Nuclear Weapons: Comprehensive Test Ban Treaty
2007-07-12
done. Critics raised concerns about the implications of these policies for testing and new weapons. At present, Congress addresses nuclear weapon...future, but there are no plans to do so.’”7 Critics expressed concern about the implications of these policies for testing and new weapons. A statement by...opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”8 Another critic felt that
Your Career and Nuclear Weapons: A Guide for Young Scientists and Engineers.
ERIC Educational Resources Information Center
Albrecht, Andreas; And Others
This four-part booklet examines various issues related to nuclear weapons and how they will affect an individual working as a scientist or engineer. It provides information about the history of nuclear weapons, about the weapons industry which produces them, and about new weapons programs. Issues are raised so that new or future graduates may make…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Lani Miyoshi; DeLand, Sharon M.; Pregenzer, Arian L.
2010-11-01
In his 2009 Prague speech and the 2010 Nuclear Posture Review, President Barack Obama committed the United States to take concrete steps toward nuclear disarmament while maintaining a safe, secure, and effective nuclear deterrent. There is an inherent tension between these two goals that is best addressed through improved integration of nuclear weapons objectives with nuclear arms control objectives. This article reviews historical examples of the interaction between the two sets of objectives, develops a framework for analyzing opportunities for future integration, and suggests specific ideas that could benefit the nuclear weapons enterprise as it undergoes transformation and that couldmore » make the future enterprise compatible with a variety of arms control futures.« less
U.S. Nuclear Weapons Enterprise: A Strategic Past and Unknown Future
2012-04-25
are left to base their planning assumptions, weapons designs and capabilities on outdated models . The likelihood of a large-scale nuclear war has...conduct any testing on nuclear weapons and must rely on computer modeling . While this may provide sufficient confidence in the current nuclear...unlikely the world will be free of nuclear weapons. 24 APPENDIX A – Acronyms ACC – Air Combat Command ACM – Advanced cruise missle CSAF
The Future of the U.S. Nuclear Weapons Program
NASA Astrophysics Data System (ADS)
Brooks, Linton F.
2007-03-01
This paper will examine our plans for the future of the U.S. nuclear weapons program including efforts to ``transform'' the stockpile and supporting infrastructure. We proceed from the premise that the United States will need a safe, secure, and reliable nuclear deterrent for the foreseeable future. Moreover, the Stockpile Stewardship Program is working. Today's stockpile---comprised of legacy warheads left over from the Cold War---is safe and reliable. That said, we see increased risk, absent nuclear testing, in assuring the long-term safety and reliability of our current stockpile. Nor is today's nuclear weapons complex sufficiently ``responsive'' to fixing technical problems in the stockpile, or to potential adverse geopolitical change. Our task is to work to ensure that the U.S. nuclear weapons enterprise, including the stockpile and supporting infrastructure, meets long-term national security needs. Our approach is to develop and field replacement warheads for the legacy stockpile---so-called Reliable Replacement Warheads (RRW)---as a means to transform both the nuclear stockpile and supporting infrastructure.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2009-12-09
Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008...gave additional urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment...technology, which it mastered by the mid-1980s. Highly-enriched uranium (HEU) is one of two types of fissile material used in nuclear weapons; the other
One in a Million Given the Accident: Assuring Nuclear Weapon Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jason
2015-08-25
Since the introduction of nuclear weapons, there has not been a single instance of accidental or unauthorized nuclear detonation, but there have been numerous accidents and “close calls.” As the understanding of these environments has increased, the need for a robust nuclear weapon safety philosophy has grown. This paper describes some of the methods used by the Nuclear Weapon Complex today to assure nuclear weapon safety, including testing, modeling, analysis, and design features. Lastly, it also reviews safety’s continued role in the future and examines how nuclear safety’s present maturity can play a role in strengthening security and other areasmore » and how increased coordination can improve safety and reduce long-term cost.« less
Large Bilateral Reductions in Superpower Nuclear Weapons.
1985-07-01
missile ( ABM ) systems were deployed, e.g., the current Soviet ABM system around Moscow. Although there have been no further wartime uses of nuclear...have placed more emphasis on strategic defense than the U.S.; however, by agreeing to the ABM Treaty, the 6Soviets implicitly accepted the fundamental...required for the reliability testing of existing nuclear weapons and the development of future nuclear weapons. The ABM Treaty of 1972 was a
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2010-01-06
the future, but there are no plans to do so.’”5 Critics expressed concern about the implications of these policies for testing and new weapons. A...seek the opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”6 Another critic felt...warhead critical the U.S. nuclear deterrent without conducting a nuclear test.10 Similarly, a Statement of Administration Policy on S. 1547, FY2008
The doctrine of the nuclear-weapon states and the future of non-proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panofsky, W.K.H.; Bunn, G.
Less than a year remains before the critical conference in April 1995 to review and extend the nuclear Non-Proliferation Treaty (NPT), the main international barrier to the proliferation of nuclear weapons. This is a critical moment for the United States. With the end of the Cold War, the likelihood of nuclear war with the states of the former Soviet Union has been radically reduced, but there is greatly increased concern over the potential threats from states or sub-state groups seeking to develop or acquire nuclear weapons and other weapons of mass destruction.
Nuclear Weapons and the Future: An "Unthinkable" Proposal.
ERIC Educational Resources Information Center
Tyler, Robert L.
1982-01-01
The author looks ahead 30 or 40 years to see what might come of the nuclear weapons predicament. As a minimal first step in the campaign against nuclear warfare, he suggests a unilateral and complete disarmament by the United States. (AM)
Reductions without Regret: Avoiding Wrong Turns, Roach Motels, and Box Canyons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swegle, John A.; Tincher, Douglas J.
This is the third of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as somemore » closing thoughts for the future. In this paper, we provide one example each of our judgments on what constitutes a box canyon, a roach motel, and a wrong turn: Wrong Turn: The Reliable Replacement Warhead: Roach Motel: SRAM T vs the B61: and A Possible Box Canyon: A Low-Yield Version of the W76 SLBM Warhead. Recognizing that new nuclear missions or weapons are not demanded by current circumstances ₋ a development path that yields future capabilities similar to those of today, which are adequate if not always ideal, and a broader national-security strategy that supports nonproliferation and arms control by reducing the role for, and numbers, of nuclear weapons ₋ we briefly consider alternate, less desirable futures, and their possible effect on the complex problem of regional deterrence. In this regard, we discuss the issues posed by, and possible responses to, three example regional deterrence challenges: in-country defensive use of nuclear weapons by an adversary; reassurance of U.S. allies with limited strategic depth threatened by an emergent nuclear power; and extraterritorial, non-strategic offensive use of nuclear weapons by an adversary in support of limited military objectives against a U.S. ally.« less
NASA Astrophysics Data System (ADS)
Pella, Peter J.
1996-05-01
The indefinite and "unconditional" extension of the Nuclear Non-Proliferation Treaty (NPT) was achieved almost one year ago today. This outcome was a major foreign policy goal of the Clinton Administration. Some critics of the NPT's indefinite extension claim that nuclear weapons states parties to the NPT have now legitimized their possession of nuclear weapons for all time and that there is no incentive for future nuclear arms control and disarmament measures. A discussion of how the indefinite extension of the NPT has affected the nuclear arms control landscape and the prospects for future disarmament measures will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.
2000-01-01
Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadershipmore » or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, B.
This report examines recent trends and future prospects of terrorism in the United States and assesses their implications for the possibility of a terrorist group attempting an act of nuclear terrorism involving either the theft of a weapons system or strategic nuclear material or an attack on a weapons facility. An emerging trend of ideologically motivated terrorism by groups espousing white supremacist and anti-federalist beliefs or opposing specific issues such as abortion has largely supplanted the ethnic centered violence that dominated earlier domestic terrorist activity. The threat to U.S. nuclear weapons facilities from unknown terrorist groups in this country cannotmore » be considered high at this time. There is no evidence to suggest that any of the organizations reviewed in this study have seriously contemplated a nuclear-related act, nor is there any indication that any group is poised to undertake such an attack in the future. Nevertheless, trends in the terrorist activities of certain groups must be considered in the context of possible operations directed against nuclear weapons sites. Members of these groups are considerably more skilled with weapons than are other terrorist in this country, they possess large stockpiles of sophisticated weapons, they are well trained guerrilla warfare and survival techniques, and they possess an apocalyptic vision of the future-factors that make them the most likely domestic terrorists to attempt an act of nuclear terrorism. In sum, while the volume of annual terrorist incidents in the United States is relatively small, the emerging trends merit intensive and continuing attention.« less
REDUCTIONS WITHOUT REGRET: DEFINING THE NEEDED CAPABILITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swegle, J.; Tincher, D.
This is the second of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as somemore » closing thoughts for the future. This paper begins with a discussion of the current nuclear force and the plans and procurement programs for the modernization of that force. Current weapon systems and warheads were conceived and built decades ago, and procurement programs have begun for the modernization or replacement of major elements of the nuclear force: the heavy bomber, the air-launched cruise missile, the ICBMs, and the ballistic-missile submarines. In addition, the Nuclear Weapons Council has approved a new framework for nuclear-warhead life extension not fully fleshed out yet that aims to reduce the current number of nuclear explosives from seven to five, the so-called 3+2 vision. This vision includes three interoperable warheads for both ICBMs and SLBMs (thus eliminating one backup weapon) and two warheads for aircraft delivery (one gravity bomb and one cruise-missile, eliminating a second backup gravity bomb). This paper also includes a discussion of the current and near-term nuclear-deterrence mission, both global and regional, and offers some observations on future of the strategic deterrence mission and the challenges of regional and extended nuclear deterrence.« less
Underestimated: Our Not So Peaceful Nuclear Future
2016-01-01
strategic appraisals; • The nature of land warfare; • Matters affecting the Army’s future; • The concepts, philosophy, and theory of strategy; and...has long complained about Israeli nuclear weapons and previously attempted to get nuclear weapons, just announced its intention to tender bids for...cooperation with India, Russia, and the Chinese. As a part of this review, it also would be helpful to game alternative war and military crisis scenarios
Nuclear threat on the Korean peninsula: The present and the future. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S.
1994-04-01
Forty years after they were divided by the Cold War, South and North Korea are closer to reunification than ever before. However, North Korea's nuclear weapons program might cause South Koreans to be much less sure about reunification. Today the Cold War is over, but the Korean peninsula is still divided into two Koreas despite the new era of reconciliation. Since December 1991 when a non-aggression pact was signed barring nuclear weapons, North Korea has pursued its nuclear weapon development. In March 1993, North Korea declared its intention to withdraw from the Nuclear Non-Proliferation Treaty, and has been refusing amore » full inspection of its nuclear program. North Korea's nuclear issue is an international issue today. This paper discusses 'what threat we have today' and 'what should be done in the future.'.« less
The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship
NASA Astrophysics Data System (ADS)
Graham, Thomas, Jr.
2014-05-01
The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a "threat to peace and security", in effect a violation of international law, which in today's world it clearly would be.
The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Thomas Jr.
The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclearmore » stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.« less
Toward a nuclear weapons free world?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maaranen, S.A.
Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures andmore » dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, K H
Nuclear weapons play an essential role in United States (U.S.) National Security Policy and a succession of official reviews has concluded that nuclear weapons will continue to have a role for the foreseeable future. Under the evolving U.S. government policy, it is clear that role will be quite different from what it was during the Cold War. The nuclear-weapons stockpile as well as the nuclear-weapons enterprise needs to continue to change to reflect this evolving role. Stockpile reductions in the early 1990s and the Stockpile Stewardship Program (SSP), established after the cessation of nuclear testing in 1992, began this processmore » of change. Further evolution is needed to address changing security environments, to enable further reductions in the number of stockpiled weapons, and to create a nuclear enterprise that is cost effective and sustainable for the long term. The SSP has successfully maintained the U.S. nuclear stockpile for more than a decade, since the end of nuclear testing. Current plans foresee maintaining warheads produced in the 1980s until about 2040. These warheads continue to age and they are expensive to refurbish. The current Life Extension Program plans for these legacy warheads are straining both the nuclear-weapons production and certification infrastructure making it difficult to respond rapidly to problems or changes in requirements. Furthermore, refurbishing and preserving Cold-War-era nuclear weapons requires refurbishing and preserving an infrastructure geared to support old technology. Stockpile Stewardship could continue this refurbishment approach, but an alternative approach could be considered that is more focused on sustainable technologies, and developing a more responsive nuclear weapons infrastructure. Guided by what we have learned from SSP during the last decade, the stewardship program can be evolved to address this increasing challenge using its computational and experimental tools and capabilities. This approach must start with an improved vision of the future stockpile and enterprise, and find a path that moves us toward that future. The goal of this approach is to achieve a more affordable, sustainable, and responsive enterprise. In order to transform the enterprise in this way, the SSP warhead designs that drive the enterprise must change. Designs that emphasize manufacturability, certifiability, and increased safety and security can enable enterprise transformation. It is anticipated that such warheads can be certified and sustained with high confidence without nuclear testing. The SSP provides the tools to provide such designs, and can develop replacement designs and produce them for the stockpile. The Cold War currency of optimizing warhead yield-to-weight can be replaced by SSP designs optimizing margin-to-uncertainty. The immediate challenge facing the nuclear weapons enterprise is to find a credible path that leads to this vision of the future stockpile and enterprise. Reliable warheads within a sustainable enterprise can best be achieved by shifting from a program of legacy-warhead refurbishment to one of warhead replacement. The nuclear weapons stockpile and the nuclear weapons enterprise must transform together to achieve this vision. The current Reliable Replacement Warhead (RRW) program represents an approach that can begin this process of transformation. If the RRW program succeeds, the designs, manufacturing complex, and certification strategy can evolve together and in so doing come up with a more cost-efficient solution that meets today's and tomorrow's national security requirements.« less
''Whither Deterrence?'' A Brief Synopsis May, 2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppe, C; Vergino, E; Barker, R
To most audiences, deterrence has been interconnected with nuclear weapons whose purpose had been to deter a Soviet attack. But, the Soviet Union has been gone for almost a decade. President George W. Bush has stated that Russia is not an enemy of the US and the numbers of nuclear weapons can be dramatically reduced. It is important to note that deterrence has always transcended nuclear weapons. The US' first line of deterrence has been its formidable conventional warfare capability, designed to prevent conflict and win wars if necessary. The role of nuclear weapons has been to deter the,use ofmore » nuclear weapons and other weapons of mass destruction against U.S. interests during the conduct of conventional warfare and to ensure our ability to inflict massive destruction on any who would use nuclear weapons, or other weapons of mass destruction, against us. With regard to the Soviet Union, the threat of the use of nuclear weapons was a critical component of our deterrent to prevent massive Soviet conventional attack against our allies in Europe. However, the events of September 11, 2001 make clear that we have not convinced all who seek to harm us that we will be able to respond in a manner to make them wish they had not even tried. The September 11 attacks, as well as other past conflicts, do not mean that deterrence has failed-it remains effective against the threats for which it was designed. We have known there are other threats for which we did not have a credible deterrent. The challenge is to sustain deterrence against the classic threats as they evolve in technical sophistication while remaining alert to the need to evaluate continuously our ability to deter previously unforeseen challenges. How then should we be looking at deterrence as we consider fifteen or so years in the future, say to about 2015? What will be the role of nuclear weapons and other instruments of mass destruction in the future? What should the US be doing to prepare for the future? In this study, we present four futures as a tool for planners who must think ahead fifteen years or more, rather than a prediction of the future. None of the four futures will emerge in just the way we have described. Fifteen years from now, some mix of these futures is more likely, or perhaps we will see a trend towards one of the futures, but with the possibility that any of the other three could appear, perhaps quite swiftly. Any future will undoubtedly contain its own kind of unpleasant surprises and, in contrast to the Cold War; the possession of enormous nuclear-response and conventional-response capability may not be sufficient to deter these from happening. However, there are other tools that the US must include as part of its strategy and security policy in addition to deterrence, specifically dissuasion, defense, destruction, and assurance. Rather than rely on the Cold-War concept of deterrence, future security policy should be built upon the appropriate mix of these elements as a way to steer us toward a more favorable future, while ensuring that we are prepared for the kinds of surprises associated with far less favorable futures. In this study, we have defined three unfavorable futures to be avoided, and one future that represents, we believe, a more desirable global situation than the first three, but still not entirely benign. Our security policy should be defined to avoid or prevent the first three, which we have entitled ''Nuclear Giants, Global Terror'', and ''Regional Nuclear Tension and Use'', and steer us toward a more favorable future, ''Dynamic Cooperation''. We have examined the implications for both policy and military capability that are posed by these different futures. The result often raises more questions than we are able to answer without additional study-however, our primary purpose was to clarify the issues, to identify. what we believe we know, what we don't know, and where more study and effort are needed. Nevertheless, in preparing for unfavorable futures, we must also identify and plan the future we want. This study emphasizes that a desirable future in 2015 would be characterized by peaceful resolution of conflict, growing worldwide economic prosperity, an effective non-proliferation regime, the ability of the United States to control its own destiny without conflict, and expansion of political and economic freedom. Security policies, even in the face of unpleasant futures, should be crafted so as enhance, rather than diminish, these desired goals.« less
The abolition of war as a goal of environmental policy.
Snyder, Brian F; Ruyle, Leslie E
2017-12-15
Since the 1950s, select military and political leaders have had the capacity to kill all or nearly all human life on Earth. The number of people entrusted with this power grows each year through proliferation and the rise of new political leaders. If humans continue to maintain and develop nuclear weapons, it is highly probable that a nuclear exchange will occur again at some point in the future. This nuclear exchange may or may not annihilate the human species, but it will cause catastrophic effects on the biosphere. The international community has attempted to resolve this existential problem via treaties that control and potentially eliminate nuclear weapons, however, these treaties target only nuclear weapons, leaving the use of war as a normalized means for settling conflict. As long as war exists as a probable future, nations will be under pressure to develop more powerful weapons. Thus, we argue that the elimination of nuclear weapons alone is not a stable, long-term strategy. A far more secure strategy would be the elimination of war as a means of settling international disputes. Therefore, those concerned about environmental sustainability or the survival of the biosphere should work to abolish war. Copyright © 2017 Elsevier B.V. All rights reserved.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2009-10-15
and technical measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage ...Talks On Nuclear Security,” The Boston Globe, May 5, 2009. 79 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or...a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 80 Martellini, 2008. 81 For more information
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2010-12-07
there are no plans to do so.’”4 Critics expressed concern about the implications of these policies for testing and new weapons. Physicians for...design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”5 Another critic felt that increased funding for...guarantees regarding the voluntary moratorium. We may find at some future time that we cannot diagnose or remedy a problem in a warhead critical the U.S
Nuclear pumped lasers: Advantages of O2 (1 delta)
NASA Technical Reports Server (NTRS)
Taylor, J. J.
1979-01-01
Nuclear pumped laser technology was evaluated as a possible future weapons contender. It was determined that in order to become a primary weapon the following engineering problems must be solved: shielding, heat dissipation, high efficiency fixed focus pumping, good beam quality, and thermal blooming.
Stockpile stewardship past, present, and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Marvin L., E-mail: mladams@tamu.edu
2014-05-09
The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doingmore » this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.« less
Post Cold War Nuclear Weapons Policy
2012-03-20
are unknown.”14 This instability threatens the success and future of the NPT. According to scholar Joseph F. Pilat , While the vision of a nuclear...for the Study of Weapons of Mass Destruction, April 2007. 15 Joseph F. Pilat , “Nonproliferation, Arms Control and Disarmament, and ExtendedDeterrence
Is There Future Utility in Nuclear Weapons Nuclear Weapons Save Lives
2014-02-13
operate with relative impunity short of large-scale conflict. Some point to a nuclear India and Pakistan as an example of instability concern. In...1997, South Asia observer Neil Joeck argued that “ India and Pakistan’s nuclear capabilities have not created strategic stability (and) do not reduce...elimination of illiteracy , provision of sustainable energy, debt relief for developing countries, clearance of landmines and more has been estimated
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2009-07-30
Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 79...that Pakistan’s strategic nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs...that gave additional urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2010-10-07
Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008. 99...prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel reliability... nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral Michael
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep
The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components andmore » fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.« less
Promote health, not nuclear weapons: ethical duty of medical professionals.
Mitra, Arun
2018-03-07
Despite ongoing tensions in various parts of the world, the year 2017 ended on a positive note. The Treaty Prohibiting Nuclear Weapons (TPNW) was passed by the UN General Assembly on July 7, 2017, which will always be a red-letter day in history. It has raised many hopes for a future world without nuclear weapons and staved off the impending humanitarian catastrophe. Good health is a basic need of every individual. Therefore, each person yearns for a life free of violence and free of man-made catastrophes like the ones at Hiroshima and Nagasaki in 1945, which killed over two hundred thousand people and resulted in genetic mutations affecting generations thereafter. Unfortunately, instead of working for nuclear disarmament, the world moved towards an unending nuclear arms race, costing billions which could have been used for healing millions of people living in despair and sickness. This is why on December 10, 2017, Oslo, the capital of Norway, was filled with excitement when the Nobel Peace Prize for this year was bestowed upon the International Campaign to Abolish Nuclear Weapons (ICAN). Large numbers of medical professionals from around the globe had gathered there to affirm their commitment to a healthy future through diversion of wasteful expenditure from the nuclear arms race towards universal health.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2010-02-04
Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008; Martellini, 2008...measures to prevent unauthorized or accidental use of nuclear weapons, as well as contribute to physical security of storage facilities and personnel...strategic nuclear assets could be obtained by terrorists, or used by elements in the Pakistani government. Chair of the Joint Chiefs of Staff Admiral
Joint Force Quarterly. Issue 58, 3rd Quarter
2010-06-01
rise to concerns over the future security of the Soviet nuclear arsenal. Anticipating the possibility of loosely controlled nuclear weapons inside...broader Cooperative Threat Reduction program—an unprecedented effort to reduce nuclear dangers by secur- ing or eliminating Russian weapons systems and...volume is about applications of the biological sciences, here called “biologi- cally inspired innovations,” to the military. Rather than treating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, Joseph C; Stevens, Patrice A; Branstetter, Linda
Until very recently, an evaluation of US policy regarding deterrence and the role of its nuclear weapons arsenal as a deterrent has been largely absent in the public debate. With President's Obama embrace of a goal of a future world without nuclear weapons, issues of nuclear policy and deterrence have just recently risen to the forefront of policy discussions. The traditional role of US nuclear weapons-to deter the use of nuclear weapons by other states-endures, but is no longer unique nor even predominant. In an increasingly multi-polar world, the US now faces growing risks of nuclear weapons proliferation; the spreadmore » of weapons of mass destruction generally to non-state, substate and transnational actors; cyber, space, economic, environmental and resource threats along with the application of numerous other forms of 'soft power' in ways that are inimical to national security and to global stability. What concept of deterrence should the US seek to maintain in the 21st Century? That question remains fluid and central to the current debate. Recently there has been a renewed focusing of attention on the role of US nuclear weapons and a national discussion about what the underlying policy should be. In this environment, both the United States and Russia have committed to drastic reductions in their nuclear arsenals, while still maintaining forces sufficient to ensure unacceptable consequence in response to acts of aggression. Further, the declared nuclear powers have maintained that a limited nuclear arsenal continues to provide insurance against uncertain developments in a changing world. In this environment of US and Russian stockpile reductions, all declared nuclear states have reiterated the central role which nuclear weapons continue to provide for their supreme national security interests. Given this new environment and the challenges of the next several decades, how might the United States structure its policy and forces with regard to nuclear weapons? Many competing objectives have been stated across the spectrum of political, social, and military thought. These objectives include goals of ratification of the Comprehensive Test Ban Treaty, recommitment to further downsizing of the nuclear arsenal, embracing a long-term goal of the elimination of nuclear weapons, limitations on both the production complex and upgrades to nuclear weapons and delivery systems, and controls and constraints to limit proliferation of nuclear materials and weapons, particularly to rogue states and terrorist groups.« less
The Third Nuclear Age: How I Learned to Start Worrying about the Clean Bomb
2013-02-14
Fourth generation fusion nuclear weapons (FGNW) represent a significant improvement in nuclear weapons technology and suggest the potential for...future challenges that the United States and its Air Force may face twenty-five years from now. This paper does not answer whether the fusion technology...is possible and assumes it as an inevitable technological advancement. Instead, this study predicts a world in which low yield, clean fusion
The Drivers of Indias Nuclear Weapons Program
2014-06-01
Pokhran and Beyond, 235. 304 Sunil Dasgupta, “The Reluctant Nuclear Power,” in Arming without Aiming, ed. Stephen Cohen and Sunil Dasgupta...Development,” Economic and Political Weekly 35, no. 31 (July 29–August 4, 2000): 2769. 332 Sunil Dasgupta, “Struggling with Reform,” in Arming without Aiming...ed. Stephen Cohen and Sunil Dasgupta (Washington, DC: Brookings Institution Press, 2010), 33. 333 Clary, “The Future of Pakistan’s Nuclear Weapons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nation, J.E.
Whether and by what means nations can successfully de-escalate nuclear crises - and avoid the disastrous effects of nuclear war - will remain two of the most critical challenges facing humankind. Whatever the future of superpower relations, the United States, the Soviet Union, and other nations will undoubtedly continue to possess and to threaten the use of nuclear weapons. Moreover, the number of nations with nuclear weapons seems likely to increase. This examines how nations in crises might successfully move back from the brink of nuclear war - and how confidence-building measures might help and hinder the de-escalatory process.
2010-06-01
ENGINEERED PATHOGENS ....... 8 Binary biological weapons ...the crossroads of radicalism and technology. When the spread of chemical and biological and nuclear weapons , along with ballistic missile...and individuals, given the opportunity to employ biological weapons , will most likely use it to inflict harm and terror on the United States and its
"A Hedge against the Future": The Post-Cold War Rhetoric of Nuclear Weapons Modernization
ERIC Educational Resources Information Center
Taylor, Bryan C.
2010-01-01
Rhetoric has traditionally played an important role in constituting the nuclear future, yet that role has changed significantly since the declared end of the Cold War. Viewed from the perspectives of nuclear criticism and postmodern theories of risk and security, current rhetoric of US nuclear modernization demonstrates how contingencies of voice…
History of Nuclear Weapons Design and Production
NASA Astrophysics Data System (ADS)
Oelrich, Ivan
2007-04-01
The nuclear build-up of the United States and the Soviet Union during the Cold War is often portrayed as an arms race. Some part was indeed a bilateral competition, but much was the result of automatic application of technical advances as they became available, without careful consideration of strategic implications. Thus, the history of nuclear weapon design is partly designers responding to stated military needs and partly the world responding to constant innovations in nuclear capability. Today, plans for a new nuclear warhead are motivated primarily by the desire to maintain a nuclear design and production capability for the foreseeable future.
The US nuclear weapon infrastructure and a stable global nuclear weapon regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Immele, John D; Wagner, Richard L
2009-01-01
US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weaponsmore » policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.« less
Facing reality: The future of the US nuclear weapons complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Facing Reality is a collaboration by 15 authors from environmental and grass-roots groups. The authors bluntly conclude that whether the inertia, habit, or material interest, the nuclear weapons establishment has proven itself incapable of genuine reform.' They therefore call for government agencies other than the Department of Energy to manage the tasks of decontamination and decommissioning. Just a partial list of what needs to be done to clean up the DOE's mess is daunting: closing, decommissioning, and decontaminating production facilities, dismantling thousands of nuclear warheads, safely storing dangerous radioactive materials, identifying alternative employment for weapons specialists, conducting meaningful health studiesmore » of workers and citizens exposed to radiation, and providng compensation for the victims of the nuclear buildup.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, T.W.
There has been a growing debate over the future of US nonproliferation policy. Some, including this author, believe that many current trends, especially the increasing delegitimization of nuclear weapons for all forms of extended deterrence, provide an opportunity to think about winning the nonproliferation battle - freezing or reversing the nuclear programs of the four current de facto nuclear-weapon states (India, Israel, Pakistan, and South Africa), and ensuring that no additional states are added to this list for at least the next 20 years. Others, including some senior Pentagon officials, believe that additional proliferation is inevitable, and that a realisticmore » reading of international politics requires the US to focus much of its nonproliferation effort on managing the proliferation that does occur - attempting to reduce the risks to international security posed by those states that gain access to nuclear weapons. The outcome of this debate could have a major impact on the spread of nuclear weapons over the next two decades, and thereby on the dangers the world will face in the post-Cold War era.« less
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2008-09-18
needed to conduct a nuclear test. Critics raised concerns about the implications of these policies for testing and new weapons. At present, Congress...as it is reduced, is reliable and safe. So he has not ruled out testing in the future, but there are no plans to do so.’”4 Critics expressed concern...ten-year-old moratorium on nuclear weapons testing.”5 Another critic felt that increased funding for test readiness would in effect give prior
1998-05-26
attitude about the use of chemical and biologic weapons , one must question the deterrent value of WMD. With perhaps the 19 exception of nuclear...ENHANCING, TRANSFORMING AND TRANSCENDING 1 TRENDS AND PREDICTIONS ABOUT FUTURE WARFARE 3 CHANGING DEMOGRAPHICS 8 THE BIOLOGIC SHIFT 10 STRATEGIC...without widespread loss of life. Thus, low lethality weapons and distant applications of precisely- applied force are mandatory to make future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfson, R.
This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects andmore » uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheek, G.H.
1993-05-14
This monograph explores the proliferation of weapons of mass destruction in the Third World, their operational impact on power projection forces, and the viability of deterrence in the future. It concludes that the proliferation of weapons of mass destruction may have grave consequences for the power projection forces in the future; simple assumptions of non-use, reliance on our nuclear deterrent or protective measures may give us a false sense of security. Proper analysis of operational vulnerabilities will be essential for future power projection. Proliferation of operational delivery systems and weapons of mass destruction continues despite treaties and the best intentionsmore » of world leaders. Weapons of mass destruction are becoming more common throughout the world and chemical and biological weapons continue to become more and more lethal. These trends are creating a multipolar world, which history has shown to be the most unstable. This unstable world will be the environment for future power projection. Deterrence in this environment is without precedent other than the Cold War paradigm. It is questionable whether deterrence will transfer outside this paradigm as Third World nations do not have the experience, balance of power, infrastructure or political stability needed to make the concept viable. Possession of weapons of mass destruction may even allow these nations to deter entry of US power projection forces into certain regions as deterrence is a two way concept. While deterrence is still an essential part of US National Strategy to prevent war, reliance on it to prevent use of weapons of mass destruction in the midst of a conflict may prove to be a false hope.« less
A Random Variable Approach to Nuclear Targeting and Survivability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Undem, Halvor A.
We demonstrate a common mathematical formalism for analyzing problems in nuclear survivability and targeting. This formalism, beginning with a random variable approach, can be used to interpret past efforts in nuclear-effects analysis, including targeting analysis. It can also be used to analyze new problems brought about by the post Cold War Era, such as the potential effects of yield degradation in a permanently untested nuclear stockpile. In particular, we illustrate the formalism through four natural case studies or illustrative problems, linking these to actual past data, modeling, and simulation, and suggesting future uses. In the first problem, we illustrate themore » case of a deterministically modeled weapon used against a deterministically responding target. Classic "Cookie Cutter" damage functions result. In the second problem, we illustrate, with actual target test data, the case of a deterministically modeled weapon used against a statistically responding target. This case matches many of the results of current nuclear targeting modeling and simulation tools, including the result of distance damage functions as complementary cumulative lognormal functions in the range variable. In the third problem, we illustrate the case of a statistically behaving weapon used against a deterministically responding target. In particular, we show the dependence of target damage on weapon yield for an untested nuclear stockpile experiencing yield degradation. Finally, and using actual unclassified weapon test data, we illustrate in the fourth problem the case of a statistically behaving weapon used against a statistically responding target.« less
The NPR, NPT and the prospects for disarmament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F
2010-10-04
In Prague's Hradcany Square on April 5, 2009, President Barack Obama offered a bold vision of the nuclear future that encompasses both reducing nuclear dangers and pursuing the goal of a world without nuclear weapons while maintaining, as long as nuclear weapons remain, a safe secure, and effective arsenal, to deter potential adversaries and to assure U.S. allies and other security partners that they can count on America's security commitments. The agenda put forward in Prague involves the full range of issues from deterrence to nonproliferation and disarmament. The 2010 Nuclear Posture Review (NPR) report, reflecting the twin objectives ofmore » the Prague speech, for the first time places the United States effort to lead expanded international efforts to rebuild and strengthen the global nuclear nonproliferation regime at the top the U.S. nuclear agenda. This attention underscores the fact that the top priority of the United States is to discourage additional states from acquiring nuclear weapon capabilities and to stop terrorist groups from acquiring weapon-usable nuclear materials. It also reinforced the view that positively influencing the 2010 Review Conference (RevCon) of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) was a key objective of the Obama Administration. The NPR developed both the vision and the policy, but details of implementation will need to be developed and better understood. This paper will address the Nuclear Posture Review and its implementation, as well as it's relation to, and impact on, the NPT RevCon and the long term prospects for nonproliferation and disarmament.« less
The future of the NPT and measures to reduce nuclear dangers in the age of Trump
NASA Astrophysics Data System (ADS)
Kimball, Daryl G.
2017-11-01
Through the decades, the international nuclear disarmament and nonproliferation enterprise, though imperfect, has curbed nuclear proliferation and limited the number of nuclear-armed states to nine, forced reductions in major-power nuclear arsenals, ended nuclear testing by all but one state, and created an informal taboo against nuclear weapons use.
Nuclear programs in India and Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mian, Zia
India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also formore » nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.« less
Nuclear programs in India and Pakistan
NASA Astrophysics Data System (ADS)
Mian, Zia
2014-05-01
India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.
Nuclear disarmament verification via resonant phenomena.
Hecla, Jake J; Danagoulian, Areg
2018-03-28
Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.
Seventy Years of Computing in the Nuclear Weapons Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Billy Joe
Los Alamos has continuously been on the forefront of scientific computing since it helped found the field. This talk will explore the rich history of computing in the Los Alamos weapons program. The current status of computing will be discussed, as will the expectations for the near future.
The Future Role and Need for Nuclear Weapons in the 21st Century
2007-01-01
program, the Manhattan Project : Einstein‘s letter to Roosevelt in 1939 regarding the use of the energy from uranium for bombs, ―the imaginary German...succeed, nuclear weapons were introduced by the US into our world in 1945. The Manhattan Project efforts produced four bombs within its first three...Proceedings‖ (Livermore, CA: Lawrence Livermore National Laboratory, 1991), 14. 6 Ibid. , 12. 7 ― Manhattan Project ,‖ MSN Encarta, 2, http://encarta
Geopolitical and strategic aspects of present and future use of nuclear energy
NASA Astrophysics Data System (ADS)
Blix, Hans
2012-06-01
Nuclear power is at a bump in the road - not at the end of the road. We must promote further safe development. Nuclear weapons are obsolescent. The Cold War is over and further détente will lead to disarmament.
Nuclear materials stewardship: Our enduring mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, T.H.
1998-12-31
The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now themore » attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national security to the future of nuclear power in this country and abroad, to the care of the environment. Sometimes these objectives are in concert, but often they are seen as competing or being in conflict. By recognizing the corporate responsibility for these materials and the accompanying programs, national decision making will be improved.« less
The nuclear dilemma and the just war tradition
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, W.V.; Langan, J.
This book presents papers on the ethical aspects of nuclear weapons. Topics considered include the concept of a ''just'' war, national defense, political aspects, religion and politics, the failure of deterrence, conventional warfare, nuclear deterrence and democratic politics, the future of the nuclear debate, non-proliferation policy, arms control, national security, and government policies.
Nuclear Weapons: Comprehensive Test Ban Treaty
2007-10-29
which has been done. Critics raised concerns about the implications of these policies for testing and new weapons. At present, Congress addresses...Comprehensive Test Ban Treaty Most Recent Developments On October 24, Senator Jon Kyl delivered a speech critical of the CTBT and of Section 3122 in...future, but there are no plans to do so.’”5 Critics expressed concern about the implications of these policies for testing and new weapons. A statement
Sandia National Laboratories: National Security Missions: Nuclear Weapons:
Safety & Security Sandia National Laboratories Exceptional service in the national interest & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Twitter YouTube Flickr RSS Top Nuclear Weapons About Nuclear Weapons at Sandia Safety & Security
International Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, James E.
2012-08-14
This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; andmore » (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.« less
Nuclear weapons modernizations
NASA Astrophysics Data System (ADS)
Kristensen, Hans M.
2014-05-01
This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.
Proliferation of nuclear weapons: opportunities for control and abolition.
Sidel, Victor W; Levy, Barry S
2007-09-01
Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. "Horizontal" proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. "Vertical" proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation--and ultimately abolishing nuclear weapons--involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large.
Driving Technological Surprise: DARPA’s Mission in a Changing World
2013-04-01
a plethora of new weapons and techniques in the hands of many types of actors can and do threaten our way of life and endanger our democracy in...global affairs. And a look into the future only adds uncertainty. The proliferation of nuclear, chemical, and biological weapons of mass destruction...electronic device is likely to get to the Warfighter when a prime contractor incorporates it into a weapon system development contract. In some cases, the
Professional Development of Officers Study. Volume 5 - Policy Impact Analysis
1985-02-21
Megatrends : Ten New Directions Trans-. performance measures. This portion of the re- forming Our Lives by John Naisbitt. port describes how the Futures Team...involved development or progress). (2 01) in an armed conflict in which chemical or biolog - -- 6-ABILITIES/REQTS MATCH-An accurate ical weapons are...orical w ePDS"-"RX odl lease of nuclear, chemical or biological weapon(s) ,.-. -nPDOS INTERAX Model.USSR. ~~11-2-1
Nuclear, biological and chemical warfare. Part I: Medical aspects of nuclear warfare.
Kasthuri, A S; Pradhan, A B; Dham, S K; Bhalla, I P; Paul, J S
1990-04-01
Casualties in earlier wars were due much more to diseases than to weapons. Mention has been made in history of the use of biological agents in warfare, to deny the enemy food and water and to cause disease. In the first world war chemical agents were used to cause mass casualties. Nuclear weapons were introduced in the second world war. Several countries are now involved in developing nuclear, biological and chemical weapon systems, for the mass annihilation of human beings, animals and plants, and to destroy the economy of their enemies. Recently, natural calamities and accidents in nuclear, chemical and biological laboratories and industries have caused mass instantaneous deaths in civilian population. The effects of future wars will not be restricted to uniformed persons. It is time that physicians become aware of the destructive potential of these weapons. Awareness, immediate protective measures and first aid will save a large number of persons. This series of articles will outline the medical aspects of nuclear, biological and chemical weapon systems in three parts. Part I will deal with the biological effects of a nuclear explosion. The short and long term effects due to blast, heat and associated radiation are highlighted. In Part II, the role of biological agents which cause commoner or new disease patterns is mentioned. Some of the accidents from biological warfare laboratories are a testimony to its potential deleterious effects. Part III deals with medical aspects of chemical warfare agents, which in view of their mass effects can overwhelm the existing medical resources, both civilian and military.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke, S J
2011-12-20
This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of themore » US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.« less
Nuclear weapons modernizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristensen, Hans M.
This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludesmore » that new limits on nuclear modernizations are needed.« less
Taking the Lead: Russia, the United States, and Nuclear Nonproliferation after Bush
2008-12-01
2002), especially chap. 5; Henry D. Sokolski, ed., Pakistan’s Nuclear Future: Worries beyond War ( Carl - isle: SSI, January 2008); Henry Sokolski and...Two sides of this issue are argued in Scott D. Sagan and Kenneth N. Waltz, The Spread of Nuclear Weapons: A Debate (New York: W. W. Norton, 995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, L.
1999-05-01
The long-standing national security policy of the US to maintain a robust nuclear deterrent continues to be supported by the Congress and the President. The President has stated that ``...the nuclear deterrent posture is one of the most visible and important examples of how US military capabilities can be used effectively to deter aggression and coercion. Nuclear weapons serve as a hedge against an uncertain future, a guarantee of our security commitments to allies, and a disincentive to those who would contemplate developing or otherwise acquiring their own nuclear weapons.`` US nuclear weapons designs require tritium, an isotope of hydrogen,more » which has not been produced in the US since 1988, when the last tritium production facility (the K-Reactor at the Savannah River Site) was shut down. This long period without tritium production in the US has been possible because arms control agreements reached in the early 1990s reduced the size of the US nuclear weapons stockpile and because the Department of Energy (DOE) met stockpile tritium requirements by recycling the tritium removed from dismantled nuclear weapons. However, since tritium decays at a rate of 5.5% each year, a dependable source of tritium is required to continue to sustain the US nuclear weapons stockpile to underwrite national security policy and to support arms control goals. The US does maintain a five-year reserve supply of tritium, but this reserve is to be used only in an emergency. Current guidance states the reserve must be restored to its original level within five years of being used. To sustain the START I level, tritium production needs to begin around 2005 at a production capacity of about 3.0 kg/ year. START II levels could be sustained with production of about 1.5 kg/year beginning around 2011.« less
Proliferation of Nuclear Weapons: Opportunities for Control and Abolition
Sidel, Victor W.; Levy, Barry S.
2007-01-01
Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. “Horizontal” proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. “Vertical” proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation—and ultimately abolishing nuclear weapons—involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large. PMID:17666690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderwiel, Scott A; Wilson, Alyson G; Graves, Todd L
Both the U. S. Department of Defense (DoD) and Department of Energy (DOE) maintain weapons stockpiles: items like bullets, missiles and bombs that have already been produced and are being stored until needed. Ideally, these stockpiles maintain high reliability over time. To assess reliability, a surveillance program is implemented, where units are periodically removed from the stockpile and tested. The most definitive tests typically destroy the weapons so a given unit is tested only once. Surveillance managers need to decide how many units should be tested, how often they should be tested, what tests should be done, and how themore » resulting data are used to estimate the stockpile's current and future reliability. These issues are particularly critical from a planning perspective: given what has already been observed and our understanding of the mechanisms of stockpile aging, what is an appropriate and cost-effective surveillance program? Surveillance programs are costly, broad, and deep, especially in the DOE, where the US nuclear weapons surveillance program must 'ensure, through various tests, that the reliability of nuclear weapons is maintained' in the absence of full-system testing (General Accounting Office, 1996). The DOE program consists primarily of three types of tests: nonnuclear flight tests, that involve the actual dropping or launching of a weapon from which the nuclear components have been removed; and nonnuclear and nuclear systems laboratory tests, which detect defects due to aging, manufacturing, and design of the nonnuclear and nuclear portions of the weapons. Fully integrated analysis of the suite of nuclear weapons surveillance data is an ongoing area of research (Wilson et al., 2007). This paper introduces a simple model that captures high-level features of stockpile reliability over time and can be used to answer broad policy questions about surveillance programs. Our intention is to provide a framework that generates tractable answers that integrate expert knowledge and high-level summaries of surveillance data to allow decision-making about appropriate trade-offs between the cost of data and the precision of stockpile reliability estimates.« less
Monitoring and verification R&D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F; Budlong - Sylvester, Kory W; Fearey, Bryan L
2011-01-01
The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R&D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existingmore » energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R&D required to address these gaps and other monitoring and verification challenges.« less
Vertical nuclear proliferation.
Sidel, Victor W
2007-01-01
All the nuclear-weapon states are working to develop new nuclear-weapon systems and upgrade their existing ones. Although the US Congress has recently blocked further development of small nuclear weapons and earth-penetrating nuclear weapons, the United States is planning a range of new warheads under the Reliable Replacement Warhead programme, and renewing its nuclear weapons infrastructure. The United Kingdom is spending 1 billion pounds sterling on updating the Atomic Weapons Establishment at Aldermaston, and about 20 billion pounds sterling on replacing its Vanguard submarines and maintaining its Trident warhead stockpile. The US has withdrawn from the Anti-Ballistic Missile Treaty and plans to install missile defence systems in Poland and the Czech Republic; Russia threatens to upgrade its nuclear countermeasures. The nuclear-weapon states should comply with their obligations under Article VI of the Non-Proliferation Treaty, as summarised in the 13-point plan agreed at the 2000 NPT Review Conference, and they should negotiate a Nuclear Weapons Convention.
The Future of U.S. Nuclear Forces: Boom or Bust
2007-03-30
materials, and nuclear waste.45 The Defense Nuclear Facilities Safety Board (DNFSB) was established by Congress in 1988 as an independent federal...adequate protection of public health and safety" at DOE’s defense nuclear facilities .46 This 100- person agency looks at four areas of the nuclear weapons...47 A.J. Eggenberger, Sixteenth Annual Report to Congress (Washington DC: Defense Nuclear Facilities Safety Board, February 2006), 13; available
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2009-01-28
safe. So he has not ruled out testing in the future, but there are no plans to do so.’”5 Critics expressed concern about the implications of these...nuclear weapons testing.”6 Another critic felt that increased funding for test readiness would in effect give prior approval for testing. In July 2002 a...moratorium. We may find at some future time that we cannot diagnose or remedy a problem in a warhead critical the U.S. nuclear deterrent without
Toward a nuclear-weapon-free world: a Chinese perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, D.
In the present article, the author addresses China's policy on proliferation and nuclear testing. China, after observing an unannounced moratorium for more than a year, conducted a test last October, and maintains that it cannot exclude the need to carry out a few more tests for a certain period of time for national defense. The author discusses reasons for future tests. He suggests that a major factor in the testing may be to improve the safety and reliability of the present Chinese arsenal. He believes that whether or not China continues to test nuclear weapons will depend upon the balancemore » of different national interests as perceived by the Chinese government. Following the underground test in Xinjiang province last October, the Chinese government issued a letter to U.N. Secretary-General Boutros Boutros-Ghali saying that it was entirely for the purpose of self-defense that China developed and possessed a small number of nuclear weapons, and that it had always exercised utmost restraint on nuclear testing. The letter also states that [open quotes]after a comprehensive test ban treaty is concluded and comes into effect, China will abide by it and carry out no more nuclear tests.[close quotes] The author concludes that an international treaty banning nuclear weapons tests is important, but a no-first-use agreement would be just as useful. He discusses options for effecting a world-wide non-proliferation policy.« less
The nuclear weapons ban treaty and the non-proliferation regime.
Egeland, Kjølv; Hugo, Torbjørn Graff; Løvold, Magnus; Nystuen, Gro
2018-06-18
The Treaty on the Prohibition of Nuclear Weapons (TPNW), adopted by the United Nations General Assembly in July 2017, has been met with mixed reactions. While supporters have described the Treaty as a watershed in the struggle for disarmament, others have expressed fervent opposition. One of the most serious charges levelled at the TPNW is that it will undermine the long-standing nuclear Non-Proliferation Treaty (NPT), by many regarded as a cornerstone of the international security architecture. Critics have contended that the new agreement risks eroding the system of safeguards designed to prevent the spread of nuclear weapons, derailing disarmament efforts within the NPT framework, and aggravating political division between nuclear and non-nuclear powers. Investigating the legal and political cogency of these arguments, we argue that not only may the TPNW be reconciled with existing legal instruments, the new Treaty supports and reinforces key norms and institutions on which the nuclear non-proliferation and disarmament regime is based. Furthermore, any technical challenges that might arise in the future may be addressed at meetings of states party; the drafters envisioned a dynamic process of institutional adaptations and expansion. The main challenge facing advocates of the Treaty is political: convincing the nuclear-armed states to disarm.
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2013-06-10
subcritical; that is, no critical mass is formed and no self-sustaining nuclear chain reaction can occur; thus, there is no nuclear explosion.”211 SCEs...45 The National Academy of Sciences Study and Its Critics ...the future, but there are no plans to do so.”8 Critics expressed concern about the implications of these policies for testing and new weapons
Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, Emily C.; Rowberry, Ariana N.; Fearey, Bryan L.
2012-07-12
In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA inmore » verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?« less
Teaching Activities on Horizontal Nuclear Proliferation.
ERIC Educational Resources Information Center
Zola, John
1990-01-01
Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)
Taking a stand against nuclear proliferation: the pediatrician's role.
Newman, Thomas B
2008-05-01
Nuclear weapons pose a grave threat to the health of children. The Nuclear Nonproliferation Treaty, which for almost 40 years has limited the spread of nuclear weapons, is in danger of unraveling. At the 2000 Nuclear Nonproliferation Treaty Review Conference, 180 countries, including the United States, agreed on 13 practical steps to implement Article VI of the treaty, which calls for nuclear disarmament. However, the United States has acted in contravention of several of those disarmament steps, with announced plans to develop new nuclear weapons and to maintain a large nuclear arsenal for decades to come. Pediatricians, working individually and through organizations such as the American Academy of Pediatrics and International Physicians for the Prevention of Nuclear War, can educate the public and elected officials regarding the devastating and irremediable effects of nuclear weapons on children and the need for policies that comply with and strengthen the Nuclear Nonproliferation Treaty, rather than undermining it. For the children of the world, our goal must be a nuclear weapons convention (similar to the chemical and biological weapons conventions) that would prohibit these weapons globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, C.; Arsenlis, T.; Bailey, A.
Lawrence Livermore National Laboratory Campus Capability Plan for 2018-2028. Lawrence Livermore National Laboratory (LLNL) is one of three national laboratories that are part of the National Nuclear Security Administration. LLNL provides critical expertise to strengthen U.S. security through development and application of world-class science and technology that: Ensures the safety, reliability, and performance of the U.S. nuclear weapons stockpile; Promotes international nuclear safety and nonproliferation; Reduces global danger from weapons of mass destruction; Supports U.S. leadership in science and technology. Essential to the execution and continued advancement of these mission areas are responsive infrastructure capabilities. This report showcases each LLNLmore » capability area and describes the mission, science, and technology efforts enabled by LLNL infrastructure, as well as future infrastructure plans.« less
Tactical Nuclear Weapons: Their Purpose and Placement
2015-06-01
War II, nuclear scientists argued against the development of fusion weapons .3 In the 1970s, politicians debated the use of neutron bombs, weapons ...Tactical Nuclear Weapons : Their Purpose and Placement BY EDWARD G. FERGUSON A THESIS SUBMITTED TO THE FACULTY OF THE...This study answers the question -- Why does America have tactical nuclear weapons (TNWs) in Europe today? – treating America and the North
Williams, Bill; Ruff, Tilman A
2007-01-01
Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.
Technical Issues Related to the Comprehensive Nuclear Test Ban Treaty
NASA Astrophysics Data System (ADS)
Garwin, Richard L.
2003-04-01
The National Academy of Sciences recently published a detailed study of technical factors related to the Comprehensive Nuclear Test Ban Treaty (CTBT), with emphasis on those issues that arose when the Senate declined to ratify the Treaty in 1999. The study considered (1) the capacity of the United States to maintain confidence in the safety and reliability of its nuclear weapons without nuclear testing; (2) the capabilities of the international nuclear-test monitoring system; and (3) the advances in nuclear weapons capabilities that other countries might make through low-yield testing that might escape detection. Excluding political factors, the committee considered three possible future worlds: (1) a world without a CTBT; (2) a world in which the signatories comply with a CTBT; and (3) a world in the signatories evade its strictures within the limits set by the detection system. The talk and ensuing discussion will elaborate on the study. The principal conclusion of the report, based solely on technical reasons, is that the national security of the United States is better served with a CTBT in force than without it, whether or not other signatories conduct low level but undetected tests in violation of the treaty. Moreover, the study finds that nuclear testing would not add substantially to the US Stockpile Stewardship Program in allowing the United States to maintain confidence in the assessment of its existing nuclear weapons.
Technical Issues Related to the Comprehensive Nuclear Test Ban Treaty
NASA Astrophysics Data System (ADS)
2003-03-01
The National Academy of Sciences recently completed a detailed study of the technical factors related to the Comprehensive Nuclear Test Ban Treaty (CTBT), with emphasis on those issues that arose when the Senate declined to ratify the Treaty in 1999. The study considered (1) the capacity of the United States to maintain confidence in the safety and reliability of its nuclear weapons without nuclear testing; (2) the capabilities of the international nuclear-test monitoring system; and (3) the advances in nuclear weapons capabilities that other countries might make through low-yield testing that might escape detection. While political factors were excluded, the committee considered three possible future worlds: (1) a world without a CTBT; (2) a world in which the signatories comply with a CTBT; and (3) a world in the signatories evade its strictures within the limits set by the detection system. The talk will elaborate on the study. The primary conclusion, based solely on technical reasons, is that the national security of the United States is better served with a CTBT in force than without it, whether or not other signatories conduct low level but undetected tests in violation of the treaty. Moreover, the study finds that nuclear testing would not add substantially to the US Stockpile Stewardship Program in allowing the United States to maintain confidence in the assessment of its existing nuclear weapons."
JPRS Report, China, Handbook of Military Knowledge for Commanders
1988-03-07
Chemical and Biological Weapons Chapter I Nuclear Weapons (178) A. Summary Statement on Nuclear Weapons (178) 1. Basic Principles of Nuclear...199) 1. Basic Principles of Protection Against Nuclear, Chemical and Biological Weapons* (199) 2. Maior Actions For Protection Against Nuclear...people’s bodies through the digestive tract. Skin contact. Biological warfare agents may enter the body directly through the skin , mucous membranes or
Future Foreign Perceptions of Chemical Weapons Utility
2010-10-01
Iraq’s and Syria’s nuclear weapons programs, and the specter of such action may have precipitated Libya to abandon its program. North Korea and Iran ...declared as such. Today, only seven states have not acceded to the CWC: Angola, Egypt, Israel, Myanmar , North Korea , Somalia, and Syria.1 Of those...seven, Syria and North Korea most evidently maintain active offensive CW programs. Of CWC state par- ties, the United States has expressed compliance
The nuclear weapons free world . We already live in
NASA Astrophysics Data System (ADS)
Antonini, R.
We do live in a nuclear weapons free world, already. After a long debate about nuclear weapons the situation today is such that, officially, no governement is in favor of them. The reason is to be found in the strongest moral stigma on nuclear weapons. Moreover the vast majority of the most influencial people share this view.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...
Code of Federal Regulations, 2013 CFR
2013-01-01
... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...
From Alamogordo to the Nuclear Test-Ban Treaty
NASA Astrophysics Data System (ADS)
Friedlander, Michael
2008-04-01
After W.W.II., the U.S. continued its program for the development of nuclear weapons. Winds carried radioactive debris far beyond the Nevada test site, and these fission products were deposited by rain, to enter the human food chain. The isotopes of greatest concern were Sr90 and I131, that, after ingestion, become concentrated in bone and thyroid respectively. There was a growing public anxiety about possible heath hazards posed by radiation from this fallout. In March 1958, the Greater St. Louis Citizens' Committee for Nuclear Information (C.N.I.) was formed. Among the leaders of C.N.I. were E. U. Condon and Barry Commoner. The aim of C.N.I. was ``to collect and distribute in the widest possible manner information which the public requires to understand the present and future problems which arise from potential large-scale use of nuclear weapons in war; testing of nuclear weapons; and nonmilitary uses of nuclear energy.'' In accordance with its objectives, members of C.N.I. gave many nontechnical talks, where we described the various forms of radiation and what was then known about the biological effects of radiation. Some of our members testified at Congressional committee hearings. We published a newsletter, initially titled Nuclear Information, and later Scientist and Citizen. In this presentation, I will describe some of the activities of this idealistic organization.
DoD Nuclear Weapons Personnel Reliability Assurance
2016-04-27
destructive power, and the potential consequences of an accident or unauthorized act. Assured nuclear weapons safety, security, and control remain of...DOD INSTRUCTION 5210.42 DOD NUCLEAR WEAPONS PERSONNEL RELIABILITY ASSURANCE Originating Component: Office of the Under Secretary of...from the DoD Issuances Website at http://www.dtic.mil/whs/directives. Reissues and renames: DoD Instruction 5210.42, “ Nuclear Weapons Personnel
What Happens to Deterrence as Nuclear Weapons Decrease Toward Zero?
NASA Astrophysics Data System (ADS)
Drell, Sidney
2011-04-01
Steps reducing reliance on deployed nuclear weapons en route to zero will be discussed. They include broadly enhancing cooperation and transparency agreements beyond the provisions for verifying limits on deployed strategic nuclear warheads and delivery systems in the New START treaty. Two questions that will be addressed are: What conditions would have to be established in order to maintain strategic stability among nations as nuclear weapons recede in importance? What would nuclear deterrence be like in a world without nuclear weapons?
The nuclear arsenals and nuclear disarmament.
Barnaby, F
1998-01-01
Current world stockpiles of nuclear weapons and the status of treaties for nuclear disarmament and the ultimate elimination of nuclear weapons are summarised. The need for including stockpiles of civil plutonium in a programme for ending production and disposing of fissile materials is emphasized, and the ultimate difficulty of disposing of the last few nuclear weapons discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, D Y
The abysmal state of Russia's conventional forces has caused Russia to rely on nuclear weapons to ensure its security. This reliance was formalized in Russia's military doctrine which states that nuclear weapons can be used ''in situations critical to the national security of the RF and its allies.'' In fact, most Russian security analysts believe that this dependence on nuclear weapons will remain for the foreseeable future because the economy will have to improve significantly before a conventional force build up can be contemplated. Yet, despite Russia's need to rely on nuclear weapons, even this may be problematic because itsmore » economic plight may create difficulties in maintaining its current level of nuclear forces. Thus, Russia has a keen interest in negotiating a treaty to reduce Strategic Nuclear Forces below START II levels and would prefer to go even beyond the 2,000-2,500 numbers agreed to by Presidents Yeltsin and Clinton in Helsinki in 1997. Sergei Rogov, an influential defense analyst, believes that Russia's strategic nuclear forces will fall below 1,000 warheads by 2010 irrespective of arms control agreements. Accordingly, Russia is keen to ensure rough parity with the US. To retain a credible deterrent posture at these lower levels, Russia believes that it is important to restrain US sea-launched cruise missiles (SLCM)--forces that have heretofore not been captured as strategic weapons in the START treaties. Russian officials reason that once strategic nuclear forces go to very low levels, SLCM capabilities become strategically significant. In fact, according to two well-known Russian security analysts, Anatoli Diakov and Pavel Podvig, Russia's current START III negotiating position calls for the complete elimination of all SLCMs, both nuclear and conventional. Prior to assessing Russia's position regarding cruise missiles and START III, I will examine Russia's overall view of its security position vis-a-vis the US in order to provide background for Russia's negotiating stance. I will also suggest how the US and Russia might approach START III in a manner that is equitable and focuses on creating a more stable environment.« less
A Uniform Framework of Global Nuclear Materials Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.; Mangan, D.L.; Sanders, T.L
1999-04-20
Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must buildmore » on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, S.A.
1989-06-21
The treaty between the Soviet Union and the United States eliminating a whole class of intermediate-range nuclear forces (INF) in Europe raises a number of questions about NATO's future ability to deter Warsaw Pact aggression. Future choices on Alliance strategy and doctrine will be influenced by a variety of factors, including the image of new thinking in Soviet security policy enunciated by General Secretary Gorbachev, changing West European opinion toward the use of nuclear weapons for NATO deterrence, the complications inherent in further nuclear and conventional arms-control negotiations, assessments of the current conventional arms balance in Europe, and ongoing questionsmore » about NATO cohesion as well as the continued coupling of American security with that of her European allies. In the post-INF environment it may well be that U.S. Navy nuclear assets will assume an increasingly important role, particularly the Tomahawk Land Attack Missile/Nuclear (TLAM/N). The TLAM/N has many attractive attributes that can be supportive of NATO deterrence of the WTO, but there are also a number of unresolved questions to be addressed concerning this particular weapons system. Modernization of NATO's land-based short-range nuclear forces (SNF), such as the Lance missile, is also seen by many as critical to the maintenance of Alliance security in the aftermath of INF.« less
Nuclear Weapons, Psychology, and International Relations
ERIC Educational Resources Information Center
Dougherty, James E.
1976-01-01
Fear of nuclear energy, nuclear weapons, and nuclear was is widespread among the peoples of the world. However, to what extent do the fears (both rational and irrational) of policy-making elites and political masses produce actual effects upon the behavior of governments (who, after all, control the use of nuclear weapons)? (Author/RK)
Myth-building: The [open quotes]Islamic[close quotes] bomb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoodbhoy, P.
1993-06-01
The [open quotes]Islamic Bomb[close quotes] is roughly understood to be a nuclear weapon aquired for broad ideological reasons--a weapon that supposedly belongs to the Muslim [ital ummah] or community and, as such, is the ultimate expression of Islamic solidarity. Concern about the Islamic bomb is at the heart of the intense effort to prevent the spread of nuclear weapons to Muslim countries. The official justification is a general one: proliferation must be curbed globally. But unofficially, the Islamic bomb gets special attention. The reasons behind this special attention are described in this article. The reasons include fear of terrorism, ofmore » a [ital jihad] willing to indiscriminately use nuclear weapons in hope of a reward in the Hereafter, and of the transfer of nuclear arms from nuclear to non-nuclear Muslim countries in times of crisis. Possibilities for controlling the proliferation of nuclear weapons in Muslim countries are addressed. Reasons are cited as to why various Muslim countries wish to acquire nuclear weapons.« less
The Manned Penetrating Bomber: Time to Reconsider
2016-06-01
choice: spend billions on nuclear weapons we no longer need or fund programs that educate our children and help find cures to deadly diseases. The...security of our nation’s future will be ensured by investing in education not nuclear annihilation…We need to stop pouring billions into the nuclear...event.61 Unfortunately, the president’s reaction to the launch received negative reviews from the general public. On a comical side note, the whole
Rethinking the Unthinkable: Selective Proliferation and US Nuclear Strategy
2011-06-01
Equally commendable are the efforts of the SAASS librarian Sandhya "Sandy" Malladi and the SAASS secretaries Sheila McKitt and Kelly Rhodes. These...Nuclear Deterrence and Global Security in Transition, 177. 20 Barry R . Schneider, Future War and Counterproliferation: US Military Responses to Nbc...develop states prepared to conduct themselves as nuclear weapons 42 Barre R . Seguin, "Why Did Poland Choose the F-16?," The Marshall Center
The Trilateral Force: The Atlantic Alliance and the Future of Nuclear Weapons Strategy
2013-12-03
Western World, Atlantic Council (2013), 46. s Paul Bracken, The Second Nuclear Age: Strategy, Danger, and the New Power Politics (New York: Times...Studies Institute (2013); Paul Bracken, "The Bomb Returns for a Second Act," Foreign Policy Research Institute E- Notes, November (2012). 11 David...Commission Report: Modernizing US. Nuclear Strategy, Force Structure and Posture, Global Zero (2012), 6. 27 Dana Johnson, et al., "Triad, Dyad, Monad
Challenging Minimum Deterrence: Articulating the Contemporary Relevance of Nuclear Weapons
2016-07-13
Command and Control: Nuclear Weapons, the Damascus Accident , and the Illusion of Safety (New York: Penguin Press, 2013), 484. 36. Keir A. Lieber and...Remembrance of Things Past,” 78. 53. Scott D. Sagan, The Limits of Safety: Organizations, Accidents , and Nuclear Weapons (Princeton, NJ: Princeton...16 | Air & Space Power Journal Challenging Minimum Deterrence Articulating the Contemporary Relevance of Nuclear Weapons Maj Joshua D. Wiitala, USAF
2008-03-01
Adversarial Tripolarity ................................................................................... VII-1 VIII. Fallen Nuclear Dominoes...power dimension, it is possible to imagine a best case (deep concert) and a worst case (adversarial tripolarity ) and some less extreme outcomes, one...vanquished and the sub-regions have settled into relative stability). 5. Adversarial U.S.-Russia-China tripolarity : In this world, the regional
Soviet Tactical Doctrine for Urban Warfare
1975-12-01
for Chemical and Radiation Specialists . . . 0 a . a. . . . . &. . . . .&. 120 5. Soviet Guidelines for the Logistician . . . . . . 122 6. Soviet...conducted with or without the employment of nuclear or chemical weapons although the Soviets emphasize the integrity, flexibility and duality of tactical...concepts and that future wars will entail nuclear, chemical and con- ventional operations. " From the materials reviewed in this study, Soviet treatment
National Center for Nuclear Security - NCNS
None
2018-01-16
As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrzanowski, P; Walter, K
Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate themore » Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at the National Ignition Facility (NIF), the world's largest laser. They will help us resolve the most important questions we still have about nuclear weapons performance. Future NIF experiments will also explore the promise of an essentially inexhaustible source of clean energy from nuclear fusion. In addition, we have begun the process of eliminating significant quantities of special nuclear materials from the Livermore site. We will carry forward Livermore's tradition of exceptional science and technology. This is the S&T that led to the design and construction of NIF and leadership in an international consortium that is developing the Gemini Planet Imager. When the Imager comes on line in 2010 at an observatory in Chile, the Imager will bring into sharp focus planets that are 30 to 150 light years from our solar system.« less
The continuing risk of nuclear war.
McCoy, Ronald
2007-01-01
Climate change and nuclear war are currently the most dangerous challenges to human civilisation and survival. The effects of climate change are now sufficient to persuade many governments to take effective measures to reduce greenhouse gas emissions. Today there are about 27,000 nuclear warheads, many at least ten times more powerful than the Hiroshima and Nagasaki bombs, and a meaningful medical response to a nuclear attack is impossible. Nevertheless, the threat of nuclear war does not raise public concern, and indeed the nuclear-weapon states are upgrading their capability. The only effective preventive measure is the abolition of nuclear weapons. Steps towards this include: a Fissile Material Cut-off Treaty, for the nuclear weapon states to observe their obligations under the Nuclear Non-Proliferation Treaty, and for the Comprehensive Test Ban Treaty to enter into force. The ultimate need is for a Nuclear Weapons Convention; International Physicians for the Prevention of Nuclear War have launched an International Campaign to Abolish Nuclear weapons (ICAN) to promote a NWC.
Building Foundations for Nuclear Security Enterprise Analysis Utilizing Nuclear Weapon Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josserand, Terry Michael; Young, Leone; Chamberlin, Edwin Phillip
The Nuclear Security Enterprise, managed by the National Nuclear Security Administration - a semiautonomous agency within the Department of Energy - has been associated with numerous assessments with respect to the estimating, management capabilities, and practices pertaining to nuclear weapon modernization efforts. This report identifies challenges in estimating and analyzing the Nuclear Security Enterprise through an analysis of analogous timeframe conditions utilizing two types of nuclear weapon data - (1) a measure of effort and (2) a function of time. The analysis of analogous timeframe conditions that utilizes only two types of nuclear weapon data yields four summary observations thatmore » estimators and analysts of the Nuclear Security Enterprise will find useful.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, K.G.; Jenkins-Smith, H.C.
This study analyzes findings from a national survey of 2,490 randomly selected members of the US public conducted between September 30 and November 14, 1995. It provides an over time comparison of public perceptions about nuclear weapons risks and benefits and key nuclear policy issues between 1993 and 1995. Other areas of investigation include policy preferences regarding nuclear proliferation, terrorism, US/Russian nuclear cooperation, and personal security. Public perceptions of post-cold war security were found to be evolving in unexpected ways. The perceived threat of nuclear conflict involving the US had not declined, and the threat of nuclear conflict between othermore » countries and fears of nuclear proliferation and terrorism had increased. Perceived risks associated with managing the US nuclear arsenal were also higher. Perceptions of external and domestic benefits from US nuclear weapons were not declining. Support was found for increasing funding for nuclear weapons safety, training, and maintenance, but most respondents favored decreasing funding for developing and testing new nuclear weapons. Strong support was evident for programs and funding to prevent nuclear proliferation and terrorism. Though skeptical that nuclear weapons can be eliminated, most respondents supported reducing the US nuclear arsenal, banning nuclear test explosions, and ending production of fissile materials to make nuclear weapons. Statistically significant relationships were found between perceptions of nuclear weapons risks and benefits and policy and spending preferences. Demographic variables and basic social and political beliefs were systematically related both to risk and benefit perceptions and policy and spending options.« less
Nuclear Weapons: Comprehensive Test Ban Treaty
2007-05-24
remain current. It indicated plans to reduce the time between a decision to conduct a nuclear test and the test itself, which has been done. Critics ...over the Summit,” Manila Bulletin, August 27, 2005. Critics expressed concern about the implications of these policies for testing and new weapons...force, seek the opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”8 Another critic
Nuclear obligations: Nuremberg law, nuclear weapons, and protest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burroughs, J.R.
1991-01-01
Nuclear weapons use and deployment and nonviolent anti-nuclear protests are evaluated. Use of nuclear weapons would constitute war crimes and crimes against humanity as defined in both the Nuremberg Charter and Allied Control Council Law No. 10 and applied by the International Military Tribunal and other Nuremberg courts. Strategic and atomic bombing during World War 2 did not set a precedent for use of nuclear weapons. The consequentialist argument for World War 2 bombing fails and the bombing has also been repudiated by codification of the law of war in Protocol 1 to the 1949 Geneva Conventions. The legality ofmore » deploying nuclear weapons as instruments of geopolitical policy is questionable when measured against the Nuremberg proscription of planning and preparation of aggressive war, war crimes, and crimes against humanity and the United Nations Charter's proscription of aggressive threat of force. While states' practice of deploying the weapons and the arms-control treaties that regulate but do not prohibit mere possession provide some support for legality, those treaties recognize the imperative of preventing nuclear war, and the Nuclear Non-Proliferation Treaty commits nuclear-armed states to good-faith negotiation of nuclear disarmament.« less
Reagan and the Nuclear Freeze: "Stars Wars" as a Rhetorical Strategy.
ERIC Educational Resources Information Center
Bjork, Rebecca S.
1988-01-01
Analyzes the interaction between nuclear freeze activists and proponents of a Strategic Defense Initiative (SDI). Argues that SDI strengthens Reagan's rhetorical position concerning nuclear weapons policy because it reduces the argumentative ground of the freeze movement by envisioning a defensive weapons system that would nullify nuclear weapons.…
Nuclear materials safeguards for the future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tape, J.W.
Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating internationalmore » inspection of excess weapons materials and verifying a fissile materials cutoff convention.« less
Leo Szilard Lectureship Award Talk: Controlling and eliminating nuclear-weapon materials
NASA Astrophysics Data System (ADS)
von Hippel, Frank
2010-02-01
Fissile material -- in practice plutonium and highly enriched uranium (HEU) -- is the essential ingredient in nuclear weapons. Controlling and eliminating fissile material and the means of its production is therefore the common denominator for nuclear disarmament, nuclear non-proliferation and the prevention of nuclear terrorism. From a fundamentalist anti-nuclear-weapon perspective, the less fissile material there is and the fewer locations where it can be found, the safer a world we will have. A comprehensive fissile-material policy therefore would have the following elements: *Consolidation of all nuclear-weapon-usable materials at a minimum number of high-security sites; *A verified ban on the production of HEU and plutonium for weapons; *Minimization of non-weapon uses of HEU and plutonium; and *Elimination of all excess stocks of plutonium and HEU. There is activity on all these fronts but it is not comprehensive and not all aspects are being pursued vigorously or competently. It is therefore worthwhile to review the situation. )
The Nuclear Posture Review (NPR) : are we safer?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brune, Nancy E.
2010-07-01
Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world lessmore » safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.« less
ERIC Educational Resources Information Center
Defense Civil Preparedness Agency (DOD), Battle Creek, MI.
Basic information about nuclear weapons is presented so that their effects can be meaningfully related to the defensive countermeasures which will be most effective against them. Major topics include: (1) Explosive power of nuclear weapons, (2) Major effects of nuclear explosions, (3) Two basic types of nuclear explosions, (4) Contrast between air…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... To the Risk of Nuclear Proliferation Created By the Accumulation of Weapons-usable Fissile Material... Risk of Nuclear Proliferation Created By the Accumulation of Weapons-usable Fissile Material In the... Russian Federation Concerning the Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... National Emergency With Respect to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons... Extracted from Nuclear Weapons, dated February 18, 1993, and related contracts and agreements (collectively... derived from nuclear weapons to low enriched uranium for peaceful commercial purposes. The order invoked...
Irans Nuclear Program: Tehrans Compliance with International Obligations
2016-04-07
ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear
Irans Nuclear Program: Tehrans Compliance with International Obligations
2016-03-03
ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear
Perspectives on Russian Foreign Policy
2012-09-01
defense spending and in- creasingly military cast of the rivalry with America is a warning sign in this regard. For if the end result of Putinism... for building a missile defense system, which is seen as a means to render the whole system of nuclear checks and balances irrelevant. The main...comparative advantages, at least for the foreseeable future , are oil and gas and its nuclear weapons,
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2013-01-02
41 The National Academy of Sciences Study and Its Critics ...reliable and safe. So he has not ruled out testing in the future, but there are no plans to do so.”6 Critics expressed concern about the...nuclear weapons testing.”7 Another critic felt that increased funding for test readiness would in effect give prior approval for testing. In July 2002 a
ERIC Educational Resources Information Center
International Student Pugwash, Washington, DC.
Proceedings of a symposium which focused on issues related to nuclear weapons and arms control are presented. In addition to a list of participants (including both high school and college educators) and symposium schedule, summaries/highlights of symposium sessions are provided. These include summaries of three working groups which discussed…
Conventional Expeditionary Forces: A 21st Century Triad for Strategic Deterrence
2009-05-27
testing and transfers of nuclear materials, the ability to effectively monitor and track all such activities 100% of the time does not exist at present nor...Limited Test Ban Treaty of 1963 sought to stabilize the arms race and reduce environmental damage by banning atmospheric, sea-based, and space-based...nuclear weapons tests , thereby limiting future testing to underground conditions, and was signed 139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schock, R N
This report draws on a series of international workshops held to mark the fiftieth anniversary of President Dwight D. Eisenhower's Atoms for Peace address before the United Nations General Assembly. A half-century after President Eisenhower's landmark speech, the world is vastly different, but mankind still faces the challenge he identified--gaining the benefits of nuclear technology in a way that limits the risks to security. Fifty years after Eisenhower declared that the people of the world should be ''armed with the significant facts of today's existence,'' the consequences of his bold vision should be evaluated to provide a foundation upon whichmore » to shape the next fifty years. Policy and technology communities cannot escape the legacy of a half-century of nuclear technology expansion. At the same time, citizens need to consider the future role of military and civilian nuclear technology in a global strategy to meet the challenges of the twenty-first century. The new century brought with it a set of contradictions regarding nuclear technology. Nuclear knowledge, technology, materials, and facilities have spread around the world, but control and management of the nuclear genie have not kept pace. The Cold War is over, but not the threat from weapons of mass destruction, including the prospect that nuclear, chemical, or biological weapons may get into the hands of terrorists. Nevertheless, mankind continues to explore the frontiers of technology, including nuclear technology. Public concern about nuclear safety and security--exacerbated by accidents, nuclear weapon proliferation, and terrorism--confronts major growth in applications of nuclear technology in nuclear power, medicine, agriculture, and industry. While some developed countries have essentially stopped civilian nuclear-power expansion, mainly for economic reasons, several developing states--notably China and India--plan increases in the nuclear generation of electricity. Ironically, while governments still seek answers to long-term, nuclear waste disposal, other concerns about the environmental health of the planet such as climate change, regional air pollution, and possible rising natural gas prices have also renewed interest in nuclear power, even in countries that once sought to terminate their own nuclear programs. Many of these contradictions can and will be resolved--for better or worse. A wide range of forces--economic, political, and technical--will determine the impact of nuclear technology in the future, and no consensus exists on the outcome. The significance of nuclear technology for civilian or military purposes may expand, contract, or remain the same. This suggests a matrix of basic possibilities from which we focus on five alternative futures: (1) More civilian/Less military significance, (2) Less civilian/Less military significance, (3) Less civilian/More military significance, and (4) More civilian/More military significance. Of course, changed circumstances could also result in (5) the significance of both civilian and military nuclear technologies remaining about the same as today. Experts offer compelling logic why each of these alternatives is more likely or desirable. For each of these futures or their modifications, a more comprehensive vision can be presented and specific measures recommended. Some call for a new nuclear ''compact'' or ''bargain'' to share benefits and reduce risks. No matter which alternative future emerges, however, dealing with the legacy of existing civilian and military nuclear materials and infrastructure will keep important nuclear issues active for the next half-century.« less
Atoms for Peace After 50 Years: The New Challenges and Opportunities
DOE R&D Accomplishments Database
2003-12-01
This report draws on a series of international workshops held to mark the fiftieth anniversary of President Dwight D. Eisenhower's Atoms for Peace address before the United Nations General Assembly. A half-century after President Eisenhower's landmark speech, the world is vastly different, but mankind still faces the challenge he identified--gaining the benefits of nuclear technology in a way that limits the risks to security. Fifty years after Eisenhower declared that the people of the world should be "armed with the significant facts of today's existence," the consequences of his bold vision should be evaluated to provide a foundation upon which to shape the next fifty years. Policy and technology communities cannot escape the legacy of a half-century of nuclear technology expansion. At the same time, citizens need to consider the future role of military and civilian nuclear technology in a global strategy to meet the challenges of the twenty-first century. The new century brought with it a set of contradictions regarding nuclear technology. Nuclear knowledge, technology, materials, and facilities have spread around the world, but control and management of the nuclear genie have not kept pace. The Cold War is over, but not the threat from weapons of mass destruction, including the prospect that nuclear, chemical, or biological weapons may get into the hands of terrorists. Nevertheless, mankind continues to explore the frontiers of technology, including nuclear technology. Public concern about nuclear safety and security--exacerbated by accidents, nuclear weapon proliferation, and terrorism--confronts major growth in applications of nuclear technology in nuclear power, medicine, agriculture, and industry. While some developed countries have essentially stopped civilian nuclear-power expansion, mainly for economic reasons, several developing states--notably China and India--plan increases in the nuclear generation of electricity. Ironically, while governments still seek answers to long-term, nuclear waste disposal, other concerns about the environmental health of the planet such as climate change, regional air pollution, and possible rising natural gas prices have also renewed interest in nuclear power, even in countries that once sought to terminate their own nuclear programs. Many of these contradictions can and will be resolved--for better or worse. A wide range of forces--economic, political, and technical--will determine the impact of nuclear technology in the future, and no consensus exists on the outcome. The significance of nuclear technology for civilian or military purposes may expand, contract, or remain the same. This suggests a matrix of basic possibilities from which we focus on five alternative futures: (1) More civilian/Less military significance, (2) Less civilian/Less military significance, (3) Less civilian/More military significance, and (4) More civilian/More military significance. Of course, changed circumstances could also result in (5) the significance of both civilian and military nuclear technologies remaining about the same as today. Experts offer compelling logic why each of these alternatives is more likely or desirable. For each of these futures or their modifications, a more comprehensive vision can be presented and specific measures recommended. Some call for a new nuclear "compact" or "bargain" to share benefits and reduce risks. No matter which alternative future emerges, however, dealing with the legacy of existing civilian and military nuclear materials and infrastructure will keep important nuclear issues active for the next half-century.
Prockop, Leon D
2006-11-01
The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
28 CFR 13.6 - Criteria for reward.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Judicial Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS... reward under the Atomic Weapons and Special Nuclear Materials Rewards Act must be original, and must..., acquire or export special nuclear material or atomic weapons, or (5) Loss, diversion or disposal or...
Leo Szilard Lectureship Award Talk: Nuclear disarmament after the cold war
NASA Astrophysics Data System (ADS)
Podvig, Pavel
2008-04-01
Now that the cold war is long over, our thinking of nuclear weapons and the role that they play in international security has undergone serious changes. The emphasis has shifted from superpower confrontation to nuclear proliferation, spread of weapon materials, and to the dangers of countries developing nuclear weapon capability under a cover of a civilian program. At the same time, the old cold-war dangers, while receded, have not disappeared completely. The United States and Russia keep maintaining thousands of nuclear weapons in their arsenals, some of them in very high degree of readiness. This situation presents a serious challenge that the international community has to deal with. Although Russia and the United States are taking some steps to reduce their nuclear arsenals, the traditional arms control process has stalled -- the last treaty that was signed in 2002 does not place serious limits on strategic forces of either side. The START Treaty, which provides a framework for verification and transparency in reduction of nuclear arsenals, will expire at the end of 2009. Little effort has been undertaken to extend the treaty or renegotiate it. Moreover, in recent years Russia has stepped up the efforts to modernize its strategic nuclear forces. The United States has resisted joining the Comprehensive Nuclear Test Ban Treaty and has been working on controversial new nuclear weapon development programs. The U.S. missile defense program makes the dialogue between Russia and the United States even more difficult. The reluctance of Russia and the United States to engage in a discussion about drastic reductions of their nuclear forces undermines the case of nuclear nonproliferation and seriously complicated their effort to contain the spread of nuclear weapon technologies and expertise. One of the reasons for the current lack of progress in nuclear disarmament is the contradiction between the diminished role that nuclear weapons play in security of nuclear weapon states and the inertia of cold-war institutions that are involved in their development and support. Dealing with this contradiction would require development of new mechanisms of cooperation between nuclear weapons states and their strong commitment to the cause of nuclear nonproliferation. One important area of cooperation is development of a framework that would prevent the spread of nuclear materials and technology at the time when increasing number of countries is turning toward expanded use of nuclear power to cover their energy needs.
2017-02-21
missiles; cruise missiles; and gravity bombs . In contrast with the longer-range “strategic” nuclear weapons, these weapons had a lower profile in policy...States sought to deploy dual-capable aircraft and nuclear bombs at bases on the territories of NATO members in eastern Europe. Neither NATO, as an...ballistic missiles; cruise missiles; and gravity bombs . The United States deployed these weapons with its troops in the field, aboard aircraft, on
Multidimensional Analysis of Nuclear Detonations
2015-09-17
Features on the nuclear weapons testing films because of the expanding and emissive nature of the nuclear fireball. The use of these techniques to produce...Treaty (New Start Treaty) have reduced the acceptable margins of error. Multidimensional analysis provides the modern approach to nuclear weapon ...scientific community access to the information necessary to expand upon the knowledge of nuclear weapon effects. This data set has the potential to provide
2016-09-01
NUCLEAR WEAPONS DOD Assessed the Need for Each Leg of the Strategic Triad and Considered Other Reductions to... Nuclear Forces Report to Congressional Requesters September 2016 GAO-16-740 United States Government Accountability Office United States...Government Accountability Office Highlights of GAO-16-740, a report to congressional requesters September 2016 NUCLEAR WEAPONS DOD Assessed
Nuclear weapons and medicine: some ethical dilemmas.
Haines, A; de B White, C; Gleisner, J
1983-12-01
The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakamp, M.A.
The United States has adopted a policy of calculated ambiguity regarding the role of nuclear weapons in response to a potential chemical or biological weapons (CBW) attack. Many factors affect decisions about the role nuclear weapons play in US counterproliferation strategy. This thesis describes the policy of calculated ambiguity and offers some observations about its prospects and pitfalls. The thesis presents evidence that suggests nuclear weapons could play a positive role in the US counterproliferation strategy, at least in some circumstances. It also explains how such a role could conflict with the US nonproliferation strategy. Such a role would alsomore » violate the nuclear taboo and be seen by a majority of countries as illegal and immoral. The United States has chosen a policy of calculated ambiguity in an attempt to retain the deterrent value of nuclear weapons without paying the political, legal, and moral costs of explicit reliance on nuclear weapons to deter the use of CBW. This may have short-term benefits, but ultimately may damage the national interest.« less
Going nuclear: The spread of nuclear weapons 1986-1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spector, L.S.
1987-01-01
In the third annual report of the Carnegie Endowment for International Peace on the spread of nuclear weapons, Spector provides a critical survey of the status of nuclear proliferation throughout the world and examines the nuclear potential of nations in the Middle East, Asia, Africa, and Latin America. Drawing on both historical documents and up-to-date reports, the author addresses such specific topics as Israel's nuclear arsenal, nuclear terrorism and its global security implications, arms control and nuclear safeguards, international treaties, weapons buildup, and political radicalism and unrest in nuclear-threshold nations.
Wartime nuclear weapons research in Germany and Japan.
Grunden, Walter E; Walker, Mark; Yamnazaki, Masakatsu
2005-01-01
This article compares military research projects during the Second World War to develop nuclear weapons in Germany and Japan, two countries who lost the war and failed to create nuclear weapons. The performance and motivations of the scientists, as well as the institutional support given the work, is examined, explaining why, in each case, the project went as far as it did-but no further. The story is carried over into the postwar period, when the two cultures and their scientists had to deal with the buildup of nuclear weapons during the cold war and the new nuclear power industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAJEN,GAURAV
2000-04-01
Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilitiesmore » is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including internal inspection procedures that enforce compliance); lists of nuclear facilities; emergency response procedures and available resources; information related to the transportation of nuclear wastes (particularly via shipping); understanding and notification of accidental releases; and radionuclide release data from select coastal facilities. Incremental increases in the sensitivity of the information being shared could strengthen norms for Indian and Pakistani nuclear transparency. This paper suggests seven technology-based Indian and Pakistani nuclear transparency projects for consideration. Existing nuclear-related agreements provide an information-sharing framework within which the projects could occur. Eventually, as confidence increases and new agreements are negotiated, future projects could begin to deal with the accounting of fissile materials and nuclear weapons disposition and control.« less
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2012-05-10
2009. 143 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in...Program.” Some analysts argue that spent nuclear fuel is more vulnerable when being transported . 144 Martellini, 2008. Pakistan’s Nuclear Weapons...urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment technology, which it
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2008-05-28
testing, and has no plans to test. It has reduced the time needed to conduct a nuclear test. Critics raised concerns about the implications of these...particularly as it is reduced, is reliable and safe. So he has not ruled out testing in the future, but there are no plans to do so.’”4 Critics ...Secretary of State, to Honorable Pete Domenici, United States Senate, June 25, 2007. a ten-year-old moratorium on nuclear weapons testing.”5 Another critic
Norms Versus Security: What is More Important to Japan’s View of Nuclear Weapons
2017-03-01
objectives: “1) prevent the spread of nuclear weapons and weapons technology, 2) promote cooperation in the peaceful uses of nuclear energy , and 3...http://www.world- nuclear.org/information-library/safety-and-security/safety-of-plants/fukushima-accident.aspx. 40 “Japanese Wary of Nuclear Energy ...PewResearchCenter, accessed February 22, 2017. http://www.pewglobal.org/2012/06/05/japanese-wary-of- nuclear - energy / 41 Malcolm Foster, “Thousands
Nukes in the Post-Cold War Era A View of the World from Inside the US Nuclear Weapons Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Blake Philip
Why do we have nuclear weapons? What is in the US stockpile, how is it deployed and controlled, and how it has changed over the years? What is in the “nuclear weapons complex” and what does each lab and plant do? How do the DOE/NNSA Design Labs interact with the Intelligence Community? How does the US stockpile, NW complex, and NW policy compare with those of other countries? What is easy and hard about designing nuclear weapons?
Confidence in Nuclear Weapons as Numbers Decrease and Time Since Testing Increases
NASA Astrophysics Data System (ADS)
Adams, Marvin
2011-04-01
As numbers and types of nuclear weapons are reduced, the U.S. objective is to maintain a safe, secure and effective nuclear deterrent without nuclear-explosive testing. A host of issues combine to make this a challenge. An evolving threat environment may prompt changes to security systems. Aging of weapons has led to ``life extension programs'' that produce weapons that differ in some ways from the originals. Outdated and changing facilities pose difficulties for life-extension, surveillance, and dismantlement efforts. A variety of factors can make it a challenge to recruit, develop, and retain outstanding people with the skills and experience that are needed to form the foundation of a credible deterrent. These and other issues will be discussed in the framework of proposals to reduce and perhaps eliminate nuclear weapons.
Perseverance of Power: The Relevancy of Nuclear Deterrence in the Future
2013-06-01
22 James Wood Jr. Forsyth, B. Chance Saltzman , and Gary Jr. Schaub, "Rememberance of Things Past," Strategic Studies Quarterly (Spring 2010): 75...Deterrence Now: 152. 117 Reagan, "Nuclear Weapons Employment Policy". 118 Forsyth, Saltzman , and Schaub, "Rememberance of Things Past," 75. 119 See notes 96...international order. 122 Forsyth, Saltzman , and Schaub, "Rememberance of Things Past," 80
Red China’s Capitalist Bomb: Inside the Chinese Neutron Bomb Program
2015-01-01
developed an enhanced radiation weapon (ERW) but did not deploy it. ERWs, better known as “ neutron bombs,” are specialized nuclear weapons with...contemporary systems of concern. An ERW is a specialized nuclear weapon optimized to produce prompt radiation. Such a device emits neutrons with high...Council stated that China mastered “in succession the neutron bomb design technology and the nuclear weapon miniaturization technology.”10 This statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, G.
The Nuclear Present brings the interested reader up-to-date on significant English-language books about nuclear weapons and related topics, identifying primarily important works of nuclear non-fiction that have come out since 1984. Each reference has a paragraph of comment about its subject and value. General organizational areas include the following: Reference Works; Nuclear weapons and Nuclear war (14 sub-headings including overviews, development, effects, tests, arms race, prospectives, legal considerations etc.); Strategy; proliferation; Stratigic Defense; Arms control and disarmament; ethical, pholosophical and religous perspectives; new paths to peace; periodic guide; the Chernobyl Disaster. An extensive Nuclear Chronology (1789-1991) written by the authormore » allows a fairly detailed sense of the historical record of nuclear weapons, including testing, manufacture, use and movements for arms control and disarmament.« less
The Security of Russia's Nuclear Arsenal: The Human Factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, D.Y.
1999-10-12
Assertions by the Russian military that all of their nuclear weapons are secure against theft and that nuclear units within the military are somehow insulated from the problems plaguing the Russian military should not be accepted uncritically. Accordingly, we should not give unwarranted credence to the pronouncements of military figures like Cal.-Gen. Igor Valynkin, Chief of the Defense Ministry's 12th Main Directorate, which oversees the country's nuclear arsenal. He contends that ''Russian nuclear weapons are under reliable supervision'' and that ''talk about the unreliability of our control over nuclear weapons has only one pragmatic goal--to convince international society that themore » country is incapable of maintaining nuclear safety and to introduce international oversight over those weapons, as it is done, for example, in Iraq.'' While the comparison to Iraq is preposterous, many analysts might agree with Valynkin's sanguine appraisal of the security of Russia's nuclear weapons. In contrast, I argue that the numerous difficulties confronting the military as a whole should cause concern in the West over the security of the Russian nuclear arsenal.« less
WMD Forecasting in Historical and Contemporary Perspective
2010-03-01
a nuclear weapon; Use of a nuclear weapon; Withdrawal from the NPT; Emergence of a nuclear-exports grey market; Widespread dissemination of...Many studies saw technology diffusion and the globalization of commerce as ineluctable forces that contribute to the spread of nuclear (and other...engineering diffuses , the spread of biological weapon capabilities among state actors can be expected to expand in advanced and developing states. This
Why are U.S. nuclear weapon modernization efforts controversial?
NASA Astrophysics Data System (ADS)
Acton, James
2016-03-01
U.S. nuclear weapon modernization programs are focused on extending the lives of existing warheads and developing new delivery vehicles to replace ageing bombers, intercontinental ballistic missiles, and ballistic missile submarines. These efforts are contested and controversial. Some critics argue that they are largely unnecessary, financially wasteful and potentially destabilizing. Other critics posit that they do not go far enough and that nuclear weapons with new military capabilities are required. At its core, this debate centers on three strategic questions. First, what roles should nuclear weapons be assigned? Second, what military capabilities do nuclear weapons need to fulfill these roles? Third, how severe are the unintended escalation risks associated with particular systems? Proponents of scaled-down modernization efforts generally argue for reducing the role of nuclear weapons but also that, even under existing policy, new military capabilities are not required. They also tend to stress the escalation risks of new--and even some existing--capabilities. Proponents of enhanced modernization efforts tend to advocate for a more expansive role for nuclear weapons in national security strategy. They also often argue that nuclear deterrence would be enhanced by lower yield weapons and/or so called bunker busters able to destroy more deeply buried targets. The debate is further fueled by technical disagreements over many aspects of ongoing and proposed modernization efforts. Some of these disagreements--such as the need for warhead life extension programs and their necessary scope--are essentially impossible to resolve at the unclassified level. By contrast, unclassified analysis can help elucidate--though not answer--other questions, such as the potential value of bunker busters.
Strategic defense initiative: critical issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuckolls, J.H.
The objectives of the Strategic Defense Initiative (SDI) as outlined by President Reagan are discussed. The principal objective for SDI is as a defense against ballistic missiles. Soviet objections and a summary of US-USSR dialogue on the subject are reviewed. Most US studies have been critical of SDI. Four critical issues are addressed in depth: are defense weapons technologically feasible which have high economic leverage relative to offensive ballistic missiles; would the defense feasibility and leverage be degraded or enhanced in the technological race between weapons innovation and countermeasures; could stability be achieved during and after the transition to themore » defense dominated world envisioned by SDI proponents; would the deployment of high leverage defensive weapons increase or decrease the security of NATO Europe, and the probability of major conventional or nuclear wars. The issue of SDI may lead to a paradox that contains the seeds of catastrophe. The author concludes by warning that nuclear disarmament may eliminate the highly successful deterrent mechanism for avoiding another major world war. In a world made safe for major conventional wars by the apparent ''elimination'' of nuclear weapons, the leaders in a conventional World War III - involving unimaginable suffering, hatred, terror, and death - would be strongly motivated to introduce nuclear weapons in the crucial decisive battles. Even if diplomacy could ''eliminate'' nuclear weapons, man's knowledge of nuclear weapons can never be eliminated. The paradox is the attempt to eliminate nuclear weapons may maximize the probability of their use. (DMC)« less
Evaluating Nonproliferation Bona Fides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seward, Amy M.; Mathews, Caroline E.; Kessler, Carol E.
2008-07-14
Anticipated growth of global nuclear energy in a difficult international security environment heightens concerns that states could decide to exploit their civilian nuclear fuel cycles as a means of acquiring nuclear weapons. Such concerns partly reflect a fundamental tension in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). On the one hand, Articles II and III of the NPT clearly prohibit each non-nuclear-weapon state party from acquiring nuclear weapons. On the other hand, Article IV of the NPT confers the “inalienable right” of Parties to the treaty to “develop research, production and use of nuclear energy for peaceful purposes…,”more » and directs all Parties to “facilitate… the fullest possible exchange of equipment, materials and scientific and technological information for the peaceful uses of nuclear energy…,” and “cooperate in contributing…to the further development of the applications of nuclear energy for peaceful purposes….” This juxtaposition raises the possibility that a state could exercise its Article IV right to develop a civilian nuclear fuels cycle and then use the equipment, materials and technology to acquire nuclear weapons in violation of its Article II and III obligations.« less
Joseph A. Burton Forum Award: Some Nuclear Weapons Dilemmas
NASA Astrophysics Data System (ADS)
May, Michael
2014-03-01
Nuclear weapons pose a combination of political and ethical dilemmas the solution to which has not been found. On one hand, in the view of both US government leaders and US allies, nuclear deterrence continues to play an essential part in the US role as the ultimate source of military strength for the alliances among the major democratic countries. It also continues to be in demand by countries that believe themselves to be isolated and threatened. On the other hand, nuclear weapons, besides being effective deterrents, can cause unprecedented loss of life and risk the demise of civilizations. No ban or technical precaution could prevent the rebuilding of nuclear weapons in a crisis. No diplomatic arrangement to date has erased the threat of invasion and war in the world. Only the abandonment of war and the threat of war as instruments of policy can make nuclear weapons obsolete. The slow, halting, risky road to that end remains the only hope for a world in which lasting solutions to the nuclear dilemmas are possible.
Nuclear weapons and medicine: some ethical dilemmas.
Haines, A; de B White, C; Gleisner, J
1983-01-01
The enormous destructive power of present stocks of nuclear weapons poses the greatest threat to public health in human history. Technical changes in weapons design are leading to an increased emphasis on the ability to fight a nuclear war, eroding the concept of deterrence based on mutually assured destruction and increasing the risk of nuclear war. Medical planning and civil defence preparations for nuclear war have recently been increased in several countries although there is little evidence that they will be of significant value in the aftermath of a nuclear conflict. These developments have raised new ethical dilemmas for those in health professions. If there is any risk of use of weapons of mass destruction, then support for deterrence with these weapons as a policy for national or global security appears to be incompatible with basic principles of medical ethics and international law. The primary medical responsibility under such circumstances is to participate in attempts to prevent nuclear war. PMID:6668585
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-20
... Accumulation of Weapons-Useable Fissile Material in the Territory of the Russian Federation #0; #0; #0... National Emergency With Respect to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons... Extracted from Nuclear Weapons, dated February 18, 1993, and related contracts and agreements (collectively...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons-Usable Fissile Material... Proliferation Created by the Accumulation of Weapons-Usable Fissile Material in the Territory of the Russian... Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons, dated February 18, 1993, and related...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons-usable Fissile Material... Proliferation Created by the Accumulation of Weapons-usable Fissile Material in the Territory of the Russian... Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons, dated February 18, 1993, and related...
Physics and technology of the arms race
NASA Astrophysics Data System (ADS)
Garwin, R. L.
1983-10-01
Traditional military concepts of superiority and effectiveness (as embodied in Lanchester's law) have little relevance to thermonuclear weapons, with their enormous effectiveness in destruction of society. Few are needed to saturate their deterrent effect, but their military effectiveness is limited. The evolution and future of strategic nuclear forces is discussed, and their declining marginal utility emphasized. Some calculatons relevant to the nuclear confrontation are presented (Lanchester's Law; skin effect of VLF and ELF signals to submarines; the rocket equation; simple radar-range equation) and recommendations presented for future strategic forces and arms control initiatives. Recommended programs include a silo-based 12-ton single-warhead missile (SICM), the development of buried-bomb defense of individual Minuteman silos, the completion of the deployment of air-launched cruise missiles on the B-52 fleet, and the development of small (1000-ton) submarines for basing ICBM-range missiles. Limiting the threat by arms control should include ratification of SALT II, followed by negotiation of a protrocool to allow a SICM and dedicated silo to be deployed for each two, SALT-II-allowed warheads given up; a ban on weapons in space and anti-satellite tests; and an eventual reduction to 1000 nuclear warheads in U.S. and Soviet inventories.
Extended Deterrence, Nuclear Proliferation, and START III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speed, R.D.
2000-06-20
Early in the Cold War, the United States adopted a policy of ''extended nuclear deterrence'' to protect its allies by threatening a nuclear strike against any state that attacks these allies. This threat can (in principle) be used to try to deter an enemy attack using conventional weapons or one using nuclear, chemical, or biological weapons. The credibility of a nuclear threat has long been subject to debate and is dependent on many complex geopolitical factors, not the least of which is the military capabilities of the opposing sides. The ending of the Cold War has led to a significantmore » decrease in the number of strategic nuclear weapons deployed by the United States and Russia. START II, which was recently ratified by the Russian Duma, will (if implemented) reduce the number deployed strategic nuclear weapons on each side to 3500, compared to a level of over 11,000 at the end of the Cold War in 1991. The tentative limit established by Presidents Clinton and Yeltsin for START III would reduce the strategic force level to 2000-2500. However, the Russians (along with a number of arms control advocates) now argue that the level should be reduced even further--to 1500 warheads or less. The conventional view is that ''deep cuts'' in nuclear weapons are necessary to discourage nuclear proliferation. Thus, as part of the bargain to get the non-nuclear states to agree to the renewal of the Nuclear Non-Proliferation Treaty, the United States pledged to work towards greater reductions in strategic forces. Without movement in the direction of deep cuts, it is thought by many analysts that some countries may decide to build their own nuclear weapons. Indeed, this was part of the rationale India used to justify its own nuclear weapons program. However, there is also some concern that deep cuts (to 1500 or lower) in the U.S. strategic nuclear arsenal could have the opposite effect. The fear is that such cuts might undermine extended deterrence and cause a crisis in confidence among U.S. allies to such an extent that they could seek nuclear weapons of their own to protect themselves.« less
Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments
2009-11-23
there are no plans to do so.’”5 Critics expressed concern about the implications of these policies for testing and new weapons. A statement by...opportunity to design and build new nuclear weapons, and abandon a ten-year-old moratorium on nuclear weapons testing.”6 Another critic felt that increased...cannot diagnose or remedy a problem in a warhead critical the U.S. nuclear deterrent without conducting a nuclear test.10 Similarly, a Statement of
On The Export Control Of High Speed Imaging For Nuclear Weapons Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Scott Avery; Altherr, Michael Robert
Since the Manhattan Project, the use of high-speed photography, and its cousins flash radiography1 and schieleren photography have been a technological proliferation concern. Indeed, like the supercomputer, the development of high-speed photography as we now know it essentially grew out of the nuclear weapons program at Los Alamos2,3,4. Naturally, during the course of the last 75 years the technology associated with computers and cameras has been export controlled by the United States and others to prevent both proliferation among non-P5-nations and technological parity among potential adversaries among P5 nations. Here we revisit these issues as they relate to high-speed photographicmore » technologies and make recommendations about how future restrictions, if any, should be guided.« less
Conventional nuclear strategy and the American doctrine of counterforce
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, C.P.
Debate over nuclear weapons still lingers and one cause of this trend, as suggested by this thesis, is the rise of conventional nuclear strategy or, in other words, the attempt by the US government to apply through the counterforce doctrine a conventional weapons strategy in an age of nuclear weapons. That debate is analyzed, as well as the thinking underlining conventional nuclear strategy, and explains why conventionalization has become popular in US nuclear weapons policies. A feature of the American nuclear debate has been the unresolved tension between two approaches to nuclear strategy, namely: the apocalyptic approach and the conventionalmore » approach. The confrontation between these camps has resulted over the years in a gradual but steady erosion of the strategic consensus to the point where, under the Reagan administration, the conventional camp appears to have emerged as a clear winner from the nuclear debate. The attractiveness of conventional nuclear strategy can be attributed to the influence and working of an American style of nuclear strategy, i.e., a specific approach to the phenomena of nuclear weapons. The author concludes that the conventional and official strategic view that nuclear problems can be solved by technological progress may, in fact, contribute to worsen rather than improve the thermonuclear condition of the world.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, Kerry Gale; Jenkins-Smith, Hank C.
2008-01-01
We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support formore » domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.« less
Special Issue on University Nonproliferation Education and Training Introduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leek, K. M.
2006-07-31
Nonproliferation, like many aspects of security, has not played out as many expected following the end of the cold war. The peace dividend has been elusive in many countries. The notion that the world would become a safer and more secure place as nuclear weapons stockpiles were reduced has been trumped by the rise in international terrorism. Hopes that nuclear weapons would lose their salience as markers of elite status among nations along with pressures to acquire them have been dashed. The drive by some countries and terrorist groups to acquire nuclear weapons has not diminished, and the threat ofmore » proliferation has increased. At the level of the nation state, the Nonproliferation Treaty (NPT) itself is under pressure as more nations acquire nuclear weapons, de facto weapons states fail to join, and nations that want to acquire them leave or threaten to leave. At the sub-state level, the convergence of terrorism and weapons of mass destruction (WMD) has introduced an element of uncertainty into nonproliferation that is unprecedented. Another feature of the post-cold war era that has taken many by surprise is the continued, and growing need for trained specialists in nonproliferation and nuclear materials management. Contained within the notion of disarmament and reduced strategic importance of nuclear weapons was the expectation of a diminishing workforce of trained nonproliferation and nuclear materials specialists. Events have overtaken this assumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnesale, A.; Doty, P.; Hoffmann, S.
1983-01-01
At Harvard President Derek Bok's request, six Harvard professors explain nuclear arms issues to help citizens understand all sides of the national security debates. The goal is to encourage public participation in policy formulation. The book emphasizes that escapism will not improve security; that idealistic plans to eliminate nuclear weapons are a form of escapism. Learning to live with nuclear weapons, they suggest, requires an understanding of the current nuclear predicament and the implications of alternative weapons and policy choices. After reviewing these matters, they emphasize that informed persons will continue to disagree, but that knowledge will improve understanding andmore » appreciation of their differences and improve the quality of policy debates. 54 references, 5 figures, 2 tables. (DCK)« less
Sandia National Laboratories: News
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Locations
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Careers
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Mission
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Research
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Feedback
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Future Remains: Industrial Heritage at the Hanford Plutonium Works
NASA Astrophysics Data System (ADS)
Freer, Brian
This dissertation argues that U.S. environmental and historic preservation regulations, industrial heritage projects, history, and art only provide partial frameworks for successfully transmitting an informed story into the long range future about nuclear technology and its related environmental legacy. This argument is important because plutonium from nuclear weapons production is toxic to humans in very small amounts, threatens environmental health, has a half-life of 24, 110 years and because the industrial heritage project at Hanford is the first time an entire U.S. Department of Energy weapons production site has been designated a U.S. Historic District. This research is situated within anthropological interest in industrial heritage studies, environmental anthropology, applied visual anthropology, as well as wider discourses on nuclear studies. However, none of these disciplines is really designed or intended to be a completely satisfactory frame of reference for addressing this perplexing challenge of documenting and conveying an informed story about nuclear technology and its related environmental legacy into the long range future. Others have thought about this question and have made important contributions toward a potential solution. Examples here include: future generations movements concerning intergenerational equity as evidenced in scholarship, law, and amongst Native American groups; Nez Perce and Confederated Tribes of the Umatilla Indian Reservation responses to the Hanford End State Vision and Hanford's Canyon Disposition Initiative; as well as the findings of organizational scholars on the advantages realized by organizations that have a long term future perspective. While these ideas inform the main line inquiry of this dissertation, the principal approach put forth by the researcher of how to convey an informed story about nuclear technology and waste into the long range future is implementation of the proposed Future Remains clause, as originated by the author, by amendment to two U.S. federal laws: National Historic Preservation Act and Comprehensive Environmental Response, Compensation, and Liability Act. The dissertation provides a case study in public anthropology. The findings of the dissertation include recommendations whereby the Future Remains clause gives historic preservation and cultural resources a leading and ongoing role in facilitating real-time forward looking historical documentation at environmental restoration projects at United States National Priorities List (i.e., "Superfund") sites.
Nuclear Weapons: Comprehensive Test Ban Treaty
2007-04-04
indicated plans to reduce the time between a decision to conduct a nuclear test and the test itself, which has been done. Critics raised concerns...testing in the future, but there are no plans to do so.’”6 Critics expressed concern about the implications of these policies for testing and new... critic felt that increased funding for test readiness would in effect give prior approval for testing. CRS-4 8 The National Academies, “Academy
Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollar, Lenka; Mathews, Caroline E.
This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less
Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.
Boulton, Frank
2015-07-24
The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.
Sandia National Laboratories: Search Results
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Social Media
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Visiting Research Scholars
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Videos
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: About Sandia
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Image Gallery
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Research: Biodefense
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Privacy and Security
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Sandia Digital Media
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Careers: Special Programs
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Cooperative Monitoring Center
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Research: Bioscience
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Integrated Military Systems
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Image Gallery
Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers
U.S. Nuclear Weapons: Changes in Policy and Force Structure
2006-08-10
the Mound Plant , near Dayton OH; the Pinellas Plant , in Clearwater, FL; and the Pantex Plant near Amarillo, TX. These facilities were also operated...major nuclear weapons production facilities. These included the Rocky Flats Plant , outside Denver, CO; the Kansas City Plant , near Kansas City, MO...response to safety concerns. The Rocky Flats Plant , which produced the nuclear triggers, or “pits,” for nuclear weapons closed in 1989, in response
Zero Nuclear Weapons and Nuclear Security Enterprise Modernization
2011-01-01
national security strategy. For the first time since the Manhattan Project , the United States was no longer building nuclear weapons and was in fact...50 to 60 years to the Manhattan Project and are on the verge of catastrophic failure. Caustic chemicals and processes have sped up the corrosion and...day, the United States must fund the long-term modernization effort of the entire enter prise. Notes 1. Nuclear Weapon Archive, “The Manhattan
Effective coordination and communication between the Department of Energy (DOE) and the Department of Defense (DoD) is necessary to ensure that the... nuclear weapons stockpile remains safe, secure, and effective without nuclear testing. The science-based Stockpile Sustainment Program (SSP) is the...method used to sustain and maintain the nuclear stockpile throughout the weapons life cycle. A comprehensive review was conducted of the joint
Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health
Pregenzer, Arian
2014-01-01
Reducing the risks of nuclear war, limiting the spread of nuclear weapons, and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation, and counterterrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclear technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters worldwide provide significant benefits to global public health. PMID:24524501
Nonproliferation Graduate Fellowship Program Annual Report: Class of 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMakin, Andrea H.
2012-08-20
Annual report for the Nonproliferation Graduate Fellowship Program (NGFP), which PNNL administers for the National Nuclear Security Administration (NNSA). Features the Class of 2011. The NGFP is a NNSA program with a mission to cultivate future technical and policy leaders in nonproliferation and international security. Through the NGFP, outstanding graduate students with career interests in nonproliferation are appointed to program offices within the Office of Defense Nuclear Nonproliferation (DNN). During their one-year assignment, Fellows participate in programs designed to detect, prevent, and reverse the proliferation of nuclear weapons.
Sandia National Laboratories: News: Publications: Environmental Reports
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Sandia National Laboratories: News: Events
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: About Sandia: Environmental Responsibility
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: About Sandia: Community Involvement
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Publications: HPC Reports
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Community Involvement: Volunteer Programs
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Search Sandia Publications
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Working with Sandia: Small Business
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Microsystems Science & Technology Center
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Publications: Strategic Plan
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Media Resources: Media Contacts
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Employee & Retiree Resources: Technical
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Z Pulsed Power Facility
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Advanced Simulation and Computing
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Publications: Annual Report
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Employee & Retiree Resources: Remote Access
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: National Security Missions: International
Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia
U.S. Nuclear Weapons Modernization - the Stockpile Life Extension Program
NASA Astrophysics Data System (ADS)
Cook, Donald
2016-03-01
Underground nuclear testing of U.S. nuclear weapons was halted by President George H.W. Bush in 1992 when he announced a moratorium. In 1993, the moratorium was extended by President Bill Clinton and, in 1995, a program of Stockpile Stewardship was put in its place. In 1996, President Clinton signed the Comprehensive Nuclear Test Ban Treaty (CTBT). Twenty years have passed since then. Over the same time, the average age of a nuclear weapon in the stockpile has increased from 6 years (1992) to nearly 29 years (2015). At its inception, achievement of the objectives of the Stockpile Stewardship Program (SSP) appeared possible but very difficult. The cost to design and construct several large facilities for precision experimentation in hydrodynamics and high energy density physics was large. The practical steps needed to move from computational platforms of less than 100 Mflops/sec to 10 Teraflops/sec and beyond were unknown. Today, most of the required facilities for SSP are in place and computational speed has been increased by more than six orders of magnitude. These, and the physicists and engineers in the complex of labs and plants within the National Nuclear Security Administration (NNSA) who put them in place, have been the basis for underpinning an annual decision, made by the weapons lab directors for each of the past 20 years, that resort to underground nuclear testing is not needed for maintaining confidence in the safety and reliability of the U.S stockpile. A key part of that decision has been annual assessment of the physical changes in stockpiled weapons. These weapons, quite simply, are systems that invariably and unstoppably age in the internal weapon environment of radioactive materials and complex interfaces of highly dissimilar organic and inorganic materials. Without an ongoing program to rebuild some components and replace other components to increase safety or security, i.e., life extending these weapons, either underground testing would again be required to assess many changes at once, or confidence in these weapons would be reduced. The strategy and details of the U.S. Stockpile Life Extension Program will be described in this talk. In brief, the strategy is to reduce the number of weapons in the stockpile while increasing confidence in the weapons that remain and, where possible, increase their safety, increase their security, and reduce their nuclear material quantities and yields. A number of ``myths'' pertaining to nuclear weapons, the SSP, and the Stockpile Life Extension Program will be explored.
Nuclear security policy in the context of counter-terrorism in Cambodia
NASA Astrophysics Data System (ADS)
Khun, Vuthy; Wongsawaeng, Doonyapong
2016-01-01
The risk of nuclear or dirty bomb attack by terrorists is one of the most urgent and threatening danger. The Cambodian national strategy to combat weapons of mass destruction (WMD) depicts a layered system of preventive measures ranging from securing materials at foreign sources to interdicting weapons or nuclear or other radioactive materials at ports, border crossings, and within the Cambodian institutions dealing with the nuclear security to manage the preventive programs. The aim of this study is to formulate guidance, to identify scenario of threat and risk, and to pinpoint necessary legal frameworks on nuclear security in the context of counterterrorism based on the International Atomic Energy Agency nuclear security series. The analysis of this study is guided by theoretical review, the review of international laws and politics, by identifying and interpreting applicable rules and norms establishing the nuclear security regime and how well enforcement of the regime is carried out and, what is the likelihood of the future reform might be. This study will examine the existing national legal frameworks of Cambodia in the context of counterterrorism to prevent acts of nuclear terrorism and the threat of a terrorist nuclear attack within the Cambodia territory. It will shed light on departmental lanes of national nuclear security responsibility, and provide a holistic perspective on the needs of additional resources and emphasis regarding nuclear security policy in the context of counterterrorism in Cambodia.
Radiological Weapons Control: A Soviet and US Perspective. Occasional Paper 29.
ERIC Educational Resources Information Center
Issraelyan, Victor L.; Flowerree, Charles C.
Two international diplomats from the Soviet Union and the United States focus on the need for a treaty to ban the use of radiological weapons. Radiological weapons are those based on the natural decay of nuclear material such as waste from military or civilian nuclear reactors. Such devices include both weapons and equipment, other than a nuclear…
NASA Astrophysics Data System (ADS)
Perez, C. L.; Johnson, J. O.
Rapidly changing world events, the increased number of nations with inter-continental ballistic missile capability, and the proliferation of nuclear weapon technology will increase the number of nuclear threats facing the world today. Monitoring these nation's activities and providing an early warning and/or intercept system via reconnaissance and surveillance satellites and space based weapon platforms is a viable deterrent against a surprise nuclear attack. However, the deployment of satellite and weapon platform assets in space will subject the sensitive electronic equipment to a variety of natural and man-made radiation environments. These include Van Allen Belt protons and electrons; galactic and solar flare protons; and neutrons, gamma rays, and x-rays from intentionally detonated fission and fusion weapons. In this paper, the MASH vl.0 code system is used to estimate the dose to the critical electronics components of an idealized space based weapon platform from neutron and gamma-ray radiation emitted from a thermonuclear weapon detonation in space. Fluence and dose assessments were performed for the platform fully loaded, and in several stages representing limited engagement scenarios. The results indicate vulnerabilities to the Command, Control, and Communication bay instruments from radiation damage for a nuclear weapon detonation for certain source/platform orientations. The distance at which damage occurs will depend on the weapon yield (n,(gamma)/kiloton) and size (kilotons).
Sandia National Laboratories: What Sandia Looks For In Our Suppliers
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Working with Sandia: What Does Sandia Buy?
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, J.R.; Rubin, U.
Missiles themselves are not weapons of mass destruction; they do not give states the ability to wreak unimaginable destruction, or to radically shift the balance of power, as nuclear weapons do. Hence, the primary focus of nonproliferation efforts should remain on weapons of mass destruction, particularly nuclear weapons, rather than on one of the many possible means of delivering them. Moreover, as discussed in more detail below, advanced strike aircraft can also be effective in delivering nuclear weapons, and are generally more effective than ballistic missiles for delivering conventional or chemical ordnance. Ultimately, if the industrialized nations seriously desire tomore » control the spread of delivery means for weapons of mass destruction, they need to consider bringing controls over ballistic missiles and advanced strike aircraft more into balance. At the same time, while efforts to control ballistic missile proliferation - centered on the Missile Technology Control Regime (MTCR) - have had some successes and could be strengthened, US policy will be most effective if it recognizes two key realities: the spread of ballistic missiles cannot be as comprehensively controlled as the spread of nuclear weapons, nor need it be as comprehensively controlled.« less
1987-11-30
1975 to study weapons effects . All six were tunnel-type nuclear tests. The following table summarizes data on these events: OPERATION TOGGLE ARBOR...194 nuclear device tests conducted, 161 were for weapons related or effects purposes, and 33 were safety ex- periments. An additional 22 nuclear...on 25 April 1962 until the last atmospheric test on 4 November 1962, 40 weapons development and weapons effects tests were conducted as part of
The Trilateral Force: The Atlantic Alliance and the Future of Nuclear Weapons Strategy
2013-01-01
2010), 10. 4 Robert Manning, Envisioning 2030: U.S. Strategy for a Post-Western World, Atlantic Council (2013), 46. 5 Paul Bracken, The Second...Strategic Stability: Contending Interpretations, U.S. Army War College Strategic Studies Institute (2013); Paul Bracken, “The Bomb Returns for a Second...U.S. Nuclear Strategy, Force Structure and Posture, Global Zero (2012), 6. 27 Dana Johnson, et al., “Triad, Dyad, Monad? Shaping the U.S. Force of
Teaching with the News: North Korea and Nuclear Weapons. Choices for the 21st Century.
ERIC Educational Resources Information Center
Brown Univ., Providence, RI. Thomas J. Watson, Jr. Inst. for International Studies.
In October 2002 North Korea admitted that it had been operating a secret nuclear weapons program in violation of international treaties and the 1994 Agreed Framework with the United States. North Korea also appeared to be taking steps to begin production of nuclear weapons and, according to U.S. officials, may have a missile that can hit…
ERIC Educational Resources Information Center
Sartori, Leo
1983-01-01
Fundamental principles governing nuclear explosions and their effects are discussed, including three components of a nuclear explosion (thermal radiation, shock wave, nuclear radiation). Describes how effects of these components depend on the weapon's yield, its height of burst, and distance of detonation point. Includes effects of three…
The Nuclear Arsenals of the US and USSR.
ERIC Educational Resources Information Center
Levi, Barbara G.
1983-01-01
Compares United States and Soviet nuclear arsenals, surveying strategic and tactical weapons the two countries have (includes chart detailing strategic nuclear arsenals). Also summarizes trends in nuclear weapons, including use of electronics in surveillance and in command, communication, and control structures. (JN)
The Manhattan Project; A very brief introduction to the physics of nuclear weapons
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2017-05-01
The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, M. C.
2014-02-07
There have been many words written about the value and importance of nuclear disarmament. There have been many words written about the value and importance to the U.S. defense posture of nuclear weapons. This thesis will not be about either one of those points of view. The commentary will not purport to tell anyone that there is a need or there is not a need for one nuclear weapon or thousands of nuclear weapons. This study is more about, "well, they are here -- now what?"
[Consequences for military medicine of new nuclear weapons developments].
Vogler, H
1985-01-15
The development and production of qualitatively new nuclear weapons (e.g. neutron weapons) has consequences also for the medical protection under conditions of war. In the present paper the peculiarities of these new systems of arms as well as the profile of injured persons which is to be expected after use of neutron weapons are analysed and general conclusions for the medical service are drawn.
11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS ...
11. VIEW OF A SITE RETURN WEAPONS COMPONENT. SITE RETURNS WERE NUCLEAR WEAPONS SHIPPED TO THE ROCKY FLATS PLANT FROM THE NUCLEAR WEAPON STOCKPILE FOR RETIREMENT, TESTING, OR UPGRADING. FISSILE MATERIALS (PLUTONIUM, URANIUM, ETC.) AND RARE MATERIALS (BERYLLIUM) WERE RECOVERED FOR REUSE, AND THE REMAINDER WAS DISPOSED. (8/7/62) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO
DOE R&D Accomplishments Database
Hecker, S. S.
1988-04-01
The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security.
The Nuclear Non-Proliferation Treaty: Regulating Nuclear Weapons around the World
ERIC Educational Resources Information Center
Middleton, Tiffany Willey
2010-01-01
In May 2010, scientists, national security experts, and state delegates from nations around the world will convene in New York for the 2010 Nuclear Non-Proliferation Treaty Review Conference. They will review current guidelines for nuclear testing and possession of nuclear weapons in accordance with the Nuclear Non-Proliferation Treaty of 1968,…
Russian Nuclear Weapons: Past, Present, and Future
2011-11-01
the administration’s plans to de - ploy BMD components in Bulgaria and Romania by 2015, and has fiercely criticized global zero both in terms of the...Military Doctrine, Moscow tried to fight off politically and diplomatically the expanding U.S. BMD program and, in particular, U.S. plans to de - ploy a...has encountered major de - lays and its future remains uncertain. Modernization of the air leg has been postponed—Russia plans to rely on existing
Sandia National Laboratories: Directed-energy tech receives funding to
Accomplishments Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Cyber & Infrastructure Security Global Security Remote Sensing & Verification Research Research
Intermediate-range nuclear forces (INF) treaty: an operational error
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, W.B.
1988-05-12
The purpose of this paper is to examine the operational impact of the INF treaty and what it means for the future of NATO. At this writing, there is considerable debate going on as to whether or not the US Congress should ratify the INF treaty. The political issues are well known and under careful examination. A critical element that still needs to be addressed is the operational impact of the INF treaty. This area may have been neglected because nuclear weapons are viewed primarily as an element of deterrence. Therefore, their warfighting potential is given only minimal consideration. Thismore » paper begins with a discussion of the historical use of nuclear weapons in NATO's defensive Alliance. It follows through to the decision in 1979 to modernize NATO's nuclear force. This decision resulted in the deployment of the Pershing II and ground-launched cruise missile (GLCM) systems in Europe. The Soviet warfighting concept for Europe is addressed next to place the intermediate-range nuclear forces in their proper perspective. This is followed by a discussion on the operational implications of the INF treaty. The paper concludes by briefly mentioning a few of the defensive proposals for the post-INF period.« less
2012 Review on the Extension of the AMedP-8(C) Methodology to New Agents, Materials, and Conditions
2013-10-01
Atlantic Treaty Organization (NATO) to estimate casualties from chemical, biological , radiological, and nuclear (CBRN) weapons . The final draft...chemical, biological , radiological, and nuclear (CBRN) weapons . The final draft documenting this methodology was published by IDA in 2009 and was...from Battlefield Exposure to Chemical, Biological and Radiological Agents and Nuclear Weapon Effects. IDA Document D- 4465. Alexandria, VA: IDA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F
2009-01-01
With the end of the Cold War, in a dramatically changed security environment, the advances in nonnuclear strategic capabilities along with reduced numbers and roles for nuclear forces has altered the calculus of deterrence and defense, at least for the United States. For many, this opened up a realistic possibility of a nuclear-free world. It soon became clear that the initial post-Cold War hopes were exaggerated. The world did change fundamentally, but it did not become more secure and stable. In place of the old Soviet threat, there has been growing concern about proliferation and terrorism involving nuclear and othermore » weapons of mass destruction (WMD), regional conflicts, global instability and increasingly serious new and emerging threats, including cyber attacks and attacks on satellites. For the United States at least, in this emerging environment, the political rationales for nuclear weapons, from deterrence to reassurance to alliance management, are changing and less central than during the Cold War to the security of the United States, its friends and allies. Nuclear weapons remain important for the US, but for a far more limited set of roles and missions. As the Perry-Schlesinger Commission report reveals, there is a domestic US consensus on nuclear policy and posture at the highest level and for the near term, including the continued role of nuclear arms in deterring WMD use and in reassuring allies. Although the value of nuclear weapons has declined for the United States, the value of these weapons for Russia, China and so-called 'rogue' states is seen to be rising. The nuclear logic of NATO during Cold War - the need for nuclear weapons to counter vastly superior conventional capabilities of the Soviet Union and the Warsaw Pact - is today heard from Russians and even some proliferants. Moreover, these weapons present a way for rogues to achieve regional hegemony and possibly to deter interventions by the United States or others. While the vision of a nuclear-free world is powerful, both existing nuclear powers and proliferators are unlikely to forego nuclear weapons entirely in a world that is dangerous and uncertain. And the emerging world would not necessarily be more secure and stable without nuclear weapons. Even if nuclear weapons were given up by the United States and other nuclear-weapon states, there would continue to be concerns about the proliferation of nuclear, chemical and biological weapons, which would not disappear and could worsen. WMD terrorism would remain a concern that was largely unaffected by US and other nuclear-weapon decisions. Conventional capabilities would not disappear and the prospects for warfare could rise. In addition, new problems could arise if rogue states or other non-status-quo powers attempted to take advantage of moves toward disarmament, while friends and allies who are not reassured as in the past could reconsider their options if deterrence declined. To address these challenges, non- and counter-proliferation and counterterrorismincluding defenses and consequence management-are priorities, especially in light of an anticipated 'renaissance' in civil nuclear power. The current agenda of the United States and others includes efforts to: (1) Strengthen International Atomic Energy Agency (IAEA) and its safeguards system; (2) Strengthen export controls, especially for sensitive technologies, by limiting the development of reprocessing and enrichment technologies and by requiring the Additional Protocol as a condition of supply; (3) Establish a reliable supply regime, including the possibility of multilateral or multinational ownership of fuel cycle facilities, as a means to promote nuclear energy without increasing the risks of proliferation or terrorism; (4) Implement effectively UN Security Council Resolution 1540; and (5) Strengthen and institutionalize the Proliferation Security Initiative and the Global Initiative to Combat Nuclear Terrorism. These and other activities are important in themselves, and are essential to maintaining and strengthening the Nonproliferation Treaty (NPT) bargain by bolstering two of its pillars - nonproliferation and peaceful nuclear energy cooperation. There is no alternative, and little prospect for a better deal.« less
Nuclear Weapons and Communication Studies: A Review Essay.
ERIC Educational Resources Information Center
Taylor, Bryan C.
1998-01-01
Reviews the body of work inspired by the late Cold War period, where nuclear weapons briefly became a compelling object for communication scholars. Considers the prospects for nuclear communication scholarship in post-Cold War culture. Discusses "nuclear criticism" and issues regarding the bomb in communication. (SC)
Intercontinental Ballistic Missiles and their Role in Future Nuclear Forces
2017-05-01
they cannot carry nuclear weapons. The B-52 relies entirely on the ALCM, whereas the B-2 currently relies on unguided bombs . A new stealthy bomber...SLBM program within the next five to seven years to maintain SLBM availability into the 2050s and beyond. bomb . The new bomb will be used by stealthy...accuracy combination in an ICBM, an SLBM, a guided bomb , or a cruise missile. Similarly, speed of response and in-flight survivability favor ICBMs
2016-03-01
In March, shortly after the BJP’s electoral victory, senior foreign policy advisor N . N . Jha informed U.S. embassy officials in New Delhi that the...College, 1998. Barker, Brian, Michael Clark, Peter Davis, Mark Fisk, Michael Hedlin, Hans Israelsson, Vitaly Khalturin, et al. "Monitoring Nuclear...Pretoria, South Africa, 1981. Mihalka, Michael, German Strategic Deception in the 1930’s, Santa Monica, Calif.: RAND Corporation, N -1557-NA, 1980
PHYSICS: Will Livermore Laser Ever Burn Brightly?
Seife, C; Malakoff, D
2000-08-18
The National Ignition Facility (NIF), a superlaser being built here at Lawrence Livermore National Laboratory in an effort to use lasers rather than nuclear explosions to create a fusion reaction, is supposed to allow weapons makers to preserve the nuclear arsenal--and do nifty fusion science, too. But a new report that examines its troubled past also casts doubt on its future. Even some of NIF's scientific and political allies are beginning to talk openly of a scaled-down version of the original 192-laser design.
1983-03-31
SHOCK SIMULATION 1659 - Amonium nitrate first prepared by Glauber 1867 - Swedish patent granted to Ohlsson and Norrbein for use of ammonium nitrate ...neceessay aqd identify by block number) Ammonium Nitrate -Fuel Oil Aiiblast - . ANFO . Craters High Explosives Explosive Charge Construction * Nuclear...utilizatilon of ANFO for future W FJOAMw. 1473- EDIT00 or INOW ,Sois 0"LTZ"" DO t 473 UNCLASSIFIED SECUM"TY CLASSIFfCATIOl# OF THIS PAGEI(Whonf D Ia LI L
Believing Your Eyes: Strengthening the Reliability of Tags and Seals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brim, Cornelia P.; Denlinger, Laura S.
2013-07-01
NNSA’s Office of Nonproliferation and International Security (NIS) is working together with scientific experts at the DOE national laboratories to develop the tools needed to safeguard and secure nuclear material from diversion, theft, and sabotage--tasks critical to support future arms control treaties that may involve the new challenge of monitoring nuclear weapons dismantlement. Use of optically stimulated luminescent material is one method to enhance the security and robustness of existing tamper indicating devices such as tags and seals.
Atoms for peace and the nonproliferation treaty: unintended consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streeper, Charles Blamires
2009-01-01
In April 2009, President Obama revived nonproliferation and arms control efforts with a speech calling for the worldwide abolition of nuclear weapons. His speech correctly acknowledged the threat of nuclear terrorism and the vulnerabilities of the related unsecure nuclear materials. Unfortunately, the president did not mention and has not mentioned in any speech the threat posed by at-risk radiological materials. Nonproliferation efforts have a well documented history of focus on special nuclear materials (fissionable weapons usable materials or SNM), and other key materials (chemical and biological) and technologies for a Weapon of Mass Destruction (WMD). Such intense focus on WMDmore » related materials/technologies is essential for international safety and security and merit continued attention and funding. However, the perception that radioactive sealed sources (sources) are of less concern than WMD is unfortunate. These perceptions are based solely on the potentially enormous and tragic consequences associated with their deliberate or accidental misuse and proliferation concerns. However, there is a documented history of overemphasis on the nuclear threat at the expense of ignoring the far more likely and also devastating chemical and biological threats. The radiological threat should not be minimized or excluded from policy discussions and decisions on these far ranging scopes of threat to the international community. Sources have a long history of use; and a wider distribution worldwide than fissile materials. Pair this with their broad ranges in isotopes/activities along with scant national and international attention and mechanisms for their safe and secure management and it is not difficult to envision a deadly threat. Arguments that minimize or divert attention away from sources may have the effect of distracting necessary policy attention on preventing/mitigating a radiological dispersal event. The terrorist attacks on 9/11 should be a clear reminder of the inherent danger of diminishing or dismissing lower-level threats in exchange for enhanced focus on high priority special nuclear materials with the basis for this emphasis being solely on the magnitude of the consequences of a single event. Mitigating all possible or likely terrorist attacks is impossible; however, weaponized sources, in the form of a radiological dispersal device, have been a declared target material of Al-Qaida. Eisenhower's Atoms for Peace initiative promoted the spread of the paradoxical beneficial yet destructive properties of the atom. Typically, the focus of nonproliferation efforts focuses on the fissile materials associated with Weapons of Mass Destruction, with less emphasis on radioactive materials that could be used for a Weapon of Mass Disruption. Most nonproliferation policy discussion involves securing or preventing the diversion of weapons grade fissile materials (uranium (U) with concentration of over 90% of the isotope {sup 235}U (HEU) and plutonium with more than 90% of the isotope {sup 239}Pu), with scant attention given to the threat posed by a prolific quantity of sources spread worldwide. Further acerbating the problem of inattention, it appears that the momentum of the continued evolution in the beneficial applications of sources will only increase in the near future. Several expert studies have demonstrated on the potentially devastating economic, psychological and public health impacts of terrorist use of a radiological dispersal or radiation emitting device (ROD/RED) in a metropolis. The development of such a weapon, from the acquisition of the radioactive material to the technical knowledge needed to fashion it into an ROD, is many orders of magnitude easier than diverting enough fissile material for and fabrication/acquisition of a nuclear weapon. Unlike nuclear weapons, worldwide, there are many well documented accounts of accidental and purposeful diversions of radioactive materials from regulatory control. As of the end of 2008, the International Atomic Energy Agency's (IAEA) Illicit Trafficking Database had logged 1562 incidents, of which only 18 include weapons grade nuclear materials. As much as 66% of the radioactive material involved in these incidents was not recovered. Since 2004, there has been a 75% increase in incidents of unrecoverable material, much of which is labeled dangerous with potential for deterministic health affects if misused. This makes clear that a black market of illicit trade in sources exists. The incidents reported to the IAEA's database rely only on voluntary state reporting; therefore, the number of lost or stolen sources is expected to be much higher.« less
Nuclear Energy, Nuclear Weapons Proliferation, and the Arms Race.
ERIC Educational Resources Information Center
Hollander, Jack, Ed.
A symposium was organized to reexamine the realities of vertical proliferation between the United States and the Soviet Union and to place into perspective the horizontal proliferation of nuclear weapons throughout the world, including the possible role of commercial nuclear power in facilitating proliferation. The four invited symposium…
Code of Federal Regulations, 2010 CFR
2010-01-01
... pursuant to section 142 of the Atomic Energy Act. Sensitive nuclear technology means any information... nuclear material (SNM) or which a U.S. provider of assistance knows or has reason to know will be used for... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...
10 CFR 784.6 - National security considerations for waiver of certain sensitive inventions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... or under any Government contract or subcontract of the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy defense activities of the Department of Energy, a...) under the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy...
10 CFR 784.6 - National security considerations for waiver of certain sensitive inventions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... or under any Government contract or subcontract of the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy defense activities of the Department of Energy, a...) under the Naval Nuclear Propulsion Program or the nuclear weapons programs or other atomic energy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Eva C; Sandoval, M Analisa; Sandoval, Marisa N
2009-01-01
With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to accessmore » to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.« less
NASA Astrophysics Data System (ADS)
Drell, Sidney
2007-03-01
Through the decades of the Cold War the prospect of a nuclear holocaust was all too real. With the demise of the Soviet Union and the end of the Cold War, that threat to civilization as we know it had receded. But today we face a grave new danger, the acquisition of nuclear weapons by hostile or unstable governments and terrorists. What can and should we be doing to meet this challenge and prevent the world's most dangerous weapons from falling into very dangerous hands? Are there any reasons for us to still retain thousands of nuclear warheads in our arsenals? What are they for? Can we rekindle the bold vision of a world free of nuclear weapons that President Reagan and General Secretary Gorbachev brought to their remarkable summit meeting at Reykjavik twenty years ago, and define practical steps toward achieving such a goal?
Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health
Dreicer, Mona; Pregenzer, Arian
2014-04-01
Reducing the risks of nuclear war, limiting the spread of nuclear weapons and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation and counter-terrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclearmore » technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters world-wide provide significant benefits to global public health.« less
Normative Factors in U.S. Nuclear Policy
2016-09-01
policymakers. No weapon since the 1960’s generated such a large ethical debate as the neutron bomb. Domestically and internationally the moral values of...recognized that the neutron bomb was still a kind of nuclear weapon . Paul argues that the Carter administration was constrained by this reality, and...148 While the neutron bomb was a nuclear weapon , it was unique in that it specialized in taking human life through radiation poisoning, without
Planning U.S. General Purpose Forces: The Theater Nuclear Forces
1977-01-01
usefulness in combat. All U.S. nuclear weapons deployed in Europe are fitted with Permissive Action Links (PAL), coded devices designed to impede...may be proposed. The Standard Missile 2, the Harpoon missile, the Mk48 tor- pedo , and the SUBROC anti-submarine rocket are all being considered for...Permissive Action Link . A coded device attached to nuclear weapons deployed abroad that impedes the unauthorized arming or firing of the weapon. Pershing
Nuclear Power Now and in the Near Future
NASA Astrophysics Data System (ADS)
Burchill, William
2006-04-01
The presentation will describe the present status of nuclear power in the United States including its operating, economic, and safety record. This status report will be based on publicly-available records of the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and the Institute of Nuclear Power Operations. The report will provide a brief description and state the impact of both the Three Mile Island and Chernobyl accidents. It will list the lessons learned and report significant improvements in U.S. nuclear power plants. The major design differences between Chernobyl and U.S. nuclear reactors will be discussed. The presentation will project the near future of nuclear power considering the 2005 Energy Bill, initiatives by the U.S. Department of Energy and industry, and public opinions. Issues to be considered include plant operating safety, disposition of nuclear waste, protection against proliferation of potential weapons materials, economic performance, environmental impact and protection, and advanced nuclear reactor designs and fuel cycle options. The risk of nuclear power plant operations will be compared to risks presented by other industrial activities.
National policy and military doctrine: development of a nuclear concept of land warfare, 1949-1964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockar, D.
In the thirty years that battle field nuclear weapons have been available, no one has originated an idea of how they might be used as an entirely new weapon. New weapons are routinely introduced into existing combat organizations before an appropriate tactical concept has been invented. But never before in history has a new weapon been deployed on so massive a scale without a tactical concept that exploited the radical implications of its novel technology for traditional warfare. This study is an attempt to understand the problem of developing a persuasive tactical concept for nuclear weapons. The process of assimilationmore » by which military organizations integrate new weapons with existing weapons in novel tactical and organizational concepts has an intellectual, and institutional, and a political dimension. The principle of civilian control, however, makes the process by which weapons are assimilated part of the process by which national security policies are made. In peacetime the military's formulation of doctrine is almost entirely consequent upon the world view, the methodological and managerial assumptions, and the domestic policy concerns of political authority.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiorano, A.G.
The debate over nuclear weapons in Europe and their utility as part of NATO's forward defense strategy persisted since the mid-1950s. Existing tactical nuclear employment doctrine and strategies are based on obsolete criteria and defense concepts established when the U.S. possessed superiority in nearly all nuclear categories. NATO has allowed its tactical nuclear doctrine and arsenal of battlefield nuclear weapons to deteriorate, choosing instead to rely on the American strategic nuclear umbrella for all but the most localized of conflicts. This thesis examines the development, stagnation and decline of NATO tactical nuclear doctrine and strategy from 1949 to 1984. Itmore » analyzes four tactical nuclear postures, drawing from each to recommend a viable tactical nuclear strategy for NATO today. The presence and potential employment of tactical nuclear weapons make it imperative that NATO devise an effective limited nuclear war strategy.« less
Public perspectives on nuclear security. US national security surveys, 1993--1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, K.G.; Jenkins-Smith, H.C.
This is the third report in a series of studies to examine how US attitudes about nuclear security are evolving in the post-Cold War era and to identify trends in public perceptions and preferences relevant to the evolution of US nuclear security policy. It presents findings from three surveys: a nationwide telephone survey of randomly selected members of the US general public; a written survey of randomly selected members of American Men and Women of Science; and a written survey of randomly selected state legislators from all fifty US states. Key areas of investigation included nuclear security, cooperation between USmore » and Russian scientists about nuclear issues, vulnerabilities of critical US infrastructures and responsibilities for their protection, and broad areas of US national science policy. While international and US national security were seen to be slowly improving, the primary nuclear threat to the US was perceived to have shifted from Russia to China. Support was found for nuclear arms control measures, including mutual reductions in stockpiles. However, respondents were pessimistic about eliminating nuclear armaments, and nuclear deterrence continued to be highly values. Participants favored decreasing funding f/or developing and testing new nuclear weapons, but supported increased investments in nuclear weapons infrastructure. Strong concerns were expressed about nuclear proliferation and the potential for nuclear terrorism. Support was evident for US scientific cooperation with Russia to strengthen security of Russian nuclear assets. Elite and general public perceptions of external and domestic nuclear weapons risks and external and domestic nuclear weapons benefits were statistically significantly related to nuclear weapons policy options and investment preferences. Demographic variables and individual belief systems were systematically related both to risk and benefit perceptions and to policy and spending preferences.« less
Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.
Kyne, Dean; Bolin, Bob
2016-07-12
Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.
Nuclear security policy in the context of counter-terrorism in Cambodia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khun, Vuthy, E-mail: vuthy.khun@gmail.com; Wongsawaeng, Doonyapong
The risk of nuclear or dirty bomb attack by terrorists is one of the most urgent and threatening danger. The Cambodian national strategy to combat weapons of mass destruction (WMD) depicts a layered system of preventive measures ranging from securing materials at foreign sources to interdicting weapons or nuclear or other radioactive materials at ports, border crossings, and within the Cambodian institutions dealing with the nuclear security to manage the preventive programs. The aim of this study is to formulate guidance, to identify scenario of threat and risk, and to pinpoint necessary legal frameworks on nuclear security in the contextmore » of counterterrorism based on the International Atomic Energy Agency nuclear security series. The analysis of this study is guided by theoretical review, the review of international laws and politics, by identifying and interpreting applicable rules and norms establishing the nuclear security regime and how well enforcement of the regime is carried out and, what is the likelihood of the future reform might be. This study will examine the existing national legal frameworks of Cambodia in the context of counterterrorism to prevent acts of nuclear terrorism and the threat of a terrorist nuclear attack within the Cambodia territory. It will shed light on departmental lanes of national nuclear security responsibility, and provide a holistic perspective on the needs of additional resources and emphasis regarding nuclear security policy in the context of counterterrorism in Cambodia.« less
Medical implications of enhanced radiation weapons.
Reeves, Glen I
2010-12-01
During the 1960s through 1980s the United States and several other nations developed, and even considered deploying, enhanced-radiation warheads (ERWs). The main effect of ERWs (sometimes called "neutron bombs"), as compared to other types of nuclear weapons, is to enhance radiation casualties while reducing blast and thermal damage to the infrastructure. Five nations were reported to have developed and tested ERWs during this period, but since the termination of the "Cold War" there have been no threats of development, deployment, or use of such weapons. However, if the technology of a quarter of a century ago has been developed, maintained, or even advanced since then, it is conceivable that the grim possibility of future ERW use exists. The type of destruction, initial triage of casualties, distribution of patterns of injury, and medical management of ERWs will be shown to significantly differ from that of fission weapons. Emergency response planners and medical personnel, civilian or military, must be aware of these differences to reduce the horrible consequences of ERW usage and appropriately treat casualties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Sitakanta; Ahmed, Mansoor
In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measuresmore » to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... Extracted From Nuclear Weapons 13617 Order 13617 Presidential Documents Executive Orders Executive Order... to the Disposition of Highly Enriched Uranium Extracted From Nuclear Weapons By the authority vested... accumulation of a large volume of weapons-usable fissile material in the territory of the Russian Federation...
Consequences of Regional Scale Nuclear Conflicts and Acts of Individual Nuclear Terrorism
NASA Astrophysics Data System (ADS)
Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.
2006-12-01
The number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986. However, the potential exists for numerous regional nuclear arms races, and for a significant expansion in the number of nuclear weapons states. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build weapons if they so desire. Population and economic activity worldwide are congregated to an increasing extent in "megacities", which are ideal targets for nuclear weapons. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as high-yield weapons, if they are targeted at city centers. A single low-yield nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in major historical conflicts. A regional war between the smallest current nuclear states involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal) could produce direct fatalities comparable to all of those worldwide in World War II (WW-II), or to those once estimated for a "counterforce" nuclear war between the superpowers. Portions of megacities attacked with nuclear devices or exposed to fallout of long-lived isotopes, through armed conflict or terrorism, would likely be abandoned indefinitely, with severe national and international implications. Smoke from urban firestorms in a regional war might induce significant climatic and ozone anomalies on global scales. While there are many uncertainties in the issues we discuss here, the major uncertainties are the type and scale of conflict that might occur. Each of these potential hazards deserves careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread debate.
Extreme Scale Computing to Secure the Nation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D L; McGraw, J R; Johnson, J R
2009-11-10
Since the dawn of modern electronic computing in the mid 1940's, U.S. national security programs have been dominant users of every new generation of high-performance computer. Indeed, the first general-purpose electronic computer, ENIAC (the Electronic Numerical Integrator and Computer), was used to calculate the expected explosive yield of early thermonuclear weapons designs. Even the U. S. numerical weather prediction program, another early application for high-performance computing, was initially funded jointly by sponsors that included the U.S. Air Force and Navy, agencies interested in accurate weather predictions to support U.S. military operations. For the decades of the cold war, national securitymore » requirements continued to drive the development of high performance computing (HPC), including advancement of the computing hardware and development of sophisticated simulation codes to support weapons and military aircraft design, numerical weather prediction as well as data-intensive applications such as cryptography and cybersecurity U.S. national security concerns continue to drive the development of high-performance computers and software in the U.S. and in fact, events following the end of the cold war have driven an increase in the growth rate of computer performance at the high-end of the market. This mainly derives from our nation's observance of a moratorium on underground nuclear testing beginning in 1992, followed by our voluntary adherence to the Comprehensive Test Ban Treaty (CTBT) beginning in 1995. The CTBT prohibits further underground nuclear tests, which in the past had been a key component of the nation's science-based program for assuring the reliability, performance and safety of U.S. nuclear weapons. In response to this change, the U.S. Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship (SBSS) program in response to the Fiscal Year 1994 National Defense Authorization Act, which requires, 'in the absence of nuclear testing, a progam to: (1) Support a focused, multifaceted program to increase the understanding of the enduring stockpile; (2) Predict, detect, and evaluate potential problems of the aging of the stockpile; (3) Refurbish and re-manufacture weapons and components, as required; and (4) Maintain the science and engineering institutions needed to support the nation's nuclear deterrent, now and in the future'. This program continues to fulfill its national security mission by adding significant new capabilities for producing scientific results through large-scale computational simulation coupled with careful experimentation, including sub-critical nuclear experiments permitted under the CTBT. To develop the computational science and the computational horsepower needed to support its mission, SBSS initiated the Accelerated Strategic Computing Initiative, later renamed the Advanced Simulation & Computing (ASC) program (sidebar: 'History of ASC Computing Program Computing Capability'). The modern 3D computational simulation capability of the ASC program supports the assessment and certification of the current nuclear stockpile through calibration with past underground test (UGT) data. While an impressive accomplishment, continued evolution of national security mission requirements will demand computing resources at a significantly greater scale than we have today. In particular, continued observance and potential Senate confirmation of the Comprehensive Test Ban Treaty (CTBT) together with the U.S administration's promise for a significant reduction in the size of the stockpile and the inexorable aging and consequent refurbishment of the stockpile all demand increasing refinement of our computational simulation capabilities. Assessment of the present and future stockpile with increased confidence of the safety and reliability without reliance upon calibration with past or future test data is a long-term goal of the ASC program. This will be accomplished through significant increases in the scientific bases that underlie the computational tools. Computer codes must be developed that replace phenomenology with increased levels of scientific understanding together with an accompanying quantification of uncertainty. These advanced codes will place significantly higher demands on the computing infrastructure than do the current 3D ASC codes. This article discusses not only the need for a future computing capability at the exascale for the SBSS program, but also considers high performance computing requirements for broader national security questions. For example, the increasing concern over potential nuclear terrorist threats demands a capability to assess threats and potential disablement technologies as well as a rapid forensic capability for determining a nuclear weapons design from post-detonation evidence (nuclear counterterrorism).« less
The nuclear weapons freeze and a cancer metaphor. A physician's view.
Bruwer, A
1985-08-02
The nuclear arms race has been described as a cancer spreading through human society and threatening its existence. Bruwer characterizes the current superpower reaction to this nuclear threat, deterrence through a mutual weapons buildup, as a palliative approach that can only postpone death. He compares a bilateral weapons freeze to a hypothetical cancer freeze, a strategy that would not get rid of existing arsenals, but would buy negotiating time to work toward the elimination of these weapons. Answering critics who say that a freeze is unrealistic, or does not go far enough, Bruwer reminds them that it would be a beginning.
Belief Structures of Students For and Against the Nuclear Freeze.
ERIC Educational Resources Information Center
Tankard, James W., Jr.
An investigation of college students' belief structures underlying their support or non-support of a nuclear freeze revealed a three-dimensional structure for beliefs in the areas of nuclear weapons and national defense. A questionnaire containing 25 belief statements concerning national defense and nuclear weapons and 4 media use questions was…
2008-05-01
building up to and beyond the 2013 time frame. However, in October 2007, the Defense Nuclear Facilities Safety Board, which monitors safety...manufacturing. They said that NNSA is still working through this process with the Defense Nuclear Facilities Safety Board. Processing of waste
Cognitive Consistency in Beliefs about Nuclear Weapons.
ERIC Educational Resources Information Center
Nelson, Linden
The paper details a study supporting the hypothesis that people's opinions about nuclear arms control are influenced by their logically relevant beliefs about nuclear weapons, nuclear war, and the Soviet Union. The hypothesis should not be construed to imply that these beliefs are the only influences or the most powerful influences on arms control…
The Midlife Crisis of the Nuclear Nonproliferation Treaty
NASA Astrophysics Data System (ADS)
Pella, Peter
2016-03-01
The Nuclear Nonproliferation Treaty (NPT) has been the principal legal barrier to prevent the spread of nuclear weapons for the past forty-five years. It promotes the peaceful uses of nuclear technology and insures, through the application of safeguards inspections conducted by the International Atomic Energy Agency (IAEA), that those technologies are not being diverted toward the production of nuclear weapons. It is also the only multinational treaty that obligates the five nuclear weapons states that are party to the treaty (China, France, Great Britain, Russia, and the United States) to pursue nuclear disarmament measures. Though there have been many challenges over the years, most would agree that the treaty has largely been successful. However, many are concerned about the continued viability of the NPT. The perceived slow pace of nuclear disarmament, the interest by some countries to consider a weapons program while party to the treaty, and the funding and staffing issues at the IAEA, are all putting considerable strain on the treaty. This manuscript explores those issues and offers some possible solutions to ensure that the NPT will survive effectively for many years to come.
22 CFR 129.7 - Prior approval (license).
Code of Federal Regulations, 2010 CFR
2010-04-01
...; (ii) Nuclear weapons strategic delivery systems and all components, parts, accessories, attachments specifically designed for such systems and associated equipment; (iii) Nuclear weapons design and test equipment of a nature described by Category XVI of Part 121; (iv) Naval nuclear propulsion equipment of a...
22 CFR 129.7 - Prior approval (license).
Code of Federal Regulations, 2011 CFR
2011-04-01
...; (ii) Nuclear weapons strategic delivery systems and all components, parts, accessories, attachments specifically designed for such systems and associated equipment; (iii) Nuclear weapons design and test equipment of a nature described by Category XVI of part 121; (iv) Naval nuclear propulsion equipment of a...
Changing Our Ways of Thinking: Health Professionals and Nuclear Weapons.
ERIC Educational Resources Information Center
Neal, Mary
1984-01-01
Outlines the issues raised by health professionals concerned about the threat of nuclear weapons and nuclear war, including epidemics, civil defense, arms costs, psychosocial aspects, and ethical responsibility. Appendixes include lists of antinuclear organizations, medical professional associations, and 160 references. (SK)
The ``Nuclear Renaissance'' and the Spread of Nuclear Weapons
NASA Astrophysics Data System (ADS)
Lyman, Edwin S.
2007-05-01
As interest grows around the world in nuclear power as an energy source that could help control greenhouse gas emissions, some have proclaimed the arrival of a ``nuclear renaissance.'' But can the increased risks of more nuclear power be managed? The political crisis surrounding Iran's pursuit of uranium enrichment has exposed weaknesses in the nuclear nonproliferation regime. Also, al Qaeda's declared interest in weapons of mass destruction raises the concern that terrorists could acquire nuclear weapons by stealing materials from poorly secured facilities. Growth of nuclear energy would require the construction of many additional uranium enrichment plants. And the generation of more spent nuclear fuel without a credible waste disposal strategy would increase political support for reprocessing, which separates large quantities of weapon-usable plutonium from spent fuel. There is little evidence that the various institutional arrangements and technical schemes proposed to mitigate the security risks of a major nuclear expansion would be effective. This talk will focus on the measures necessary to allow large-scale global growth of nuclear power without resulting in an unacceptably high risk of nuclear proliferation and nuclear terrorism, and will discuss the feasibility of such measures. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.E1.2
Gulf States Strategic Vision to Face Iranian Nuclear Project
2015-09-01
STRATEGIC VISION TO FACE IRANIAN NUCLEAR PROJECT by Fawzan A. Alfawzan September 2015 Thesis Advisor: James Russell Second Reader: Anne...nuclear weapons at a high degree. Nuclear capabilities provided Iran with uranium enrichments abilities and nuclear weapons to enable the country to...IN SECURITY STUDIES (STRATEGIC STUDIES) from the NAVAL POSTGRADUATE SCHOOL September 2015 Approved by: James Russell Thesis
Boscarino, Joseph A.; Figley, Charles R.; Adams, Richard E.
2009-01-01
To examine the public’s response to future terrorist attacks, we surveyed 1,001 New Yorkers in the community one year after the September 11 attacks. Overall, New Yorkers were very concerned about future terrorist attacks and also concerned about attacks involving biological or nuclear weapons. In addition, while most New Yorkers reported that if a biological or nuclear attack occurred they would evaluate available information before evacuating, a significant number reported they would immediately evacuate, regardless of police or public health communications to the contrary. The level of public concern was significantly higher on all measures among New York City and Long Island residents (downstate) compared to the rest of the state. A model predicting higher fear of terrorism indicated that downstate residents, women, those 45 to 64 years old, African Americans and Hispanics, those with less education/income, and those more likely to flee, were more fearful of future attacks. In addition, making disaster preparations and carefully evaluating emergency information also predicted a higher level of fear as well. A second model predicting who would flee suggested that those more likely to evaluate available information were less likely to immediately evacuate, while those with a higher fear of future attacks were more likely to flee the area. Given these findings and the possibility of future attacks, mental health professionals need to be more involved in preparedness efforts, especially related to the psychological impact of attacks involving weapons of mass destruction. PMID:14730761
Boscarino, Joseph A; Figley, Charles R; Adams, Richard E
2003-01-01
To examine the public's response to future terrorist attacks, we surveyed 1,001 New Yorkers in the community one year after the September 11 attacks. Overall, New Yorkers were very concerned about future terrorist attacks and also concerned about attacks involving biological or nuclear weapons. In addition, while most New Yorkers reported that if a biological or nuclear attack occurred they would evaluate available information before evacuating, a significant number reported they would immediately evacuate, regardless of police or public health communications to the contrary. The level of public concern was significantly higher on all measures among New York City and Long Island residents (downstate) compared to the rest of the state. A model predicting higher fear of terrorism indicated that downstate residents, women, those 45 to 64 years old, African Americans and Hispanics, those with less education/income, and those more likely to flee, were more fearful of future attacks. In addition, making disaster preparations and carefully evaluating emergency information also predicted a higher level of fear as well. A second model predicting who would flee suggested that those more likely to evaluate available information were less likely to immediately evacuate, while those with a higher fear of future attacks were more likely to flee the area. Given these findings and the possibility of future attacks, mental health professionals need to be more involved in preparedness efforts, especially related to the psychological impact of attacks involving weapons of mass destruction.
Los Alamos Explosives Performance Key to Stockpile Stewardship
Dattelbaum, Dana
2018-02-14
As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.
Nuclear Security, Disarmament and Development
NASA Astrophysics Data System (ADS)
Salam, Abdus
The world's stock of nuclear weapons, which was three in 1945, has been growing ever since and is 50,OOOa in 1985. Nearly two trillion dollars of the public funds have been spent over the years to improve their destructive power, and the means of delivering them. One indicator of the awful power of these weapons is that the explosive yield of the nuclear weapons stockpiled today by the US, USSR, UK, France, and China is equivalent to one million Hiroshima bombs. Less than 1,000 of these 50,000 weapons could destroy USA and USSR. A thousand more in an all-out nuclear exchange could destroy the world as a habitable planet, ending life for the living and the prospects of life for those not yet born, sparing no nation, no region of the world…
High-Altitude Electromagnetic Pulse (HEMP) Testing
2015-07-09
Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY... Weapons of Mass Destruction Agency (USANCA). In order to effectively determine criteria compliance, the TO/PE must thoroughly understand the...ELECTROMAGNETIC ENVIRONMENT AND EFFECTS. A.1 The electromagnetic environment produced by a nuclear weapon consists of the ionization of the atmosphere and
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... Extracted From Nuclear Weapons #0; #0; #0; Presidential Documents #0; #0; #0;#0;Federal Register / Vol. 77... Federation Relating to the Disposition of Highly Enriched Uranium Extracted From Nuclear Weapons By the... the accumulation of a large volume of weapons-usable fissile material in the territory of the Russian...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS REGULATIONS § 13.3 Definitions. Atomic energy means all forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon means any device utilizing atomic energy, exclusive of the means for transporting...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS REGULATIONS § 13.3 Definitions. Atomic energy means all forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon means any device utilizing atomic energy, exclusive of the means for transporting...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS REGULATIONS § 13.3 Definitions. Atomic energy means all forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon means any device utilizing atomic energy, exclusive of the means for transporting...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS REGULATIONS § 13.3 Definitions. Atomic energy means all forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon means any device utilizing atomic energy, exclusive of the means for transporting...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Administration DEPARTMENT OF JUSTICE ATOMIC WEAPONS AND SPECIAL NUCLEAR MATERIALS REWARDS REGULATIONS § 13.3 Definitions. Atomic energy means all forms of energy released in the course of nuclear fission or nuclear transformation. Atomic weapon means any device utilizing atomic energy, exclusive of the means for transporting...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winstanley, J. L.
In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division atmore » Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons« less
Physical Security Modeling for the Shipboard Nuclear Weapons Security Program,
1982-04-01
I AOA1IR 396 NAVAL SURFACE WEAPONS CENTER SILVER SPRING MO F/G 15/3 PHYSICAL SECURITY MODELING FOR THE SHIPROARD NUCLEAR WEAPONS SE--ETEEU) APR A2 E ...WEAPONS SECURITY )PROGRAM 0% BY E . G. JACOUES D. L BARTUSEK R. W. MONROE M. S. SCHWARTZ WEAPONS SYSTEMS DEPARTMENT 1 APRIL 1982 A4pm lvW for p uic r...ASSIPICATIO N O F Tb IS PAGE t’W "mu Dat e E DLeT R)....... t READ W~STRUCTIoNs’ REPORT DOCUMENTATION PAGE BEFORE COMPLETNG FORM4 . REPiQRT NUM1e[i ja. VT
2015-10-30
with nuclear weapons testing or plutonium work. The results for the 100 atomic veterans were compared to those of the unexposed population, and...as a marker for significant internal intakes of other associated radionuclides in nuclear weapons debris due to its low natural background. However...isotope in weapons grade plutonium, is important from a health perspective, its presence within a given urine sample being analyzed by FTA can only
A Medical Center Network for Optimized Lung Cancer Biospecimen Banking
2013-10-01
Carcinoma Stage IIB N N .149 1 8 .132 1 8 .092 1 No - Quit Smoking 50 AR Agent Orange , Nuclear weapons, Second-hand smoke Agent Orange , Nuclear weapons...Smoking 30 None Agent Orange , Asbestos, Second-hand smoke Agent Orange , Asbestos, Second-hand smoke S0159 Squamous Cell Carcinoma Stage IIB Y N...2.560 100 80 25 6 7 0.670 4 4 0.370 1 No - Quit Smoking 30 NV Agent Orange , Asbestos, Nuclear weapons, Second- hand smoke Agent Orange , Asbestos
Virtual enterprise model for the electronic components business in the Nuclear Weapons Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, T.J.; Long, K.S.; Sayre, J.A.
1994-08-01
The electronic components business within the Nuclear Weapons Complex spans organizational and Department of Energy contractor boundaries. An assessment of the current processes indicates a need for fundamentally changing the way electronic components are developed, procured, and manufactured. A model is provided based on a virtual enterprise that recognizes distinctive competencies within the Nuclear Weapons Complex and at the vendors. The model incorporates changes that reduce component delivery cycle time and improve cost effectiveness while delivering components of the appropriate quality.
Uncrackable code for nuclear weapons
Hart, Mark
2018-05-11
Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "Youâd have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."
Uncrackable code for nuclear weapons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Mark
Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderman, D.
Psychologists tell us that people are born with certain personality traits, such as shyness or boldness, which their environment can encourage, subdue, or even alter. National labs have somewhat similar characteristics. They were created for particular missions and staffed by people who built organizations in which those missions could be fulfilled. As a result, the Department of Energy's (DOE) national labs are among the world's finest repositories of technology and scientific talent, especially in the fields of defense, nuclear weapons, nuclear power, and basic energy. Sunderman, director of the National Renewable Energy Laboratory, discusses the history of the laboratory andmore » its place in the future, both in terms of technologies and nurturing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, D.
1995-07-01
This year, the nuclear proliferation spotlight has swung away from Iraq and North Korea, only to focus on Iran. Western intelligence agencies have assembled a substantial body of evidence suggesting that, although Iran signed the Nuclear Non-Proliferation Treaty (NPT), it is secretly pursuing a broad, organized effort to develop nuclear weapons. US officials say that Iran is attempting to acquire nuclear technologies that are not consistent with a strictly peaceful program. Intelligence agencies have detected procurement patterns that point to a weapons program. Iran has a multifaceted strategy to develop options to make nuclear weapons: Iran has sought, with limitedmore » success, to buy nuclear power and research facilities from many countries, particularly China and Russia; Iran has shopped quietly in many countries, particularly in Western and Eastern Europe, for a wide range of nuclear-related or dual-use nuclear items that might enable it to put together facilities to enrich uranium, separate plutonium, and make nuclear weapons. There is little public information about how effective this clandestine shopping has been or which countries have been contacted; There is no evidence that Iran has bought any fissile material - but not for wont of trying, and the matter continues to be scrutinized very closely.« less
Nuclear Weapons and Science Education.
ERIC Educational Resources Information Center
Wellington, J. J.
1984-01-01
Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)
Nuclear nonproliferation: India Pakistan. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallon, J.S.
1997-04-01
As most of the world continues to seek ways to reduce or eliminate the spread of nuclear weapons, two countries seem intent on pursuing a path which is contradictory. India and Pakistan, two neighboring and frequently warring nations, condemn the use of nuclear weapons as they continue to develop the capability to deliver a nuclear payload. Additionally, India has stood against the Non-Proliferation Treaty, insisting that all nations must agree to eliminate nuclear weapons. It is against this seemingly hopeless situation that this report is focused. How can nuclear proliferation in South Asia be diffused while answering the security concernsmore » of both India and Pakistan. What I offer here is a review of the history, the current situation for the area, and a proposed solution to this nuclear stalemate.« less
Nuclear Technology in War and Peace: A Study of Issues and Choices.
ERIC Educational Resources Information Center
Shanebrook, J. Richard
This is the syllabus of a course that explores the technology of nuclear weapons and nuclear energy for electric power generation, and considers some problems of nuclear weapons proliferation and technical alternatives. It provides a course description, a course outline, a list of required readings, and information on the films shown in the…
Prevent, Counter, and Respond - A Strategic Plan to Reduce Global Nuclear Threats (FY 2016-FY2020)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-03-01
NNSA’s second core mission is reducing global nuclear dangers by preventing the acquisition of nuclear weapons or weapons-usable materials, countering efforts to acquire such weapons or materials, and responding to nuclear or radiological incidents. In 2015, NNSA reorganized its nonproliferation activities based on core competencies and realigned its counterterrorism and counterproliferation functions to more efficiently address both current and emerging threats and challenges. The reorganization accompanied the March 2015 release of the first ever Prevent, Counter, and Respond – A Strategic Plan to Reduce Global Nuclear Threats. This report, which NNSA will update annually, highlights key nuclear threat trends andmore » describes NNSA’s integrated threat reduction strategy.« less
Petrenko, V D; Karimov, Yu N; Podkovirin, A I; Shipilov, N N; Yuldashev, B S; Fazylov, M I
2005-01-01
Uzbekistan is located on the cross-roads from the north--Russia, Western Europe--to the south--Afghanistan, Iran, Iraq and others. The appearance of terrorist organizations urged some Asian countries to make the nuclear weapons, the making the task of stopping the transportation of nuclear materials and technologies from the north (from countries possessing nuclear weapon) to the south (to countries desiring to have weapons and its components) a reality. To resolve this problem, on the main transportation routes, "Yantar" stationary radiation monitors of Russian production were installed, and development and production of monitors of our own make was started. This paper covers these works as well as those on preventing possible terrorist attacks on nuclear objects of Uzbekistan.
SIOP for Perestroika. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szafranski, R.
1990-04-01
The pursuit of greater stability through arms reductions is an important component of perestroika. Assuming strategic weapons reductions, the general nuclear war plan, the Single Integrated Operational Plan (SIOP), will change to employ fewer nuclear arms. If stability and threat reduction are authentic goals, the composition of nuclear offensive forces and the SIOP alert force will evolve accordingly. Greater reliance will likely be placed on bombers. The United States and the Soviet Union can use the opportunity provided by perestroika to agree that the only legitimate role of nuclear weapons is to deter nuclear weapons by threatening nuclear reprisal ormore » punishment. Both sides can then share a strategic catechism that would allow them to move toward small reprisal forces.« less
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2012-06-26
145 Abdul Mannan, “Preventing Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial ...Pakistan’s Civil Nuclear Program.” Some analysts argue that spent nuclear fuel is more vulnerable when being transported . 146 Martellini, 2008. 147...produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment technology, which it mastered by the mid-1980s
Can Nuclear Terrorists be Deterred?
NASA Astrophysics Data System (ADS)
Ferguson, Charles
2005-04-01
Conventional thinking since September 11, 2001, posits that nuclear-armed terrorists cannot be deterred. However, not all terrorist groups are alike. For instance, those that are strongly affiliated with a national territory or a constituency that can be held hostage are more likely to be self-deterred against using or even acquiring nuclear weapons. In contrast, international terrorist organizations, such as al Qaeda, or apocalyptic groups, such as Aum Shinrikyo, may welcome retaliatory nuclear strikes because they embrace martyrdom. Such groups may be immune to traditional deterrence, which threatens direct punishment against the group in question or against territory or people the terrorists' value. Although deterring these groups may appear hopeless, nuclear forensic techniques could provide the means to establish deterrence through other means. In particular, as long as the source of the nuclear weapon or fissile material could be identified, the United States could threaten a retaliatory response against a nation that did not provide adequate security for its nuclear weapons or weapons-usable fissile material. This type of deterrent threat could be used to compel the nation with lax security to improve its security to meet rigorous standards.
Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination
Kyne, Dean; Bolin, Bob
2016-01-01
Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives. PMID:27420080
US arms control obligations under the Non-Proliferation Treaty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-06-27
Article VI of the 1968 Non-Proliferation Treaty (NPT) obligates the nuclear weapon states parties to the Treaty ''to pursue negotiations in good faith on effective measures relating to cessation of the nuclear arms race, ... to nuclear disarmament, and on a treaty on general and complete disarmament under strict and effective international control.'' The preamble to the NPT recalls the 1963 Limited Test Ban Treaty ''determination ... to achieve the discontinuance of ... explosions.'' These provisions are interpreted by a majority of the non-nuclear weapon states parties to the Treaty as an obligation of the nuclear weapon states parties tomore » the Treaty to pursue a comprehensive test ban (CTB). However, a review of the history of the NPT negotiations and US ratification proceedings makes clear that the NPT imposes no legal obligation on the US to pursue a CTB. The US did not make a one-to-one correspondence between Article VI and any specific arms control measure; to the contrary, the US argued successfully that such a connection (to any specific measure) would be pernicious to the attempt to achieve agreement on the NPT. This interpretation, which was sustained through the negotiations and the ratification proceedings, still reflects the limits of the legal obligations the US has accepted. But, in the absence of progress on other arms control measures, which would relieve the pressure for a CTB, the majority interpretation creates political difficulties for the US and could threaten the NPT regime in the future. These problems highlight the need for the US to better defend its compliance with Article VI and to develop a long-term strategy that will permit necessary testing while assuring the survival of the NPT regime in effective form.« less
United States' arms control obligations under the NonProliferation Treaty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-06-27
Article VI of the 1986 Non-Proliferation Treaty obligates the nuclear weapon states party to the Treaty ''to pursue negotiations in good faith on effective measures relating to cessation of the nuclear arms race, ...to nuclear disarmament, and on a treaty on general and complete disarmament under strict and effective international control.'' The preamble to the NPT refers to the 1963 Limited Test Ban Treaty ''determination...to achieve the discontinuance of...explosions.'' These provisions are interpreted by many non-nuclear weapon states party to the NPT as an obligation of the nuclear weapon states party to the treaty to pursue a comprehensive test banmore » (CTB). However, a review of the history of the NPT negotiations and US ratification proceedings makes clear that Article VI imposes no legal obligation on the US to pursue a CTB. The United States did not make a one-to-one correspondence between Article VI and any specific arms control measure; to the contrary, the United States argued successfully that such a connection (to any specific measure) would be pernicious to the attempt to achieve agreement on the NPT. This interpretation held through the negotiations and ratification proceedings. However, a majority of NPT signatories assert that Article VI does indeed imply a commitment to a CTB. In the absence of progress on other arms control measures, which would relieve the pressure for a CTB, this interpretation creates a political problem for the US and could threaten the NPT regime in the future. These problems emphasize the need for the United States to more clearly explain its compliance with Article VI and to develop a long-term strategy that will permit necessary testing while assuring the survival of the NPT regime in effective form.« less
Post-Cold War Science and Technology at Los Alamos
NASA Astrophysics Data System (ADS)
Browne, John C.
2002-04-01
Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances including our national security contributions, and discuss some of challenges for Los Alamos in the future.
Congressional Presentation for Foreign Operations, Fiscal Year 1999.
1998-01-01
chemical and biological weapons technology in Africa. However, there remains much to be done: - • Terrorism: The economic and political weakness of many...OPERATIONAL GOAL: Counter the proliferation of missile technology and nuclear, chemical, and biological Weapons . Levels of cooperation with our...34 terrorism; chemical, biological , nuclear, or radiological weapons . 6. Enhance CT cooperation through the establishment of legal instruments like mutual
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, H.F.
The memoirs of the author traces his life from his first-year graduate studies in physics at the University of Rochester in 1942 to his present position as Director of the University of California's Institute on Global Conflict and Cooperation. The part of his life involved in making weapons extends from 1942 to 1961. During this period, he worked with E.O. Lawrence on the Manhattan Project and served as director of Livermore after it became the Atomic Energy Commission's second nuclear weapons laboratory. He also served on many government advisory boards and commissions dealing with nuclear and other weapons. In 1961,more » the combination of a heart attack and changes in administration in Washington led York too return to the University of California for the talking peace portion of his life. He has since become a public exponent of arms control and disarmament and the futility of seeking increased security through more and better nuclear weapons. York's explanation of his move from making weapons to talking peace leaves the reader with a puzzle.« less
Nuclear Weapons Effects (Self-Teaching Materials).
ERIC Educational Resources Information Center
Defense Civil Preparedness Agency (DOD), Battle Creek, MI.
Developed by the Civil Defense Preparedness Agency, this autoinstructional text deals with nuclear weapons effects. The destructive effects of an atomic blast are first introduced, and then long-term radioactive consequences are stressed. (CP)
Stockpile Stewardship at Los Alamos(U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, Robert B.
2012-06-29
Stockpile stewardship is the retention of nuclear weapons in the stockpile beyond their original design life. These older weapons have potential changes inconsistent with the original design intent and military specifications. The Stockpile Stewardship Program requires us to develop high-fidelity, physics-based capabilities to predict, assess, certify and design nuclear weapons without conducting a nuclear test. Each year, the Lab Directors are required to provide an assessment of the safety, security, and reliability our stockpile to the President of the United States. This includes assessing whether a need to return to testing exists. This is a talk to provide an overviewmore » of Stockpile Stewardship's scientific requirements and how stewardship has changed in the absence of nuclear testing. The talk is adapted from an HQ talk to the War college, and historical unclassified talks on weapon's physics.« less
Los Alamos Explosives Performance Key to Stockpile Stewardship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Dana
2014-11-03
As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less
Materials for Children about Nuclear War.
ERIC Educational Resources Information Center
Eiss, Harry
President Reagan's Fiscal Year 1987 budget was an attempt to increase dramatically spending on national defense, on nuclear weapons, while cutting back on social programs. The increases for almost all nuclear weapons indicate the Administration of the United States saw its major responsibility as one of providing a strong military, one centered on…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, Joseph F
2009-01-01
The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review (NPR) Review and the 2010 Conference (RevCon) of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The issues discussed are at the heart of the debate on nuclear policy issues such asfuture nuclear weapons requirements and nonproliferation, but also the stockpile stewardship program and infrastructure modernization. The workshop discussions reflected the importance of the NPRfor defining the role of US nuclear forces in dealing with 21s1 century threats and providing guidancemore » that will shape NNSA and DoD programs. They also highlighted its importancefor NPT diplomacy. The discussion noted the report of the bipartisan Congressional Commission on the Strategic Posture of the United States, and the expectation that the NPR would likely reflect its consensus to a large degree (although the Administration was not bound by the report). There was widespread support for developing thefoundationsfor a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. The discussion also revealed a convergence of views, but no consensus, on a number of important issues, including the diminished role but continued importance of nuclear weapons; the need to take action to ensure the sustainability of the stockpile, and the recapitalization of the infrastructure and expertise; and the need to take action to promote nonproliferation, arms control and disarmament objectives.« less
Assessing the Risk of Inadvertent Nuclear War Between India and Pakistan
2002-12-01
stories/review.htm>. 5 avoided partly as a result of this. Hundreds of nuclear weapons tests were conducted, proving the technical capability of...sites in Cuba. The results of such an attack could have been disastrous, putting conventional systems in direct contact with nuclear systems, and... nuclear weapons and their delivery systems. Finally, India and Pakistan’s nuclear doctrines are compared. These comparisons yield important results
2017-12-01
enrichment facility); 3. The acquisition of the technology and know-how to design, assemble, and manufacture the bomb ; 4. A full-scale nuclear test...14 Scott D. Sagan, “Why Do States Build Nuclear Weapons?: Three Models in Search of a Bomb ,” International...15 Sagan, “Why Do States Build Nuclear Weapons?: Three Models in Search of a Bomb ,” 57–59. 16 Lewis A. Dunn and Herman Kahn, Trends in Nuclear
Understanding Nuclear Weapons and Arms Control: A Guide to the Issues. New Edition.
ERIC Educational Resources Information Center
Mayers, Teena
Intended for secondary and college level students and teachers, this guide discusses the nuclear arms control issue. There are four sections. Section I discusses U.S. nuclear strategy from 1945 to the present, strategic nuclear weapons competition between the United States and the Union of Soviet Socialist Republics (U.S.S.R.), U.S.…
A U.S. Minimum Nuclear Deterrence Strategy: By Design or Default It’s about the Policy Options
2012-06-01
then who are we to suggest actions that may upset the apple cart. Continued Retention of a Nuclear Deterrence Force. The ideas of M. K. Ghandi ...shaped India’s thinking about nuclear weapons. Ghandi espoused non-violence as a political strategy and his moral rejection of nuclear weapons laid the
Multi-Decadal Global Cooling and Unprecedented Ozone Loss Following a Regional Nuclear Conflict
NASA Astrophysics Data System (ADS)
Mills, M. J.; Toon, O. B.; Lee-Taylor, J. M.; Robock, A.
2014-12-01
We present the first study of the global impacts of a regional nuclear war with an Earth system model including atmospheric chemistry, ocean dynamics, and interactive sea-ice and land models (Mills et al., 2014). A limited, regional nuclear war between India and Pakistan in which each side detonates 50 15-kt weapons could produce about 5 Tg of black carbon. This would self-loft to the stratosphere, where it would spread globally, producing a sudden drop in surface temperatures and intense heating of the stratosphere. Using the Community Earth System Model with the Whole Atmosphere Community Climate Model (CESM1(WACCM)), we calculate an e-folding time of 8.7 years for stratospheric black carbon, compared to 4-6.5 years for previous studies (figure panel a). Our calculations show that global ozone losses of 20-50% over populated areas, levels unprecedented in human history, would accompany the coldest average surface temperatures in the last 1000 years (figure panel c). We calculate summer enhancements in UV indices of 30-80% over Mid-Latitudes, suggesting widespread damage to human health, agriculture, and terrestrial and aquatic ecosystems. Killing frosts would reduce growing seasons by 10-40 days per year for 5 years. Surface temperatures would be reduced for more than 25 years, due to thermal inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge of the impacts of 100 small nuclear weapons should motivate the elimination of the more than 17,000 nuclear weapons that exist today. Mills, M. J., O. B. Toon, J. Lee-Taylor, and A. Robock (2014), Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict, Earth's Future, 2(4), 161-176, doi:10.1002/2013EF000205.
Issues for Future Nuclear Arms Control
NASA Astrophysics Data System (ADS)
Davis, Jay
2011-04-01
Ratification of the New START treaty may open the door to a path of progressive negotiations that could lead to systematic reduction of the numbers of deployed and reserve nuclear weapons. Those negotiations will require more than merely resolving technical, operational and policy questions. Their success will also demand adding successively larger numbers of partners and the building of trust among parties who have not been involved in such agreements before. At some point, questions of conventional arms limitations and larger confidence building steps will inevitably arise. Jay Davis, who last year chaired an APS/POPA study of technology issues for future nuclear arms control agreements, will outline the path, opportunities, and obstacles that lie ahead. Davis was an UNSCOM inspector in Iraq after the First Gulf War and the first director of the Defense Threat Reduction Agency.
Enhancing Energy in Future Conventional Munition
NASA Astrophysics Data System (ADS)
Peiris, Suhithi
2017-06-01
Future conventional weapons are envisioned to contain more energy per volume than current weapons. Current weapons comprise of inert steel outer case, with inner volume for energetic materials, fuzing, sensor package, propulsion system, etc. Recent research on reactive materials (RM) & new energetics, and exploiting additive manufacturing can optimize the use of both mass and volume to achieve much higher energy in future weapons. For instance, replacing inert steel with RM of similar strength, additively manufacturing fuzing packages within the weapon form factor, and combing the whole with new energetics, will enable the same lethality effects from smaller weapons as obtained from today's larger weapons. This paper will elaborate on reactive materials and properties necessary for optimal utilization in various weapon features, and touch on other aspects of enhancing energy in future conventional munition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Adam F.; Steinfeldt, Bradley Alexander; Lafleur, Jarret Marshall
The U.S. nuclear stockpile hedge is an inventory of non-deployed nuclear warheads and a force structure capable of deploying those warheads. Current guidance is to retain this hedge to mitigate the risk associated with the technical failure of any single warhead type or adverse geopolitical developments that could require augmentation of the force. The necessary size of the hedge depends on the composition of the nuclear stockpile and assumed constraints. Knowing the theoretical minimum hedge given certain constraints is useful when considering future weapons policy. HedgeHOGS, an Excel-based tool, was developed to enable rapid calculation of the minimum hedge sizemore » associated with varying active stockpile composition and hedging strategies.« less
3 CFR - Continuation of the National Emergency With Respect to Weapons of Mass Destruction
Code of Federal Regulations, 2012 CFR
2012-01-01
... to Weapons of Mass Destruction Presidential Documents Other Presidential Documents Notice of November 9, 2011 Continuation of the National Emergency With Respect to Weapons of Mass Destruction On... United States posed by the proliferation of nuclear, biological, and chemical weapons (weapons of mass...
3 CFR - Continuation of the National Emergency With Respect to Weapons of Mass Destruction
Code of Federal Regulations, 2013 CFR
2013-01-01
... to Weapons of Mass Destruction Presidential Documents Other Presidential Documents Notice of November 1, 2012 Continuation of the National Emergency With Respect to Weapons of Mass Destruction On... United States posed by the proliferation of nuclear, biological, and chemical weapons (weapons of mass...
The nuclear issue: where do we go from here?.
Rotblat, Joseph
2003-01-01
The drive for the elimination of nuclear weapons is going badly and there is currently little support from the general public. The United States Nuclear Posture Review incorporates nuclear capability into conventional war planning. The Stockpile Stewardship Program is designed to maintain nuclear weapon capability. The US is planning an essentially new earth-penetrating nuclear weapon and is prepared to test this in the national interest if thought necessary. These policies could stimulate nuclear proliferation by others, do nothing to deter terrorism, promote persisting polarization of the world, are a clear breach of the Non-Proliferation Treaty and rest world security on a continued balance of terror. A renewed mass campaign to counteract all this, on legal and moral grounds in particular, is urgently needed. IPPNW and kindred organizations must restore sanity in our policies and humanity to our actions.
75 FR 68671 - Continuation of Emergency With Respect to Weapons of Mass Destruction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
... the United States posed by the proliferation of nuclear, biological, and chemical weapons (weapons of... Weapons of Mass Destruction #0; #0; #0; Presidential Documents #0; #0; #0;#0;Federal Register / Vol. 75... [[Page 68673
Human error mitigation initiative (HEMI) : summary report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Susan M.; Ramos, M. Victoria; Wenner, Caren A.
2004-11-01
Despite continuing efforts to apply existing hazard analysis methods and comply with requirements, human errors persist across the nuclear weapons complex. Due to a number of factors, current retroactive and proactive methods to understand and minimize human error are highly subjective, inconsistent in numerous dimensions, and are cumbersome to characterize as thorough. An alternative and proposed method begins with leveraging historical data to understand what the systemic issues are and where resources need to be brought to bear proactively to minimize the risk of future occurrences. An illustrative analysis was performed using existing incident databases specific to Pantex weapons operationsmore » indicating systemic issues associated with operating procedures that undergo notably less development rigor relative to other task elements such as tooling and process flow. Future recommended steps to improve the objectivity, consistency, and thoroughness of hazard analysis and mitigation were delineated.« less
US changes course on nuclear-weapons strategy
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2010-05-01
US President Barack Obama has signalled a new approach to nuclear-weapons policy that limits their use against other states and documents how the country will ensure the viability of existing stockpiles. The Nuclear Posture Review (NPR), which sets out the US's nuclear strategy over a 10-year period, also calls for a highly skilled workforce to ensure "the long-term safety, security and effectiveness of the nuclear arsenal and to support the full range of nuclear-security work".
Identification of nuclear weapons
Mihalczo, J.T.; King, W.T.
1987-04-10
A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.
What views and uses of radiation sources in the 21st century?
Blix, H
2001-04-01
Considering that in 1899 neither biotechnology nor the electronic revolution were foreseen, some humility might be advisable when one looks into the crystal ball for the future role of radiation sources. In the past 50 years, nuclear medicine, nuclear weapons, and nuclear power have had a huge impact in the world. In the next 50 years, nuclear weapons may be phased out, nuclear power revived, and nuclear medicine may continue, especially for diagnostic purposes. Conflicts between great powers and blocks will no longer be about territorial or ideological domination but about trade, finance, information, and the environment and the weapons used will not be bombs but investments, credits, and control of information. Nuclear power-still based on fission-will be relaunched and get more uses, e.g., to propel ships, to produce heat for industry and for space heating, and perhaps to desalinate water. The public will be more at ease with radiation as it is better educated, as nuclear safety continuously improves and new types of nuclear power plants emerge, as waste sites fail to cause any problems, and as no other energy source is found to deliver so much energy at reasonable cost with negligible impact on climate and environment. One kilogram of oil corresponds to 4 kWh of electricity. One kilogram of uranium fuel corresponds to 50,000 kWh, and 1 kg of plutonium 6,000,000 kWh! In nuclear medicine, radiation may give way to other treatments as the understanding of cancer advances. On the other hand, the extreme ease with which sources of radiation can be identified is unmatched and likely to make them useful tools as tracers and markers in medicine-and other fields-for a long time. For certain uses--perhaps food irradiation--radiation sources, such as cobalt, may be replaced by accelerators which may be switched on and off at will. As more sources are used, registration and control of them must be made very effective around the whole world. Very high natural emissions of radon will continue to call for cautionary measures, but many other nonradiating substances will be identified as hazardous to health and call for vigorous intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Andrew
National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relationsmore » theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.« less
Educating the Army of 2010: A Strategic Plan
1992-02-20
States have been identified by futurist John Naisbitt, in his books Megatrends : Ten New Directions Transforming Our Lives and Megatrends 2000. Several...information and equipment. - The proliferation of weapons will continue, including chemical, biological , and nuclear weapons. Despite the reduction of...conventional systems as well as biological and chemical weapons of mass destruction. Nuclear technology will be more common, both as a source of
1987-01-30
conducted from 12 September 1969 to 2 May 1972 to study weapons effects . Two were shaft-type and five were tunnel- type nuclear tests. The following table...1958. Of the 194 nuclear device tests conducted, 161 were for weapons related or effects purposes, and 33 were safety ex- periments. An additional 22...States atmospheric testing on 25 April 1962 until the last atmospheric test on 4 November 1962, 40 weapons related and weapons effects tests were
A long view of global plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.L. Jr.
1995-10-01
Dealing with the large and growing world inventories of fissile materials from all sources is a major part of the long term challenge of limiting the danger from nuclear weapons. Providing clean, safe nuclear power may also be needed to prevent conditions from arising which could lead to large scale nuclear weapon (re)armament. ADTT technologies might reconcile the seeming dilemma of providing nuclear power while maintaining a very low world inventory of nuclear materials which can be used in weapons. This vision for ADTT should be tested in a variety of ways, including comparisons with competing approaches and with othermore » objectives. Such testing is one part of constructing a path for a decades-long, worldwide implementation campaign for ADTT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settlemyer, S.R.
1991-09-01
The Nuclear Weapons Management System combines the strengths of an expert system with the flexibility of a database management system to assist the Weapons Officer, Security Officer, and the Personnel Reliability Program Officer in the performance of administrative duties associated with the nuclear weapons programs in the United States Navy. This thesis examines the need for, and ultimately the design of, a system that will assist the Security Officer in administrative duties associated with the Shipboard Self Defense Force. This system, designed and coded utilizing dBASE IV, can be implemented as a stand alone system. Furthermore, it interfaces with themore » expert system submodule that handles the PRP screening process.« less
Proliferation: Threat and response
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-04-01
During the height of the Cold War, the Russian physicist Andre Sakharov said, `Reducing the risk of annihilating humanity in a nuclear war carries an absolute priority over all other considerations.` The end of the Cold War has reduced the threat of global nuclear war, but today a new threat is rising from the global spread of nuclear, biological, and chemical weapons. Hostile groups and nations have tried - or have been able - to obtain these weapons, the technology, and homegrown ability to make them or ballistic missiles that can deliver the massive annihilation, poison, and death of thesemore » weapons hundreds of miles away. For rogue nations, these weapons are a ticket to power, stature, and confidence in regional war.« less
Principles of Guided Missiles and Nuclear Weapons.
ERIC Educational Resources Information Center
Naval Personnel Program Support Activity, Washington, DC.
Fundamentals of missile and nuclear weapons systems are presented in this book which is primarily prepared as the second text of a three-volume series for students of the Navy Reserve Officers' Training Corps and the Officer Candidate School. Following an introduction to guided missiles and nuclear physics, basic principles and theories are…
Code of Federal Regulations, 2011 CFR
2011-01-01
... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...
Psychology and Nuclear Weapon Issues: Topics, Concepts, and Bibliography.
ERIC Educational Resources Information Center
Nelson, Linden, Comp.
The document outlines 15 topics, each with concepts and selected references, to illustrate the relevance of psychology for understanding and coping with the threat of nuclear war. Awareness of the literature is intended to encourage psychologists to become more active in applying psychological concepts to nuclear weapons issues. The articles and…
Nuclear Weapon Tests and their Consequences,
Nuclear weapon research, specifically nuclear bomb tests, and the deleterious effects of heightened radioactivity levels on the world’s biology, are...Soviet Union is discussed. The effects of the U.S.A. bombing of Hiroshima and Nagasaki, as well as the U.S.A. bomb test of March 1, 1954, and listed as
Coping With Nuclear Weapons Policy: How Expert Do You Have To Be?
ERIC Educational Resources Information Center
Ruina, Jack
1983-01-01
Points out that policy decisions about nuclear weapons evolve from politics, bureaucracy, and technology, indicating that intelligent people can learn enough about technology to make judgments about policy issues. Suggests, however, that much more thinking is necessary to arrive at a coherent perspective about what constitutes nuclear weapons…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, G.A.
This study examines the efforts of the US Air Force during 1958-1964 to develop doctrine for strategic nuclear weapon systems. These years were characterized by rapid, extensive change in the technology of nuclear weapons delivery systems, centering in ICBMs replacing bombers as the chief vehicles. Simultaneously, national military strategy changed with the transfer of power from the Eisenhower to the Kennedy Administrations, shifting from reliance on overwhelming nuclear retaliation to emphasis on balanced conventional and nuclear forces. Against this background, the study poses the question: did the Air Force, when confronted with major changes in technology and national policy, developmore » doctrine for strategic nuclear weapon systems that was politically acceptable, technically feasible, and strategically sound. Using the development of the Minuteman ICBM as a case study, the study examines the evolution of Air Force doctrine and concludes that the Air Force did not, because of conceptual problems and bureaucratic exigencies, develop a doctrine adequate to the requirements of deterrence in the dawning era of solid-fuel ICBMs.« less
Perfection and the Bomb: Nuclear Weapons, Teleology, and Motives.
ERIC Educational Resources Information Center
Brummett, Barry
1989-01-01
Uses Kenneth Burke's theory of perfection to explore the vocabularies of nuclear weapons in United States public discourse and how "the Bomb" as a God term has gained imbalanced ascendancy in centers of power. (MS)
Out of (South) Africa: Pretoria`s nuclear weapons experience. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, R.E.
1998-04-01
The primary focus of this paper is the impact of key South African leaders on the successful developments and subsequent rollbacks of South Africa`s nuclear weapons capability. It highlights the key milestones in the development of South Africa`s nuclear weapon capability. It also relates how different groups within South Africa (scientists, politicians, military and technocrats) interacted to successfully produce South Africa`s nuclear deterrent. It emphasizes the pivotal influence of the senior political leadership to pursue nuclear rollback given the disadvantages of its nuclear means to achieve vital national interests. The conclusions drawn from flu`s effort are the South African nuclearmore » program was an extreme response to its own identity Crisis. Nuclear weapons became a means to achieving a long term end of a closer affiliation with the West. A South Africa yearning to be identified as a Western nation and receive guarantees of its security rationalized the need for a nuclear deterrent. The deterrent was intended to draw in Western support to counter a feared total onslaught by Communist forces in the region. Two decades later, that same South Africa relinquished its nuclear deterrent and reformed its domestic policies to secure improved economic and political integration with the West.« less
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2014-12-01
The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.
Worldwide Report, Arms Control
1985-12-28
NUCLEAR FORCES NATO Reviews Nuclear Weapons in Europe (Paris AFP, 28 Nov 85) 37 RELATED ISSUES ’.,. European Defense Ministers Congratulate Reagan...militarization of space and its statement of not being the first one to use nuclear weapons." [Excerpts] [Beijing XINHUA Domestic Service in Chinese 1522...threat of nuclear war, the prevention of military advantages for the Soviet Union and the United States over each other, the prevention
Japan’s Rearmament Dilemma: Obstacles to Rearmament.
1980-01-01
aircraft carrier Enterprise, and the problems with the first Japanese nuclear -powered ship , the Mutsu , have continued to keep the issue of nuclear weapons...4 Formation of the Psychology. .. ............... 4 Nuclear Allergy .. .................... 7 Self-Defense Force .. ................... 10 ARTICLE 9... nuclear weapons, would elicit a strong reaction from the U.S. This specter of the U.S. reaction is another obstacle to rearmament. While most scholars
ASSESSING THE UNCERTAINTY OF NUCLEAR DETERRENCE
2017-04-22
empirical attempts. From both qualitative and quantitative perspectives, this paper finds cause to question the certainty that nuclear deterrence will...suggests nuclear weapons do indeed possess a higher deterrence effect than conventional forces alone. Data from the “ Correlates of War” data set was...certainly do not provide an absolute deterrent against aggression. 16 While nuclear weapons appear to be correlated with a reduction in the occurrences
3 CFR - Continuation of Emergency With Respect to Weapons of Mass Destruction
Code of Federal Regulations, 2011 CFR
2011-01-01
... 3 The President 1 2011-01-01 2011-01-01 false Continuation of Emergency With Respect to Weapons of... Continuation of Emergency With Respect to Weapons of Mass Destruction On November 14, 1994, by Executive Order... of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of...
3 CFR - Continuation of Emergency With Respect to Weapons of Mass Destruction
Code of Federal Regulations, 2010 CFR
2010-01-01
... 3 The President 1 2010-01-01 2010-01-01 false Continuation of Emergency With Respect to Weapons of... Continuation of Emergency With Respect to Weapons of Mass Destruction On November 14, 1994, by Executive Order... of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of...
76 FR 70317 - Continuation of the National Emergency With Respect to Weapons of Mass Destruction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... proliferation of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of...--Continuation of the National Emergency With Respect to Weapons of Mass Destruction #0; #0; #0; Presidential... the National Emergency With Respect to Weapons of Mass Destruction On November 14, 1994, by Executive...
77 FR 66513 - Continuation of the National Emergency With Respect to Weapons of Mass Destruction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... proliferation of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of delivering such weapons. On July 28, 1998, the President issued Executive Order 13094 amending Executive... the National Emergency With Respect to Weapons of Mass Destruction On November 14, 1994, by Executive...
Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, Anne C.
1999-07-01
The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less
The monitoring and verification of nuclear weapons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garwin, Richard L., E-mail: RLG2@us.ibm.com
2014-05-09
This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.
Science and technology review, April 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhye, R.
1997-04-01
This month's issue has the following articles: (1) The Laboratory in the News; (2) Commentary by Tom Isaacs--Shaping Nuclear Materials Policy; (3) Dealing with a Dangerous Surplus from the Cold War--Since the end of the Cold War, the Laboratory has been spearheading studies on the disposition of surplus weapons plutonium; (4) Volcanoes: A Peek into Our Planet's Plumbing; and (5) Optical Networks: The Wave of the Future.
The Future of Nuclear Archaeology: Reducing Legacy Risks of Weapons Fissile Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Thomas W.; Reid, Bruce D.; Toomey, Christopher M.
2014-01-01
This report describes the value proposition for a "nuclear archeological" technical capability and applications program, targeted at resolving uncertainties regarding fissile materials production and use. At its heart, this proposition is that we can never be sure that all fissile material is adequately secure without a clear idea of what "all" means, and that uncertainty in this matter carries risk. We argue that this proposition is as valid today, under emerging state and possible non-state nuclear threats, as it was in an immediate post-Cold-War context, and describe how nuclear archeological methods can be used to verify fissile materials declarations, ormore » estimate and characterize historical fissile materials production independently of declarations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestovich, Kimberly Shay
Harnessing the power of the nuclear sciences for national security and to benefit others is one of Los Alamos National Laboratory’s missions. MST-8 focuses on manipulating and studying how the structure, processing, properties, and performance of materials interact at the atomic level under nuclear conditions. Within this group, single crystal scintillators contribute to the safety and reliability of weapons, provide global security safeguards, and build on scientific principles that carry over to medical fields for cancer detection. Improved cladding materials made of ferritic-martensitic alloys support the mission of DOE-NE’s Fuel Cycle Research and Development program to close the nuclear fuelmore » cycle, aiming to solve nuclear waste management challenges and thereby increase the performance and safety of current and future reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfaltzgraff, R.L.; Davis, J.K.; Dougherty, J.E.
1984-05-16
A survey of contemporary West European perspectives on defense, deterrence, and strategy, with special emphasis on the role of nuclear weapons deployed in, or assigned to, the NATO area. Changes have occurred during the past decade in the relative military strength of NATO and the Warsaw Pact, particularly as a result of the substantial growth in Soviet nuclear-capable systems and conventional forces assigned to Europe, and the momentum manifested by the Soviet Union in its deployments of intercontinental ballistic missiles. There has also been a substantial shift in West European thinking and attitudes about security and strategy. Together, these trendsmore » have created a need to reassess the posture of NATO forces generally, and especially nuclear weapons, both in a broader Euro-strategic framework and on the Central Front in the 1980s. The survey is on such issues as the future of the British and French national strategic nuclear forces; the role of the U.S.-strategic nuclear forces in the deterrence of conflict in Europe; the prospects of raising the nuclear threshold by the deployment of new conventional technologies; the impact of strategic defense initiatives on U.S.-NATO security; and the modernization of NATO intermediate-range nuclear capabilities, especially in light of the continuing deployment of the Soviet Union of new generation Euro-strategic forces targeted against Western Europe.« less
2013-02-14
important in sustaining a credible nuclear deterrent without testing. Thinking in the early days of the Manhattan Project was that designing a nuclear...weapon would occur quickly. Renowned physicist Edward Teller recalled being discouraged from joining the Manhattan Project at Los Alamos National...difficulties with their nuclear program in the early years despite involvement with portions of the Manhattan Project . With permission, the British
ERIC Educational Resources Information Center
Taylor, Bryan C.
1993-01-01
Examines the ironic "problems" of the 1989 Hollywood film "Fat Man and Little Boy" (portraying the construction of the atomic bomb at the Los Alamos Laboratory during World War II) to demonstrate the ideological operations of nuclear texts, and the role of the nuclear weapons organization as a symbolic form in cultural…
The Demands of Nuclear Safety: Mishaps and USSTRATCOM
2011-06-01
maintenance operation—the unexpected will occur. Scott D. Sagan On 30 August 2007 the unexpected occurred. Ironically, the safety problem did... Sagan , The Limits of Safety: Organizations, Accidents, and Nuclear Weapons (Princeton, NJ: Princeton University Press, 1993), 14, 48. 39 Sagan , Limits...1 Scott D. Sagan , The Limits of Safety: Organizations, Accidents, and Nuclear Weapons (Princeton, NJ: Princeton
ERIC Educational Resources Information Center
Morrison, Philip; And Others
Three papers on nuclear weapons and nuclear war, based on talks given by distinguished physicists during an American Physical Society-sponsored symposium, are provided in this booklet. They include "Caught Between Asymptotes" (Philip Morrison), "We are not Inferior to the Soviets" (Hans A. Bethe), and "MAD vs. NUTS"…
American-Ukrainian Nuclear Relations
1996-10-01
Ukrainian nuclear question. Foreign Minister Kozyrev was blunt in his view that the Ukrainians were seeking to gain control of the nuclear weapons and...the nuclear material in the weapons on its territory. Kiev was very pleased with the U.S. position, claiming that it mirrored the Ukrainian stance...had pcrsonally directed Kozyrev to come up with language that would please Ukraine and that Russia would be willing to provide the assurances
Combating the Proliferation of Weapons of Mass Destruction.
ERIC Educational Resources Information Center
Jenkins, Bonnie
1997-01-01
Reveals the growing threat posed to all countries by the proliferation of weapons of mass destruction. Discusses the international effort combating this proliferation including the Nuclear Non-Proliferation Treaty, Strategic Arms Reduction Treaties, Biological Weapons Convention, and Chemical Weapons Convention. Also considers regional arms…
Total Quality Management and nuclear weapons: A historian`s perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meade, R.A.
1993-11-01
Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.
Buhmann, Caecilie Böck
2007-01-01
The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... economy of the United States posed by the proliferation of nuclear, biological, and chemical weapons (weapons of mass destruction) and the means of delivering such weapons. On July 28, 1998, the President... November 7, 2013 Continuation of the National Emergency With Respect to the Proliferation of Weapons of...
The ROK Army’s Role When North Korea Collapses Without a War with the ROK
2001-02-01
produced large amounts of biological and chemical weapons. In addition, North Korea continues to develop nuclear weapons and missile technology and export...process. 6. Security and safe disposal of WMD. This includes research, production and storage facilities for nuclear, biological and chemical weapons...Publishers, 1989. Naisbitt, John . Megatrends Asia: Eight Asian Megatrends That Are Reshaping Our World, New York: Simon and Schuster. 1996. The New
Changes in Russia's Military and Nuclear Doctrine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolkov, Benjamin M.; Balatsky, Galya I.
In 1993, the Russian Federation set out a new military doctrine that would determine the direction of its armed forces until President Putin set out the next doctrine in 2000. The Russian Federation creating the doctrine was new; the USSR had recently collapsed, Gorbachev - the creator of the predecessor to this doctrine in 1987 - was out of office, and the new Russian military had only been formed in May, 1992.1 The analysis of the 1993 doctrine is as follows: a definition of how doctrine is defined; a short history of Russian military doctrine leading up to the 1993more » doctrine (officially the Basic Provisions of the Military Doctrine of the Russian Federation); and finally, what the doctrine established. An overview of the 1993 doctrine is: (1) Russia's 1993 doctrine was a return to older, more aggressive doctrine as a result of stability concerns surrounding the recent collapse of the USSR; (2) Russia turned from Gorbachev's 'defensive defense' in the 1987 doctrine to aggressive defense with the option of preempting or striking back against an aggressor; (3) Russia was deeply concerned about how nationalism would affect the former Soviet Republics, particularly in respect to the ethnic Russians still living abroad; and (4) Nuclear doctrine pledged to not be the first to use nuclear weapons but provided for the potential for escalation from a conventional to a nuclear war. The 2000 doctrine (officially the Russian Federation Military Doctrine) was created in a more stable world than the 1993 doctrine was. The Russian Federation had survived independence and the 'threat of direct military aggression against the Russian Federation and its allies' had diminished. It had secured all of the nuclear weapons from its neighbors Ukraine, Belarus, and Kazakhstan, and had elected a new president, Vladimir Putin, to replace Boris Yeltsin. Yet, even as the doctrine took more defensive tones than the 1993 doctrine, it expanded its nuclear options. Below are a new definition of what doctrine meant in 2000 and an outline of the 2000 doctrine. An overview of the 2000 doctrine is: (1) The 2000 doctrine was a return to a more defensive posture; the threat of nuclear retaliation, rather than that of preemptive force, would be its deterrence; (2) In order to strengthen its nuclear deterrence, Russia extended and redefined the cases in which nuclear weapons could be used to include a wider range of conflict types and a larger spectrum of attackers; and (3) Russia's threats changed to reflect its latest fear of engaging in a limited conflict with no prospect of the use of nuclear deterrence. In 2006, the defense minister and deputy prime minister Sergei Ivanov announced that the government was starting on a draft of a future doctrine. Four years later, in 2010, the Military Doctrine of the Russian Federation was put into effect with the intent of determining Russian doctrine until 2020. The 2010 doctrine, like all previous doctrines, was a product of the times in which it was written. Gone were many of the fears that had followed Russia for the past two decades. Below are an examination of the 2010 definition of doctrine as well as a brief analysis of the 2010 doctrine and its deviations from past doctrines. An overview of the 2010 doctrine is: (1) The new doctrine emphasizes the political centralization of command both in military policy and the use of nuclear weapons; (2) Nuclear doctrine remains the same in many aspects including the retention of first-use; (3) At the same time, doctrine was narrowed to using nuclear weapons only when the Russian state's existence is in danger; to continue strong deterrence, Russia also opted to follow the United States by introducing precision conventional weapons; (4) NATO is defined as Russia's primary external threat because of its increased global presence and its attempt to recruit states that are part of the Russian 'bloc'; and (5) The 2000 doctrine's defensive stance was left out of the doctrine; rumored options for use of nuclear weapons in local wars and in preemptive strikes were also left out.« less
1986-06-01
devices in satellites and military combat systems, the reliability of LEDs and photodiodes when exposed to the typical radiation of a space or nuclear ...could be exposed to: nuclear power plants, space environments or a nuclear weapon detonation. When located on the 15 surface of the earth, nuclear power...35,000 miles above the earth’s surface. Additionally, electrons, neutrons and other products from a high altitude detonation of a nuclear weapon can
10 CFR 1045.15 - Classification and declassification presumptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion... the application of the criteria in § 1045.16 indicates otherwise: (1) Detailed designs, specifications... design and analysis of nuclear weapons; (3) Vulnerabilities of U.S. nuclear weapons to sabotage...
10 CFR 1045.15 - Classification and declassification presumptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion... the application of the criteria in § 1045.16 indicates otherwise: (1) Detailed designs, specifications... design and analysis of nuclear weapons; (3) Vulnerabilities of U.S. nuclear weapons to sabotage...
Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, S.
1992-01-01
This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950's. (FI)
Race horses vs work horses: Competition between the nuclear weapons labs in the 1950s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, S.
1992-06-01
This document provides a discussion of the missions and research programs of Los Alamos National Laboratory and Lawrence Livermore National Laboratory and details the competition between the two nuclear weapons laboratories in the 1950`s. (FI)
Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickman, R.G.; Meier, C.A.
1983-01-01
The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.
Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlisle, R.P.; Zenzen, J.M.
1994-01-01
This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story ofmore » fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.« less
2012-01-01
options to defeat any aggressor .44 The 2002 National Security Strategy further articulated the Administration‘s focus on WMD. It is this change...Review that reduced the role of U.S. nuclear weapons to largely, but not completely, a retaliatory role against any nuclear aggressor , reversing the...the Air Force‘s nuclear cognitive -dissonance that interviewees relayed to the Study Team. In addition to addressing joint operations, Goldwater
On Nuclear Deterrence and Assurance
2009-01-01
Strategic Studies Quarterly ♦ Spring 2009 [ 43 ] On Nuclear Deterrence and Assurance Keith B. Payne Weakness is provocative. —Donald Rumsfeld...Strategic Studies Quarterly ♦ Spring 2009 Keith B. Payne [ 44 ] No Deterrence Value for Nuclear Weapons...Payne.indd 44 2/2/09 2:31:00 PM On Nuclear Deterrence and Assurance Strategic Studies Quarterly ♦ Spring 2009 [ 45 ] of nuclear weapons were to be
A World 2010: A New Order of Nations
1992-01-01
chemical and biological ) and nuclear weapons continues. Despite the reduction of world tensions, almost every industrial nation will be armed with a...34 Engineering: electronics, civil, mechanical, metallurgical * Life: biological , medical, behavioral, social The advanced industrial societies of Hong...a very modest nuclear capability. There is a good chance that most nations, if they have nuclear weapons, will have either chemical or biological
1988-12-14
situation in the world healthier, particularly for the program to liquidate nuclear arms and other types of weapons of mass destruction. During the...make preparations for extensive discussions with the aim of radically reducing tactical nuclear weapons, armed forces, and conventional weap- ons...liquidat- ing two classes of nuclear arms as a historic step which will create preconditions for limiting the feverish arms race and for better
Is crisis stability still achievable?
NASA Astrophysics Data System (ADS)
Pollack, Joshua
During the Cold War, the idea of crisis stability concerned whether the United States and the Soviet Union would be faced with powerful incentives to strike each other first with their nuclear weapons during periods of tension. This idea influenced the design of nuclear forces and guided aspects of nuclear arms control. The United States and Russia continue to operate large, alert nuclear forces, but at least three new factors have emerged that add significantly greater complexity to this picture. The first new factor consists of the development and deployment of new strategic military technologies that are entangled with nuclear weapons. These include strategic ballistic missile defenses, counter-space weapons, and strategic conventional weapons. The second new factor consists of new dyads of interacting strategic forces beyond US-Russia. These include US-China, US-North Korea, India-Pakistan, and India-China. The third new factor consists of the emergence of three-actor crisis stability dynamics, where the third actor is not necessarily nuclear-armed. This paper illustrates the concept with the US-North Korea-South Korea triangle. It briefly discusses the implications of these developments and reflects on the broad policy options that may be available.
Scope and verification of a Fissile Material (Cutoff) Treaty
von Hippel, Frank N.
2014-01-01
A Fissile Material Cutoff Treaty (FMCT) would ban the production of fissile material – in practice highly-enriched uranium and separated plutonium – for weapons. It has been supported by strong majorities in the United Nations. After it comes into force, newly produced fissile materials could only be produced under international – most likely International Atomic Energy Agency – monitoring. There are many non-weapon states that argue the treaty should also place under safeguards pre-existing stocks of fissile material in civilian use or declared excess for weapons so as to make nuclear-weapons reductions irreversible. Our paper discusses the scope of themore » FMCT, the ability to detect clandestine production and verification challenges in the nuclear-weapons states.« less
Nuclear Targeting Terms for Engineers and Scientists
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Ledger, John W.
The Department of Defense has a methodology for targeting nuclear weapons, and a jargon that is used to communicate between the analysts, planners, aircrews, and missile crews. The typical engineer or scientist in the Department of Energy may not have been exposed to the nuclear weapons targeting terms and methods. This report provides an introduction to the terms and methodologies used for nuclear targeting. Its purpose is to prepare engineers and scientists to participate in wargames, exercises, and discussions with the Department of Defense. Terms such as Circular Error Probable, probability of hit and damage, damage expectancy, and the physicalmore » vulnerability system are discussed. Methods for compounding damage from multiple weapons applied to one target are presented.« less
REDUCTIONS WITHOUT REGRET: DETAILS - AVOIDING BOX CANYONS, ROACH MOTELS, AND WRONG TURNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swegle, John A.; Tincher, Douglas J.
The United States is concurrently pursuing the goals of reducing the size of its nuclear weapons force – strategic and non-strategic, deployed and non-deployed – and of modernizing the weapons it continues to possess. Many of the existing systems were deployed 30 to 50 years ago, and the modernization process can be expected to extend over the next decade or more. Given the impossibility of predicting the future over the lifetime of systems that could extend to the end of this century, it is essential that dead ends in force development be avoided, and the flexibility and availability of optionsmore » be retained that allow for • Scalability downward in the event that further reductions are agreed upon; • Reposturing to respond to changes in threat levels and to new nuclear actors; and • Breakout response in the event that a competitor significantly increases its force size or force capability, In this paper, we examine the current motivations for reductions and modernization; review a number of historical systems and the attendant capabilities that have been eliminated in recent decades; discuss the current path forward for the U.S. nuclear force; provide a view of the evolving deterrence situation and our assessment of the uncertainties involved; and present examples of possibly problematic directions in force development. We close with our thoughts on how to maintain flexibility and the availability of options for which a need might recur in the future.« less
Waging modern war: An analysis of the moral literature on the nuclear arms debate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer-Fernandez, G.F.
1992-01-01
The primary aim was to examine the dominant views on the subject of deterrence and the use of nuclear weapons, to compare them with each other, and to consider objections that have or might be made against them. A second, more controversial and substantive, aim was to show that nuclear weapons and war-fighting plans engender some disturbing moral dilemmas that call into question fundamental ways of thinking about morality and some of the common intuitions on the relation of intentions and actions. The author examines the moral literature, both religious and secular, on nuclear arms policy written between the earlymore » 1960s and the late 1980s. Three different schools of thought, or parties,' are identified. To establish the differences among these parties, the author shows the various ways in which judgments on the use of nuclear weapons and on deterrence are linked either by a prohibitive moral principle which draws a moral equivalence going from action to intention or by a factual assumption about the nature of nuclear weapons. He concludes with the suggestion that the dilemmas that arise in the moral evaluation of nuclear deterrence represent a profound and much wider problem in moral theory between the ideals of character and the moral claims of politics.« less
Patenting the bomb: nuclear weapons, intellectual property, and technological control.
Wellerstein, Alex
2008-03-01
During the course of the Manhattan Project, the U.S. government secretly attempted to acquire a monopoly on the patent rights for inventions used in the production of nuclear weapons and nuclear energy. The use of patents as a system of control, while common for more mundane technologies, would seem at first glance to conflict with the regimes of secrecy that have traditionally been associated with nuclear weapons. In explaining the origins and operations of the Manhattan Project patent system, though, this essay argues that the utilization of patents was an ad hoc attempt at legal control of the atomic bomb by Manhattan Project administrators, focused on the monopolistic aspects of the patent system and preexisting patent secrecy legislation. From the present perspective, using patents as a method of control for such weapons seems inadequate, if not unnecessary; but at the time, when the bomb was a new and essentially unregulated technology, patents played an important role in the thinking of project administrators concerned with meaningful postwar control of the bomb.
The Future of NATO and an Evolving European Security Interest
2010-03-03
Secondly, how can NATO engage Russia in a binding and mutually beneficial relationship with Europe and the wider North Atlantic community ? Thirdly, how...Atlantic community faces a terrorist network whose main weapons are of more psychological than military character, fuelled by religious ideology, and...periphery. Former Communist countries, fueled by a subliminal fear of the Soviet “bear”, looked immediately for NATO membership, which implied the nuclear
Origins of the Tactical Nuclear Weapons Modernization Program: 1969-1979
NASA Astrophysics Data System (ADS)
Yaffe, Michael David
On December 12, 1979, the North Atlantic Treaty Organization decided to deploy new long-range theater nuclear forces, Pershing II and Ground-Launched Cruise Missiles. This marked the first major change in NATO's nuclear stockpile since the adoption of the flexible response strategy in 1967. The decision was controversial inasmuch as the Allies disagreed on the fundamental role of nuclear weapons in this strategy and, thereby, the types and number of weapons required for an effective deterrent posture. Europeans generally preferred long-range weapons capable of striking the Soviet Union and small conventional forces while Americans preferred shorter-range nuclear weapons and a stalwart conventional defense. Thus, the December decision is often described as purely politically motivated, in which the Americans reluctantly acquiesced to a European initiative for long-range weapons, prominently expressed by West German Chancellor Helmut Schmidt in 1977. Recently declassified US government documents reveal, however, that long-range missiles were part of a long-term comprehensive nuclear modernization program conceived in the Pentagon under Defense Secretary James Schlesinger during the period of 1973 through 1975, and presented to skeptical European elites who favored arms control negotiations over costly new deployments. This program was motivated as much by changes in the American national security culture as by an increase in the Soviet military threat to Europe. It was grounded on a clear military rationale: "that a feasible and affordable conventional defense is only possible if NATO has modern nuclear forces" that can effectively hold at risk Warsaw Pact ground and air forces throughout the depth of their employment from the inner-German border to the western military districts of the Soviet Union. When the new US administration in 1977 disagreed with the modernization plan and its rationale, opting instead for more conventional forces, the Allies in a reversal of roles lobbied the US President to deploy the long-range weapons being developed by the Defense Department. In the course of deliberations, political preferences suppressed military considerations of deterrence and only a small portion of the original modernization program was implemented.
The Nuclear Nonproliferation Treaty in Context
NASA Astrophysics Data System (ADS)
Davenport, Kelsey
2017-01-01
The 1968 Nuclear Nonproliferation Treaty (NPT) is the cornerstone of multilateral efforts to prevent the spread of nuclear weapons and promote efforts toward complete disarmament. In the grand bargain of the NPT, states foreswore pursuit of nuclear weapons in exchange for access to nuclear technology and limited nuclear arsenals to the five states (China, France, Russia, the United Kingdom and the United States) that tested such weapons before the NPT's conception. Now in its seventh decade, the NPT regime is embraced by the vast majority of the world's nations and is viewed as a critical element of international security. However, despite past successes in halting efforts in several states to pursue nuclear weapons, near universal adherence, and only one withdrawal (North Korea), the NPT regime is at a critical crossroads. The treaty has proven unable to adapt to new challenges, such as emerging technologies that threaten operational strategic realities, the devolution of state authority to non-state actors and institutions, and growing dissatisfaction with slow pace of nuclear disarmament. Additionally, the treaty leaves open critical questions, including whether or not state parties have the `right' to pursue technologies that allow for domestic production of fuels for nuclear reactors and if modernization programs for nuclear warheads are inconsistent with the treaty. If these questions remain unresolved, the international community will find itself ill prepared to confront emerging proliferation challenges and the NPT, the linchpin of international nonproliferation and disarmament efforts, may begin to erode.
Deterring Nuclear Proliferation: The Importance of IAEA Safeguards: A TEXTBOOK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, M.D.; Fishbone, L.G.; Gallini, L.
2012-03-13
Nuclear terrorism and nuclear proliferation are among the most pressing challenges to international peace and security that we face today. Iran and Syria remain in non-compliance with the safeguards requirements of the NPT, and the nuclear ambitions of North Korea remain unchecked. Despite these challenges, the NPT remains a cornerstone of the nuclear non-proliferation regime, and the safeguards implemented by the International Atomic Energy Agency (IAEA) under the NPT play a critical role in deterring nuclear proliferation.How do they work? Where did they come from? And what is their future? This book answers these questions. Anyone studying the field ofmore » nuclear non-proliferation will benefit from reading this book, and for anyone entering the field, the book will enable them to get a running start. Part I describes the foundations of the international safeguards system: its origins in the 1930s - when new discoveries in physics made it clear immediately that nuclear energy held both peril and promise - through the entry into force in 1970 of the NPT, which codified the role of IAEA safeguards as a means to verify states NPT commitments not to acquire nuclear weapons. Part II describes the NPT safeguards system, which is based on a model safeguards agreement developed specifically for the NPT, The Structure and Content of Agreements between the Agency and States required in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, which has been published by the IAEA as INFCIRC/153. Part III describes events, especially in South Africa, the DPRK, and Iraq in the early 1990s, that triggered a transformation in the way in which safeguards were conceptualized and implemented.« less
(236)U and (239,)(240)Pu ratios from soils around an Australian nuclear weapons test site.
Tims, S G; Froehlich, M B; Fifield, L K; Wallner, A; De Cesare, M
2016-01-01
The isotopes (236)U, (239)Pu and (240)Pu are present in surface soils as a result of global fallout from nuclear weapons tests carried out in the 1950's and 1960's. These isotopes potentially constitute artificial tracers of recent soil erosion and sediment movement. Only Accelerator Mass Spectrometry has the requisite sensitivity to measure all three isotopes at these environmental levels. Coupled with its relatively high throughput capabilities, this makes it feasible to conduct studies of erosion across the geographical extent of the Australian continent. In the Australian context, however, global fallout is not the only source of these isotopes. As part of its weapons development program the United Kingdom carried out a series of atmospheric and surface nuclear weapons tests at Maralinga, South Australia in 1956 and 1957. The tests have made a significant contribution to the Pu isotopic abundances present in the region around Maralinga and out to distances ∼1000 km, and impact on the assessment techniques used in the soil and sediment tracer studies. Quantification of the relative fallout contribution derived from detonations at Maralinga is complicated owing to significant contamination around the test site from numerous nuclear weapons safety trials that were also carried out around the site. We show that (236)U can provide new information on the component of the fallout that is derived from the local nuclear weapons tests, and highlight the potential of (236)U as a new fallout tracer. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
One perspective on stakeholder involvement at Hanford.
Martin, Todd
2011-11-01
The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail.
2006-12-01
of providing nuclear power. Once you have the nuclear weapons, they require a delivery system resulting in a missile program. It is afforded higher...out that some domestic advancements may be made in certain sectors, such as nuclear bombs and missiles, because resources may be spent on narrowly...capital, fighter, aviation, nuclear weapons, missiles 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION
Nuclear threat in the post cold-war era. Monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurey, W.S.
1995-05-14
This monograph discusses the nuclear threat that the United States faces following the downfall of the Soviet Union. The Russian and Chinese nuclear arsenals represent a formidable threat that must be countered and a new threat is emerging in the third world despite efforts to counter the proliferation of weapons of mass destruction. The monograph reviews the current status of both the Russian and Chinese arsenals and lists the programs that are being undertaken to modernize and improve their respective nuclear capabilities. Both nations are taking significant steps to preserve and improve their nuclear strike capability. The proliferation of nuclearmore » weapons technology, fissile material, and ballistic missiles in the third world is an emerging threat to national security interests. The lack of appropriate security measures during the on-going dismantling of the former Soviet nuclear arsenal presents an opportunity for rogue states and terrorist organizations to readily obtain the materials to produce their own nuclear weapons.« less
NASA Astrophysics Data System (ADS)
Trebino, Rick
2010-03-01
I spent 12 years working at a top-secret nuclear-weapons lab that had its own dedicated force of heavily armed security guards. Of course, security-related incidents were rare, so the guards' main challenge was simply staying awake.
Ballistic Missile Defense Final Programmatic Environmental Impact Statement
1994-10-01
included: the need for BMD; budget allocations; procedural problems related to NEPA; nuclear weapon dangers; arms reductions; and potential contravention...2-26 2.6.2 TECHNOLOGY ALTERNATIVES ........................... 2-26 2.6.2.1 Directed Energy Weapons ..................... 2-26 2.6.2.2 Nuclear ...national defense strategy of mutually assured destruction to keep conflicts from escalating beyond conventional warfare to nuclear war. In 1955, the
2015-06-01
Research Committee nm Nanometer Np Neptunium NPT Treaty of Non-proliferation of Nuclear Weapons ns Nanosecond ps Picosecond Pu Plutonium RIMS...discovery—credited also to Fritz Strassman— scientists realized these reactions also emitted secondary neutrons . These secondary neutrons could in...destructive capabilities of nuclear fission and atomic weapons . Figure 1. Uranium-235 Fission chain reaction, from [1
Extended Nuclear Deterrence for Europe Without Forward-based Weapons
2012-02-15
financial costs of nuclear burden sharing, bolsters safety and security and further reduces proliferation risks. 22 Bibliography Bildt, Carl and... Sagan , Scott D. and Waltz, Kenneth N. The Spread of Nuclear Weapons: A Debate Renewed. W. W. Norton and Company New York, NY and London...Point. Center for International Relations, Reports and Analyses. Konrad-Adenauer Foundation, Warsaw, 2011, 2. 30 Bildt, Carl and Sikorski, Radek
JPRS Report, Proliferation Issues
1991-08-08
from its processing plant at Valindaba, and fuel-fabrication plants at Valindaba and Pelindaba. where fuel rods for use at the Koeberg nuclear-power...construction of the fourth one. The pulsed reactor uses special elements of nuclear fuel The site of the proposed fourth nuclear power plant can enabling...chemical, and biological weapons, including delivery systems and the transfer of weapons-relevant technologies.] AFRICA SOUTH AFRICA Civilian Uses for
A Sandia weapon review bulletin : defense programs, Autumn 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
Topics in this issue: (1) Focal Point and STEP. Sandia National Laboratories has always focused its advanced weapon development not only on future weapon needs, but also on the engineering and manufacturing sciences needed to meet them. Both areas are changing dramatically. As the nation dismantles many of its warheads, it becomes essential that those that remain are increasingly reliable, secure, capable, and safe. And as development resources diminish, it becomes vital that they are applied to the most critical technologies in a disciplined manner. The mission of the Focal Point program and the Stockpile Transition Enabling Program (STEP) ismore » to develop processes for meeting these challenges. Focal Point offers a decision-making process for allocating Sandia's resources to meets its defense programs strategic goals. (2) Defense Programs news in brief. (3) Dismantling the nuclear stockpile. (4) W88/MK5: Arming, Fuzing, and Firing system meets all requirements and goals. (5) The Common Radar Fuze. (6) Insertable-explosive arming of firing sets. (7) Preparing for fewer underground tests.« less
2002-01-01
Manhattan project , gaseous diffusion plant, or even a weapons program. It will be used heavily in chapters 4 and 5. Both The Making of the Atomic Bomb...requirement for secrecy surrounding the Manhattan project and the lingering requirement for secrecy regarding nuclear weapons design. The application to the...another MANHATTAN Project ” to produce a nuclear device (McPhee 1973, 123-4, 136). Scientists who worked on the Manhattan Project maintain that
Russia`s Great Game in a nuclear South Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat, J.F.; Taylor, T.T.
1998-12-31
Lost in the noise of Pakistan`s nuclear weapon tests in the western Baluchistan desert on 28 and 30 May was a surprising diplomatic move by Russia. On 23 May, Russia became the first state to express its willingness to recognize India as a nuclear-weapon state, provided that India commits itself to the international nonproliferation regime. Russia`s Ambassador to India, Albert Chernyshev, stated in the days after the Indian but before the Pakistani nuclear tests that ``India proclaimed itself a nuclear weapons power. One now hopes that India will behave as a nuclear weapons power by acting responsibly. Every nuclear weaponsmore » state has some rights. But for getting recognition it must have some obligations. Once it is ready to show these obligations by joining the nonproliferation regime, its recognition as a nuclear weapons power will follow.`` Russia`s Great Game in South Asia in pursuit of short-term economic and other interests appears to be a serious obstacle on the path to dealing effectively with the South Asian nuclear crisis. Grave damage to security, stability and nonproliferation has already resulted from India`s and Pakistan`s actions, but the situation does not have to spiral out of control. It is imperative that the international community respond appropriately to this challenge. The international community is at a crossroads and Russia`s actions will be critical. Will it be willing to go beyond the narrow economic and political calculations reflected in its diplomatic posturing, and take actions that will serve its long-term interests by bridging differences with other great powers in order to demonstrate to India that it has not chosen the right path. If Russia decides it can gain from India`s current, perilous path and blocks or otherwise frustrates appropriate responses, the nuclear danger on the subcontinent will escalate and the global regimes to promote nonproliferation and to ban testing will be seriously, perhaps fatally, weakened with unpredictable regional and global effects.« less
Teaching Nuclear Physics in a General Education Curriculum
NASA Astrophysics Data System (ADS)
Lesher, Shelly R.
2017-01-01
The general public is unaware how physics shapes the world. This is especially true for nuclear physics, where many people are scared of the words ``nuclear'' and ``radiation''. To combat these perceptions, the Physics Department at the University of Wisconsin - La Crosse teaches a general education class on nuclear weapons, energy, and policy in society. This includes the social, economic, cultural, and political aspects surrounding the development of nuclear weapons and their place in the world, especially in current events. This talk will discuss the course, how it has grown, and sample student responses.
Nuclear Winter Revisited: can it Make a Difference This Time?
NASA Astrophysics Data System (ADS)
Schneider, S.
2006-12-01
Some 23 years ago, in the middle of a Cold War and the threat of a strategic nuclear weapons exchange between NATO and the Warsaw Pact nations, atmospheric scientists pointed out that the well-anticipated side effects of a large-scale nuclear war ozone depletion, radioactive contamination and some climatic effects had massively underestimated the more likely implications: massive fires, severe dimming and cooling beneath circulating smoke clouds, disruption to agriculture in non-combatant nations, severe loss of imports of food to already-food-deficient regions and major alterations to atmospheric circulation. While the specific consequences were dependent on both scenarios of weapons use and injections and removals of smoke and dust and other chemicals into the atmosphere, it was clear that this would be despite passionately argued uncertainties a large major additional effect. As further investigations of smoke removal, patchy transport, etc., were pursued, the basic concerns remained, but the magnitude calculated with one-dimensional models diminished creating an unfortunate media debate over nuclear winter vs. nuclear autumn. Of course, one can't grow summer crops in any autumn natural or nuclear but that concern often got lost in the contentious political debate. Of course, it was pointed out that anyone who required knowing the additional environmental consequences of a major nuclear exchange to be finally deterred was already so far from the reality of the direct effects of the blasts that they might never see the concerns. But for non-combatants, it was a major awakening of their inability to escape severe consequences of the troubles of others, even if they were bystanders in the east-west conflicts. Two decades later, things have radically changed: the prospect of a massive strategic nuclear exchange is greatly diminished good news but the possibility of limited regional exchanges or terrorist incidents is widely believed to have greatly increased bad news. Therefore, the re- examination in this AGU session of the entire subject of environmental and social after-effects of any nuclear weapons use is, unfortunately, once again timely. Hopefully it will convince anyone not already convinced based on conventional damages from nuclear weapons use of the urgent need to abate proliferation and monitor and control access to and potential capabilities of those who might contemplate using such weapons for some Strangelove-like strategic or ideological objective. The extent to which a scientific re-examination of the broader horrendous implications of any scale of use of nuclear weapons will deter those contemplating their use is questionable. However, it seems likely such research would increase the resolve of the large number of countries and institutions already pressing to prevent nuclear weapons use.
NASA Astrophysics Data System (ADS)
Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.
2007-04-01
We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as previously estimated in analyses for full scale nuclear wars using high-yield weapons, if the small weapons are targeted at city centers. A single "small" nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce" nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2007) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales. We also anticipate substantial perturbations of global ozone. While there are many uncertainties in the predictions we make here, the principal unknowns are the type and scale of conflict that might occur. The scope and severity of the hazards identified pose a significant threat to the global community. They deserve careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread public debate.
Verifying the INF and START treaties
NASA Astrophysics Data System (ADS)
Ifft, Edward
2014-05-01
The INF and START Treaties form the basis for constraints on nuclear weapons. Their verification provisions are one of the great success stories of modern arms control and will be an important part of the foundation upon which the verification regime for further constraints on nuclear weapons will be constructed.
The Superpowers: Nuclear Weapons and National Security. National Issues Forums.
ERIC Educational Resources Information Center
Mitchell, Greg; Melville, Keith
Designed to stimulate thinking about United States-Soviet relationships in terms of nuclear weapons and national security, this document presents ideas and issues that represent differing viewpoints and positions. Chapter 1, "Rethinking the U.S.-Soviet Relationship," considers attempts to achieve true national security, and chapter 2,…
Verifying the INF and START treaties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ifft, Edward
The INF and START Treaties form the basis for constraints on nuclear weapons. Their verification provisions are one of the great success stories of modern arms control and will be an important part of the foundation upon which the verification regime for further constraints on nuclear weapons will be constructed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, W.J.; Horton, K.K.; Eubank, B.F.
1984-01-31
This report is a personnel oriented history of DOD participation in underground nuclear weapons testing during Operations NOUGAT and WHETSTONE, test events HARD HAT, DANNY BOY, MARSHMALLOW, MUDPACK, WISHBONE, GUMDROP, DILUTED WATERS, and TINY TOT. It is the first in a series of historical reports which will include all DOD underground nuclear weapons tests and DOE underground nuclear weapons tests with significant DOD participation from 1962 forward. In addition to these volumes presenting a history of the underground nuclear test program, a later restricted volume will identify all DOD participants, (military, civilian, and their contractors) and will list their dosimetrymore » data.« less
Hidden dangers: Environmental consequences of preparing for war
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birks, J.W.; Ehrlich, A.H.
1990-01-01
This compilation of chapters by some of the world's foremost non-governmental experts, focuses on the military's nuclear mess. Hidden Dangers suggests that in the end, events, not politics, changed operations' in the nuclear complex. After Chernobyl, safety became the pressing issue. Although the continuing stream of revelations of safety and environmental violations within the US nuclear weapons complex may make the 1990 book seem out of date, it remains an indispensable primer for those concerned with the social and environmental consequences of nuclear weapons production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarnall, C.A.; Caruthers, J.R.
This study was performed under FUTURE LOOK, a joint Defense Nuclear Agency/Department of Energy (DNA/DOE) sponsored study. The intent of FUTURE LOOK is to identify and develop means of providing requisite security and survivability to the Non-Strategic Nuclear Forces (NSNF) in the Twenty-First Century. Our current thinking about the future world in Europe is summarized. In this report we develop four scenarios/stockpile cases to cover the spectrum of potential happenings in Europe; we also develop general security and survivability implications and recommendations for each case. The four cases are: (1) a substantially reduced (factor of 2--10) European stockpile; (2) amore » near-zero stockpile, with no Army weapons remaining in Europe; (3) current stockpile in Europe remains; and (4) current stockpile numbers remain, but aggressive modernization is allowed. We plan to use the information in this report to assist in developing detailed security and survivability options as part of our follow-on to FUTURE LOOK studies. 8 refs., 6 tabs.« less
Space weapon technology and policy
NASA Astrophysics Data System (ADS)
Hitchens, Theresa
2017-11-01
The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.
Project on Advanced Systems and Concepts for Countering Weapons of Mass Destruction (PASCC)
2015-09-01
Proliferation of weapons of mass destruction (WMD, defined as nuclear, chemical , and biological) and weapons of mass effect (WME, defined as other high... Chemical Weapons • Scoping Study for a U.S.-Israel Strategic Dialogued 5 • U.S.-India Strategic Dialogue • Implications of Indian Tactical...of Chemical Weapons : Strategic Dialogue, Research, and Report Performer: Arizona State University (ASU) Principal Investigator: Orde Kittrie Cost
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2009-02-10
agreements to address U.S. security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear ...era nuclear , chemical, and biological weapons. Through these cooperative efforts, the United States now allocates more than $1 billion each year to...spread of nuclear weapons. This regime, although suffering from some setbacks in recent years in Iran and North Korea, includes formal treaties
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2007-08-09
security and control over nuclear weapons and fissile materials. These projects provided Russia with bullet-proof Kevlar blankets, secure canisters ...U.S. security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear weapons in the early...U.S.-Russian relationship. At the same time, however, the two sides began to cooperate on securing and eliminating Soviet-era nuclear , chemical, and
Shaping Strategic Defense: The Air Force Nuclear Mission
2009-01-01
Strike Command. Washington DC: Department of the Air Force. Kall , Rob. June 20, 2008. “Pentagon: Over 1000 Nuclear Weapons Parts Missing?” http...www.huffingtonpost.com/rob- kall /pentagon-over-1000-nuclea_b_108225.html (accessed December 16, 2008). Rolfsen, B. November 6, 2007. http...16, 2008). 6 Schlesinger. 7 Kall , Rob. June 20, 2008. “Pentagon: Over 1000 Nuclear Weapons Parts Missing?” http://www.huffingtonpost.com/rob- kall
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Appropriations.
The General Accounting Office (GAO) conclusion that it is impossible to determine the contribution of U.S. nuclear training of foreigners to the spread of nuclear weapons is presented. The GAO position is that there is no way to ascertain the true intentions of foreign nationals being trained or the motivations of their countries. Issues…
Director`s series on proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, K.C.; Price, M.E.
1994-10-17
This series is an occasional publication of essays on the topics of nuclear, chemical, biological, and missile proliferation. Essays contained in this document include: Key issues on NPT renewal and extension, Africa and nuclear nonproliferation, Kenya`s views on the NPT, Prospects for establishing a zone free of weapons of mass destruction in the middle east, effects of a special nuclear weapon materials cut-off convention, and The UK view of NPT renewal.
JPRS Report, Nuclear Developments
1989-08-29
Korea is developing nuclear weapons Yi and Bartholomew agreed that the two governments capability. should reestablish a bilateral science and...early this year. Taking advantage of such a mood of The government should develop state-of-the-art technol- detente. even our country is now actively...counter to such a mood of detente. and why can they not The report recommended that the government establish abandon nuclear weapons at a time when
The Inadvertent Effect of Assurance on Nuclear Proliferation
2013-02-14
those of the author and do not reflect the official policy or position of the US government, the Department of Defense, or Air University. In...umbrella and a state’s normative desire to be viewed and treated favorably by the international community dissuades nuclear weapons development.2...desire to be viewed and treated favorably by the international community dissuades nuclear weapons development.24 Tatsumi and Schoff suggest the best
Environmental Detection of Clandestine Nuclear Weapon Programs
NASA Astrophysics Data System (ADS)
Kemp, R. Scott
2016-06-01
Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moniz, Ernest; Carr, Alan; Bethe, Hans
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less
Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John
2018-01-16
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of todayâs advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.
1993-08-01
effectiveness , estimate personnel attr;i"on, perform studies and analyses. or assess protective equipment for personnel. i II CAA-RP-93-3 DEPARTMENT OF THE...weapons or weapons effects that are difficult to localize are excluded from the 1-1 CAA-RP-93-3 scope of this paper Some examples of the types of weapons...or weapon effects excluded atr" .;i,nical weapons (encompassing war gases and other toxic substances, flame weapons. and biological agents), nuclear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deyermond, J.J.
1993-03-10
Following the end of the Cold War, the United States as well as other nations around the world now find themselves in a state of political, economic, and military transition. While the US and other nations such as the Islamic Republic of Iran are undergoing significant increases in military spending. This increase has been primarily in the area of conventional forces, however there is growing evidence that Iran is also attempting to develop a nuclear weapons capability as well. This study examines Iran's nuclear weapons program in detail, and Tehran's increasing ability to emerge as a regional power in themore » Middle East.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J C; Diaz de la Rubia, T; Moses, E
2008-12-23
The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... official use and to employees or contractors of nuclear facilities. 478.132 Section 478.132 Alcohol... and to employees or contractors of nuclear facilities. Licensed manufacturers, licensed importers, and licensed dealers in semiautomatic assault weapons, as well as persons who manufacture, import, or deal in...
Using Elementary Mechanics to Estimate the Maximum Range of ICBMs
ERIC Educational Resources Information Center
Amato, Joseph
2018-01-01
North Korea's development of nuclear weapons and, more recently, intercontinental ballistic missiles (ICBMs) has added a grave threat to world order. The threat presented by these weapons depends critically on missile range, i.e., the ability to reach North America or Europe while carrying a nuclear warhead. Using the limited information available…
Tonopah Test Range Flight Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
From a distance, the drop of a mock nuclear weapon — containing only non-nuclear components — was a mere puff of dust rising from a dry lake bed at Nevada’s Tonopah Test Range. However, it marked the start of a new series of test flights vital to the nation’s B61-12 weapon refurbishment program.
Alternative World Scenarios for a New Order of Nations.
1993-01-01
chemical, biological and nuclear weapons continues. Despite the reduction of world tensions, almost every industrial nation will be armed with a range...of conventional, chemical, and biological weapons. Most of these weapons will have been supplied to them by the EC, the United States, and China before...weapons and delivery systems as well as chemical and biological weapons to build or increase their arsenals. The combined effect of new found economic
Iran’s Nuclear Program: Status
2009-11-25
wave software, and neutron sources, which could be useful for developing nuclear weapons.44 In addition, ElBaradei’s May 2008 report notes that...Intelligence stated that the Bureau continues to stand by this estimate. 77 The time frame described in the 2007 NIE is the same as one described in a... standing with the IAEA has ever used this tactic. North Korea restarted its nuclear weapons program after announcing its withdrawal from the NPT in
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2007-01-29
U.S. security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear weapons in the early...Russian relationship. At the same time, however, the two sides began to cooperate on securing and eliminating Soviet-era nuclear , chemical, and...the former Soviet Union. The United States is also a leader of an international regime that attempts to limit the spread of nuclear weapons. This
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2007-06-01
security concerns. The United States and Soviet Union began to sign agreements limiting their strategic offensive nuclear weapons in the early 1970s...Russian relationship. At the same time, however, the two sides began to cooperate on securing and eliminating Soviet-era nuclear , chemical, and biological...former Soviet Union. The United States is also a leader of an international regime that attempts to limit the spread of nuclear weapons. This regime
Counterproliferation of Nuclear Weapons
2010-04-01
nuclear weapons program in 1941 and renamed the program the Manhattan Project in 1942.6 The mammoth efforts of the Manhattan Project resulted in the...killing or mortally wounding up to 130,000 Japanese.11 While the scientists of the Manhattan Project were awestruck at the first nuclear blast in New...remove great danger for us.”12 Klaus Fuchs and Theodore Hall, two scientists on the Manhattan Project , had been previously recruited to spy for the
A Guide to Nuclear Weapons Phenomena and Effects Literature
1984-10-31
and Disarmament Agency. An article entitled "Limited Nuclear War" in Scientific American (Reference ECE-14) is also of interest because of its rela... Sistems and the Aemosphere’-BCj=9. 43 Personne l; .-EP)- / 47 Civilian .S’ector and the .Environment, (ECE) 50 5 SPECIAL REFERENCE MATERIALS (R) ’<ൾ...approximations. DNA has sponsored the development of software for scientific and military applications of nuclear weapon phenomena and effects information
Nuclear metaphors: Why risk communication and public education haven't worked
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flank, S.; Hansen, K.
1991-11-01
Broad public acceptability is a necessary condition for the future success of nuclear power in the US and will be determined by the way the public perceives nuclear power - specifically, through nuclear power's metaphoric equivalences. A content analysis of a cross section of the debate over nuclear power shows that the public does not share a single concept of what nuclear power is - nuclear energy has yet to be firmly anchored in a particular context or caught in a web of relations to the rest of society. The political battleground for the contest over nuclear power is notmore » patterns of risk perception or shortcomings in public education but rather nuclear power as metaphor. For example, is nuclear power a factory producing electricity, or is it indistinguishable from nuclear weapons By highlighting the metaphors that underlie competing conceptions of nuclear power, one can illuminate parts of the political debate that otherwise are consigned to psychology, irrationality, or ignorance. Understanding these metaphors also makes clear the kind of deep changes that would be necessary to secure public acceptance of nuclear power.« less
The myth of the ``proliferation-resistant'' closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Lyman, Edwin S.
2000-07-01
National nuclear energy programs that engage in reprocessing of spent nuclear fuel (SNF) and the development of "closed" nuclear fuel cycles based on the utilization of plutonium process and store large quantities of weapons-usable nuclear materials in forms vulnerable to diversion or theft by national or subnational groups. Proliferation resistance, an idea dating back at least as far as the International Fuel Cycle Evaluation (INFCE) of the late 1970s, is a loosely defined term referring to processes for chemical separation of SNF that do not extract weapons-usable materials in a purified form.
2016-02-01
components. In 2010, they began an LEP to consolidate four versions of a legacy nuclear weapon, the B61 bomb , into a bomb called the B61-12 (see...Force Integrated Master Schedule BIMS Boeing Integrated Master Schedule B61 bomb B61 legacy bomb CD critical decision Cost Guide GAO Cost...are versions of the B61 bomb , an aircraft-delivered weapon that is a key component of the United States’ commitments to the North Atlantic Treaty
How to think about nuclear war
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luttwak, E.N.
1982-08-01
Mr. Luttwak, a professional defense consultant, observes the arguments of nuclear freeze proponents can be refuted on both strategic and moral grounds. The freeze concept is illogical, he notes, because it is political systems - not state boundaries - that separate sides and because the Warsaw Pact countries are more heavily armed than the North Atlantic Treaty Organization (NATO) countries. An important factor keeping NATO forces at a disadvantage is their defensive orientation, which keeps forces militarily diffuse and dependent on nuclear weapons and preemptive action as a deterrent. Mr. Luttwak feels the shock effect of any use of nuclearmore » weapons would probably shorten a war rather than expand it because of the instinct for survival on both sides; further only nuclear weapons have this awesome power to deter. The proposal for universal disarmament under world government control is not a serious one, he thinks, and reflects an indifference to the possibility of a long non-nuclear war. The effect would be to trade the risk of nuclear death for the inevitability of many non-nuclear casualties. (DCK)« less
Current nuclear threats and possible responses
NASA Astrophysics Data System (ADS)
Lamb, Frederick K.
2005-04-01
Over the last 50 years, the United States has spent more than 100 billion developing and building a variety of systems intended to defend its territory against intercontinental-range ballistic missiles. Most of these systems never became operational and ultimately all were judged ineffective. The United States is currently spending about 10 billion per year developing technologies and systems intended to defend against missiles that might be acquired in the future by North Korea or Iran. This presentation will discuss these efforts ad whether they are likely to be more effective than those of the past. It will also discuss the proper role of anti-ballistic programs at a time when the threat of a nuclear attack on the U.S. by terrorists armed with nuclear weapons is thought to be much higher than the threat of an attack by nuclear-armed ballistic missles.
Advantages of liquid fluoride thorium reactor in comparison with light water reactor
NASA Astrophysics Data System (ADS)
Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.
2015-04-01
Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.
The long-term problems of contaminated land: Sources, impacts and countermeasures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baes, C.F. III
1986-11-01
This report examines the various sources of radiological land contamination; its extent; its impacts on man, agriculture, and the environment; countermeasures for mitigating exposures; radiological standards; alternatives for achieving land decontamination and cleanup; and possible alternatives for utilizing the land. The major potential sources of extensive long-term land contamination with radionuclides, in order of decreasing extent, are nuclear war, detonation of a single nuclear weapon (e.g., a terrorist act), serious reactor accidents, and nonfission nuclear weapons accidents that disperse the nuclear fuels (termed ''broken arrows'').
Legal Implications of Military Uses of Outer Space
NASA Astrophysics Data System (ADS)
Catena, Johanna
2002-01-01
Acquisition of Space Weapons, the Legal, Political and Military Impact for International Peace and At the dawn of a new century an immediate danger is upon us: The weaponization of outer space, including potential cost implications upon the prospect of ushering an era of peace and prosperity. But, can such statements be explained as pure sentimentality for hopes of a new era? Or is the danger misplaced that the threat to peace and security is an ever more ominous? By militarising outer space one could monitor crisis areas that could become a potential threat and this would in turn build confidence and security amongst nations. However the Outer Space Treaty prohibits placing in orbit nuclear and other weapons of mass destruction. This does not include other military systems. Many countries feel the prohibition should be extended in the Treaty. Other military systems may involve anti-satellite weapons, (ASATS), emitting or simply placing technologies in space using laser and /or particle beams from space to intercept presently specific military targets such as ballistic missiles and hostile satellites, but in the future this may extend to destroying a target on earth. Military presence in space however, is not founded on weapons alone, but also through military surveillance systems and seen by some countries as an effective measure in verification on arms control. It is also seen as intensifying an arms race. At the forefront of the debate for space weapons is the possibility of countries deploying a National Missile Defence system. How does one reconcile such a system with present treaties? There has always been a direct relationship between weapons and space exploration, particularly if traced through the history of the late nineteenth century to the era of the space race. Konstantin Tsiolkovsky, (1857 - 1935), was one of the founders to astronautics. Robert Goddard, (1882-1945) an Englishman, developed Tsiolkovskys' work further. He built the first liquid-fuelled rocket. Goddard's work coincided with the work of a German scientist Werner Von Braun, (1912-77) who designed the V1 and V2 rocket. The V2 was the first intercontinental ballistic missile. Compared to the V1, the V2 could carry a heavier payload and the range was much longer. Von Braun had originally sketched his ideas to the Germans, that the V2 was an effective design for space travel and it was rejected. After the war the V2 became the foundation to many new technologies and these modifications marked the beginning of the space race. This competition led to space travel, taking men to the moon using the Saturn V rocket, robotic missions to the planets, and into tactical nuclear missiles (Redstone). This also marked the future for such dual-purpose technologies (i.e. military and/or civilian use) and more interestingly it took the design of weapons for space travel to be taken seriously. Arthur C Clarke commented on the possibilities of placing weapons in outer space, `the only defence against the weapons of the future is to prevent them ever being used. The problem is political and not military at all.' Ambassador Peter Jankowitsch, quoting Stockholm International Peace Research Institute in his opening address to COPUOS in Austria 1978, `we must make sure that outer space can be spared the fate of so many human discoveries of previous ages, namely becoming a mere battlefield.' These statements may be analysed by applying the United Nations Charter alongside other international treaties, such as the Outer Space Treaty 1967, the Test Ban Treaty 1963 and the Anti-Ballistic Missile Treaty in conjunction with the new Agreement signed by Russian and the USA. This may assist to highlight and conclude where problems reside whether political, legal, military, or a combination; and the impact for international peace and security.
Weaponisation of Space - Some Legal Considerations
NASA Astrophysics Data System (ADS)
Jolly, C.
2002-01-01
This paper will examine a current national initiative from the United States of America to achieve greater national security through the `weaponisation' of extra-atmospheric space. We will propose a synthesis of the current international legal framework pertaining to military activities in space. Based on the analysis of the legal regime and on some current national and regional political initiatives, we will make some practical recommendations to prevent an arms race in space. Civil remote sensing, telecommunications, and launchers launch vehicle technologies have all benefited from a military heritage. They are dual use technologies, in other words, technologies that have both military and civilian applications. In fact, space has always been militarised, ever since the first satellites were put in orbit for reconnaissance missions. But recently, some national policies and technological advances are making the militarisation of space less `discrete'. Military assets from different countries are already stationed in orbit (e.g. reconnaissance and navigation satellites), but they might soon be joined by new `space weapons' with lethal strike capabilities. Currently, in the United States, military and civilian space activities are being closely intertwined. A typical example is the call of the NASA Administrator Sean O'Keefe, a former Secretary of the Navy, for closer cooperation on research and development between NASA and the Department of Defense. Concerning plans to station weapons in space, the American Air Force Space Command issued, in February 2000, its `Strategic Master Plan for FY02 and Beyond'. It states that the United States "...future Air Force Space Command capabilities will enable a fully integrated Aerospace Force to rapidly engage military forces worldwide. [...] Full spectrum dominance in the space medium will be achieved through total space situational awareness, protection of friendly space assets, prevention of unauthorized use of those assets, negation of adversarial use of space and a fully-capable National Missile Defense (NMD). [American] ICBMs will continue to provide a credible strategic deterrence, while advanced, conventional weapons operating in or through space will provide our National Command Authorities (NCA) with formidable and flexible options for prompt, global, conventional strike." As we will see in this paper, the current international legal framework restricting the stationing and use of weapons in space is composed mainly of three treaties. They are: the Treaty between the United States of America and the Union of Soviet Socialist Republics on the Limitation of Anti-Ballistic Missile Systems (1972), called commonly the `ABM treaty', the `Outer Space Treaty' (1967) and the Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water (1963). We will also see that - contrary to public opinion - those current legal instruments, even coupled with other international legal texts, do not prohibit the `weaponisation' of space. For instance, The Article Four of the Outer Space Treaty is often cited as the main legal argument against militarisation of space. This article does indeed prohibit the installation or stationing of "any objects carrying nuclear weapons or any other kinds of weapons of mass destruction", "in orbit around the Earth", "on celestial bodies", "in outer space" and "in any other manner". But, aside from the weapons identified (nuclear weapons and weapons of mass destruction), nothing prohibits a government signatory to the Outer Space Treaty, to actually station other types of weapons in space, such as laser-based systems. In this paper, the current situation of potential `weaponisation' of space, the international impacts of such a policy and the gaps of the international legal framework concerning the militarisation of space, will prompt some comments and practical recommendations.
U.S. Army Medical Department Journal, October-December 2007
2007-12-01
Warrior Task Training requirements (such as weapons assembly/disassembly and functions check; individual chemical, biological , radiological, nuclear...training program focused on hands-on training in the 40 Army Warrior Tasks and 11 Battle Drills, to include advanced land navigation training; weapons ...familiarization and qualification; convoy operations; chemical, biological , radiological, nuclear and high- explosive defense; and squad and platoon
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... DEPARTMENT OF DEFENSE Office of the Secretary: Defense Science Board (DSB) Task Force on the Survivability of DoD Systems and Assets to Electromagnetic Pulse (EMP) and Other Nuclear Weapons Effects AGENCY... Systems and Assets to Electromagnetic Pulse (EMP) and other Nuclear Weapons Effects (hereafter referred to...
Code of Federal Regulations, 2011 CFR
2011-10-01
... compartmented information (SCI), or high risk nuclear weapons-related data. (ii) Contractor actions that result... as SCI, or high risk nuclear weapons-related data. (iii) Failure to promptly report the loss... Secret, any classification level of information in a SAP, information identified as SCI, or high risk...
The Gravest Danger:. Nuclear Weapons and Their Proliferation
NASA Astrophysics Data System (ADS)
Drell, S.
2005-02-01
Nuclear weapons are unique in their terrifying potential. With an energy release a million times larger than that of previous explosives, mass destruction is inevitable. The prospect of the spread of nuclear weapons and other dangerous technologies into the hands of suicidal terrorists and rogue nations unrestrained by the norms of civilized behavior has led President Bush to remark that "the gravest danger our nation faces lies at the crossroads of radicalism and technology." This talk will address what can and should be done, in the face of new challenges in times punctuated by terrorist threats, to sustain and strengthen the non-proliferation regime, taking into consideration technical realities, and the roles and limits of diplomatic initiatives and of military force.
10 CFR 160.4 - Unauthorized introduction of weapons or dangerous materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Unauthorized introduction of weapons or dangerous materials. 160.4 Section 160.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) TRESPASSING ON COMMISSION PROPERTY § 160.4 Unauthorized introduction of weapons or dangerous materials. Unauthorized carrying...
10 CFR 160.4 - Unauthorized introduction of weapons or dangerous materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Unauthorized introduction of weapons or dangerous materials. 160.4 Section 160.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) TRESPASSING ON COMMISSION PROPERTY § 160.4 Unauthorized introduction of weapons or dangerous materials. Unauthorized carrying...
10 CFR 160.4 - Unauthorized introduction of weapons or dangerous materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Unauthorized introduction of weapons or dangerous materials. 160.4 Section 160.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) TRESPASSING ON COMMISSION PROPERTY § 160.4 Unauthorized introduction of weapons or dangerous materials. Unauthorized carrying...
10 CFR 160.4 - Unauthorized introduction of weapons or dangerous materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Unauthorized introduction of weapons or dangerous materials. 160.4 Section 160.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) TRESPASSING ON COMMISSION PROPERTY § 160.4 Unauthorized introduction of weapons or dangerous materials. Unauthorized carrying...
10 CFR 160.4 - Unauthorized introduction of weapons or dangerous materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Unauthorized introduction of weapons or dangerous materials. 160.4 Section 160.4 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) TRESPASSING ON COMMISSION PROPERTY § 160.4 Unauthorized introduction of weapons or dangerous materials. Unauthorized carrying...
Defense Science Board 2005 Summer Study on Reducing Vulnerabilities to Weapons of Mass Destruction
2007-05-01
the potential of massive destruction from nuclear weapons in the former Soviet Union for nearly half a century during the Cold War. The principle...on limited aspects of a single modality—whether biological, chemical, nuclear , or radiological. Concerns such as detection, defeat, or consequence...as difficult and dangerous as possible and to minimize the likelihood that he will achieve his goals. The worst forms of WMD— nuclear and, in some
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Steven R.; Buchholz, Bruce A.
2011-08-24
The objective of this work is to identify isotopic ratios suitable for analysis via mass spectrometry that distinguish between commercial nuclear reactor fuel cycles, fuel cycles for weapons grade plutonium, and products from nuclear weapons explosions. Methods will also be determined to distinguish the above from medical and industrial radionuclide sources. Mass spectrometry systems will be identified that are suitable for field measurement of such isotopes in an expedient manner.
Environmental Information Document: L-reactor reactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, H.E. Jr.
1982-04-01
Purpose of this Environmental Information Document is to provide background for assessing environmental impacts associated with the renovation, restartup, and operation of L Reactor at the Savannah River Plant (SRP). SRP is a major US Department of Energy installation for the production of nuclear materials for national defense. The purpose of the restart of L Reactor is to increase the production of nuclear weapons materials, such as plutonium and tritium, to meet projected needs in the nuclear weapons program.
Nuclear winter or nuclear fall?
NASA Astrophysics Data System (ADS)
Berger, André
Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.
Nuclear Energy Present and Future
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.
2006-10-01
Nuclear power plants currently generate about 20% of US and 17% of world electricity, which makes nuclear the largest non-emitting energy source in current use. Concerns about global climate change have led to a remarkable transformation of attitudes towards nuclear energy. There remain key challenges that must be faced when considering expansion of its contribution. In summary they are: Economics, Safety, Waste Disposal, and Proliferation. Electricity from legacy fission plants is highly competitive with fossil, but perceived financial risks make the large capital cost fraction a key hurdle to new-construction, and costs of 2 per installed Watt electrical are currently considered only just economically attractive. Proliferation of nuclear-weapons-enabling technology is a major concern for global stability, in which fusion may have significant technical advantages over fission. But proliferation control requires a combination of both technical and political initiatives. The feasibility of supplying process heat or hydrogen from nuclear energy inspires additional research into novel reactor concepts and associated technologies. The presentation will lay out this overall context of the nuclear energy renaissance.
Scenarios for exercising technical approaches to verified nuclear reductions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, James
2010-01-01
Presidents Obama and Medvedev in April 2009 committed to a continuing process of step-by-step nuclear arms reductions beyond the new START treaty that was signed April 8, 2010 and to the eventual goal of a world free of nuclear weapons. In addition, the US Nuclear Posture review released April 6, 2010 commits the US to initiate a comprehensive national research and development program to support continued progress toward a world free of nuclear weapons, including expanded work on verification technologies and the development of transparency measures. It is impossible to predict the specific directions that US-RU nuclear arms reductions willmore » take over the 5-10 years. Additional bilateral treaties could be reached requiring effective verification as indicated by statements made by the Obama administration. There could also be transparency agreements or other initiatives (unilateral, bilateral or multilateral) that require monitoring with a standard of verification lower than formal arms control, but still needing to establish confidence to domestic, bilateral and multilateral audiences that declared actions are implemented. The US Nuclear Posture Review and other statements give some indication of the kinds of actions and declarations that may need to be confirmed in a bilateral or multilateral setting. Several new elements of the nuclear arsenals could be directly limited. For example, it is likely that both strategic and nonstrategic nuclear warheads (deployed and in storage), warhead components, and aggregate stocks of such items could be accountable under a future treaty or transparency agreement. In addition, new initiatives or agreements may require the verified dismantlement of a certain number of nuclear warheads over a specified time period. Eventually procedures for confirming the elimination of nuclear warheads, components and fissile materials from military stocks will need to be established. This paper is intended to provide useful background information for establishing a conceptual approach to a five-year technical program plan for research and development of nuclear arms reductions verification and transparency technologies and procedures.« less
2008-06-01
capabilities: • Goal 1: Protecting critical bases and defeating chemical, biological, rad and nuclear weapons. • Goal 2: Projecting and sustaining ...bases is the supply side of the equation, whereas projecting and sustaining forces is the equation’s consumption side. The product of this equation...dominance through comprehensive knowledge, focused execution, and coordinated sustainment shared cross fully netted maritime, joint, and combined forces.123
Submarine and Autonomous Vessel Proliferation: Implications for Future Strategic Stability at Sea
2012-12-01
missile.4 These important details of the legacy of the Cold War at sea are too often forgotten in today’s retelling of the story . Yet, as CDR (USN...vented deadly fumes. The damaged and still-burning vessel was scuttled with its nuclear weapons and reactors aboard. 8 Pavel Podvig, ed., Russian ...exception of China in the 1950s,13 the Russians generally did not provide production technology and refrained from offering sophisticated offensive systems
USSR Report World Economy and International Relations No. 12, December 1983.
1984-03-20
ideological credo of the ascending class which is liberating all mankind. This is the philosophy of social optimism, the philosophy of the present...and the future."** The chronicle of the past century—to take the main thing in the history of the liberation of the peoples from social oppression...most important in this plane."-’- Aspiring to the complete liberation of Europe from nuclear weapons, both medium-range and tactical, its
The Task of Detecting Illicit Nuclear Material: Status and Challenges
NASA Astrophysics Data System (ADS)
Kouzes, Richard
2006-04-01
In August 1994, police at the Munich airport intercepted a suitcase from Moscow with half a kilogram of nuclear-reactor fuel, of which 363 grams was weapons- grade plutonium. A few months later police seized 2.7 kilograms of highly enriched uranium from a former worker at a Russian nuclear institute and his accomplices in Prague. These are just two of 18 incidents involving the smuggling of weapons grade nuclear materials between 1993 and 2004 reported by the International Atomic Energy Agency. The consequences of a stolen or improvised nuclear device being exploded in a U.S. city would be world changing. The concern over the possibility of a nuclear weapon, or the material for a weapon or a radiological dispersion device, being smuggled across U.S. borders has led to the deployment of radiation detection equipment at the borders. Related efforts are occurring around the world. Radiation portal monitors are used as the main screening tool, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. Passive detection techniques combined with imaging, and possibly active techniques, are the current available tools for screening cargo for items of concern. There are a number of physics limitations to what is possible with each technology given the presence of naturally occurring radioactive materials, commercial sources, and medical radionuclides in the stream of commerce. There have been a number of lessons learned to date from the various efforts in the U.S. and internationally about the capability for interdicting illicit nuclear material.
Industry Studies 2004: Biotechnology
2004-01-01
for biological agent research, development, and production are available on the open market. Since biological weapons are relatively cheap, easy to...growing concern is that non-state actors will acquire and use a biological weapon , the “poor man’s nuclear weapon .” Such action is extremely difficult...to detect and counter. International Protocols and the Need to Control Agents and Technologies - The Biological and Toxin Weapons Convention
Nuclear weapons and NATO-Russia relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornwell, G.C.
1998-12-01
Despite the development of positive institutional arrangements such as Russian participation in the NATO-led peacekeeping force in Bosnia and the NATO- Russia Permanent Joint Council, the strategic culture of Russia has not changed in any fundamental sense. Russian strategic culture has not evolved in ways that would make Russian policies compatible with those of NATO countries in the necessary economic, social, technological, and military spheres. On the domestic side, Russia has yet to establish a stable democracy and the necessary legal, judicial, and regulatory institutions for a free-market economy. Russia evidently lacks the necessary cultural traditions, including concepts of accountabilitymore » and transparency, to make these adaptations in the short-term. Owing in part to its institutional shortcomings, severe socioeconomic setbacks have afflicted Russia. Russian conventional military strength has been weakened, and a concomitant reliance by the Russians on nuclear weapons as their ultimate line of defense has increased. The breakdown in the infrastructure that supports Russian early warning and surveillance systems and nuclear weapons stewardship defense, coupled with a tendency towards has exacerbated Russian anxiety and distrust toward NATO. Russia`s reliance on nuclear weapons as the ultimate line of defense, coupled with a tendency toward suspicion and distrust toward NATO, could lead to dangerous strategic miscalculation and nuclear catastrophe.« less
Nuclear Forensics: Report of the AAAS/APS Working Group
NASA Astrophysics Data System (ADS)
Tannenbaum, Benn
2008-04-01
This report was produced by a Working Group of the American Physical Society's Program on Public Affairs in conjunction with the American Association for the Advancement of Science Center for Science, Technology and Security Policy. The primary purpose of this report is to provide the Congress, U.S. government agencies and other institutions involved in nuclear forensics with a clear unclassified statement of the state of the art of nuclear forensics; an assessment of its potential for preventing and identifying unattributed nuclear attacks; and identification of the policies, resources and human talent to fulfill that potential. In the course of its work, the Working Group observed that nuclear forensics was an essential part of the overall nuclear attribution process, which aims at identifying the origin of unidentified nuclear weapon material and, in the event, an unidentified nuclear explosion. A credible nuclear attribution capability and in particular nuclear forensics capability could deter essential participants in the chain of actors needed to smuggle nuclear weapon material or carry out a nuclear terrorist act and could also encourage states to better secure such materials and weapons. The Working Group also noted that nuclear forensics result would take some time to obtain and that neither internal coordination, nor international arrangements, nor the state of qualified personnel and needed equipment were currently enough to minimize the time needed to reach reliable results in an emergency such as would be caused by a nuclear detonation or the intercept of a weapon-size quantity of material. The Working Group assesses international cooperation to be crucial for forensics to work, since the material would likely come from inadequately documented foreign sources. In addition, international participation, if properly managed, could enhance the credibility of the deterrent effect of attribution. Finally the Working Group notes that the U.S. forensics capability involved a number of agencies and other groups that would have to cooperate rapidly in an emergency and that suitable exercises to ensure such cooperation were needed.
Hanson, Todd
2016-07-01
Here, the historical material culture produced by American Cold War nuclear weapons testing includes objects of scientific inquiry that can be generally categorized as being either ephemeral or enduring. Objects deemed to be ephemeral were of a less substantial nature, being impermanent and expendable in a nuclear test, while enduring objects were by nature more durable and long-lasting. Although all of these objects were ultimately subject to disappearance, the processes by which they were transformed, degraded, or destroyed prior to their disappearing differ. Drawing principally upon archaeological theory, this paper proposes a functional dichotomy for categorizing and studying the historicalmore » trajectories of nuclear weapons testing technoscience artifacts. In examining the transformation patterns of steel towers and concrete blockhouses in particular, it explores an associated loss of scientific method that accompanies a science object's disappearance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Todd
Here, the historical material culture produced by American Cold War nuclear weapons testing includes objects of scientific inquiry that can be generally categorized as being either ephemeral or enduring. Objects deemed to be ephemeral were of a less substantial nature, being impermanent and expendable in a nuclear test, while enduring objects were by nature more durable and long-lasting. Although all of these objects were ultimately subject to disappearance, the processes by which they were transformed, degraded, or destroyed prior to their disappearing differ. Drawing principally upon archaeological theory, this paper proposes a functional dichotomy for categorizing and studying the historicalmore » trajectories of nuclear weapons testing technoscience artifacts. In examining the transformation patterns of steel towers and concrete blockhouses in particular, it explores an associated loss of scientific method that accompanies a science object's disappearance.« less
Japan's anti-nuclear weapons policy misses its target, even in the war on terrorism.
DiFilippo, Anthony
2003-01-01
While actively working to promote the abolition of all nuclear weapons from the world since the end of the cold war, Japan's disarmament policies are not without problems. Promoting the elimination of nuclear weapons as Japan remains under the US nuclear umbrella creates a major credibility problem for Tokyo, since this decision maintains a Japanese deterrence policy at the same time that officials push for disarmament. Tokyo also advocates a gradual approach to the abolition of nuclear weapons, a decision that has had no effect on those countries that have been conducting sub-critical nuclear testing, nor stopped India and Pakistan from carrying out nuclear tests. Consistent with Article 9 of the Constitution, the Japanese war-renouncing constitutional clause, Tokyo toughened Japan's sizeable Official Development Assistance (ODA) programme in the early 1990s. Because of the anti-military guidelines included in Japan's ODA programme, Tokyo stopped new grant and loan aid to India and Pakistan in 1998 after these countries conducted nuclear tests. However, because of the criticism Japan faced from its failure to participate in the 1991 Gulf War, Tokyo has been seeking a new Japanese role in international security during the post-cold war period. Deepening its commitment to the security alliance with the US, Tokyo has become increasingly influenced by Washington's global polices, including the American war on terrorism. After Washington decided that Pakistan would be a key player in the US war on terrorism, Tokyo restored grant and loan aid to both Islamabad and New Delhi, despite the unequivocal restrictions of Japan's ODA programme.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-15
... proliferation of nuclear, biological and chemical weapons and the means of delivering such weapons. That... November 6, 2009, Continuation of Emergency Regarding Weapons of Mass Destruction, with citation to the... practice and procedure, Chemicals, Exports, Foreign trade, Reporting and recordkeeping requirements. 0...
Department of Energy Efforts to Promote Universal Adherence to the IAEA Additional Protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killinger, Mark H.; Hansen, Linda H.; Kovacic, Don N.
2009-10-06
Entry-into-force of the U.S. Additional Protocol (AP) in January 2009 continues to demonstrate the ongoing commitment by the United States to promote universal adherence to the AP. The AP is a critical tool for improving the International Atomic Energy Agency’s (IAEA) capabilities to detect undeclared activities that indicate a clandestine nuclear weapons program. This is because States Parties are required to provide information about, and access to, nuclear fuel cycle activities beyond their traditional safeguards reporting requirements. As part of the U.S. AP Implementation Act and Senate Resolution of Ratification, the Administration is required to report annually to Congress onmore » measures taken to achieve the adoption of the AP in non-nuclear weapon states, as well as assistance to the IAEA to promote the effective implementation of APs in those states. A key U.S. effort in this area is being managed by the International Nuclear Safeguards and Engagement Program (INSEP) of the U.S. Department of Energy (DOE). Through new and existing bilateral cooperation agreements, INSEP has initiated technical assistance projects for AP implementation with selected non-weapon states. States with which INSEP is currently cooperating include Vietnam and Thailand, with Indonesia, Algeria, Morocco, and other countries as possible future collaborators in the area of AP implementation. The INSEP collaborative model begins with a joint assessment with our partners to identify specific needs they may have regarding entering the AP into force and any impediments to successful implementation. An action plan is then developed detailing and prioritizing the necessary joint activities. Such assistance may include: advice on developing legal frameworks and regulatory documents; workshops to promote understanding of AP requirements; training to determine possible declarable activities; assistance in developing a system to collect and submit declarations; performing industry outreach to raise awareness; guidance for reporting export and manufacturing of “especially designed or prepared” equipment listed in AP Annex I/Annex II; and lastly, developing indigenous capabilities to sustain AP implementation. INSEP also coordinates with the IAEA to ensure the harmonization of the assistance provided by DOE and the IAEA. This paper describes current efforts and future plans for AP international implementation support.« less
Institutional plan FY 1999--FY 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-01
Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified themore » need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.« less
NASA Technical Reports Server (NTRS)
Miernik, Janie
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.
Nuclear weapons in the 1980s: MAD versus NUTS. Mutual hostage relationship of the superpowers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeny, S.M. Jr.; Panofsky, W.K.H.
Critics of the strategic relationship of Mutual Assured Destruction (MAD) developed during the 1960s claim it immorally holds entire civilian populations hostage. Some advocate the Nuclear Utilization Target Selection (NUTS) concept, while others argue for a defense-oriented military posture. The interrelationships of these concepts are examined against the background of stockpiled nuclear weapons capable of massive devastation, the technical limits to defense, and the uncertainty that a nuclear war could be controlled. The evidence shows that a MAD world prevails despite NUTS proposals, which may have increased the danger by giving nuclear war the illusion of acceptability. (DCK)
Reviews of the Comprehensive Nuclear-Test-Ban Treaty and U.S. security
NASA Astrophysics Data System (ADS)
Jeanloz, Raymond
2017-11-01
Reviews of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) by the National Academy of Sciences concluded that the United States has the technical expertise and physical means to i) maintain a safe, secure and reliable nuclear-weapons stockpile without nuclear-explosion testing, and ii) effectively monitor global compliance once the Treaty enters into force. Moreover, the CTBT is judged to help constrain proliferation of nuclear-weapons technology, so it is considered favorable to U.S. security. Review of developments since the studies were published, in 2002 and 2012, show that the study conclusions remain valid and that technical capabilities are better than anticipated.
Nuclear Successor States of the Soviet Union, Nuclear Weapon and Sensitive Export Status Report
1994-05-01
EXPORT STATUS REPORT S I VIE T U N il] N A COOPERATIVE PROJECT OF THE CARNEGIE ENDOWMENT FOR INTERNATIONAL PEACE, WASHINGTON, DC, AND MOSCOW NUMBER 1...Launch Periodic Report on Nuclear Successor States Leonard S . Spector of the Carnegie Endowment for N U C L E A R International Peace and William C...range, translated in FBIS-SOV-92-232, December 2, 1992, p. 22. 5 Table I-C. -- N -Weapon Systems and Warheads on Territory, con’t. S
2013-01-01
powers armed with nuclear weapons may employ those weapons...balance of power is reversed. Now U.S. military forces are the most formidable, and potential...the balance of power helps explain why the United States now seeks to
Nuclear weapons tests and short-term effects on atmospheric ozone
NASA Technical Reports Server (NTRS)
Miller, A. J.; Krueger, A. J.; Prabhakara, C.; Hilsenrath, E.
1974-01-01
Observations made when Nimbus 4 passed over a nuclear cloud about three hours after the bomb exploded are presented. Infrared and BUV measurements indicated that the atmospheric ozone level in the area of cloud was significantly less than in areas directly north and south of the cloud. It is noted, however, that it is not possible to state definitively that the ozone depletion was caused by nitrogen oxides released in the nuclear weapons test, and that further observations must be made to clarify the situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-29
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
None
2018-01-16
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
Nuclear Coexistence: Rethinking U.S. Policy to Promote Stability in an Era of Proliferation
1994-04-01
The Spread of Nuclear Weapons 1989 -90 (Boulder: Westview Press, 1990). 22. See William C. Martel and Steven E. Miller, "Controlling Borders and Nuclear...Security, Fall 1989 , Vol. 14, No. 2, pp. 140-41, for J. Robert Oppenheimer’s concerns about the dangers of the develop- ment of thermonuclear weapons. 4...Paradox of Technology," International Security, Vol. 14, No. 2 (Fall 1989 ), pp. 198-202. 6. Some argue that the U.S. strategy has relatively little
1993-07-01
General requirements and standards governing safety were based on the FCTC "Safety and Health Compliance Guide for Underground and Nuclear Effects Tests...Defense (DOD)-sponsored underground nuclear tests were conducted from 23 September 1982 through 6 April 1985 to study weapons effects . All six were...weapons- related or effects purposes, and 33 were safety experiments. An additional 24 nuclear experiments were conducted from December 1954 to February
The radiated electromagnetic field from collimated gamma rays and electron beams in air
NASA Astrophysics Data System (ADS)
Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.
1980-12-01
Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.
NASA Astrophysics Data System (ADS)
Hughes, Jeff
2009-11-01
There is no shortage of popular histories of the creation of nuclear weapons. From the mid-1940s to the present day, scientists, historians and others have tried to explain the genesis of these awesome and awful weapons, and the reasons for their use against Japan at the end of the Second World War. From the official 1945 Smyth Report on the Manhattan Project to Richard Rhodes' 1986 Pulitzer Prize-winning The Making of the Atomic Bomb and beyond, the history of nuclear weapons and the Cold War continues to exert a powerful and sometimes macabre fascination for those interested in the history of modern science.
The United States Army Medical Department Journal. October-December 2007
2007-12-01
weapons assembly/disassembly and functions check; individual chemical, biological , radiological, nuclear and high-explosive defense; and the operation of...the 40 Army Warrior Tasks and 11 Battle Drills, to include advanced land navigation training; weapons familiarization and qualification; convoy...operations; chemical, biological , radiological, nuclear and high- explosive defense; and squad and platoon-patrol exercises in both woodland and urban
Argumentation in the Canadian House of Commons on the Issue of Nuclear Weapons for Canada.
ERIC Educational Resources Information Center
Jones, John Alfred
The Cuban missile crisis of October 1962 forced the Canadian House of Commons to consider whether Canadian forces in NORAD and NATO were effective without nuclear warheads on special weapons systems. This paper provides an overview of the debates and their milieu, identifies the issues involved, and analyzes the effects of the argumentation. The…
The Challenge for Arms Control Verification in the Post-New START World
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuest, C R
Nuclear weapon arms control treaty verification is a key aspect of any agreement between signatories to establish that the terms and conditions spelled out in the treaty are being met. Historically, arms control negotiations have focused more on the rules and protocols for reducing the numbers of warheads and delivery systems - sometimes resorting to complex and arcane procedures for counting forces - in an attempt to address perceived or real imbalances in a nation's strategic posture that could lead to instability. Verification procedures are generally defined in arms control treaties and supporting documents and tend to focus on technicalmore » means and measures designed to ensure that a country is following the terms of the treaty and that it is not liable to engage in deception or outright cheating in an attempt to circumvent the spirit and the letter of the agreement. As the Obama Administration implements the articles, terms, and conditions of the recently ratified and entered-into-force New START treaty, there are already efforts within and outside of government to move well below the specified New START levels of 1550 warheads, 700 deployed strategic delivery vehicles, and 800 deployed and nondeployed strategic launchers (Inter-Continental Ballistic Missile (ICBM) silos, Submarine-Launched Ballistic Missile (SLBM) tubes on submarines, and bombers). A number of articles and opinion pieces have appeared that advocate for significantly deeper cuts in the U.S. nuclear stockpile, with some suggesting that unilateral reductions on the part of the U.S. would help coax Russia and others to follow our lead. Papers and studies prepared for the U.S. Department of Defense and at the U.S. Air War College have also been published, suggesting that nuclear forces totaling no more than about 300 warheads would be sufficient to meet U.S. national security and deterrence needs. (Davis 2011, Schaub and Forsyth 2010) Recent articles by James M. Acton and others suggest that the prospects for maintaining U.S. security and minimizing the chances of nuclear war, while deliberately reducing stockpiles to a few hundred weapons, is possible but not without risk. While the question of the appropriate level of cuts to U.S. nuclear forces is being actively debated, a key issue continues to be whether verification procedures are strong enough to ensure that both the U.S. and Russia are fulfilling their obligations under the current New Start treaty and any future arms reduction treaties. A recent opinion piece by Henry Kissinger and Brent Scowcroft (2012) raised a number of issues with respect to governing a policy to enhance strategic stability, including: in deciding on force levels and lower numbers, verification is crucial. Particularly important is a determination of what level of uncertainty threatens the calculation of stability. At present, that level is well within the capabilities of the existing verification systems. We must be certain that projected levels maintain - and when possible, reinforce - that confidence. The strengths and weaknesses of the New START verification regime should inform and give rise to stronger regimes for future arms control agreements. These future arms control agreements will likely need to include other nuclear weapons states and so any verification regime will need to be acceptable to all parties. Currently, China is considered the most challenging party to include in any future arms control agreement and China's willingness to enter into verification regimes such as those implemented in New START may only be possible when it feels it has reached nuclear parity with the U.S. and Russia. Similarly, in keeping with its goals of reaching peer status with the U.S. and Russia, Frieman (2004) suggests that China would be more willing to accept internationally accepted and applied verification regimes rather than bilateral ones. The current verification protocols specified in the New START treaty are considered as the baseline case and are contrasted with possible alternative verification protocols that could be effective in a post-New START era of significant reductions in U.S. and other countries nuclear stockpiles. Of particular concern is the possibility of deception and breakout when declared and observed numbers of weapons are below the level considered to pose an existential threat to the U.S. In a regime of very low stockpile numbers, 'traditional' verification protocols as currently embodied in the New START treaty might prove less than adequate. I introduce and discuss a number of issues that need to be considered in future verification protocols, many of which do not have immediate solutions and so require further study. I also discuss alternatives and enhancements to traditional verification protocols, for example, confidence building measures such as burden sharing against the common threat of weapon of mass destruction (WMD) terrorism, joint research and development.« less
History of U.S. Nuclear Weapons Doctrine and a Path Forward
NASA Astrophysics Data System (ADS)
Chyba, Christopher
2007-04-01
During the Cold War, the United States considered a number of approaches for living in a world with nuclear weapons, including disarmament, preventive war, the incorporation of nuclear weapons into military strategy, passive and active defense, and deterrence. With the failure of early approaches to disarmament, and the rejection of preventive war against the Soviet Union (and later, China), deterrence became central to key nuclear relationships, though arms control continued to play an important role. The nuclear nonproliferation treaty made preventing the further spread of nuclear weapons another central component of U.S. policy. The Bush Administration has tried to devise a new policy for the post-Cold War period. Their approach has three salient pillars. First, it is characterized by an overall skepticism toward multilateral agreements, on the grounds that bad actors will not obey them, that agreements can lead to a false sense of security, and that such agreements are too often a way for the Lilliputians of the world to tie down Gulliver. The March 2005 U.S. National Defense Strategy declared that U.S. strength ``will continue to be challenged by those who employ a strategy of the weak, using international fora, judicial processes and terrorism.'' Second, the Bush Administration declared its intention to maintain a military dominance so great that other states simply would not try to catch up. The 2002 National Security Strategy states that ``Our forces will be strong enough to dissuade potential adversaries from pursuing a military build-up in hopes of surpassing, or equaling, the power of the United States.'' Third, the 2002 National Security Strategy (reaffirmed by the 2006 National Security Strategy) moved preventive war (which the strategies called ``preemptive war'') to a central position, rather than deterrence and nonproliferation. In part this was because of the claim that certain ``rogue'' states, and terrorist groups, were not deterrable. This talk will sketch this history, discuss the approach of the Bush Administration in more detail and assess its successes and failures, and suggest the lines of a new approach to U.S. nuclear weapons policy for the coming decades. This approach will follow that outlined in George Bunn and Christopher Chyba (eds.), ``U.S. Nuclear Weapons Policy: Confronting Today's Threats'' (Brookings, 2006, 340 pp.).
NASA Astrophysics Data System (ADS)
Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.
2006-11-01
We assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. Our analysis shows that, per kiloton of yield, low yield weapons can produce 100 times as many fatalities and 100 times as much smoke from fires as high-yield weapons, if they are targeted at city centers. A single "small'' nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce'' nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2006) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales.We also anticipate substantial perturbations of global ozone. While there are many uncertainties in the predictions we make here, the principal unknowns are the type and scale of conflict that might occur. The scope and severity of the hazards identified pose a significant threat to the global community. They deserve careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread public debate.
Comprehensive Glossary of Nuclear Science
NASA Astrophysics Data System (ADS)
Langlands, Tracy; Stone, Craig; Meyer, Richard
2001-10-01
We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.
Applying Science and Technology to Combat WMD Terrorism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuest, C R; Werne, R W; Colston, B W
2006-05-04
Lawrence Livermore National Laboratory (LLNL) is developing and fielding advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical, biological, radiological, nuclear, and explosive (CBRNE) weapons. The science, technology, and integrated systems we provide are informed by and developed with key partners and end users. LLNL's long-standing role as one of the two principle U.S. nuclear weapons design laboratories has led to significant resident expertise for health effects of exposure to radiation, radiation detection technologies, characterization of radioisotopes, and assessment and response capabilities for terrorist nuclear weapons use. This papermore » provides brief overviews of a number of technologies developed at LLNL that are being used to address national security needs to confront the growing threats of CBRNE terrorism.« less
Applying science and technology to combat WMD terrorism
NASA Astrophysics Data System (ADS)
Wuest, Craig R.; Werne, Roger W.; Colston, Billy W.; Hartmann-Siantar, Christine L.
2006-05-01
Lawrence Livermore National Laboratory (LLNL) is developing and fielding advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical, biological, radiological, nuclear, and explosive (CBRNE) weapons. The science, technology, and integrated systems we provide are informed by and developed with key partners and end users. LLNL's long-standing role as one of the two principle U.S. nuclear weapons design laboratories has led to significant resident expertise for health effects of exposure to radiation, radiation detection technologies, characterization of radioisotopes, and assessment and response capabilities for terrorist nuclear weapons use. This paper provides brief overviews of a number of technologies developed at LLNL that are being used to address national security needs to confront the growing threats of CBRNE terrorism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horton, K.K.; Eubank, B.F.; Brady, W.J.
1984-10-01
This report is a personnel-oriented history of DOD participation in underground nuclear weapons testing during Operations FLINTLOCK and LATCHKEY, test events RED HOT, PIN STRIPE, DISCUS THROWER, PILE DRIVER, DOUBLE PLAY, NEW POINT, and MIDI MIST, from 5 March 1966 to 26 June 1967. It is the second in a series of historical reports which will include all DOD underground nuclear weapons tests and all DOE underground nuclear weapons tests with significant DOD participation from 1962 forward. In addition to these historical volumes, a later restricted distribution volume will identify all DOD participants (military, civilian, and civilian contractors) and willmore » list their radiation dosimetry data.« less
Actinide Waste Forms and Radiation Effects
NASA Astrophysics Data System (ADS)
Ewing, R. C.; Weber, W. J.
Over the past few decades, many studies of actinides in glasses and ceramics have been conducted that have contributed substantially to the increased understanding of actinide incorporation in solids and radiation effects due to actinide decay. These studies have included fundamental research on actinides in solids and applied research and development related to the immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex, and the immobilization of weapons-grade plutonium as a result of disarmament activities. Thus, the immobilization of actinides has become a pressing issue for the twenty-first century (Ewing, 1999), and plutonium immobilization, in particular, has received considerable attention in the USA (Muller et al., 2002; Muller and Weber, 2001). The investigation of actinides and