxiety disorders in African Americans compared to European Americans, along with other…
USDA-ARS?s Scientific Manuscript database
The development and application of cropping system simulation models for cotton production has a long and rich history, beginning in the southeast United States in the 1960's and now expanded to major cotton production regions globally. This paper briefly reviews the history of cotton simulation mo...
ERIC Educational Resources Information Center
Rensselaer Research Corp., Troy, NY.
The purpose of this study was to develop the schema and methodology for the construction of a computerized mathematical model designed to project college and university enrollments in New York State and to meet the future increased demands of higher education planners. This preliminary report describes the main structure of the proposed computer…
DOT National Transportation Integrated Search
2017-05-01
The primary objective of AMS project is to develop multiple simulation Testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM) strategies. Through this p...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Climate and Land Use Scenarios, a project which is described in the 2009 EPA Report, ``Land-Use Scenarios: National-Scale Housing- Density Scenarios Consistent with Climate Change Storylines.'' These scenarios are... economic development, which are used by climate change modelers to develop projections of future climate...
Redundant actuator development study. [flight control systems for supersonic transport aircraft
NASA Technical Reports Server (NTRS)
Ryder, D. R.
1973-01-01
Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.
Validation of Community Models: 2. Development of a Baseline, Using the Wang-Sheeley-Arge Model
NASA Technical Reports Server (NTRS)
MacNeice, Peter
2009-01-01
This paper is the second in a series providing independent validation of community models of the outer corona and inner heliosphere. Here I present a comprehensive validation of the Wang-Sheeley-Arge (WSA) model. These results will serve as a baseline against which to compare the next generation of comparable forecasting models. The WSA model is used by a number of agencies to predict Solar wind conditions at Earth up to 4 days into the future. Given its importance to both the research and forecasting communities, it is essential that its performance be measured systematically and independently. I offer just such an independent and systematic validation. I report skill scores for the model's predictions of wind speed and interplanetary magnetic field (IMF) polarity for a large set of Carrington rotations. The model was run in all its routinely used configurations. It ingests synoptic line of sight magnetograms. For this study I generated model results for monthly magnetograms from multiple observatories, spanning the Carrington rotation range from 1650 to 2074. I compare the influence of the different magnetogram sources and performance at quiet and active times. I also consider the ability of the WSA model to forecast both sharp transitions in wind speed from slow to fast wind and reversals in the polarity of the radial component of the IMF. These results will serve as a baseline against which to compare future versions of the model as well as the current and future generation of magnetohydrodynamic models under development for forecasting use.
The Future of Cash and Counseling: The Framers' View
Mahoney, Kevin J; Fishman, Nancy Wieler; Doty, Pamela; Squillace, Marie R
2007-01-01
Objective This paper reflects on the progress of the original Cash and Counseling states, and shows how this model has spread, how it has evolved over time, and what is left to improve. It then discusses the generalizability of the Cash and Counseling approach beyond long-term care and ventures some thoughts on what still needs to be learned. Finally, this paper suggests some of the contingencies that could affect the diffusion of this innovation. Data Sources/Study Setting Drawing from ten years of experiences with the fifteen Cash and Counseling states, plus their analyses of current trends and future opportunities and threats, the framers of the Cash and Counseling model reflect on future directions. Study Design This paper is essentially a policy-driven analysis of how the Cash and Counseling model has been sustained and disseminated, how it is likely to develop, and what still needs to be learned. Principal Findings The basic Cash and Counseling model appears adaptable to different state environments and populations, but that hypothesis will be severely tested as more and more states seek to replicate. As one step to promote flexibility while capturing and preserving the essence of the model that led to such promising research results, the Cash & Counseling National Program Office developed a “Vision Statement”. Conclusions The Cash and Counseling approach is not for everyone, but it is clearly a choice many participants desire. Its development merits monitoring. PMID:17244297
Uncertainties in future-proof decision-making: the Dutch Delta Model
NASA Astrophysics Data System (ADS)
IJmker, Janneke; Snippen, Edwin; Ruijgh, Erik
2013-04-01
In 1953, a number of European countries experienced flooding after a major storm event coming from the northwest. Over 2100 people died of the resulting floods, 1800 of them being Dutch. This gave rise to the development of the so-called Delta Works and Zuiderzee Works that strongly reduced the flood risk in the Netherlands. These measures were a response to a large flooding event. As boundary conditions have changed (increasing population, increasing urban development, etc.) , the flood risk should be evaluated continuously, and measures should be taken if necessary. The Delta Programme was designed to be prepared for future changes and to limit the flood risk, taking into account economics, nature, landscape, residence and recreation . To support decisions in the Delta Programme, the Delta Model was developed. By using four different input scenarios (extremes in climate and economics) and variations in system setup, the outcomes of the Delta Model represent a range of possible outcomes for the hydrological situation in 2050 and 2100. These results flow into effect models that give insight in the integrated effects on freshwater supply (including navigation, industry and ecology) and flood risk. As the long-term water management policy of the Netherlands for the next decades will be based on these results, they have to be reliable. Therefore, a study was carried out to investigate the impact of uncertainties on the model outcomes. The study focused on "known unknowns": uncertainties in the boundary conditions, in the parameterization and in the model itself. This showed that for different parts of the Netherlands, the total uncertainty is in the order of meters! Nevertheless, (1) the total uncertainty is dominated by uncertainties in boundary conditions. Internal model uncertainties are subordinate to that. Furthermore, (2) the model responses develop in a logical way, such that the exact model outcomes might be uncertain, but the outcomes of different model runs are reliable relative to each other. The Delta Model therefore is a reliable instrument for finding the optimal water management policy for the future. As the exact model outcomes show a high degree of uncertainty, the model analysis will be on a large numbers of model runs to gain insight in the sensitivity of the model for different setups and boundary conditions. The results allow fast investigation of (relative) effects of measures. Furthermore, it helps to identify bottlenecks in the system. To summarize, the Delta Model is a tool for policy makers to base their policy strategies on quantitative rather than qualitative information. It can be applied to the current and future situation, and feeds the political discussion. The uncertainty of the model has no determinative effect on the analysis that can be done by the Delta Model.
Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?
Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver
2013-01-01
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290
The decisive future of inflation
NASA Astrophysics Data System (ADS)
Hardwick, Robert J.; Vennin, Vincent; Wands, David
2018-05-01
How much more will we learn about single-field inflationary models in the future? We address this question in the context of Bayesian design and information theory. We develop a novel method to compute the expected utility of deciding between models and apply it to a set of futuristic measurements. This necessarily requires one to evaluate the Bayesian evidence many thousands of times over, which is numerically challenging. We show how this can be done using a number of simplifying assumptions and discuss their validity. We also modify the form of the expected utility, as previously introduced in the literature in different contexts, in order to partition each possible future into either the rejection of models at the level of the maximum likelihood or the decision between models using Bayesian model comparison. We then quantify the ability of future experiments to constrain the reheating temperature and the scalar running. Our approach allows us to discuss possible strategies for maximising information from future cosmological surveys. In particular, our conclusions suggest that, in the context of inflationary model selection, a decrease in the measurement uncertainty of the scalar spectral index would be more decisive than a decrease in the uncertainty in the tensor-to-scalar ratio. We have incorporated our approach into a publicly available python class, foxi,1 that can be readily applied to any survey optimisation problem.
Wildfire suppression cost forecasts from the US Forest Service
Karen L. Abt; Jeffrey P. Prestemon; Krista M. Gebert
2009-01-01
The US Forest Service and other land-management agencies seek better tools for nticipating future expenditures for wildfire suppression. We developed regression models for forecasting US Forest Service suppression spending at 1-, 2-, and 3-year lead times. We compared these models to another readily available forecast model, the 10-year moving average model,...
Rodent models in Down syndrome research: impact and future opportunities
2017-01-01
ABSTRACT Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. PMID:28993310
Rodent models in Down syndrome research: impact and future opportunities.
Herault, Yann; Delabar, Jean M; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Yu, Eugene; Brault, Veronique
2017-10-01
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. © 2017. Published by The Company of Biologists Ltd.
How a future energy world could look?
NASA Astrophysics Data System (ADS)
Ewert, M.
2012-10-01
The future energy system will change significantly within the next years as a result of the following Mega Trends: de-carbonization, urbanization, fast technology development, individualization, glocalization (globalization and localization) and changing demographics. Increasing fluctuating renewable production will change the role of non-renewable generation. Distributed energy from renewables and micro generation will change the direction of the energy flow in the electricity grids. Production will not follow demand but demand has to follow production. This future system is enabled by the fast technical development of information and communication technologies which will be present in the entire system. In this paper the results of a comprehensive analysis with different scenarios is summarized. Tools were used like the analysis of policy trends in the European countries, modelling of the European power grid, modelling of the European power markets and the analysis of technology developments with cost reduction potentials. With these tools the interaction of the main actors in the energy markets like conventional generation and renewable generation, grid transport, electricity storage including new storage options from E-Mobility, Power to Gas, Compressed Air Energy storage and demand side management were considered. The potential application of technologies and investments in new energy technologies were analyzed within existing frameworks and markets as well as new business models in new markets with different frameworks. In the paper the over all trend of this analysis is presented by describing a potential future energy world. This world represents only one of numerous options with comparable characteristics.
Simulation Model Development for Icing Effects Flight Training
NASA Technical Reports Server (NTRS)
Barnhart, Billy P.; Dickes, Edward G.; Gingras, David R.; Ratvasky, Thomas P.
2003-01-01
A high-fidelity simulation model for icing effects flight training was developed from wind tunnel data for the DeHavilland DHC-6 Twin Otter aircraft. First, a flight model of the un-iced airplane was developed and then modifications were generated to model the icing conditions. The models were validated against data records from the NASA Twin Otter Icing Research flight test program with only minimal refinements being required. The goals of this program were to demonstrate the effectiveness of such a simulator for training pilots to recognize and recover from icing situations and to establish a process for modeling icing effects to be used for future training devices.
Changes in Black-legged Tick Population in New England with Future Climate Change
NASA Astrophysics Data System (ADS)
Krishnan, S.; Huber, M.
2015-12-01
Lyme disease is one of the most frequently reported vector-borne diseases in the United States. In the Northeastern United States, vector transmission is maintained in a horizontal transmission cycle between the vector, the black-legged ticks, and the vertebrate reservoir hosts, which include white-tailed deer, rodents and other medium to large sized mammals. Predicting how vector populations change with future climate change is critical to understanding disease spread in the future, and for developing suitable regional adaptation strategies. For the United States, these predictions have mostly been made using regressions based on field and lab studies, or using spatial suitability studies. However, the relation between tick populations at various life-cycle stages and climate variables are complex, necessitating a mechanistic approach. In this study, we present a framework for driving a mechanistic tick population model with high-resolution regional climate modeling projections. The goal is to estimate changes in black-legged tick populations in New England for the 21st century. The tick population model used is based on the mechanistic approach of Ogden et al., (2005) developed for Canada. Dynamically downscaled climate projections at a 3-kms resolution using the Weather and Research Forecasting Model (WRF) are used to drive the tick population model.
Policy modeling for industrial energy use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon
2003-03-01
The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. Inmore » this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.« less
A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.
2000-01-01
Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.
Modeling of larch forest dynamics under a changing climate in eastern Siberia
NASA Astrophysics Data System (ADS)
Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.
2017-12-01
According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.
Climate Change Impacts on Worldwide Coffee Production
NASA Astrophysics Data System (ADS)
Foreman, T.; Rising, J. A.
2015-12-01
Coffee (Coffea arabica and Coffea canephora) plays a vital role in many countries' economies, providing necessary income to 25 million members of tropical countries, and supporting a $81 billion industry, making it one of the most valuable commodities in the world. At the same time, coffee is at the center of many issues of sustainability. It is vulnerable to climate change, with disease outbreaks becoming more common and suitable regions beginning to shift. We develop a statistical production model for coffee which incorporates temperature, precipitation, frost, and humidity effects using a new database of worldwide coffee production. We then use this model to project coffee yields and production into the future based on a variety of climate forecasts. This model can then be used together with a market model to forecast the locations of future coffee production as well as future prices, supply, and demand.
Utilizing Traveler Demand Modeling to Predict Future Commercial Flight Schedules in the NAS
NASA Technical Reports Server (NTRS)
Viken, Jeff; Dollyhigh, Samuel; Smith, Jeremy; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu
2006-01-01
The current work incorporates the Transportation Systems Analysis Model (TSAM) to predict the future demand for airline travel. TSAM is a multi-mode, national model that predicts the demand for all long distance travel at a county level based upon population and demographics. The model conducts a mode choice analysis to compute the demand for commercial airline travel based upon the traveler s purpose of the trip, value of time, cost and time of the trip,. The county demand for airline travel is then aggregated (or distributed) to the airport level, and the enplanement demand at commercial airports is modeled. With the growth in flight demand, and utilizing current airline flight schedules, the Fratar algorithm is used to develop future flight schedules in the NAS. The projected flights can then be flown through air transportation simulators to quantify the ability of the NAS to meet future demand. A major strength of the TSAM analysis is that scenario planning can be conducted to quantify capacity requirements at individual airports, based upon different future scenarios. Different demographic scenarios can be analyzed to model the demand sensitivity to them. Also, it is fairly well know, but not well modeled at the airport level, that the demand for travel is highly dependent on the cost of travel, or the fare yield of the airline industry. The FAA projects the fare yield (in constant year dollars) to keep decreasing into the future. The magnitude and/or direction of these projections can be suspect in light of the general lack of airline profits and the large rises in airline fuel cost. Also, changes in travel time and convenience have an influence on the demand for air travel, especially for business travel. Future planners cannot easily conduct sensitivity studies of future demand with the FAA TAF data, nor with the Boeing or Airbus projections. In TSAM many factors can be parameterized and various demand sensitivities can be predicted for future travel. These resulting demand scenarios can be incorporated into future flight schedules, therefore providing a quantifiable demand for flights in the NAS for a range of futures. In addition, new future airline business scenarios are investigated that illustrate when direct flights can replace connecting flights and larger aircraft can be substituted, only when justified by demand.
Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine
Rongvaux, Anthony; Takizawa, Hitoshi; Strowig, Till; Willinger, Tim; Eynon, Elizabeth E.
2014-01-01
To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies. PMID:23330956
Career Education at the Elementary School Level: Preparation for the Future
ERIC Educational Resources Information Center
Pandolfi, Ralph R.
1974-01-01
An account is given of the first year of participation by three schools in a Federally funded project entitled "A Comprehensive Career Education Model, K-14," and their plans for future development. A spiral curriculum related to the fifteen occupational clusters identified by the U.S. Office of Education is described. (AJ)
Current and Future Development of a Non-hydrostatic Unified Atmospheric Model (NUMA)
2010-09-09
following capabilities: 1. Highly scalable on current and future computer architectures ( exascale computing and beyond and GPUs) 2. Flexibility... Exascale Computing • 10 of Top 500 are already in the Petascale range • Should also keep our eyes on GPUs (e.g., Mare Nostrum) 2. Numerical
Current and Future Effects of Mexican Immigration in California. Executive Summary. R-3365/1-CR.
ERIC Educational Resources Information Center
McCarthy, Kevin F.; Valdez, R. Burciaga
This study to assess the current situation of Mexican immigrants in California and project future possibilities constructs a demographic profile of the immigrants, examines their economic effects on the state, and describes their socioeconomic integration into California society. Models of immigration/integration processes are developed and used…
Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark
2015-01-01
NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.
Miller, Brian W.; Morisette, Jeffrey T.
2014-01-01
Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.
Sando, Roy; Chase, Katherine J.
2017-03-23
A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.
A demonstrative model of a lunar base simulation on a personal computer
NASA Technical Reports Server (NTRS)
1985-01-01
The initial demonstration model of a lunar base simulation is described. This initial model was developed on the personal computer level to demonstrate feasibility and technique before proceeding to a larger computer-based model. Lotus Symphony Version 1.1 software was used to base the demonstration model on an personal computer with an MS-DOS operating system. The personal computer-based model determined the applicability of lunar base modeling techniques developed at an LSPI/NASA workshop. In addition, the personnal computer-based demonstration model defined a modeling structure that could be employed on a larger, more comprehensive VAX-based lunar base simulation. Refinement of this personal computer model and the development of a VAX-based model is planned in the near future.
ERIC Educational Resources Information Center
Herman, Jerry J.; Herman, Janice L.
1994-01-01
Future organizations must integrate their human-resource development requirements with organizational development requirements to survive and prosper. A totally integrated systems model will feature 10 crucial elements. Leaders must understand that their organizations pass through developmental stages (from infancy to maturity); at each stage,…
Aerocapture Benefits to Future Science Missions
NASA Technical Reports Server (NTRS)
Artis, Gwen; James, Bonnie
2006-01-01
NASA's In-Space Propulsion Technology (ISPT) Program is investing in technologies to revolutionize the robotic exploration of deep space. One of these technologies is Aerocapture, the most promising of the "aeroassist" techniques used to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propellant. (Other aeroassist techniques include aeroentry and aerobraking.) Aerocapture relies on drag atmospheric drag to decelerate an incoming spacecraft and capture it into orbit. This technique is very attractive since it permits spacecraft to be launched from Earth at higher velocities, providing shorter trip times and saving mass and overall cost on future missions. Recent aerocapture systems analysis studies quantify the benefits of aerocapture to future exploration. The 2002 Titan aerocapture study showed that using aerocapture at Titan instead of conventional propulsive capture results in over twice as much payload delivered to Titan. Aerocapture at Venus results in almost twice the payload delivered to Venus as with aerobraking, and over six times more mass delivered into orbit than all-propulsive capture. Aerocapture at Mars shows significant benefits as the payload sizes increase and as missions become more complex. Recent Neptune aerocapture studies show that aerocapture opens up entirely new classes of missions at Neptune. Current aerocapture technology development is advancing the maturity of each subsystem technology needed for successful implementation of aerocapture on future missions. Recent development has focused on both rigid aeroshell and inflatable aerocapture systems. Rigid aeroshell systems development includes new ablative and non-ablative thermal protection systems, advanced aeroshell performance sensors, lightweight structures and higher temperature adhesives. Inflatable systems such as trailing tethered and clamped "ballutes" and inflatable aeroshells are also under development. Computational tools required to support future aerocapture missions are an integral part of aerocapture development. Tools include engineering reference atmosphere models, guidance and navigation algorithms, aerothermodynamic modeling, and flight simulation.
The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S.
Terando, Adam; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires.
The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S
Terando, Adam J.; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime A.
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires. PMID:25054329
Li, Wei; Lu, Shan; Cui, Zhigang; Cui, Jinghua; Zhou, Haijian; Wang, Yiqing; Shao, Zhujun; Ye, Changyun; Kan, Biao; Xu, Jianguo
2012-12-01
Surveillance is critical for the prevention and control of infectious disease. China's real-time web-based infectious disease reporting system is a distinguished achievement. However, many aspects of the current China Infectious Disease Surveillance System do not yet meet the demand for timely outbreak detection and identification of emerging infectious disease. PulseNet, the national molecular typing network for foodborne disease surveillance was first established by the Centers for Disease Control and Prevention of the United States in 1995 and has proven valuable in the early detection of outbreaks and tracing the pathogen source. Since 2001, the China CDC laboratory for bacterial pathogen analysis has been a member of the PulseNet International family; and has been adapting the idea and methodology of PulseNet to develop a model for a future national laboratory-based surveillance system for all bacterial infectious disease.We summarized the development progress for the PulseNet China system and discussed it as a model for the future of China's national laboratory-based surveillance system.
Disorders without borders: current and future directions in the meta-structure of mental disorders.
Carragher, Natacha; Krueger, Robert F; Eaton, Nicholas R; Slade, Tim
2015-03-01
Classification is the cornerstone of clinical diagnostic practice and research. However, the extant psychiatric classification systems are not well supported by research evidence. In particular, extensive comorbidity among putatively distinct disorders flags an urgent need for fundamental changes in how we conceptualize psychopathology. Over the past decade, research has coalesced on an empirically based model that suggests many common mental disorders are structured according to two correlated latent dimensions: internalizing and externalizing. We review and discuss the development of a dimensional-spectrum model which organizes mental disorders in an empirically based manner. We also touch upon changes in the DSM-5 and put forward recommendations for future research endeavors. Our review highlights substantial empirical support for the empirically based internalizing-externalizing model of psychopathology, which provides a parsimonious means of addressing comorbidity. As future research goals, we suggest that the field would benefit from: expanding the meta-structure of psychopathology to include additional disorders, development of empirically based thresholds, inclusion of a developmental perspective, and intertwining genomic and neuroscience dimensions with the empirical structure of psychopathology.
Placing biodiversity in ecosystem models without getting lost in translation
NASA Astrophysics Data System (ADS)
Queirós, Ana M.; Bruggeman, Jorn; Stephens, Nicholas; Artioli, Yuri; Butenschön, Momme; Blackford, Jeremy C.; Widdicombe, Stephen; Allen, J. Icarus; Somerfield, Paul J.
2015-04-01
A key challenge to progressing our understanding of biodiversity's role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.
Technology developments integrating a space network communications testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.
The Benefits and Future of Standards: Metadata and Beyond
NASA Astrophysics Data System (ADS)
Stracke, Christian M.
This article discusses the benefits and future of standards and presents the generic multi-dimensional Reference Model. First the importance and the tasks of interoperability as well as quality development and their relationship are analyzed. Especially in e-Learning their connection and interdependence is evident: Interoperability is one basic requirement for quality development. In this paper, it is shown how standards and specifications are supporting these crucial issues. The upcoming ISO metadata standard MLR (Metadata for Learning Resource) will be introduced and used as example for identifying the requirements and needs for future standardization. In conclusion a vision of the challenges and potentials for e-Learning standardization is outlined.
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Formayer, Herbert; Förster, Kristian; Marke, Thomas; Meißl, Gertraud; Schermer, Markus; Stotten, Friederike; Themessl, Matthias
2016-04-01
Future land use in Alpine catchments is controlled by the evolution of socio-economy and climate. Estimates of their coupled development should hence fulfill the principles of plausibility (be convincing) and consistency (be unambiguous). In the project STELLA, coupled future climate and land use scenarios are used as input in a hydrological modelling exercise with the physically-based, distributed water balance model WaSiM. The aim of the project is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The so-called „storylines" of future coupled climate and forest/land use management, policy, social cooperation, tourism and economy have jointly been developed in an inter- and transdisciplinary assessment with local actors. The climate background is given by simulations for the A1B (temperature conditions like today in Merano/Italy, 46.7°N) and RCP 8.5 (temperature conditions like today in Bologna/Italy, 44.5°N) emission scenarios. These two climate scenarios were combined with three potential socio-economic developments („local"/„glocal"/ „superglobal"), each in a positive and in a negative specification. From these twelve storylines of coupled climate/land use future, a set of four storylines was selected to be used in transient hydrological modelling experiments. Historical simulations of the water balance for the test site reveal the pattern of land use being the most prominent factor for the spatial distribution of its components. A new prototype for a snow-canopy interaction simulation module provides explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands in the catchment. This new canopy module will be used to model the coupled climate/land use future storylines for the Brixental. The aim is to quantify the effects of climate change and land use on the water balance and streamflow, both separately and in their respective combination.
Talent identification and development programmes in sport : current models and future directions.
Vaeyens, Roel; Lenoir, Matthieu; Williams, A Mark; Philippaerts, Renaat M
2008-01-01
Many children strive to attain excellence in sport. However, although talent identification and development programmes have gained popularity in recent decades, there remains a lack of consensus in relation to how talent should be defined or identified and there is no uniformly accepted theoretical framework to guide current practice. The success rates of talent identification and development programmes have rarely been assessed and the validity of the models applied remains highly debated. This article provides an overview of current knowledge in this area with special focus on problems associated with the identification of gifted adolescents. There is a growing agreement that traditional cross-sectional talent identification models are likely to exclude many, especially late maturing, 'promising' children from development programmes due to the dynamic and multidimensional nature of sport talent. A conceptual framework that acknowledges both genetic and environmental influences and considers the dynamic and multidimensional nature of sport talent is presented. The relevance of this model is highlighted and recommendations for future work provided. It is advocated that talent identification and development programmes should be dynamic and interconnected taking into consideration maturity status and the potential to develop rather than to exclude children at an early age. Finally, more representative real-world tasks should be developed and employed in a multidimensional design to increase the efficacy of talent identification and development programmes.
In-Depth Analysis of the JACK Model.
DOT National Transportation Integrated Search
2009-04-30
Recently, as part of a comprehensive analysis of budget and funding options, a TxDOT : special task force has examined the agencys current financial forecasting methods and has : developed a model designed to estimate future State Highway Fund rev...
A hierarchical competing systems model of the emergence and early development of executive function
Marcovitch, Stuart; Zelazo, Philip David
2010-01-01
The hierarchical competing systems model (HCSM) provides a framework for understanding the emergence and early development of executive function – the cognitive processes underlying the conscious control of behavior – in the context of search for hidden objects. According to this model, behavior is determined by the joint influence of a developmentally invariant habit system and a conscious representational system that becomes increasingly influential as children develop. This article describes a computational formalization of the HCSM, reviews behavioral and computational research consistent with the model, and suggests directions for future research on the development of executive function. PMID:19120405
Edgecombe, Kay; Bowden, Margaret
2009-03-01
This article describes the development of a model of nursing students as evolving registered nurses (RNs). It aims to generate critical debate about innovations in nursing teaching and learning. The model is the outcome of research conducted with undergraduate nursing students (n=111) from Flinders University, Adelaide, South Australia. It identifies the positive and negative intrinsic and extrinsic factors that impact on nursing students' clinical learning development and progression from students to proficient novice RNs. This model has implications for future curriculum development, staff development, placement approaches and research in relation to clinical teaching and learning.
Fundamental Travel Demand Model Example
NASA Technical Reports Server (NTRS)
Hanssen, Joel
2010-01-01
Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.
FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology
Knudsen, Thomas B.; Keller, Douglas A.; Sander, Miriam; Carney, Edward W.; Doerrer, Nancy G.; Eaton, David L.; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L.; Mendrick, Donna L.; Tice, Raymond R.; Watkins, Paul B.; Whelan, Maurice
2015-01-01
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. PMID:25628403
Modeling climate change impacts on water trading.
Luo, Bin; Maqsood, Imran; Gong, Yazhen
2010-04-01
This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, K. A.; Hostick, D. J.; Belzer, D. B.
This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.
Chemistry-Climate Models of the Stratosphere
NASA Technical Reports Server (NTRS)
Austin, J.; Shindell, D.; Bruehl, C.; Dameris, M.; Manzini, E.; Nagashima, T.; Newman, P.; Pawson, S.; Pitari, G.; Rozanov, E.;
2001-01-01
Over the last decade, improved computer power has allowed three-dimensional models of the stratosphere to be developed that can be used to simulate polar ozone levels over long periods. This paper compares the meteorology between these models, and discusses the future of polar ozone levels over the next 50 years.
Time series analysis of monthly pulpwood use in the Northeast
James T. Bones
1980-01-01
Time series analysis was used to develop a model that depicts pulpwood use in the Northeast. The model is useful in forecasting future pulpwood requirements (short term) or monitoring pulpwood-use activity in relation to past use patterns. The model predicted a downturn in use during 1980.
Nygren, D J; Ukeritis, M D; Hickman, J L
1994-06-01
The Catholic Health Association's (CHA's) study "Transformational Leadership for the Healing Ministry: Competencies for the Future" is a powerful tool for the identification and development of leaders in Catholic healthcare. The study can help executives measure their own performance against a standard of excellence and establish goals to improve their performance. Trustees can use the study to establish policies for identification, assessment, development, and career planning for senior executives. Sponsors might consider the competencies as they intensify collaboration in ministry with lay colleagues by encouraging leadership development or as they participate with trustees in the selection of executives. The model presented in CHA's study is dynamic and adaptable to the leadership needs of various organizations. It should not yield a homogenized view of the "ideal" leader in the Catholic ministry. Nor should it encourage elitism or invidious comparisons between leaders or organizations.
Combustion system CFD modeling at GE Aircraft Engines
NASA Technical Reports Server (NTRS)
Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.
1995-01-01
This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.
Combustion system CFD modeling at GE Aircraft Engines
NASA Astrophysics Data System (ADS)
Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.
1995-03-01
This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.
Faunt, Claudia C.; Stamos, Christina L.; Flint, Lorraine E.; Wright, Michael T.; Burgess, Matthew K.; Sneed, Michelle; Brandt, Justin; Martin, Peter; Coes, Alissa L.
2015-11-24
This report documents and presents (1) an analysis of the conceptual model, (2) a description of the hydrologic features, (3) a compilation and analysis of water-quality data, (4) the measurement and analysis of land subsidence by using geophysical and remote sensing techniques, (5) the development and calibration of a two-dimensional borehole-groundwater-flow model to estimate aquifer hydraulic conductivities, (6) the development and calibration of a three-dimensional (3-D) integrated hydrologic flow model, (7) a water-availability analysis with respect to current climate variability and land use, and (8) potential future management scenarios. The integrated hydrologic model, referred to here as the “Borrego Valley Hydrologic Model” (BVHM), is a tool that can provide results with the accuracy needed for making water-management decisions, although potential future refinements and enhancements could further improve the level of spatial and temporal resolution and model accuracy. Because the model incorporates time-varying inflows and outflows, this tool can be used to evaluate the effects of temporal changes in recharge and pumping and to compare the relative effects of different water-management scenarios on the aquifer system. Overall, the development of the hydrogeologic and hydrologic models, data networks, and hydrologic analysis provides a basis for assessing surface and groundwater availability and potential water-resource management guidelines.
A model for the development of university curricula in nanoelectronics
NASA Astrophysics Data System (ADS)
Bruun, E.; Nielsen, I.
2010-12-01
Nanotechnology is having an increasing impact on university curricula in electrical engineering and in physics. Major influencers affecting developments in university programmes related to nanoelectronics are discussed and a model for university programme development is described. The model takes into account that nanotechnology affects not only physics but also electrical engineering and computer engineering because of the advent of new nanoelectronics devices. The model suggests that curriculum development tends to follow one of three major tracks: physics; electrical engineering; computer engineering. Examples of European curricula following this framework are identified and described. These examples may serve as sources of inspiration for future developments and the model presented may provide guidelines for a systematic selection of topics in the university programmes.
Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation
NASA Astrophysics Data System (ADS)
Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.
2017-09-01
Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.
Alternative Future Scenarios: Development of a Modeling Information System
2003-04-22
the Nation’s population by the year 2020. Riverside County is of particular concern to Joshua Tree National Park because of the rapid rate of...not display a currently valid OMB control number. 1. REPORT DATE 22 APR 2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE...4 DoD cannot afford to ignore the hierarchical effects of development pressures........................ 5 TYPES OF MODELS/MODEL ENVIRONMENT
Estimation of future outflows of e-waste in India.
Dwivedy, Maheshwar; Mittal, R K
2010-03-01
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planning for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated. Copyright 2009 Elsevier Ltd. All rights reserved.
Estimation of future outflows of e-waste in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedy, Maheshwar, E-mail: dwivedy_m@bits-pilani.ac.i; Mittal, R.K.
2010-03-15
The purpose of this study is to construct an approach and a methodology to estimate the future outflows of electronic waste (e-waste) in India. Consequently, the study utilizes a time-series multiple lifespan end-of-life model proposed by Peralta and Fontanos for estimating the current and future quantities of e-waste in India. The model estimates future e-waste generation quantities by modeling their usage and disposal. The present work considers two scenarios for the approximation of e-waste generation based on user preferences to store or to recycle the e-waste. This model will help formal recyclers in India to make strategic decisions in planningmore » for appropriate recycling infrastructure and institutional capacity building. Also an extension of the model proposed by Peralta and Fontanos is developed with the objective of helping decision makers to conduct WEEE estimates under a variety of assumptions to suit their region of study. During 2007-2011, the total WEEE estimates will be around 2.5 million metric tons which include waste from personal computers (PC), television, refrigerators and washing machines. During the said period, the waste from PC will account for 30% of total units of WEEE generated.« less
Symbolic Processing Combined with Model-Based Reasoning
NASA Technical Reports Server (NTRS)
James, Mark
2009-01-01
A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.
Predicting future protection of respirator users: Statistical approaches and practical implications.
Hu, Chengcheng; Harber, Philip; Su, Jing
2016-01-01
The purpose of this article is to describe a statistical approach for predicting a respirator user's fit factor in the future based upon results from initial tests. A statistical prediction model was developed based upon joint distribution of multiple fit factor measurements over time obtained from linear mixed effect models. The model accounts for within-subject correlation as well as short-term (within one day) and longer-term variability. As an example of applying this approach, model parameters were estimated from a research study in which volunteers were trained by three different modalities to use one of two types of respirators. They underwent two quantitative fit tests at the initial session and two on the same day approximately six months later. The fitted models demonstrated correlation and gave the estimated distribution of future fit test results conditional on past results for an individual worker. This approach can be applied to establishing a criterion value for passing an initial fit test to provide reasonable likelihood that a worker will be adequately protected in the future; and to optimizing the repeat fit factor test intervals individually for each user for cost-effective testing.
Developing a Resource for Implementing ArcSWAT Using Global Datasets
NASA Astrophysics Data System (ADS)
Taggart, M.; Caraballo Álvarez, I. O.; Mueller, C.; Palacios, S. L.; Schmidt, C.; Milesi, C.; Palmer-Moloney, L. J.
2015-12-01
This project developed a comprehensive user manual outlining methods for adapting and implementing global datasets for use within ArcSWAT for international and worldwide applications. The Soil and Water Assessment Tool (SWAT) is a hydrologic model that looks at a number of hydrologic variables including runoff and the chemical makeup of water at a given location on the Earth's surface using Digital Elevation Models (DEM), land cover, soil, and weather data. However, the application of ArcSWAT for projects outside of the United States is challenging as there is no standard framework for inputting global datasets into ArcSWAT. This project aims to remove this obstacle by outlining methods for adapting and implementing these global datasets via the user manual. The manual takes the user through the processes of data conditioning while providing solutions and suggestions for common errors. The efficacy of the manual was explored using examples from watersheds located in Puerto Rico, Mexico and Western Africa. Each run explored the various options for setting up a ArcSWAT project as well as a range of satellite data products and soil databases. Future work will incorporate in-situ data for validation and calibration of the model and outline additional resources to assist future users in efficiently implementing the model for worldwide applications. The capacity to manage and monitor freshwater availability is of critical importance in both developed and developing countries. As populations grow and climate changes, both the quality and quantity of freshwater are affected resulting in negative impacts on the health of the surrounding population. The use of hydrologic models such as ArcSWAT can help stakeholders and decision makers understand the future impacts of these changes enabling informed and substantiated decisions.
NASA Technical Reports Server (NTRS)
Jackson, Mariea Dunn; Dischinger, Charles; Stambolian, Damon; Henderson, Gena
2012-01-01
Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a Primitive motion capture library. The Library will be used by the human factors engineering in the future to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the Primitive models are being developed for the library the project has selected several current human factors issues to be addressed for the SLS and Orion launch systems. This paper explains how the Motion Capture of unique ground systems activities are being used to verify the human factors analysis requirements for ground system used to process the STS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.
NASA Astrophysics Data System (ADS)
Rossman, Nathan R.; Zlotnik, Vitaly A.
2013-09-01
Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system
Jensen, Tue V.; Pinson, Pierre
2017-01-01
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.
Jensen, Tue V; Pinson, Pierre
2017-11-28
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.
RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system
NASA Astrophysics Data System (ADS)
Jensen, Tue V.; Pinson, Pierre
2017-11-01
Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.
NASA Astrophysics Data System (ADS)
Arkema, Katie K.; Verutes, Gregory; Bernhardt, Joanna R.; Clarke, Chantalle; Rosado, Samir; Canto, Maritza; Wood, Spencer A.; Ruckelshaus, Mary; Rosenthal, Amy; McField, Melanie; de Zegher, Joann
2014-11-01
Integrated coastal and ocean management requires transparent and accessible approaches for understanding the influence of human activities on marine environments. Here we introduce a model for assessing the combined risk to habitats from multiple ocean uses. We apply the model to coral reefs, mangrove forests and seagrass beds in Belize to inform the design of the country’s first Integrated Coastal Zone Management (ICZM) Plan. Based on extensive stakeholder engagement, review of existing legislation and data collected from diverse sources, we map the current distribution of coastal and ocean activities and develop three scenarios for zoning these activities in the future. We then estimate ecosystem risk under the current and three future scenarios. Current levels of risk vary spatially among the nine coastal planning regions in Belize. Empirical tests of the model are strong—three-quarters of the measured data for coral reef health lie within the 95% confidence interval of interpolated model data and 79% of the predicted mangrove occurrences are associated with observed responses. The future scenario that harmonizes conservation and development goals results in a 20% reduction in the area of high-risk habitat compared to the current scenario, while increasing the extent of several ocean uses. Our results are a component of the ICZM Plan for Belize that will undergo review by the national legislature in 2015. This application of our model to marine spatial planning in Belize illustrates an approach that can be used broadly by coastal and ocean planners to assess risk to habitats under current and future management scenarios.
Understanding the drivers of the future water gap in the Indus-Ganges-Brahmaputra basins
NASA Astrophysics Data System (ADS)
Immerzeel, W. W.; Wijngaard, R. R.; Biemans, H.; Lutz, A. F.
2017-12-01
The Indus, Ganges, and Brahmaputra (IGB) river systems provide water resources for the agricultural, domestic and industrial sectors sustaining the lives of about 700 million people. The region is globally a hotspot for climate change as the headwaters of these rivers are fed by melt water from snow and glaciers, both strongly influenced by temperature change. In addition, the hydrology in the region is determined by the monsoon and its future dynamics as a results of climate change remains very uncertain. Simultaneously, the population is projected to grow rapidly over the coming decades, which in combination with strong economic developments, will likely result in a rapid increase in water demand. In this study we attempt to quantify the future water gap in the IGB and attribute this water gap to climate change and socio-economic growth. For the upstream mountainous parts of the basins we use the SPHY model, which is calibrated based on historical streamflow and glacier mass balance data and forced by the latest CMIP5 future climate model data for RCP4.5 and 8.5. Output of this model feeds into the downstream LPJmL model, which allows assessment of downstream climate change impacts and projected changes in water demand as a result of socio-economic developments. The LPJmL model is run for different combinations of RCPs and Shared Socio Economic Pathways (SSPs). Our results show that for the IGB as a whole climate change will increase water availability in the coming decades, due to an overall, albeit uncertain, increase in monsoon precipitation in combination with a sustained melt water supply from the upstream parts of the basins. However, irrespective of the SSP and RCP, the water demand as a result of socio-economic growth is expected to increase extremely fast in the near future and this is likely to be the main adaptation challenge for the IGB as far as water shortages are concerned. Our results also show that regional and temporal variation in the water gap is large and that basin specific adaptation measures are required that take into account both socio-economic developments as well as climate change.
NASA Astrophysics Data System (ADS)
Paul, F.; Maisch, M.; Rothenbühler, C.; Hoelzle, M.; Haeberli, W.
2007-02-01
The observed rapid glacier wastage in the European Alps during the past 20 years already has strong impacts on the natural environment (rock fall, lake formation) as well as on human activities (tourism, hydro-power production, etc.) and poses several new challenges also for glacier monitoring. With a further increase of global mean temperature in the future, it is likely that Alpine glaciers and the high-mountain environment as an entire system will further develop into a state of imbalance. Hence, the assessment of future glacier geometries is a valuable prerequisite for various impact studies. In order to calculate and visualize in a consistent manner future glacier extent for a large number of individual glaciers (> 100) according to a given climate change scenario, we have developed an automated and simple but robust approach that is based on an empirical relationship between glacier size and the steady-state accumulation area ratio (AAR 0) in the Alps. The model requires digital glacier outlines and a digital elevation model (DEM) only and calculates new glacier geometries from a given shift of the steady-state equilibrium line altitude (ELA 0) by means of hypsographic modelling. We have calculated changes in number, area and volume for 3062 individual glacier units in Switzerland and applied six step changes in ELA 0 (from + 100 to + 600 m) combined with four different values of the AAR 0 (0.5, 0.6, 0.67, 0.75). For an AAR 0 of 0.6 and an ELA 0 rise of 200 m (400 m) we calculate a total area loss of - 54% (- 80%) and a corresponding volume loss of - 50% (- 78%) compared to the 1973 glacier extent. In combination with a geocoded satellite image, the future glacier outlines are also used for automated rendering of perspective visualisations. This is a very attractive tool for communicating research results to the general public. Our study is illustrated for a test site in the Upper Engadine (Switzerland), where landscape changes above timberline play an important role for the local economy. The model is seen as a first-step approach, where several parts can be (and should be) further developed.
Ultrasonic Phased Array Simulations of Welded Components at NASA
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.
2009-01-01
Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increasing role in the future for nondestructive evaluation in order to better understand the physics of the inspection process, to prove or disprove the feasibility for an inspection method or inspection scenario, for inspection optimization, for better understanding of experimental results, and for assessment of probability of detection. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles. Keywords: nondestructive evaluation, computational simulation, ultrasonics, weld, modeling, phased array
Latest animal models for anti-HIV drug discovery.
Sliva, Katja
2015-02-01
HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.
The fast debris evolution model
NASA Astrophysics Data System (ADS)
Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.
2009-09-01
The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FADE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.
A. Weiskittel; D. Maguire; R. Monserud
2007-01-01
Hybrid models offer the opportunity to improve future growth projections by combining advantages of both empirical and process-based modeling approaches. Hybrid models have been constructed in several regions and their performance relative to a purely empirical approach has varied. A hybrid model was constructed for intensively managed Douglas-fir plantations in the...
Systematic Review of Model-Based Economic Evaluations of Treatments for Alzheimer's Disease.
Hernandez, Luis; Ozen, Asli; DosSantos, Rodrigo; Getsios, Denis
2016-07-01
Numerous economic evaluations using decision-analytic models have assessed the cost effectiveness of treatments for Alzheimer's disease (AD) in the last two decades. It is important to understand the methods used in the existing models of AD and how they could impact results, as they could inform new model-based economic evaluations of treatments for AD. The aim of this systematic review was to provide a detailed description on the relevant aspects and components of existing decision-analytic models of AD, identifying areas for improvement and future development, and to conduct a quality assessment of the included studies. We performed a systematic and comprehensive review of cost-effectiveness studies of pharmacological treatments for AD published in the last decade (January 2005 to February 2015) that used decision-analytic models, also including studies considering patients with mild cognitive impairment (MCI). The background information of the included studies and specific information on the decision-analytic models, including their approach and components, assumptions, data sources, analyses, and results, were obtained from each study. A description of how the modeling approaches and assumptions differ across studies, identifying areas for improvement and future development, is provided. At the end, we present our own view of the potential future directions of decision-analytic models of AD and the challenges they might face. The included studies present a variety of different approaches, assumptions, and scope of decision-analytic models used in the economic evaluation of pharmacological treatments of AD. The major areas for improvement in future models of AD are to include domains of cognition, function, and behavior, rather than cognition alone; include a detailed description of how data used to model the natural course of disease progression were derived; state and justify the economic model selected and structural assumptions and limitations; provide a detailed (rather than high-level) description of the cost components included in the model; and report on the face-, internal-, and cross-validity of the model to strengthen the credibility and confidence in model results. The quality scores of most studies were rated as fair to good (average 87.5, range 69.5-100, in a scale of 0-100). Despite the advancements in decision-analytic models of AD, there remain several areas of improvement that are necessary to more appropriately and realistically capture the broad nature of AD and the potential benefits of treatments in future models of AD.
The role of simulation in neurosurgery.
Rehder, Roberta; Abd-El-Barr, Muhammad; Hooten, Kristopher; Weinstock, Peter; Madsen, Joseph R; Cohen, Alan R
2016-01-01
In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery. Retrospective literature review. Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed. Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Nate; Zhou, Ella; Getman, Dan
2015-10-01
Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate (NDRC ERI 2015). Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further acceleratingmore » such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.« less
Crops in silico: A community wide multi-scale computational modeling framework of plant canopies
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Christensen, A.; Borkiewic, K.; Yiwen, X.; Ellis, A.; Panneerselvam, B.; Kannan, K.; Shrivastava, S.; Cox, D.; Hart, J.; Marshall-Colon, A.; Long, S.
2016-12-01
Current crop models predict a looming gap between supply and demand for primary foodstuffs over the next 100 years. While significant yield increases were achieved in major food crops during the early years of the green revolution, the current rates of yield increases are insufficient to meet future projected food demand. Furthermore, with projected reduction in arable land, decrease in water availability, and increasing impacts of climate change on future food production, innovative technologies are required to sustainably improve crop yield. To meet these challenges, we are developing Crops in silico (Cis), a biologically informed, multi-scale, computational modeling framework that can facilitate whole plant simulations of crop systems. The Cis framework is capable of linking models of gene networks, protein synthesis, metabolic pathways, physiology, growth, and development in order to investigate crop response to different climate scenarios and resource constraints. This modeling framework will provide the mechanistic details to generate testable hypotheses toward accelerating directed breeding and engineering efforts to increase future food security. A primary objective for building such a framework is to create synergy among an inter-connected community of biologists and modelers to create a realistic virtual plant. This framework advantageously casts the detailed mechanistic understanding of individual plant processes across various scales in a common scalable framework that makes use of current advances in high performance and parallel computing. We are currently designing a user friendly interface that will make this tool equally accessible to biologists and computer scientists. Critically, this framework will provide the community with much needed tools for guiding future crop breeding and engineering, understanding the emergent implications of discoveries at the molecular level for whole plant behavior, and improved prediction of plant and ecosystem responses to the environment.
Development of a prototype land use model for statewide transportation planning activities.
DOT National Transportation Integrated Search
2011-11-30
Future land use forecasting is an important input to transportation planning modeling. Traditionally, land use is allocated to individual : traffic analysis zones (TAZ) based on variables such as the amount of vacant land, zoning restriction, land us...
NAS Demand Predictions, Transportation Systems Analysis Model (TSAM) Compared with Other Forecasts
NASA Technical Reports Server (NTRS)
Viken, Jeff; Dollyhigh, Samuel; Smith, Jeremy; Trani, Antonio; Baik, Hojong; Hinze, Nicholas; Ashiabor, Senanu
2006-01-01
The current work incorporates the Transportation Systems Analysis Model (TSAM) to predict the future demand for airline travel. TSAM is a multi-mode, national model that predicts the demand for all long distance travel at a county level based upon population and demographics. The model conducts a mode choice analysis to compute the demand for commercial airline travel based upon the traveler s purpose of the trip, value of time, cost and time of the trip,. The county demand for airline travel is then aggregated (or distributed) to the airport level, and the enplanement demand at commercial airports is modeled. With the growth in flight demand, and utilizing current airline flight schedules, the Fratar algorithm is used to develop future flight schedules in the NAS. The projected flights can then be flown through air transportation simulators to quantify the ability of the NAS to meet future demand. A major strength of the TSAM analysis is that scenario planning can be conducted to quantify capacity requirements at individual airports, based upon different future scenarios. Different demographic scenarios can be analyzed to model the demand sensitivity to them. Also, it is fairly well know, but not well modeled at the airport level, that the demand for travel is highly dependent on the cost of travel, or the fare yield of the airline industry. The FAA projects the fare yield (in constant year dollars) to keep decreasing into the future. The magnitude and/or direction of these projections can be suspect in light of the general lack of airline profits and the large rises in airline fuel cost. Also, changes in travel time and convenience have an influence on the demand for air travel, especially for business travel. Future planners cannot easily conduct sensitivity studies of future demand with the FAA TAF data, nor with the Boeing or Airbus projections. In TSAM many factors can be parameterized and various demand sensitivities can be predicted for future travel. These resulting demand scenarios can be incorporated into future flight schedules, therefore providing a quantifiable demand for flights in the NAS for a range of futures. In addition, new future airline business scenarios are investigated that illustrate when direct flights can replace connecting flights and larger aircraft can be substituted, only when justified by demand.
Improving automation standards via semantic modelling: Application to ISA88.
Dombayci, Canan; Farreres, Javier; Rodríguez, Horacio; Espuña, Antonio; Graells, Moisès
2017-03-01
Standardization is essential for automation. Extensibility, scalability, and reusability are important features for automation software that rely in the efficient modelling of the addressed systems. The work presented here is from the ongoing development of a methodology for semi-automatic ontology construction methodology from technical documents. The main aim of this work is to systematically check the consistency of technical documents and support the improvement of technical document consistency. The formalization of conceptual models and the subsequent writing of technical standards are simultaneously analyzed, and guidelines proposed for application to future technical standards. Three paradigms are discussed for the development of domain ontologies from technical documents, starting from the current state of the art, continuing with the intermediate method presented and used in this paper, and ending with the suggested paradigm for the future. The ISA88 Standard is taken as a representative case study. Linguistic techniques from the semi-automatic ontology construction methodology is applied to the ISA88 Standard and different modelling and standardization aspects that are worth sharing with the automation community is addressed. This study discusses different paradigms for developing and sharing conceptual models for the subsequent development of automation software, along with presenting the systematic consistency checking method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
The presentation summarizes developments of ongoing applications of fine-scale (geometry specific) CFD simulations to urban areas within atmospheric boundary layers. Enabling technology today and challenges for the future are discussed. There is a challenging need to develop a ...
[The future of clinical laboratory database management system].
Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y
1999-09-01
To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.
Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.
2017-01-01
Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.
Driving personalized medicine: capturing maximum net present value and optimal return on investment.
Roth, Mollie; Keeling, Peter; Smart, Dave
2010-01-01
In order for personalized medicine to meet its potential future promise, a closer focus on the work being carried out today and the foundation it will provide for that future is imperative. While big picture perspectives of this still nascent shift in the drug-development process are important, it is more important that today's work on the first wave of targeted therapies is used to build specific benchmarking and financial models against which further such therapies may be more effectively developed. Today's drug-development teams need a robust tool to identify the exact drivers that will ensure the successful launch and rapid adoption of targeted therapies, and financial metrics to determine the appropriate resource levels to power those drivers. This special report will describe one such benchmarking and financial model that is specifically designed for the personalized medicine field and will explain how the use of this or similar models can help to capture the maximum net present value of targeted therapies and help to realize optimal return on investment.
Lexical Processing and Organization in Bilingual First Language Acquisition: Guiding Future Research
DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret
2016-01-01
A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between two languages in the early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. PMID:26866430
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.
Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptionsmore » about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.« less
NASA Astrophysics Data System (ADS)
Byrd, K. B.; Kreitler, J.; Labiosa, W.
2010-12-01
A scenario represents an account of a plausible future given logical assumptions about how conditions change over discrete bounds of space and time. Development of multiple scenarios provides a means to identify alternative directions of urban growth that account for a range of uncertainty in human behavior. Interactions between human and natural processes may be studied by coupling urban growth scenario outputs with biophysical change models; if growth scenarios encompass a sufficient range of alternative futures, scenario assumptions serve to constrain the uncertainty of biophysical models. Spatially explicit urban growth models (map-based) produce output such as distributions and densities of residential or commercial development in a GIS format that can serve as input to other models. Successful fusion of growth model outputs with other model inputs requires that both models strategically address questions of interest, incorporate ecological feedbacks, and minimize error. The U.S. Geological Survey (USGS) Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that supports land use and restoration planning in Puget Sound, Washington, a 35,500 sq. km region. The PSEPM couples future scenarios of urban growth with statistical, process-based and rule-based models of nearshore biophysical changes and ecosystem services. By using a multi-criteria approach, the PSEPM identifies cross-system and cumulative threats to the nearshore environment plus opportunities for conservation and restoration. Sub-models that predict changes in nearshore biophysical condition were developed and existing models were integrated to evaluate three growth scenarios: 1) Status Quo, 2) Managed Growth, and 3) Unconstrained Growth. These decadal scenarios were developed and projected out to 2060 at Oregon State University using the GIS-based ENVISION model. Given land management decisions and policies under each growth scenario, the sub-models predicted changes in 1) fecal coliform in shellfish growing areas, 2) sediment supply to beaches, 3) State beach recreational visits, 4) eelgrass habitat suitability, 5) forage fish habitat suitability, and 6) nutrient loadings. In some cases thousands of shoreline units were evaluated with multiple predictive models, creating a need for streamlined and consistent database development and data processing. Model development over multiple disciplines demonstrated the challenge of merging data types from multiple sources that were inconsistent in spatial and temporal resolution, classification schemes, and topology. Misalignment of data in space and time created potential for error and misinterpretation of results. This effort revealed that the fusion of growth scenarios and biophysical models requires an up-front iterative adjustment of both scenarios and models so that growth model outputs provide the needed input data in the correct format. Successful design of data flow across models that includes feedbacks between human and ecological systems was found to enhance the use of the final data product for decision making.
X-1 to X-Wings: Developing a Parametric Cost Model
NASA Technical Reports Server (NTRS)
Sterk, Steve; McAtee, Aaron
2015-01-01
In todays cost-constrained environment, NASA needs an X-Plane database and parametric cost model that can quickly provide rough order of magnitude predictions of cost from initial concept to first fight of potential X-Plane aircraft. This paper takes a look at the steps taken in developing such a model and reports the results. The challenges encountered in the collection of historical data and recommendations for future database management are discussed. A step-by-step discussion of the development of Cost Estimating Relationships (CERs) is then covered.
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2012-12-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2013-03-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b
Comparison of Past, Present, and Future Volume Estimation Methods for Tennessee
Stanley J. Zarnoch; Alexander Clark; Ray A. Souter
2003-01-01
Forest Inventory and Analysis 1999 survey data for Tennessee were used to compare stem-volume estimates obtained using a previous method, the current method, and newly developed taper models that will be used in the future. Compared to the current method, individual tree volumes were consistently underestimated with the previous method, especially for the hardwoods....
Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future
Jennifer K. Costanza; Jiri Hulcr; Frank H. Koch; Todd Earnhardt; Alexa J. McKerrow; Rob R. Dunn; Jaime A. Collazo
2012-01-01
We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (...
Roadless area-intensive management tradeoffs on the Sierra National Forest, California
Robert J. Hrubes; Kent P. Connaughton; Robert W. Sassaman
1979-01-01
This hypothesis was tested by a linear programing model: Roadless areas on the Sierra National Forest precluded from planned future development would be candidates for wilderness designation, and the associated loss in present and future timber harvests could be offset by investing in more intensive management. The results of this simulation test suggest that levels of...
The effects of three possible land use futures in the Willamette Basin are evaluated with respect to present and historic conditions of wildlife habitat. Basin wide land use/land cover maps were developed by the Pacific Northwest Ecosystem Research Consortium (PNW-ERC) in coopera...
ERIC Educational Resources Information Center
Joyce, Beverly A.; Farenga, Stephen J.
1999-01-01
Examines specific science-related attitudes, informal science-related experiences, future interest in science, and gender of young high-ability students (n=111) who completed the Test of Science Related Attitudes (TOSRA), the Science Experience Survey (SES), and the Course Selection Sheet (CSS). Develops two regression models to predict the number…
Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara
2010-01-01
The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.
A design of mathematical modelling for the mudharabah scheme in shariah insurance
NASA Astrophysics Data System (ADS)
Cahyandari, R.; Mayaningsih, D.; Sukono
2017-01-01
Indonesian Shariah Insurance Association (AASI) believes that 2014 is the year of Indonesian Shariah insurance, since its growth was above the conventional insurance. In December 2013, 43% growth was recorded for shariah insurance, while the conventional insurance was only hit 20%. This means that shariah insurance has tremendous potential to remain growing in the future. In addition, the growth can be predicted from the number of conventional insurance companies who open sharia division, along with the development of Islamic banking development which automatically demand the role of shariah insurance to protect assets and banking transactions. The development of shariah insurance should be accompanied by the development of premium fund management mechanism, in order to create innovation on shariah insurance products which beneficial for the society. The development of premium fund management model shows a positive progress through the emergence of Mudharabah, Wakala, Hybrid (Mudharabah-Wakala), and Wakala-Waqf. However, ‘model’ term that referred in this paper is regarded as an operational model in form of a scheme of management mechanism. Therefore, this paper will describe a mathematical modeling for premium fund management scheme, especially for Mudharabah concept. Mathematical modeling is required for an analysis process that can be used to predict risks that could be faced by a company in the future, so that the company could take a precautionary policy to minimize those risks.
Thangapandian, Sundarapandian; John, Shalini; Lee, Yuno; Kim, Songmi; Lee, Keun Woo
2011-01-01
Histone deacetylase 8 (HDAC8) is an enzyme involved in deacetylating the amino groups of terminal lysine residues, thereby repressing the transcription of various genes including tumor suppressor gene. The over expression of HDAC8 was observed in many cancers and thus inhibition of this enzyme has emerged as an efficient cancer therapeutic strategy. In an effort to facilitate the future discovery of HDAC8 inhibitors, we developed two pharmacophore models containing six and five pharmacophoric features, respectively, using the representative structures from two molecular dynamic (MD) simulations performed in Gromacs 4.0.5 package. Various analyses of trajectories obtained from MD simulations have displayed the changes upon inhibitor binding. Thus utilization of the dynamically-responded protein structures in pharmacophore development has the added advantage of considering the conformational flexibility of protein. The MD trajectories were clustered based on single-linkage method and representative structures were taken to be used in the pharmacophore model development. Active site complimenting structure-based pharmacophore models were developed using Discovery Studio 2.5 program and validated using a dataset of known HDAC8 inhibitors. Virtual screening of chemical database coupled with drug-like filter has identified drug-like hit compounds that match the pharmacophore models. Molecular docking of these hits reduced the false positives and identified two potential compounds to be used in future HDAC8 inhibitor design. PMID:22272142
The Use of Regulatory Air Quality Models to Develop Successful Ozone Attainment Strategies
NASA Astrophysics Data System (ADS)
Canty, T. P.; Salawitch, R. J.; Dickerson, R. R.; Ring, A.; Goldberg, D. L.; He, H.; Anderson, D. C.; Vinciguerra, T.
2015-12-01
The Environmental Protection Agency (EPA) recently proposed lowering the 8-hr ozone standard to between 65-70 ppb. Not all regions of the U.S. are in attainment of the current 75 ppb standard and it is expected that many regions currently in attainment will not meet the future, lower surface ozone standard. Ozone production is a nonlinear function of emissions, biological processes, and weather. Federal and state agencies rely on regulatory air quality models such as the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) to test ozone precursor emission reduction strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe various model scenarios that simulate how future limits on emission of ozone precursors (i.e. NOx and VOCs) from sources such as power plants and vehicles will affect air quality. These scenarios are currently being developed by states required to submit a State Implementation Plan to the EPA. Projections from these future case scenarios suggest that strategies intended to control local ozone may also bring upwind states into attainment of the new NAAQS. Ground based, aircraft, and satellite observations are used to ensure that air quality models accurately represent photochemical processes within the troposphere. We will highlight some of the improvements made to the CMAQ and CAMx model framework based on our analysis of NASA observations obtained by the OMI instrument on the Aura satellite and by the DISCOVER-AQ field campaign.
Di Maggio, Ilaria; Ginevra, Maria Cristina; Nota, Laura; Soresi, Salvatore
2016-08-01
The study is aimed at providing the development and initial validation of the Design My Future (DMF), which may be administered in career counseling and research activities to assess adolescents' future orientation and resilience. Two studies with two independent samples of Italian adolescents were conducted to examine psychometric requisites of DMF. Specifically, in the first study, after developing items and examined the content validity, the factorial structure, reliability and discriminant validity of the DMF were tested. In the second study, the measurement invariance across gender, conducing a sequence of nested CFA models, was evaluated. Results showed good psychometric support for the instrument with Italian adolescents. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Emission Data For Climate-Chemistry Interactions
NASA Astrophysics Data System (ADS)
Smith, S. J.
2012-12-01
Data on anthropogenic and natural emissions of reactive species are a critical input for studies of atmospheric chemistry and climate. The availability and characteristics of anthropogenic emissions data that can be used for such studies are reviewed and pathways for future work discuss Global and regional datasets for historical and future emissions are available, but their characteristics and applicability for specific studies differ. For the first time, a coordinated set of historical emissions (Lamarque et al 2010) and the future projections (van Vuurren et al. 2011) have been developed for use in the CMIP5 and ACCMIP long-term simulation comparison projects. These data have decadal resolution and were designed for long-term, global simulations. These data, however, lack finer-scale spatial and temporal detail that might be needed for some studies. Robust and timely updates of emissions data is generally lacking, although recent updates will be presented. While historical emission data is often treated as known, emissions are uncertain, even though this uncertainty is rarely quantified. Uncertainty varies by species and location. Inverse modeling is starting to indicate where emission data may be uncertain, which opens the way to improving these data overall. Further interaction between the chemistry modeling and inventory development communities are needed. Future projections are intrinsically uncertain, and while institutions and processes are in place to develop and review long-term century-scale scenarios, a need has remained for a wider range in shorter-term (e.g., several decade) projections. Emissions and scenario development communities have been working to fill this need. Communication across disciplines of the assumptions embedded in emissions projections remains a challenge. Atmospheric chemistry models are a central tool needed for studying chemistry-climate interactions. Simpler models, however, are also needed in order to examine interactions between different physical systems and also between the physical and human systems. Statistical models of system responses are particularly needed both to parameterize interactions in models that cannot simulate particular processes directly, and also to represent uncertainty. Coordinated model experiments are necessary to provide the information needed to develop these representations (i.e. Wild et al 2011). Lamarque, J. F, et al. (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics 10 pp. 7017-7039. doi:10.5194/acp-10-7017-2010 Van Vuuren, D, JA Edmonds, M Kainuma, K Riahi, AM Thomson, KA Hibbard, G Hurtt, T Kram, V Krey, JF Lamarque, matsui, M Meinhausen, N Nakicenovic, SJ Smith, and SK Rose. 2011. "The Representative Concentration Pathways: An Overview." Climatic Change 109 (1-2) 5-31. doi: 10.1007/s10584-011-0148-z. Wild, O., et al. (2012) Modelling future changes in surface ozone: A parameterized approach. Atmos. Chem. Phys., 12, 2037-2054, doi:10.5194/acp-12-2037-2012.
NASA Astrophysics Data System (ADS)
Khan, M.; Abdul-Aziz, O. I.
2017-12-01
Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.
NASA Astrophysics Data System (ADS)
Frey, H.; Haeberli, W.; Linsbauer, A.; Huggel, C.; Paul, F.
2010-02-01
In the course of glacier retreat, new glacier lakes can develop. As such lakes can be a source of natural hazards, strategies for predicting future glacier lake formation are important for an early planning of safety measures. In this article, a multi-level strategy for the identification of overdeepened parts of the glacier beds and, hence, sites with potential future lake formation, is presented. At the first two of the four levels of this strategy, glacier bed overdeepenings are estimated qualitatively and over large regions based on a digital elevation model (DEM) and digital glacier outlines. On level 3, more detailed and laborious models are applied for modeling the glacier bed topography over smaller regions; and on level 4, special situations must be investigated in-situ with detailed measurements such as geophysical soundings. The approaches of the strategy are validated using historical data from Trift Glacier, where a lake formed over the past decade. Scenarios of future glacier lakes are shown for the two test regions Aletsch and Bernina in the Swiss Alps. In the Bernina region, potential future lake outbursts are modeled, using a GIS-based hydrological flow routing model. As shown by a corresponding test, the ASTER GDEM and the SRTM DEM are both suitable to be used within the proposed strategy. Application of this strategy in other mountain regions of the world is therefore possible as well.
CreativeDrought: An interdisciplinary approach to building resilience to drought
NASA Astrophysics Data System (ADS)
Rangecroft, Sally; Van Loon, Anne; Rohse, Melanie; Day, Rosie; Birkinshaw, Stephen; Makaya, Eugine
2017-04-01
Drought events cause severe water and food insecurities in many developing countries where resilience to natural hazards and change is low due to a number of reasons (including poverty, social and political inequality, and limited access to information). Furthermore, with climate change and increasing pressures from population and societal change, populations are expected to experience future droughts outside of their historic range. Integrated water resources management is an established tool combining natural science, engineering and management to help address drought and associated impacts. However, it often lacks a strong social and cultural aspect, leading to poor implementation on the ground. For a more holistic approach to building resilience to future drought, a stronger interdisciplinary approach is required which can incorporate the local cultural context and perspectives into drought and water management, and communicate information effectively to communities. In this pilot project 'CreativeDrought', we use a novel interdisciplinary approach aimed at building resilience to future drought in rural Africa by combining hydrological modelling with rich local information and engaging communicative approaches from social sciences. The work is conducted through a series of steps in which we i) engage with local rural communities to collect narratives on drought experiences; ii) generate hydrological modelling scenarios based on IPCC projections, existing data and the collected narratives; iii) feed these back to the local community to gather their responses to these scenarios; iv) iteratively adapt them to obtain hypothetical future drought scenarios; v) engage the community with the scenarios to formulate new future drought narratives; and vi) use this new data to enhance local water resource management. Here we present some of the indigenous knowledge gathered through narratives and the hydrological modelling scenarios for a rural community in Southern Africa. We use this local knowledge to develop the hypothetical future scenarios with a hydrological model (SHETRAN), with an iterative process to build trust in the tool. Through workshops, the communities can then use their own experiences, the modelling scenarios and climate analogies to experiment with stories about future drought events and possible effective ways of responding to them. This interdisciplinary approach allows the local community to extrapolate their narrated, experienced droughts from outside their historic range and into their projected range. These workshops will find innovative and effective ways to communicate science and information to the rural population. In this co-creation process of using creative experimentation based on narratives and scenario hydrological modelling, we develop new ways of adapting to drought and building resilience. This approach to increasing resilience is regarded as robust because it uses scientific methods, but is also culturally embedded and bottom-up.
User modeling for distributed virtual environment intelligent agents
NASA Astrophysics Data System (ADS)
Banks, Sheila B.; Stytz, Martin R.
1999-07-01
This paper emphasizes the requirement for user modeling by presenting the necessary information to motivate the need for and use of user modeling for intelligent agent development. The paper will present information on our current intelligent agent development program, the Symbiotic Information Reasoning and Decision Support (SIRDS) project. We then discuss the areas of intelligent agents and user modeling, which form the foundation of the SIRDS project. Included in the discussion of user modeling are its major components, which are cognitive modeling and behavioral modeling. We next motivate the need for and user of a methodology to develop user models to encompass work within cognitive task analysis. We close the paper by drawing conclusions from our current intelligent agent research project and discuss avenues of future research in the utilization of user modeling for the development of intelligent agents for virtual environments.
Development of a prototype Typhoon Risk Model over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Kim, K. Y.; Cocke, S.; Shin, D. W.; CHOI, M.; Kwon, J.
2016-12-01
Risk can be defined as probability of a given hazard of a given level causing a particular level of loss of damage (Alexander, 2000). Risk management is important for mitigation and developing plans for emergencies. More effective risk management strategies can help reduce potential losses from natural disasters like typhoon, floods, earthquakes, and so on. We are developing a prototype typhoon risk model to assess the current and potentially future hazard due to typhoons in the Western Pacific. To develop the typhoon risk model, a variety of sources of data over Korea are used such as population, damage to buildings, agriculture, ships, etc. The model is based on proven concepts used in catastrophe models that have been used in the U.S. and other regions of the world. Recently, the sea surface temperatures where typhoons have occurred have tended to increase. According to recent studies of global warming, the intensity of typhoons could increase, and the frequency of typhoons may decrease in the future climate. The prototype risk model can help us determine the change in risk as a consequence of the change in typhoon activity. We focus on Korea and other regions of interest to Korean insurers, re-insurers, and related industries. The model can potentially be coupled to various damage models or emergency management systems for planning and mitigation. In addition, the assessment would be useful for emergency planners, coastal community planners, and private and governmental insurance programs. This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA2016-8030.
Modeling paradigms for medical diagnostic decision support: a survey and future directions.
Wagholikar, Kavishwar B; Sundararajan, Vijayraghavan; Deshpande, Ashok W
2012-10-01
Use of computer based decision tools to aid clinical decision making, has been a primary goal of research in biomedical informatics. Research in the last five decades has led to the development of Medical Decision Support (MDS) applications using a variety of modeling techniques, for a diverse range of medical decision problems. This paper surveys literature on modeling techniques for diagnostic decision support, with a focus on decision accuracy. Trends and shortcomings of research in this area are discussed and future directions are provided. The authors suggest that-(i) Improvement in the accuracy of MDS application may be possible by modeling of vague and temporal data, research on inference algorithms, integration of patient information from diverse sources and improvement in gene profiling algorithms; (ii) MDS research would be facilitated by public release of de-identified medical datasets, and development of opensource data-mining tool kits; (iii) Comparative evaluations of different modeling techniques are required to understand characteristics of the techniques, which can guide developers in choice of technique for a particular medical decision problem; and (iv) Evaluations of MDS applications in clinical setting are necessary to foster physicians' utilization of these decision aids.
Brown, Kristen E; Hottle, Troy Alan; Bandyopadhyay, Rubenka; Babaee, Samaneh; Dodder, Rebecca Susanne; Kaplan, Pervin Ozge; Lenox, Carol; Loughlin, Dan
2018-06-21
The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply Scenario Planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. EPA MARKAL model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to present, even without additional policies. Emission caps, such as the Cross State Air Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.
Human Thermal Model Evaluation Using the JSC Human Thermal Database
NASA Technical Reports Server (NTRS)
Bue, Grant; Makinen, Janice; Cognata, Thomas
2012-01-01
Human thermal modeling has considerable long term utility to human space flight. Such models provide a tool to predict crew survivability in support of vehicle design and to evaluate crew response in untested space environments. It is to the benefit of any such model not only to collect relevant experimental data to correlate it against, but also to maintain an experimental standard or benchmark for future development in a readily and rapidly searchable and software accessible format. The Human thermal database project is intended to do just so; to collect relevant data from literature and experimentation and to store the data in a database structure for immediate and future use as a benchmark to judge human thermal models against, in identifying model strengths and weakness, to support model development and improve correlation, and to statistically quantify a model s predictive quality. The human thermal database developed at the Johnson Space Center (JSC) is intended to evaluate a set of widely used human thermal models. This set includes the Wissler human thermal model, a model that has been widely used to predict the human thermoregulatory response to a variety of cold and hot environments. These models are statistically compared to the current database, which contains experiments of human subjects primarily in air from a literature survey ranging between 1953 and 2004 and from a suited experiment recently performed by the authors, for a quantitative study of relative strength and predictive quality of the models.
Rose Vineer, H; Steiner, J; Knapp-Lawitzke, F; Bull, K; von Son-de Fernex, E; Bosco, A; Hertzberg, H; Demeler, J; Rinaldi, L; Morrison, A A; Skuce, P; Bartley, D J; Morgan, E R
2016-10-15
The impact of climate change on parasites and parasitic diseases is a growing concern and numerous empirical and mechanistic models have been developed to predict climate-driven spatial and temporal changes in the distribution of parasites and disease risk. Variation in parasite phenotype and life-history traits between isolates could undermine the application of such models at broad spatial scales. Seasonal variation in the transmission of the haematophagous gastrointestinal nematode Haemonchus contortus, one of the most pathogenic helminth species infecting sheep and goats worldwide, is primarily determined by the impact of environmental conditions on the free-living stages. To evaluate variability in the development success and mortality of the free-living stages of H. contortus and the impact of this variability on future climate impact modelling, three isolates of diverse origin were cultured at a range of temperatures between 15°C and 37°C to determine their development success compared with simulations using the GLOWORM-FL H. contortus model. No significant difference was observed in the developmental success of the three isolates of H. contortus tested, nor between isolates and model simulations. However, development success of all isolates at 37°C was lower than predicted by the model, suggesting the potential for overestimation of transmission risk at higher temperatures, such as those predicted under some scenarios of climate change. Recommendations are made for future climate impact modelling of gastrointestinal nematodes. Copyright © 2016 Elsevier B.V. All rights reserved.
Future HIV Mentoring Programs to Enhance Diversity.
Stoff, David M; Cargill, Victoria A
2016-09-01
This paper proposes a general template to guide future mentoring program development addressing: (i) considerations to ensure an adequate research workforce; (ii) key guidelines and principles of mentoring; and (iii) use of a logic model to develop program milestones, outcomes and evaluation. We focus on these areas to guide and inform the most effective mentoring program components, which we find to be more helpful than identifying specific features and ingredients. Although the focus is on the development of a new generation of investigators from diverse backgrounds, this template may also apply to mentoring programs for other investigators and for disciplines beyond HIV.
Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.
2017-12-01
Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Visualization, documentation, analysis, and communication of large scale gene regulatory networks
Longabaugh, William J.R.; Davidson, Eric H.; Bolouri, Hamid
2009-01-01
Summary Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on computational GRN modeling tools, and there is a need for custom modeling tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for GRN modeling. We also outline our future development plans, and give some examples of current applications of BioTapestry. PMID:18757046
Using Historical Data to Automatically Identify Air-Traffic Control Behavior
NASA Technical Reports Server (NTRS)
Lauderdale, Todd A.; Wu, Yuefeng; Tretto, Celeste
2014-01-01
This project seeks to develop statistical-based machine learning models to characterize the types of errors present when using current systems to predict future aircraft states. These models will be data-driven - based on large quantities of historical data. Once these models are developed, they will be used to infer situations in the historical data where an air-traffic controller intervened on an aircraft's route, even when there is no direct recording of this action.
Cooling Technology for Large Space Telescopes
NASA Technical Reports Server (NTRS)
DiPirro, Michael; Cleveland, Paul; Durand, Dale; Klavins, Andy; Muheim, Daniella; Paine, Christopher; Petach, Mike; Tenerelli, Domenick; Tolomeo, Jason; Walyus, Keith
2007-01-01
NASA's New Millennium Program funded an effort to develop a system cooling technology, which is applicable to all future infrared, sub-millimeter and millimeter cryogenic space telescopes. In particular, this technology is necessary for the proposed large space telescope Single Aperture Far-Infrared Telescope (SAFIR) mission. This technology will also enhance the performance and lower the risk and cost for other cryogenic missions. The new paradigm for cooling to low temperatures will involve passive cooling using lightweight deployable membranes that serve both as sunshields and V-groove radiators, in combination with active cooling using mechanical coolers operating down to 4 K. The Cooling Technology for Large Space Telescopes (LST) mission planned to develop and demonstrate a multi-layered sunshield, which is actively cooled by a multi-stage mechanical cryocooler, and further the models and analyses critical to scaling to future missions. The outer four layers of the sunshield cool passively by radiation, while the innermost layer is actively cooled to enable the sunshield to decrease the incident solar irradiance by a factor of more than one million. The cryocooler cools the inner layer of the sunshield to 20 K, and provides cooling to 6 K at a telescope mounting plate. The technology readiness level (TRL) of 7 will be achieved by the active cooling technology following the technology validation flight in Low Earth Orbit. In accordance with the New Millennium charter, tests and modeling are tightly integrated to advance the technology and the flight design for "ST-class" missions. Commercial off-the-shelf engineering analysis products are used to develop validated modeling capabilities to allow the techniques and results from LST to apply to a wide variety of future missions. The LST mission plans to "rewrite the book" on cryo-thermal testing and modeling techniques, and validate modeling techniques to scale to future space telescopes such as SAFIR.
Future Asian Education: The Challenge of Numbers.
ERIC Educational Resources Information Center
Adiseshiah, Malcolm S.
1980-01-01
Probes educational problems and needs in the developing nations of Asia. The major problems are overpopulation, poor educational facilities in rural areas, insufficient financial resources, inappropriate educational models and objectives, and unrealistically high expectations. More recent educational models stress equalizing educational access and…
Learn about EPA’s use of the Integrated Planning Model (IPM) to develop estimates of SO2 and NOx emission control costs, projections of futureemissions, and projections of capacity of future control retrofits, assuming controls on EGUs.
Kriticos, Darren J; Brunel, Sarah
2016-01-01
Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management.
Brunel, Sarah
2016-01-01
Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world’s worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management. PMID:27513336
NASA Astrophysics Data System (ADS)
Millstein, D.; Brown, N. J.; Zhai, P.; Menon, S.
2012-12-01
We use the WRF/Chem model (Weather Research and Forecasting model with chemistry) and pollutant emissions based on the EPA National Emission Inventories from 2005 and 2008 to model regional climate and air quality over the continental United States. Additionally, 2030 emission scenarios are developed to investigate the effects of future enhancements to solar power generation. Modeling covered 6 summer and 6 winter weeks each year. We model feedback between aerosols and meteorology and thus capture direct and indirect aerosol effects. The grid resolution is 25 km and includes no nesting. Between 2005 and 2008 significant emission reductions were reported in the National Emission Inventory. The 2008 weekday emissions over the continental U.S. of SO2 and NO were reduced from 2005 values by 28% and 16%, respectively. Emission reductions of this magnitude are similar in scale to the potential emission reductions from various energy policy initiatives. By evaluating modeled and observed air quality changes from 2005 to 2008, we analyze how well the model represents the effects of historical emission changes. We also gain insight into how well the model might predict the effects of future emission changes. In addition to direct comparisons of model outputs to ground and satellite observations, we compare observed differences between 2005 and 2008 to corresponding modeled differences. Modeling was extended to future scenarios (2030) to simulate air quality and regional climate effects of large-scale adoption of solar power. The 2030-year was selected to allow time for development of solar generation infrastructure. The 2030 emission scenario was scaled, with separate factors for different economic sectors, from the 2008 National Emissions Inventory. The changes to emissions caused by the introduction of large-scale solar power (here assumed to be 10% of total energy generation) are based on results from a parallel project that used an electricity grid model applied over multiple regions across the country. The regional climate and air quality effects of future large-scale solar power adoption are analyzed in the context of uncertainty quantified by the dynamic evaluation of the historical (2005 and 2008) WRF/Chem simulations.
Computational Modeling of Tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Tanner, John A. (Compiler)
1995-01-01
This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.
Using a Gravity Model to Predict Circulation in a Public Library System.
ERIC Educational Resources Information Center
Ottensmann, John R.
1995-01-01
Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…
Modeling potential movements of the emerald ash borer: the model framework
Louis R. Iverson; Anantha Prasad; Jonathan Bossenbroek; Davis Sydnor; Mark W. Schwartz
2010-01-01
The emerald ash borer (EAB, Agrilus planipennis Fairmaire) is threatening to decimate native ashes (Fraxinus spp.) across North America and, so far, has devastated ash populations across sections of Michigan, Ohio, Indiana, and Ontario. We are attempting to develop a computer model that will predict EAB future movement by adapting...
An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on strea...
Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.
ERIC Educational Resources Information Center
Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.
1999-01-01
Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)
Modeling erosion under future climates with the WEPP model
Timothy Bayley; William Elliot; Mark A. Nearing; D. Phillp Guertin; Thomas Johnson; David Goodrich; Dennis Flanagan
2010-01-01
The Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT) was developed to be an easy-to-use, web-based erosion model that allows users to adjust climate inputs for user-specified climate scenarios. WEPPCAT allows the user to modify monthly mean climate parameters, including maximum and minimum temperatures, number of wet days, precipitation, and...
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F.
1977-01-01
A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.
ERIC Educational Resources Information Center
Ebert-May, Diane; Derting, Terry L.; Henkel, Timothy P.; Maher, Jessica Middlemis; Momsen, Jennifer L.; Arnold, Bryan; Passmore, Heather A.
2015-01-01
The availability of reliable evidence for teaching practices after professional development is limited across science, technology, engineering, and mathematics disciplines, making the identification of professional development "best practices" and effective models for change difficult. We aimed to determine the extent to which…
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis
Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653
Hocking, Matthew C.; McCurdy, Mark; Turner, Elise; Kazak, Anne E.; Noll, Robert B.; Phillips, Peter; Barakat, Lamia P.
2014-01-01
Pediatric brain tumor (BT) survivors are at risk for psychosocial late effects across many domains of functioning, including neurocognitive and social. The literature on the social competence of pediatric BT survivors is still developing and future research is needed that integrates developmental and cognitive neuroscience research methodologies to identify predictors of survivor social adjustment and interventions to ameliorate problems. This review discusses the current literature on survivor social functioning through a model of social competence in childhood brain disorder and suggests future directions based on this model. Interventions pursuing change in survivor social adjustment should consider targeting social ecological factors. PMID:25382825
Pathology resident and fellow education in a time of disruptive technologies.
Ziai, James M; Smith, Brian R
2012-12-01
The development of disruptive technologies is changing the practice of pathology. Their implementation challenges traditional educational paradigms. Training programs must adapt to these heuristic needs. The dual explosion of new medical knowledge and innovative methodologies adds new practice aspects to the pathologist's areas of expertise. This transformation potentially challenges the traditional core model of training. It raises questions as to how pathology should incorporate future expanding subspecialty needs into educational and practice models. This article examines the impact of these disruptive technologies on resident and fellow education and explores alternative educational and practice models that may better accommodate pathology's future. Copyright © 2012 Elsevier Inc. All rights reserved.
Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project
NASA Astrophysics Data System (ADS)
Keener, V. W.; Brewington, L.; Finucane, M.
2015-12-01
For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.
Valuating Privacy with Option Pricing Theory
NASA Astrophysics Data System (ADS)
Berthold, Stefan; Böhme, Rainer
One of the key challenges in the information society is responsible handling of personal data. An often-cited reason why people fail to make rational decisions regarding their own informational privacy is the high uncertainty about future consequences of information disclosures today. This chapter builds an analogy to financial options and draws on principles of option pricing to account for this uncertainty in the valuation of privacy. For this purpose, the development of a data subject's personal attributes over time and the development of the attribute distribution in the population are modeled as two stochastic processes, which fit into the Binomial Option Pricing Model (BOPM). Possible applications of such valuation methods to guide decision support in future privacy-enhancing technologies (PETs) are sketched.
CEO is a vision of the future role and position of CIO in healthcare organizations.
Moghaddasi, Hamid; Sheikhtaheri, Abbas
2010-12-01
Literature related to chief information officer (CIO) in the developed countries during the past 20 years has been reviewed to identify the future trends of the position. The literature shows that CIO is a growing position in the healthcare industry that has achieved much popularity because today's healthcare has a great focus on information management and technology and that CIO can be future powerful strategist for healthcare organizations. Therefore, a model for an ideal healthcare CIO based on lesson learned from literature was suggested. It seems that in the developed countries, CIOs will achieve many opportunities to come in the highest executive teams of healthcare organizations and may undertake CEO roles.
Early stress and human behavioral development: emerging evolutionary perspectives.
Del Giudice, M
2014-08-01
Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field.
Samuel A. Cushman; Kevin S. McKelvey
2006-01-01
The primary weakness in our current ability to evaluate future landscapes in terms of wildlife lies in the lack of quantitative models linking wildlife to forest stand conditions, including fuels treatments. This project focuses on 1) developing statistical wildlife habitat relationships models (WHR) utilizing Forest Inventory and Analysis (FIA) and National Vegetation...
A spatially explicit model for the future progression of the current Haiti cholera epidemic
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.
2011-12-01
As a major cholera epidemic progresses in Haiti, and the figures of the infection, up to July 2011, climb to 385,000 cases and 5,800 deaths, the development of general models to track and predict the evolution of the outbreak, so as to guide the allocation of medical supplies and staff, is gaining notable urgency. We propose here a spatially explicit epidemic model that accounts for the dynamics of susceptible and infected individuals as well as the redistribution of textit{Vibrio cholera}, the causative agent of the disease, among different human communities. In particular, we model two spreading pathways: the advection of pathogens through hydrologic connections and the dissemination due to human mobility described by means of a gravity-like model. To this end the country has been divided into hydrologic units based on drainage directions derived from a digital terrain model. Moreover the population of each unit has been estimated from census data downscaled to 1 km x 1 km resolution via remotely sensed geomorphological information (LandScan texttrademark project). The model directly account for the role of rainfall patterns in driving the seasonality of cholera outbreaks. The two main outbreaks in fact occurred during the rainy seasons (October and May) when extensive floodings severely worsened the sanitation conditions and, in turn, raised the risk of infection. The model capability to reproduce the spatiotemporal features of the epidemic up to date grants robustness to the foreseen future development. In this context, the duration of acquired immunity, a hotly debated topic in the scientific community, emerges as a controlling factor for progression of the epidemic in the near future. The framework presented here can straightforwardly be used to evaluate the effectiveness of alternative intervention strategies like mass vaccinations, clean water supply and educational campaigns, thus emerging as an essential component of the control of future cholera epidemics.
Software Past, Present, and Future: Views from Government, Industry and Academia
NASA Technical Reports Server (NTRS)
Holcomb, Lee; Page, Jerry; Evangelist, Michael
2000-01-01
Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.
Climate change adaptation and Integrated Water Resource Management in the water sector
NASA Astrophysics Data System (ADS)
Ludwig, Fulco; van Slobbe, Erik; Cofino, Wim
2014-10-01
Integrated Water Resources Management (IWRM) was introduced in 1980s to better optimise water uses between different water demanding sectors. However, since it was introduced water systems have become more complicated due to changes in the global water cycle as a result of climate change. The realization that climate change will have a significant impact on water availability and flood risks has driven research and policy making on adaptation. This paper discusses the main similarities and differences between climate change adaptation and IWRM. The main difference between the two is the focus on current and historic issues of IWRM compared to the (long-term) future focus of adaptation. One of the main problems of implementing climate change adaptation is the large uncertainties in future projections. Two completely different approaches to adaptation have been developed in response to these large uncertainties. A top-down approach based on large scale biophysical impacts analyses focussing on quantifying and minimizing uncertainty by using a large range of scenarios and different climate and impact models. The main problem with this approach is the propagation of uncertainties within the modelling chain. The opposite is the bottom up approach which basically ignores uncertainty. It focusses on reducing vulnerabilities, often at local scale, by developing resilient water systems. Both these approaches however are unsuitable for integrating into water management. The bottom up approach focuses too much on socio-economic vulnerability and too little on developing (technical) solutions. The top-down approach often results in an “explosion” of uncertainty and therefore complicates decision making. A more promising direction of adaptation would be a risk based approach. Future research should further develop and test an approach which starts with developing adaptation strategies based on current and future risks. These strategies should then be evaluated using a range of future scenarios in order to develop robust adaptation measures and strategies.
Kepner, William G.; Semmens, Darius J.; Hernandez, Mariano; Goodrich, David C.
2009-01-01
Envisioning and evaluating future scenarios has emerged as a critical component of both science and social decision-making. The ability to assess, report, map, and forecast the life support functions of ecosystems is absolutely critical to our capacity to make informed decisions to maintain the sustainable nature of our ecosystem services now and into the future. During the past two decades, important advances in the integration of remote imagery, computer processing, and spatial-analysis technologies have been used to develop landscape information that can be integrated with hydrologic models to determine long-term change and make predictive inferences about the future. Two diverse case studies in northwest Oregon (Willamette River basin) and southeastern Arizona (San Pedro River) were examined in regard to future land use scenarios relative to their impact on surface water conditions (e.g., sediment yield and surface runoff) using hydrologic models associated with the Automated Geospatial Watershed Assessment (AGWA) tool. The base reference grid for land cover was modified in both study locations to reflect stakeholder preferences 20 to 60 yrs into the future, and the consequences of landscape change were evaluated relative to the selected future scenarios. The two studies provide examples of integrating hydrologic modeling with a scenario analysis framework to evaluate plausible future forecasts and to understand the potential impact of landscape change on ecosystem services.
Trade and the Future of China's Black Carbon Emissions
NASA Astrophysics Data System (ADS)
Persad, G.; Oppenheimer, M.; Naik, V.
2016-12-01
Emissions of black carbon aerosols in China have increased by over 200% during the last 50 years, with negative implications both for human health and for regional and global climate. The Representative Concentration Pathway (RCP) emissions scenarios all assume that China's future black carbon emissions will decrease. However, this decline partially depends on the assumption that the evolution of future pollutant emissions in developing nations will match the observed historical relationship between air quality and income in developed nations. Recent research has demonstrated that a substantial portion of China's current black carbon emissions are driven by the production of goods exported for consumption elsewhere. This constitutes an external demand for black carbon-emitting activity in China that is much smaller in the developed nations on which the historical air quality/income relationship is based. We here show using integrated assessment model output, general circulation modeling, and emissions and economic data that (1) China must achieve a faster technological and regulatory evolution than did developed countries in order achieve the same air quality/income trajectory; (2) China's uniquely large share of export-related black carbon-emitting activities and their potential growth are a plausible explanation for this disparity; and (3) the climate and health implications of these export-related black carbon emissions, if unmitigated, are of interest from a policy perspective. Together these results indicate that the production of goods for export will steepen the mitigation curve for China relative to developed nations, if China is to achieve the future black carbon emissions reductions assumed in the RCPs.
NASA Technical Reports Server (NTRS)
Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.
[Perspectives of psychoanalytic psychosomatics].
Küchenhoff, J
2001-01-01
The paper discusses a variety of perspectives of psychoanalytic psychosomatics in the past, the present and the future. An epigenetic model of scientific development is introduced and developmental strains in psychosomatic medicine are evaluated according to the claims of the bio-psycho-social model. In historical terms, the psychological dimension of psychoanalytic psychosomatics has been the first strain to be elaborated; it is being extended still. The biological, somatic and bodily dimension of psychosomatic medicine was the next to be explored; during the last decade, this strain has found increasing interest, especially neurobiological research. Though the social dimension has not been neglected, it will be the main task for psychoanalytic psychosomatics to consider in the future. Likewise, a mandatory future challenge will be a more intensive discussion of the epistemological basis of psychosomatic medicine and psychoanalytic psychosomatics. The historical development of psychosomatic medicine is highlighted by examples drawn mainly from the history of Heidelberg Psychosomatic University Clinic that has its 50th anniversary in 2000.
Williams, Mark D.; USA, Richland Washington; Vermuel, Vince R.; ...
2014-12-31
The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO 2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to evaluate CO 2 mass balance and detect any unforeseen loss in CO 2 containment. The monitoring program will include direct monitoring of the reservoir, and early-leak-detection monitoring directly above the primary confining zone. This preliminary modeling study described here focuses on hypotheticalmore » leakage scenarios into the first permeable unit above the primary confining zone (Ironton Sandstone) and is used to support assessment of early-leak detection capabilities. Future updates of the model will be used to assess potential impacts on the lowermost underground source of drinking water (Saint Peter Sandstone) for a range of theoretical leakage scenarios. This preliminary modeling evaluation considers both pressure response and geochemical signals in the overlying Ironton Sandstone. This model is independent of the FutureGen 2.0 reservoir model in that it does not simulate caprock discontinuities, faults, or failure scenarios. Instead this modeling effort is based on theoretical, volumetric-rate based leakage scenarios. The scenarios include leakage of 1% of the total injected CO 2 mass, but spread out over different time periods (20, 100, and 500 years) with each case yielding a different mass flux (i.e., smaller mass fluxes for longer duration leakage cases]. A brine leakage scenario using a volumetric leakage similar to the 20 year 1% CO 2 case was also considered. A framework for the comparison of the various cases was developed based on the exceedance of selected pressure and geochemical thresholds at different distances from the point of leakage and at different vertical positions within the Ironton Sandstone. These preliminary results, and results from an updated models that incorporate additional site-specific characterization data, support development/refinement of the monitoring system design.« less
Mental models accurately predict emotion transitions.
Thornton, Mark A; Tamir, Diana I
2017-06-06
Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.
NASA Astrophysics Data System (ADS)
Achmad, A.; Irwansyah, M.; Ramli, I.
2018-03-01
Banda Aceh experienced rapid growth, both physically, socially, and economically, after the Tsunami that devastated it the end of December in 2004. Hence policy controls are needed to direct the pattern of urban growth to achieve sustainable development for the future. The purpose of this paper is to generate a growth model for Banda Aceh using the CA-Markov process. By knowing the changes in land use between 2005 and 2009 from the results of previous research, simulations for 2013, 2019 and 2029 using the application of Idrisi@Selva. CA-Markov models were prepared to determine the quantity of changes. The simulation results showed that, after the Tsunami, the City of Banda Aceh tended to grow towards the coast. For the control of the LUC, the Banda Aceh City government needs to prepare comprehensive and detailed maps and inventory of LUC for the city to provide basic data and information needed for monitoring and evaluation that can be done effectively and efficiently. An institution for monitoring and evaluation of the urban landscape and the LUC should be formed immediately. This institution could consist of representatives from government, academia, community leaders, the private sector and other experts. The findings from this study can be used to start the monitoring and evaluation of future urban growth. Especially for the coastal areas, the local government should immediately prepare special spatial coastal area plans to control growth in those areas and to ensure that the economic benefits from disaster mitigation and coastal protection are preserved. For the development of the city in the future, it is necessary to achieve a balance between economic development, and social welfare with environmental protection and disaster mitigation. iIt will become a big challenge to achieve sustainable development for the future.
NASA Technical Reports Server (NTRS)
Andrews, Arlyn; Kawa, Randy; Zhu, Zhengxin; Burris, John; Abshire, Jim
2004-01-01
A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future CO2 levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an 'inverse problem', where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from longterm surface and aircraft monitoring stations with data from intensive field campaigns and with proposed future satellite observations. We have recently developed an adjoint for the GSFC 3-D Parameterized Chemistry and Transport Model (PCTM). Here, we will present results from a PCTM Adjoint study comparing the sampling footprints of tall tower, aircraft and potential future lidar observations of CO2. The vertical resolution and extent of the profiles and the observation frequency will be considered for several sites in North America.
A Modular Simulation Framework for Assessing Swarm Search Models
2014-09-01
SUBTITLE A MODULAR SIMULATION FRAMEWORK FOR ASSESSING SWARM SEARCH MODELS 5. FUNDING NUMBERS 6. AUTHOR(S) Blake M. Wanier 7. PERFORMING ORGANIZATION...Numerical studies demonstrate the ability to leverage the developed simulation and analysis framework to investigate three canonical swarm search models ...as benchmarks for future exploration of more sophisticated swarm search scenarios. 14. SUBJECT TERMS Swarm Search, Search Theory, Modeling Framework
Report of the LSPI/NASA Workshop on Lunar Base Methodology Development
NASA Technical Reports Server (NTRS)
Nozette, Stewart; Roberts, Barney
1985-01-01
Groundwork was laid for computer models which will assist in the design of a manned lunar base. The models, herein described, will provide the following functions for the successful conclusion of that task: strategic planning; sensitivity analyses; impact analyses; and documentation. Topics addressed include: upper level model description; interrelationship matrix; user community; model features; model descriptions; system implementation; model management; and plans for future action.