Science.gov

Sample records for future neutrino experiments

  1. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  2. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  3. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    SciTech Connect

    Bass, Matthew

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  4. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.; /Fermilab

    2009-07-01

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  5. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.

    2010-03-30

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  6. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  7. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S.

    2011-10-06

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams ('Beta Beams'), one based on decays of stored muon beams ('Neutrino Factory'), and one based on the decays of an intense pion beam ('Superbeam'). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R and D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  8. Future experiments with neutrino superbeams, beta-beams, and neutrino factories

    SciTech Connect

    Deborah A Harris

    2003-10-27

    This report describes the goals of the next generations of accelerator-based neutrino experiments, and the various strategies that are being considered to achieve those goals. Because these next steps in the field are significantly different from the current or previous steps, novel techniques must be considered for both the detectors and the neutrino beams themselves. We consider not only conventional neutrino beams created by decays of pions, but also those which could be made by decays of beams of relativistic isotopes (so-called ''beta-beams'') and also by decays of beams of muons (neutrino factories).

  9. Present and future high-energy accelerators for neutrino experiments

    SciTech Connect

    Kourbanis, I.; /Fermilab

    2007-06-01

    There is an active neutrino program making use of the high-energy (larger than 50 GeV) accelerators both in USA at Fermilab with NuMI and at CERN in Europe with CNGS. In this paper we will review the prospects for high intensity high energy beams in those two locations during the next decade.

  10. Results from Neutrino Oscillations Experiments

    SciTech Connect

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  11. Neutrino experiments: Hierarchy, CP, CPT

    NASA Astrophysics Data System (ADS)

    Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

    2016-07-01

    We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

  12. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    SciTech Connect

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  13. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  14. Future possibilities with Fermilab neutrino beams

    SciTech Connect

    Saoulidou, Niki

    2008-01-01

    We will start with a brief overview of neutrino oscillation physics with emphasis on the remaining unanswered questions. Next, after mentioning near future reactor and accelerator experiments searching for a non zero {theta}{sub 13}, we will introduce the plans for the next generation of long-baseline accelerator neutrino oscillation experiments. We will focus on experiments utilizing powerful (0.7-2.1 MW) Fermilab neutrino beams, either existing or in the design phase.

  15. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  16. Determination of neutrino mass ordering in future 76Ge-based neutrinoless double-beta decay experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-01-01

    Motivated by recent intensive experimental efforts on searching for neutrinoless double-beta decays, we perform a detailed analysis of the physics potential of the experiments based on 76Ge. Assuming no signals, current and future experiments could place a 90% lower limit on the half life T1/2 0 ν≳4 ×1026 yr and T1/2 0 ν≳7 ×1027 yr , respectively. Then, how to report an evidence for neutrinoless double-beta decays is addressed by following the Bayesian statistical approach. For the first time, we present a quantitative description of experimental power to distinguish between normal and inverted neutrino mass orderings. Taking an exposure of 104 kg yr and a background rate of 1 0-4 counts/(keV kg yr ) , we find that a moderate evidence for normal neutrino mass ordering (i.e., with a Bayes factor B given by ln (B )≃2.5 or a probability about 92.3% according to the Jeffreys scale) can be achieved if the true value of effective neutrino mass mβ β turns out to be below 0.01 eV.

  17. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  18. NOνA Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Jediny, Filip

    2015-06-01

    The NOνA experiment is a long-baseline accelerator-based neutrino oscillation experiment. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its far detector in Ash River, Minnesota. Goals of the experiment include measurements of θ13, mass hierarchy and the CP violating phase. NOνA has begun to take neutrino data and first neutrino candidates are observed in its detectors. This document provides an overview of the scientific reach of the experiment, the status of detector operation and physics analysis, as well as the first data.

  19. Neutrino physics today, important issues and the future

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2010-10-01

    The status and the most important issues in neutrino physics will be summarized as well as how the current, pressing questions will be addressed by future experiments. Since the discovery of neutrino flavor transitions by the SuperKamiokande experiment in 1998, which demonstrates that neutrinos change and hence their clocks tick, i.e. they are not traveling at the speed of light and hence are not massless, the field of neutrino physics has made remarkable progress in untangling the nature of the neutrino. However, there are still many important questions to answer.

  20. Future Experiments in Astrophysics

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2002-01-01

    The measurement methodologies of astrophysics experiments reflect the enormous variation of the astrophysical radiation itself. The diverse nature of the astrophysical radiation, e.g. cosmic rays, electromagnetic radiation, and neutrinos, is further complicated by the enormous span in energy, from the 1.95 Kappa relic neutrino background to cosmic rays with energy greater than 10(exp 20)eV. The measurement of gravity waves and search for dark matter constituents are also of astrophysical interest. Thus, the experimental techniques employed to determine the energy of the incident particles are strongly dependent upon the specific particles and energy range to be measured. This paper summarizes some of the calorimetric methodologies and measurements planned by future astrophysics experiments. A focus will be placed on the measurement of higher energy astrophysical radiation. Specifically, future cosmic ray, gamma ray, and neutrino experiments will be discussed.

  1. Status of solar neutrino experiments

    SciTech Connect

    Beier, E.W.; Davis, R. Jr.; Kim, S.B. . Dept. of Physics); Elliott, S.R. ); Jelley, N. )

    1990-01-01

    A summary of the status of four solar neutrino experiments is presented. The Homestake {sup 37}Cl data are presented and the possible time dependence of the data is addressed. Data from 1040 days of operation of the Kamiokande II detector are presented next. The status of the {sup 71}Ga experiment in the Baksan Neutrino Observatory, which has operated for a short time, is discussed. The summary concludes with a discussion of the status of the Sudbury Neutrino Observatory, which has been under construction since the beginning of 1990. 7 refs., 6 figs.

  2. Discovering New Light States at Neutrino Experiments

    SciTech Connect

    Essig, Rouven; Harnik, Roni; Kaplan, Jared; Toro, Natalia; /Stanford U., Phys. Dept.

    2011-08-11

    Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovae constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.

  3. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  4. Accelerator Design Concept for Future Neutrino Facilities

    SciTech Connect

    ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

    2008-02-03

    This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

  5. ν generation: Present and future constraints on neutrino masses from global analysis of cosmology and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gerbino, Martina; Lattanzi, Massimiliano; Melchiorri, Alessandro

    2016-02-01

    We perform a joint analysis of current data from cosmology and laboratory experiments to constrain the neutrino mass parameters in the framework of Bayesian statistics, also accounting for uncertainties in nuclear modeling, relevant for neutrinoless double β decay (0 ν 2 β ) searches. We find that a combination of current oscillation, cosmological, and 0 ν 2 β data constrains mβ β<0.045 eV (0.014 eV experiments, and find that in the case of normal hierarchy, given a total mass of 0.1 eV, and assuming a factor-of-two uncertainty in the modeling of the relevant nuclear matrix elements, it will be possible to measure the total mass itself, the effective Majorana mass and the effective electron mass with an accuracy (at 95% C.L.) of 0.05, 0.015, 0.02 eV, respectively, as well as to be sensitive to one of the Majorana phases. This assumes that neutrinos are Majorana particles and that the mass mechanism gives the dominant contribution to 0 ν 2 β decay. We argue that more precise nuclear modeling will be crucial to improve these sensitivities.

  6. Future reactor experiments

    SciTech Connect

    Wen, Liangjian

    2015-07-15

    The non-zero neutrino mixing angle θ{sub 13} has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  7. MINER{nu}A, a Neutrino--Nucleus Interaction Experiment

    SciTech Connect

    Solano Salinas, C. J.; Chamorro, A.; Romero, C.

    2007-10-26

    With the fantastic results of KamLAND and SNO for neutrino physics, a new generation of neutrino experiments are being designed and build, specially to study the neutrino oscillations to resolve most of the incognita still we have in the neutrino physics. At FERMILAB we have the experiments MINOS and, in a near future, NO{nu}A, to study this kind of oscillations. One big problem these experiments will have is the lack of a good knowledge of the Physics of neutrino interactions with matter, and this will generate big systematic errors. MINER{nu}A, also at FERMILAB, will cover this space studying with high statistics and great precision the neutrino--nucleus interactions.

  8. Constraints on neutrino masses from future cosmological observations

    SciTech Connect

    Hirano, Koichi

    2014-05-02

    Constraints on neutrino masses are estimated based on future observations of the cosmic microwave background (CMB) including the B-mode polarization produced by CMB lensing using the Planck satellite, and baryon acoustic oscillations distance scale and the galaxy power spectrum from all-sky galaxy redshift survey in the BigBOSS experiment. We estimate the error in the bound on the total neutrino mass to be Δ∑m{sub v} = 0.012 eV with a 68% confidence level. If the fiducial value of the total neutrino mass is ∑m{sub v} = 0.06 eV, this result implies that the neutrino mass hierarchy must be normal.

  9. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  10. Physics from solar neutrinos in dark matter direct detection experiments

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Bœhm, Céline

    2016-05-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle sin2 θ W to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos, and use these estimates to quantify errors on future measurements of the neutrino fluxes, weak mixing angle and solar observables, as well as to constrain new physics in the neutrino sector. Our analysis shows that the combined rates of solar neutrino events in second generation experiments (SuperCDMS and LZ) can yield a measurement of the pp flux to 2.5% accuracy via electron recoil, and slightly improve the 8B flux determination. Assuming a low-mass argon phase, projected tonne-scale experiments like DARWIN can reduce the uncertainty on both the pp and boron-8 neutrino fluxes to below 1%. Finally, we use current results from LUX, SuperCDMS and CDMSlite to set bounds on new interactions between neutrinos and electrons or nuclei, and show that future direct detection experiments can be used to set complementary constraints on the parameter space associated with light mediators.

  11. Review of direct neutrino mass experiments

    SciTech Connect

    Dragoun, O.

    2015-10-28

    Advantages and drawbacks of the kinematic methods of the neutrino mass determination are discussed. The meaning of the effective neutrino mass, resulting from measurements of the endpoint region of β-spectra is clarified. Current experimental constraints on the mass of active as well as sterile neutrinos are presented. Several new experiments are briefly outlined.

  12. Future short-baseline sterile neutrino searches with accelerators

    SciTech Connect

    Spitz, J.

    2015-07-15

    A number of experimental anomalies in neutrino oscillation physics point to the existence of at least one light sterile neutrino. This hypothesis can be precisely tested using neutrinos from reactors, radioactive isotopes, and particle accelerators. The focus of these proceedings is on future dedicated short-baseline sterile neutrino searches using accelerators.

  13. Future atmospheric neutrino measurements with PINGU

    SciTech Connect

    Grant, D.

    2015-07-15

    Neutrino oscillations, first measured in 1998 via atmospheric neutrinos, have provided the only current direct evidence for physics beyond the Standard Model of Elementary Particles. The full neutrino mixing, described by six parameters, has been measured in the last decade with the exception of the charge-parity phase and the ordering of the mass eigenstates (the neutrino mass hierarchy – NMH). A relatively large mixing-angle between the first and third mass eigenstates has opened the possibility of measuring the mass hierarchy via atmospheric neutrinos using very large volume detectors. A leading proposal to perform this measurement is the future low-energy extension to the IceCube–DeepCore detector, called PINGU (the Precision IceCube Next Generation Upgrade). By increasing the photocathode density in the DeepCore region, it is possible to lower the energy threshold in the fiducial volume to the region that is affected by the MSW [1, 2], and thus permits extraction of the hierarchy. Here we discuss the design of the PINGU detector, its sensitivity to the mass hierarchy (approximately 3σ in 3.5 years) and measurements of ν{sub μ} disappearance and ν{sub τ} appearance.

  14. Nuclear effects in neutrino oscillation experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2011-10-06

    We have studied the nuclear medium effects in the neutrino(antineutrino) induced interactions in nuclei which are relevant for present neutrino oscillation experiments in the few GeV energy region. The study is specially focused on calculating the cross sections and the event rates for atmospheric and accelerator neutrino experiments. The nuclear effects are found to be important for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  15. Status of the Daya Bay Reactor Neutrino Oscillation Experiment

    SciTech Connect

    Daya Bay Collaboration; Lin, Cheng-Ju Stephen

    2010-12-15

    The last unknown neutrino mixing angle theta_13 is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of sin^2(2*theta_13) to better than 0.01 at 90percent CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.

  16. Future short baseline neutrino searches with nuclear decays

    SciTech Connect

    Caccianiga, Barbara

    2015-07-15

    Several anomalies coming from neutrino experiments may be pointing towards new physics: these hints suggest the existence of one (or more) sterile neutrinos. We discuss some of the experiments proposed to verify (or disproof) this hypothesis by using an intense radioactive source in proximity of large neutrino detectors.

  17. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  18. Future long-baseline neutrino oscillations: View from Asia

    SciTech Connect

    Hayato, Yoshinari

    2015-07-15

    Accelerator based long-baseline neutrino oscillation experiments have been playing important roles in revealing the nature of neutrinos. However, it turned out that the current experiments are not sufficient to study two major remaining problems, the CP violation in the lepton sector and the mass hierarchy of neutrinos. Therefore, several new experiments have been proposed. Among of them, two accelerator based long-baseline neutrino oscillation experiments, the J-PARC neutrino beam and Hyper-Kamiokande, and MOMENT, have been proposed in Asia. These two projects are reviewed in this article.

  19. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

    SciTech Connect

    ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

    2004-09-21

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

  20. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  1. Future Accelerators, Muon Colliders, and Neutrino Factories

    SciTech Connect

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  2. Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys

    SciTech Connect

    Carbone, Carmelita; Cimatti, Andrea; Verde, Licia; Wang, Yun E-mail: liciaverde@icc.ub.edu E-mail: a.cimatti@unibo.it

    2011-03-01

    We examine whether future, nearly all-sky galaxy redshift surveys, in combination with CMB priors, will be able to detect the signature of the cosmic neutrino background and determine the absolute neutrino mass scale. We also consider what constraints can be imposed on the effective number of neutrino species. In particular we consider two spectroscopic strategies in the near-IR, the so-called ''slitless'' and ''multi-slit'' approaches, whose examples are given by future space-based galaxy surveys, as EUCLID for the slitless case, or SPACE, JEDI, and possibly WFIRST in the future, for the multi-slit case. We find that, in combination with Planck, these galaxy probes will be able to detect at better than 3-sigma level and measure the mass of cosmic neutrinos: a) in a cosmology-independent way, if the sum of neutrino masses is above 0.1 eV; b) assuming spatial flatness and that dark energy is a cosmological constant, otherwise. We find that the sensitivity of such surveys is well suited to span the entire range of neutrino masses allowed by neutrino oscillation experiments, and to yield a clear detection of non-zero neutrino mass. The detection of the cosmic relic neutrino background with cosmological experiments will be a spectacular confirmation of our model for the early Universe and a window into one of the oldest relic components of our Universe.

  3. Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Bergström, L.; Hulth, P. O.; Botner, O.; Carlson, P.; Ohlsson, T.

    2006-03-01

    J. N. Bahcall (1934-2005) -- Preface -- List of participants -- Committees -- Nobel symposium on neutrino physics - program -- The history of neutrino oscillations / S. M. Bilenky -- Super-Kamiokande results on neutrino oscillations / Y. Suzuki -- Sudbury neutrino observatory results / A. B. McDonald -- Results from KamLAND reactor neutrino detection / A. Suzuki -- New opportunities for surprise / J. Conrad -- Solar models and solar neutrinos / J. N. Bahcall -- Atmospheric neutrino fluxes / T. K. Gaisser -- The MSW effect and matter effects in neutrino oscillations / A. Yu. Smirnov -- Three-flavour effects and CP- and T-violation in neutrino oscillations / E. Kh. Akhmedov -- Global analysis of neutrino data / M. C. Gonzalez-Garcia -- Future precision neutrino oscillation experiments and theoretical implications / M. Lindner -- Experimental prospects of neutrinoless double beta decay / E. Fiorini -- Theoretical prospects of neutrinoless double beta decay / S. T. Petcov -- Supernova neutrino oscillations / G. G. Raffelt -- High-energy neutrino astronomy / F. Halzen -- Neutrino astrophysics in the cold: Amanda, Baikal and IceCube / C. Spiering -- Status of radio and acoustic detection of ultra-high energy cosmic neutrinos and a proposal on reporting results / D. Saltzberg -- Detection of neutrino-induced air showers / A. A. Watson -- Prospect for relic neutrino searches / G. B. Gelmini -- Leptogenesis in the early universe / T. Yanagida -- Neutrinos and big bang nucleosynthesis / G. Steigman -- Extra galactic sources of high energy neutrinos / E. Waxman -- Cosmological neutrino bounds for non-cosmologists / M. Tegmark -- Neutrino intrinsic properties: the neutrino-antineutrino relation / B. Kayser -- NuTeV and neutrino properties / M. H. Shaevitz -- Absolute masses of neutrinos - experimental results and future possibilities / C. Weinheimer -- Flavor theories and neutrino masses / P. Ramond -- Neutrino mass models and leptogenesis / S. F. King -- Neutrino mass and

  4. Report on solar neutrino experiments

    SciTech Connect

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

  5. Measurement of neutrino oscillations in MACRO experiment

    NASA Technical Reports Server (NTRS)

    Musser, J.

    1985-01-01

    The possibility of investigating neutrino oscillations in the proposed MACRO experiment are considered. Its sensitivity taking into account the theoretical uncertainties coming from flux calculations, geomagnetic effects and propagation through matter, and the experimental limitations.

  6. Future long-baseline neutrino oscillations: View from Europe

    SciTech Connect

    Patzak, T.

    2015-07-15

    Since about a decade the european physics community interested in neutrino and neutrino-astrophysics develops a plan to conceive the next generation large underground neutrino observatory. Recently, the LAGUNA-LBNO collaboration made the outcome of the FP7 design study public which shows a clear path for the realization of such experiment. In this paper the LAGUNA and LAGUNA-LBNO Design studies, resulting in a proposal for the LBNO experiment, will be discussed. The author will focus on the long baseline neutrino oscillation search, especially on the potential to discover the neutrino mass ordering and the search for CP violation in the lepton sector.

  7. Future Outlook: Experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoichiro

    2008-11-01

    The personal view for the next to the next neutrino detector, the ultimate experiment, is discussed. Considering the size, cost and head winds against the basic science, the ultimate experiment will be the only experiment in the world. Here two such experiments one for the neutrino oscillation and the other for the double beta decay were discussed. The ultimate experiment needs to include a bread and butter science and to have a discovery potential for an unexpected phenomenon. There are many technical challenges and international co-operations are absolutely necessary.

  8. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  9. The CAPTAIN liquid argon neutrino experiment

    DOE PAGES

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  10. Measuring the neutrino mass from future wide galaxy cluster catalogues

    SciTech Connect

    Carbone, Carmelita; Moscardini, Lauro; Cimatti, Andrea; Fedeli, Cosimo E-mail: cosimo.fedeli@astro.ufl.edu E-mail: a.cimatti@unibo.it

    2012-03-01

    We present forecast errors on a wide range of cosmological parameters obtained from a photometric cluster catalogue of a future wide-field Euclid-like survey. We focus in particular on the total neutrino mass as constrained by a combination of the galaxy cluster number counts and correlation function. For the latter we consider only the shape information and the Baryon Acoustic Oscillations (BAO), while marginalising over the spectral amplitude and the redshift space distortions. In addition to the cosmological parameters of the standard ΛCDM+ν model we also consider a non-vanishing curvature, and two parameters describing a redshift evolution for the dark energy equation of state. For completeness, we also marginalise over a set of ''nuisance'' parameters, representing the uncertainties on the cluster mass determination. We find that combining cluster counts with power spectrum information greatly improves the constraining power of each probe taken individually, with errors on cosmological parameters being reduced by up to an order of magnitude. In particular, the best improvements are for the parameters defining the dynamical evolution of dark energy, where cluster counts break degeneracies. Moreover, the resulting error on neutrino mass is at the level of σ(M{sub ν}) ∼ 0.9 eV, comparable with that derived from present Lyα forest measurements and Cosmic Microwave background (CMB) data in the framework of a non-flat Universe. Further adopting Planck priors and reducing the number of free parameters to a ΛCDM+ν cosmology allows to place constraints on the total neutrino mass of σ(M{sub ν}) ∼ 0.08 eV, close to the lower bound enforced by neutrino oscillation experiments. Finally, in the optimistic case where uncertainties in the calibration of the mass-observable relation were so small to be neglected, the combination of Planck priors with cluster counts and power spectrum would constrain the total neutrino mass down to σ(M{sub ν}) ∼ 0.034 eV, i

  11. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Abrahão, Thamys; Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.

    2015-11-01

    The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (˜50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7 .5 (5 .5) × 10-11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.

  12. Future Long-Baseline Neutrino Oscillations: View from North America

    SciTech Connect

    Wilson, R. J.

    2015-06-01

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE), that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  13. Future long-baseline neutrino oscillations: View from North America

    SciTech Connect

    Wilson, Robert J.

    2015-07-15

    In late 2012 the US Department of Energy gave approval for the first phase of the Long-Baseline Neutrino Experiment (LBNE) that will conduct a broad scientific program including neutrino oscillations, neutrino scattering physics, search for baryon violation, supernova burst neutrinos and other related astrophysical phenomena. The project is now being reformulated as an international facility hosted by the United States. The facility will consist of an intense neutrino beam produced at Fermi National Accelerator Laboratory (Fermilab), a highly capable set of neutrino detectors on the Fermilab campus, and a large underground liquid argon time projection chamber at Sanford Underground Research Facility (SURF) in South Dakota 1300 km from Fermilab. With an intense beam and massive far detector, the experimental program at the facility will make detailed studies of neutrino oscillations, including measurements of the neutrino mass hierarchy and Charge-Parity symmetry violation, by measuring neutrino and anti-neutrino mixing separately. At the near site, the high-statistics neutrino scattering data will allow for many cross section measurements and precision tests of the Standard Model. This presentation will describe the configuration developed by the LBNE collaboration, the broad physics program, and the status of the formation of the international facility.

  14. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  15. Radiochemical Solar Neutrino Experiments - Successful and Otherwise.

    SciTech Connect

    Hahn,R.L.

    2008-05-25

    Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ({sup 37}Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ({sup 71}Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled.

  16. Report on solar-neutrino experiments

    SciTech Connect

    Davis, R. Jr.

    1982-01-01

    This report on solar neutrino experiments will include a summary of the results of the chlorine detector, and an account of our plans to build a gallium solar neutrino experiment. In addition to discussing the experimental side of the solar neutrino problem I would like to relate our experiences during the last 15 years in working in the Homestake Gold Mine. In the course of our work at Homestake a number of independent groups have asked to use our facilities and, because of the cooperative and helpful attitude of the Mine management, these experimentalists could be easily accommodated. A brief account of these experiences may be useful for the main business of this workshop, building large particle detectors for observing nucleon decay, and the related question of the need for a national underground physics facility.

  17. Sensitivity of low energy neutrino experiments to physics beyond the standard model

    SciTech Connect

    Barranco, J.; Miranda, O. G.; Rashba, T. I.

    2007-10-01

    We study the sensitivity of future low energy neutrino experiments to extra neutral gauge bosons, leptoquarks, and R-parity breaking interactions. We focus on future proposals to measure coherent neutrino-nuclei scattering and neutrino-electron elastic scattering. We introduce a new comparative analysis between these experiments and show that in different types of new physics it is possible to obtain competitive bounds to those of present and future collider experiments. For the cases of leptoquarks and R-parity breaking interactions we found that the expected sensitivity for most of the future low energy experimental setups is better than the current constraints.

  18. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  19. NEUTRINOS OSCILLATIONS WITH LONG-BASE-LINE BEAMS:. Past, Present and very near Future

    NASA Astrophysics Data System (ADS)

    Stanco, L.

    2011-03-01

    We overview the status of the studies on neutrino oscillations with accelerators at the present running experiments. Past and present results enlighten the path towards the observation of massive neutrinos and the settling of their oscillations. The very near future may still have addiction from the outcome of the on-going experiments. OPERA is chosen as a relevant example justified by the very recent results released.

  20. Prospects for long baseline neutrino oscillation experiments

    SciTech Connect

    Goodman, M.

    1991-01-01

    Several recent development have motivated consideration of neutrino experiments located hundreds or thousand of kilometers from an accelerator. The motivations and experimental challenges for such experiments are examined. Three proposals for using the Fermilab Main Injector are compared. The requirements on mass, distance and resolution for an ideal'' detector for such an experimental are considered.

  1. Prospects for long baseline neutrino oscillation experiments

    SciTech Connect

    Goodman, M.

    1991-12-31

    Several recent development have motivated consideration of neutrino experiments located hundreds or thousand of kilometers from an accelerator. The motivations and experimental challenges for such experiments are examined. Three proposals for using the Fermilab Main Injector are compared. The requirements on mass, distance and resolution for an ``ideal`` detector for such an experimental are considered.

  2. Long Baseline Neutrino Experiment Sensitivity Studies

    NASA Astrophysics Data System (ADS)

    Norrick, Anne; LBNE Collaboration

    2011-04-01

    The Long Baseline Neutrino Experiment (LBNE) will address the neutrino mass hierarchy, leptonic CP violation, and the value of the mixing angle Theta13 with unprecedented sensitivity. Protons from the Fermilab Main Injector will impinge on a target to create intense fluxes of charged pions and other mesons. The mesons will be guided down a 250 m length of pipe where they will decay creating a muon neutrino beam. The beam will pass through a near detector and travel on to massive detectors located in the Deep Underground Science and Engineering Lab (DUSEL) in Western South Dakota. The near detector at Fermilab will measure the absolute flux of neutrinos before oscillation, and measure signal and background processes in the poorly understood GeV neutrino energy range. To quantify the potential sensitivity of this experiment and the specific needs of the near detector, simulation work has been undertaken. In particular, results of studies using a more sophisticated understanding of various background processes will be presented. Additionally, hardware work for a possible near detector design will be presented.

  3. Higgs production from sterile neutrinos at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    2016-04-01

    In scenarios with sterile (right-handed) neutrinos that are subject to an approximate "lepton-number-like" symmetry, the heavy neutrinos (i.e. the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings while accounting for the smallness of the light neutrinos' masses. In these scenarios, the on-shell production of heavy neutrinos and their subsequent decays into a light neutrino and a Higgs boson constitutes a hitherto unstudied resonant contribution to the Higgs production mechanism. We investigate the relevance of this resonant mono-Higgs production mechanism in leptonic collisions, including thepresent experimental constraints on the neutrino Yukawa couplings, and we determine the sensitivity of future lepton colliders to the heavy neutrinos. With Monte Carlo event sampling and a simulation of the detector response we find that, at future lepton colliders, neutrino Yukawa couplings below the percent level can lead to observable deviations from the SM and, furthermore, the sensitivity improves with higher center-of-mass energies (for identical integrated luminosities).

  4. Generalized mass ordering degeneracy in neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Schwetz, Thomas

    2016-09-01

    We consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  5. An overview of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Luk, Kam-Biu

    2016-07-01

    The Daya Bay Reactor Neutrino Experiment discovered an unexpectedly large neutrino oscillation related to the mixing angle θ13 in 2012. This finding paved the way to the next generation of neutrino oscillation experiments. In this article, we review the history, featured design, and scientific results of Daya Bay. Prospects of the experiment are also described.

  6. A select overview of neutrino experiments

    SciTech Connect

    Stefanski, Raymond J.

    2004-11-01

    The relationship between the lepton sector and the quark sector is an interesting source of discourse in the current theoretical climate. Models that might someday supersede the Standard Model typically require quark structure, with implications for the lepton sector. This talk will explore some of the consequences of newer models, in the context of certain neutrino experiments.

  7. Report on the Brookhaven Solar Neutrino Experiment

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C. Jr.

    1976-09-22

    This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.

  8. Testing sterile neutrino extensions of the Standard Model at future lepton colliders

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Fischer, Oliver

    2015-05-01

    Extending the Standard Model (SM) with sterile ("right-handed") neutrinos is one of the best motivated ways to account for the observed neutrino masses. We discuss the expected sensitivity of future lepton collider experiments for probing such extensions. An interesting testable scenario is given by "symmetry protected seesaw models", which theoretically allow for sterile neutrino masses around the electroweak scale with up to order one mixings with the light (SM) neutrinos. In addition to indirect tests, e.g. via electroweak precision observables, sterile neutrinos with masses around the electroweak scale can also be probed by direct searches, e.g. via sterile neutrino decays at the Z pole, deviations from the SM cross section for four lepton final states at and beyond the WW threshold and via Higgs boson decays. We study the present bounds on sterile neutrino properties from LEP and LHC as well as the expected sensitivities of possible future lepton colliders such as ILC, CEPC and FCC-ee (TLEP).

  9. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    SciTech Connect

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    identified as a priority of the neutrino community, as determined through the APS Multidisciplinary Study on the Future of Neutrino Physics. From the APS report, the Neutrino Matrix makes its recommendations in context of several assumptions regarding the neutrino program, including: ''Determination of the neutrino reaction and production cross sections required for a precise understanding of neutrino oscillation physics and the neutrino astronomy of astrophysical and cosmological sources. Our broad and exacting program of neutrino physics is built upon precise knowledge of how neutrinos interact with matter''. The experiment described here will provide unique information on cross sections of {approx}1 GeV neutrinos, in precisely the range explored by present and future long baseline oscillation programs. Fermi National Accelerator Laboratory is the natural place to perform this experiment. The physics goals proposed here grow the existing program and are necessary ingredients for the next generation oscillation physics measurements in this same energy range. This is a small, cost-effective, and timely experiment which fits well with the growing neutrino program at Fermilab.

  10. Light sterile neutrinos, lepton number violating interactions and short baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; McKay, D. W.; Mocioiu, Irina; Pakvasa, Sandip

    2016-06-01

    We develop the consequences of introducing a purely leptonic, non-standard interaction (NSI) ΔL = 2, four-fermion effective Lagrangian and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) results from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford medium Energy Neutrino Experiment (KARMEN), seeking a reconciliation between the two. Both v¯e appearance from v¯μ oscillation and v¯e survival after production from NSI decay of the µ+ contribute to the expected signal. This is a unique feature of our scheme. We comment on further implications of the lepton number violating interaction and sterile neutrino-standard neutrino mixing.

  11. Global analyses of neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  12. Investigation of neutrino oscillations in the T2k long-baseline accelerator experiment

    SciTech Connect

    Izmaylov, A. O. Yershov, N. V.; Kudenko, Yu. G.; Matveev, V. A.; Mineev, O. V.; Musienko, Yu. V.; Khabibulliun, M. M.; Khotjantsev, A. N.; Shaykhiev, A. T.

    2012-02-15

    High-sensitivity searches for transitions of muon neutrinos to electron neutrinos are the main task of the T2K (Tokai-to-Kamioka) second-generation long-baseline accelerator neutrino experiment. The present article is devoted to describing basic principles of T2K, surveying experimental apparatuses that it includes, and considering in detail the muon-range detector (SMRD) designed and manufactured by a group of physicists from the Institute of Nuclear Research (Russian Academy of Sciences, Moscow). The results of the first measurements with a neutrino beam are presented, and plans for the near future are discussed.

  13. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  14. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Evans, Justin; Whitehead, Lisa; /Brookhaven

    2010-01-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 x 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented.

  15. Status of the neutrino mass experiment KATRIN

    SciTech Connect

    Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.

    2015-03-15

    The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.

  16. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    SciTech Connect

    Bellini, F.

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  17. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  18. Hunting in Daya Bay Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Feihong, Zhang

    2014-06-01

    The Daya Bay Reactor Neutrino Experiment has measured a nonzero value of θ13 with a significance of 7.7 standard deviation. Antineutrinos from six 2.9 GWth reactors were detected in six well-calibrated antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected numbers of antineutrinos at the far hall is R = 0.944 ± 0.007(stat.) ± 0.003(syst.). A rate-only analysis finds s sin22θ13 = 0.089 ± 0.010(stat.) ± 0.005(syst.) in a three-neutrino framework.

  19. Solar neutrino experiments and a test for neutrino oscillations with radioactive sources

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1980-01-01

    The results of the Brookhaven solar neutrino experiment are given and compared to the most recent standard solar model calculations. The observations are about a factor of 4 below theoretical expectations. In view of the uncertainties involved in the theoretical models of the sun, the discrepancy is not considered to be evidence for neutrino oscillations. The status of the development of a gallium solar neutrino detector is described. Radiochemical neutrino detectors can be used to search for ..nu../sub e/ oscillations by using megacurie sources of monoenergetic neutrinos like /sup 65/Zn. A quantitative evaluation of possible experiments using the Brookhaven chlorine solar neutrino detector and a gallium detector is given. 6 figures, 3 tables.

  20. Super-NOnuA: A Long-baseline neutrino experiment with two off-axis detectors

    SciTech Connect

    Mena Requejo, Olga; Palomares-Ruiz, Sergio; Pascoli, Silvia; /CERN

    2005-04-01

    Establishing the neutrino mass hierarchy is one of the fundamental questions that will have to be addressed in the next future. Its determination could be obtained with long-baseline experiments but typically suffers from degeneracies with other neutrino parameters. We consider here the NOvA experiment configuration and propose to place a second off-axis detector, with a shorter baseline, such that, by exploiting matter effects, the type of neutrino mass hierarchy could be determined with only the neutrino run. We show that the determination of this parameter is free of degeneracies, provided the ratio L/E, where L the baseline and E is the neutrino energy, is the same for both detectors.

  1. Implications of results of neutrino mass experiments

    SciTech Connect

    McKellar, B.H.; Garbutt, M.

    2000-10-01

    The long standing negative (mass){sup 2} anomaly encountered in attempts to measure the mass of the electron neutrino may be an indication of physics beyond the standard model. It is demonstrated that an additional charged current interaction which is not of V--A form, and which is at least an order of magnitude weaker than the standard model charged current interaction, will produce a spectrum, which, if fitted by the standard model, may give a negative value for m{sub {nu}}{sup 2}. A possible physical explanation of the time dependent effects seen by the Troitsk experiment is also provided.

  2. The MINERvA Neutrino Scattering Experiment at Fermilab

    SciTech Connect

    Schmitz, David W.

    2011-11-23

    The MINER{nu}A experiment at Fermilab is aimed at precision measurements of neutrino interactions in nuclei for energies up to a few GeV. MINER{nu}A makes use of a fine-grained, fully active detector design and a range of nuclear target materials. The experiment began taking data in the NuMI neutrino beam at Fermilab in late 2009 and will collect data in both the neutrino and antineutrino configurations of the beamline.

  3. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  4. MOON for a next-generation neutrino-less double-beta decay experiment: Present status and perspective

    SciTech Connect

    Shima, T.; Doe, P.J.; Ejiri, H.; Elliot, S.R.; Engel, J.; Finger, M.; Finger, M.; Fushimi, K.; Gehman, V.M.; Greenfield, M.B.; Hazama, R.; /Hiroshima U. /NIRS, Chiba

    2008-01-01

    The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.

  5. Detector Development for the MARE Neutrino Experiment

    SciTech Connect

    Galeazzi, M.; Bogorin, D.; Molina, R.; Saab, T.; Ribeiro Gomes, M.

    2009-12-16

    The MARE experiment is designed to measure the mass of the neutrino with sub-eV sensitivity by measuring the beta decay of {sup 187}Re with cryogenic microcalorimeters. A preliminary analysis shows that, to achieve the necessary statistics, between 10,000 and 50,000 detectors are likely necessary. We have fabricated and characterized Iridium transition edge sensors with high reproducibility and uniformity for such a large scale experiment. We have also started a full scale simulation of the experimental setup for MARE, including thermalization in the absorber, detector response, and optimum filter analysis, to understand the issues related to reaching a sub-eV sensitivity and to optimize the design of the MARE experiment. We present our characterization of the Ir devices, including reproducibility, uniformity, and sensitivity, and we discuss the implementation and capabilities of our full scale simulation.

  6. MUON EDM EXPERIMENT USING STAGE II OF THE NEUTRINO FACTORY.

    SciTech Connect

    FERNOW,R.C.; GALLARDO,J.C.; MORSE,W.M.; SEMERTZIDIS,Y.K.

    2002-07-01

    During the second stage of a future neutrino factory unprecedented numbers of bunched muons will become available. The cooled medium-energy muon beam could be used for a high sensitivity search for an electric dipole moment (EDM) of the muon with a sensitivity better than 10{sup -24}e {center_dot} cm. This will make the sensitivity of the EDM experiment to non-standard physics competitive and in many models more sensitive than the present limits on edms of the electron and nucleons. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring.

  7. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    SciTech Connect

    Bari, Pasquale Di; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-04-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N{sub 2} dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ∼ 10{sup 10} GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m{sub 1} ≅ (1−5) × 10{sup −3} eV and m{sub 1} ≅ (0.03−0.1) eV. For m{sub 1}∼<0.01 eV the allowed region in the plane θ{sub 13}-θ{sub 23} is approximately given by θ{sub 23}∼<49°+0.65 (θ{sub 13}−5°), while the neutrinoless double beta decay effective neutrino mass falls in the range m{sub ee} = (1−3) × 10{sup −3} eV for θ{sub 13} = (6°−11.5°). For m{sub 1}∼>0.01 eV, one has quite sharply m{sub ee} ≅ m{sub 1} and an upper bound θ{sub 23}∼<46°. These constraints will be tested by low energy neutrino experiments during next years. We also find that inverted ordering (IO), though quite strongly constrained, is not completely ruled out. In particular, we find approximately θ{sub 23} ≅ 43°+12° log (0.2 eV/m{sub 1}), that will be fully tested by future experiments.

  8. SIMULATION OF A WIDE-BAND LOW-ENERGY NEUTRINO BEAM FOR VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS.

    SciTech Connect

    BISHAI, M.; HEIM, J.; LEWIS, C.; MARINO, A.D.; VIREN, B.; YUMICEVA, F.

    2006-08-01

    We present simulations of a wide-band low-energy neutrino beam for a future very long baseline neutrino oscillation (VLBNO) program using the proton beam from the Main Injector (MI) proton accelerator at Fermi National Accelerator Laboratory (Fermilab). The target and horn designs previously developed for Brookhaven Laboratory's Alternating Gradient Synchrotron (AGS) VLBNO program are used without modifications. The neutrino flux distributions for various MI proton beam energies and new high-intensity neutrino beam-line designs possible at Fermilab are presented. The beam-line siting and design parameters are chosen to match the requirements of an on-axis beam from Fermilab to one of the two possible sites for the future Deep Underground Science and Engineering Laboratory (DUSEL). A preliminary estimate of the observable event rates and spectra at a detector located in DUSEL for different beam configurations has been performed. Our preliminary conclusions are that a 40-60 GeV 0.5 to 1 MW beam from the Fermilab Main Injector to a DUSEL site has the potential to reach the desired intensity for the next generation of neutrino oscillation experiments. Recent studies indicate that the Fermilab MI can reach a beam power of 0.5 MW at 60 GeV with incremental upgrades to the existing accelerator complex.

  9. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  10. Measurement of low energy neutrino cross sections with the PEANUT experiment

    SciTech Connect

    Russo, A.

    2011-11-23

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMi beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino target. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions occurred in the PEANUT detector and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross-section. This technique could be applied for the beam monitoring for future neutrino facilities.

  11. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  12. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Orchanian, Mhair-armen Hagop

    2012-01-01

    This thesis describes a search for ve appearance in the two-detector long-baseline MINOS neutrino experiment at Fermilab, based on a data set representing an exposure of 8.2×1020 protons on the NuMI target. The analysis detailed herein represents an increase in sensitivity to the θ13 mixing angle of approximately 25% over previous analyses, due to improvements in the event discriminant and fitting technique. Based on our observation, we constrain the value of θ13 further, finding 2 sin2θ 23 sin2θ 13< 0.12(0.20) at the 90% confidence level for δCP = 0 and the normal (inverted) neutrino mass hierarchy. The best-fit value is 2 sin2θ 23 sin2θ 13 = 0.041+0.047 -0.031(0.079+0.071 -0.053) under the same assumptions. We exclude the θ 13 = 0 hypothesis at the 89% confidence level.

  13. Light sterile neutrino sensitivity of 163Ho experiments

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Giunti, C.; Zavanin, E. M.

    2016-06-01

    We explore the sensitivity of 163Ho electron capture experiments to neutrino masses in the standard framework of three-neutrino mixing and in the framework of 3+1 neutrino mixing with a sterile neutrino which mixes with the three standard active neutrinos, as indicated by the anomalies found in short-baseline neutrino oscillations experiments. We calculate the sensitivity to neutrino masses and mixing for different values of the energy resolution of the detectors, of the unresolved pileup fraction and of the total statistics of events, considering the expected values of these parameters in the two planned stages of the ECHo project (ECHo-1k and ECHo-1M). We show that an extension of the ECHo-1M experiment with the possibility to collect 1016 events will be competitive with the KATRIN experiment. This statistics will allow to explore part of the 3+1 mixing parameter space indicated by the global analysis of short-baseline neutrino oscillation experiments. In order to cover all the allowed region, a statistics of about 1017 events will be needed.

  14. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Holin, Anna Maria

    2010-02-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment which sends a high intensity muon neutrino beam through two functionally identical detectors, a Near detector at the Fermi National Accelerator Laboratory in Illinois, 1km from the beam source, and a Far detector, 734km away, in the Soudan Mine in Minnesota. MINOS may be able to measure the neutrino mixing angle parameter sin213 for the rst time. Detector granularity, however, makes it very hard to distinguish any e appearance signal events characteristic of a non-zero value of θ 13 from background neutral current (NC) and short-track vμ charged current (CC) events. Also, uncertainties in the hadronic shower modeling in the kinematic region characteristic of this analysis are relatively large. A new data-driven background decomposition method designed to address those issues is developed and its results presented. By removing the long muon tracks from vμ-CC events, the Muon Removed Charge Current (MRCC) method creates independent pseudo-NC samples that can be used to correct the MINOS Monte Carlo to agree with the high-statistics Near detector data and to decompose the latter into components so as to predict the expected Far detector background. The MRCC method also provides an important cross-check in the Far detector to test the background in the signal selected region. MINOS finds a 1.0-1.5 σ ve-CC excess above background in the Far detector data, depending on method used, for a total exposure of 3.14 x 1020 protons-on-target. Interpreting this excess as signal, MINOS can set limits on sin213. Using the MRCC method, MINOS sets a limit of sin2 2 θ 13 < 0.265 at the 90% confidence limit for a CP-violating phase δ = 0.

  15. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  16. Status of the Borexino Solar Neutrino Experiment, 2006

    SciTech Connect

    McCarty, Kevin B.

    2006-11-17

    The Borexino experiment is designed to measure the flux of 7Be solar neutrinos. The experiment, having a 100-ton fiducial volume of organic liquid scintillator, should detect roughly 35 neutrinos per day in the energy range 250 - 1300 keV, a range lower than that of any previous real-time neutrino detector. Though the 862-keV 7Be neutrinos make up roughly 10% of the total solar neutrino flux, they have not previously been directly observed. Their energy is at a delicate point for confirmation of the vacuum-to-matter oscillation transition. In these proceedings, I will present the status of the Borexino experiment as of August 2006, as we prepare for final filling of the detector.

  17. Nuclear effects in atmospheric and accelerator neutrino experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2010-11-24

    We have studied the nuclear medium effects in the neutrino (antineutrino) induced interactions in nuclei at intermediate energy region. We have applied this study to calculate the event rates for atmospheric and accelerator neutrino experiments. The study of the nuclear effects has been done for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  18. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    SciTech Connect

    Huang, Junting

    2015-05-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states ve, vμ and vτ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in the range of 10-2 eV2 < Δm412 < 1 eV2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  19. NOvA: Building a Next Generation Neutrino Experiment

    ScienceCinema

    Perko, John; Williams, Ron; Miller, Bill

    2016-07-12

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  20. NOvA: Building a Next Generation Neutrino Experiment

    SciTech Connect

    Perko, John; Williams, Ron; Miller, Bill

    2013-12-05

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  1. Fourth standard model family neutrino at future linear colliders

    SciTech Connect

    Ciftci, A.K.; Ciftci, R.; Sultansoy, S.

    2005-09-01

    It is known that flavor democracy favors the existence of the fourth standard model (SM) family. In order to give nonzero masses for the first three-family fermions flavor democracy has to be slightly broken. A parametrization for democracy breaking, which gives the correct values for fundamental fermion masses and, at the same time, predicts quark and lepton Cabibbo-Kobayashi-Maskawa (CKM) matrices in a good agreement with the experimental data, is proposed. The pair productions of the fourth SM family Dirac ({nu}{sub 4}) and Majorana (N{sub 1}) neutrinos at future linear colliders with {radical}(s)=500 GeV, 1 TeV, and 3 TeV are considered. The cross section for the process e{sup +}e{sup -}{yields}{nu}{sub 4}{nu}{sub 4}(N{sub 1}N{sub 1}) and the branching ratios for possible decay modes of the both neutrinos are determined. The decays of the fourth family neutrinos into muon channels ({nu}{sub 4}(N{sub 1}){yields}{mu}{sup {+-}}W{sup {+-}}) provide cleanest signature at e{sup +}e{sup -} colliders. Meanwhile, in our parametrization this channel is dominant. W bosons produced in decays of the fourth family neutrinos will be seen in detector as either di-jets or isolated leptons. As an example, we consider the production of 200 GeV mass fourth family neutrinos at {radical}(s)=500 GeV linear colliders by taking into account di-muon plus four jet events as signatures.

  2. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  3. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  4. Large extra dimensions at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Peres, O. L. G.; Tabrizi, Zahra

    2016-08-01

    We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a (3 +3 N )-neutrino framework for modest values of N ; N =1 is usually a very good approximation. Nonetheless, there are no new sources of C P -invariance violation other than one C P -odd phase that can be easily mapped onto the C P -odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic (3 +1 )-neutrino model.

  5. Sensitivities to neutrino electromagnetic properties at the TEXONO experiment

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Miranda, O. G.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2015-11-01

    The possibility of measuring neutral-current coherent elastic neutrino-nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.

  6. Neutrino oscillations with the MINOS, MINOS+, T2K, and NOvA experiments

    NASA Astrophysics Data System (ADS)

    Nakaya, Tsuyoshi; Plunkett, Robert K.

    2016-01-01

    This paper discusses recent results and near-term prospects of the long-baseline neutrino experiments MINOS, MINOS+, T2K and NOvA. The non-zero value of the third neutrino mixing angle θ 13 allows experimental analysis in a manner which explicitly exhibits appearance and disappearance dependencies on additional parameters associated with mass-hierarchy, CP violation, and any non-maximal θ 23. These current and near-future experiments begin the era of precision accelerator long-baseline measurements and lay the framework within which future experimental results will be interpreted.

  7. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  8. Design and construction of INGRID neutrino beam monitor for T2K neutrino experiment

    NASA Astrophysics Data System (ADS)

    Otani, M.; Nagai, N.; Orme, D.; Minamino, A.; Nitta, K.; Drapier, O.; Moreau, F.; Besnier, M.; Bronner, C.; Tran, P. D.; Ferreira, O.; Gonin, M.; Autiero, D.; Chaussard, L.; Declais, Y.; Yokoyama, M.; Ichikawa, A. K.; Nakaya, T.

    2010-11-01

    The INGRID(Interactive Neutrino GRID) detector is designed to measure the neutrino beam direction with a precision better than 1 mrad for T2K experiment. INGRID consists of 16 modules and placed around the beam center at 280 m downstream of the proton beam target. The module is a sandwich of iron targets and scintillator tracking planes which consist of X-Y layers. We have constructed all scintillator tracking planes and measured light yield of all scintillators. Currently we install 1st module into the detector hall and cosmic events are observed. INGRID is ready for 1st neutrino event from April 2009.

  9. Accelerator neutrino program at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2010-05-01

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOvA. The major experiment in the beamline to DUSEL will be LBNE.

  10. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    SciTech Connect

    Morfin, J.G.; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  11. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    NASA Astrophysics Data System (ADS)

    Chan, Yat-Long; Chu, M.-C.; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi

    2016-06-01

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level.

  12. Discovering the Majorana neutrino: The next generation of experiments

    SciTech Connect

    Winslow, L. A.

    2015-07-15

    The discovery of a Majorana neutrino would be revolutionary with far-reaching consequences in both particle physics and cosmology. The only feasible experiments to determine the Majorana nature of the neutrino are searches for neutrinoless double-beta decay. The next generation of double-beta decay experiments are being prepared. The general goal is to search for neutrinoless double-beta decay throughout the parameter space corresponding to the inverted hierarchy for neutrino mass. There are a several strong proposals for how to achieve this goal. The status of these efforts is reviewed.

  13. Light dark matter detection prospects at neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kumar, Jason; Learned, John G.; Smith, Stefanie

    2009-12-01

    We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find, in particular, that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus antineutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or antineutrinos (Rμ and Rμ¯) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to neutrinos from secondary and tertiary decays as well, but will suffer from decreased detectability.

  14. Latest progress from the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Collaboration

    2016-05-01

    Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.

  15. Constraining fundamental physics with future CMB experiments

    SciTech Connect

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-15

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  16. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  17. A Sterile-Neutrino Search with the MINOS Experiment

    SciTech Connect

    Rodrigues, Philip

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction fs of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, fs < 0.41 at 90% C.L.

  18. REPORT OF THE US LONG BASELINE NEUTRINO EXPERIMENT STUDY.

    SciTech Connect

    BARGER,V.; FINLEY, D.; LAUGHTON, C.; PORDES, S.; MARCHIONNI, A.; RAMEIKA, R.; SAOULIDOU, N.; ZWASKA, R.; BISHAI, M.; DIWAN, M.; DIERCKXSENS, M.; KIRK, H.; KAHN, S.; SIMOS, N.; MARCIANO, W.; PARSA, Z.; VIREN, B.; ET AL.

    2007-01-01

    This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability is not likely to be challenged anywhere else in the world for at least two decades into the future. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermilab and, as the study evolved, it also provides responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the study results and conclusions are provided in this report and its appendices. A summary of the conclusions is provided in the Executive Summary.

  19. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  20. Light sterile neutrinos: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo

    2016-07-01

    The indications in favor of the existence of light sterile neutrinos at the eV scale found in short-baseline neutrino oscillation experiments is reviewed. The future perspectives of short-baseline neutrino oscillation experiments and the connections with β-decay measurements of the neutrino masses and with neutrinoless double-β decay experiments are discussed.

  1. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  2. Light sterile neutrinos, spin flavor precession, and the solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Pulido, João; Picariello, Marco

    2009-04-01

    We generalize to three active flavors a previous two-flavor model for the resonant spin flavor conversion of solar neutrinos to sterile ones, a mechanism which is added to the well-known large mixing angle (LMA) one. The transition magnetic moments from the muon and tau neutrinos to the sterile play the dominant role in fixing the amount of active flavor suppression. We also show, through numerical integration of the evolution equations, that the data from all solar neutrino experiments except Borexino exhibit a clear preference for a sizable magnetic field either in the convection zone or in the core and radiation zone. This is possibly related to the fact that the data from the first set are average ones taken during a period of mostly intense solar activity, whereas in contrast Borexino data were taken during a period of quiet Sun. We argue that the solar neutrino experiments are capable of tracing the possible modulation of the solar magnetic field. Those monitoring the high-energy neutrinos, namely, the B8 flux, appear to be sensitive to a field modulation either in the convection zone or in the core and radiation zone. Those monitoring the low-energy fluxes will be sensitive to the second type of solar field profiles only. In this way Borexino alone may play an essential role, since it examines both energy sectors, although experimental redundancy from other experiments will be most important.

  3. Neutrino mass calorimetric searches in the MARE experiment

    NASA Astrophysics Data System (ADS)

    Nucciotti, A.; MARE Collaboration

    2012-08-01

    The international project "Microcalorimeter Arrays for a Rhenium Experiment" (MARE) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-electronvolt sensitivity. Calorimetric neutrino mass experiments measure all the energy released in a beta decay except for the energy carried away by the neutrino, therefore removing the most severe systematic uncertainties which have plagued the traditional and, so far, more sensitive spectrometers. Calorimetric measurements are best realized exploiting the thermal detection technique. This approach uses thermal microcalorimeters whose absorbers contain a low transition energy Q beta decaying isotope. To date the two best options are 187Re and 163Ho. While the first beta decays, the latter decays via electron capture, but both have a Q value around 2.5 keV. The potential of using 187Re for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of 163Ho has been so far measured with the precision required to set a useful limit on the neutrino mass. In this talk we present the status and the perspectives of the MARE project activities for the active isotope selection and the single channel development. We also discuss the neutrino mass statistical sensitivity achievable with both isotopes.

  4. Future flavour physics experiments

    PubMed Central

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  5. A combined beta-beam and electron capture neutrino experiment

    NASA Astrophysics Data System (ADS)

    Bernabéu, José; Espinoza, Catalina; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2009-06-01

    The next generation of long baseline neutrino experiments will aim at determining the value of the unknown mixing angle, θ13, the type of neutrino mass hierarchy and the presence of CP-violation in the lepton sector. Beta-beams and electron capture experiments have been studied as viable candidates for long baseline experiments. They use a very clean electron neutrino beam from the β-decays or electron capture decays of boosted ions. In the present article we consider an hybrid setup which combines a beta-beam with an electron capture beam by using boosted Ytterbium ions. We study the sensitivity to the CP-violating phase δ and the θ13 angle, the CP-discovery potential and the reach to determine the type of neutrino mass hierarchy for this type of long baseline experiment. The analysis is performed for different neutrino beam energies and baselines. Finally, we also discuss how the results would change if a better knowledge of some of the assumed parameters was achieved by the time this experiment could take place.

  6. Massive Cherenkov neutrino facilities…their evolution, their future: Twenty-five years at these International Neutrino Conferences

    NASA Astrophysics Data System (ADS)

    Sulak, Lawrence R.

    2005-06-01

    This review traces the evolution of massive water Cherenkov tracking calorimeters. Pioneering concepts, first presented in this conference a quarter of a century ago, have led to 1) IMB, the first large detector (10kT), which was designed primarily to search for proton decay, and secondarily to be sensitive to supernova neutrinos and atmospheric oscillations, and 2) Dumand, an attempt to initiate the search for TeV astrophysical neutrinos with a prototype for a 1 km3 telescope. The concepts and initial work on IMB influenced subsequent detectors: Kamiokande, Super-K, SNO, and, in part, Kamland. These detectors have to their credit the elucidation of the physics of atmospheric, solar, reactor and supernova neutrinos. With the advent of the K2K beam, controlled accelerator neutrinos confirm the atmospheric studies. The path breaking developments of Dumand now are incorporated in the high-volume Amanda and Antares detectors, as well as their sequels, IceCube and the proposed Cubic Kilometer detector. The future (ultimate?) facilities have new physics challenges: A high-resolution megaton detector, eventually coupled with an intense accelerator neutrino source, is critical for precision studies of neutrino oscillation parameters and for the potential discovery of CP violation in the lepton sector. The Gigaton TeV neutrino telescopes (IceCube and Cubic Kilometer) seek to open high-energy neutrino astronomy, still an elusive goal. (Amanda, IceCube, and UNO, as well as Minos, Icarus and other large neutrino facilities using non-Cherenkov technologies, are treated in other contributions to this volume.)

  7. Non-standard interactions in propagation at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar

    2016-03-01

    We study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ɛ ˜ {O} (0.05 - 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

  8. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    DOE PAGES

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~more » $$ \\mathcal{O} $$ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.« less

  9. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  10. Measurement of electron neutrino appearance with the MINOS experiment

    SciTech Connect

    Boehm, Joshua Adam Alpern

    2009-05-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. By measuring the neutrino interactions in a detector near the neutrino source and again 735 km away from the production site, it is possible to probe the parameters governing neutrino oscillation. The majority of the vμ oscillate to vτ but a small fraction may oscillate instead to ve. This thesis presents a measurement of the ve appearance rate in the MINOS far detector using the first two years of exposure. Methods for constraining the far detector backgrounds using the near detector measurements is discussed and a technique for estimating the uncertainty on the background and signal selection are developed. A 1.6σ excess over the expected background rate is found providing a hint of ve appearance.

  11. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    DOE PAGES

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for allmore » measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.« less

  12. Photomultiplier tube failure under hydrostatic pressure in future neutrino detectors

    SciTech Connect

    Chambliss, K.; Diwan, M.; Simos, N.; Sundaram, S. K.

    2014-10-09

    Failure of photomultiplier tubes (PMTs) under hydrostatic pressure is a concern in neutrino detection, specifically, in the proposed Long-Baseline Neutrino Experiment project. Controlled hydrostatic implosion tests were performed on prototypic PMT bulbs of 10-inch diameter and recorded using high speed filming techniques to capture failures in detail. These high-speed videos were analyzed frame-by-frame in order to identify the origin of a crack, measure the progression of individual crack along the surface of the bulb as it propagates through the glass, and estimate crack velocity. Crack velocity was calculated for each individual crack, and an average velocity was determined for all measurable cracks on each bulb. Overall, 32 cracks were measured in 9 different bulbs tested. Finite element modeling (FEM) of crack formation and growth in prototypic PMT shows stress concentration near the middle section of the PMT bulbs that correlates well with our crack velocity measurements in that section. The FEM model predicts a crack velocity value that is close to the terminal crack velocity reported. Our measurements also reveal significantly reduced crack velocities compared to terminal crack velocities measured in glasses using fracture mechanics testing and reported in literature.

  13. Detector-related backgrounds in the Karlsruhe Tritium Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Leber, Michelle; Katrin Collaboration

    2011-12-01

    The Karlsruhe Tritium Neutrino Experiment, or KATRIN, is a next generation tritium beta decay experiment to directly measure neutrino mass with an expected sensitivity of 0.2 eV [KATRIN Design Report 2004 see http://www-ik.fzk.de/~katrin/]. Neutrino mass does not fit into the Standard Model, and determining this mass may set the scale of new physics. To achieve this level of sensitivity, backgrounds in the experiment must be minimized. A complete Geant4 [Agostinelli S et al. 2003 Nuclear Instr. Methods A 506 250-303 Allison J et al. 2006 IEEE Transactions on Nuclear Science53 No. 1 270-8] simulation of KATRIN's focal plane detector and surrounding region is being developed. These simulations will help guide the design and selection of shielding and detector construction materials to reduce backgrounds from cosmic rays and natural radioactivity.

  14. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  15. a Brief Critique of the Search for Neutrino Oscillations with “SINGLE MEASUREMENT” Solar Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Cline, David B.; Cheng, Mao-Tung

    We briefly review the recent results on solar neutrino observations pointing out the dependence on the model of the solar neutrino production. We show that current uncertainties make it rather unlikely that unambiguous proof of neutrino oscillations can be obtained from any current (single measurement) techniques. We then show the importance of carrying out solar neutrino experiments where two reactions are measured simultaneously (double experiments). As an example we apply this to the ICARUS liquid Argon detector being constructed for the Gran Sasso Laboratory.

  16. MINERvA: A Dedicated neutrino scattering experiment at NuMI

    SciTech Connect

    McFarland, Kevin S.; /Rochester U.

    2006-05-01

    MINERvA is a dedicated neutrino cross-section experiment planned for the near detector hall of the NuMI neutrino beam at Fermilab. I summarize the detector design and physics capabilities of the experiment.

  17. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect

    Liu Jiali; Tiedt, Douglas

    2013-05-23

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  18. Searching for Physics beyond the Standard Model with Accelerator Neutrino Experiments

    SciTech Connect

    Louis, William C

    2008-01-01

    The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations . The first MiniBooNE oscillation result in neutrino mode shows no significant excess of events at higher energies (E{sub {nu}} > 475 MeV), although a sizeable excess is observed at lower energies (E{sub {nu}}< 475 MeV). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2 - {nu} oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos. If the excess is consistent with being due to sterile neutrinos, then future experiments at FNAL (BooNE) or ORNL (OscSNS) could prove their existence.

  19. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  20. Omnibus experiment: CPT and CP violation with sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Loo, K. K.; Novikov, N. Yu; Smirnov, M. V.; Trzaska, W. H.; Wurm, M.

    2016-05-01

    We propose to probe both the CPT and CP violation together with the search for sterile neutrinos in one do-it-all experiment. This omnibus experiment would utilize neutrino oscillometry with large scintillator detectors like LENA, JUNO or RENO-50 and manmade radioactive sources similar to the ones used by the GALLEX experiment. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the main research plan for JUNO, LENA, or RENO-50. Assuming as the starting point the values of the oscillation parameters indicated by the current global fit (in 3 active + 1 sterile scenario) and requiring at least 5 sigma confidence level, we estimate that with the proposed experiment we would be able to detect CPT mass anomalies of the order of 1% or larger.

  1. Effective field theory treatment of the neutrino background in direct dark matter detection experiments

    NASA Astrophysics Data System (ADS)

    Dent, James B.; Dutta, Bhaskar; Newstead, Jayden L.; Strigari, Louis E.

    2016-04-01

    Distinguishing a dark matter interaction from an astrophysical neutrino-induced interaction will be major challenge for future direct dark matter searches. In this paper, we consider this issue within nonrelativistic effective field theory (EFT), which provides a well-motivated theoretical framework for determining nuclear responses to dark matter scattering events. We analyze the nuclear energy recoil spectra from the different dark matter-nucleon EFT operators, and compare them to the nuclear recoil energy spectra that are predicted to be induced by astrophysical neutrino sources. We determine that for 11 of the 14 possible operators, the dark matter-induced recoil spectra can be cleanly distinguished from the corresponding neutrino-induced recoil spectra with moderate-size detector technologies that are now being pursued, e.g., these operators would require 0.5 tonne years to be distinguished from the neutrino background for low mass dark matter. Our results imply that in most models detectors with good energy resolution will be able to distinguish a dark matter signal from a neutrino signal, without the need for much larger detectors that must rely on additional information from timing or direction. In addition we calculate up-to-date exclusion limits in the EFT model space using data from the LUX experiment.

  2. An intermediate γ beta-beam neutrino experiment with long baseline

    NASA Astrophysics Data System (ADS)

    Meloni, Davide; Mena, Olga; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2008-07-01

    In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on the value of θ13, the type of neutrino mass ordering and on the value of the CP-violating phase δ, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor γ = 450 and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We consider a neutrino run alone and show that, by exploiting the oscillatory pattern of the signal, a very good sensitivity to CP-violation and the type of hierarchy can be reached. We analyse the physics potential of this setup in detail and study two different exposures (1 × 1021 and 5 × 1021 ions-kton-years). In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of δ, for sin 22θ13>0.03. In the high-exposure scenario, we find that the value of the CP-violating phase δ could be measured with a 99% CL error of ~ 20o if sin 22θ13>10-3, with some sensitivity down to values of sin 22θ13 simeq 10-4. The ability to determine the octant of θ23 is also studied, and good prospects are found for the high-statistics scenario.

  3. Search for Neutrino Radiation from Collapsing Stars and the Sensitivity of Experiments to the Different Types of Neutrinos

    NASA Astrophysics Data System (ADS)

    Dadykin, V. L.; Ryazhskaya, O. G.

    2013-11-01

    The experiments running to search for neutrino radiation from collapsing stars up to now traditionally take one's bearings for the detection of the ˜ ν e p -> e^ + n reaction and, accordingly, for the use of the hadrogenate targets. The observation of neutrino radiation from SN1987A showed that it is important to have in the composition of the targets beside the hadrogen also other nuclei suitable to neutrino radiation detection. In particular the presence of iron nuclei in the LSD provided for the sensational detection of νe flux at 2:52 UT on February 23 1987 when other more powerful detectors with their hadrogenate targets could not respond to this type of neutrino. The sensitivity of present searching experiments to different types of neutrino radiation from collapsing stars is discussed in the paper.

  4. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect

    Ochoa Ricoux, Juan Pedro

    2009-01-01

    We perform a search for vμ → ve oscillations, a process which would manifest a nonzero value of the θ13 mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of ve charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in θ13. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  5. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Anže E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  6. A search for sterile neutrinos at the MINOS experiment

    SciTech Connect

    Pittam, Robert Neil

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The vμ beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without ve appearance. The oscillation parameters measured by this model are Δm322 = (2.39-0.15+0.23) x 10-3 eV2 and θ23 = 0.727-0.11+0.22 for the no ve appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of ve appearance and no ve appearance

  7. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-07-01

    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric {Delta}m{sup 2} measured in the electron neutrino disappearance channel, {Delta}m{sup 2}(ee), with the one measured in the muon neutrino disappearance channel, {Delta}m{sup 2}({mu}{mu}), was proposed. If {Delta}m{sup 2}(ee) is larger (smaller) than {Delta}m{sup 2} ({mu}{mu}) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: {Delta}m{sup 2}({mu}{mu}) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and {Delta}m{sup 2}(ee) that can be envisaged using the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of ({theta}{sub 13}, {delta}) in which the mass hierarchy can be determined. If {theta}{sub 13} is relatively large, sin{sup 2} 2{theta}{sub 13} {approx}> 0.05, and both of {Delta}m{sup 2}(ee) and {Delta}m{sup 2}({mu}{mu}) can be measured with the precision of {approx} 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3{pi} {approx}< {delta} {approx}< 1.7 {pi} for the current best fit values of all the other oscillation parameters.

  8. The radon monitoring system in Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Leung, J. K. C.; Leung, K. Y.; Lin, Y. C.; Luk, K. B.; Pun, C. S. J.

    2016-02-01

    We developed a highly sensitive, reliable and portable automatic system (H3) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 °C) with radon concentration as low as 50 Bq/m3. This is achieved by using a large radon progeny collection chamber, semiconductor α-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  9. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Jang, H. I.; Choi, W. Q.; Choi, Y.; Jang, J. S.; Jeon, E. J.; Joo, K. K.; Kim, B. R.; Kim, H. S.; Kim, J. Y.; Kim, S. B.; Kim, S. Y.; Kim, W.; Kim, Y. D.; Ko, Y. J.; Lee, J. K.; Lim, I. T.; Pac, M. Y.; Park, I. G.; Park, J. S.; Park, R. G.; Seo, H. K.; Seo, S. H.; Shin, C. D.; Siyeon, K.; Yeo, I. S.; Yu, I.

    2016-02-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  10. Contribution of gallium experiments to the understanding of solar physics and neutrino physics

    SciTech Connect

    Gavrin, V. N.

    2013-10-15

    The results of gallium measurements of solar neutrino and measurements with artificial sources of neutrinos are presented. Conclusions are drawn from these results, and the potential of the SAGE experiment for studying transitions of active neutrinos to sterile states for {Delta}m{sup 2} > 0.5 eV{sup 2} and a sensitivity of a few percent to the disappearance of electron neutrinos is examined.

  11. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  12. Creation of neutrino laboratory for carrying out experiment on search for a sterile neutrino at the SM-3 reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinskii, N. V.; Solovei, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Martem'yanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2015-12-01

    To check the existence of a sterile neutrino, a neutrino laboratory aimed at searching reactor antineutrino oscillations is created at the SM-3 reactor. A prototype of a neutrino detector with a scintillator volume of 400 L is moved at distances 6-11 m from the core of the reactor. Background conditions are measured. It is shown that the cosmic rays background is the main problem in the experiment. The prospects of the search for reactor antineutrino oscillations at short distances are discussed.

  13. Measuring neutrino masses with a future galaxy survey

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk

    2012-11-01

    We perform a detailed forecast on how well a EUCLID-like photometric galaxy and cosmic shear survey will be able to constrain the absolute neutrino mass scale. Adopting conservative assumptions about the survey specifications and assuming complete ignorance of the galaxy bias, we estimate that the minimum mass sum of Σm{sub ν} ≅ 0.06 eV in the normal hierarchy can be detected at 1.5σ to 2.5σ significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from PLANCK. With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4σ. Interestingly, neither PLANCK+shear nor PLANCK+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks the persistent degeneracies between the neutrino mass, the physical matter density, and the Hubble parameter. Notwithstanding this remarkable sensitivity to Σm{sub ν}, EUCLID-like shear and galaxy data will not be sensitive to the exact mass spectrum of the neutrino sector; no significant bias ( < 1σ) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Δχ{sub eff}{sup 2} < 1)

  14. Some comments on high precision study of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    I discuss here some problems connected with the high precision study of neutrino oscillations. In the general case of n-neutrino mixing I derive a convenient expression for transition probability in which only independent terms (and mass-squared differences) enter. For three-neutrino mixing I discuss a problem of a definition of a large (atmospheric) neutrino mass-squared difference. I comment also possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments.

  15. The International Muon Ionization Cooling Experiment: MICE and Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Freemire, Ben

    2010-03-01

    The Muon Ionization Cooling Experiment (MICE) is an accelerator and particle physics experiment aimed at demonstrating the technique of ionization cooling on a beam of muons. Ionization cooling is the process by which muons are sent through an absorbing material, thereby losing energy and decreasing their normalized emittance. The muons are then reaccelerated in the appropriate direction with radio frequency (RF) cavities. This produces an overall reduction in transverse emittance of the muon beam. Ionization cooling could be a key technique in the design of a high intensity Neutrino Factory.

  16. Exploring flavor-dependent long-range forces in long-baseline neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sabya Sachi; Dasgupta, Arnab; Agarwalla, Sanjib Kumar

    2015-12-01

    The Standard Model gauge group can be extended with minimal matter content by introducing anomaly free U(1) symmetry, such as L e - L μ or L e - L τ . If the neutral gauge boson corresponding to this abelian symmetry is ultra-light, then it will give rise to flavor-dependent long-range leptonic force, which can have significant impact on neutrino oscillations. For an instance, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can suppress the ν μ → ν e appearance probability in terrestrial experiments. The sign of this potential is opposite for anti-neutrinos, and affects the oscillations of (anti-)neutrinos in different fashion. This feature invokes fake CP-asymmetry like the SM matter effect and can severely affect the leptonic CP-violation searches in long-baseline experiments. In this paper, we study in detail the possible impacts of these long-range flavor-diagonal neutral current interactions due to L e - L μ symmetry, when (anti-)neutrinos travel from Fermilab to Homestake (1300 km) and CERN to Pyhäsalmi (2290 km) in the context of future high-precision superbeam facilities, DUNE and LBNO respectively. If there is no signal of long-range force, DUNE (LBNO) can place stringent constraint on the effective gauge coupling α eμ < 1.9 × 10-53 (7.8 × 10-54) at 90% C.L., which is almost 30 (70) times better than the existing bound from the Super-Kamiokande experiment. We also observe that if α eμ ≥ 2 × 10-52, the CP-violation discovery reach of these future facilities vanishes completely. The mass hierarchy measurement remains robust in DUNE (LBNO) if α eμ < 5 × 10-52 (10-52).

  17. Measurement of neutrino oscillation by the K2K experiment

    SciTech Connect

    Ahn, M. H.; Bhang, H.; Jeon, E. J.; Joo, K. K.; Kang, B. H.; Kim, B. J.; Kim, H. I.; Kim, J. H.; Kim, S. B.; Park, H.; Seo, E.; So, H.; Yoo, J.; Aliu, E.; Andringa, S.; Espinal, X.; Fernandez, E.; Jover, G.; Nova, F.; Rodriguez, A.

    2006-10-01

    We present measurements of {nu}{sub {mu}} disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One-hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1{sub -8.6}{sup +9.2} events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muonlike events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3{sigma}). In a two-flavor oscillation scenario, the allowed {delta}m{sup 2} region at sin{sup 2}2{theta}=1 is between 1.9 and 3.5x10{sup -3} eV{sup 2} at the 90% C.L. with a best-fit value of 2.8x10{sup -3} eV{sup 2}.

  18. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  19. Solar neutrino interactions with liquid scintillators used for double beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Zuber, Kai

    2016-08-01

    Solar neutrinos interact within double-beta-decay (DBD) detectors and hence will contribute to backgrounds (BGs) for DBD experiments. Background contributions due to solar neutrinos are evaluated for their interactions with atomic electrons and nuclei in liquid scintillation detectors used for DBD experiments. They are shown to be serious BGs for high-sensitivity DBD experiments to search for the Majorana neutrino masses in the inverted and normal hierarchy regions.

  20. Late Time Neutrino Masses, the LSND Experiment and the Cosmic Microwave Background

    SciTech Connect

    Chacko, Z.; Hall, Lawrence J.; Oliver, Steven J.; Perelstein, Maxim

    2004-05-07

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the LSND experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large scale structure can be removed due to the non-conventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  1. High energy neutrino astronomy; past, present and future

    NASA Astrophysics Data System (ADS)

    Learned, John G.

    1993-04-01

    The nascent field of high energy neutrino astronomy seems to be near to blossoming in the next few years, after decades of speculation and preliminary experimental work. The motivation for the endeavor, anticipated types of sources, consideration of energy regime for first attempts, scale size needed, and techniques are qualitatively reviewed. A summary of relevant current projects is presented with emphasis on the new initiatives with detectors of the 10,000m2 class. It seems that by the end of the decade there may be a few such new generation instruments in operation, and that with luck the business of high energy neutrino astrophysics will be underway by the turn of the century.

  2. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment.

    PubMed

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bender, D; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Büttner, B; Chernyavsky, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Del Amo Sanchez, P; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, R A; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Goldberg, J; Gornushkin, Y; Grella, G; Guler, A M; Gustavino, C; Hagner, C; Hara, T; Hayakawa, H; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, J H; Kim, S H; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P F; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matsushita, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, M C; Morishima, K; Muciaccia, M T; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Nakatsuka, Y; Niwa, K; Ogawa, S; Olchevsky, A; Omura, T; Ozaki, K; Paoloni, A; Paparella, L; Park, B D; Park, I G; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Schmidt-Parzefall, W; Shakirianova, I; Shchedrina, T; Sheshukov, A; Shibuya, H; Shiraishi, T; Shoziyoev, G; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, S M; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Vilain, P; Vladymyrov, M; Votano, L; Vuilleumier, J L; Wilquet, G; Wonsak, B; Yoon, C S; Zemskova, S

    2015-09-18

    The OPERA experiment was designed to search for ν_{μ}→ν_{τ} oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the ν_{μ}→ν_{τ} appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of ν_{μ}→ν_{τ} oscillations in appearance mode with a significance larger than 5σ. PMID:26430986

  3. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bodnarchuk, I.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; de Lellis, G.; de Serio, M.; Del Amo Sanchez, P.; di Crescenzo, A.; di Ferdinando, D.; di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fornari, F.; Fukuda, T.; Galati, G.; Garfagnini, A.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hara, T.; Hayakawa, H.; Hollnagel, A.; Hosseini, B.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laudisio, F.; Lauria, A.; Ljubicic, A.; Longhin, A.; Loverre, P. F.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matsushita, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Miyanishi, M.; Mizutani, F.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Olchevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Paparella, L.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Schmidt-Parzefall, W.; Shakirianova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Sotnikov, A.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladymyrov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.; Opera Collaboration

    2015-09-01

    The OPERA experiment was designed to search for νμ→ντ oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ντ interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the νμ→ντ appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ντ candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of νμ→ντ oscillations in appearance mode with a significance larger than 5 σ .

  4. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment.

    PubMed

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bender, D; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Büttner, B; Chernyavsky, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Del Amo Sanchez, P; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, R A; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Goldberg, J; Gornushkin, Y; Grella, G; Guler, A M; Gustavino, C; Hagner, C; Hara, T; Hayakawa, H; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, J H; Kim, S H; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P F; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matsushita, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, M C; Morishima, K; Muciaccia, M T; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Nakatsuka, Y; Niwa, K; Ogawa, S; Olchevsky, A; Omura, T; Ozaki, K; Paoloni, A; Paparella, L; Park, B D; Park, I G; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Schmidt-Parzefall, W; Shakirianova, I; Shchedrina, T; Sheshukov, A; Shibuya, H; Shiraishi, T; Shoziyoev, G; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, S M; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Vilain, P; Vladymyrov, M; Votano, L; Vuilleumier, J L; Wilquet, G; Wonsak, B; Yoon, C S; Zemskova, S

    2015-09-18

    The OPERA experiment was designed to search for ν_{μ}→ν_{τ} oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the ν_{μ}→ν_{τ} appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of ν_{μ}→ν_{τ} oscillations in appearance mode with a significance larger than 5σ.

  5. Small neutrino masses from gravitational θ -term

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  6. Ion source issues for the DAEδALUS neutrino experiment

    SciTech Connect

    Alonso, Jose R. Barletta, William A.; Toups, Matthew H.; Conrad, Janet; Liu, Y.; Bannister, Mark E.; Havener, C. C.; Vane, Randy

    2014-02-15

    The DAEδALUS experiment calls for 10 mA of protons at 800 MeV on a neutrino-producing target. To achieve this record-setting current from a cyclotron system, H{sub 2}{sup +} ions will be accelerated. Loosely bound vibrationally excited H{sub 2}{sup +} ions inevitably produced in conventional ion sources will be Lorentz stripped at the highest energies. Presence of these states was confirmed at the Oak Ridge National Laboratory and strategies were investigated to quench them, leading to a proposed R and D effort towards a suitable ion source for these high-power cyclotrons.

  7. Monte Carlo simulation of the Neutrino-4 experiment

    SciTech Connect

    Serebrov, A. P. Fomin, A. K.; Onegin, M. S.; Ivochkin, V. G.; Matrosov, L. N.

    2015-12-15

    Monte Carlo simulation of the two-section reactor antineutrino detector of the Neutrino-4 experiment is carried out. The scintillation-type detector is based on the inverse beta-decay reaction. The antineutrino is recorded by two successive signals from the positron and the neutron. The simulation of the detector sections and the active shielding is performed. As a result of the simulation, the distributions of photomultiplier signals from the positron and the neutron are obtained. The efficiency of the detector depending on the signal recording thresholds is calculated.

  8. Connecting experiment with theory: A model-independent parameterization of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, Doris Jeanne

    1997-09-01

    Many experiments are currently looking for evidence of neutrino mass in the form of neutrino oscillations. Oscillation probabilities are non-linear functions of the neutrino mixing matrix elements, so most comparisons of data to theory are based on simplifying models of the mixing matrix. We begin this dissertation with a review of neutrino interactions and a few of the popular models describing neutrino masses and mixing. Next we present our model-independent description of neutrino oscillations and derive the predictions of various models in terms of our new 'box' parameterization. Finally, we use our boxes to find mixing matrices consistent with existing neutrino data. As more definitive data becomes available, these solutions will probably need to be adjusted; when such a need arises, our box notation will provide a convenient method for finding new solutions.

  9. The SciBooNE neutrino experiment at Fermilab: an overview

    NASA Astrophysics Data System (ADS)

    Tanaka, Hide-Kazu

    2008-04-01

    The precise measurement of neutrino-nucleus cross-sections in the few GeV energy range is an essential ingredient in the interpretation of neutrino oscillation experiments. For the measurement of the cross-sections, a new experiment, SciBooNE, has been proposed and approved at Fermilab. From June 2007, SciBooNE has started operation and data taking. The experiment is carried out by installing the K2K SciBar detector in the FNAL Booster Neutrino Beamline. The marriage of a high rate, low energy neutrino beam and the fine granularity of SciBar detector is unique for precise measurements of neutrino cross sections since both the beamline and detectors have been built and operated successfully. We will present an overview of the SciBooNE physics program with emphasis on unique elements of the detector systems that allow for identification and measurement of several types of neutrino interactions.

  10. Neutrinos from colliding wind binaries: future prospects for PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Becker Tjus, J.

    2014-05-01

    Massive stars play an important role in explaining the cosmic ray spectrum below the knee, possibly even up to the ankle, i.e. up to energies of 1015 or 1018.5 eV, respectively. In particular, Supernova Remnants are discussed as one of the main candidates to explain the cosmic ray spectrum. Even before their violent deaths, during the stars' regular life times, cosmic rays can be accelerated in wind environments. High-energy gamma-ray measurements indicate hadronic acceleration binary systems, leading to both periodic gamma-ray emission from binaries like LSI + 60 303 and continuous emission from colliding wind environments like η-Carinae. The detection of neutrinos and photons from hadronic interactions are one of the most promising methods to identify particle acceleration sites. In this paper, future prospects to detect neutrinos from colliding wind environments in massive stars are investigated. In particular, the seven most promising candidates for emission from colliding wind binaries are investigated to provide an estimate of the signal strength. The expected signal of a single source is about a factor of 5-10 below the current IceCube sensitivity and it is therefore not accessible at the moment. What is discussed in addition is future the possibility to measure low-energy neutrino sources with detectors like PINGU and ORCA: the minimum of the atmospheric neutrino flux at around 25 GeV from neutrino oscillations provides an opportunity to reduce the background and increase the significance to searches for GeV-TeV neutrino sources. This paper presents the first idea, detailed studies including the detector's effective areas will be necessary in the future to test the feasibility of such an approach.

  11. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  12. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  13. Photon Detection System Designs for the Deep Underground Neutrino Experiment

    SciTech Connect

    Whittington, Denver

    2015-11-19

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  14. Photon detection system designs for the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Whittington, D.

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  15. Constraints on Cosmic Neutrino Fluxes from the Antarctic Impulsive Transient Antenna Experiment

    SciTech Connect

    Barwick, S.W.; Goldstein, D.; Nam, J.; Silvestri, A.; Wu, F.; Beatty, J.J.; Nichol, R.; Palladino, K.; Besson, D.Z.; Binns, W.R.; Dowkontt, P.F.; Israel, M.H.; Cai, B.; DuVernois, M.A.; Clem, J.M.; Evenson, P.A.; Seckel, D.; Connolly, A.; Saltzberg, D.; Cowen, D.F.

    2006-05-05

    We report new limits on cosmic neutrino fluxes from the test flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment, which completed an 18.4 day flight of a prototype long-duration balloon payload, called ANITA-lite, in early 2004. We search for impulsive events that could be associated with ultrahigh energy neutrino interactions in the ice and derive limits that constrain several models for ultrahigh energy neutrino fluxes and rule out the long-standing Z-burst model.

  16. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    SciTech Connect

    Serebrov, A. P. Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; and others

    2015-10-15

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6–11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  17. The status of the solar neutrino problem and the Russian-American gallium experiment (SAGE)

    SciTech Connect

    Bowles, T.J.

    1994-04-01

    Perhaps the most outstanding discrepancy between prediction and measurements in current particle physics comes from the solar neutrino problem, in which a large deficit of high-energy solar neutrinos is observed. Many Nonstandard Solar Models have been invoked to try to reduce the predicted flux, but all have run into problems in trying to reproduce other measured parameters (e.g., the luminosity) of the Sun. Other explanations involving new physics such as neutrino decay and neutrino oscillations, etc. have also been proffered. Again, most of these explanations have been ruled out by either laboratory or astrophysical measurements. It appears that perhaps the most likely particle physics solution is that of matter enhanced neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein (MSW) oscillations. Two new radiochemical gallium experiments, which have a low enough threshold to be sensitive to the dominant flux of low-energy p-p neutrinos, now also report a deficit and also favor a particle physics solution.

  18. Studies of Near-Far Neutrino Beam Correlations for the DUNE Experiment

    NASA Astrophysics Data System (ADS)

    Bashyal, Amit; DUNE Collaboration

    2016-03-01

    In the DUNE long-baseline neutrino experiment, the Near Detector near to the beamline sees a high neutrino flux, which helps to characterize the neutrino beam. Given a prediction for the neutrino flux at the Near Detector, the unoscillated flux at the Far Detector can be predicted and a transfer matrix constructed. We present results from a beam matrix method to predict the Far Detector flux from the Near Detector flux for the DUNE beamline and studies of the sensitivity to different physics models of the flux.

  19. The Fermilab neutrino beam program

    SciTech Connect

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  20. Looking for High Energy Astrophysical Neutrinos:. the Antares Experiment

    NASA Astrophysics Data System (ADS)

    Flaminio, Vincenzo

    2011-03-01

    Attempts to detect high energy neutrinos originating in violent Galactic or Extragalactic processes have been carried out for many years, both using the polar-cap ice and the sea as a target/detection medium. The first large detector built and operated for several years has been the AMANDA Čerenkov array, installed under about two km of ice at the South Pole. More recently a much larger detector, ICECUBE is being installed at the same location. Attempts by several groups to install similar arrays under large sea depths have been carried out following the original pioneering attempts by the DUMAND collaboration, initiated in 1990 and terminated only six years later. ANTARES has been so far the only experiment installed at large sea depths and successfully operated for several years. This report will provide a short review of the expected ν sources, of the detector characteristics, the installation operations performed, the data collected and the first results obtained.

  1. Spectral function in electro-weak interactions and its impact on neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Jen, C.-M.

    2015-10-01

    Neutrino oscillation experiments have entered the high-precision era in the last few years. The oscillation parameters, as a measure of the neutrino properties, are extracted from the energy-dependent oscillation probability function. Different types of nuclear dynamics deeply influence the determination of neutrino energies in neutrino oscillation experiments. As a consequence, a comprehensive understanding of various nuclear dynamics interprets the scenario behind the neutrino interaction with nucleus and nuclei. The initial ground-state structure of the target nucleus is categorized in one typical nuclear dynamics, and its realistic description is generally referred as the spectral function (SF). Implementing the SF for each target nucleus into the GENIE neutrino event generator is the preliminary step necessary to obtain a reliable determination of the kinematics of all detectable final-products from neutrino interactions. At the intermedium-range of neutrino energies (˜ 1 GeV), the kinematic energy reconstruction is the vastly used approach and consists in identifying final-products as coming from the charged-current quasi-elastic-like (CCQE-like) neutrino interactions.

  2. Spectral function in electro-weak interactions and its impact on neutrino oscillation experiments

    SciTech Connect

    Jen, C.-M.

    2015-10-15

    Neutrino oscillation experiments have entered the high-precision era in the last few years. The oscillation parameters, as a measure of the neutrino properties, are extracted from the energy-dependent oscillation probability function. Different types of nuclear dynamics deeply influence the determination of neutrino energies in neutrino oscillation experiments. As a consequence, a comprehensive understanding of various nuclear dynamics interprets the scenario behind the neutrino interaction with nucleus and nuclei. The initial ground-state structure of the target nucleus is categorized in one typical nuclear dynamics, and its realistic description is generally referred as the spectral function (SF). Implementing the SF for each target nucleus into the GENIE neutrino event generator is the preliminary step necessary to obtain a reliable determination of the kinematics of all detectable final-products from neutrino interactions. At the intermedium-range of neutrino energies (∼ 1 GeV), the kinematic energy reconstruction is the vastly used approach and consists in identifying final-products as coming from the charged-current quasi-elastic-like (CCQE-like) neutrino interactions.

  3. A new-concept calorimeter for future neutrino beams based on Kaon tagging

    NASA Astrophysics Data System (ADS)

    Longhin, A.; Ludovici, L.; Terranova, F.

    2016-07-01

    Neutrino cross-section measurements are an essential requirement for the next generation of neutrino oscillation experiments and they are presently limited by uncertainties on neutrino fluxes. In [1] we propose to instrument a neutrino decay tunnel to detect large angle positrons and tag the three-body semileptonic K+ →e+π0νe decays. In such a facility the absolute electron neutrino flux could be determined with unprecedented precision (O(1%)). An e+/π+ separation capability of about 2% as well as a high e+ efficiency is required for a diffuse particle source over a length of several tens of meters. Additional constraints, due to the harsh beam environment, involve radiation hardness and fast response. For this purpose we propose a specialized shashlik calorimeter (copper-scintillator) with a compact readout based on small-area Silicon PhotoMultipliers coupled to WLS fibers. The setup would allow an effective longitudinal segmentation for electron/hadron separation, reducing the dead zones introduced by fiber bundling. Detailed Monte Carlo simulations are in progress. The construction of a small prototype and exposures to pion and electron beams are foreseen.

  4. Feasibility of /sup 81/Br(nu,e/sup -/)/sup 81/Kr solar neutrino experiment

    SciTech Connect

    Hurst, G.S.; Allman, S.L.; Chen, C.H.; Kramer, S.D.; Thomson, J.O.; Cleveland, B.

    1985-05-01

    Several ingenious solutions have been offered for the solar neutrino problem - a defect in the solar model, the appearance of a new type of neutrino physics, the sun is no longer burning, etc. The range of these proffered solutions stresses the need for a new experiment to study the sun. The modern pulsed laser now makes possible a new solar neutrino test which examines an independent neutrino source in the sun. A recently proposed experiment would use the reaction /sup 81/Br(nu,e/sup -/)/sup 81/Kr to measure the flux of /sup 7/Be neutrinos from the sun. When /sup 7/Be decays by electron capture to make /sup 7/Li, a neutrino is emitted at 0.862 MeV and the flux of these on the earth is about 4 x 10/sup 9/ cm/sup -2/ s/sup -1/, according to the standard model. Therefore, an experiment based on /sup 81/Br(nu,e/sup -/)/sup 81/Kr which is sensitive to these lower energy neutrinos would be of fundamental importance. To first order, the chlorine experiment detects the /sup 8/B neutrinos while bromine detects the much more abundant /sup 7/Be neutrino source. In practice, the proposed bromine experiment would be very similar to the chlorine radiochemical experiment, except that /sup 81/Kr with a half-life of 2 x 10/sup 5/ years cannot be counted by decay methods. With an experiment of about the same volume as the chlorine experiment (380 m/sup 3/) filled with CH/sub 2/Br/sub 2/, the model predicts about 2 atoms of /sup 81/Kr per day. The bromine experiment depends entirely on the RIS method, implemented with pulsed lasers, for its success. 10 refs., 3 figs.

  5. Observation of ultrahigh-energy cosmic rays and neutrinos from lunar orbit: LORD space experiment

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir; Chechin, Valery; Gusev, German

    The problem of detecting highest-energy cosmic rays and neutrinos in the Universe is reviewed. Nowadays, there becomes clear that observation of these particles requires approaches based on novel principles. Projects based on orbital radio detectors for particles of energies above the CZK cut-off are discussed. We imply the registration of coherent Cherenkov radio emission produced by cascades of most energetic particles in radio-transparent lunar regolith. The Luna-Glob space mission proposed for launching in the near future involves the Lunar Orbital Radio Detector (LORD). The feasibility of LORD space instrument to detect radio signals from cascades initiated by ultrahigh-energy particles interacting with lunar regolith is examined. The comprehensive Monte Carlo calculations were carried out within the energy range of 10 (20) -10 (25) eV with the account for physical properties of the Moon such as its density, the lunar-regolith radiation length, the radio-wave absorption length, the refraction index, and the orbital altitude of a lunar satellite. We may expect that the LORD space experiment will surpass in its apertures and capabilities the majority of well-known current and proposed experiments dealing with the detection of both ultrahigh-energy cosmic rays and neutrinos. The design of the LORD space instrument and its scientific potentialities in registration of low-intense cosmic-ray particle fluxes above the GZK cut-off up to 10 (25) eV is discussed as well. The designed LORD module (including an antenna system, amplifiers, and a data acquisition system) now is under construction. The LORD space experiment will make it possible to obtain important information on the highest-energy particles in the Universe, to verify modern models for the origin and the propagation of ultrahigh-energy cosmic rays and neutrinos. Successful completion of the LORD experiment will permit to consider the next step of the program, namely, a multi-satellite lunar systems to

  6. The status of the study of solar CNO neutrinos in the Borexino experiment

    SciTech Connect

    Lukyanchenko, G. A.; Collaboration: Borexino Collaboration

    2015-12-15

    Although less than 1% of solar energy is generated in the CNO cycle, it plays a critical role in astrophysics, since this cycle is the primary source of energy in certain more massive stars and at later stages of evolution of solar-type stars. Electron neutrinos are produced in the CNO cycle reactions. These neutrinos may be detected by terrestrial neutrino detectors. Various solar models with different abundances of elements heavier than helium predict different CNO neutrino fluxes. A direct measurement of the CNO neutrino flux could help distinguish between these models and solve several other astrophysical problems. No CNO neutrinos have been detected directly thus far, and the best upper limit on their flux was set in the Borexino experiment. The work on reducing the background in the region of energies of CNO neutrinos (up to 1.74 MeV) and developing novel data analysis methods is presently under way. These efforts may help detect the CNO neutrino flux in the Borexino experiment at the level predicted by solar models.

  7. Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments

    NASA Astrophysics Data System (ADS)

    Masud, Mehedi; Mehta, Poonam

    2016-09-01

    In the era of precision neutrino physics, we study the influence of nonstandard interactions (NSI) of matter on the question of neutrino mass ordering and its resolution. At long-baseline experiments, since matter effects play a crucial role in addressing this very important question, it is timely to investigate how subleading effects due to NSI may affect and drastically alter inferences pertaining to this question. We demonstrate that the sensitivity to mass ordering gets significantly impacted due to NSI effects for various long-baseline experiments, including the upcoming long-baseline experiment Deep Underground Neutrino Experiment (DUNE). Finally, we draw a comparison between DUNE and the sensitivities offered by two of the current neutrino beam experiments, NOvA and T2K.

  8. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  9. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  10. Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments

    NASA Astrophysics Data System (ADS)

    Adamson, P.; An, F. P.; Anghel, I.; Aurisano, A.; Balantekin, A. B.; Band, H. R.; Barr, G.; Bishai, M.; Blake, A.; Blyth, S.; Bock, G. J.; Bogert, D.; Cao, D.; Cao, G. F.; Cao, J.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, R.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, J.-H.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Childress, S.; Chu, M. C.; Chukanov, A.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; Cummings, J. P.; de Arcos, J.; De Rijck, S.; Deng, Z. Y.; Devan, A. V.; Devenish, N. E.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gill, R.; Gomes, R. A.; Gonchar, M.; Gong, G. H.; Gong, H.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grassi, M.; Grzelak, K.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Habig, A.; Hackenburg, R. W.; Hahn, S. R.; Han, R.; Hans, S.; Hartnell, J.; Hatcher, R.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Holin, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, J.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Hylen, J.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; James, C.; Jen, K. L.; Jensen, D.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiao, J. B.; Johnson, R. A.; de Jong, J. K.; Joshi, J.; Kafka, T.; Kang, L.; Kasahara, S. M. S.; Kettell, S. H.; Kohn, S.; Koizumi, G.; Kordosky, M.; Kramer, M.; Kreymer, A.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lang, K.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Litchfield, P. J.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. C.; Liu, J. L.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Lucas, P.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Malyshkin, Y.; Mann, W. A.; Marshak, M. L.; Martinez Caicedo, D. A.; Mayer, N.; McDonald, K. T.; McGivern, C.; McKeown, R. D.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Mitchell, I.; Mooney, M.; Moore, C. D.; Mualem, L.; Musser, J.; Nakajima, Y.; Naples, D.; Napolitano, J.; Naumov, D.; Naumova, E.; Nelson, J. K.; Newman, H. B.; Ngai, H. Y.; Nichol, R. J.; Ning, Z.; Nowak, J. A.; O'Connor, J.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Pan, H.-R.; Park, J.; Patterson, R. B.; Patton, S.; Pawloski, G.; Pec, V.; Peng, J. C.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Pinsky, L.; Plunkett, R. K.; Poonthottathil, N.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, X.; Radovic, A.; Raper, N.; Rebel, B.; Ren, J.; Rosenfeld, C.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Moed Sher, S.; Sousa, A.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tagg, N.; Talaga, R. L.; Tang, W.; Taychenachev, D.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Webb, R. C.; Weber, A.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C.; Whitehead, L.; Whitehead, L. H.; Wise, T.; Wojcicki, S. G.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-10-01

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin22 θμ e are set over 6 orders of magnitude in the sterile mass-squared splitting Δ m412. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δ m412<0.8 eV2 at 95 % CLs .

  11. The detector system of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  12. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  13. Positronium signature in organic liquid scintillators for neutrino experiments

    SciTech Connect

    Franco, D.; Consolati, G.; Trezzi, D.

    2011-01-15

    Electron antineutrinos are commonly detected in liquid scintillator experiments via inverse {beta} decay by looking at the coincidence between the reaction products: neutrons and positrons. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean lifetime of a few nanoseconds. Even if the o-Ps decay is speeded up by spin-flip or pick-off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in antineutrino experiments. Reversing the problem, the o-Ps-induced time distortion represents a new signature for tagging antineutrinos in liquid scintillator. In this article, we report the results of measurements of the o-Ps formation probability and lifetime for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the article, we demonstrate that the o-Ps-induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the antineutrino detection.

  14. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  15. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    DOE PAGES

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energymore » regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less

  16. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    SciTech Connect

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.

  17. Implications of lepton flavor violation on long baseline neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Soumya, C.; Mohanta, R.

    2016-09-01

    Nonstandard neutrino interactions (NSIs), the subleading effects in the flavor transitions of neutrinos, play a crucial role in the determination of the various unknowns in neutrino oscillations, such as neutrino mass hierarchy, the Dirac C P violating phase, and the octant of the atmospheric mixing angle. In this work, we focus on the possible implications of lepton flavor violating (LFV) NSIs, which generally affect the neutrino propagation, on the determination of these unknown oscillation parameters. We study the effect of these NSIs on the physics potential of the currently running and upcoming long-baseline experiments, i.e., T2K, NO ν A , and DUNE. We also check the allowed oscillation parameter space in the presence of LFV NSIs.

  18. Results and Status of the T2K and NOvA long-baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Muether, Mathew

    2016-03-01

    The discovery of neutrino oscillations and the resulting implication that neutrinos have mass, recently awarded the Nobel Prize in Physics, has bolstered a world-wide effort to exploit this effect as a handle on the properties of neutrinos. In the decades since the initial discovery of neutrino oscillations, great strides have been made in understanding the nature of these elusive particles, yet important and fundamental questions remain open, such as: How are the neutrino masses ordered? And Do neutrinos and antineutrinos oscillate differently? The current generation of accelerator based long-baseline neutrino oscillation experiments, T2K in Japan and NOvA in the United States, are actively pursuing the answers to these questions. In this talk, I will review the recent results and current status of the T2K and NOvA long-baseline neutrino experiments.

  19. The Science and Strategy for Phasing of the Long-Baseline Neutrino Experiment

    SciTech Connect

    Diwan, Milind V.

    2012-05-22

    This note is about the principles behind a phased plan for realizing a Long-Baseline Neutrino Experiment(LBNE) in the U.S.. The most important issue that must be resolved is the direction of the first phase of the experiment. Based on both scientific and programmatic considerations, the U.S. should pursue the best option for accelerator neutrino physics, which is the longer baseline towards Homestake with an optimizedbroadband intense beam.

  20. Study of muon neutrino and muon antineutrino disappearance with the NOvA neutrino oscillation experiment

    SciTech Connect

    Pawloski, Gregory

    2014-06-30

    The primary goal of this working group is to study the disappearance rate of νμ charged current events in order to measure the mixing angle θ23 and the magnitude of the neutrino mass square splitting Δm 232.

  1. Inner structure and outer limits: Precision QCD and electroweak tests from neutrino experiments

    NASA Astrophysics Data System (ADS)

    Fleming, Bonnie Tamminga

    Neutrinos are both excellent probes for discovering the secrets of QCD and elusive particles continually surprising us. This thesis reports first on a proton structure measurement, specifically the extraction of the proton structure function F2 from CCFR neutrino-nucleon differential cross sections. The F2 results are in good agreement with the F2 measured in muon scattering above Q2 = 1 GeV2. Comparison of the two sets of data below Q2 = 1 GeV2, which provides information on the axial vector contribution, is discussed. The thesis also addresses the nature of neutrinos. Do neutrinos have mass? Do they have other Beyond-the-Standard-Model properties that can give us clues to their nature? Recent evidence from neutrino oscillation experiments from around the world indicate that neutrinos may oscillate between their different flavors and therefore may have mass. The MiniBooNE experiment discussed here will be able to address this oscillation phenomenon as well as other possible beyond Standard Model neutrino properties.

  2. High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment

    SciTech Connect

    IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube

    2008-02-29

    The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated into IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section.

  3. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  4. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, J.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  5. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, Jeremy

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  6. Prospects for future experiments to search for nucleon decay

    SciTech Connect

    Ayres, D.S.; Heller, K.; LoSecco, J.; Mann, A.K.; Marciano, W.; Shrock, R.E.; Thornton, R.K.

    1982-01-01

    We review the status of theoretical expectations and experimental searches for nucleon decay, and predict the sensitivities which could be reached by future experiments. For the immediate future, we concur with the conclusions of the 1982 Summer Workshop on Proton Decay Experiments: all detectors now in operation or construction will be relatively insensitive to some potentially important decay modes. Next-generation experiments must therefore be designed to search for these modes, and should be undertaken whether or not present experiments detect nucleon decay in other modes. These future experiments should be designed to push the lifetime limits on all decay modes to the levels at which irreducible cosmic-ray neutrino-induced backgrounds become important. Since the technology for these next-generation experiments is available now, the timetable for starting work on them will be determined by funding constraints and not by the need for extensive development of detectors. Efforts to develop advanced detector techniques should also be pursued, in order to mount more sensitive searches than can be envisioned using current technology, or to provide the most precise measurements possible of the properties of the nucleon decay interaction if it should occur at a detectable rate.

  7. Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors

    NASA Astrophysics Data System (ADS)

    Lu, Jia-Shu; Li, Yu-Feng; Zhou, Shun

    2016-07-01

    Future large liquid-scintillator detectors can be implemented to observe neutrinos from a core-collapse supernova in our Galaxy in various reaction channels: (1) the inverse beta decay ν¯ e+p →n +e+ , (2) the elastic neutrino-proton scattering ν +p →ν +p , (3) the elastic neutrino-electron scattering ν +e-→ν +e- , (4) the charged-current νe interaction νe+12C →e-+12N, (5) the charged-current ν¯ e interaction ν¯ e+12C →e++12B, and (6) the neutral-current interaction ν +12C →ν +12C* The less abundant 13C atoms in the liquid scintillator are also considered as a target, and both the charged-current interaction νe+13C →e-+13N and the neutral-current interaction ν +13C →ν +13C* are taken into account. In this work, we show for the first time that a global analysis of all these channels at a single liquid-scintillator detector, such as Jiangmen Underground Neutrino Observatory, is very important to test the average-energy hierarchy of supernova neutrinos and how the total energy is partitioned among neutrino flavors. In addition, the dominant channels for reconstructing neutrino spectra and the impact of other channels are discussed in great detail.

  8. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  9. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  10. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  11. MINERνA neutrino detector calibration

    SciTech Connect

    Patrick, Cheryl

    2015-05-15

    MINERνA is a neutrino scattering experiment that uses Fermilab’s NuMI beamline. Its goal is to measure cross-sections for neutrino scattering from different nuclei. Precise knowledge of these cross-sections is vital for current and future neutrino oscillation experiments. In order to measure these values to a high degree of accuracy, it is essential that the detector be carefully calibrated. Here, we describe in-situ calibration and cross-checks.

  12. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng; Zhou, Ye-Ling

    2014-11-01

    We discuss reactor antineutrino oscillations with non-standard interactions (NSIs) at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline) dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO) as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters. Long baseline reactor antineutrino experiments, such as KamLAND [10,11]. The aim of these experiments is to observe the slow oscillation with Δ21 and measure the corresponding oscillation parameters Δm212 and θ12. Short baseline reactor antineutrino experiments, such as Daya Bay [1-3], Double CHOOZ [4], RENO [5]. They are designed to observe the fast oscillation with Δ31 and Δ32 (or equivalently, Δee[3]) and measure the corresponding oscillation parameters Δmee2, θ13. Medium baseline reactor antineutrino experiments. They stand for the next generation experiments of reactor antineutrinos, with typical representatives of Jiangmen Underground Neutrino Observatory (JUNO) [12] and RENO-50 [13]. They can determine the neutrino mass ordering (m1experiments. High-dimensional operators originating from new physics can contribute to the neutrino oscillation in the form of non-standard interactions (NSIs) [14

  13. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    SciTech Connect

    Niner, Evan David

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  14. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-15

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference {delta}m{sup 2} congruent with 0.9 eV{sup 2}. We trace its origin to harmonic oscillations in the electron survival probability P{sub ee} as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for {delta}m{sup 2} congruent with 1.9 eV{sup 2}. We point out that the phenomenon of harmonic oscillations of P{sub ee} as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV{sup 2} to several eV{sup 2} (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  15. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    SciTech Connect

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high source luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.

  16. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    DOE PAGES

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high sourcemore » luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.« less

  17. Low reheating temperature and the visible sterile neutrino.

    PubMed

    Gelmini, Graciela; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2004-08-20

    We present here a scenario, based on a low reheating temperature T(R)<100 MeV at the end of (the last episode of) inflation, in which the coupling of sterile neutrinos to active neutrinos can be as large as experimental bounds permit (thus making this neutrino "visible" in future experiments). In previous models this coupling was forced to be very small to prevent a cosmological overabundance of sterile neutrinos. Here the abundance depends on how low the reheating temperature is. For example, the sterile neutrino required by the Liquid Scintillator Neutrino Detector result may not have any cosmological problem within our scenario.

  18. Short-baseline electron neutrino oscillation length after the Troitsk experiment

    NASA Astrophysics Data System (ADS)

    Giunti, C.; Laveder, M.; Li, Y. F.; Long, H. W.

    2013-01-01

    We discuss the implications for short-baseline electron neutrino disappearance in the 3+1 mixing scheme of the recent Troitsk bounds on the mixing of a neutrino with mass between 2 and 100 eV. Considering the Troitsk data in combination with the results of short-baseline νe and ν¯e disappearance experiments, which include the reactor and Gallium anomalies, we derive a 2σ allowed range for the effective neutrino squared-mass difference between 0.85 and 43eV2. The upper bound implies that it is likely that oscillations in distance and/or energy can be observed in radioactive source experiments. It is also favorable for the ICARUS@CERN experiment, in which it is likely that oscillations are not washed out in the near detector. We discuss also the implications for neutrinoless double-β decay.

  19. Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    This paper presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes νμ + e- → νμ + e- and νμ + e- → νe + μ-. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modifications of Zνν couplings, tree-level exchanges of new particles such as Z‧'s, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This paper reviews these physics opportunities.

  20. Investigation of alternative mechanisms to neutrino oscillations in the MINOS experiment; Investigacao de Mecanismos Alternativos a Oscilacao de Neutrinos no Experimentos MINOS

    SciTech Connect

    de Abreu Barbosa Coelho, Joao

    2012-01-01

    The neutrino oscillation model is very successful in explaining a large variety of experiments. The model is based on the premise that the neutrinos that interact through the weak force via charged current are not mass eigenstates, but a superposition of them. In general, a quantum superposition is subject to loss of coherence, so that pure states tend toward mixed states. This type of evolution is not possible within the context of isolated quantum systems because the evolution is unitary and, therefore, is invariant under time reversal. By breaking unitarity, an arrow of time is introduced and the characteristic effect for neutrinos is a damping of oscillations. In this thesis, some phenomenological decoherence and decay models are investigated, which could be observed by MINOS, a neutrino oscillation experiment that consists of measuring the neutrino flux produced in a particle accelerator 735 km away. We analyse the disappearance of muon neutrinos in MINOS. Information from other experiments is used to constrain the number of parameters, leaving only one extra parameter in each model. We assume a power law energy dependence of the decoherence parameter. The official MINOS software and simulation are used to obtain the experiment's sensitivities to the effects of unitarity breaking considered.

  1. Gain fractions of future neutrino oscillation facilities over T2K and NOvA

    NASA Astrophysics Data System (ADS)

    Blennow, M.; Coloma, P.; Donini, A.; Fernández-Martínez, E.

    2013-07-01

    We evaluate the probability of future neutrino oscillation facilities to discover leptonic CP violation and/or measure the neutrino mass hierarchy. We study how this probability is affected by positive or negative hints for these observables to be found at T2K and NO νA. We consider the following facilities: LBNE; T2HK; and the 10 GeV Neutrino Factory (NF10), and show how their discovery probabilities change with the running time of T2K and NO νA conditioned to their results. We find that, if after 15 years T2K and NO νA have not observed a 90% CL hint of CP violation, then LBNE and T2HK have less than a 10% chance of achieving a 5 σ discovery, whereas NF10 still has a ~ 40% chance to do so. Conversely, if T2K and NO νA have an early 90% CL hint in 5 years from now, T2HK has a rather large chance to achieve a 5 σ CP violation discovery (75% or 55%, depending on whether the mass hierarchy is known or not). This is to be compared with the 90% (30%) probability that NF10 (LBNE) would have to observe the same signal at 5 σ. A hierarchy measurement at 5 σ is achievable at both LBNE and NF10 with more than 90% probability, irrespectively of the outcome of T2K and NO νA. We also find that if LBNE or a similar very long baseline super-beam is the only next generation facility to be built, then it is very useful to continue running T2K and NO νA (or at least T2K) beyond their original schedule in order to increase the CP violation discovery chances, given their complementarity.

  2. Everything under the Sun: A review of solar neutrinos

    SciTech Connect

    Gann, Gabriel D. Orebi

    2015-07-15

    Solar neutrinos offer a unique opportunity to study the interaction of neutrinos with matter, a sensitive search for potential new physics effects, and a probe of solar structure and solar system formation. This paper describes the broad physics program addressed by solar neutrino studies, presents the current suite of experiments programs, and describes several potential future detectors that could address the open questions in this field. This paper is a summary of a talk presented at the Neutrino 2014 conference in Boston.

  3. Everything under the sun: A review of solar neutrinos

    DOE PAGES

    Gann, Gabriel D. Orebi

    2015-07-15

    Solar neutrinos offer a unique opportunity to study the interaction of neutrinos with matter, a sensitive search for potential new physics effects, and a probe of solar structure and solar system formation. This paper describes the broad physics program addressed by solar neutrino studies, presents the current suite of experiments programs, and describes several potential future detectors that could address the open questions in this field. This paper is a summary of a talk presented at the Neutrino 2014 conference in Boston.

  4. Proposed solar neutrino experiment using /sup 81/Br(nu,e/sup -/)/sup 81/Kr

    SciTech Connect

    Hurst, G.S.; Chen, C.H.; Kramer, S.D.; Allman, S.L.

    1984-12-01

    It has now been shown that it is feasible to measure the /sup 7/Be neutrino source in the sun by using the reaction /sup 81/Br(nu,e/sup -/)/sup 81/Kr in a radiochemical experiment. Such an experiment would be quite similar to the Davis, Cleveland, and Rowley method for measuring the /sup 8/B neutrino using /sup 37/Cl(nu,e/sup -/)/sup 37/Ar except that the resonance ionization spectroscopy (RIS) method (instead of decay counting) would be employed to count the 2 x 10/sup 5/-yr /sup 81/Kr atoms.

  5. Towards a precision measurement of theta13 with reactor neutrinos: Initiatives in the United States

    SciTech Connect

    Heeger, Karsten M.

    2004-09-12

    Recent experimental results have provided unambiguous evidence that neutrinos have a small but finite mass and mix from one type into another. The phenomenon of neutrino mixing is characterized by the coupling between the neutrino flavor (nu e,mu,tau) and mass eigenstates (nu 1,2,3) and the associated mixing angles. Previous neutrino oscillation experiments have determined two of the three mixing angles in the neutrino mixing matrix, U MNSP. Using multiple neutrino detectors placed at different distances from a nuclear power plant, a future reactor neutrino experiment has the potential to discover and measure the coupling of the electron neutrino flavor to the third mass eigenstate, Ue3, the last undetermined element of the neutrino mixing matrix. In this paper we describe recent efforts in the US towards a next-generation experiment to measure theta13 with reactor neutrinos.

  6. Neutrino Physics at J-PARC

    NASA Astrophysics Data System (ADS)

    Friend, Megan

    The physics motivation, status, and prospects of currently running and proposed neutrino experiments at J-PARC are shown. This includes the currently running T2K (Tokai-to-Kamioka) long-baseline neutrino oscillation experiment and a proposed Sterile Neutrino Search. The currently running T2K experiment detects oscillated ν μ to ν e appearance and unoscillated ν μ to ν μ disappearance neutrino events from an off-axis beam of primarily muon neutrinos produced at J-PARC. Propagated neutrinos are detected in a Near Detector complex, which sits 280 m from the neutrino source and is used to constrain the neutrino flux and measure neutrino cross sections, and in the Super-Kamiokande (SK) far detector, a 22.5 kT fiducial volume water Cherenkov detector with excellent performance in sub-GeV ν e/ν μ particle ID that sits 295 km from the neutrino source and is used to monitor neutrino oscillations. T2K has recently released a series of very interesting and important results, including the world's first definitive observation of neutrino appearance (ν e appearance from a ν μ beam), an observation which was made with only 8% of the proposed total data. T2K has continued to accumulate data since releasing these results, and has many exciting prospects, including potentially having sensitivity to show a first hint of CP violation in the lepton sector. These T2K recent results and future prospects will be shown. A brief overview of the prospects of a proposed future Sterile Neutrino Search, which plans to utilize the J-PARC Materials and Life Science Experimental Facility to initially search for sterile neutrinos with a large mass splitting, will also be shown.

  7. Neutrino physics: Summary talk

    SciTech Connect

    Marciano, W.J.

    1989-04-01

    This paper is organized as follows: First, I describe the state of neutrino phenomenology. Emphasis is placed on sin/sup 2/ /theta//sub W/, its present status and future prospects. In addition, some signatures of ''new physics'' are described. Then, kaon physics at Fermilab is briefly discussed. I concentrate on the interesting rare decay K/sub L/ /yields/ /pi//sup 0/e/sup +/e/sup /minus// which may be a clean probe direct CP violation. Neutrino mass, mixing, and electromagnetic moments are surveyed. There, I describe the present state and future direction of accelerator based experiments. Finally, I conclude with an outlook on the future. Throughout this summary, I have drawn from and incorporated ideas discussed by other speakers at this workshop. However, I have tried to combine their ideas with my own perspective on neutrino physics and where it is headed. 49 refs., 3 figs., 4 tabs.

  8. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    SciTech Connect

    Oshatz, Daryl

    2004-03-12

    This summary document describes the results of conceptual design and cost estimates performed by LBNL Engineering staff between October 10, 2003 and March 12, 2004 for the proposed {theta}{sub 13} neutrino experiment at the Diablo Canyon Power Plant (DCPP). This document focuses on the detector room design concept and mechanical engineering issues associated with the neutrino detector structures. Every effort has been made not to duplicate information contained in the last LBNL Engineering Summary Report dated October 10, 2003. Only new or updated information is included in this document.

  9. Evidence for muon neutrino oscillation in an accelerator-based experiment.

    PubMed

    Aliu, E; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Cavata, C; Cervera, A; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernandez, E; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayashi, K; Hayato, Y; Helmer, R L; Hill, J; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Inagaki, T; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kerr, D; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kubota, J; Kudenko, Yu; Kuno, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Maruyama, T; Matsuno, S; Matveev, V; Mauger, C; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mine, S; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Morita, T; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Rodriguez, A; Saji, C; Sakuda, M; Sanchez, F; Sarrat, A; Sasaki, T; Scholberg, K; Schroeter, R; Sekiguchi, M; Sharkey, E; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Ueda, S; Vagins, M; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2005-03-01

    We present results for nu(mu) oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced nu(mu) beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy-dependent disappearance of nu(mu), which we presume have oscillated to nu(tau). The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).

  10. Measurements of Neutrino Oscillation Angle θ13

    NASA Astrophysics Data System (ADS)

    Kuze, Masahiro

    Neutrinos exhibit an interesting phenomenon called "neutrino oscillation", in which a neutrino changes its flavor after traveling some flight length. Many experiments measured the mixing angles and mass differences, but the angle θ13 had been unmeasured due to its smallness compared to others. During 2011 and 2012, series of new-generation neutrino experiments reported positive results in θ13 search, and its value has been determined to be just below the previous upper limit. The non-zero result of θ13 is a very good news for future of neutrino physics, since it opens a possibility of measuring the CP violation phase in the lepton sector. An introduction to neutrino oscillation and latest experimental results are presented. A detail is put on Double Chooz reactor experiment, in which the author is involved.

  11. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  12. Early steps towards quarks and their interactions using neutrino beams in CERN bubble chamber experiments

    NASA Astrophysics Data System (ADS)

    Perkins, Don H.

    2016-06-01

    Results from neutrino experiments at CERN in the1970's, using bubble chamber detectors filled with heavy liquids, gave early evidence for the existence of quarks and gluons as real dynamical objects. In detail, the measured moments of the non-singlet structure functions provided crucial support for the validity of the present theory of the strong inter-quark interactions, quantum chromodynamics.

  13. Prospects for reconstruction of leptonic unitarity quadrangle and neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Verma, Surender; Bhardwaj, Shankita

    2016-06-01

    After the observation of non-zero θ13 the goal has shifted to observe CP violation in the leptonic sector. Neutrino oscillation experiments can, directly, probe the Dirac CP phases. Alternatively, one can measure CP violation in the leptonic sector using Leptonic Unitarity Quadrangle (LUQ). The existence of Standard Model (SM) gauge singlets - sterile neutrinos - will provide additional sources of CP violation. We investigate the connection between neutrino survival probability and rephasing invariants of the 4 × 4 neutrino mixing matrix. In general, LUQ contain eight geometrical parameters out of which five are independent. We obtain CP asymmetry (Pνf→νf‧ -Pνbarf→νbarf‧) in terms of these independent parameters of the LUQ and search for the possibilities of extracting information on these independent geometrical parameters in short baseline (SBL) and long baseline (LBL) experiments, thus, looking for constructing LUQ and possible measurement of CP violation. We find that it is not possible to construct LUQ using data from LBL experiments because CP asymmetry is sensitive to only three of the five independent parameters of LUQ. However, for SBL experiments, CP asymmetry is found to be sensitive to all five independent parameters making it possible to construct LUQ and measure CP violation.

  14. The MARE project: a new 187Re neutrino mass experiment with sub eV sensitivity

    NASA Astrophysics Data System (ADS)

    Schaeffer, D.; Gatti, F.; Gallinaro, G.; Pergolesi, D.; Repetto, P.; Ribeiro-Gomes, M.; Kelley, R.; Kilbourne, C. A.; Porter, F. S.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Andreotti, E.; Foggetta, L.; Giuliani, A.; Pedretti, M.; Prest, M.; Rusconi, C.; Sangiorgio, S.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Gorla, P.; Kraft, S.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Sisti, M.; Irwin, K. D.; Margesin, B.; Monfardini, A.; Beyer, J.; Galeazzi, M.; de Bernardis, P.; Calvo, M.; Masi, S.; Petcov, S.; Heeger, K.; Maruyama, R.; McCammon, D.

    2011-12-01

    A large worldwide collaboration is growing around the project of Micro-calorimeter Arrays for a Rhenium Experiment (MARE) for a direct calorimetric measurement of the neutrino mass with a sensitivity of about 0.2 eV/c2. Many groups are joining their experience and technical expertise in a common effort towards this challenging experiment which will use the most recent and advanced developments of the thermal detection technique.

  15. Simulations of the Long Baseline Neutrino Experiment for the Sieroszowice Underground Laboratory (SUNLAB)

    NASA Astrophysics Data System (ADS)

    Harańczyk, Małgorzata

    2016-02-01

    The Sieroszowice Underground Laboratory in Poland, SUNLAB, had been studied in the years 2008-2011 within the framework of the FP7 LAGUNA design study as an option for the realization of a next generation large volume neutrino observatory in Europe. However, in order to fully understand its physics capabilities, the feasibility studies of the SUNLAB laboratory have continued after 2011, including sensitivity calculations focused on the delta CP measurement for a large LArTPC detector at a distance of 950 km from CERN in a long baseline neutrino experiment. For this purpose the neutrino beam based on the SPS proton accelerator at CERN was simulated and the LAr data used to simulate the detector response.

  16. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-10-01

    This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2 ×10-4≲|Δ m412|≲0.3 eV2 mass range. The resulting limits on sin22 θ14 are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δ m412|≲0.2 eV2 region.

  17. Muon and neutrino results from KGF experiment at a depth of 7000 hg/square cm

    NASA Technical Reports Server (NTRS)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Streekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    The KGF nucleon decay experiment at a depth of 7000 hg/sq cm has provided valuable data on muons and neutrinos. The detector comprised of 34 crossed layers of proportional counters (cross section 10 x 10 sq cm; lengths 4m and 6m) sandwiched between 1.2 cm thick iron plates can record tracks of charged particles to an accuracy of 1 deg from tracks that traverse the whole of the detector. A special two-fold coincidence system enables the detector to record charged particles that enter at very large zenith angles. In a live time of 3.6 years about 2600 events have been recorded. These events include atmospheric muons, neutrino induced muons from rock, stopping muons, showers and events which have their production vertex inside the detectors. The results on atmospheric muons and neutrino events are presented.

  18. Potential measurements of neutrino-deuterium interactions with the T2K near detectors

    NASA Astrophysics Data System (ADS)

    Mahn, Kendall; T2K Collaboration

    2015-04-01

    Uncertainties on neutrino interactions with matter are important for current and future generation neutrino long baseline experiments, which infer neutrino mixing parameters. Measurements of neutrinos on deuterium constrain neutrino-nucleon interaction models, such as axial form factors, and are relatively free of complicating nuclear effects. Existing measurements of neutrino interaction using deuterium bubble chambers suffer from low statistics and significant systematic uncertainty on neutrino flux production. This talk describes the possibility of modern neutrino-deuterium cross section measurements using modifications to the existing T2K experiment near detector complex. A comparison of data taken with deuterated water and normal water would provide a measurement of neutrino-deuteron interactions with high-intensity neutrino beam. T2K is supported by the Department of Energy.

  19. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  20. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  1. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; et al

    2016-06-10

    In muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux frommore » 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  2. The development of the SNO+ experiment: Scintillator timing, pulse shape discrimination, and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Erin

    The SNO+ experiment is a multi-purpose neutrino detector which is under construction in the SNOLAB facility in Sudbury, Ontario. SNO+ will search for neutrinoless double beta decay, and will measure low energy solar neutrinos. This thesis will describe three main development activities for the SNO+ experiment: the measurement of the timing parameters for the liquid scintillator cocktail, using those timing parameters to estimate the ability of SNO+ to discriminate alpha and beta events in the detector, and a sensitivity study that examines how solar neutrino data can constrain a light sterile neutrino model. Characterizing the timing parameters of the emission light due to charged-particle excitation in the scintillator is necessary for proper reconstruction of events in the detector. Using data obtained from a bench-top setup, the timing profile was modelled as three exponential components with distinct timing coefficients. Also investigated was the feasibility of using the timing profiles as a means to separate alpha and beta excitation events in the scintillator. The bench-top study suggested that using the peak-to-total method of analyzing the timing profiles could remove >99.9% of alpha events while retaining >99.9% of beta events. The timing parameters measured in the test set-up were then implemented in a Monte Carlo code which simulated the SNO+ detector conditions. The simulation results suggested that detector effects reduce the effectiveness of discriminating between alpha and beta events using the peak-to-total method. Using a more optimal method of analyzing the timing profile differences, specifically using a Gatti filter, improved the discrimination capability back to the levels determined in the bench-top setup. One of the physics goals of SNO+ is the first precision measurement of the pep solar neutrino ux at the level of about 5 % uncertainty. A study was performed to investigate how current solar neutrino data constrains the allowed parameters of

  3. The Intermediate Neutrino Program

    SciTech Connect

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  4. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  5. Neutrino factory

    DOE PAGES

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  6. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  7. Neutrino factory

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R. J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A. C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that θ13>0 . The measured value of θ13 is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO ν Design Study consortium. EURO ν coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO ν baseline accelerator facility will provide 1 021 muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  8. Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and Bugey-3 experiments

    DOE PAGES

    Adamson, P.; An, F. P.; Anghel, I.; Aurisano, A.; Balantekin, A. B.; Band, H. R.; Barr, G.; Bishai, M.; Blake, A.; Blyth, S.; et al

    2016-10-07

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Here, stringent limits on sin22θμe are set over 6 orders of magnitudemore » in the sterile mass-squared splitting Δm241. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm241 < 0.8 eV2 at 95% CLs.« less

  9. Neutrino mass hierarchy and stepwise spectral swapping of supernova neutrino flavors.

    PubMed

    Duan, Huaiyu; Fuller, George M; Carlson, J; Qian, Yong-Zhong

    2007-12-14

    We examine a phenomenon recently predicted by numerical simulations of supernova neutrino flavor evolution: the swapping of supernova nu(e) and nu(mu,tau) energy spectra below (above) energy E(C) for the normal (inverted) neutrino mass hierarchy. We present the results of large-scale numerical calculations which show that in the normal neutrino mass hierarchy case, E(C) decreases as the assumed effective 2x2 vacuum nu(e)<==>nu(mu,tau) mixing angle (approximately theta13) is decreased. In contrast, these calculations indicate that E(C) is essentially independent of the vacuum mixing angle in the inverted neutrino mass hierarchy case. With a good neutrino signal from a future galactic supernova, the above results could be used to determine the neutrino mass hierarchy even if theta13 is too small to be measured by terrestrial neutrino oscillation experiments.

  10. CPT-Odd resonances in neutrino oscillations

    PubMed

    Barger; Pakvasa; Weiler; Whisnant

    2000-12-11

    We consider the consequences for future neutrino factory experiments of small CPT-odd interactions in neutrino oscillations. The nu(&mgr;)-->nu(&mgr;) and nu;(&mgr;)-->nu;(&mgr;) survival probabilities at a baseline L = 732 km can test for CPT-odd contributions at orders of magnitude better sensitivity than present neutrino sector limits. Interference between the CPT-violating interaction and CPT-even mass terms in the Lagrangian can lead to a resonant enhancement of the oscillation amplitude. For oscillations in matter, a simultaneous enhancement of both neutrino and antineutrino oscillation amplitudes is possible.

  11. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    SciTech Connect

    Marino, Alysia

    2015-06-29

    This is nal report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is fo- cussed on making precise measurements of neutrino properties using in- tense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino exper- iment [6], currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design e ort for a future Long-Baseline Neu- trino Facility (LBNF) in the US.1 She is also a member of the NA61/SHINE particle production experiment at CERN, but as that e ort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos ( ) and the appearance of electron neutrinos ( e), using a beam of muon neu- trino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K rst reported indications of e appearance [2], a pre- viously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of disappearance and e appearance [1], and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the uni- verse. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This e ort will be very high-priority particle physics project in the US over the next decade.

  12. Relic right-handed Dirac neutrinos and implications for detection of cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-02-01

    It remains to be determined experimentally if massive neutrinos are Majorana or Dirac particles. In this connection, it has been recently suggested that the detection of cosmic neutrino background of left-handed neutrinos νL and right-handed antineutrinos ν‾R in future experiments of neutrino capture on beta-decaying nuclei (e.g., νe +3H →3He +e- for the PTOLEMY experiment) is likely to distinguish between Majorana and Dirac neutrinos, since the capture rate is twice larger in the former case. In this paper, we investigate the possible impact of right-handed neutrinos on the capture rate, assuming that massive neutrinos are Dirac particles and both right-handed neutrinos νR and left-handed antineutrinos ν‾L can be efficiently produced in the early Universe. It turns out that the capture rate can be enhanced at most by 28% due to the presence of relic νR and ν‾L with a total number density of 95 cm-3, which should be compared to the number density 336 cm-3 of cosmic neutrino background. The enhancement has actually been limited by the latest cosmological and astrophysical bounds on the effective number of neutrino generations Neff =3.14-0.43+0.44 at the 95% confidence level. For illustration, two possible scenarios have been proposed for thermal production of right-handed neutrinos in the early Universe.

  13. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  14. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  15. Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents

    SciTech Connect

    Pospelov, Maxim

    2011-10-15

    New neutrino states {nu}{sub b}, sterile under the standard model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the standard model weak interactions. If some fraction of solar neutrinos oscillate into {nu}{sub b} on their way to Earth, the coherently enhanced elastic {nu}{sub b}-nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic {nu}{sub b}-nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar-neutrino energies, the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of a new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the {nu}{sub b}-induced deuteron breakup, and the excitation of a 4.4 MeV {gamma} line in {sup 12}C. A stronger-than-weak force coupled to the baryonic current implies the existence of a new Abelian gauge group U(1){sub B} with a relatively light gauge boson.

  16. Solar Neutrinos, SNO and SNOLAB

    NASA Astrophysics Data System (ADS)

    McDonald, A. B.

    2007-06-01

    The Sudbury Neutrino Observatory has completed operation in its third phase with an array of neutron detectors in 1000 tonnes of heavy water and Cherenkov light detection 2 km underground in INCO's Creighton mine near Sudbury, Ontario, Canada. Data from the third phase is now being analyzed. In the first two phases of the project reported previously, the neutral current reaction on deuterium was used to determine the total flux of active neutrinos and the charged current reaction on deuterium provided a measure of the flux and energy spectrum of solar electron neutrinos. The flux of electron neutrinos was found to be only about one third of the total flux, providing clear evidence of neutrino flavour change. The total flux of active neutrinos was found to be in agreement with solar model calculations. The underground laboratory is being expanded to create an international facility known as SNOLAB that will be completed at the end of 2007. Proposed future experiments for the detection of lower energy solar neutrinos, geo-neutrinos, dark matter and double beta decay are described.

  17. Low-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-05-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the field of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artificial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three fields, the present-day motivation and open questions, as well as the latest experimental results and future perspectives are discussed.

  18. The Majorana Zero-Neutrino Double-Beta Decay Experiment White Paper

    SciTech Connect

    Gaitskell, R.; Barabash, A.; Konovalov, S.; Stekhanov, V.; Umatov,, V.; Brudanin, V.; Egorov, S.; Webb, J.; Miley, Harry S.; Aalseth, Craig E.; Anderson, Dale N.; Bowyer, Ted W.; Brodzinski, Ronald L.; Jordan, David B.; Kouzes, Richard T.; Smith, Leon E.; Thompson, Robert C.; Warner, Ray A.; Tornow, W.; Young, A.; Collar, J. I.; Avignone, Frank T.; Palms, John M.; Doe, P. J.; Elliott, Steven R.; Kazkaz, K.; Robertson, Hamish; Wilkerson, John

    2002-03-07

    The goal of the Majorana Experiment is to determine the effective Majorana masss of the eletron neutrino. Detection of the neutrino mass implied by oscillation results in within our grasp. This exciting physics goal is best pursued using double-beta decay of germanium because of the historical and emerging advances in eliminating competing signals from radioactive backgrounds. The Majorana Experiment will consist of a large mass of 76Ge in the form of high-resolution detectors deep underground, searching for a sharp peak at the BB endpoint. We present here an overview of the entire project in order to help put in perspective the scope, the level and technial risk, and the readiness of the Collaboration to begin the undertaking.

  19. Testing and Characterization of Acrylic for the Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Krohn, Michael; Littlejohn, Bryce; Heeger, Karsten

    2011-10-01

    The Daya Bay reactor antineutrino experiment will determine the last unknown neutrino mixing angle T13 with a sensitivity of.01 or better. The measurement of T13 is important for theoretical model building and for possible searches of CP violation in the neutrino sector. Poly(methyl methacrylate), otherwise known as acrylic, is an important component for the construction of the target vessels in the antineutrino detectors and we have performed multiple tests that determined its unique properties. My project has been to understand the properties of acrylic in order to minimize systematic errors and test mechanical and materials compatibility issues in the Daya Bay reactor antineutrino experiment. These tests address both the mechanical and technical issues of the detector as well as the systematic affects introduced by the acrylic.

  20. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  1. PREFACE: Nobel Symposium 129 on Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Bergström, Lars; Botner, Olga; Carlson, Per; Hulth, Per Olof; Ohlsson, Tommy

    2005-01-01

    Nobel Symposium 129 on Neutrino Physics was held at Haga Slott in Enköping, Sweden during August 19 24, 2004. Invited to the symposium were around 40 globally leading researchers in the field of neutrino physics, both experimental and theoretical. In addition to these participants, some 30 local researchers and graduate students participated in the symposium. The dominant theme of the lectures was neutrino oscillations, which after several years were recently verified by results from the Super-Kamiokande detector in Kamioka, Japan and the SNO detector in Sudbury, Canada. Discussion focused especially on effects of neutrino oscillations derived from the presence of matter and the fact that three different neutrinos exist. Since neutrino oscillations imply that neutrinos have mass, this is the first experimental observation that fundamentally deviates from the standard model of particle physics. This is a challenge to both theoretical and experimental physics. The various oscillation parameters will be determined with increased precision in new, specially designed experiments. Theoretical physics is working intensively to insert the knowledge that neutrinos have mass into the theoretical models that describe particle physics. It will probably turn out that the discovery of neutrino oscillations signifies a breakthrough in the description of the very smallest constituents of matter. The lectures provided a very good description of the intensive situation in the field right now. The topics discussed also included mass models for neutrinos, neutrinos in extra dimensions as well as the `seesaw mechanism', which provides a good description of why neutrino masses are so small. Also discussed, besides neutrino oscillations, was the new field of neutrino astronomy. Among the questions that neutrino astronomy hopes to answer are what the dark matter in the Universe consists of and where cosmic radiation at extremely high energies comes from. For this purpose, large neutrino

  2. Locating the neutrino interaction vertex with the help of electronic detectors in the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Gornushkin, Yu. A.; Dmitrievsky, S. G.; Chukanov, A. V.

    2015-01-01

    The OPERA experiment is designed for the direct observation of the appearance of ντ from νμ → ντ oscillation in a νμ beam. A description of the procedure of neutrino interaction vertex localization (Brick Finding) by electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and a determination of the target bricks with the highest probability to contain the vertex.

  3. Retention and application of Skylab experiment experiences to future programs

    NASA Technical Reports Server (NTRS)

    Milly, N.; Gillespie, V. G.

    1974-01-01

    Problems encountered on Skylab Experiments are listed in order that these experiences and associated recommendations might help to prevent similar problems on future programs. The criteria for selection of the data to be utilized was to identify the problem areas within the Skylab Program which would be of major significance with respect to future programs. Also, the problem had to be unique in that it would help identify to a designer/manufacturer an unforeseen or unanticipated occurrence which could cause failures, delays, or additional cost. Only those unexpected problems that may occur due to the nature of aerospace experiment environmental and operational requirements are included.

  4. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  5. Birth of Neutrino Astrophysics

    ScienceCinema

    None

    2016-07-12

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  6. Birth of Neutrino Astrophysics

    SciTech Connect

    2010-05-07

    Based mainly on the results of two experiments, KamiokaNDE and Super-KamiokaNDE, the birth of neutrino astrophysics will be described. At the end, the result of the third generation Kamioka experiment, KamLAND, will be discussed together with the future possibilities.Organiser(s): Daniel Treille / EP DivisionNote: * Tea & coffee will be served at 16:00 hrs. Please note unusual day.

  7. A Search for Lorentz and CPT Violation in the Neutrino Sector of the Standard Model Extension Using the Near Detectors of the Tokai to Kamioka Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Clifton, Gary Alexander

    The Tokai to Kamioka (T2K) neutrino experiment is designed to search for electron neutrino appearance oscillations and muon neutrino disappearance oscillations. While the main physics goals of T2K fall into conventional physics, T2K may be used to search for more exotic physics. One exotic physics analysis that can be performed is a search for Lorentz and CPT symmetry violation (LV and CPTV) through short baseline neutrino oscillations. The theoretical framework which describes these phenomena is the Standard Model Extension (SME). Due to its off-axis nature, T2K has two near detectors. A search for LV and CPTV is performed in each detector. The search utilizes charged-current inclusive (CC inclusive) neutrino events to search for sidereal variations in the neutrino event rate at each detector. Two methods are developed; the first being a Fast Fourier Transform method to perform a hypothesis test of the data with a set of 10,000 toy Monte-Carlo simulations that do not have any LV signal in them. The second is a binned likelihood fit. Using three data sets, both analysis methods are consistent with no sidereal variations. One set of data is used to calculate upper limits on combinations of the SME coefficients while the other two are used to constrain the SME coefficients directly. Despite not seeing any indication of LV in the T2K near detectors, the upper limits provided are useful for the theoretical field to continue improving theories which include LV and CPTV.

  8. BNL Very Long Baseline Neutrino Oscillation Experiment - Technical Challenges in Getting There

    NASA Astrophysics Data System (ADS)

    Simos, Nicholas; Ludewig, Hans; Weng, Wu-Tsung; Kirk, Harold; Diwan, Milind; Kahn, Steve; Evangelakis, Yiorgos; McDonald, Kirk

    2003-04-01

    A neutrino oscillation experiment of exceptional intensity, driven by a 1 MW proton driver, is currently under study at BNL. To achieve the high neutrino intensity an energetic proton beam with intensity approaching 1014 protons will be intercepted by a low-Z target at 2.5 Hz pulse rate placed within a magnetic horn. Such intensities are expected to push the envelope of the target material integrity and the state of knowledge of how materials respond to both long-term irradiation and thermo-mechanical shock. Furthermore, the required repetition rate of 2.5 Hz will strain even further both the target and the horn in that large thermal loads generated from energy deposition and currents will need to be removed between pulses. To accomplish the physics requirements of the proposed neutrino oscillation experiment, technical challenges that relate to (a) material selection for the production target and its long-term survivability, (b) horn design and choice material integrity, and (c) the integration of the two systems, need to be met. This paper discusses the feasibility of different target/horn integration options both in terms of performance and longevity and examines the enhancing potential of innovative techniques. The paper also presents a discussion on the weak links in the various options, which result from the intensity levels and the selected cooling environments, and the strategy to extrapolate the current knowledge on material degradation through R and advanced computational techniques.

  9. Search for neutrino oscillations in the MINOS experiment by using quasi-elastic interactions

    SciTech Connect

    Piteira, Rodolphe

    2005-09-29

    The enthusiasm of the scientific community for studying oscillations of neutrinos is equaled only by the mass of their detectors. The MINOS experiment determines and compares the near spectrum of muonic neutrinos from the NUMI beam to the far one, in order to measure two oscillation parameters: Δm$2\\atop{23}$ and sin2 (2θ23). The spectra are obtained by analyzing the charged current interactions which difficulty lies in identifying the interactions products (e.g. muons). An alternative method identifying the traces of muons, bent by the magnetic field of the detectors, and determining their energies is presented in this manuscript. The sensitivity of the detectors is optimal for the quasi-elastic interactions, for which a selection method is proposed, to study their oscillation. Even though it reduces the statistics, such a study introduces fewer systematic errors, constituting the ideal method on the long range.

  10. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  11. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-08-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical

  12. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-06-11

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock

  13. Nucleon decay and atmospheric neutrinos in the Mont Blanc experiment

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bologne, G.; Campana, P.; Castagnoli, C.; Chiarella, V.; Ciocio, A.; Cundy, D. C.; Dettorepiazzoli, B.; Fiorini, E.

    1985-01-01

    In the NUSEX experiment, during 2.8 years of operation, 31 fully contained events have been collected; 3 among them are nucleon decay candidates, while the others have been attributed to upsilon interactions. Limits on nucleon lifetime and determinations of upsilon interaction rates are presented.

  14. Charmed-Particle Lifetimes from Neutrino Interactions Experiment #531

    SciTech Connect

    Reay, W. N.

    1980-01-01

    Detection of charm in several Fermilab experiments, among them E-531, was discussed by L. Hand, L. Voyvodic, and the author in Fermilab Report in March 1979. Since that time, there have been significant new results from E-531 on charmed particles and their lifetimes and a discussion of these results is useful at this time.

  15. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  16. Waterproofed photomultiplier tube assemblies for the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Chow, Ken; Cummings, John; Edwards, Emily; Edwards, William; Ely, Ry; Hoff, Matthew; Lebanowski, Logan; Li, Bo; Li, Piyi; Lin, Shih-Kai; Liu, Dawei; Liu, Jinchang; Luk, Kam-Biu; Miao, Jiayuan; Napolitano, Jim; Ochoa-Ricoux, Juan Pedro; Peng, Jen-Chieh; Qi, Ming; Steiner, Herbert; Stoler, Paul; Stuart, Mary; Wang, Lingyu; Yang, Changgen; Zhong, Weili

    2015-09-01

    In the Daya Bay Reactor Neutrino Experiment 960 20-cm-diameter waterproof photomultiplier tubes are used to instrument three water pools as Cherenkov detectors for detecting cosmic-ray muons. Of these 960 photomultiplier tubes, 341 are recycled from the MACRO experiment. A systematic program was undertaken to refurbish them as waterproof assemblies. In the context of passing the water leakage check, a success rate better than 97% was achieved. Details of the design, fabrication, testing, operation, and performance of these waterproofed photomultiplier-tube assemblies are presented.

  17. Neutrino factories

    SciTech Connect

    Soler, F. J. P.

    2015-07-15

    The Neutrino Factory is a facility that produces neutrino beams with a well-defined flavour content and energy spectrum from the decay of intense, high-energy, stored muon beams to establish CP violation in the neutrino sector. The International Design Study for the Neutrino Factory (the IDS-NF) is providing a Reference Design Report (RDR) for the facility. The present design is optimised for the recent measurements of θ{sub 13}. The accelerator facility will deliver 10{sup 21} muon decays per year from 10 GeV stored muon beams. The straight sections of the storage ring point to a 100 kton Magnetised Iron Neutrino Detector (MIND) at a distance of 2000-2500 km from the source. The accuracy in the value of δ{sub CP} that a Neutrino Factory can achieve and the δ{sub CP} coverage is unrivalled by other future facilities. Staging scenarios for the Neutrino Factory deliver facilities that can carry out physics at each stage. In the context of Fermilab, such a scenario would imply in the first stage the construction of a small storage ring, nuSTORM, to carry out neutrino cross-section and sterile neutrino measurements and to perform a programme of 6D muon cooling R&D. The second stage is the construction of a 5 GeV Neutrino Factory (nuMAX) pointing to the Sanford Underground Research Facility at Homestake and the final stage would use many of the components of this facility to construct a Muon Collider, initially as a 126 GeV CM Higgs Factory, which may be upgraded to a multi-TeV Muon Collider if required.

  18. Nonstandard interactions in neutrino oscillations and the recent Daya Bay and T2K experiments

    NASA Astrophysics Data System (ADS)

    Adhikari, Rathin; Chakraborty, Sabyasachi; Dasgupta, Arnab; Roy, Sourov

    2012-10-01

    We study the possible constraints on nonstandard interaction (NSIs) in a model-independent way by considering the recent results from the T2K and Daya Bay neutrino oscillations experiments. Using the perturbation method we present generic formulas (suitable for T2K baseline and for large θ13 as evident from Daya Bay) for the probability of oscillation for νμ→νe, taking into account NSIs at the source (ɛs), the detector (ɛd), and during propagation (ɛm) of neutrinos through matter. Two separate cases of perturbation with small (slightly large) NSI [ɛαβm˜0.03(0.18)] are discussed in detail. Using various possible presently allowed NSI values we reanalyze numerically the θ13-δ allowed region given by recent T2K experimental data. We obtain model-independent constraints on NSIs in the δ-ɛαβm plane using the θ13 value as measured by Daya Bay, where δ is the CP violating phase. Depending on δ values, significant constraints on ɛeτ and ɛττ, in particular, are possible for both hierarchies of neutrino masses. Corresponding to T2K’s 66% confidence level result, the constraints on ɛττ are shown to be independent of any δ value.

  19. Hunting for cosmic neutrinos under the deep sea: the ANTARES experiment

    NASA Astrophysics Data System (ADS)

    Flaminio, Vincenzo

    2013-06-01

    Attempts to detect high energy neutrinos originating in violent Galactic or Extragalactic processes have been carried out for many years, both using the polar-cap ice and the sea as a target/detection medium. The first large detector built and operated for several years has been the AMANDA Ĉerenkov array, installed under about two km of ice at the South Pole. More recently a much larger detector, ICECUBE has been successfully installed and operated at the same location. Attempts by several groups to install similar arrays under large sea depths have been carried out following the original pioneering attempts by the DUMAND collaboration, initiated in 1990 and terminated only six years later. ANTARES has been so far the only detector deployed at large sea depths and successfully operated for several years. It has been installed in the Mediterranean by a large international collaboration and is in operation since 2007. I describe in the following the experimental technique, the sensitivity of the experiment, the detector performance and the first results that have been obtained in the search for neutrinos from cosmic point sources and on the oscillations of atmospheric neutrinos.

  20. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGES

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  1. Sterile neutrinos and indirect dark matter searches in IceCube

    SciTech Connect

    Argüelles, Carlos A.; Kopp, Joachim E-mail: jkopp@fnal.gov

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  2. Enrichment services for chromium isotopes for the GALLEX (gallium experiment) international collaboration experiment on solar neutrino flux

    NASA Astrophysics Data System (ADS)

    Szady, Andrew J.

    1990-07-01

    Detailed discussions were held with members of the Gallium Experiment (GALLEX) international solar neutrino research collaboration concerning negotiations to provide $1.4 million in services to enrich (50)Cr for a (51)Cr neutrino source. The source will be used to calibrate the 20-ton gallium solar neutrino detector currently in place in the Gran Sasso Laboratory in Italy. Funding approval for the enrichment services is expected from the European Common Market by October 19, 1990. The discussions focused on the technical aspects of the enrichment, the health and safety requirements for handling the process gas, cost projections, schedule, the Work-for-Others contract, and the method of payment. Discussions were also held with members of the Nuclear Physics Dept. at the University of Milan concerning the availability of isotopes enriched by the Calutron at the Oak Ridge National Laboratory. Very high purity material is needed to grow crystals for use in double beta decay detectors. Finally, working sessions were held to draft a coauthored paper on the results of using the gas centrifuge to remove trace quantities of (85)Kr from natural xenon.

  3. Measuring Neutrino Oscillations with Nuclear Reactors

    SciTech Connect

    McKeown, R. D.

    2007-10-26

    Since the first direct observations of antineutrino events by Reines and Cowan in the 1950's, nuclear reactors have been an important tool in the study of neutrino properties. More recently, the study of neutrino oscillations has been a very active area of research. The pioneering observation of oscillations by the KamLAND experiment has provided crucial information on the neutrino mixing matrix. New experiments to study the remaining unknown mixing angle are currently under development. These recent studies and potential future developments will be discussed.

  4. Revealing the Earth's mantle from the tallest mountains using the Jinping Neutrino Experiment.

    PubMed

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A; Xi, Yufei; McDonough, William F

    2016-01-01

    The Earth's engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth's composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth's flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle's radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle's radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection. PMID:27611737

  5. Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A.; Xi, Yufei; McDonough, William F.

    2016-09-01

    The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection.

  6. Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment

    PubMed Central

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A.; Xi, Yufei; McDonough, William F.

    2016-01-01

    The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection. PMID:27611737

  7. Analysis Techniques to Measure Charged Current Inclusive Water Cross Section and to Constrain Neutrino Oscillation Parameters using the Near Detector (ND280) of the T2K Experiment

    NASA Astrophysics Data System (ADS)

    Das, Rajarshi

    2014-03-01

    The Tokai to Kamioka (T2K) Experiment is a long-baseline neutrino oscillation experiment located in Japan with the primary goal to precisely measure multiple neutrino flavor oscillation parameters. An off-axis muon neutrino beam with an energy that peaks at 600 MeV is generated at the JPARC facility and directed towards the kiloton Super-Kamiokande (SK) water Cherenkov detector located 295 km away. The rates of electron neutrino and muon neutrino interactions are measured at SK and compared with expected model values. This yields a measurement of the neutrino oscillation parameters sinq and sinq. Measurements from a Near Detector that is 280 m downstream of the neutrino beam target are used to constrain uncertainties in the beam flux prediction and neutrino interaction rates. We present a measurement of inclusive charged current neutrino interactions on water. We used several sub-detectors in the ND280 complex, including a Pi-Zero detector (P0D) that has alternating planes of plastic scintillator and water bag layers, a time projection chamber (TPC) and fine-grained detector (FGD) to detect and reconstruct muons from neutrino charged current events. Finally, we describe a ``forward-fitting'' technique that is used to constrain the beam flux and cross section as an input for the neutrino oscillation analysis and also to extract a flux-averaged inclusive charged current cross section on water.

  8. Development of multi-pixel photon counters for the T2K long baseline neutrino experiment

    NASA Astrophysics Data System (ADS)

    Orme, D.; Nagai, N.; Minamino, A.; Nakaya, T.; Yokoyama, M.; Nakadaira, T.; Murakami, T.; Tanaka, M.; Retiere, F.; Vacheret, A.; Kudenko, Yu.

    2010-11-01

    We have developed a multi-pixel photon counter (MPPC) with Hamamatsu Photonics for use in the Tokai-Kamioka (T2K) long baseline neutrino experiment. A total of 60,000 MPPCs will be used in the T2K near detector, the first time that MPPCs have been used on such a large scale. We have created a test bench to measure the gain, noise rate, crosstalk and afterpulse rate, and photon detection efficiency of 17,686 of these MPPCs. The results of these measurements are presented in this paper.

  9. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  10. Neutrino oscillation studies with reactors.

    PubMed

    Vogel, P; Wen, L J; Zhang, C

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  11. Neutrino oscillation studies with reactors

    SciTech Connect

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  12. Neutrino oscillation studies with reactors

    DOE PAGES

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-04-27

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  13. Neutrino oscillation studies with reactors

    PubMed Central

    Vogel, P.; Wen, L.J.; Zhang, C.

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavours are quantum mechanical mixtures. Over the past several decades, reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle θ13. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos. PMID:25913819

  14. Very low-energy neutrino interactions

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio

    2015-05-01

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ13 can be determined from abundance ratio of 7Li/11B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on 40Ar and 208Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-40Ar are presented. The need for new theoretical evaluations of the cross sections for ν-208Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  15. Very low-energy neutrino interactions

    SciTech Connect

    Suzuki, Toshio

    2015-05-15

    Neutrino-nucleus reaction cross sections are now evaluated rather accurately by shell-model (SM) or SM+RPA calculations based on recent advances in nuclear structure studies. Due to these achievements, reliable constraints on super-nova neutrino temperatures as well as neutrino oscillation parameters become possible. Supernova neutrino tempeatures are constrained from abundances of elements obtained by using new ν-nucleus reaction cross sections. A possibility of constructing supernova neutrino spectrum from beta-beam measurements is pointed out. Neutrino mass hierarchy and mixing angle θ{sub 13} can be determined from abundance ratio of {sup 7}Li/{sup 11}B, which is sensitive to the MSW matter oscillation effects in supernova explosions. Inverted mass hierarchy is shown to be statistically more favored based on a recent analysis of presolar grains. Effects of neutrino-neutrino interactions are also shown to play important roles in r-process nucleosynthesis. Importance and possibilities of direct measurements of ν-induced cross sections on {sup 40}Ar and {sup 208}Pb are discussed for future supernova neutrino detections. Recent calculations of the cross sections for ν-{sup 40}Ar are presented. The need for new theoretical evaluations of the cross sections for ν-{sup 208}Pb is pointed out. Challenges to experiments on coherent elastic scattering are presented.

  16. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  17. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  18. Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  19. Review of neutrino oscillations with sterile and active neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-08-01

    Recently neutrino oscillation experiments have shown that it is very likely that there are one or two sterile neutrinos. In this review neutrino oscillations with one, two, three sterile and three active neutrinos, and parameters that are consistent with experiments, are reviewed.

  20. Sneutrino-antisneutrino mixing and neutrino mass in anomaly-mediated supersymmetry breaking scenario.

    PubMed

    Choi, Kiwoon; Hwang, Kyuwan; Song, Wan Young

    2002-04-01

    In supersymmetric models with nonzero Majorana neutrino mass, the sneutrino and antisneutrino mix, which may lead to same-sign dilepton signals in future collider experiments. We point out that the anomaly-mediated supersymmetry breaking scenario has a good potential to provide an observable rate of such signals for the neutrino masses suggested by the atmospheric and solar neutrino oscillations. It is noted also that the sneutrino-antisneutrino mixing can provide much stronger information on some combinations of the neutrino masses and mixing angles than the neutrino experiments.

  1. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  2. Some Perspectives on Future Proton Radioactivity Experiments

    SciTech Connect

    Page, R. D.

    2011-11-30

    Understanding the phenomenon of one-proton emission is crucial for addressing the question of the location of the limits of observable nuclei. Much of the current understanding of this radioactive decay process has been developed and refined through measurements of proton emitters above Z = 50, where {approx}30 proton-emitting nuclei have already been discovered and studied. However, despite the great experimental and theoretical efforts over recent years, some important questions remain unanswered. Possibilities for future experiments to tackle some of these issues are considered.

  3. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2016-07-12

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  4. Some uncertainties of neutrino oscillation effect in the NOνA experiment

    NASA Astrophysics Data System (ADS)

    Kolupaeva, Lyudmila D.; Kuzmin, Konstantin S.; Petrova, Olga N.; Shandrov, Igor M.

    2016-04-01

    Uncertainties related to the effect of neutrino coherent forward scattering in Earth’s matter (MSW mechanism) and with the cross-sections of quasi-elastic (QE) neutrino scattering on nuclear targets of the NOνA detectors are studied. The NOνA sensitivity to the neutrino mass hierarchy and the CP violating phase is discussed.

  5. Neutrino oscillation studies with IceCube-DeepCore

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-07-01

    IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.

  6. Measurement of Muon Neutrino Disappearance with the T2K Experiment

    NASA Astrophysics Data System (ADS)

    Wongjirad, Taritree Michael

    We describe the measurement of muon neutrino disappearance due to neutrino oscillation using the Tokai-2-Kamiokande (T2K) experiment's Run 1--4 (6.57 x 1020 POT) data set. We analyze the data using the conventional Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix for the three Standard Model neutrinos. The output of the analysis is a measurement of the parameters sin2theta23, Delta m232 for the normal hierarchy and sin2theta23, Deltam 213 for the inverted hierarchy. The best-fit oscillation parameters for the normal hierarchy are found to be. (sin2theta23, Deltam 232) = (0.514, 2.51 x 10-3 eV 2/c4). The 90% 1D confidence interval---determined for both parameters using the Feldman-Cousins procedure---is for the normal hierarchy. 0.428 < sin2theta23 < 0.598 and. 2.34 x 10-3 eV2/c4 < Deltam232 < 2.68 x 10-3 eV2/c4. For the inverted hierarchy, the best-fit oscillation parameters are. (sin2theta23, Deltam 213) = (0.511, 2.48 x 10-3 eV2/c4. The 90% 1D Feldman-Cousins confidence intervals for the inverted hierarchy are. 2.31 x 10-3 eV2/c4 < Deltam213 < 2.64 x 10-3 eV2/c4.

  7. Astrophysics and cosmology closing in on neutrino masses

    NASA Technical Reports Server (NTRS)

    Dar, Arnon

    1990-01-01

    Massive neutrinos are expected in most grand unified theories that attempt to unify the strong and electroweak interactions. So far, heroic laboratory experiments have yielded only upper bounds on the masses of the elusive neutrinos. These bounds, however, are not very restrictive and cannot even exclude the possibility that the dark matter in the universe consists of neutrinos. The astrophysical and cosmological bounds on the masses of the muon and tau neutrinos, m(nu sub mu) and m(nu sub tau), which already are much more restrictive than the laboratory bounds, and the laboratory bound on the mass of the electron neutrino, m(nu sub e) can be improved significantly by future astrophysical and cosmological observations that perhaps will pin down the neutrino masses. Indeed, the recent results from the solar neutrino experiments combined with the seesaw mechanism for generating neutrino masses suggest that m(nu sub e) of about 10 to the -8th electron volts, m(nu sub mu) of about 0.001 electron volts, and m(nu sub tau) of about 10 electron volts, which can be tested in the near future by solar neutrino and accelerator experiments.

  8. Search for sterile neutrino mixing in the MINOS long baseline experiment

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barnes Jr., P.D.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, G.J.; /Fermilab /Fermilab

    2010-01-01

    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18 x 10{sup 20} protons on target in which neutrinos of energies between {approx}500 MeV and 120 GeV are produced predominantly as {nu}{sub {mu}}, the visible energy spectrum of candidate neutral-current reactions in the MINOS far-detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the {nu}{sub {mu}} flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles {theta}{sub 24} and {theta}{sub 34} are constrained to be less than 11{sup o} and 56{sup o} at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime {tau}{sub 3}/m{sub 3} > 2.1 x 10{sup -12} s/eV at 90% C.L.

  9. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  10. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  11. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    SciTech Connect

    Auty, David John

    2010-03-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0%$\\bar{v}$μ, which can be separated from the vμ because the MINOS detectors are magnetized. This makes it possible to study $\\bar{v}$μ oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the $\\bar{v}$μ oscillation parameters and comparing them with those for vμ, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam $\\bar{v}$μ before. It is also possible to produce an almost pure $\\bar{v}$μ beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% $\\bar{v}$μ component of the forward horn current NuMI beam. The $\\bar{v}$μ of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3-7.6+7.6(stat.)-3.6+3.6(syst.) events. This corresponds to a 1.9 σ deficit, and a best fit value of Δ$\\bar{m}$322 = 18 x 10-3 eV2 and sin2 2$\\bar{θ}$23 = 0.55. This thesis focuses particularly on the selection of $\\bar{v}$μ events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The

  12. Future plans for the Telescope Array experiment

    NASA Astrophysics Data System (ADS)

    Ogio, Shoichi

    2013-06-01

    The Telescope Array (TA) experiment is the world's first and the only air shower detector to be directly calibrated by an on-site accelerator beam. For wider and deeper understanding of cosmic rays via high precision measurements, we have several future plans for the TA experiment. The first extension plan is an on-going project, called as TA low energy extension (TALE), to extend the sensitive energy range to 1016.5 eV in order to study the second knee, the predicted galactic-extragalactic transition of dominant sources and air shower phenomena comparing with LHC measurements. The second proposition is exchanges of FDs and SDs between TA and Pierre Auger Observatory, toward understanding systematic uncertainties of these experiments and to solve discrepancies in energy scales and Xmax. The third plan is a huge air shower array, "the world observatory", consisting of a huge number of SDs and/or FDs for the world's largest exposure and the finest accuracy to open a new window on astronomy with ultra high energy particles.

  13. PARTICLES AND FIELDS: Systematic impact of spent nuclear fuel on θ13 sensitivity at reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, Feng-Peng; Tian, Xin-Chun; Zhan, Liang; Cao, Jun

    2009-09-01

    Reactor neutrino oscillation experiments, such as Daya Bay, Double Chooz and RENO are designed to determine the neutrino mixing angle θ13 with a sensitivity of 0.01-0.03 in sin2 2θ13 at 90% confidence level, an improvement over the current limit by more than one order of magnitude. The control of systematic uncertainties is critical to achieving the sin2 2θ13 sensitivity goal of these experiments. Antineutrinos emitted from spent nuclear fuel (SNF) would distort the soft part of energy spectrum and may introduce a non-negligible systematic uncertainty. In this article, a detailed calculation of SNF neutrinos is performed taking account of the operation of a typical reactor and the event rate in the detector is obtained. A further estimation shows that the event rate contribution of SNF neutrinos is less than 0.2% relative to the reactor neutrino signals. A global χ2 analysis shows that this uncertainty will degrade the θ13 sensitivity at a negligible level.

  14. Search for sub-eV sterile neutrinos in the precision multiple baselines reactor antineutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Luo, Shu

    2015-10-01

    According to different effects on neutrino oscillations, the unitarity violation in the MNSP matrix can be classified into the direct unitarity violation and the indirect unitarity violation which are induced by the existence of the light and the heavy sterile neutrinos respectively. Of which sub-eV sterile neutrinos are of most interesting. We study in this paper the possibility of searching for sub-eV sterile neutrinos in the precision reactor antineutrino oscillation experiments with three different baselines at around 500 m, 2 km and 60 km. We find that the antineutrino survival probabilities obtained in the reactor experiments are sensitive only to the direct unitarity violation and offer very concentrated sensitivity to the two parameters θ14 and Δ m412. If such light sterile neutrinos do exist, the active-sterile mixing angle θ14 could be acquired by the combined rate analysis at all the three baselines and the mass-squared difference Δ m412 could be obtained by taking the Fourier transformation to the L / E spectrum. Of course, for such measurements to succeed, both high energy resolution and large statistics are essentially important.

  15. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    SciTech Connect

    Davis, Jonathan H.

    2015-03-09

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.

  16. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    SciTech Connect

    Davis, Jonathan H.

    2015-03-01

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.

  17. Neutrino mass and oscillation in matter and in cosmology

    NASA Astrophysics Data System (ADS)

    Song, Liguo

    2004-11-01

    With improved Z-Burst model for the new cosmology and reasonable distribution of the neutrino cosmic ray sources, the signatures of the Z-Burst absorption dip and the contributing parameters are investigated through numerical calculations. From the results of the numerical calculations, it is learned that the source distribution and the neutrino mass spectrum will be the major contributing parameters for the Z-Burst absorption dip. Also, only Z-Burst absorption dip will not be able to offer enough information for to establish the structure of the neutrino mass spectrum. The heavy neutrino mass of a few 10-1 eV supported by the four- neutrino model and the LSND mass gap is essential for the detection of the Z-Burst absorption dip. The evidence against the (2+2) neutrino model, especially the Sum Rule, is investigated. Through numerical calculations, it is shown that the small mixing angles, especially ɛμμ and ɛμe with the assistance of the MSW matter effect can significantly weaken the Sum Rule. This result casts doubts on the conclusions of the global experiment data fitting, in which two of the small mixing angles ɛμe and ɛ ee are set to zero. With the future extremely high-energy neutrino cosmic ray detectors and the improvement in the neutrino oscillation experiments, the full establishment of the neutrino mass spectrum with the absolute neutrino mass could be achieved in the this decade.

  18. PREFACE: Prospects in Neutrino Physics 2013 - NuPhys2013

    NASA Astrophysics Data System (ADS)

    2015-04-01

    The first "Prospects in Neutrino Physics 2013 - NuPhys2013" conference was held at the Institute of Physics, IoP, London, 19-20 December 2013 and was attended by about 130 delegates from institutions worldwide. Lunch and coffee breaks allowed discussions among delegates and speakers to take place in an informal setting. This conference is unique in discussing the worldwide strategy to address unresolved issues in neutrino physics, and shape the future directions of particle physics. We discussed the current status and focussed especially on the prospects of future experiments, their performance and physics reach. It is particularly timely due to the recent measurements in neutrino physics and planned worldwide experiments. The following topics were addressed: • Theory and Phenomenology Perspectives • Future Long and Short Baseline Neutrino Oscillation Experiments • Reactor neutrino and flux • Neutrinoless double beta decays • Solar, atmospheric, supernova neutrinosNeutrino cosmology in which both the phenomenological and experimental aspects were equally addressed. World-leading experts in the different neutrino areas were invited to give review talks. To encourage and facilitate the participation of early-career researchers and PhD students, a poster session formed a key aspect of this meeting. The conference was organized by Francesca Di Lodovico and Silvia Pascoli. It was sponsored by the IoP through their Topic Research Meeting Grant, and also supported by Durham IPPP, ERC-207282, FP7 invisibles project, Queen Mary University of London.

  19. Solar neutrino detection in a large volume double-phase liquid argon experiment

    NASA Astrophysics Data System (ADS)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  20. Neutrino masses and ordering via multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Langæble, Kasper; Meroni, Aurora; Sannino, Francesco

    2016-09-01

    We define the theoretical framework and deduce the conditions under which multimessenger astronomy can provide useful information about neutrino masses and their ordering. The framework uses time differences between the arrival of neutrinos and the other light messenger, i.e. the graviton, emitted in astrophysical catastrophes. We also provide a preliminary feasibility study elucidating the experimental reach and challenges for planned neutrino detectors such as Hyper-Kamiokande as well as future several-megaton detectors. This study shows that future experiments can be useful in independently testing the cosmological bounds on absolute neutrino masses. Concretely, the success of such measurements depends crucially on the available rate of astrophysical events and further requires development of high resolution timing besides the need for megaton-size detectors.

  1. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  2. Astroparticle physics with solar neutrinos.

    PubMed

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  3. Muon Colliders and Neutrino Factories

    SciTech Connect

    Kaplan, Daniel M.

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  4. The ArgoNeuT experiment

    SciTech Connect

    Spitz, J.; /Yale U.

    2010-01-01

    ArgoNeuT is a Liquid Argon Time Projection Chamber neutrino experiment that recently completed its physics run in the NuMI beamline at Fermilab. Along with research and design for future LArTPCs, the experiments goals include performing a number of neutrino and anti-neutrino cross section measurements. Also, ArgoNeuT hopes to further the understanding of the nuclear physics involved in neutrino scattering by characterizing the low energy protons created in such interactions.

  5. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a experiment, resulting in a marked increase of its tension with other searches, under the standard set of phenomenological assumptions. The method is illustrated for other target materials (superheated and noble liquids).

  6. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a experiment, resulting in a marked increase of its tension with other searches, under the standard set of phenomenological assumptions. The method is illustrated for other target materials (superheated and noble liquids). PMID:23745854

  7. The OPERA experiment in the CERN to Gran Sasso neutrino beam

    NASA Astrophysics Data System (ADS)

    Acquafredda, R.; Adam, T.; Agafonova, N.; Alvarez Sanchez, P.; Ambrosio, M.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Arrabito, L.; Aufranc, C.; Autiero, D.; Badertscher, A.; Bagulya, A.; Baussan, E.; Bergnoli, A.; Bersani Greggio, F.; Bertolin, A.; Besnier, M.; Biaré, D.; Bick, D.; Blin, S.; Borer, K.; Boucrot, J.; Boutigny, D.; Boyarkin, V.; Bozza, C.; Brugière, T.; Brugnera, R.; Brunetti, G.; Buontempo, S.; Campagne, J. E.; Carlus, B.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Ciesielski, R.; Consiglio, L.; Cozzi, M.; D'Amato, G.; Dal Corso, F.; D'Ambrosio, N.; Damet, J.; de La Taille, C.; DeLellis, G.; Déclais, Y.; Descombes, T.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dick, N.; Dmitrievski, S.; Dominjon, A.; Dracos, M.; Duchesneau, D.; Dulach, B.; Dusini, S.; Ebert, J.; Efthymiopoulos, I.; Egorov, O.; Elsener, K.; Enikeev, R.; Ereditato, A.; Esposito, L. S.; Fanin, C.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.; Fournier, L.; Franceschi, A.; Frekers, D.; Fukuda, T.; Fukushima, C.; Galkin, V. I.; Galkin, V. A.; Gallet, R.; Gardien, S.; Garfagnini, A.; Gaudiot, G.; Giacomelli, G.; Giorgini, M.; Girerd, C.; Goellnitz, C.; Goeltzenlichter, T.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grapton, J.-N.; Grella, G.; Grianti, F.; Gschwendtner, E.; Guerin, C.; Guler, M.; Gustavino, C.; Guyonnet, J.-L.; Hagner, C.; Hamane, T.; Hara, T.; Hauger, M.; Hess, M.; Hierholzer, M.; Hoshino, K.; Ieva, M.; Incurvati, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kazuyama, M.; Kim, S. H.; Khovansky, N.; Kimura, M.; Klicek, B.; Knuesel, J.; Kodama, K.; Kolev, D.; Komatsu, M.; Kose, U.; Krasnoperov, A.; Kreslo, I.; Krumstein, Z.; Kutsenov, V. V.; Kuznetsov, V. A.; Laktineh, I.; Lavy, M.; Lazzaro, C.; Le, T. D.; LeFlour, T.; Lenkeit, J.; Lewis, J.; Lieunard, S.; Ljubicic, A.; Longhin, A.; Lutter, G.; Malgin, A.; Manai, K.; Mandrioli, G.; Marotta, A.; Marteau, J.; Martin-Chassard, G.; Matveev, V.; Mauri, N.; Meddahi, M.; Meisel, F.; Meregaglia, A.; Meschini, A.; Messina, M.; Migliozzi, P.; Monacelli, P.; Monteiro, I.; Moreau, F.; Morishima, K.; Moser, U.; Muciaccia, M. T.; Mugnier, P.; Naganawa, N.; Nakamura, M.; Nakano, T.; Napolitano, T.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Nozdrin, A.; Ogawa, S.; Olchevski, A.; Orlandi, D.; Orlova, G.; Osedlo, V.; Ossetski, D.; Paniccia, M.; Paoloni, A.; Park, B. D.; Park, I. G.; Pastore, A.; Patrizii, L.; Pellegrino, L.; Pennacchio, E.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Pupilli, F.; Raux, L.; Repellin, J. P.; Rescigno, R.; Rizhikov, D.; Roganova, T.; Romano, G.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sadovski, A.; Sanelli, C.; Sato, O.; Sato, Y.; Saveliev, V.; Sazhina, G.; Schembri, A.; Schmidt Parzefall, W.; Schroeder, H.; Schütz, H. U.; Schuler, J.; Scotto Lavina, L.; Serrano, J.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J. S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, P.; Sugonyaev, V.; Takahashi, S.; Talochkin, V.; Tenti, M.; Tereschenko, V.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Tsarev, V.; Tsenov, R.; Tufanli, S.; Ugolino, U.; Ushida, N.; Van Beek, G.; Verguilov, V.; Viant, T.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Waelchli, T.; Weber, M.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yakushev, V.; Yoon, C. S.; Zaitsev, Y.; Zghiche, A.; Zimmermann, R.

    2009-04-01

    The OPERA neutrino oscillation experiment has been designed to prove the appearance of ντ in a nearly pure νμ beam (CNGS) produced at CERN and detected in the underground Hall C of the Gran Sasso Laboratory, 730 km away from the source. In OPERA, τ leptons resulting from the interaction of ντ are produced in target units called bricks made of nuclear emulsion films interleaved with lead plates. The OPERA target contains 150000 of such bricks, for a total mass of 1.25 kton, arranged into walls interleaved with plastic scintillator strips. The detector is split into two identical supermodules, each supermodule containing a target section followed by a magnetic spectrometer for momentum and charge measurement of penetrating particles. Real time information from the scintillators and the spectrometers provide the identification of the bricks where the neutrino interactions occurred. The candidate bricks are extracted from the walls and, after X-ray marking and an exposure to cosmic rays for alignment, their emulsion films are developed and sent to the emulsion scanning laboratories to perform the accurate scan of the event. In this paper, we review the design and construction of the detector and of its related infrastructures, and report on some technical performances of the various components. The construction of the detector started in 2003 and it was completed in Summer 2008. The experiment is presently in the data taking phase. The whole sequence of operations has proven to be successful, from triggering to brick selection, development, scanning and event analysis.

  8. Future ultraviolet experiments, including FUSE/COLUMBUS

    NASA Technical Reports Server (NTRS)

    Boggess, A.

    1984-01-01

    Several new facilities for ultraviolet astronomy are under construction or study for launch within the coming decade. These include the Hubble Space Telescope to be launched in 1986 with instruments for spectroscopy, imaging, and photopolarimetry in the ultraviolet; the ASTRO Spacelab payload, also to be launched in 1986 with a similar range of instrumentation; STARLAB, a combined Canadian, Australian and U.S. mission concentrating primarily on imagery; and the Far Ultraviolet Spectroscopic Explorer (FUSE), which was renamed COLUMBUS. COLUMBUS is currently under study by NASA and ESA as a future joint mission for spectroscopic studies of astrophysical plasmas covering a temperature range from approximately 10 to the 3rd power to approximately 10 to the 7th power k. In order to achieve this objective, the optics should be optimized for wavelengths below 1200 Angstroms, with a total wavelength range from approximately 2000 to approximately 100 Angstroms. The operational concept will be based on experience with IUE, but changes in communications techniques since IUE was designed suggest some interesting new approaches to observing.

  9. Using neutrinos as a probe of the strong interaction

    SciTech Connect

    Morfin, J.G.; /Fermilab

    2005-01-01

    Neutrino scattering experiments have been studying QCD for over 30 years. From the Gargamelle experiments in the early 70's, through the subsequent bubble chamber and electronic detector experiments in the 80's and 90's, neutrino scattering experiments have steadily accumulated increasing statistics and minimized their systematic errors. While the most recent study of QCD with neutrinos is from the TeVatron neutrino beam (the NuTeV experiment with results presented by Martin Tzanov at this Workshop), near-future studies will shift to the Main Injector based NuMI facility also at Fermilab. The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINERvA experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector to measure absolute exclusive cross-sections and nuclear effects in v - A interactions as well as a systematic study of the resonance-DIS transition region and DIS with an emphasis on the extraction of high-xBj parton distribution functions. Further in the future an intense proton source, the Fermilab Proton Driver, will increase neutrino interaction rates by a further factor of 5-20.

  10. Sudbury Neutrino Observatory

    SciTech Connect

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  11. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  12. On the Detection of the Free Neutrino

    DOE R&D Accomplishments Database

    Reines, F.; Cowan, C. L., Jr.

    1953-08-06

    The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

  13. Brief introduction of the neutrino event generators

    SciTech Connect

    Hayato, Yoshinari

    2015-05-15

    The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

  14. A Measurement of Electron Neutrino Appearance in the MINOS Experiment After Four Years of Data

    SciTech Connect

    Cavanaugh, Steven

    2010-05-01

    This work attempts to measure or set a limit on sin2(2θ13), the parameter which describes vμ → ve oscillations. The MINOS detectors at Fermilab are used to perform a search for the oscillations utilizing a beam of vμ neutrinos created in the NuMI beamline by the collisions of 120 GeV protons with a carbon target. These collisions create π± and K± which are focused with magnetic horns, are allowed to decay, and result in a beam of vμ in the energy range of 1 to 30 GeV. Two functionally identical steel-scintillator calorimetric detectors are utilized to measure the interactions of the generated neutrinos. A detector close to the NuMI beam, located 104 m underground and 1040 m from the target, is used to measure the properties of the neutrino beam, including the flux, composition, and energy spectrum. This information is used in part to generate a predicted spectrum of neutrinos in absence of vμ → ve oscillations in the detector located far from the target, at a distance of 705 m underground and 735.5 km from the target. An excess of predicted ve charged current events in this far detector will be interpreted as vμ → ve oscillations, and a measurement of sin2(2θ13) will be made using a Feldman-Cousins analysis. The measurement of vμ → ve requires the separation of ve candidates from background events. New reconstruction software was developed with a focus on identifying ve candidate events in order to reduce systematic errors. The event parameters measured by this software were used as an input to an artificial neutral network event discriminator. The details of this reconstruction software and the other steps of the analysis necessary to making the measurement will be discussed. This work builds on a previous measurement made with this

  15. A data summary file structure and analysis tools for neutrino oscillation analysis at the NOvA experiment

    NASA Astrophysics Data System (ADS)

    Backhouse, C.; Rocco, D.

    2015-12-01

    The NuMI Off-axis Neutrino Experiment (NOvA) is designed to study neutrino oscillations in the NuMI beam at Fermilab. Neutrinos at the Main Injector (NuMI) is currently being upgraded to provide 700 kW for NOvA. A 14 kt Far Detector in Ash River, MN and a functionally identical 0.3 kt Near Detector at Fermilab are positioned 810 km apart in the NuMI beam line. The fine granularity of the NOvA detectors provides a detailed representation of particle trajectories. The data volume associated with such granularity, however, poses problems for analyzing data with ease and speed. NOvA has developed a data summary file structure which discards the full event record in favor of higher-level reconstructed information. A general- purpose framework for neutrino oscillation measurements has been developed for analysis of these data summary files. We present the design methodology for this new file format as well as the analysis framework and the role it plays in producing NOvA physics results.

  16. Results from the Cuoricino (Zero-Neutrino Double Beta) Decay Experiment

    SciTech Connect

    Arnaboldi, C; Artusa, D R; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Brofferio, C; Bucci, C; Capelli, S; Carbone, L; Cebrian, S; Clemenza, M; Cremonesi, O; Creswick, R J; de Ward, A; Didomizio, S D; Dolinski, M J; Farach, H A; Fiorini, E; Frossati, G; Giachero, A; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Maruyama, R H; McDonald, R J; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Olivieri, E; Pallavicini, M; Palmieri, E; Pasca, E; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Sangiorgio, S; Sisti, M; Smith, A R; Torres, L; Ventura, G; Vignati, M

    2007-12-20

    Recent results from the CUORICINO {sup 130}Te zero-neutrino double-beta (0v{beta}{beta}) decay experiment are reported. CUORICINO is an array of 62 tellurium oxide (TeO{sub 2}) bolometers with an active mass of 40.7 kg. It is cooled to {approx}8 mK by a dilution refrigerator shielded from environmental radioactivity and energetic neutrons. It is running in the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy. These data represent 11.83 kg y or 90.77 mole-years of {sup 130}Te. No evidence for 0v{beta}{beta}-decay was observed and a limit of T{sub 1/2}{sup 0v} ({sup 130}Te) {ge} 3.0 x 10{sup 24} y (90% C.L.) is set. This corresponds to upper limits on the effective mass, , between 0.19 and 0.68eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of 0v{beta}{beta}-decay by H.V. Klapdor-Kleingrothaus and his co-workers. The experiment continues to acquire data.

  17. Determining the neutrino mass hierarchy with cosmology

    SciTech Connect

    De Bernardis, Francesco; Kitching, Thomas D.; Heavens, Alan; Melchiorri, Alessandro

    2009-12-15

    The combination of current large-scale structure and cosmic microwave background anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with cosmic microwave background constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are nondegenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierarchy. Finally we show that if a particular neutrino hierarchy is assumed then this could bias cosmological parameter constraints, for example, the dark energy equation of state parameter, by > or approx. 1{sigma}, and the sum of masses by 2.3{sigma}. We finally discuss the impact of uncertainties on the theoretical modeling of nonlinearities. The results presented in this analysis are obtained under an approximation to the nonlinear power spectrum. This significant source of uncertainty needs to be addressed in future work.

  18. Neutrino Physics at Fermilab

    SciTech Connect

    Federspiel, F.; Garvey, G.; Louis, W.C.; Mills, G.B.; Tayloe, R.; Sandberg, V.; Sapp, B.; White, D.H.

    1999-07-09

    The Liquid Scintillator Neutrino Detector (LSND), located at the LANSCE (formerly LAMPF) linear accelerator at Los Alamos National Laboratory, has seen evidence for the oscillation of neutrinos, and hence neutrino mass. That discovery was the impetus for this LDRD project, begun in 1996. The goal of this project was to define the appropriate technologies to use in a follow up experiment and to set in place the requirements for such an experiment.

  19. Neutrino masses from neutral top partners

    NASA Astrophysics Data System (ADS)

    Batell, Brian; McCullough, Matthew

    2015-10-01

    We present theories of "natural neutrinos" in which neutral fermionic top partner fields are simultaneously the right-handed neutrinos (RHN), linking seemingly disparate aspects of the Standard Model structure: (a) The RHN top partners are responsible for the observed small neutrino masses, (b) they help ameliorate the tuning in the weak scale and address the little hierarchy problem, and (c) the factor of 3 arising from Nc in the top-loop Higgs mass corrections is countered by a factor of 3 from the number of vectorlike generations of RHN. The RHN top partners may arise in pseudo-Nambu-Goldstone-Boson Higgs models such as the twin Higgs, as well as more general composite, little, and orbifold Higgs scenarios, and three simple example models are presented. This framework firmly predicts a TeV-scale seesaw, as the RHN masses are bounded to be below the TeV scale by naturalness. The generation of light neutrino masses relies on a collective breaking of the lepton number, allowing for comparatively large neutrino Yukawa couplings and a rich associated phenomenology. The structure of the neutrino mass mechanism realizes in certain limits the inverse or linear classes of seesaw. Natural neutrino models are testable at a variety of current and future experiments, particularly in tests of lepton universality, searches for lepton flavor violation, and precision electroweak and Higgs coupling measurements possible at high energy e+e- and hadron colliders.

  20. Neutrino-Induced Meson Productions

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi X.

    We develop a dynamical coupled-channels (DCC) model for neutrino-nucleon reactions in the resonance region, by extending the DCC model that we have previously developed through an analysis of π N,γ N to π N,η N,KΛ ,KΣ reaction data for W ≤ 2.1 GeV. We analyze electron-induced reaction data for both proton and neutron targets to determine the vector current form factors up to Q2 ≤ 3.0 (GeV/c)2. Axial-current matrix elements are derived in accordance with the Partially Conserved Axial Current (PCAC) relation to the πN interactions of the DCC model. As a result, we can uniquely determine the interference pattern between resonant and non-resonant amplitudes. Our calculated cross sections for neutrino-induced single-pion productions are compared with available data, and are found to be in reasonable agreement with the data. We also calculate the double-pion production cross sections in the resonance region, for the first time, with relevant resonance contributions and channel couplings. The result is compared with the double-pion production data. For a future development of a neutrino-nucleus reaction model and/or a neutrino event generator for analyses of neutrino experiments, the DCC model presented here can give a useful input.

  1. Readout electronics validation and target detector assessment for the Neutrinos Angra experiment

    NASA Astrophysics Data System (ADS)

    Alvarenga, T. A.; Anjos, J. C.; Azzi, G.; Cerqueira, A. S.; Chimenti, P.; Costa, J. A.; Dornelas, T. I.; Farias, P. C. M. A.; Guedes, G. P.; Gonzalez, L. F. G.; Kemp, E.; Lima, H. P.; Machado, R.; Nóbrega, R. A.; Pepe, I. M.; Ribeiro, D. B. S.; Simas Filho, E. F.; Valdiviesso, G. A.; Wagner, S.

    2016-09-01

    A compact surface detector designed to identify the inverse beta decay interaction produced by anti-neutrinos coming from near operating nuclear reactors is being developed by the Neutrinos Angra Collaboration. In this document we describe and test the detector and its readout system by means of cosmic rays acquisition. In this measurement campaign, the target detector has been equipped with 16 8-in PMTs and two scintillator paddles have been used to trigger cosmic ray events. The achieved results disclosed the main operational characteristics of the Neutrinos Angra system and have been used to assess the detector and to validate its readout system.

  2. CP violation from a combined Beta Beam and Electron Capture neutrino experiment

    NASA Astrophysics Data System (ADS)

    Bernabeu, Jose; Espinoza, Catalina; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2010-03-01

    We consider the proposal of a facility comprising a hybrid setup for a neutrino beam which combines an electron capture decay with a β+ decay from the same radioactive ion with the same boost. We study the sensitivity to the mixing angle θ13 and the CP-phase, the CP discovery potential and the reach to determine the type of neutrino mass hierarchy. The analysis is performed for different boosts and baselines demonstrating that the combination of the two decay channels, with different neutrino energies, achieves remarkable results.

  3. Results of ultra-low level 71ge counting for application in the Gallex-solar neutrino experiment at the Gran Sasso Underground Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Hampel, W.; Heusser, G.; Huebner, M.; Kiko, J.; Kirsten, T.; Schneider, K.; Schlotz, R.

    1985-01-01

    It has been experimentally verified that the Ultra-Low-Level Counting System for the Gallex solar neutrino experiment is capable of measuring the expected solar up silon-flux to plus or minus 12% during two years of operation.

  4. Toward construction of a unified neutrino-nucleus interaction model

    NASA Astrophysics Data System (ADS)

    Kamano, Hiroyuki

    2014-09-01

    A precise knowledge of the neutrino-nucleus interactions is becoming one of the crucial issues for a successful determination of the neutrino parameters from the future neutrino-oscillation experiments. It is therefore urgent to have a reliable neutrino-nucleus interactoin model that enables a quantitative description of neutrino-nucleus reaction cross sections in an accuracy of 10 percent or less. However, the kinematic regions relevant to the neutrino parameter searches extend over the quasi-elastic, resonance, and deep-inelastic-scattering regions, where different theoretical treatments based on hadronic or partonic degrees of freedom are usually employed, and this makes the construction of a unified neutrino-nucleus interaction model covering those kinematic regions challenging. To tackle on such a challenging issue, we have recently developed a collaboration of experimentalists and theorists in different fields at J-PARC Branch of KEK Theory Center (http://www.nuint.kek.jp/index_e.html). In this talk, I review our efforts toward construction of the unified neutrino-nucleus interaction model at J-PARC Branch of KEK Theory Center. A precise knowledge of the neutrino-nucleus interactions is becoming one of the crucial issues for a successful determination of the neutrino parameters from the future neutrino-oscillation experiments. It is therefore urgent to have a reliable neutrino-nucleus interactoin model that enables a quantitative description of neutrino-nucleus reaction cross sections in an accuracy of 10 percent or less. However, the kinematic regions relevant to the neutrino parameter searches extend over the quasi-elastic, resonance, and deep-inelastic-scattering regions, where different theoretical treatments based on hadronic or partonic degrees of freedom are usually employed, and this makes the construction of a unified neutrino-nucleus interaction model covering those kinematic regions challenging. To tackle on such a challenging issue, we have

  5. Meson exchange current (MEC) models in neutrino interaction generators

    SciTech Connect

    Katori, Teppei

    2015-05-15

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.

  6. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  7. Probing Exotic Physics With Supernova Neutrinos

    SciTech Connect

    Kelso, Chris; Hooper, Dan

    2010-09-01

    Future galactic supernovae will provide an extremely long baseline for studying the properties and interactions of neutrinos. In this paper, we discuss the possibility of using such an event to constrain (or discover) the effects of exotic physics in scenarios that are not currently constrained and are not accessible with reactor or solar neutrino experiments. In particular, we focus on the cases of neutrino decay and quantum decoherence. We calculate the expected signal from a core-collapse supernova in both current and future water Cerenkov, scintillating, and liquid argon detectors, and find that such observations will be capable of distinguishing between many of these scenarios. Additionally, future detectors will be capable of making strong, model-independent conclusions by examining events associated with a galactic supernova's neutronization burst.

  8. Neutrino Beam Simulations and Data Checks for the NOvA Experiment

    SciTech Connect

    Del Tutto, Marco

    2015-01-01

    This thesis presents a study of the NuMI beam line intended to clarify how the particle trajectories through the focusing system and consequently the neutrino event yield are affected by the variation of the Horn Currents.

  9. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  10. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  11. PROPOSAL FOR AN EXPERIMENT PROGRAM IN NEUTRINO PHYSICS AND PROTON DECAY IN THE HOMESTAKE LABORATORY.

    SciTech Connect

    DIWAN, M.; KETTELL, S.; LITTENBERG, W.; MARIANO, W.; PARSA, Z.; SAMIOS, N.; WHITE, S.; ET AL.

    2006-07-24

    This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit with a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL. On the other hand the beam from BNL over the larger distance will produce very large matter effects, and consequently a hint of new physics (beyond CP violation) can be better tested with that configuration. In this proposal we focus on the CP violation physics. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. This presentation is not, however, to be taken as a technical design report with the extensive documentation and contingency costs that a TDR usually entails. Nevertheless, some contingency factors have been included in the estimates given here. The essential ideas expressed here were first laid out in a letter of intent to the interim director of the Homestake Laboratory on July 26, 2001. Since that time, the prospect of a laboratory in the Homestake Mine has been realized, and the design of a long baseline neutrino experiment has been refined. The extrapolation

  12. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  13. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    OGITSU, T.; AJIMA, Y.; ANERELLA, M.; ESCALLIER, J.; GANETIS, G.; GUPTA, R.; HAGEDOM, D.; HARRISON, M.; HIGASHI, N.; IWAMOTO, Y.; ICHIKAWA, A.; JAIN, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; MURATORE, J.; NAKAMOTO, T.; OHHATA, H.; TAKASAKI, N.; TANAKA, K.; TERASHIMA, A.; YAMOMOTO, A.; OBANA, T.; PARKER, B.; WANDERER, P.

    2004-10-03

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results.

  14. The nylon scintillator containment vessels for the Borexino solar neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cadonati, L.; Calaprice, F.; Galbiati, C.; Pocar, A.; Shutt, T.

    2014-06-01

    The neutrino event rate in the Borexino scintillator is very low ( 0.5 events per day per ton) and concentrated in an energy region well below the 2.6 MeV threshold of natural radioactivity. The intrinsic radioactive contaminants in the photomultipliers (PMTs), in the Stainless Steel Sphere, and in other detector components, play special requirements on the system required to contain the scintillator. The liquid scintillator must be shielded from the Stainless Steel Sphere and from the PMTs by a thick barrier of buffer fluid. The fluid barrier, in addition, needs to be segmented in order to contain migration of radon and daughters emanated by the Stainless Steel Sphere and by the PMTs. These requirements were met by designing and building two spherical vessel made of thin nylon film. The inner vessel contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by the second, outer nylon vessel. In addition, the two nylon vessels must satisfy stringent requirements for radioactivity and for mechanical, optical and chemical properties. This paper describes the requirements of the the nylon vessels for the Borexino experiment and offers a brief overview of the construction methods adopted to meet those requirements.

  15. Large-θ 13 perturbation theory of neutrino oscillation for long-baseline experiments

    NASA Astrophysics Data System (ADS)

    Asano, Katsuhiro; Minakata, Hisakazu

    2011-06-01

    The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ɛ ≡ ∆ m {21/2} ∆ m {31/2} ≃ 0 .03 under the 21assumption s 13 ≃ ɛ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as {s_{13}} ˜ sqrt { in } ˜eq 0.18 , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ɛ2. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.

  16. A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Samoylov, O.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Duyang, H.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kim, J. J.; Kirsanov, M.; Kulagin, S.; Kullenberg, C. T.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Libo, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Scott, A. M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Tian, X. C.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2013-11-01

    We present our new measurement of the cross-section for charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9×106 events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to ˜2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of mc(mc)=1.159±0.075 GeV/c2 for the running mass of the charm quark in the MS¯ scheme and a strange quark sea suppression factor of κs=0.591±0.019 at Q2=20 GeV/c2.

  17. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  18. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  19. LIPSS status and LIPSS-2 future experiments

    NASA Astrophysics Data System (ADS)

    Boyce, James R.; Afanasev, A.; Baker, O. K.; Beard, K. B.; Biallas, G.; Minarni, M.; Robinson, T. R.; Shinn, M.

    2012-03-01

    The LIght Pseudoscalar and Scalar Search (LIPSS) experiment was the first dark matter experiment to use a photon beam from a high average power free-electron laser (FEL). LIPSS employed the ``Light Shining through a Wall'' (LSW) technique. Results from these laboratory dark matter searches established new boundaries for six possible dark matter particles. In addition, the experimental set-up can be modified for dark energy particle searches using the ``Particles in a Jar'' technique. The LIPSS set-up will be summarized and a brief description of other DM/DE search possibilities (LIPSS-2) with the FEL facility will be discussed.

  20. Developing future plant experiments for spaceflight

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1990-01-01

    Experiments are described which were designed to support the constructing and using clinostats for studies of microgravity effects and for measuring photosynthesis and respiration in plants in clinostat experiments. Particular attention is given to the development and testing a clinostat for rotating the Space Shuttle Mid-Deck Locker Plant Growth Unit (PGU), a sealed chamber for plan growth and gas exchange measurements on a clinostat, and a porous tube plant nutrient delivery system for the PGU. Design diagrams of these items are presented together with the results of tests.

  1. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  2. Neutrino physics with JUNO

    NASA Astrophysics Data System (ADS)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  3. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  4. Theory of Neutrinos: a White Paper

    SciTech Connect

    Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser, B.; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma State U. /Valencia U. /Fermilab /Durham U., IPPP /Northwestern U. /Campinas State U. /Regina U. /SLAC /Ahmedabad, Phys. Res. Lab /Fermilab /DESY /Taiwan, Inst. Phys. /Pennsylvania U. /Munich, Tech. U. /Amherst Coll. /Enrico Fermi Ctr., Rome /INFN, Rome /Penn State U. /Princeton, Inst. Advanced Study

    2006-01-11

    During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

  5. Theory of neutrinos: A White paper

    SciTech Connect

    Mohapatra, R.N.; Antusch, S.; Babu, K.S.; Barenboim, G.; Chen, Mu-Chun; Davidson, S.; de Gouvea, A.; de Holanda, P.; Dutta, Bhaskar; Grossman, Y.; Joshipura, A.; Kayser, B.; Kersten, J.; Keum, Y.Y.; King, S.F.; Langacker, P.; Lindner, M.; Loinaz, W.; Masina, I.; Mocioiu, I.; Mohanty, S.; /Maryland U. /Madrid, Autonoma U. /Southampton U. /Oklahoma State U. /Valencia U. /Fermilab /Durham U., IPPP /Northwestern U. /Campinas State U. /Regina U. /SLAC /Ahmedabad, Phys. Res. Lab /Fermilab /DESY /Taiwan, Inst. Phys. /Pennsylvania U. /Munich, Tech. U. /Amherst Coll. /Enrico Fermi Ctr., Rome /INFN, Rome /Penn State U. /Princeton, Inst. Advanced Study

    2005-10-01

    During 2004, four divisions of the American Physical Society commissioned a study of neutrino physics to take stock of where the field is at the moment and where it is going in the near and far future. Several working groups looked at various aspects of this vast field. The summary was published as a main report entitled ''The Neutrino Matrix'' accompanied by short 50 page versions of the report of each working group. Theoretical research in this field has been quite extensive and touches many areas and the short 50 page report [1] provided only a brief summary and overview of few of the important points. The theory discussion group felt that it may be of value to the community to publish the entire study as a white paper and the result is the current article. After a brief overview of the present knowledge of neutrino masses and mixing and some popular ways to probe the new physics implied by recent data, the white paper summarizes what can be learned about physics beyond the Standard Model from the various proposed neutrino experiments. It also comments on the impact of the experiments on our understanding of the origin of the matter-antimatter asymmetry of the Universe and the basic nature of neutrino interactions as well as the existence of possible additional neutrinos. Extensive references to original literature are provided.

  6. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    SciTech Connect

    Nakajima, Yasuhiro

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the world

  7. Theory and phenomenology of supernova neutrinos

    SciTech Connect

    Lunardini, Cecilia

    2015-07-15

    The theory and phenomenology of supernova neutrinos is reviewed, with focus on the most recent advancements on the neutrino flux predicted by supernova numerical models, on neutrino oscillations inside the star and in the Earth, and on the physics of the diffuse supernova neutrino background. Future directions of research are briefly summarized.

  8. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  9. Probing Dark Energy via Neutrino and Supernova Observatories

    SciTech Connect

    Hall, Lawrence; Hall, Lawrence J.; Murayama, Hitoshi; Papucci, Michele; Perez, Gilad

    2006-07-10

    A novel method for extracting cosmological evolution parameters is proposed, using a probe other than light: future observations of the diffuse anti-neutrino flux emitted from core-collapse supernovae (SNe), combined with the SN rate extracted from future SN surveys. The relic SN neutrino differential flux can be extracted by using future neutrino detectors such as Gadolinium-enriched, megaton, water detectors or 100-kiloton detectors of liquid Argon or liquid scintillator. The core-collapse SN rate can be reconstructed from direct observation of SN explosions using future precision observatories. Our method, by itself, cannot compete with the accuracy of the optical-based measurements but may serve as an important consistency check as well as a source of complementary information. The proposal does not require construction of a dedicated experiment, but rather relies on future experiments proposed for other purposes.

  10. Diamond sensors for future high energy experiments

    NASA Astrophysics Data System (ADS)

    Bachmair, Felix

    2016-09-01

    With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.

  11. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  12. FermiGrid—experience and future plans

    NASA Astrophysics Data System (ADS)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.

    2008-07-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.

  13. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  14. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  15. The HARP Hadron Production Experiment and Its Significance for Neutrino Factory Design

    NASA Astrophysics Data System (ADS)

    Howlett, L. C.

    2004-03-01

    A neutrino factory would provide a high flux beam of electron and muon neutrinos with well understood energy and flavour composition for detailed studies of neutrino oscillations. Such a beam requires a large number of muons and hence pions, which would be provided by a proton driver and pion production target. The optimal design of such a pion production target and the necessary pion capture system need accurate knowledge of hadron production at energies of several GeV. HARP, a large acceptance particle spectrometer of conventional design, aims to measure hadron production cross sections on thin and thick nuclear targets in the range of beam momentum 2-15 GeV/c in order to provide the desired data.

  16. Computing at h1 - Experience and Future

    NASA Astrophysics Data System (ADS)

    Eckerlin, G.; Gerhards, R.; Kleinwort, C.; KrÜNer-Marquis, U.; Egli, S.; Niebergall, F.

    The H1 experiment has now been successfully operating at the electron proton collider HERA at DESY for three years. During this time the computing environment has gradually shifted from a mainframe oriented environment to the distributed server/client Unix world. This transition is now almost complete. Computing needs are largely determined by the present amount of 1.5 TB of reconstructed data per year (1994), corresponding to 1.2 × 107 accepted events. All data are centrally available at DESY. In addition to data analysis, which is done in all collaborating institutes, most of the centrally organized Monte Carlo production is performed outside of DESY. New software tools to cope with offline computing needs include CENTIPEDE, a tool for the use of distributed batch and interactive resources for Monte Carlo production, and H1 UNIX, a software package for automatic updates of H1 software on all UNIX platforms.

  17. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  18. Atmospheric neutrinos: Status and prospects

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya

    2016-07-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tantalising hints regarding the neutrino mass hierarchy, octant of θ23 and δCP, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such as non-standard interactions, sterile neutrinos and CPT violation studies at these experiments.

  19. Liquid Scintillation Detectors for High Energy Neutrinos

    SciTech Connect

    Smith, Stefanie N.; Learned, John G.

    2010-03-30

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  20. Long-baseline neutrino physics in the U.S

    SciTech Connect

    Kopp, Sacha E.; /Texas U.

    2006-12-01

    Long baseline neutrino oscillation physics in the U.S. is centered at the Fermi National Accelerator Laboratory (FNAL), in particular at the Neutrinos at the Main Injector (NuMI) beamline commissioned in 2004-2005. Already, the MINOS experiment has published its first results confirming the disappearance of {nu}{sub {mu}}'s across a 735 km baseline. The forthcoming NOvA experiment will search for the transition {nu}{sub {mu}} {yields} {nu}{sub e} and use this transition to understand the mass heirarchy of neutrinos. These, as well as other conceptual ideas for future experiments using the NuMI beam, will be discussed. The turn-on of the NuMI facility has been positive, with over 310 kW beam power achieved. Plans for increasing the beam intensity once the Main Injector accelerator is fully-dedicated to the neutrino program will be presented.

  1. Proton decay and solar neutrino experiment with a liquid argon Time Projection Chamber

    SciTech Connect

    Chen, H.H.; Doe, P.J.; Mahler, H.I.

    1983-01-01

    Recent progress in development of the liquid argon Time Projection Chamber is reviewed. Application of this technique to a search for proton decay and /sup 8/B solar neutrinos with directional sensitivity is considered. The steps necessary for a large scale application of this technique deep underground are described.

  2. Neutrino Project X at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2008-07-01

    In this talk I will give a brief description of Project X and an outline of the Neutrino Physics possibilities it provides at Fermilab. Project X is the generic name given to a new intense proton source at Fermilab. This source would produce more than 2 MW of proton power at 50 to 120 GeV, using the main injector, which could be used for a variety of long baseline neutrino experiments. A new 8 GeV linac would be required with many components aligned with a possible future ILC. In addition to the beam power from the main injector there is an additional 200 kW of 8 GeV protons that could be used for kaon, muon, experiments.

  3. Neutrino and Anti-neutrino Cross Sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan

    2011-10-06

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH{sub 2}). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  4. Signatures of neutrino cooling in the SN1987A scenario

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Bernal, C. G.; Hidalgo-Gaméz, A. M.

    2014-07-01

    The neutrino signal from SN1987A confirmed the core-collapse scenario and the possible formation of a neutron star. Although this compact object has eluded all observations, theoretical and numerical developments have allowed a glimpse of the fate of it. In particular, a hypercritical accretion model has been proposed to forecast the accretion of ˜0.15 M⊙ in two hours and the subsequent submergence of the magnetic field in the newborn neutron star. In this paper, we revisit Chevalier's model in a numerical framework, focusing on the neutrino cooling effect on the supernova fall-back dynamics. For that, using a customized version of the FLASH code, we carry out numerical simulations of the accretion of matter on to the newborn neutron star in order to estimate the size of the neutrino-sphere, the emissivity and luminosity of neutrinos. As a signature of this phase, we estimate the neutrinos expected on SK neutrino experiment and their flavour ratios. This is academically important because, although currently it was very difficult to detect 1.46 thermal neutrinos and their oscillations, these fingerprints are the only viable and reliable way to confirm the hypercritical phase. Perhaps new techniques for detecting neutrino oscillations will arise in the near future allowing us to confirm our estimates.

  5. Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Canetti, Laurent; Drewes, Marco; Frossard, Tibor; Shaposhnikov, Mikhail

    2013-05-01

    We show that, leaving aside accelerated cosmic expansion, all experimental data in high energy physics that are commonly agreed to require physics beyond the Standard Model can be explained when completing the model by three right-handed neutrinos that can be searched for using present-day experimental techniques. The model that realizes this scenario is known as the Neutrino Minimal Standard Model (νMSM). In this article we give a comprehensive summary of all known constraints in the νMSM, along with a pedagogical introduction to the model. We present the first complete quantitative study of the parameter space of the model where no physics beyond the νMSM is needed to simultaneously explain neutrino oscillations, dark matter, and the baryon asymmetry of the Universe. The key new point of our analysis is leptogenesis after sphaleron freeze-out, which leads to resonant dark matter production, thus evading the constraints on sterile neutrino dark matter from structure formation and x-ray searches. This requires one to track the time evolution of left- and right-handed neutrino abundances from hot big bang initial conditions down to temperatures below the QCD scale. We find that the interplay of resonant amplifications, CP-violating flavor oscillations, scatterings, and decays leads to a number of previously unknown constraints on the sterile neutrino properties. We furthermore reanalyze bounds from past collider experiments and big bang nucleosynthesis in the face of recent evidence for a nonzero neutrino mixing angle θ13. We combine all our results with existing constraints on dark matter properties from astrophysics and cosmology. Our results provide a guideline for future experimental searches for sterile neutrinos. A summary of the constraints on sterile neutrino masses and mixings has appeared in Canetti et al. [Phys. Rev. Lett. 110, 061801 (2013)PRLTAO0031-9007]. In this article we provide all details of our calculations and give constraints on other model

  6. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    SciTech Connect

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.; Melchiorri, A.; Serra, P.; Silk, J.

    2004-12-01

    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta-decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta-decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m{sub {beta}} by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m{sub {beta}}{sub {beta}} from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on {sigma} from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the two degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-{alpha} forest data from the Sloan Digital Sky Survey (SDSS), in models with a nonzero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m{sub {beta}},m{sub {beta}}{sub {beta}},{sigma}) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between {sigma} and m{sub {beta}}{sub {beta}} constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and nonoscillatory) can further probe the currently allowed regions.

  7. High-energy neutrino astrophysics: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Katz, U. F.; Spiering, Ch.

    2012-07-01

    Neutrinos are unique cosmic messengers. Present attempts are directed to extend the window of cosmic neutrino observation from low energies (Sun, supernovae) to much higher energies. The aim is to study the most violent processes in the Universe which accelerate charged particles to highest energies, far beyond the reach of laboratory experiments on Earth. These processes must be accompanied by the emission of neutrinos. Neutrinos are electrically neutral and interact only weakly with ordinary matter; they thus propagate through the Universe without absorption or deflection, pointing back to their origin. Their feeble interaction, however, makes them extremely difficult to detect. The years 2008-2010 have witnessed remarkable steps in developing high energy neutrino telescopes. In 2010, the cubic-kilometre neutrino telescope IceCube at the South Pole has been completed. In the Mediterranean Sea the first-generation neutrino telescope ANTARES takes data since 2008, and efforts are directed towards KM3NeT, a telescope on the scale of several cubic kilometres. The next years will be key years for opening the neutrino window to the high energy Universe. With an instrumented volume of a cubic kilometre, IceCube is entering a region with realistic discovery potential. Discoveries or non-discoveries of IceCube will have a strong impact on the future of the field and possibly mark a "moment of truth". In this review, we discuss the scientific case for neutrino telescopes, describe the detection principle and its implementation in first- and second-generation installations and finally collect the existing physics results and the expectations for future detectors. We conclude with an outlook to alternative detection methods, in particular for neutrinos of extremely high energies.

  8. DEVELOPMENT OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE PROTON TRANSPORT LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    NAKAMOTO, T.; AJIMA, Y.; FUJII, Y.; HIGASHI, N.; ICHIKAWA, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; OGITSU, T.; OHHATA, H.; OKAMURA, T.; SASAKI, K.; ET AL.

    2005-05-16

    Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.

  9. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  10. Searches for muon-to-electron (anti) neutrino flavor change

    NASA Astrophysics Data System (ADS)

    Louis, W. C.

    2009-07-01

    Employing an 800 MeV, high-intensity proton beam, the LSND experiment performed a sensitive search for neutrino oscillations and obtained evidence for ν→ν flavor change. Although the KARMEN experiment observed no such evidence, a joint analysis of the two experiments shows that the data sets are compatible with neutrino oscillations occurring either in a band from 0.2 to 1 eV 2 or in a region around 7 eV 2. The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for neutrino oscillations [C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995); 77, 3082 (1996); 81, 1774 (1998); A. Aguilar et al., Phys. Rev. D 64, 112007 (2001)]. The MiniBooNE oscillation result in neutrino mode [A. Aguilar-Arevalo et al., Phys. Rev. Lett. 98, 231801 (2007); A. Aguilar-Arevalo et al. arXiv:0812.2243] shows no significant excess of events at higher energies ( Eν>475 MeV), although a sizeable excess is observed at lower energies ( Eν<475 MeV). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2-ν oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos and whether the excess is related to the LSND signal. If the excess is consistent with being due to sterile neutrinos or other new physics, then future experiments at FNAL (MicroBooNE & BooNE) or ORNL (OscSNS) or with the Low-Energy Neutrino Spectrometer (LENS) detector could confirm their existence.

  11. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-07-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  12. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  13. Emerging Trends in Teacher Preparation: The Future of Field Experiences.

    ERIC Educational Resources Information Center

    Slick, Gloria Appelt, Ed.

    This is the fourth in a series of four books presenting a variety of field experience program models and philosophies that drive the programs provided to preservice teachers during their undergraduate teacher preparation. This book focuses on critical issues facing teaching education in the future, in particular field experiences. Major themes…

  14. The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment

    NASA Astrophysics Data System (ADS)

    Agarwalla, S. K.; Agostino, L.; Aittola, M.; Alekou, A.; Andrieu, B.; Angus, D.; Antoniou, F.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Autiero, D.; Ballett, P.; Bandac, I.; Banerjee, D.; Barker, G. J.; Barr, G.; Bartmann, W.; Bay, F.; Berardi, V.; Bertram, I.; Bésida, O.; Blebea-Apostu, A. M.; Blondel, A.; Bogomilov, M.; Borriello, E.; Boyd, S.; Brancus, I.; Bravar, A.; Buizza-Avanzini, M.; Cafagna, F.; Calin, M.; Calviani, M.; Campanelli, M.; Cantini, C.; Caretta, O.; Cata-Danil, G.; Catanesi, M. G.; Cervera, A.; Chakraborty, S.; Chaussard, L.; Chesneanu, D.; Chipesiu, F.; Christodoulou, G.; Coleman, J.; Crivelli, P.; Davenne, T.; Dawson, J.; De Bonis, I.; De Jong, J.; Déclais, Y.; Del Amo Sanchez, P.; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Duchesneau, D.; Dumarchez, J.; Efthymiopoulos, I.; Eliseev, A.; Emery, S.; Enqvist, K.; Enqvist, T.; Epprecht, L.; Ereditato, A.; Erykalov, A. N.; Esanu, T.; Finch, A. J.; Fitton, M. D.; Franco, D.; Galymov, V.; Gavrilov, G.; Gendotti, A.; Giganti, C.; Goddard, B.; Gomez, J. J.; Gomoiu, C. M.; Gornushkin, Y. A.; Gorodetzky, P.; Grant, N.; Haesler, A.; Haigh, M. D.; Hasegawa, T.; Haug, S.; Hierholzer, M.; Hissa, J.; Horikawa, S.; Huitu, K.; Ilic, J.; Ioannisian, A. N.; Izmaylov, A.; Jipa, A.; Kainulainen, K.; Kalliokoski, T.; Karadzhov, Y.; Kawada, J.; Khabibullin, M.; Khotjantsev, A.; Kokko, E.; Kopylov, A. N.; Kormos, L. L.; Korzenev, A.; Kosyanenko, S.; Kreslo, I.; Kryn, D.; Kudenko, Y.; Kudryavtsev, V. A.; Kumpulainen, J.; Kuusiniemi, P.; Lagoda, J.; Lazanu, I.; Levy, J.-M.; Litchfield, R. P.; Loo, K.; Loveridge, P.; Maalampi, J.; Magaletti, L.; Margineanu, R. M.; Marteau, J.; Martin-Mari, C.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; Mercadante, A.; Mineev, O.; Mirizzi, A.; Mitrica, B.; Morgan, B.; Murdoch, M.; Murphy, S.; Mursula, K.; Narita, S.; Nesterenko, D. A.; Nguyen, K.; Nikolics, K.; Noah, E.; Novikov, Yu.; O'Keeffe, H.; Odell, J.; Oprima, A.; Palladino, V.; Papaphilippou, Y.; Pascoli, S.; Patzak, T.; Payne, D.; Pectu, M.; Pennacchio, E.; Periale, L.; Pessard, H.; Pistillo, C.; Popov, B.; Przewlocki, P.; Quinto, M.; Radicioni, E.; Ramachers, Y.; Ratoff, P. N.; Ravonel, M.; Rayner, M.; Resnati, F.; Ristea, O.; Robert, A.; Rondio, E.; Rubbia, A.; Rummukainen, K.; Sacco, R.; Saftoiu, A.; Sakashita, K.; Sarkamo, J.; Sato, F.; Saviano, N.; Scantamburlo, E.; Sergiampietri, F.; Sgalaberna, D.; Shaposhnikova, E.; Slupecki, M.; Sorel, M.; Spooner, N. J. C.; Stahl, A.; Stanca, D.; Steerenberg, R.; Sterian, A. R.; Sterian, P.; Still, B.; Stoica, S.; Strauss, T.; Suhonen, J.; Suvorov, V.; Szeptycka, M.; Terri, R.; Thompson, L. F.; Toma, G.; Tonazzo, A.; Touramanis, C.; Trzaska, W. H.; Tsenov, R.; Tuominen, K.; Vacheret, A.; Valram, M.; Vankova-Kirilova, G.; Vanucci, F.; Vasseur, G.; Velotti, F.; Velten, P.; Viant, T.; Vincke, H.; Virtanen, A.; Vorobyev, A.; Wark, D.; Weber, A.; Weber, M.; Wiebusch, C.; Wilson, J. R.; Wu, S.; Yershov, N.; Zalipska, J.; Zito, M.

    2014-05-01

    The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from δ CP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5 σ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract δ CP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3 σ C.L. using today's knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.

  15. Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERνA experiments

    NASA Astrophysics Data System (ADS)

    Wilkinson, C.; Terri, R.; Andreopoulos, C.; Bercellie, A.; Bronner, C.; Cartwright, S.; de Perio, P.; Dobson, J.; Duffy, K.; Furmanski, A. P.; Haegel, L.; Hayato, Y.; Kaboth, A.; Mahn, K.; McFarland, K. S.; Nowak, J.; Redij, A.; Rodrigues, P.; Sánchez, F.; Schwehr, J. D.; Sinclair, P.; Sobczyk, J. T.; Stamoulis, P.; Stowell, P.; Tacik, R.; Thompson, L.; Tobayama, S.; Wascko, M. O.; Żmuda, J.

    2016-04-01

    There has been a great deal of theoretical work on sophisticated charged current quasi-elastic (CCQE) neutrino interaction models in recent years, prompted by a number of experimental results that measured unexpectedly large CCQE cross sections on nuclear targets. As the dominant interaction mode at T2K energies, and the signal process in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2K's Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2K's primary neutrino interaction event generator. In this paper, we give an overview of the models implemented and present fits to published νμ and ν¯ μ CCQE cross section measurements from the MiniBooNE and MINER ν A experiments. The results of the fits are used to select a default cross section model for future T2K analyses and to constrain the cross section uncertainties of the model. We find strong tension between datasets for all models investigated. Among the evaluated models, the combination of a modified relativistic Fermi gas with multinucleon CCQE-like interactions gives the most consistent description of the available data.

  16. Neutrino oscillations: present status and outlook

    SciTech Connect

    Schwetz, Thomas

    2008-02-21

    I summarize the status of three-flavour neutrino oscillations with date of Oct. 2007, and provide an outlook for the developments to be expected in the near future. Furthermore, I discuss the status of sterile neutrino oscillation interpretations of the LSND anomaly in the light of recent MiniBooNE results, and comment on implications for the future neutrino oscillation program.

  17. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    SciTech Connect

    Katori, Teppei

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for vμ → ve appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (vμ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10-38 cm2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). ve appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  18. Measurement of Muon Neutrino Quasielastic Scattering on Carbon

    SciTech Connect

    Aguilar-Arevalo, A. A.; Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Mahn, K. B. M.; Monroe, J.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.; Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.; Brice, S. J.; Brown, B. C.; Finley, D. A.

    2008-01-25

    The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of {nu}{sub {mu}} CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M{sub A}{sup eff}=1.23{+-}0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, {kappa}=1.019{+-}0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.

  19. Search for neutrino oscillations at BNL preliminary results from E 816 experiment

    SciTech Connect

    Bernardi, G.

    1987-03-01

    Neutrino interactions in a fine-grain calorimeter have been analyzed with emphasis on events with associated electromagnetic showers. The good granularity of the detector allows to separate photon from electron showers. The number of events with an electron, according to the present status of our analysis, is found to be about three times larger than expected on the basis of the beam composition. 9 refs., 7 figs.

  20. Production and suppression of {sup 11}C in the solar neutrino experiment Borexino

    SciTech Connect

    Meindl, Quirin; Bellini, G.; Benziger, J.; Bonetti, S.; Avanzini, M. Buizza; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; Chepurnov, A.; Dalnoki-Veress, F.; D'Angelo, D.; Davini, S.; Kerret, H. de; Derbin, A.; Etenko, A.; Feilitzsch, F. von; Fomenko, K.; Franco, D.

    2011-04-27

    Cosmogenic {sup 11}C is produced in-situ by atmospheric muons and forms the main background for the measurement of solar pep- and CNO-neutrinos. However, FLUKA simulations show that the majority of {sup 11}C is accompanied by a free neutron in the final state, thus allowing for an efficient tagging method, the so-called Three-Fold Coincidence technique. The technique and its first applications on Borexino data are presented.

  1. Production and suppression of 11C in the solar neutrino experiment Borexino

    NASA Astrophysics Data System (ADS)

    Meindl, Quirin; Bellini, G.; Benziger, J.; Bonetti, S.; Avanzini, M. Buizza; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; Chepurnov, A.; Dalnoki-Veress, F.; D'Angelo, D.; Davini, S.; de Kerret, H.; Derbin, A.; Etenko, A.; von Feilitzsch, F.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Joyce, M.; Kobychev, V.; Korga, G.; Kryn, D.; Laubenstein, M.; Leung, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Risso, P.; Romani, A.; Rountree, D.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2011-04-01

    Cosmogenic 11C is produced in-situ by atmospheric muons and forms the main background for the measurement of solar pep- and CNO-neutrinos. However, FLUKA simulations show that the majority of 11C is accompanied by a free neutron in the final state, thus allowing for an efficient tagging method, the so-called Three-Fold Coincidence technique. The technique and its first applications on Borexino data are presented.

  2. Role of tracking in future relativistic heavy ion experiments

    SciTech Connect

    Gruhn, C.R.

    1986-09-01

    Essentially all electronic high energy experiments have used some form of tracking. All of the planned experiments for the CERN SPS RHI program use tracking. In this talk a brief physics justification for tracking is made, emphasizing the need for correlations. Some of the boundary conditions imposed upon tracking for the SPS/RHIC experiments are examined. The CERN experiment NA36 will be used as an example. Some future alternatives which might facilitate tracking in RHI experiments are examined. 5 refs., 5 figs., 2 tabs.

  3. Interpretation of MINOS data in terms of non-standard neutrino interactions

    SciTech Connect

    Kopp, Joachim; Machado, Pedro A.N.; Parke, Stephen J.; /Fermilab

    2010-09-01

    The MINOS experiment at Fermilab has recently reported a tension between the oscillation results for neutrinos and anti-neutrinos. We show that this tension, if it persists, can be understood in the framework of non-standard neutrino interactions (NSI). While neutral current NSI (non-standard matter effects) are disfavored by atmospheric neutrinos, a new charged current coupling between tau neutrinos and nucleons can fit the MINOS data without violating other constraints. In particular, we show that loop-level contributions to flavor-violating {tau} decays are sufficiently suppressed. However, conflicts with existing bounds could arise once the effective theory considered here is embedded into a complete renormalizable model. We predict the future sensitivity of the T2K and NOvA experiments to the NSI parameter region favored by the MINOS fit, and show that both experiments are excellent tools to test the NSI interpretation of the MINOS data.

  4. Measurement of neutrino mixing angle θ13 and mass difference Δ mee2 from reactor antineutrino disappearance in the RENO experiment

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    2016-07-01

    RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 ⁡ (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat .)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.

  5. A 3×2 texture for neutrino oscillations and leptogenesis

    NASA Astrophysics Data System (ADS)

    Brahmachari, Biswajoy; Okada, Nobuchika

    2008-03-01

    In an economical system with only two heavy right-handed neutrinos, we postulate a new texture for 3×2 Dirac mass matrix m. This model implies one massless light neutrino and thus displays only two patterns of mass spectrum for light neutrinos, namely hierarchical or inverse-hierarchical. Both the cases can correctly reproduce all the current neutrino oscillation data with a unique prediction mν=Δmsolar23 and Δmatm2 for the hierarchical and the inverse-hierarchical cases, respectively, which can be tested in next generation neutrino-less double beta decay experiments. Introducing a single physical CP phase in m, we examine baryon asymmetry through leptogenesis. Interestingly, through the CP phase there are correlations between the amount of baryon asymmetry and neutrino oscillation parameters. We find that for a fixed CP phase, the hierarchical case also succeeds in generating the observed baryon asymmetry in our universe, plus a non-vanishing U which is accessible in future baseline neutrino oscillation experiments.

  6. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  7. Detection prospects of the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng

    2015-04-01

    The existence of the cosmic neutrino background (CνB) is a fundamental prediction of the standard Big Bang cosmology. Although current cosmological probes provide indirect observational evidence, the direct detection of the CνB in a laboratory experiment is a great challenge to the present experimental techniques. We discuss the future prospects for the direct detection of the CνB, with the emphasis on the method of captures on beta-decaying nuclei and the PTOLEMY project. Other possibilities using the electron-capture (EC) decaying nuclei, the annihilation of extremely high-energy cosmic neutrinos (EHECνs) at the Z-resonance, and the atomic de-excitation method are also discussed in this review (talk given at the International Conference on Massive Neutrinos, Singapore, 9-13 February 2015).

  8. Solar neutrino physics in the nineties

    SciTech Connect

    Wilkerson, J.F.

    1990-12-31

    The decade of the 1990`s should prove to be landmark period for the study of solar neutrino physics. Current observations show 2--3 times fewer neutrinos coming from the sun than are theoretically expected. As we enter the decade, new experiments are poised to attempt and discover whether this deficit is a problem with our understanding of how the sun works, is a hint of new neutrino properties beyond those predicted by the standard model of particle physics, or perhaps a combination of both. This paper will briefly review the current status of the field and point out how future measurements should help solve this interesting puzzle. 11 refs., 3 figs., 1 tab.

  9. A guide to designing future ground-based cosmic microwave background experiments

    SciTech Connect

    Wu, W. L. K.; Kuo, C. L.; Errard, J.; Dvorkin, C.; Lee, A. T.; McDonald, P.; Zahn, O.; Slosar, A.

    2014-06-20

    In this follow-up work to the high energy physics Community Summer Study 2013 (aka SNOWMASS), we explore the scientific capabilities of a future Stage IV cosmic microwave background polarization experiment under various assumptions on detector count, resolution, and sky coverage. We use the Fisher matrix technique to calculate the expected uncertainties of cosmological parameters in νΛCDM that are especially relevant to the physics of fundamental interactions, including neutrino masses, effective number of relativistic species, dark energy equation of state, dark matter annihilation, and inflationary parameters. To further chart the landscape of future cosmology probes, we include forecasted results from the baryon acoustic oscillation signal as measured by Dark Energy Spectroscopic Instrument to constrain parameters that would benefit from low redshift information. We find the following best 1σ constraints: σ(M {sub ν}) = 15 meV, σ(N {sub eff}) = 0.0156, dark energy figure of merit = 303, σ(p {sub ann}) = 0.00588 × 3 × 10{sup –26} cm{sup 3} s{sup –1} GeV{sup –1}, σ(Ω {sub K}) = 0.00074, σ(n{sub s} ) = 0.00110, σ(α {sub s}) = 0.00145, and σ(r) = 0.00009. We also detail the dependencies of the parameter constraints on detector count, resolution, and sky coverage.

  10. Extra-large crystal emulsion detectors for future large-scale experiments

    NASA Astrophysics Data System (ADS)

    Ariga, T.; Ariga, A.; Kuwabara, K.; Morishima, K.; Moto, M.; Nishio, A.; Scampoli, P.; Vladymyrov, M.

    2016-03-01

    Photographic emulsion is a particle tracking device which features the best spatial resolution among particle detectors. For certain applications, for example muon radiography, large-scale detectors are required. Therefore, a huge surface has to be analyzed by means of automated optical microscopes. An improvement of the readout speed is then a crucial point to make these applications possible and the availability of a new type of photographic emulsions featuring crystals of larger size is a way to pursue this program. This would allow a lower magnification for the microscopes, a consequent larger field of view resulting in a faster data analysis. In this framework, we developed new kinds of emulsion detectors with a crystal size of 600-1000 nm, namely 3-5 times larger than conventional ones, allowing a 25 times faster data readout. The new photographic emulsions have shown a sufficient sensitivity and a good signal to noise ratio. The proposed development opens the way to future large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks or future neutrino experiments.

  11. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    SciTech Connect

    Wolcott, Jeremy

    2016-01-01

    event generator, we also report on an unpredicted photon-like process we observe in a similar kinematic regime. The absence of this process from models for neutrino interactions is a potential stumbling block for future on-axis neutrino oscillation experiments. We include kinematic and particle species identi cation characterizations which can be used in building models to help address this shortcoming.

  12. W. K. H. Panofsky Prize: The Road to Neutrino Mixing Angle θ13

    NASA Astrophysics Data System (ADS)

    Luk, Kam-Biu

    2014-03-01

    A series of solar, atmospheric, accelerator and reactor neutrino experiments have observed transformations of one type of neutrino to another type. This intriguing phenomenon called neutrino oscillation was predicted by Pontecorvo, Maki, Nakagawa and Sakata. It is due to the fact that the three flavors of neutrinos observed in laboratories are mixtures of three neutrino mass eigenstates. Neutrino mixing is described by a set of three mixing angles and a CP-violating phase. The smallest angle, θ13, was unknown until 2012. Knowing the value of θ13 is essential. Besides being a fundamental parameter of nature, knowing its value will improve our understanding of neutrino mixing, provide guidance for building theoretical models and define the future program of neutrino oscillation experiments. In this talk, the experimental development that led to the recent discovery of a new θ13-driven neutrino oscillation will be presented. Work was supported by the US Department of Energy, Office of High Energy Physics, contract DE-AC02-05CH11231.

  13. Can neutrino-electron scattering tell us whether neutrinos are Dirac or Majorana particles

    SciTech Connect

    Kayser, B.

    1988-04-01

    There has recently been interest in the possibility that neutrino-electron scattering experiments could determine whether neutrinos are Dirac or Majorana particles by providing information on their electromagnetic structure. We try to explain why studies of neutrino electromagnetic structure actually cannot distinguish between Dirac and Majorana neutrinos. 9 refs.

  14. Quantifying the impact of various radioactive background sources on germanium-76 zero-neutrino-double-beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Mizouni, Katarina Leila

    The goal of searching for 0nubetabeta-decay is to probe an absolute neutrino mass scale suggested by the mass-splitting parameters observed by neutrino oscillation experiments. Furthermore, observation of 0nubetabeta-decay is an explicit instance of lepton-number non-conservation. To detect the rare events such as 0nubetabeta-decay, half-lives of the order of 10 25-1027 years have to be probed. Using an active detector with a large volume, such as hundreds of kilograms of HPGe in the case of MAJORANA, and taking efficient measures to mitigate background of cosmic and primordial origins are necessary for the success of a sensitive 0nubetabeta-decay experiment. One focus of the present research is the analysis of data from Cascades, a HPGe crystal array developed at Pacific Northwest National Laboratory in Richland, WA, to determine an upper bound on primordial radiation levels in the cryostat constructed with electroformed copper similar to that electroformed for MAJORANA. It will be shown, however, that there are sources of background much more serious than cryostats in 76Ge experiments. Additionally, experimental applications of the Cascades detector were studied by predicting the sensitivity for a 0nuBB-decay experiment using GEANT4 simulations. Tellurium-130, an even-even nucleus that can undergo 0nubetabeta-decay to either the ground state or first 01+ excited state of 130Xe, was used as an example. The present work developed techniques that will be used for a number of measurements of betabeta-decay half-lives for decays to excited states of the daughter isotopes.

  15. Mass production test of Hamamatsu MPPC for T2K neutrino oscillation experiment

    NASA Astrophysics Data System (ADS)

    Yokoyama, M.; Nakaya, T.; Gomi, S.; Minamino, A.; Nagai, N.; Nitta, K.; Orme, D.; Otani, M.; Murakami, T.; Nakadaira, T.; Tanaka, M.

    2009-10-01

    In the T2K near neutrino detectors, about 60 000 Hamamatsu Multi-Pixel Photon Counters (MPPCs) will be used. The mass production of MPPC has started in February 2008. In order to perform quality assurance and to characterize each device, we have developed an MPPC test system. For each MPPC, gain, breakdown voltage, noise rate, photo detection efficiency, and cross-talk and after-pulse rate are measured as functions of the bias voltage and temperature. The design of the test system and the measurement procedure are described.

  16. Comparisons of neutrino event generators from an oscillation-experiment perspective

    SciTech Connect

    Mayer, Nathan

    2015-05-15

    Monte Carlo generators are crucial to the analysis of high energy physics data, ideally giving a baseline comparison between the state-of-art theoretical models and experimental data. Presented here is a comparison between three of final state distributions from the GENIE, Neut, NUANCE, and NuWro neutrino Monte Carlo event generators. The final state distributions chosen for comparison are: the electromagnetic energy fraction in neutral current interactions, the energy of the leading π{sup 0} vs. the scattering angle for neutral current interactions, and the muon energy vs. scattering angle of ν{sub µ} charged current interactions.

  17. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  18. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  19. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    SciTech Connect

    Grange, Joseph M.

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  20. First measurement of the flux of solar neutrinos from the sun at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wittich, Peter

    2000-12-01

    The Sudbury Neutrino Observatory (SNO) is a second generation solar neutrino detector. SNO is the first experiment that is able to measure both the electron neutrino flux and a flavor-blind flux of all active neutrino types, allowing a model-independent determination if the deficit of solar neutrinos known as the solar neutrino problem is due to neutrino oscillation. The Sudbury Neutrino Observatory started taking production data in November, 1999. A measurement of the charged current rate will be the first indication if SNO too sees a suppression of the solar neutrino signal relative to the theoretical predictions. Such a confirmation is the first step in SNO's ambitious science program. In this thesis, we present evidence that SNO is seeing solar neutrinos and a preliminary ratio of the measured vs predicted rate of electrons as induced by 8B neutrinos in the νe, + d --> p + p + e charged-current (CC) reaction.

  1. Professional Experience: Learning from the Past to Build the Future

    ERIC Educational Resources Information Center

    Le Cornu, Rosie

    2016-01-01

    The title of the 2014 Australian Teacher Education Association (ATEA) conference was "Teacher Education, An Audit: Building a platform for future engagement." One of the conference themes was "Professional Experience: What works? Why?" I seized upon this theme and the title of the conference as it afforded me an opportunity to…

  2. Muon Colliders and Neutrino Factories *

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate O(1021) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  3. Muon Colliders and Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  4. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    SciTech Connect

    Diaz, Enrique Arrieta

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  5. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE)

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castañeda Vázquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.

    2016-07-01

    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below 2 e‑ RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.

  6. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE)

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castañeda Vázquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.

    2016-07-01

    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below 2 e- RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.

  7. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    SciTech Connect

    Chvojka, Jesse John

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  8. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  9. Sneutrino dark matter in gauged inverse seesaw models for neutrinos.

    PubMed

    An, Haipeng; Dev, P S Bhupal; Cai, Yi; Mohapatra, R N

    2012-02-24

    Extending the minimal supersymmetric standard model to explain small neutrino masses via the inverse seesaw mechanism can lead to a new light supersymmetric scalar partner which can play the role of inelastic dark matter (IDM). It is a linear combination of the superpartners of the neutral fermions in the theory (the light left-handed neutrino and two heavy standard model singlet neutrinos) which can be very light with mass in ~5-20 GeV range, as suggested by some current direct detection experiments. The IDM in this class of models has keV-scale mass splitting, which is intimately connected to the small Majorana masses of neutrinos. We predict the differential scattering rate and annual modulation of the IDM signal which can be testable at future germanium- and xenon-based detectors.

  10. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  11. Detectors for Neutrino Physics at the First Muon Collider

    SciTech Connect

    Harris, D.A.; McFarland, K.S.

    1998-04-01

    We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop`` scale is also discussed.

  12. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  13. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    SciTech Connect

    Ding Yayun; Zhang Zhiyong

    2010-05-12

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results show that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.

  14. On LBNE neutrino flux systematic uncertainties

    SciTech Connect

    Lebrun, Paul L. G.; Hylen, James; Marchionni, Alberto; Fields, Laura; Bashyal, Amit; Park, Seongtae; Watson, Blake

    2015-10-15

    The systematic uncertainties in the neutrino flux of the Long-Baseline Neutrino Experiment, due to alignment uncertanties and tolerances of the neutrino beamline components, are estimated. In particular residual systematics are evaluated in the determination of the neutrino flux at the far detector, assuming that the experiment will be equipped with a near detector with the same target material of the far detector, thereby canceling most of the uncertainties from hadroproduction and neutrino cross sections. This calculation is based on a detailed Geant4-based model of the neutrino beam line that includes the target, two focusing horns, the decay pipe and ancillary items, such as shielding.

  15. Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source : a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  16. Neutrino Flux Prediction for the NuMI Beamline

    SciTech Connect

    Soplin, Leonidas Aliaga

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the flux for the upcoming DUNE experiment.

  17. Neutrino Flux Prediction for the NuMI Beamline

    SciTech Connect

    Aliaga Soplin, Leonidas

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the fl ux for the upcoming DUNE experiment.

  18. Transverse Spin Effects in Future Drell-Yan Experiments

    NASA Astrophysics Data System (ADS)

    Peng, Jen-Chieh

    2015-01-01

    We review the current status and future prospect for probing the transverse momentum dependent (TMD) parton distributions using the Drell-Yan process. We focus on the Boer-Mulders and Sivers functions, which are expected to undergo a sign-change from semi-inclusive deep-inelastic scattering (SIDIS) to Drell-Yan process. The constraints of existing Drell-Yan and SIDIS experiments on the signs of these functions are discussed. Future Drell-Yan measurements for the TMDs are also presented.

  19. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2015-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  20. Light sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y. F.; Zavanin, E. M.

    2016-03-01

    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, gallium and Liquid Scintillator Neutrino Detector anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3 + 1 and 3 + 2 schemes are discussed, together with the implications for β-decay and neutrinoless double-β decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives. This review is dedicated to the memory of Hai-Wei Long, our dear friend and collaborator, who passed away on 29 May 2015. He was an exceptionally kind person and an enthusiastic physicist. We deeply miss him.

  1. Constraining a type I seesaw model with A4 flavor symmetry from neutrino data and leptogenesis

    NASA Astrophysics Data System (ADS)

    Kalita, Rupam; Borah, Debasish

    2015-09-01

    We study a type I seesaw model of neutrino masses within the framework of A4 flavor symmetry. Incorporating the presence of both singlet and triplet flavons under A4 symmetry, we construct the leptonic mass matrices involved in the type I seesaw mechanism. We then construct the light neutrino mass matrix using the 3 σ values of neutrino oscillation parameters keeping the presently undetermined parameters, namely, the lightest neutrino mass mlightest , one Dirac CP phase δ , and two Majorana phases α ,β , as free parameters. Comparing the mass matrices derived using A4 parameters as well as light neutrino parameters, we then evaluate all the A4 parameters in terms of light neutrino parameters. Assuming some specific vacuum alignments of the A4 triplet flavon field, we then numerically evaluate all the free parameters in the light neutrino sector, using them to find out the remaining A4 parameters. We then use the numerical values of these parameters to calculate baryon asymmetry through the mechanism of leptogenesis. We constrain not only the A4 vacuum alignments from the requirement of successful leptogenesis, but also the free parameters in the light neutrino sector (mlightest,δ ,α ,β ) to a certain range of values. These values can be tested in ongoing and future neutrino experiments, providing a way to discriminate between different possible A4 vacuum alignments discussed in this work.

  2. Bound on the tau neutrino magnetic moment from the TRISTAN experiments

    NASA Astrophysics Data System (ADS)

    Tanimoto, N.; Nakano, I.; Sakuda, M.

    2000-04-01

    We set limits on the magnetic moment and charge radius of the tau neutrino by examining an extra contribution to the electroweak process e+e--->ννoverlineγ using VENUS, TOPAZ and AMY results. We find that κ(ντ)<9.1×10-6 (i.e. μ(ντ)<9.1×10-6μB, μB=e/2me) and <3.1×10-31 cm2 with Poisson statistics by combining their results. Whereas, similar to this method, with the Unified Approach we find that κ(ντ)<8.0×10-6 and <2.7×10-31 cm2.

  3. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    SciTech Connect

    Nelson, Robert H.

    2010-01-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCπ0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (~ 1, 000, 000 interactions) low-energy (Evϵ 2 0.5 - 2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCπ0 events is presented. The π0 and μ- are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCπ0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of <σ>Φ = (9.2 ± 0.3stat. ± 1.5syst.) × 10-39 cm2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  4. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  5. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  6. The Renaissance of Neutrino Interaction Physics

    SciTech Connect

    Gallagher, Hugh R.

    2009-12-17

    The advent of high intensity neutrino beams for neutrino oscillation experiments has produced a resurgence of interest in neutrino interaction physics. Recent experiments have been revisiting topics not studied since the bubble chamber era, and are exploring many interesting questions at the boundaries of particle and nuclear physics.

  7. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    SciTech Connect

    James, C. W.; Protheroe, R. J.; Ekers, R. D.; Phillips, C. J.; Roberts, P.; Alvarez-Muniz, J.; Bray, J. D.; McFadden, R. A.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.

  8. Planck 2015 constraints on neutrino physics

    NASA Astrophysics Data System (ADS)

    Lattanzi, Massimiliano

    2016-05-01

    Anisotropies of the cosmic microwave background radiation represent a powerful probe of neutrino physics, complementary to laboratory experiments. Here I review constraints on neutrino properties from the recent 2015 data from the Planck satellite.

  9. From Superbeams to Neutrino Factories

    SciTech Connect

    Bross, Alan

    2010-03-30

    The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities (beta-beam and super-beam facilities), give an overview of the accelerator complex and describe in detail the current international R and D program.

  10. Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube

    NASA Astrophysics Data System (ADS)

    Bhupal Dev, P. S.; Kazanas, D.; Mohapatra, R. N.; Teplitz, V. L.; Zhang, Yongchao

    2016-08-01

    We discuss a simple non-supersymmetric model based on the electroweak gauge group SU(2)L × SU(2)' × U(1)B–L where the lightest of the right-handed neutrinos, which are part of the leptonic doublet of SU(2)', play the role of a long-lived unstable dark matter with mass in the multi-PeV range. We use a resonant s-channel annihilation to obtain the correct thermal relic density and relax the unitarity bound on dark matter mass. In this model, there exists a 3-body dark matter decay mode producing tau leptons and neutrinos, which could be the source for the PeV cascade events observed in the IceCube experiment. The model can be tested with more precise flavor information of the highest-energy neutrino events in future data.

  11. Effective Majorana neutrino decay

    NASA Astrophysics Data System (ADS)

    Duarte, Lucía; Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A.

    2016-08-01

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width.

  12. Next discoveries in neutrino mixing: Electron neutrino appearance

    NASA Astrophysics Data System (ADS)

    Duyang, Hongyue

    The discovery of neutrino oscillation is a clear evidence of new physics beyond the Standard Model. Measurements of electron neutrino (nu e) and electron anti-neutrino (nu e) appearances are the most important channels to complete the neutrino mixing matrix. In a nue/ nue appearance experiment, a near detector (ND) is used to constrain the neutrino flux and measure the backgrounds to the signal. Backgrounds to the nue appearance comes from Neutral Current Muon Neutrino Interactions (numu-NC), Charged Current Muon Neutrino Interactions (numu-CC), beam nu e events and outside backgrounds. The background components are then extrapolated to the far detector (FD). By looking for excess of signal nu e/nue-like events in FD, we measure the neutrino mixing angle, neutrino's mass hierarchy and the elusive CP-violation in the lepton sector. This dissertation focuses on the signals and backgrounds in nu e/nue appearance measurements. The first part of the dissertation presents an analysis of nue appearance in a large Water Cherenkov detector such as the one proposed by the LBNE collaboration. The analysis, including scanning thousands of events, aims to distinguish nu e signals from the NC backgrounds. The second part of the dissertation presents measurements of Resonance Neutrino Interactions using the NOMAD data. This process plays a critical role in not only neutrino-nuclear cross section but also in the precision analysis of the next generation of neutrino oscillation experiments such as NOnuA and LBNE. The last part of the dissertation discusses the method of using low-nu fit method to measure relative neutrino flux and constrain beam nue background.

  13. Ioffe Institute GRB experiments: past, present and future

    NASA Astrophysics Data System (ADS)

    Aptekar, R. L.; Golenetskii, S. V.; Frederiks, D. D.; Mazets, E. P.; Palshin, V. D.

    2013-07-01

    The short review of GRB studies performed for many years by Ioffe Institute is presented. An important breakthrough in GRB studies became possible owing to four Konus experiments carried out by the Ioffe Institute onboard the Venera 11 to 14 interplanetary missions from 1978 to 1983. The joint Russian-American Konus-Wind experiment, which has already been operating for more than 18 years, provides important and often unique data regarding GRB characteristics in 20 keV - 15 MeV energy range. These investigations were complemented by several Konus and Helicon experiments onboard Russian near-Earth spacecraft. A short description of future Konus-UF and Konus-M experiments are also given.

  14. Sterile Neutrino Searches in MiniBooNE and MicroBooNE

    SciTech Connect

    Ignarra, Christina M.

    2014-09-01

    Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis first presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, future experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a different energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fits which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.

  15. Neutrino and Antineutrino Cross sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  16. HALO the helium and lead observatory for supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Duba, C. A.; Duncan, F.; Farine, J.; Habig, A.; Hime, A.; Robertson, R. G. H.; Scholberg, K.; Shantz, T.; Virtue, C. J.; Wilkerson, J. F.; Yen, S.

    2008-11-01

    The Helium and Lead Observatory (HALO) is a supernova neutrino detector under development for construction at SNOLAB. It is intended to fulfill a niche as a long term, low cost, high livetime, and low maintenance, dedicated supernova detector. It will be constructed from 80 tonnes of lead, from the decommissioning of the Deep River Cosmic Ray Station, and instrumented with approximately 384 meters of 3He neutron detectors from the final phase of the SNO experiment. Charged- and Neutral-Current neutrino interactions in lead expel neutrons from the lead nuclei making a burst of detected neutrons the signature for the detection of a supernova. Existing neutrino detectors are mostly of the water Cerenkov and liquid scintillator types, which are primarily sensitive to electron anti-neutrinos via charged-current interactions on the hydrogen nuclei in these materials. By contrast, the large neutron excess of a heavy nucleus like Pb acts to Pauli-block pranglen transitions induced by electron anti-neutrinos, making HALO primarily sensitive to electron neutrinos. While any supernova neutrino data would provide an invaluable window into supernova dynamics, the electron neutrino CC channel has interesting sensitivity to particle physics through flavour-swapping and spectral splitting due to MSW-like collective neutrino-neutrino interactions in the core of the supernova, the only place in the universe where there is a sufficient density of neutrinos for this to occur. Such data could provide a test for θ13 ≠ 0 and an inverted neutrino mass hierarchy. In addition, the ratio of 1-neutron to 2-neutron events would be a measure of the temperature of the cooling neutron star. For the 80 tonne detector, a supernova at 10 kpc is estimated to produce 43 detected neutrons in the absence of collective ν-ν interactions, and many more in their presence. The high neutrino cross-section and low neutron absorption cross-section of lead, along with the modest cost of lead, makes this

  17. Advanced Test Reactor Testing Experience: Past, Present and Future

    SciTech Connect

    Frances M. Marshall

    2005-04-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world’s premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the corner “lobes” to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 48" long and 5.0" diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors -- US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, wherein the target material is placed in a capsule, or plate form, and the capsule is in direct contact with the primary coolant. The next level of complexity of an experiment is an instrumented lead experiment, which allows for active monitoring and control of experiment conditions during the irradiation. The highest level of complexity of experiment is the pressurized water loop experiment, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

  18. Massive neutrinos in the standard model and beyond

    NASA Astrophysics Data System (ADS)

    Thalapillil, Arun Madhav

    e disappearance like Double-CHOOZ, Daya Bay and RENO, where this modification is less significant and therefore the extracted | Ue3| value when sterile neutrinos are present is close to the one that would be obtained in the 3-neutrino case. Based on our study, we also conclude that the results from T2K imply a 90% C.L. lower-bound on |Ue3|, in the "3 + 2" neutrino case, which is still within the sensitivity of future reactor neutrino experiments like Daya Bay, and consistent with the one-sigma range of sin22theta 13 recently reported by the Double-CHOOZ experiment. Finally, we argue that for the recently determined best-fit parameters, the results in the "3 + 1" scenario would be very close to the medium/long baseline results obtained in the "3 + 2" case analyzed in this work.

  19. Neutrino Experiment to Test the Nature of Muon-Number Conservation

    SciTech Connect

    Willis, S. E.; Hughes, V. W.; Némethy, P.; Burman, R. L.; Cochran, D. R. F.; Frank, J. S.; Redwine, R. P.; Duclos, J.; Kaspar, H.; Hargrove, C. K.; Moser, U.

    1980-02-25

    We have searched for $\\overline{ν}$e from μ⁺→e⁺$\\overline{ν}$eνμ allowed by multiplicative but not additive muon conservation, and for νe from μ⁺→e⁺$\\overline{ν}$eνμ, allowed by both. We used neutrinos from LAMPF and a six-ton Cerenkov counter filled with H₂O to look for νep→ne⁺ and filled with D₂O to look for νed→ppe⁻ . Our branching ratio (μ⁺→e⁺νeνμ)/(μ⁺→all) =-0.001 ± 0.040 is in excellent agreement with the additive law. Our cross section <σ(νed→ppe⁻)> = (0.52 ± 0.18) x 10⁻⁴⁰ cm² agrees with theory.

  20. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-10-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  1. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-06-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  2. Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND

    SciTech Connect

    Cabrera, Blas; Gratta, Giorgio

    2013-08-30

    design and optimize the analysis. Neutrino Physics – In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The “first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on

  3. The Hlma Project in the Light of the First Kamland Results Measurement of sin2 (2θ13) with a New Short Baseline Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Lasserre, Thierry; Schönert, Stefan; Oberauer, Lothar

    2004-04-01

    The year 2002 was very fruitful for low energy neutrino physics. Prior to the results of SNO and KamLAND, a few solutions were perfectly allowed by the combination of all the results of solar and terrestrial neutrino experiments. In that context, the HLMA project was originally proposed to improve the KamLAND determination of the solar mixing parameters if Δ msol2 >=slant 2 10{ - 4} eV2 . In this article we analyse the impact of this project in the light of the first KamLAND results. Altought not new, the possibility to constraint the mixing angle between the third mass field and the electron field with a short baseline reactor neutrino experiment is explored in this article. We show that an experiment with a near detector close to a nuclear reactor and a far detector at about 2 kilometers distance could provide a limit of sin2 (2θ13) < 0.02 (90%C.L.), competitive and complementary with the next generation of accelerator long baseline experiments. Nevertheless, the total systematic error uncertainty has to be reduced by a factor three with respect to the CHOOZ experiment to achieve this goal.

  4. Outlook for future high-pressure shock experiments on minerals

    NASA Astrophysics Data System (ADS)

    Ahrens, T. J.; Asimow, P. D.; Luo, S.; Long, M.; Gelle, E.; Sun, D.

    2006-12-01

    Recent technical progress in several areas related to shock wave experiments in geophysics is enabling a number of new classes of investigation. We will review three particular areas that promise to yield abundant high-quality data in the near future. The timing precision attainable with a simple and effective two-magnet projectile detector has turned out to be unexpectedly good. It enables shock experiments on targets pre-heated to temperatures 1400-1700 degrees C without the use of contact trigger pins at light gas gun shock pressures. The use of in-flight precision projectile detection and realtime computing yields calculated trigger signals to that are accurate to +/-100 ns and allow the highest resolution streak recordings. This development will enable much higher throughput of pre- heated experiments on silicate liquids, minerals, and metals in our lab. The method of data reduction for multichannel pyrometry recordings of shock temperature has been dramatically improved. The measurement of sample absorbance as outlined by Boslough (1989) permits direct calculation of emissivities vs. wavelength for semi-absorbent minerals and obviates previously required assumptions regarding grey-body radiation. As a result data uncertainties have decreased from typically +/- 500 K to +/-100 K for states in the ~5000 K range. This development should enable a new generation of high- precision shock temperature determinations, as well as retrospective re-analysis of archived data. Recently the superheating method of detection of shock melting discovered at Caltech has been extended to the sub-nanosecond shock state region using the laser-driven shock apparatus and appears to give radiance histories which are in complete agreement with much longer duration light gas gun experiments. The short duration laser-driven shock experiments have great possibility to study the details of shock-induced phase transformations and melting in the future.

  5. MINOS atmospheric neutrino contained events

    SciTech Connect

    Habig, A.; /Minnesota U.

    2007-10-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment has continued to collect atmospheric neutrino events while doing a precision measurement of NuMI beam {nu}{sub {mu}} disappearance oscillations. The 5.4 kton iron calorimeter is magnetized to provide the unique capability of discriminating between {nu}{sub {mu}} and {bar {nu}}{sub {mu}} interactions on an event-by-event basis and has been collecting atmospheric neutrino data since July 2003. An analysis of the neutrino events with interaction vertices contained inside the detector will be presented.

  6. Probing Neutrino Hierarchy and Chirality via Wakes.

    PubMed

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Inman, Derek

    2016-04-01

    The relic neutrinos are expected to acquire a bulk relative velocity with respect to the dark matter at low redshifts, and neutrino wakes are expected to develop downstream of the dark matter halos. We propose a method of measuring the neutrino mass based on this mechanism. This neutrino wake will cause a dipole distortion of the galaxy-galaxy lensing pattern. This effect could be detected by combining upcoming lensing surveys with a low redshift galaxy survey or a 21 cm intensity mapping survey, which can map the neutrino flow field. The data obtained with LSST and Euclid should enable us to make a positive detection if the three neutrino masses are quasidegenerate with each neutrino mass of ∼0.1  eV, and a future high precision 21 cm lensing survey would allow the normal hierarchy and inverted hierarchy cases to be distinguished, and even the right-handed Dirac neutrinos may be detectable.

  7. Neutrino mass

    SciTech Connect

    Bowles, T.J.

    1994-04-01

    The existence of a finite neutrino mass would have important consequences in particle physics, astrophysics, and cosmology. Experimental sensitivities have continued to be pushed down without any confirmed evidence for a finite neutrino mass. Yet there are several observations of discrepancies between theoretical predictions and observations which might be possible indications of a finite neutrino mass. Thus, extensive theoretical and experimental work is underway to resolve these issues.

  8. Evidence for neutrino mass: A decade of discovery

    SciTech Connect

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  9. A prioritized set of physiological measurements for future spaceflight experiments

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A set of desired experimental measurements to be obtained in future spaceflights in four areas of physiological investigation are identified. The basis for identifying the measurements was the physiological systems analysis performed on Skylab data and related ground-based studies. An approach for prioritizing the measurement list is identified and discussed with the use of examples. A prioritized measurement list is presented for each of the following areas; cardiopulmonary, fluid-renal and electrolyte, hematology and immunology, and musculoskeletal. Also included is a list of interacting stresses and other factors present in spaceflight experiments whose effects may need to be quantified.

  10. Neutrino factories: realization and physics potential

    SciTech Connect

    Geer, S.; Zisman, M.S.; /LBL, Berkeley

    2006-12-01

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  11. Progress in the Physics of Massive Neutrinos

    NASA Astrophysics Data System (ADS)

    BARGER, V.; MARFATIA, D.; WHISNANT, K.

    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of νμ→νe oscillations and the hierarchy of the neutrino mass spectrum; the detection of CP violation in the neutrino sector depends on these and on an unknown phase. The estimated neutrino parameter sensitivities at future facilities (reactors, superbeams, neutrino factories) are given. The overall agenda of a future neutrino physics program to construct a bottom-up understanding of the lepton sector is presented.

  12. Hunting electroweakinos at future hadron colliders and direct detection experiments

    NASA Astrophysics Data System (ADS)

    di Cortona, Giovanni Grilli

    2015-05-01

    We analyse the mass reach for electroweakinos at future hadron colliders and their interplay with direct detection experiments. Motivated by the LHC data, we focus on split supersymmetry models with different electroweakino spectra. We find for example that a 100 TeV collider may explore Winos up to ˜ 7 TeV in low scale gauge mediation models or thermal Wino dark matter around 3 TeV in models of anomaly mediation with long-lived Winos. We show moreover how collider searches and direct detection experiments have the potential to cover large part of the parameter space even in scenarios where the lightest neutralino does not contribute to the whole dark matter relic density.

  13. Nuclear ( μ- , e+ ) conversion mediated by Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Domin, P.; Kovalenko, S.; Faessler, Amand; Šimkovic, F.

    2004-12-01

    We study the lepton number violating (LNV) process of ( μ- , e+ ) conversion in nuclei mediated by the exchange of light and heavy Majorana neutrinos. Nuclear structure calculations have been carried out for the case of an experimentally interesting nucleus 48Ti in the framework of a renormalized proton-neutron quasiparticle random phase approximation. We demonstrate that the imaginary part of the amplitude of a light Majorana neutrino exchange mechanism gives an appreciable contribution to the ( μ- , e+ ) conversion rate. This specific feature is absent in the allied case of 0νββ decay. Using the present neutrino oscillations, tritium beta decay, accelerator, and cosmological data, we derived the limits on the effective masses of light μe and heavy < M-1 N >μe neutrinos. The expected rates of nuclear ( μ- , e+ ) conversion, corresponding to these limits, were found to be so small that even within a distant future the ( μ- , e+ ) conversion experiments will hardly be able to detect the neutrino signal. Therefore, searches for this LNV process can only rely on the presence of certain physics beyond the trivial extension of the standard model by inclusion of massive Majorana neutrinos.

  14. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  15. The MINOS Experiment: Results and Prospects

    SciTech Connect

    Evans, Justin

    2013-01-01

    The Minos experiment has used the world's most powerful neutrino beam to make precision neutrino oscillation experiments. By observing the disappearance of muon neutrinos, MINOS has made the world's most precise measurement of the larger neutrino mass splitting....

  16. Report of the APS Neutrino Study Reactor Working Group

    SciTech Connect

    Abouzaid, E.; Anderson, K.; Barenboim, G.; Berger, B.; Blucher, E.; Bolton, T.; Choubey, S.; Conrad, J.; Formaggio, J.; Freedman, S.; Finely, D.; Fisher, P.; Fujikawa, B.; Gai, M.; Goodman, M.; de Goueva, A.; Hadley, N.; Hahn, R.; Horton-Smith, G.; Kadel, R.; Kayser, B.; Heeger, K.; Klein, J.; Learned, J.; Lindner, M.; Link, J.; Luk, K.-B.; McKeown, R.; Mocioiu, I.; Mohapatra, R.; Naples, D.; Peng, J.; Petcov, S.; Pilcher, J.; Rapidis, P.; Reyna, D.; Shaevitz, M.; Shrock, R.; Stanton, N.; Stefanski, R.; Yamamoto, R.; Worcester, M.

    2004-10-28

    The worldwide program to understand neutrino oscillations and determine the neutrino mixing parameters, CP violating effects, and mass hierarchy will require a broad combination of measurements. The group believes that a key element of this future neutrino program is a multi-detector neutrino experiment (with baselines of {approx} 200 m and {approx} 1.5 km) with a sensitivity of sin{sup 2} 2{theta}{sub 13} = 0.01. In addition to oscillation physics, the reactor experiment may provide interesting measurements of sin{sup 2} {theta}{sub W} at Q{sup 2} = 0, neutrino couplings, magnetic moments, and mixing with sterile neutrino states. {theta}{sub 13} is one of the twenty-six parameters of the standard model, the best model of electroweak interactions for energies below 100 GeV and, as such, is worthy of a precision measurement independent of other considerations. A reactor experiment of the proposed sensitivity will allow a measurement of {theta}{sub 13} with no ambiguities and significantly better precision than any other proposed experiment, or will set limits indicating the scale of future experiments required to make progress. Figure 1 shows a comparison of the sensitivity of reactor experiments of different scales with accelerator experiments for setting limits on sin{sup 2} 2{theta}{sub 13} if the mixing angle is very small, or for making a measurement of sin{sup 2} 2{theta}{sub 13} if the angle is observable. A reactor experiment with a 1% precision may also resolve the degeneracy in the {theta}{sub 23} parameter when combined with long-baseline accelerator experiments. In combination with long-baseline measurements, a reactor experiment may give early indications of CP violation and the mass hierarchy. The combination of the T2K and Nova long-baseline experiments will be able to make significant measurements of these effects if sin{sup 2} 2{theta}{sub 13} > 0.05 and with enhanced beam rates can improve their reach to the sin{sup 2} 2{theta}{sub 13} > 0.02 level

  17. Neutrino Factory Targets and the MICE Beam

    SciTech Connect

    Walaron, Kenneth Andrew

    2007-01-01

    The future of particle physics in the next 30 years must include detailed study of neutrinos. The first proof of physics beyond the Standard Model of particle physics is evident in results from recent neutrino experiments which imply that neutrinos have mass and flavour mixing. The Neutrino Factory is the leading contender to measure precisely the neutrino mixing parameters to probe beyond the Standard Model physics. Significantly, one must look to measure the mixing angle θ13 and investigate the possibility of leptonic CP violation. If found this may provide a key insight into the origins of the matter/anti- matter asymmetry seen in the universe, through the mechanism of leptogenesis. The Neutrino Factory will be a large international multi-billion dollar experiment combining novel new accelerator and long-baseline detector technology. Arguably the most important and costly features of this facility are the proton driver and cooling channel. This thesis will present simulation work focused on determining the optimal proton driver energy to maximise pion production and also simulation of the transport of this pion °ux through some candidate transport lattices. Bench-marking of pion cross- sections calculated by MARS and GEANT4 codes to measured data from the HARP experiment is also presented. The cooling channel aims to reduce the phase-space volume of the decayed muon beam to a level that can be e±ciently injected into the accelerator system. The Muon Ionisation Cooling Experiment (MICE) hosted by the Rutherford Appleton laboratory, UK is a proof-of-principle experiment aimed at measuring ionisation cooling. The experiment will run parasitically to the ISIS accelerator and will produce muons from pion decay. The MICE beamline provides muon beams of variable emittance and momentum to the MICE experiment to enable measurement of cooling over a wide range of beam conditions. Simulation work in the design of this beamline is presented in this thesis as

  18. PRIDE - Passive Radio Ice Depth Experiment - An Instrument to Measure Outer Planet Lunar Ice Depths from Orbit Using Neutrinos

    NASA Astrophysics Data System (ADS)

    Miller, T.; Schaefer, R. K.; Sequeira, H. B.

    2012-10-01

    We use high-energy neutrino signals in ice to gauge planetary ice layer depth. We consider aspects of the required instrument design and spacecraft constraints. We conclude such an instrument is compatible with constraints on outer planet missions.

  19. Resolving Standard and Nonstandard CP Violation Phases in Neutrino Oscillations

    SciTech Connect

    Gago, A. M.; Minakata, H.; Uchinami, S.; Nunokawa, H.; Zukanovich Funchal, R.

    2010-03-30

    Neutrino oscillations can exhibit extra CP violation effects, beyond those expected from the standard Kobayashi-Maskawa phase delta, if non-standard neutrino interactions are at play. We show that it is possible to disentangle the two CP violating effects by measuring muon neutrino appearance using a near-far two detector setting in a neutrino factory experiment.

  20. Global constraints on heavy neutrino mixing

    NASA Astrophysics Data System (ADS)

    Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2016-08-01

    We derive general constraints on the mixing of heavy Seesaw neutrinos with the SM fields from a global fit to present flavour and electroweak precision data. We explore and compare both a completely general scenario, where the heavy neutrinos are integrated out without any further assumption, and the more constrained case were only 3 additional heavy states are considered. The latter assumption implies non-trivial correlations in order to reproduce the correct neutrino masses and mixings as observed by oscillation data and thus some qualitative differences can be found with the more general scenario. The relevant processes analyzed in the global fit include searches for Lepton Flavour Violating (LFV) decays, probes of the universality of weak interactions, CKM unitarity bounds and electroweak precision data. In particular, a comparative and detailed study of the present and future sensitivity of the different LFV experiments is performed. We find a mild 1-2σ preference for non-zero heavy neutrino mixing of order 0.03-0.04 in the electron and tau sectors. At the 2σ level we derive bounds on all mixings ranging from 0.1 to 0.01 with the notable exception of the e - μ sector with a more stringent bound of 0.005 from the μ → eγ process.

  1. Neutrino mass and dark energy from weak lensing.

    PubMed

    Abazajian, Kevork N; Dodelson, Scott

    2003-07-25

    Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09. PMID:12906650

  2. Techniques and methods for the low-energy neutrino detection

    NASA Astrophysics Data System (ADS)

    Ranucci, Gioacchino

    2016-04-01

    Low-energy neutrino physics and astrophysics has been one of the most active field of particle physics research over the past two decades, achieving important and sometimes unexpected results, which have paved the way for a bright future of further exciting studies. The methods, the techniques and the technologies employed for the construction of the many experiments which acted as important players in this area of investigation have been crucial elements to reach the many accumulated physics successes. The topic covered in this review is, thus, the description of the main features of the set of methodologies at the basis of the design, construction and operation of low-energy neutrino detectors.

  3. A measurement of the 2 neutrino double beta decay rate of Te-130 in the CUORICINO experiment

    SciTech Connect

    Kogler, Laura K.

    2011-11-30

    CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2vββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of 10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2vββ rate. The enriched crystals contained a total of 350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. Residual backgrounds in the subtracted spectrum were fit using spectra generated by Monte-Carlo simulations of natural radioactive contaminants located in and on the crystals. The 2vββ half-life was measured to be T2v1/2 = [9.81± 0.96(stat)± 0.49(syst)] x1020 y.

  4. PRIDE - Passive Radio Ice Depth Experiment - An Instrument to Measure Outer Planet Lunar Ice Depths from Orbit using Neutrinos

    NASA Astrophysics Data System (ADS)

    Miller, T.; Schaefer, R. K.; Sequeira, B.

    2012-12-01

    Energy (EHE) cosmic ray neutrino signal to extract the ice depth on a planetary-sized body. All aspects of the instrument design are covered - the expected signal, the detector configuration, the sampling electronics, etc. Our expectation was that we would encounter a "show-stopper" that would make this instrument untenable, but to our surprise we did not find any obvious major shortcomings. We present here the overall concept and suggest ways PRIDE (Passive Radio [frequency] Ice Depth Experiment) could be realized. We begin with an examination of the expected neutrino signal, then look at antenna/detector characteristics, move on to detector configuration, and end with a discussion of the signal sampling electronics. Lastly, we present conclusions and identify issues for further study.

  5. NASA Astronauts on Soyuz: Experience and Lessons for the Future

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The U. S., Russia, and, China have each addressed the question of human-rating spacecraft. NASA's operational experience with human-rating primarily resides with Mercury, Gemini, Apollo, Space Shuttle, and International Space Station. NASA s latest developmental experience includes Constellation, X38, X33, and the Orbital Space Plane. If domestic commercial crew vehicles are used to transport astronauts to and from space, Soyuz is another example of methods that could be used to human-rate a spacecraft and to work with commercial spacecraft providers. For Soyuz, NASA's normal assurance practices were adapted. Building on NASA's Soyuz experience, this report contends all past, present, and future vehicles rely on a range of methods and techniques for human-rating assurance, the components of which include: requirements, conceptual development, prototype evaluations, configuration management, formal development reviews (safety, design, operations), component/system ground-testing, integrated flight tests, independent assessments, and launch readiness reviews. When constraints (cost, schedule, international) limit the depth/breadth of one or more preferred assurance means, ways are found to bolster the remaining areas. This report provides information exemplifying the above safety assurance model for consideration with commercial or foreign-government-designed spacecraft. Topics addressed include: U.S./Soviet-Russian government/agency agreements and engineering/safety assessments performed with lessons learned in historic U.S./Russian joint space ventures

  6. PeV scale right-handed neutrino dark matter in an S4 flavor-symmetric extra U(1) model

    NASA Astrophysics Data System (ADS)

    Daikoku, Yasuhiro; Okada, Hiroshi

    2015-04-01

    Recent observations of high-energy neutrinos in the IceCube experiment suggests the existence of superheavy dark matter beyond the PeV scale. We identify the parent particles of neutrinos as two degenerated right-handed neutrinos, assuming the dark matter is the heaviest right-handed neutrino. The O (Vc b)˜O (10-2) flavor symmetry breaking accounts for the O (10-4) mass degeneracy of right-handed neutrinos, which is a sizable scale to explain the successful resonant leptogenesis at the PeV scale. At the same time, nonthermal production of the heaviest right-handed neutrino gives the right amount of dark matter for TRH˜10 PeV . The footprint of flavor symmetry is left in the degenerated mass spectra of the extra Higgs multiplet and colored Higgs multiplet, which may be testable at the LHC or future colliders.

  7. Neutrinos and cosmology: a lifetime relationship

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2008-06-01

    We consider the example of neutrino decays to illustrate the profound relation between laboratory neutrino physics and cosmology. Two case studies are presented: In the first one, we show how the high precision cosmic microwave background spectral data collected by the FIRAS instrument on board of COBE, when combined with Lab data, have greatly changed bounds on the radiative neutrino lifetime. In the second case, we speculate on the consequence for neutrino physics of the cosmological detection of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a detection at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on some models of neutrino secret interactions.

  8. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  9. CHARM 2010: Experiment summary and future charm facilities

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  10. Neglecting primordial non-Gaussianity threatens future cosmological experiment accuracy

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Carbone, Carmelita; Fedeli, Cosimo; Moscardini, Lauro

    2015-02-01

    Future galaxy redshift surveys aim at probing the clustering of the cosmic large-scale structure with unprecedented accuracy, thus complementing cosmic microwave background experiments in the quest to deliver the most precise and accurate picture ever of our Universe. Analyses of such measurements are usually performed within the context of the so-called vanilla Λ CDM model—the six-parameter phenomenological model which, for instance, emerges from best fits against the recent data obtained by the Planck satellite. Here, we show that such an approach is prone to subtle systematics when the Gaussianity of primordial fluctuations is concerned. In particular, we demonstrate that, if we neglect even a tiny amount of primordial non-Gaussianity—fully consistent with current limits—we shall introduce spurious biases in the reconstruction of cosmological parameters. This is a serious issue that must be properly accounted for in view of accurate (as well as precise) cosmology.

  11. Traverse Planning Experiments for Future Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.; Voels, S. A.; Mueller, R. P.; Lee, P. C.

    2011-01-01

    This paper describes the results of a recent (July-August 2010 and July 2011) planetary surface traverse planning experiment. The purpose of this experiment was to gather data relevant to robotically repositioning surface assets used for planetary surface exploration. This is a scenario currently being considered for future human exploration missions to the Moon and Mars. The specific scenario selected was a robotic traverse on the lunar surface from an outpost at Shackleton Crater to the Malapert Massif. As these are exploration scenarios, the route will not have been previously traversed and the only pre-traverse data sets available will be remote (orbital) observations. Devon Island was selected as an analog location where a traverse route of significant length could be planned and then traveled. During the first half of 2010, a team of engineers and scientists who had never been to Devon Island used remote sensing data comparable to that which is likely to be available for the Malapert region (eg., 2-meter/pixel imagery, 10-meter interval topographic maps and associated digital elevation models, etc.) to plan a 17-kilometer (km) traverse. Surface-level imagery data was then gathered on-site that was provided to the planning team. This team then assessed whether the route was actually traversable or not. Lessons learned during the 2010 experiment were then used in a second experiment in 2011 for which a much longer traverse (85 km) was planned and additional surface-level imagery different from that gathered in 2010 was obtained for a comparative analysis. This paper will describe the route planning techniques used, the data sets available to the route planners and the lessons learned from the two traverses planned and carried out on Devon Island.

  12. Constraints and tests of the OPERA superluminal neutrinos.

    PubMed

    Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan; Yuan, Qiang

    2011-12-01

    The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10(-5). We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π → μ + ν(μ) kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10(-7). Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10(-12). The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.

  13. Probing neutrino nature at Borexino detector with chromium neutrino source

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2016-10-01

    In this paper, we indicate a possibility of utilizing the intense chromium source (˜ 370 PBq) in probing the neutrino nature in low energy neutrino experiments with the ultra-low threshold and background real-time Borexino detector located near the source (˜ 8 m). We analyse the elastic scattering of electron neutrinos (Dirac or Majorana, respectively) on the unpolarised electrons in the relativistic neutrino limit. We assume that the incoming neutrino beam is the superposition of left-right chiral states produced by the chromium source. Left chiral neutrinos may be detected by the standard V - A and non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while right chiral ones partake only in the exotic V + A and S_R, P_R, T_R interactions. Our model-independent study is carried out for the flavour (current) neutrino eigenstates. We compute the expected event number for the standard V-A interaction of the left chiral neutrinos using the current experimental values of standard couplings and in the case of left-right chiral superposition. We show that the significant decrement in the event number due to the interference terms between the standard and exotic interactions for the Majorana neutrinos may appear. We also demonstrate how the presence of the exotic couplings affects the energy spectrum of outgoing electrons, both for the Dirac and Majorana cases. The 90~% C.L. sensitivity contours in the planes of corresponding exotic couplings are found. The presence of interferences in the Majorana case gives the stronger constraints than for the Dirac neutrinos, even if the neutrino source is placed outside the detector.

  14. How can we test the neutrino mass seesaw mechanism experimentally?

    PubMed

    Buckley, Matthew R; Murayama, Hitoshi

    2006-12-01

    The seesaw mechanism for the small neutrino mass has been a popular paradigm, yet it has been believed that there is no way to test it experimentally. We present a conceivable outcome from future experiments that would convince us of the seesaw mechanism. It would involve data from the CERN Large Hadron Collider, International Linear Collider, cosmology, underground, and low-energy flavor experiments to establish the case. PMID:17280194

  15. How can we test the neutrino mass seesaw mechanism experimentally?

    PubMed

    Buckley, Matthew R; Murayama, Hitoshi

    2006-12-01

    The seesaw mechanism for the small neutrino mass has been a popular paradigm, yet it has been believed that there is no way to test it experimentally. We present a conceivable outcome from future experiments that would convince us of the seesaw mechanism. It would involve data from the CERN Large Hadron Collider, International Linear Collider, cosmology, underground, and low-energy flavor experiments to establish the case.

  16. A high intensity 6He beam for the β-beam neutrino oscillation facility

    NASA Astrophysics Data System (ADS)

    Stora, Thierry; Noah, Etam; Hodak, Rastislav; Hirsh, Tsviki Y.; Hass, Michael; Kumar, Vivek; Singh, Kuljeet; Vaintraub, Sergey; Delahaye, Pierre; Franberg-Delahaye, Hanna; Saint-Laurent, Marie-Genevieve; Lhersonneau, Gerard

    2012-05-01

    This work presents the production and extraction of the short-lived radionuclide 6He in yet unmatched yields from the ISOLDE facility at CERN. It is the first report of 6He production using spallation neutrons via the 9Be(n, α)6He reaction. These neutrons are produced from the 1.4 GeV proton beam of the Proton Synchrotron Booster (PSB) striking a tungsten converter, and are impinging on a porous BeO material. The central position of 6He in future experiments is due to its role as a necessary radioactive nucleus to realize the β-beam at CERN, a next-generation facility to study neutrino oscillation parameters, and hence neutrino masses. In the β-beam scenario, an intense beam of radioactive 6He nuclei will be produced, accelerated to multi-GeV energies and stored in a dedicated storage ring. The resulting virtually mono-directional anti-neutrino beam from the decay of the stored 6He nuclei will be directed towards a remote underground neutrino detector. A similar beam of, e.g., 18Ne will provide neutrinos, an ideal concept to test CP violation in the neutrino sector. The results of the present experiment demonstrate for the first time that the necessary conditions for the realization of the proposed β-beam scheme with anti-neutrinos can be fulfilled.

  17. Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation

    SciTech Connect

    Kersten, Joern; Smirnov, Alexei Yu.

    2007-10-01

    We consider the possibility to detect right-handed neutrinos, which are mostly singlets of the standard model gauge group, at future accelerators. Substantial mixing of these neutrinos with the active neutrinos requires a cancellation of different contributions to the light neutrino mass matrix at the level of 10{sup -8}. We discuss possible symmetries behind this cancellation and argue that for three right-handed neutrinos they always lead to conservation of total lepton number. Light neutrino masses can be generated by small perturbations violating these symmetries. In the most general case, LHC physics and the mechanism of neutrino mass generation are essentially decoupled; with additional assumptions, correlations can appear between collider observables and features of the neutrino mass matrix.

  18. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    PubMed

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory. PMID:25165903

  19. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    PubMed

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.

  20. Searching for sterile neutrinos from π and K decays

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel

    2013-04-01

    The production of heavy sterile neutrinos from π-, K- decay at rest yields charged leptons with negative helicity (positive for π+, K+). We obtain the branching ratio for this process and argue that a Stern-Gerlach filter with a magnetic field gradient leads to spatially separated domains of both helicity components with abundances determined by the branching ratio. Complemented with a search of the monochromatic peak, this setup can yield both the mass and mixing angles for sterile neutrinos with masses in the range 3MeV≲ms≲414MeV in next generation high intensity experiments. We also study oscillations of light Dirac and Majorana sterile neutrinos with ms≃eV produced in meson decays including decoherence aspects arising from lifetime effects of the decaying mesons and the stopping distance of the charged lepton in short baseline experiments. We obtain the transition probability from production to detection via charged current interactions including these decoherence effects for 3+1 and 3+2 scenarios, also studying |ΔL|=2 transitions from ν¯↔ν oscillations for Majorana neutrinos and the impact of these effects on the determination of CP-violating amplitudes. We argue that decoherence effects are important in current short baseline accelerator experiments, leading to an underestimate of masses, mixing and CP-violating angles. At MiniBooNE/SciBooNE we estimate that these effects lead to an ˜15% underestimate for sterile neutrino masses ms≳3eV. We argue that reactor and current short baseline accelerator experiments are fundamentally different and suggest that in future high intensity experiments with neutrinos produced from π, K decay at rest, stopping the charged leptons on distances much smaller than the decay length of the parent meson suppresses considerably these decoherence effects.