Sample records for future ocean acidification

  1. Benzo[a]pyrene exposure under future ocean acidification scenarios weakens the immune responses of blood clam, Tegillarca granosa.

    PubMed

    Su, Wenhao; Zha, Shanjie; Wang, Yichen; Shi, Wei; Xiao, Guoqiang; Chai, Xueliang; Wu, Hongxi; Liu, Guangxu

    2017-04-01

    Persistent organic pollutants (POPs) are known to converge into the ocean and accumulate in the sediment, posing great threats to marine organisms such as the sessile bottom burrowing bivalves. However, the immune toxicity of POPs, such as B[a]P, under future ocean acidification scenarios remains poorly understood to date. Therefore, in the present study, the impacts of B[a]P exposure on the immune responses of a bivalve species, Tegillarca granosa, under present and future ocean acidification scenarios were investigated. Results obtained revealed an increased immune toxicity of B[a]P under future ocean acidification scenarios in terms of reduced THC, altered haemocyte composition, and hampered phagocytosis, which may attribute to the synergetic effects of B[a]P and ocean acidification. In addition, the gene expressions of pathogen pattern recognition receptors (TLR1, TLR2, TLR4, TLR6), pathway mediators (TRAF6, TAK1, TAB2, IKKα and Myd88), and effectors (NF-ĸB) of the important immune related pathways were significantly down-regulated upon exposure to B[a]P under future ocean acidification scenarios. Results of the present study suggested an increased immune toxicity of B[a]P under future ocean acidification scenarios, which will significantly hamper the immune responses of T. granosa and subsequently render individuals more susceptible to pathogens challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    PubMed

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  3. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas

    NASA Astrophysics Data System (ADS)

    Havenhand, J. N.; Schlegel, P.

    2009-04-01

    An increasing number of studies are now reporting the effects of ocean acidification on a broad range of marine species, processes and systems. Many of these are investigating the sensitive early life-history stages that several major reviews have highlighted as being potentially most susceptible to ocean acidification. Nonetheless there remain few investigations of the effects of ocean acidification on the very earliest, and critical, process of fertilization, and still fewer that have investigated levels of ocean acidification relevant for the coming century. Here we report the effects of near-future levels of ocean acidification (≍-0.35 pH unit change) on sperm swimming speed, sperm motility, and fertilization kinetics in a population of the Pacific oyster Crassostrea gigas from western Sweden. We found no significant effect of ocean acidification - a result that was well supported by power analysis. Similar findings from Japan suggest that this may be a globally robust result, and we emphasise the need for experiments on multiple populations from throughout a species' range. We also discuss the importance of sound experimental design and power analysis in accurate interpretation of non-significant results.

  4. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas

    NASA Astrophysics Data System (ADS)

    Havenhand, J. N.; Schlegel, P.

    2009-12-01

    An increasing number of studies are now reporting the effects of ocean acidification on a broad range of marine species, processes and systems. Many of these are investigating the sensitive early life-history stages that several major reviews have highlighted as being potentially most susceptible to ocean acidification. Nonetheless there remain few investigations of the effects of ocean acidification on the very earliest, and critical, process of fertilization, and still fewer that have investigated levels of ocean acidification relevant for the coming century. Here we report the effects of near-future levels of ocean acidification (≍-0.35 pH unit change) on sperm swimming speed, sperm motility, and fertilization kinetics in a population of the Pacific oyster Crassostrea gigas from western Sweden. We found no significant effect of ocean acidification - a result that was well-supported by power analysis. Similar findings from Japan suggest that this may be a globally robust result, and we emphasise the need for experiments on multiple populations from throughout a species' range. We also discuss the importance of sound experimental design and power analysis in meaningful interpretation of non-significant results.

  5. The geological record of ocean acidification.

    PubMed

    Hönisch, Bärbel; Ridgwell, Andy; Schmidt, Daniela N; Thomas, Ellen; Gibbs, Samantha J; Sluijs, Appy; Zeebe, Richard; Kump, Lee; Martindale, Rowan C; Greene, Sarah E; Kiessling, Wolfgang; Ries, Justin; Zachos, James C; Royer, Dana L; Barker, Stephen; Marchitto, Thomas M; Moyer, Ryan; Pelejero, Carles; Ziveri, Patrizia; Foster, Gavin L; Williams, Branwen

    2012-03-02

    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.

  6. How ocean acidification can benefit calcifiers.

    PubMed

    Connell, Sean D; Doubleday, Zoë A; Hamlyn, Sarah B; Foster, Nicole R; Harley, Christopher D G; Helmuth, Brian; Kelaher, Brendan P; Nagelkerken, Ivan; Sarà, Gianluca; Russell, Bayden D

    2017-02-06

    Reduction in seawater pH due to rising levels of anthropogenic carbon dioxide (CO 2 ) in the world's oceans is a major force set to shape the future of marine ecosystems and the ecological services they provide [1,2]. In particular, ocean acidification is predicted to have a detrimental effect on the physiology of calcifying organisms [3]. Yet, the indirect effects of ocean acidification on calcifying organisms, which may counter or exacerbate direct effects, is uncertain. Using volcanic CO 2 vents, we tested the indirect effects of ocean acidification on a calcifying herbivore (gastropod) within the natural complexity of an ecological system. Contrary to predictions, the abundance of this calcifier was greater at vent sites (with near-future CO 2 levels). Furthermore, translocation experiments demonstrated that ocean acidification did not drive increases in gastropod abundance directly, but indirectly as a function of increased habitat and food (algal biomass). We conclude that the effect of ocean acidification on algae (primary producers) can have a strong, indirect positive influence on the abundance of some calcifying herbivores, which can overwhelm any direct negative effects. This finding points to the need to understand ecological processes that buffer the negative effects of environmental change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Laboratory simulation reveals significant impacts of ocean acidification on microbial community composition and host-pathogen interactions between the blood clam and Vibrio harveyi.

    PubMed

    Zha, Shanjie; Liu, Saixi; Su, Wenhao; Shi, Wei; Xiao, Guoqiang; Yan, Maocang; Liu, Guangxu

    2017-12-01

    It has been suggested that climate change may promote the outbreaks of diseases in the sea through altering the host susceptibility, the pathogen virulence, and the host-pathogen interaction. However, the impacts of ocean acidification (OA) on the pathogen components of bacterial community and the host-pathogen interaction of marine bivalves are still poorly understood. Therefore, 16S rRNA high-throughput sequencing and host-pathogen interaction analysis between blood clam (Tegillarca granosa) and Vibrio harveyi were conducted in the present study to gain a better understanding of the ecological impacts of ocean acidification. The results obtained revealed a significant impact of ocean acidification on the composition of microbial community at laboratory scale. Notably, the abundance of Vibrio, a major group of pathogens to many marine organisms, was significantly increased under ocean acidification condition. In addition, the survival rate and haemolytic activity of V. harveyi were significantly higher in the presence of haemolymph of OA treated T. granosa, indicating a compromised immunity of the clam and enhanced virulence of V. harveyi under future ocean acidification scenarios. Conclusively, the results obtained in this study suggest that future ocean acidification may increase the risk of Vibrio pathogen infection for marine bivalve species, such as blood clams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming

    PubMed Central

    2015-01-01

    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed. PMID:25945497

  9. An Integrated Assessment Model for Helping the United States Sea Scallop (Placopecten magellanicus) Fishery Plan Ahead for Ocean Acidification and Warming.

    PubMed

    Cooley, Sarah R; Rheuban, Jennie E; Hart, Deborah R; Luu, Victoria; Glover, David M; Hare, Jonathan A; Doney, Scott C

    2015-01-01

    Ocean acidification, the progressive change in ocean chemistry caused by uptake of atmospheric CO2, is likely to affect some marine resources negatively, including shellfish. The Atlantic sea scallop (Placopecten magellanicus) supports one of the most economically important single-species commercial fisheries in the United States. Careful management appears to be the most powerful short-term factor affecting scallop populations, but in the coming decades scallops will be increasingly influenced by global environmental changes such as ocean warming and ocean acidification. In this paper, we describe an integrated assessment model (IAM) that numerically simulates oceanographic, population dynamic, and socioeconomic relationships for the U.S. commercial sea scallop fishery. Our primary goal is to enrich resource management deliberations by offering both short- and long-term insight into the system and generating detailed policy-relevant information about the relative effects of ocean acidification, temperature rise, fishing pressure, and socioeconomic factors on the fishery using a simplified model system. Starting with relationships and data used now for sea scallop fishery management, the model adds socioeconomic decision making based on static economic theory and includes ocean biogeochemical change resulting from CO2 emissions. The model skillfully reproduces scallop population dynamics, market dynamics, and seawater carbonate chemistry since 2000. It indicates sea scallop harvests could decline substantially by 2050 under RCP 8.5 CO2 emissions and current harvest rules, assuming that ocean acidification affects P. magellanicus by decreasing recruitment and slowing growth, and that ocean warming increases growth. Future work will explore different economic and management scenarios and test how potential impacts of ocean acidification on other scallop biological parameters may influence the social-ecological system. Future empirical work on the effect of ocean acidification on sea scallops is also needed.

  10. Ocean acidification: the other CO2 problem.

    PubMed

    Doney, Scott C; Fabry, Victoria J; Feely, Richard A; Kleypas, Joan A

    2009-01-01

    Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

  11. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification

    PubMed Central

    Rossi, Tullio; Nagelkerken, Ivan; Connell, Sean D.

    2016-01-01

    The dispersal of larvae and their settlement to suitable habitat is fundamental to the replenishment of marine populations and the communities in which they live. Sound plays an important role in this process because for larvae of various species, it acts as an orientational cue towards suitable settlement habitat. Because marine sounds are largely of biological origin, they not only carry information about the location of potential habitat, but also information about the quality of habitat. While ocean acidification is known to affect a wide range of marine organisms and processes, its effect on marine soundscapes and its reception by navigating oceanic larvae remains unknown. Here, we show that ocean acidification causes a switch in role of present-day soundscapes from attractor to repellent in the auditory preferences in a temperate larval fish. Using natural CO2 vents as analogues of future ocean conditions, we further reveal that ocean acidification can impact marine soundscapes by profoundly diminishing their biological sound production. An altered soundscape poorer in biological cues indirectly penalizes oceanic larvae at settlement stage because both control and CO2-treated fish larvae showed lack of any response to such future soundscapes. These indirect and direct effects of ocean acidification put at risk the complex processes of larval dispersal and settlement. PMID:26763221

  12. Seagrass ecophysiological performance under ocean warming and acidification.

    PubMed

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  13. Seagrass ecophysiological performance under ocean warming and acidification

    PubMed Central

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R.; Rosa, Inês C.; Grilo, Tiago F.; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-01-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, Fv/Fm) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and Fv/Fm (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming. PMID:28145531

  14. Intraspecific variations in responses to ocean acidification in two branching coral species.

    PubMed

    Sekizawa, Ayami; Uechi, Hikaru; Iguchi, Akira; Nakamura, Takashi; Kumagai, Naoki H; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2017-09-15

    Ocean acidification is widely recognised to have a negative impact on marine calcifying organisms by reducing calcifications, but controversy remains over whether such organisms could cope with ocean acidification within a range of phenotypic plasticity and/or adapt to future acidifying ocean. We performed a laboratory rearing experiment using clonal fragments of the common branching corals Montipora digitata and Porites cylindrica under control and acidified seawater (lower pH) conditions (approximately 400 and 900μatm pCO 2 , respectively) and evaluated the intraspecific variations in their responses to ocean acidification. Intra- and interspecific variations in calcification and photosynthetic efficiency were evident according to both pCO 2 conditions and colony, indicating that responses to acidification may be individually variable at the colony level. Our results suggest that some corals may cope with ocean acidification within their present genotypic composition by adaptation through phenotypic plasticity, while others may be placed under selective pressures resulting in population alteration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.

    PubMed

    Evans, Tyler G; Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Pespeni, Melissa H; Chan, Francis; Menge, Bruce A; Gaylord, Brian; Hill, Tessa M; Russell, Ann D; Palumbi, Stephen R; Sanford, Eric; Hofmann, Gretchen E

    2015-07-01

    Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    PubMed

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  17. Lost at sea: ocean acidification undermines larval fish orientation via altered hearing and marine soundscape modification.

    PubMed

    Rossi, Tullio; Nagelkerken, Ivan; Pistevos, Jennifer C A; Connell, Sean D

    2016-01-01

    The dispersal of larvae and their settlement to suitable habitat is fundamental to the replenishment of marine populations and the communities in which they live. Sound plays an important role in this process because for larvae of various species, it acts as an orientational cue towards suitable settlement habitat. Because marine sounds are largely of biological origin, they not only carry information about the location of potential habitat, but also information about the quality of habitat. While ocean acidification is known to affect a wide range of marine organisms and processes, its effect on marine soundscapes and its reception by navigating oceanic larvae remains unknown. Here, we show that ocean acidification causes a switch in role of present-day soundscapes from attractor to repellent in the auditory preferences in a temperate larval fish. Using natural CO2 vents as analogues of future ocean conditions, we further reveal that ocean acidification can impact marine soundscapes by profoundly diminishing their biological sound production. An altered soundscape poorer in biological cues indirectly penalizes oceanic larvae at settlement stage because both control and CO2-treated fish larvae showed lack of any response to such future soundscapes. These indirect and direct effects of ocean acidification put at risk the complex processes of larval dispersal and settlement. © 2016 The Author(s).

  18. Calcification responses of symbiotic and aposymbiotic corals to near-future levels of ocean acidification

    NASA Astrophysics Data System (ADS)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-11-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (± 5% pCO2), to assess the impact of ocean acidification on the calcification of recently settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of ~100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that: (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e., broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  19. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments

    PubMed Central

    Kapsenberg, Lydia; Kelley, Amanda L.; Shaw, Emily C.; Martz, Todd R.; Hofmann, Gretchen E.

    2015-01-01

    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

  20. Symbiosis increases coral tolerance to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-04-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2), to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e. broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  1. Towards improved socio-economic assessments of ocean acidification's impacts.

    PubMed

    Hilmi, Nathalie; Allemand, Denis; Dupont, Sam; Safa, Alain; Haraldsson, Gunnar; Nunes, Paulo A L D; Moore, Chris; Hattam, Caroline; Reynaud, Stéphanie; Hall-Spencer, Jason M; Fine, Maoz; Turley, Carol; Jeffree, Ross; Orr, James; Munday, Philip L; Cooley, Sarah R

    2013-01-01

    Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research.

  2. Short-term pain for long-term gain: seagrass communities increase short-term extremes and long-term offset of CO2 under future ocean acidification

    EPA Science Inventory

    The impacts of ocean acidification in nearshore estuarine environments remain poorly characterized, despite these areas being some of the most ecologically, economically, and culturally important habitats in the global ocean. Here, we quantify how rising atmospheric CO2 from 1765...

  3. Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories.

    PubMed

    Byrne, Maria; Przeslawski, Rachel

    2013-10-01

    Benthic marine invertebrates live in a multistressor world where stressor levels are, and will continue to be, exacerbated by global warming and increased atmospheric carbon dioxide. These changes are causing the oceans to warm, decrease in pH, become hypercapnic, and to become less saturated in carbonate minerals. These stressors have strong impacts on biological processes, but little is known about their combined effects on the development of marine invertebrates. Increasing temperature has a stimulatory effect on development, whereas hypercapnia can depress developmental processes. The pH, pCO2, and CaCO3 of seawater change simultaneously with temperature, challenging our ability to predict future outcomes for marine biota. The need to consider both warming and acidification is reflected in the recent increase in cross-factorial studies of the effects of these stressors on development of marine invertebrates. The outcomes and trends in these studies are synthesized here. Based on this compilation, significant additive or antagonistic effects of warming and acidification of the ocean are common (16 of 20 species studied), and synergistic negative effects also are reported. Fertilization can be robust to near-future warming and acidification, depending on the male-female mating pair. Although larvae and juveniles of some species tolerate near-future levels of warming and acidification (+2°C/pH 7.8), projected far-future conditions (ca. ≥4°C/ ≤pH 7.6) are widely deleterious, with a reduction in the size and survival of larvae. It appears that larvae that calcify are sensitive both to warming and acidification, whereas those that do not calcify are more sensitive to warming. Different sensitivities of life-history stages and species have implications for persistence and community function in a changing ocean. Some species are more resilient than others and may be potential "winners" in the climate-change stakes. As the ocean will change more gradually over coming decades than in "future shock" perturbation investigations, it is likely that some species, particularly those with short generation times, may be able to tolerate near-future oceanic change through acclimatization and/or adaption.

  4. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification.

    PubMed

    Chen, Shanwen; Gao, Kunshan; Beardall, John

    2015-02-01

    Both ocean acidification and viral infection bring about changes in marine phytoplankton physiological activities and community composition. However, little information is available on how the relationship between phytoplankton and viruses may be affected by ocean acidification and what impacts this might have on photosynthesis-driven marine biological CO2 pump. Here, we show that when the harmful bloom alga Phaeocystis globosa is infected with viruses under future ocean conditions, its photosynthetic performance further decreased and cells became more susceptible to stressful light levels, showing enhanced photoinhibition and reduced carbon fixation, up-regulation of mitochondrial respiration and decreased virus burst size. Our results indicate that ocean acidification exacerbates the impacts of viral attack on P. globosa, which implies that, while ocean acidification directly influences marine primary producers, it may also affect them indirectly by altering their relationship with viruses. Therefore, viruses as a biotic stressor need to be invoked when considering the overall impacts of climate change on marine productivity and carbon sequestration. © 2014 John Wiley & Sons Ltd.

  5. Carbon-climate feedbacks accelerate ocean acidification

    NASA Astrophysics Data System (ADS)

    Matear, Richard J.; Lenton, Andrew

    2018-03-01

    Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al. 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future ocean acidification trajectory. Here, we use the CO2 emissions scenarios from four representative concentration pathways (RCPs) with an Earth system model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of undersaturated aragonite conditions in the Southern and Arctic oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under the high-emissions scenarios (RCP8.5 and RCP6), the carbon-climate feedbacks advance the onset of surface water under saturation and the decline in suitable coral reef habitat by a decade or more. The impacts of the carbon-climate feedbacks are most significant for the medium- (RCP4.5) and low-emissions (RCP2.6) scenarios. For the RCP4.5 scenario, by 2100 the carbon-climate feedbacks nearly double the area of surface water undersaturated with respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For the RCP2.6 scenario, by 2100 the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of undersaturated surface water by 20 %. The sensitivity of ocean acidification to the carbon-climate feedbacks in the low to medium emission scenarios is important because recent CO2 emission reduction commitments are trying to transition emissions to such a scenario. Our study highlights the need to better characterise the carbon-climate feedbacks and ensure we do not underestimate the projected ocean acidification.

  6. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions

    PubMed Central

    deVries, Maya S.; Webb, Summer J.; Tu, Jenny; Cory, Esther; Morgan, Victoria; Sah, Robert L.; Deheyn, Dimitri D.; Taylor, Jennifer R. A.

    2016-01-01

    Calcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp’s raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors. We examined oxidative stress and exoskeleton structure, mineral content, and mechanical properties of the raptorial appendage and the carapace under long-term ocean acidification and warming conditions. The predatory appendage had significantly higher % Mg under ocean acidification conditions, while oxidative stress levels as well as the % Ca and mechanical properties of the appendage remained unchanged. Thus, mantis shrimp tolerate expanded ranges of pH and temperature without experiencing oxidative stress or functional changes to their weapons. Our findings suggest that these powerful predators will not be hindered under future ocean conditions. PMID:27974830

  7. Evolutionary change during experimental ocean acidification

    PubMed Central

    Pespeni, Melissa H.; Sanford, Eric; Gaylord, Brian; Hill, Tessa M.; Hosfelt, Jessica D.; Jaris, Hannah K.; LaVigne, Michèle; Lenz, Elizabeth A.; Russell, Ann D.; Young, Megan K.; Palumbi, Stephen R.

    2013-01-01

    Rising atmospheric carbon dioxide (CO2) conditions are driving unprecedented changes in seawater chemistry, resulting in reduced pH and carbonate ion concentrations in the Earth’s oceans. This ocean acidification has negative but variable impacts on individual performance in many marine species. However, little is known about the adaptive capacity of species to respond to an acidified ocean, and, as a result, predictions regarding future ecosystem responses remain incomplete. Here we demonstrate that ocean acidification generates striking patterns of genome-wide selection in purple sea urchins (Strongylocentrotus purpuratus) cultured under different CO2 levels. We examined genetic change at 19,493 loci in larvae from seven adult populations cultured under realistic future CO2 levels. Although larval development and morphology showed little response to elevated CO2, we found substantial allelic change in 40 functional classes of proteins involving hundreds of loci. Pronounced genetic changes, including excess amino acid replacements, were detected in all populations and occurred in genes for biomineralization, lipid metabolism, and ion homeostasis—gene classes that build skeletons and interact in pH regulation. Such genetic change represents a neglected and important impact of ocean acidification that may influence populations that show few outward signs of response to acidification. Our results demonstrate the capacity for rapid evolution in the face of ocean acidification and show that standing genetic variation could be a reservoir of resilience to climate change in this coastal upwelling ecosystem. However, effective response to strong natural selection demands large population sizes and may be limited in species impacted by other environmental stressors. PMID:23569232

  8. Near-future ocean acidification enhances the feeding rate and development of the herbivorous juveniles of the crown-of-thorns starfish, Acanthaster planci

    NASA Astrophysics Data System (ADS)

    Kamya, Pamela Z.; Byrne, Maria; Graba-Landry, Alexia; Dworjanyn, Symon A.

    2016-12-01

    Population outbreaks of the corallivorous crown-of-thorns starfish, Acanthaster planci, are a major contributor to the decline in coral reef across the Indo-Pacific. The success of A. planci and other reef species in a changing ocean will be influenced by juvenile performance because the naturally high mortality experienced at this sensitive life history stage maybe exacerbated by ocean warming and acidification. We investigated the effects of increased temperature and acidification on growth of newly metamorphosed juvenile A. planci and their feeding rates on crustose coralline algae (CCA) during the initial herbivorous phase of their life history. The juveniles were exposed to three temperature (26, 28, 30 °C) and three pH (NIST scale: 8.1, 7.8, 7.6) levels in a flow-through cross-factorial experiment. There were positive but independent effects of warming and acidification on juvenile growth and feeding. Early juveniles were highly tolerant to moderate increases in temperature (+2 °C above ambient) with the highest growth at 30 °C. Growth and feeding rates of A. planci on CCA were highest at pH 7.6. Thus, ocean warming and acidification may enhance the success of A. planci juveniles. In contrast to its coral prey, at this vulnerable developmental stage, A. planci appears to be highly resilient to future ocean change. Success of juveniles in a future ocean may have carry-over effects into the coral-eating life stage, increasing the threat to coral reef systems.

  9. Ocean acidification alters predator behaviour and reduces predation rate.

    PubMed

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  10. Ocean acidification alters predator behaviour and reduces predation rate

    PubMed Central

    Fields, Jennifer B.; Munday, Philip L.

    2017-01-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO2) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus. Projected near-future seawater CO2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min−1) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO2 reduced predation rate during predator–prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator–prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator–prey relationship are altered by elevated CO2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. PMID:28148828

  11. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.

    PubMed

    Garrard, Samantha L; Beaumont, Nicola J

    2014-09-15

    Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    PubMed

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  13. Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum.

    PubMed

    Hu, Marian; Tseng, Yung-Che; Su, Yi-Hsien; Lein, Etienne; Lee, Hae-Gyeong; Lee, Jay-Ron; Dupont, Sam; Stumpp, Meike

    2017-10-11

    The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems. Gastric pH regulation upon experimental ocean acidification was compared in six species of the superphylum Ambulacraria. We observed a strong correlation between sensitivity to ocean acidification and the ability to regulate gut pH. Surprisingly, species with tightly regulated gastric pH were more sensitive to ocean acidification. This study provides evidence that strict maintenance of highly alkaline conditions in the larval gut of Ambulacraria early life stages may dictate their sensitivity to decreases in seawater pH. These findings highlight the importance of identifying and understanding pH regulatory systems in marine larval stages that may contribute to substantial energetic challenges under near-future ocean acidification scenarios. © 2017 The Author(s).

  14. Responses of calcification of massive and encrusting corals to past, present, and near-future ocean carbon dioxide concentrations.

    PubMed

    Iguchi, Akira; Kumagai, Naoki H; Nakamura, Takashi; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2014-12-15

    In this study, we report the acidification impact mimicking the pre-industrial, the present, and near-future oceans on calcification of two coral species (Porites australiensis, Isopora palifera) by using precise pCO2 control system which can produce acidified seawater under stable pCO2 values with low variations. In the analyses, we performed Bayesian modeling approaches incorporating the variations of pCO2 and compared the results between our modeling approach and classical statistical one. The results showed highest calcification rates in pre-industrial pCO2 level and gradual decreases of calcification in the near-future ocean acidification level, which suggests that ongoing and near-future ocean acidification would negatively impact coral calcification. In addition, it was expected that the variations of parameters of carbon chemistry may affect the inference of the best model on calcification responses to these parameters between Bayesian modeling approach and classical statistical one even under stable pCO2 values with low variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Impacts of ocean acidification on marine seafood.

    PubMed

    Branch, Trevor A; DeJoseph, Bonnie M; Ray, Liza J; Wagner, Cherie A

    2013-03-01

    Ocean acidification is a series of chemical reactions due to increased CO(2) emissions. The resulting lower pH impairs the senses of reef fishes and reduces their survival, and might similarly impact commercially targeted fishes that produce most of the seafood eaten by humans. Shelled molluscs will also be negatively affected, whereas cephalopods and crustaceans will remain largely unscathed. Habitat changes will reduce seafood production from coral reefs, but increase production from seagrass and seaweed. Overall effects of ocean acidification on primary productivity and, hence, on food webs will result in hard-to-predict winners and losers. Although adaptation, parental effects, and evolution can mitigate some effects of ocean acidification, future seafood platters will look rather different unless CO(2) emissions are curbed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates.

    PubMed

    Morita, Masaya; Suwa, Ryota; Iguchi, Akira; Nakamura, Masako; Shimada, Kazuaki; Sakai, Kazuhiko; Suzuki, Atsushi

    2010-05-01

    Ocean acidification is now recognized as a threat to marine ecosystems; however, the effect of ocean acidification on fertilization in marine organisms is still largely unknown. In this study, we focused on sperm flagellar motility in broadcast spawning reef invertebrates (a coral and a sea cucumber). Below pH 7.7, the pH predicted to occur within the next 100 years, sperm flagellar motility was seriously impaired in these organisms. Considering that sperm flagellar motility is indispensable for transporting the paternal haploid genome for fertilization, fertilization taking place in seawater may decline in the not too distant future. Urgent surveys are necessary for a better understanding of the physiological consequences of ocean acidification on sperm flagellar motility in a wide range of marine invertebrates.

  17. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.

    PubMed

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A; Davis, Andrew R; Byrne, Maria

    2010-06-29

    As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. We examined the interactive effects of near-future ocean warming and increased acidification/P(CO2) on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P(CO2) treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P(CO2) and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3 degrees C) stimulated growth, producing significantly bigger larvae across all pH/P(CO2) treatments up to a thermal threshold (+6 degrees C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3 degrees C warming diminished the negative effects of acidification and hypercapnia on larval growth. This study of the effects of ocean warming and CO(2) driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P(CO2) ocean would likely impair their performance with negative consequent effects for benthic adult populations.

  18. Impact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla

    PubMed Central

    Sheppard Brennand, Hannah; Soars, Natalie; Dworjanyn, Symon A.; Davis, Andrew R.; Byrne, Maria

    2010-01-01

    Background As the oceans simultaneously warm, acidify and increase in P CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. Methodology/Principal Findings We examined the interactive effects of near-future ocean warming and increased acidification/P CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/P CO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth. Conclusions and Significance This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations. PMID:20613879

  19. Projections of Ocean Acidification Under the U.N. Framework Convention of Climate Change Using a Reduced-Form Climate Carbon-Cycle Model

    NASA Astrophysics Data System (ADS)

    Hartin, C.

    2016-02-01

    Ocean chemistry is quickly changing in response to continued anthropogenic emissions of carbon to the atmosphere. Mean surface ocean pH has already decreased by 0.1 units relative to the preindustrial era. We use an open-source, simple climate and carbon cycle model ("Hector") to investigate future changes in ocean acidification (pH and calcium carbonate saturations) under the climate agreement from the United Nations Convention on Climate Change Conference (UNFCCC) of Parties in Paris 2015 (COP 21). Hector is a reduced-form, very fast-executing model that can emulate the global mean climate of the CMIP5 models, as well as the inorganic carbon cycle in the upper ocean, allowing us to investigate future changes in ocean acidification. We ran Hector under three different emissions trajectories, using a sensitivity analysis approach to quantify model uncertainty and capture a range of possible ocean acidification changes. The first trajectory is a business-as-usual scenario comparable to a Representative Concentration Pathway (RCP) 8.5, the second a scenario with the COP 21 commitments enacted, and the third an idealized scenario keeping global temperature change to 2°C, comparable to a RCP 2.6. Preliminary results suggest that under the COP 21 agreements ocean pH at 2100 will decrease by 0.2 units and surface saturations of aragonite (calcite) will decrease by 0.9 (1.4) units relative to 1850. Under the COP 21 agreement the world's oceans will be committed to a degree of ocean acidification, however, these changes may be within the range of natural variability evident in some paleo records.

  20. Quantifying the influence of CO2 seasonality on future aragonite undersaturation onset

    NASA Astrophysics Data System (ADS)

    Sasse, T. P.; McNeil, B. I.; Matear, R. J.; Lenton, A.

    2015-10-01

    Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem - from plankton at the base of the food chain to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean-surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (representative concentration pathways; RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite undersaturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long undersaturation by 17 ± 10 years compared to annual-mean estimates, with differences extending up to 35 ± 16 years in the North Pacific due to strong regional seasonality. This earlier onset will result in large-scale undersaturation once atmospheric CO2 reaches 496 ppm in the North Pacific and 511 ppm in the Southern Ocean, independent of emission scenario. This work suggests accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.

  1. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    NASA Astrophysics Data System (ADS)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  2. Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish.

    PubMed

    Faleiro, Filipa; Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui

    2015-01-01

    Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues.

  3. Climate Change: Science and Policy Implications

    DTIC Science & Technology

    2007-01-25

    Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, L.L. Robbins, et al. Impacts of Ocean Acidification on Coral Reefs and Other Marine...Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research,” a report of a workshop held April 18-20... Acidification ” below.) To the degree that live coral reef cover declines, losses up the related food chain could be expected, with possible economic

  4. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification

    PubMed Central

    Harianto, J.; McClintock, J. B.; Byrne, M.

    2016-01-01

    Climate-induced ocean warming and acidification may render marine organisms more vulnerable to infectious diseases. We investigated the effects of warming and acidification on the immune response of the sea urchin Heliocidaris erythrogramma. Sea urchins were gradually introduced to four combinations of temperature and pHNIST (17°C/pH 8.15, 17°C/pH 7.6, 23°C/pH 8.15 and 23°C/pH 7.6) and then held in temperature–pH treatments for 1, 15 or 30 days to determine if the immune response would adjust to stressors over time. Coelomocyte concentration and type, phagocytic capacity and bactericidal activity were measured on day 1, 15 and 30 with different sea urchins used each time. At each time point, the coelomic fluid of individuals exposed to increased temperature and acidification had the lowest coelomocyte concentrations, exhibited lower phagocytic capacities and was least effective at inhibiting bacterial growth of the pathogen Vibrio anguillarum. Over time, increased temperature alleviated the negative effects of acidification on phagocytic activity. Our results demonstrate the importance of incorporating acclimation time to multiple stressors when assessing potential responses to future ocean conditions and indicate that the immune response of H. erythrogramma may be compromised under near-future ocean warming and acidification. PMID:27559066

  5. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification.

    PubMed

    Brothers, C J; Harianto, J; McClintock, J B; Byrne, M

    2016-08-31

    Climate-induced ocean warming and acidification may render marine organisms more vulnerable to infectious diseases. We investigated the effects of warming and acidification on the immune response of the sea urchin Heliocidaris erythrogramma Sea urchins were gradually introduced to four combinations of temperature and pHNIST (17°C/pH 8.15, 17°C/pH 7.6, 23°C/pH 8.15 and 23°C/pH 7.6) and then held in temperature-pH treatments for 1, 15 or 30 days to determine if the immune response would adjust to stressors over time. Coelomocyte concentration and type, phagocytic capacity and bactericidal activity were measured on day 1, 15 and 30 with different sea urchins used each time. At each time point, the coelomic fluid of individuals exposed to increased temperature and acidification had the lowest coelomocyte concentrations, exhibited lower phagocytic capacities and was least effective at inhibiting bacterial growth of the pathogen Vibrio anguillarum Over time, increased temperature alleviated the negative effects of acidification on phagocytic activity. Our results demonstrate the importance of incorporating acclimation time to multiple stressors when assessing potential responses to future ocean conditions and indicate that the immune response of H. erythrogramma may be compromised under near-future ocean warming and acidification. © 2016 The Author(s).

  6. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    PubMed

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification. © 2015. Published by The Company of Biologists Ltd.

  7. New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification.

    PubMed

    Munday, Philip L

    2017-09-01

    Ocean acidification, caused by the uptake of additional carbon dioxide (CO 2 ) from the atmosphere, will have far-reaching impacts on marine ecosystems (Gattuso & Hansson 2011 Ocean acidification Oxford University Press). The predicted changes in ocean chemistry will affect whole biological communities and will occur within the context of global warming and other anthropogenic stressors; yet much of the biological research conducted to date has tested the short-term responses of single species to ocean acidification conditions alone. While an important starting point, these studies may have limited predictive power because they do not account for possible interactive effects of multiple climate change drivers or for ecological interactions with other species. Furthermore, few studies have considered variation in responses among populations or the evolutionary potential within populations. Therefore, our knowledge about the potential for marine organisms to adapt to ocean acidification is extremely limited. In 2015, two of the pioneers in the field, Ulf Riebesell and Jean-Pierre Gattuso, noted that to move forward as a field of study, future research needed to address critical knowledge gaps in three major areas: (i) multiple environmental drivers, (ii) ecological interactions and (iii) acclimation and adaptation (Riebesell and Gattuso 2015 Nat. Clim. Change 5 , 12-14 (doi:10.1038/nclimate2456)). In May 2016, more than 350 researchers, students and stakeholders met at the 4th International Symposium on the Ocean in a High-CO 2 World in Hobart, Tasmania, to discuss the latest advances in understanding ocean acidification and its biological consequences. Many of the papers presented at the symposium reflected this shift in focus from short-term, single species and single stressor experiments towards multi-stressor and multispecies experiments that address knowledge gaps about the ecological impacts of ocean acidification on marine communities. The nine papers in this Special Feature are from authors who attended the symposium and address cutting-edge questions and emerging topics in ocean acidification research, across the taxonomic spectrum from plankton to top predators. They cover the three streams of research identified as crucial to understanding the biological impacts of ocean acidification: (i) the relationship with other environmental drivers, (ii) the effects on ecological process and species interactions, and (iii) the role that individual variation, phenotypic plasticity and adaptation will have in shaping the impacts of ocean acidification and warming on marine ecosystems. © 2017 The Author(s).

  8. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    PubMed

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  9. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change

    PubMed Central

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification. PMID:26510159

  10. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    PubMed Central

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  11. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    PubMed

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  12. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety.

    PubMed

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-21

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p < 0.05) in the CO2 acidified seawater during the 30 days experiment and the health risk of Cd (based on the estimated target hazard quotients, THQ) via consumption of M. meretrix at pH 7.8 and 7.4 significantly increased 1.21 and 1.32 times respectively, suggesting a potential threat to seafood safety. The ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd(2+)/Ca(2+) in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion.

  13. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety

    PubMed Central

    Shi, Wei; Zhao, Xinguo; Han, Yu; Che, Zhumei; Chai, Xueliang; Liu, Guangxu

    2016-01-01

    To date, the effects of ocean acidification on toxic metals accumulation and the underlying molecular mechanism remains unknown in marine bivalve species. In the present study, the effects of the realistic future ocean pCO2 levels on the cadmium (Cd) accumulation in the gills, mantle and adductor muscles of three bivalve species, Mytilus edulis, Tegillarca granosa, and Meretrix meretrix, were investigated. The results obtained suggested that all species tested accumulated significantly higher Cd (p < 0.05) in the CO2 acidified seawater during the 30 days experiment and the health risk of Cd (based on the estimated target hazard quotients, THQ) via consumption of M. meretrix at pH 7.8 and 7.4 significantly increased 1.21 and 1.32 times respectively, suggesting a potential threat to seafood safety. The ocean acidification-induced increase in Cd accumulation may have occurred due to (i) the ocean acidification increased the concentration of Cd and the Cd2+/Ca2+ in the seawater, which in turn increased the Cd influx through Ca channel; (ii) the acidified seawater may have brought about epithelia damage, resulting in easier Cd penetration; and (iii) ocean acidification hampered Cd exclusion. PMID:26795597

  14. The role of CO2 variability and exposure time for biological impacts of ocean acidification

    NASA Astrophysics Data System (ADS)

    Shaw, Emily C.; Munday, Philip L.; McNeil, Ben I.

    2013-09-01

    impacts of ocean acidification have mostly been studied using future levels of CO2 without consideration of natural variability or how this modulates both duration and magnitude of CO2 exposure. Here we combine results from laboratory studies on coral reef fish with diurnal in situ CO2 data from a shallow coral reef, to demonstrate how natural variability alters exposure times for marine organisms under increasingly high-CO2 conditions. Large in situ CO2 variability already results in exposure of coral reef fish to short-term CO2 levels higher than laboratory-derived critical CO2 levels (~600 µatm). However, we suggest that the in situ exposure time is presently insufficient to induce negative effects observed in laboratory studies. Our results suggest that both exposure time and the magnitude of CO2 levels will be important in determining the response of organisms to future ocean acidification, where both will increase markedly with future increases in CO2.

  15. Seahorses under a changing ocean: the impact of warming and acidification on the behaviour and physiology of a poor-swimming bony-armoured fish

    PubMed Central

    Baptista, Miguel; Santos, Catarina; Aurélio, Maria L; Pimentel, Marta; Pegado, Maria Rita; Paula, José Ricardo; Calado, Ricardo; Repolho, Tiago; Rosa, Rui

    2015-01-01

    Abstract Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = −0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues. PMID:27293694

  16. Ocean acidification in a geoengineering context

    PubMed Central

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  17. Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment.

    PubMed

    Allen, Ro; Foggo, Andrew; Fabricius, Katharina; Balistreri, Annalisa; Hall-Spencer, Jason M

    2017-11-30

    Rising atmospheric CO 2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO 2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO 2 ' (median pH7.77, 7.79), and 'extreme CO 2 ' (median pH7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO 2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ocean acidification challenges copepod reproductive plasticity

    NASA Astrophysics Data System (ADS)

    Vehmaa, A.; Almén, A.-K.; Brutemark, A.; Paul, A.; Riebesell, U.; Furuhagen, S.; Engström-Öst, J.

    2015-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia bifilosa in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ~ 365-1231 μatm), and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal if transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female copepod size and egg hatching success. In addition, we found a threshold of fCO2 concentration (~ 1000 μatm), above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon ~ 55 μm) or quality (C : N) weakens the transgenerational effects. However, females with high ORAC produced eggs with high hatching success. Overall, these results indicate that A. bifilosa could be affected by projected near future CO2 levels.

  19. Ocean acidification challenges copepod phenotypic plasticity

    NASA Astrophysics Data System (ADS)

    Vehmaa, Anu; Almén, Anna-Karin; Brutemark, Andreas; Paul, Allanah; Riebesell, Ulf; Furuhagen, Sara; Engström-Öst, Jonna

    2016-11-01

    Ocean acidification is challenging phenotypic plasticity of individuals and populations. Calanoid copepods (zooplankton) are shown to be fairly plastic against altered pH conditions, and laboratory studies indicate that transgenerational effects are one mechanism behind this plasticity. We studied phenotypic plasticity of the copepod Acartia sp. in the course of a pelagic, large-volume mesocosm study that was conducted to investigate ecosystem and biogeochemical responses to ocean acidification. We measured copepod egg production rate, egg-hatching success, adult female size and adult female antioxidant capacity (ORAC) as a function of acidification (fCO2 ˜ 365-1231 µatm) and as a function of quantity and quality of their diet. We used an egg transplant experiment to reveal whether transgenerational effects can alleviate the possible negative effects of ocean acidification on offspring development. We found significant negative effects of ocean acidification on adult female size. In addition, we found signs of a possible threshold at high fCO2, above which adaptive maternal effects cannot alleviate the negative effects of acidification on egg-hatching and nauplii development. We did not find support for the hypothesis that insufficient food quantity (total particulate carbon < 55 µm) or quality (C : N) weakens the transgenerational effects. However, females with high-ORAC-produced eggs with high hatching success. Overall, these results indicate that Acartia sp. could be affected by projected near-future CO2 levels.

  20. Economic effects of ocean acidification: Publication patterns and directions for future research.

    PubMed

    Falkenberg, Laura J; Tubb, Adeline

    2017-09-01

    Human societies derive economic benefit from marine systems, yet these benefits may be modified as humans drive environmental change. Here, we conducted the first systematic review of literature on the potential economic effects of ocean acidification. We identified that while there is a growing literature discussing this topic, assessments of the direction and magnitude of anticipated economic change remain limited. The few assessments which have been conducted indicate largely negative economic effects of ocean acidification. Insights are, however, limited as the scope of the studies remains restricted. We propose that understanding of this topic will benefit from using standard approaches (e.g. timescales and emissions scenarios) to consider an increasing range of species/habitats and ecosystem services over a range of spatial scales. The resulting understanding could inform decisions such that we maintain, or enhance, economic services obtained from future marine environments.

  1. Ocean Warming, More than Acidification, Reduces Shell Strength in a Commercial Shellfish Species during Food Limitation

    PubMed Central

    Mackenzie, Clara L.; Ormondroyd, Graham A.; Curling, Simon F.; Ball, Richard J.; Whiteley, Nia M.; Malham, Shelagh K.

    2014-01-01

    Ocean surface pH levels are predicted to fall by 0.3–0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2–4°C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH –0.4 pH units) and warming (ambient temperature +4°C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4–6 h day−1). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited. PMID:24489785

  2. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation.

    PubMed

    Mackenzie, Clara L; Ormondroyd, Graham A; Curling, Simon F; Ball, Richard J; Whiteley, Nia M; Malham, Shelagh K

    2014-01-01

    Ocean surface pH levels are predicted to fall by 0.3-0.4 pH units by the end of the century and are likely to coincide with an increase in sea surface temperature of 2-4 °C. The combined effect of ocean acidification and warming on the functional properties of bivalve shells is largely unknown and of growing concern as the shell provides protection from mechanical and environmental challenges. We examined the effects of near-future pH (ambient pH -0.4 pH units) and warming (ambient temperature +4 °C) on the shells of the commercially important bivalve, Mytilus edulis when fed for a limited period (4-6 h day(-1)). After six months exposure, warming, but not acidification, significantly reduced shell strength determined as reductions in the maximum load endured by the shells. However, acidification resulted in a reduction in shell flex before failure. Reductions in shell strength with warming could not be explained by alterations in morphology, or shell composition but were accompanied by reductions in shell surface area, and by a fall in whole-body condition index. It appears that warming has an indirect effect on shell strength by re-allocating energy from shell formation to support temperature-related increases in maintenance costs, especially as food supply was limited and the mussels were probably relying on internal energy reserves. The maintenance of shell strength despite seawater acidification suggests that biomineralisation processes are unaffected by the associated changes in CaCO3 saturation levels. We conclude that under near-future climate change conditions, ocean warming will pose a greater risk to shell integrity in M. edulis than ocean acidification when food availability is limited.

  3. Faster recovery of a diatom from UV damage under ocean acidification.

    PubMed

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Early detection of ocean acidification effects on marine calcification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyina, T.; Zeebe, R. E.; E. Maier-Reimer

    Ocean acidification is likely to impact calcification rates in many pelagic organisms, which may in turn cause significant changes in marine ecosystem structure. We examine effects of changes in marine CaCO3 production on total alkalinity (TA) in the ocean using the global biogeochemical ocean model HAMOCC. We test a variety of future calcification scenarios because experimental studies with different organisms have revealed a wide range of calcification sensitivities to CaCO3 saturation state. The model integrations start at a preindustrial steady state in the year 1800 and run until the year 2300 forced with anthropogenic CO2 emissions. Calculated trends in TAmore » are evaluated taking into account the natural variability in ocean carbonate chemistry, as derived from repeat hydrographic transects. We conclude that the data currently available does not allow discerning significant trends in TA due to changes in pelagic calcification caused by ocean acidification. Given different calcification scenarios, our model calculations indicate that the TA increase over time will start being detectable by the year 2040, increasing by 5–30 umol/kg compared to the present-day values. In a scenario of extreme reductions in calcification, large TA changes relative to preindustrial conditions would have occurred at present, which we consider very unlikely. However, the time interval of reliable TA observations is too short to disregard this scenario. The largest increase in surface ocean TA is predicted for the tropical and subtropical regions. In order to monitor and quantify possible early signs of acidification effects, we suggest to specifically target those regions during future ocean chemistry surveys.« less

  5. Deep oceans may acidify faster than anticipated due to global warming

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching

    2017-12-01

    Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.

  6. Odor tracking in sharks is reduced under future ocean acidification conditions.

    PubMed

    Dixson, Danielle L; Jennings, Ashley R; Atema, Jelle; Munday, Philip L

    2015-04-01

    Recent studies show that ocean acidification impairs sensory functions and alters the behavior of teleost fishes. If sharks and other elasmobranchs are similarly affected, this could have significant consequences for marine ecosystems globally. Here, we show that projected future CO2 levels impair odor tracking behavior of the smooth dogfish (Mustelus canis). Adult M. canis were held for 5 days in a current-day control (405 ± 26 μatm) and mid (741 ± 22 μatm) or high CO2 (1064 ± 17 μatm) treatments consistent with the projections for the year 2100 on a 'business as usual' scenario. Both control and mid CO2 -treated individuals maintained normal odor tracking behavior, whereas high CO2 -treated sharks significantly avoided the odor cues indicative of food. Control sharks spent >60% of their time in the water stream containing the food stimulus, but this value fell below 15% in high CO2 -treated sharks. In addition, sharks treated under mid and high CO2 conditions reduced attack behavior compared to the control individuals. Our findings show that shark feeding could be affected by changes in seawater chemistry projected for the end of this century. Understanding the effects of ocean acidification on critical behaviors, such as prey tracking in large predators, can help determine the potential impacts of future ocean acidification on ecosystem function. © 2014 John Wiley & Sons Ltd.

  7. Climate-driven disparities among ecological interactions threaten kelp forest persistence.

    PubMed

    Provost, Euan J; Kelaher, Brendan P; Dworjanyn, Symon A; Russell, Bayden D; Connell, Sean D; Ghedini, Giulia; Gillanders, Bronwyn M; Figueira, WillIAM; Coleman, Melinda A

    2017-01-01

    The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs. © 2016 John Wiley & Sons Ltd.

  8. Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins.

    PubMed

    Evans, Tyler G; Watson-Wynn, Priscilla

    2014-06-01

    Sea urchins are ecologically and economically important calcifying organisms threatened by acidification of the global ocean caused by anthropogenic CO2 emissions. Propelled by the sequencing of the purple sea urchin (Strongylocentrotus purpuratus) genome, profiling changes in gene expression during exposure to high pCO2 seawater has emerged as a powerful and increasingly common method to infer the response of urchins to ocean change. However, analyses of gene expression are sensitive to experimental methodology, and comparisons between studies of genes regulated by ocean acidification are most often made in the context of major caveats. Here we perform meta-analyses as a means of minimizing experimental discrepancies and resolving broader-scale trends regarding the effects of ocean acidification on gene expression in urchins. Analyses across eight studies and four urchin species largely support prevailing hypotheses about the impact of ocean acidification on marine calcifiers. The predominant expression pattern involved the down-regulation of genes within energy-producing pathways, a clear indication of metabolic depression. Genes with functions in ion transport were significantly over-represented and are most plausibly contributing to intracellular pH regulation. Expression profiles provided extensive evidence for an impact on biomineralization, epitomized by the down-regulation of seven spicule matrix proteins. In contrast, expression profiles provided limited evidence for CO2-mediated developmental delay or induction of a cellular stress response. Congruence between studies of gene expression and the ocean acidification literature in general validates the accuracy of gene expression in predicting the consequences of ocean change and justifies its continued use in future studies. © 2014 Marine Biological Laboratory.

  9. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    PubMed

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  10. Extreme ocean acidification reduces the susceptibility of eastern oyster shells to a polydorid parasite.

    PubMed

    Clements, J C; Bourque, D; McLaughlin, J; Stephenson, M; Comeau, L A

    2017-11-01

    Ocean acidification poses a threat to marine organisms. While the physiological and behavioural effects of ocean acidification have received much attention, the effects of acidification on the susceptibility of farmed shellfish to parasitic infections are poorly understood. Here we describe the effects of moderate (pH 7.5) and extreme (pH 7.0) ocean acidification on the susceptibility of Crassostrea virginica shells to infection by a parasitic polydorid, Polydora websteri. Under laboratory conditions, shells were exposed to three pH treatments (7.0, 7.5 and 8.0) for 3- and 5-week periods. Treated shells were subsequently transferred to an oyster aquaculture site (which had recently reported an outbreak of P. websteri) for 50 days to test for effects of pH and exposure time on P. websteri recruitment to oyster shells. Results indicated that pH and exposure time did not affect the length, width or weight of the shells. Interestingly, P. websteri counts were significantly lower under extreme (pH 7.0; ~50% reduction), but not moderate (pH 7.5; ~20% reduction) acidification levels; exposure time had no effect. This study suggests that extreme levels - but not current and projected near-future levels - of acidification (∆pH ~1 unit) can reduce the susceptibility of eastern oyster shells to P. websteri infections. © 2017 John Wiley & Sons Ltd.

  11. Ocean Acidification Impacts Larval and Juvenile Growth in the Native Oyster Ostrea lurida

    NASA Astrophysics Data System (ADS)

    Hettinger, A.; Hoey, J. A.; Sanford, E.; Gaylord, B.; Hill, T. M.; Russell, A. D.

    2008-12-01

    The impacts of ocean acidification have only recently been recognized as a human-induced stressor on marine ecosystems. Ocean acidification can disrupt calcification in organisms that precipitate calcareous structures, including many ecologically and economically important species. We examined how decreased levels of carbonate saturation affected larval and juvenile growth and settlement in the native oyster Ostrea lurida. Larvae were cultured at three carbonate saturation levels that represent present day CO2 concentrations (380 ppm) and two future projected pCO2 scenarios (540 and 970 ppm). These treatments were maintained for 20 days throughout larval duration until settlement occurred. Larval and juvenile growth were determined by calculating change in shell area. Larvae exposed to 970 ppm grew 12% less than larvae held under control conditions (380 ppm). In addition, growth varied among larvae produced by different parents, suggesting that impacts of ocean acidification might vary intraspecifically. Juvenile growth (i.e., new shell added following settlement) was significantly different among CO2 treatments, and juveniles exposed to 970 ppm grew 24% less than juveniles held under control conditions (380 ppm). Carry-over effects from the larval stage influence juvenile growth, and because post-settlement mortality is often high for marine invertebrates, ocean acidification may negatively impact the size of native oyster populations.

  12. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus.

    PubMed

    Dupont, Sam; Lundve, Bengt; Thorndyke, Mike

    2010-07-15

    Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.

  13. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios.

    PubMed

    Byrne, Maria; Ho, Melanie; Selvakumaraswamy, Paulina; Nguyen, Hong D; Dworjanyn, Symon A; Davis, Andy R

    2009-05-22

    Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20-26 degrees C, pH 7.6-8.2) were tested in all combinations for the 'business-as-usual' scenario, with 20 degrees C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4 degrees C reduced cleavage by 40 per cent and +6 degrees C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6 degrees C. At 26 degrees C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.

  14. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    PubMed

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa.

    PubMed

    Shi, Wei; Han, Yu; Guo, Cheng; Zhao, Xinguo; Liu, Saixi; Su, Wenhao; Wang, Yichen; Zha, Shanjie; Chai, Xueliang; Liu, Guangxu

    2017-09-01

    Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca 2+ oscillations. Therefore, the realistic effects of future ocean pCO 2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca 2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca 2+ oscillations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification.

    PubMed

    Tresguerres, Martin; Hamilton, Trevor J

    2017-06-15

    Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABA A receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABA A receptor antagonist gabazine on control animals and those exposed to elevated CO 2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABA A receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO 2 -induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms. © 2017. Published by The Company of Biologists Ltd.

  17. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification.

    PubMed

    Todgham, Anne E; Hofmann, Gretchen E

    2009-08-01

    Ocean acidification from the uptake of anthropogenic CO(2) is expected to have deleterious consequences for many calcifying marine animals. Forecasting the vulnerability of these marine organisms to climate change is linked to an understanding of whether species possess the physiological capacity to compensate for the potentially adverse effects of ocean acidification. We carried out a microarray-based transcriptomic analysis of the physiological response of larvae of a calcifying marine invertebrate, the purple sea urchin, Strongylocentrotus purpuratus, to CO(2)-driven seawater acidification. In lab-based cultures, larvae were raised under conditions approximating current ocean pH conditions (pH 8.01) and at projected, more acidic pH conditions (pH 7.96 and 7.88) in seawater aerated with CO(2) gas. Targeting expression of approximately 1000 genes involved in several biological processes, this study captured changes in gene expression patterns that characterize the transcriptomic response to CO(2)-driven seawater acidification of developing sea urchin larvae. In response to both elevated CO(2) scenarios, larvae underwent broad scale decreases in gene expression in four major cellular processes: biomineralization, cellular stress response, metabolism and apoptosis. This study underscores that physiological processes beyond calcification are impacted greatly, suggesting that overall physiological capacity and not just a singular focus on biomineralization processes is essential for forecasting the impact of future CO(2) conditions on marine organisms. Conducted on targeted and vulnerable species, genomics-based studies, such as the one highlighted here, have the potential to identify potential ;weak links' in physiological function that may ultimately determine an organism's capacity to tolerate future ocean conditions.

  18. Quantifying rates of evolutionary adaptation in response to ocean acidification.

    PubMed

    Sunday, Jennifer M; Crim, Ryan N; Harley, Christopher D G; Hart, Michael W

    2011-01-01

    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO(2) conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO(2) conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species.

  19. Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep.

    PubMed

    Duquette, Ashley; McClintock, James B; Amsler, Charles D; Pérez-Huerta, Alberto; Milazzo, Marco; Hall-Spencer, Jason M

    2017-11-30

    Marine CO 2 seeps allow the study of the long-term effects of elevated pCO 2 (ocean acidification) on marine invertebrate biomineralization. We investigated the effects of ocean acidification on shell composition and structure in four ecologically important species of Mediterranean gastropods (two limpets, a top-shell snail, and a whelk). Individuals were sampled from three sites near a volcanic CO 2 seep off Vulcano Island, Italy. The three sites represented ambient (8.15pH), moderate (8.03pH) and low (7.73pH) seawater mean pH. Shell mineralogy, microstructure, and mechanical strength were examined in all four species. We found that the calcite/aragonite ratio could vary and increased significantly with reduced pH in shells of one of the two limpet species. Moreover, each of the four gastropods displayed reductions in either inner shell toughness or elasticity at the Low pH site. These results suggest that near-future ocean acidification could alter shell biomineralization and structure in these common gastropods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).

    PubMed

    Wolfe, Kennedy; Dworjanyn, Symon A; Byrne, Maria

    2013-09-01

    Co-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near-future projected change (+2-4 °C, -0.3-0.5 pH units; pCO2 400-1820; ΩCa 5.0-1.6; ΩAr 3.3-1.1), and extreme conditions experienced at low tide (+4 °C, -0.3-0.7 pH units; pCO2 2850-2967; ΩCa 1.1-1.0; ΩAr 0.7-0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near-future warming and acidification. Spine development, however, was negatively affected by near-future increased temperature (+2-4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near-future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature-pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits. © 2013 John Wiley & Sons Ltd.

  1. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification

    PubMed Central

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-01-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate. PMID:23893550

  2. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification.

    PubMed

    Couce, Elena; Ridgwell, Andy; Hendy, Erica J

    2013-12-01

    Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature-driven decline in habitat suitability for many of the most significant and bio-diverse tropical coral regions, particularly in the central Indo-Pacific. This is accompanied by a temperature-driven poleward range expansion of favorable conditions accelerating up to 40-70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered 'marginal' for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short-term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate. © 2013 John Wiley & Sons Ltd.

  3. Effects of ocean acidification and sea-level rise on coral reefs

    USGS Publications Warehouse

    Yates, K.K.; Moyer, R.P.

    2010-01-01

    U.S. Geological Survey (USGS) scientists are developing comprehensive records of historical and modern coral reef growth and calcification rates relative to changing seawater chemistry resulting from increasing atmospheric CO2 from the pre-industrial period to the present. These records will provide the scientific foundation for predicting future impacts of ocean acidification and sea-level rise on coral reef growth. Changes in coral growth rates in response to past changes in seawater pH are being examined by using cores from coral colonies.

  4. Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2

    PubMed Central

    McNeil, Ben I.; Matear, Richard J.

    2008-01-01

    Southern Ocean acidification via anthropogenic CO2 uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO32−) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO32− and pH. Our analysis shows an intense wintertime minimum in CO32− south of the Antarctic Polar Front and when combined with anthropogenic CO2 uptake is likely to induce aragonite undersaturation when atmospheric CO2 levels reach ≈450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification. PMID:19022908

  5. Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2.

    PubMed

    McNeil, Ben I; Matear, Richard J

    2008-12-02

    Southern Ocean acidification via anthropogenic CO(2) uptake is expected to be detrimental to multiple calcifying plankton species by lowering the concentration of carbonate ion (CO(3)(2-)) to levels where calcium carbonate (both aragonite and calcite) shells begin to dissolve. Natural seasonal variations in carbonate ion concentrations could either hasten or dampen the future onset of this undersaturation of calcium carbonate. We present a large-scale Southern Ocean observational analysis that examines the seasonal magnitude and variability of CO(3)(2-) and pH. Our analysis shows an intense wintertime minimum in CO(3)(2-) south of the Antarctic Polar Front and when combined with anthropogenic CO(2) uptake is likely to induce aragonite undersaturation when atmospheric CO(2) levels reach approximately 450 ppm. Under the IPCC IS92a scenario, Southern Ocean wintertime aragonite undersaturation is projected to occur by the year 2030 and no later than 2038. Some prominent calcifying plankton, in particular the Pteropod species Limacina helicina, have important veliger larval development during winter and will have to experience detrimental carbonate conditions much earlier than previously thought, with possible deleterious flow-on impacts for the wider Southern Ocean marine ecosystem. Our results highlight the critical importance of understanding seasonal carbon dynamics within all calcifying marine ecosystems such as continental shelves and coral reefs, because natural variability may potentially hasten the onset of future ocean acidification.

  6. Individual variability in reproductive success determines winners and losers under ocean acidification: a case study with sea urchins.

    PubMed

    Schlegel, Peter; Havenhand, Jon N; Gillings, Michael R; Williamson, Jane E

    2012-01-01

    Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. We examined the effect of CO(2)-induced pH changes ("ocean acidification") in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5. The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of 'winners' and 'losers' of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.

  7. Broken Chains: The Effect of Ocean Acidification on Bivalve and Echinoid Development

    NASA Astrophysics Data System (ADS)

    Richardson, K.

    2016-12-01

    Global warming is one of the most urgent issues facing the interconnected systems of our planet. One important impact of global warming is ocean acidification, which is a change in the pH of the oceans due to increased levels of carbon dioxide in the atmosphere. This can harm ocean life in many ways, including the disintegration of reef structures and the weakening of many types of sea animals' shells. The purpose of this project is to assess the efficacy of a novel method of raising the pH of increasingly acidic ocean waters. The experiment was set up with water of varying pH levels. There were three different experiment groups, including current ocean water (pH 8.1), increased acidity ocean water (pH 7.5), and an increased acidity ocean water with an activated carbon filter (pH 7.5). Six bivalve shells were placed in each solution . Mass loss data was taken from bivalve shells every three days over the course of thirty days (for a total of ten measurements). I hypothesized that the carbon filter would improve the pH of the ocean water (by raising the pH from 7.5) to that of normal ocean water (pH 8.1). The data showed that while the acidic ocean water shell's weight decreased (by 13%), the acidic water with the filter and current ocean water decreased by 0.3% and 0.5%, respectively. Overall, the activated carbon filter decreased the amount of weight change from the acidic water. The data is applicable to helping solve ocean acidification - activated charcoal greatly improved the effects of very acidic ocean water, which could be used in the future to help offset the impact of ocean acidification on its creatures.

  8. The positive relationship between ocean acidification and pollution.

    PubMed

    Zeng, Xiangfeng; Chen, Xijuan; Zhuang, Jie

    2015-02-15

    Ocean acidification and pollution coexist to exert combined effects on the functions and services of marine ecosystems. Ocean acidification can increase the biotoxicity of heavy metals by altering their speciation and bioavailability. Marine pollutants, such as heavy metals and oils, could decrease the photosynthesis rate and increase the respiration rate of marine organisms as a result of biotoxicity and eutrophication, facilitating ocean acidification to varying degrees. Here we review the complex interactions between ocean acidification and pollution in the context of linkage of multiple stressors to marine ecosystems. The synthesized information shows that pollution-affected respiration acidifies coastal oceans more than the uptake of anthropogenic carbon dioxide. Coastal regions are more vulnerable to the negative impact of ocean acidification due to large influxes of pollutants from terrestrial ecosystems. Ocean acidification and pollution facilitate each other, and thus coastal environmental protection from pollution has a large potential for mitigating acidification risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).

    PubMed

    Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun

    2017-10-01

    Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO 2 ): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatch rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO 2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO 2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO 2 levels that are predicted as a result of ocean acidification in the next 100-200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO 2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO 2 projected for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Experimental ocean acidification alters the allocation of metabolic energy

    PubMed Central

    Pan, T.-C. Francis; Applebaum, Scott L.; Manahan, Donal T.

    2015-01-01

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors. PMID:25825763

  11. Experimental ocean acidification alters the allocation of metabolic energy.

    PubMed

    Pan, T-C Francis; Applebaum, Scott L; Manahan, Donal T

    2015-04-14

    Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased ∼50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

  12. Indirect effects of ocean acidification drive feeding and growth of juvenile crown-of-thorns starfish, Acanthaster planci.

    PubMed

    Kamya, Pamela Z; Byrne, Maria; Mos, Benjamin; Hall, Lauren; Dworjanyn, Symon A

    2017-06-14

    The indirect effects of changing climate in modulating trophic interactions can be as important as the direct effects of climate stressors on consumers. The success of the herbivorous juvenile stage of the crown-of-thorns starfish (COTS), Acanthaster planci, may be affected by the impacts of ocean conditions on its crustose coralline algal (CCA) food. To partition the direct effects of near future ocean acidification on juvenile COTS and indirect effects through changes in their CCA food, COTS were grown in three pH T levels (7.9, 7.8, 7.6) and fed CCA grown at similar pH levels. Consumption of CCA by COTS was bolstered when the COTS were grown in low pH and when they were fed CCA grown in low pH regardless of the pH in which the COTS were reared. COTS fed CCA grown at pH 7.6 grew fastest, but the pH/ p CO 2 that the COTS were reared in had no direct effect on growth. Ocean acidification conditions decreased the C : N ratio and carbonate levels in the CCA. Bolstered growth in COTS may be driven by enhanced palatability, increased nutritive state and reduced defences of their CCA food. These results indicate that near future acidification will increase the success of early juvenile COTS and boost recruitment into the coral-eating life stage. © 2017 The Author(s).

  13. Opposing Seasonal Trends in Seawater pH and Aragonite Saturation State on the Bermuda Coral Reef Platform Reveal Complex Controls on Seawater Chemistry by Biological and Physical Processes

    NASA Astrophysics Data System (ADS)

    Andersson, A. J.; Bates, N. R.; dePutron, S.; Collins, A.; Neely, K.; Best, M.; Noyes, T.

    2011-12-01

    To accurately predict future consequences of ocean acidification on coastal environments and ecosystems, it is critical to understand present conditions and variability. As part of the Bermuda ocean acidification and coral reef investigation (BEACON), significant efforts have been dedicated to characterize the complete surface seawater carbonic-acid system at different temporal and spatial scales on the Bermuda coral reef platform to understand current levels and variability in seawater CO2 parameters, reef metabolism, and future potential changes arising from ocean acidification. A four years monthly time-series of seawater carbonic-acid parameters at eight different locations on the Bermuda coral reef platform reveals strong seasonal patterns in dissolved inorganic carbon (DIC), total alkalinity (TA), pH, pCO2, and [HCO3-], and somewhat weaker trends in [CO32-] and saturation state with respect to CaCO3 minerals. Strong spatial gradients are also observed in DIC and TA during summertime owing to reef metabolism, but no or weak spatial gradients of these parameters are observed in the wintertime. Interestingly, maximum pH-sws (~8.15) is observed during wintertime when minimum aragonite saturation state (<3.0) is observed. In contrast, minimum pH-sws (~7.95) is observed in the summertime when maximum aragonite saturation state (>3.70) is observed. The observed trends and gradients point to complex relationships and interactions between seawater chemistry, biology and physics that need to be considered in the context of ocean acidification and in making future predictions on the effects of this perturbation on coral reefs and coastal ecosystems.

  14. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    PubMed

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  15. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    NASA Astrophysics Data System (ADS)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  16. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish

    PubMed Central

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A

    2015-01-01

    Abstract Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [−1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in the presence of an increased temperature. In addition to reduced hatching success, alterations in development and metabolism due to ocean warming and acidification could have negative ecological consequences owing to changes in phenology (i.e. early hatching) in the highly seasonal Antarctic ecosystem. PMID:27293718

  17. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    PubMed

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in the presence of an increased temperature. In addition to reduced hatching success, alterations in development and metabolism due to ocean warming and acidification could have negative ecological consequences owing to changes in phenology (i.e. early hatching) in the highly seasonal Antarctic ecosystem.

  18. Cascading Effects of Ocean Acidification in a Rocky Subtidal Community

    PubMed Central

    Asnaghi, Valentina; Chiantore, Mariachiara; Mangialajo, Luisa; Gazeau, Frédéric; Francour, Patrice; Alliouane, Samir; Gattuso, Jean-Pierre

    2013-01-01

    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae. PMID:23613994

  19. Cascading effects of ocean acidification in a rocky subtidal community.

    PubMed

    Asnaghi, Valentina; Chiantore, Mariachiara; Mangialajo, Luisa; Gazeau, Frédéric; Francour, Patrice; Alliouane, Samir; Gattuso, Jean-Pierre

    2013-01-01

    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to assemblages dominated by fleshy macroalgae.

  20. Community dynamics and ecosystem simplification in a high-CO2 ocean.

    PubMed

    Kroeker, Kristy J; Gambi, Maria Cristina; Micheli, Fiorenza

    2013-07-30

    Disturbances are natural features of ecosystems that promote variability in the community and ultimately maintain diversity. Although it is recognized that global change will affect environmental disturbance regimes, our understanding of the community dynamics governing ecosystem recovery and the maintenance of functional diversity in future scenarios is very limited. Here, we use one of the few ecosystems naturally exposed to future scenarios of environmental change to examine disturbance and recovery dynamics. We examine the recovery patterns of marine species from a physical disturbance across different acidification regimes caused by volcanic CO2 vents. Plots of shallow rocky reef were cleared of all species in areas of ambient, low, and extreme low pH that correspond to near-future and extreme scenarios for ocean acidification. Our results illustrate how acidification decreases the variability of communities, resulting in homogenization and reduced functional diversity at a landscape scale. Whereas the recovery trajectories in ambient pH were highly variable and resulted in a diverse range of assemblages, recovery was more predictable with acidification and consistently resulted in very similar algal-dominated assemblages. Furthermore, low pH zones had fewer signs of biological disturbance (primarily sea urchin grazing) and increased recovery rates of the dominant taxa (primarily fleshy algae). Together, our results highlight how environmental change can cause ecosystem simplification via environmentally mediated changes in community dynamics in the near future, with cascading impacts on functional diversity and ecosystem function.

  1. Differences in neurochemical profiles of two gadid species under ocean warming and acidification.

    PubMed

    Schmidt, Matthias; Windisch, Heidrun Sigrid; Ludwichowski, Kai-Uwe; Seegert, Sean Lando Levin; Pörtner, Hans-Otto; Storch, Daniela; Bock, Christian

    2017-01-01

    Exposure to future ocean acidification scenarios may alter the behaviour of marine teleosts through interference with neuroreceptor functioning. So far, most studies investigated effects of ocean acidification on the behaviour of fish, either isolated or in combination with environmental temperature. However, only few physiological studies on this issue were conducted despite the putative neurophysiological origin of the CO 2 -induced behavioural changes. Here, we present the metabolic consequences of long-term exposure to projected ocean acidification (396-548 μatm P CO 2 under control and 915-1272 μatm under treatment conditions) and parallel warming in the brain of two related fish species, polar cod ( Boreogadus saida , exposed to 0 °C, 3 °C, 6 °C and 8 °C) and Atlantic cod ( Gadus morhua , exposed to 3 °C, 8 °C, 12 °C and 16 °C). It has been shown that B. saida is behaviourally vulnerable to future ocean acidification scenarios, while G. morhua demonstrates behavioural resilience. We found that temperature alters brain osmolyte, amino acid, choline and neurotransmitter concentrations in both species indicating thermal responses particularly in osmoregulation and membrane structure. In B. saida, changes in amino acid and osmolyte metabolism at the highest temperature tested were also affected by CO 2 , possibly emphasizing energetic limitations. We did not observe changes in neurotransmitters, energy metabolites, membrane components or osmolytes that might serve as a compensatory mechanism against CO 2 induced behavioural impairments. In contrast to B. saida , such temperature limitation was not detected in G. morhua ; however, at 8 °C, CO 2 induced an increase in the levels of metabolites of the glutamate/GABA-glutamine cycle potentially indicating greater GABAergic activity in G.morhua . Further, increased availability of energy-rich substrates was detected under these conditions. Our results indicate a change of GABAergic metabolism in the nervous system of Gadus morhua close to the optimum of the temperature range. Since a former study showed that juvenile G. morhua might be slightly more behaviourally resilient to CO 2 at this respective temperature, we conclude that the observed change of GABAergic metabolism could be involved in counteracting OA induced behavioural changes. This may serve as a fitness advantage of this respective species compared to B. saida in a future warmer, more acidified polar ocean.

  2. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons.

    PubMed

    Reyes-Nivia, Catalina; Diaz-Pulido, Guillermo; Kline, David; Guldberg, Ove-Hoegh; Dove, Sophie

    2013-06-01

    Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef-building corals, Porites cylindrica and Isopora cuneata, to present-day (Control: 400 μatm - 24 °C) and future pCO2 -temperature scenarios projected for the end of the century (Medium: +230 μatm - +2 °C; High: +610 μatm - +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2 -temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2 -temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2 -temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans. © 2013 Blackwell Publishing Ltd.

  3. Pteropods on the edge: Cumulative effects of ocean acidification, warming, and deoxygenation

    NASA Astrophysics Data System (ADS)

    Bednaršek, Nina; Harvey, Chris J.; Kaplan, Isaac C.; Feely, Richard A.; Možina, Jasna

    2016-06-01

    We review the state of knowledge of the individual and community responses of euthecosome (shelled) pteropods in the context of global environmental change. In particular, we focus on their responses to ocean acidification, in combination with ocean warming and ocean deoxygenation, as inferred from a growing body of empirical literature, and their relatively nascent place in ecosystem-scale models. Our objectives are: (1) to summarize the threats that these stressors pose to pteropod populations; (2) to demonstrate that pteropods are strong candidate indicators for cumulative effects of OA, warming, and deoxygenation in marine ecosystems; and (3) to provide insight on incorporating pteropods into population and ecosystem models, which will help inform ecosystem-based management of marine resources under future environmental regimes.

  4. 77 FR 40860 - Strategic Plan for Federal Research and Monitoring of Ocean Acidification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Plan for Federal Research and Monitoring of Ocean Acidification AGENCY: National Marine Fisheries... Federal Research and Monitoring of Ocean Acidification is being made available for public review and... understanding of the process of ocean acidification, its effects on marine ecosystems, and the steps that could...

  5. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos.

    PubMed

    Foo, Shawna A; Dworjanyn, Symon A; Poore, Alistair G B; Byrne, Maria

    2012-01-01

    Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2-4 °C) and acidification (-0.3-0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean.

  6. Adaptive Capacity of the Habitat Modifying Sea Urchin Centrostephanus rodgersii to Ocean Warming and Ocean Acidification: Performance of Early Embryos

    PubMed Central

    Foo, Shawna A.; Dworjanyn, Symon A.; Poore, Alistair G. B.; Byrne, Maria

    2012-01-01

    Background Predicting effects of rapid climate change on populations depends on measuring the effects of climate stressors on performance, and potential for adaptation. Adaptation to stressful climatic conditions requires heritable genetic variance for stress tolerance present in populations. Methodology/Principal Findings We quantified genetic variation in tolerance of early development of the ecologically important sea urchin Centrostephanus rodgersii to near-future (2100) ocean conditions projected for the southeast Australian global change hot spot. Multiple dam-sire crosses were used to quantify the interactive effects of warming (+2–4°C) and acidification (−0.3−0.5 pH units) across twenty-seven family lines. Acidification, but not temperature, decreased the percentage of cleavage stage embryos. In contrast, temperature, but not acidification decreased the percentage of gastrulation. Cleavage success in response to both stressors was strongly affected by sire identity. Sire and dam identity significantly affected gastrulation and both interacted with temperature to determine developmental success. Positive genetic correlations for gastrulation indicated that genotypes that did well at lower pH also did well in higher temperatures. Conclusions/Significance Significant genotype (sire) by environment interactions for both stressors at gastrulation indicated the presence of heritable variation in thermal tolerance and the ability of embryos to respond to changing environments. The significant influence of dam may be due to maternal provisioning (maternal genotype or environment) and/or offspring genotype. It appears that early development in this ecologically important sea urchin is not constrained in adapting to the multiple stressors of ocean warming and acidification. The presence of tolerant genotypes indicates the potential to adapt to concurrent warming and acidification, contributing to the resilience of C. rodgersii in a changing ocean. PMID:22880005

  7. Exploring the utility of high resolution "nano-" computed tomography imaging to place quantitative constraints on shell biometric changes in marine pteropods in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    Eagle, R.; Howes, E.; Lischka, S.; Rudolph, R.; Büdenbender, J.; Bijma, J.; Gattuso, J. P.; Riebesell, U.

    2014-12-01

    Understanding and quantifying the response of marine organisms to present and future ocean acidification remains a major challenge encompassing observations on single species in culture and scaling up to the ecosystem and global scale. Understanding calcification changes in culture experiments designed to simulate present and future ocean conditions under potential CO2 emissions scenarios, and especially detecting the likely more subtle changes that may occur prior to the onset of more extreme ocean acidification, depends on the tools available. Here we explore the utility of high-resolution computed tomography (nano-CT) to provide quantitative biometric data on field collected and cultured marine pteropods, using the General Electric Company Phoenix Nanotom S Instrument. The technique is capable of quantitating the whole shell of the organism, allowing shell dimensions to be determined as well as parameters such as average shell thickness, the variation in thickness across the whole shell and in localized areas, total shell volume and surface area and when combined with weight measurements shell density can be calculated. The potential power of the technique is the ability to derive these parameters even on very small organisms less than 1 millimeter in size. Tuning the X-ray strength of the instrument allows organic material to be excluded from the analysis. Through replicate analysis of standards, we assess the reproducibility of data, and by comparison with dimension measurements derived from light microscopy we assess the accuracy of dimension determinations. We present results from historical and modern pteropod populations from the Mediterranean and cultured polar pteropods, resolving statistically significant differences in shell biometrics in both cases that may represent responses to ocean acidification.

  8. Is the perceived resiliency of fish larvae to ocean acidification masking more subtle effects?

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Ellis, R. P.; Scolamacchia, M.; Scolding, J. W. S.; Keay, A.; Chingombe, P.; Shields, R. J.; Wilcox, R.; Speirs, D. C.; Wilson, R. W.; Lewis, C.; Flynn, K. J.

    2013-10-01

    Ocean acidification, caused by rising concentrations of carbon dioxide (CO2), is widely considered to be a major global threat to marine ecosystems. To investigate the potential effects of ocean acidification on the early life stages of a commercially important fish species, European sea bass (Dicentrarchus labrax), 12 000 larvae were incubated from hatch through metamorphosis under a matrix of two temperatures (17 and 19 °C) and two seawater pCO2s (400 and 750 μatm) and sampled regularly for 42 days. Calculated daily mortality was significantly affected by both temperature and pCO2, with both increased temperature and elevated pCO2 associated with lower daily mortality and a significant interaction between these two factors. There was no significant pCO2 effect noted on larval morphology during this period but larvae raised at 19 °C possessed significantly larger eyes and lower carbon:nitrogen ratios at the end of the study compared to those raised under 17 °C. These results suggest that D. labrax larvae are resilient to near-future oceanic conditions. However, when the incubation was continued to post-metamorphic (juvenile) animals (day 67-69), fish raised under a combination of 19 °C and 750 μatm pCO2 were significantly heavier and exhibited lower aerobic scopes than those incubated at 19 °C and 400 μatm. Most other studies investigating the effects of near-future oceanic conditions on the early life stages of marine fish have used incubations of relatively short durations and suggested these animals are resilient to ocean acidification. We propose the durations of these other studies may be insufficient for more subtle effects, such as those observed in this study, to become apparent. These findings may have important implications for both sea bass in a changing ocean and also for the interpretation of results from other studies that have shown resiliency in marine teleosts exposed to higher atmospheric concentrations of CO2.

  9. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    PubMed

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  10. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content

    PubMed Central

    Hansen, Thomas; Ismar, Stefanie M. H.; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  11. Investigating Undergraduate Science Students’ Conceptions and Misconceptions of Ocean Acidification

    PubMed Central

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. PMID:26163563

  12. Effects of ocean acidification on the early life history of a tropical marine fish.

    PubMed

    Munday, Philip L; Donelson, Jennifer M; Dixson, Danielle L; Endo, Geoff G K

    2009-09-22

    Little is known about how fishes and other non-calcifying marine organisms will respond to the increased levels of dissolved CO(2) and reduced sea water pH that are predicted to occur over the coming century. We reared eggs and larvae of the orange clownfish, Amphiprion percula, in sea water simulating a range of ocean acidification scenarios for the next 50-100 years (current day, 550, 750 and 1030 ppm atmospheric CO(2)). CO(2) acidification had no detectable effect on embryonic duration, egg survival and size at hatching. In contrast, CO(2) acidification tended to increase the growth rate of larvae. By the time of settlement (11 days post-hatching), larvae from some parental pairs were 15 to 18 per cent longer and 47 to 52 per cent heavier in acidified water compared with controls. Larvae from other parents were unaffected by CO(2) acidification. Elevated CO(2) and reduced pH had no effect on the maximum swimming speed of settlement-stage larvae. There was, however, a weak positive relationship between length and swimming speed. Large size is usually considered to be advantageous for larvae and newly settled juveniles. Consequently, these results suggest that levels of ocean acidification likely to be experienced in the near future might not, in isolation, significantly disadvantage the growth and performance of larvae from benthic-spawning marine fishes.

  13. Effects of ocean acidification on the early life history of a tropical marine fish

    PubMed Central

    Munday, Philip L.; Donelson, Jennifer M.; Dixson, Danielle L.; Endo, Geoff G. K.

    2009-01-01

    Little is known about how fishes and other non-calcifying marine organisms will respond to the increased levels of dissolved CO2 and reduced sea water pH that are predicted to occur over the coming century. We reared eggs and larvae of the orange clownfish, Amphiprion percula, in sea water simulating a range of ocean acidification scenarios for the next 50–100 years (current day, 550, 750 and 1030 ppm atmospheric CO2). CO2 acidification had no detectable effect on embryonic duration, egg survival and size at hatching. In contrast, CO2 acidification tended to increase the growth rate of larvae. By the time of settlement (11 days post-hatching), larvae from some parental pairs were 15 to 18 per cent longer and 47 to 52 per cent heavier in acidified water compared with controls. Larvae from other parents were unaffected by CO2 acidification. Elevated CO2 and reduced pH had no effect on the maximum swimming speed of settlement-stage larvae. There was, however, a weak positive relationship between length and swimming speed. Large size is usually considered to be advantageous for larvae and newly settled juveniles. Consequently, these results suggest that levels of ocean acidification likely to be experienced in the near future might not, in isolation, significantly disadvantage the growth and performance of larvae from benthic-spawning marine fishes. PMID:19556256

  14. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification.

    PubMed

    Johnson, Kevin M; Hofmann, Gretchen E

    2017-10-23

    Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO 2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost. In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO 2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression. Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO 2 . In a global change context, exposure of L. h. antarctica to the low pH, high pCO 2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The transcriptomic response at both acute and longer-term acclimation time frames indicated that contemporary L. h. antarctica may not have the physiological plasticity necessary for adaptation to OA conditions expected in future decades. Lastly, the differential gene expression results further support the role of shelled pteropods such as L. h. antarctica as sentinel organisms for the impacts of ocean acidification.

  15. Individual Variability in Reproductive Success Determines Winners and Losers under Ocean Acidification: A Case Study with Sea Urchins

    PubMed Central

    Schlegel, Peter; Havenhand, Jon N.; Gillings, Michael R.; Williamson, Jane E.

    2012-01-01

    Background Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. Methodology/Principal Findings We examined the effect of CO2-induced pH changes (“ocean acidification”) in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5. Conclusions and Significance The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of ‘winners’ and ‘losers’ of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act. PMID:23300876

  16. The interacting effects of nutrient enrichment and ocean acidification on the growth and physiology of the macroalgae Ulva sp.

    NASA Astrophysics Data System (ADS)

    Reidenbach, L. B.; Hurd, C. L.; Kubler, J.; Fernandez, P. A.; Leal, P. P.; Noisette, F.; Revill, A. T.; McGraw, C. M.

    2016-02-01

    Ocean acidification, caused by the increased absorption of carbon dioxide in the ocean, changes the carbon chemistry in the seawater, decreases pH, and alters the chemical speciation of some nitrogenous compounds, such as ammonium. The green macroalgae Ulva spp. are intertidal species that occur worldwide. Ocean acidification may alter the growth response of Ulva sp. to increased nutrients by altering the photosynthetic and nutrient physiology of the algae as well as the bioavailability of nutrients. To determine if there is an interactive effect between ocean acidification and nutrient enrichment Ulva sp. were grown in the lab in a cross of three pCO2 levels under ambient and enriched ammonium concentrations. We predicted that the growth rates of Ulva sp. in ammonium enriched treatments would be enhanced by increased pCO2 relative to those in ambient ammonium concentrations. While growth rate, relative electron transport rates, and chlorophyll content were enhanced by enriched ammonium, there was no interactive effect of high pCO2 and ammonium enrichment. Ammonium uptake rates and ammonium pools were not affected by the pH and ammonium interaction, but nitrate reductase activity increased in the high pCO2, high ammonium treatments. Increased pCO2 has been found to increase Ulva sp. growth rates under some conditions, but this was not the case in this set of experiments. To make realistic predictions of Ulva sp. abundances into the future, based on better understanding of their physiology, ocean acidification experiments should include additional environmental variables such as light intensity and macronutrient supplies that may simultaneously be affected by climate change.

  17. Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification

    NASA Astrophysics Data System (ADS)

    Mongin, Mathieu; Baird, Mark E.; Hadley, Scott; Lenton, Andrew

    2016-03-01

    The equilibration of rising atmospheric {{CO}}2 with the ocean is lowering {pH} in tropical waters by about 0.01 every decade. Coral reefs and the ecosystems they support are regarded as one of the most vulnerable ecosystems to ocean acidification, threatening their long-term viability. In response to this threat, different strategies for buffering the impact of ocean acidification have been proposed. As the {pH} experienced by individual corals on a natural reef system depends on many processes over different time scales, the efficacy of these buffering strategies remains largely unknown. Here we assess the feasibility and potential efficacy of a reef-scale (a few kilometers) carbon removal strategy, through the addition of seaweed (fleshy multicellular algae) farms within the Great Barrier Reef at the Heron Island reef. First, using diagnostic time-dependent age tracers in a hydrodynamic model, we determine the optimal location and size of the seaweed farm. Secondly, we analytically calculate the optimal density of the seaweed and harvesting strategy, finding, for the seaweed growth parameters used, a biomass of 42 g N m-2 with a harvesting rate of up 3.2 g N m-2 d-1 maximises the carbon sequestration and removal. Numerical experiments show that an optimally located 1.9 km2 farm and optimally harvested seaweed (removing biomass above 42 g N m-2 every 7 d) increased aragonite saturation by 0.1 over 24 km2 of the Heron Island reef. Thus, the most effective seaweed farm can only delay the impacts of global ocean acidification at the reef scale by 7-21 years, depending on future global carbon emissions. Our results highlight that only a kilometer-scale farm can partially mitigate global ocean acidification for a particular reef.

  18. Ocean acidification postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  19. Severity of ocean acidification following the end-Cretaceous asteroid impact

    PubMed Central

    Tyrrell, Toby; Armstrong McKay, David Ian

    2015-01-01

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 1015 mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 1015 mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite <0.5), but only if they reached the ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous. PMID:25964350

  20. Severity of ocean acidification following the end-Cretaceous asteroid impact.

    PubMed

    Tyrrell, Toby; Merico, Agostino; Armstrong McKay, David Ian

    2015-05-26

    Most paleo-episodes of ocean acidification (OA) were either too slow or too small to be instructive in predicting near-future impacts. The end-Cretaceous event (66 Mya) is intriguing in this regard, both because of its rapid onset and also because many pelagic calcifying species (including 100% of ammonites and more than 90% of calcareous nannoplankton and foraminifera) went extinct at this time. Here we evaluate whether extinction-level OA could feasibly have been produced by the asteroid impact. Carbon cycle box models were used to estimate OA consequences of (i) vaporization of up to 60 × 10(15) mol of sulfur from gypsum rocks at the point of impact; (ii) generation of up to 5 × 10(15) mol of NOx by the impact pressure wave and other sources; (iii) release of up to 6,500 Pg C as CO2 from vaporization of carbonate rocks, wildfires, and soil carbon decay; and (iv) ocean overturn bringing high-CO2 water to the surface. We find that the acidification produced by most processes is too weak to explain calcifier extinctions. Sulfuric acid additions could have made the surface ocean extremely undersaturated (Ωcalcite <0.5), but only if they reached the ocean very rapidly (over a few days) and if the quantity added was at the top end of literature estimates. We therefore conclude that severe ocean acidification might have been, but most likely was not, responsible for the great extinctions of planktonic calcifiers and ammonites at the end of the Cretaceous.

  1. OBIS-USA and Ocean Acidification: Chemical and Biological Observation Data, Integrated for Discovery and Applications

    NASA Astrophysics Data System (ADS)

    Fornwall, M.; Jewett, L.; Yates, K.; Goldstein, P.

    2012-12-01

    OBIS-USA (usgs.gov/obis-usa), a program of USGS Core Science, Analytics and Synthesis, is the US Regional node of the International Ocean Biogeographic Information System (iobis.org). OBIS data records observations of biological occurrences - identifiable species - at known time and coordinates. Within US research and operational communities, OBIS-USA serves an expanding range of applications by capturing details to accompany each observation: information to understand record quality and suitability for applications, details about observation circumstances such as sampling method and sampling conditions, and biological details such as sex, life stage, behavior and other characteristics. The NOAA Ocean Acidification Program and its associated data management effort (led by National Oceanographic Data Center) aim to enable users to locate, understand and use marine data from multiple sources and of multiple types to address questions related to ocean acidification and it impacts on marine ecosystems. By the nature of researching ocean acidification, data-driven applications require users to find and apply datasets that represent different disciplines as well as different researchers, organizations, agencies, funding models, data management practices and formats, and survey and observation methods. We refer to any collection(s) of data having diverse characteristics on these and other dimensions as "heterogeneous data". However, data management and Internet technologies enable the data itself and many of its diverse characteristics to be discoverable and understandable enough for users to build effective models, applications, and solutions. While it may not be simple to make heterogeneous data uniform or "seamless", current technologies enable at least the data characteristics to be sufficiently well-understood that users can consume data and accommodate its diverse characteristics in their process of generating outputs. Via this abstract and accompanying poster presentation, OBIS-USA and the NOAA Ocean Acidification Program describe proposed methods for obtaining diverse data, such as both chemical observations (those necessary to derive calcium carbonate saturation state) and biological marine observations (species occurrence, abundance), in order to use these sources of information in combined analysis for current and future research on ocean acidification and its relation to observed biology. Current OBIS-USA biological observations represent in-situ observations of marine taxa, and in the context of Ocean Acidification and this poster presentation, OBIS-USA shows a path toward including experimental biology observations as well as in-situ.

  2. Ocean Acidification Alters the Photosynthetic Responses of a Coccolithophorid to Fluctuating Ultraviolet and Visible Radiation1[OPEN

    PubMed Central

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E.; Campbell, Douglas A.; Helbling, E. Walter

    2013-01-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400–700 nm) and ultraviolet radiation (UVR; 280–400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280–315 nm)-induced inhibition. Ultraviolet A (315–400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition. PMID:23749851

  3. A metadata template for ocean acidification data

    NASA Astrophysics Data System (ADS)

    Jiang, L.

    2014-12-01

    Metadata is structured information that describes, explains, and locates an information resource (e.g., data). It is often coarsely described as data about data, and documents information such as what was measured, by whom, when, where, and how it was sampled, analyzed, with what instruments. Metadata is inherent to ensure the survivability and accessibility of the data into the future. With the rapid expansion of biological response ocean acidification (OA) studies, the lack of a common metadata template to document such type of data has become a significant gap for ocean acidification data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses of organisms on ocean acidification. The "variable metadata section", which includes the variable name, observation type, whether the variable is a manipulation condition or response variable, and the biological subject on which the variable is studied, forms the core of this metadata template. Additional metadata elements, such as principal investigators, temporal and spatial coverage, platforms for the sampling, data citation are essential components to complete the template. We explain the structure of the template, and define many metadata elements that may be unfamiliar to researchers. For that reason, this paper can serve as a user's manual for the template.

  4. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.

    PubMed

    Beaufort, L; Probert, I; de Garidel-Thoron, T; Bendif, E M; Ruiz-Pino, D; Metzl, N; Goyet, C; Buchet, N; Coupel, P; Grelaud, M; Rost, B; Rickaby, R E M; de Vargas, C

    2011-08-03

    About one-third of the carbon dioxide (CO(2)) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO(2) have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO(2) and concomitant decreasing concentrations of CO(3)(2-). Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.

  5. National Ocean Sciences Bowl in 2014: A National Competition for High School Ocean Science Education

    DTIC Science & Technology

    2015-03-31

    the 2014 National Finals Competition. The Finals were held May 1-4, 2014 in Seattle, WA with a theme of ocean acidification . A longitudinal study and...Washington (UW) in Seattle, WA on May 1-4, 2014. The theme for the 2014 Finals Competition was ocean acidification , exploring the progressive increase in...and environmental and societal effects of ocean acidification . They became more aware of ocean acidification’s potential to disrupt ecosystems in a

  6. Ocean acidification impact on copepod swimming and mating behavior: consequences for population dynamics

    NASA Astrophysics Data System (ADS)

    Seuront, L.

    2010-12-01

    There is now ample evidence that ocean acidification caused by the uptake of additional carbon dioxide from the atmosphere at the ocean surface will severely impact on marine ecosystem structure and function. To date, most research effort has focused on the impact of ocean acidification on calcifying marine organisms. These include the dissolution of calcifying plankton, reduced growth and shell thickness in gastropods and echinoderms and declining growth of reef-building corals. The effects of increasing the partial pressure in carbon dioxide and decreasing carbonate concentrations on various aspects of phytoplankton biology and ecology have received some attention. It has also recently been shown that the ability of fish larvae to discriminate between the olfactory cues of different habitat types at settlement and to detect predator olfactory cues are impaired at the level of ocean acidification predicted to occur around 2100 on a business-as-usual scenario of CO2 emissions. Average ocean pH has decreased by 0.1 units since the pre-industrial times, and it is predicted to decline another 0.3-0.4 units by 2100, which nearly corresponds to a doubling PCO2. In addition, some locations are expected to exhibit an even greater than predicted rate of decline. In this context, understanding the direct and indirect links between ocean acidification and the mortality of marine species is critical, especially for minute planktonic organisms such as copepods at the base of the ocean food chains. In this context, this work tested if ocean acidification could affect copepod swimming behavior, and subsequently affect, and ultimately disrupt, the ability of male copepods to detect and follow the pheromone plume produced by conspecific females. To ensure the generality and the ecological relevance of the present work, the species used for the experimentation are two of the most common zooplankton species found in estuarine and coastal waters of the Northern Hemisphere, the calanoid copepods Eurytemora affinis and Temora longicornis. Behavioral and mating experiments were conducted under conditions of control seawater (pH = 8.1) and conditions of ocean pH expected to occur circa 2100 (i.e. pH = 7.8 to 7.6) because of present and future CO2 emissions under the SRES A2 scenario. Our results indicate that ocean acidification modifies E. affinis and T. longicornis swimming and mating behaviors, and mating success. Specifically, ocean acidification significantly (i) modifies the stochastic properties of successive displacements, leading to decrease mate encounter rates when copepods cannot rely on female pheromone plumes (i.e. under turbulent conditions) and (ii) decreases the ability of males to detect females pheromone trails, to accurately follow trails and to successfully track a female. This led to a significant decrease in contact and capture rates from control to acidified seawater. These results indicate that ocean acification decreases the ability of male copepods to detect, track and capture a female, hence suggest an overall impact on population fitness and dynamics.

  7. A marine secondary producer respires and feeds more in a high CO2 ocean.

    PubMed

    Li, Wei; Gao, Kunshan

    2012-04-01

    Climate change mediates marine chemical and physical environments and therefore influences marine organisms. While increasing atmospheric CO(2) level and associated ocean acidification has been predicted to stimulate marine primary productivity and may affect community structure, the processes that impact food chain and biological CO(2) pump are less documented. We hypothesized that copepods, as the secondary marine producer, may respond to future changes in seawater carbonate chemistry associated with ocean acidification due to increasing atmospheric CO(2) concentration. Here, we show that the copepod, Centropages tenuiremis, was able to perceive the chemical changes in seawater induced under elevated CO(2) concentration (>1700 μatm, pH<7.60) with avoidance strategy. The copepod's respiration increased at the elevated CO(2) (1000 μatm), associated acidity (pH 7.83) and its feeding rates also increased correspondingly, except for the initial acclimating period, when it fed less. Our results imply that marine secondary producers increase their respiration and feeding rate in response to ocean acidification to balance the energy cost against increased acidity and CO(2) concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Potential sources of variability in mesocosm experiments on the response of phytoplankton to ocean acidification

    NASA Astrophysics Data System (ADS)

    Moreno de Castro, Maria; Schartau, Markus; Wirtz, Kai

    2017-04-01

    Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard deviation typically found in the replicates of the same CO2 treatment level. In experiments with multiple unresolved factors and a sub-optimal number of replicates, post-processing statistical inference tools might fail to detect an effect that is present. We propose that in such cases, data-based model analyses might be suitable tools to unearth potential responses to the treatment and identify the uncertainties that could produce the observed variability. As test cases, we used data from two independent mesocosm experiments. Both experiments showed high standard deviations and, according to statistical inference tools, biomass appeared insensitive to changing CO2 conditions. Conversely, our simulations showed earlier and more intense phytoplankton blooms in modeled replicates at high CO2 concentrations and suggested that uncertainties in average cell size, phytoplankton biomass losses, and initial nutrient concentration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimated the thresholds below which uncertainties do not escalate to high variability. This information might help in designing future mesocosm experiments and interpreting controversial results on the effect of acidification or other pressures on ecosystem functions.

  9. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance

    PubMed Central

    Connell, Sean D.; Kroeker, Kristy J.; Fabricius, Katharina E.; Kline, David I.; Russell, Bayden D.

    2013-01-01

    Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from ‘natural’ volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects. PMID:23980244

  10. The Coral Reef pH-stat: An Important Defense Against Ocean Acidification? (Invited)

    NASA Astrophysics Data System (ADS)

    Andersson, A. J.; Yeakel, K.; Bates, N.; de Putron, S.; Collins, A.

    2013-12-01

    Concerns have been raised on how coral reefs will be affected by ocean acidification (OA), but there are currently no direct predictions on how seawater CO2 chemistry and pH within coral reefs might change in response to OA. Projections of future changes in seawater pH and aragonite saturation state have only been applied to open ocean conditions surrounding coral reef environments rather than the reef systems themselves. The seawater CO2 chemistry within heterogenous coral reef systems can be significantly different from that of the open ocean depending on the residence time, community composition and the major biogeochemical processes occurring on the reef, i.e., net ecosystem organic carbon production and calcification, which combined act to modify the seawater chemistry. We argue that these processes and coral reefs in general could as a pH-stat, partly regulating seawater pH on the reef and offsetting changes in seawater chemistry imposed by ocean acidification. Based on observations from the Bermuda coral reef, we show that a range of anticipated biogeochemical responses of coral reef communities to OA by the end of this century could partially offset changes in seawater pH by an average of 12% to 24%.

  11. Sand smelt ability to cope and recover from ocean's elevated CO2 levels.

    PubMed

    Silva, Cátia S E; Lemos, Marco F L; Faria, Ana M; Lopes, Ana F; Mendes, Susana; Gonçalves, Emanuel J; Novais, Sara C

    2018-06-15

    Considered a major environmental concern, ocean acidification has induced a recent research boost into effects on marine biodiversity and possible ecological, physiological, and behavioural impacts. Although the majority of literature indicate negative effects of future acidification scenarios, most studies are conducted for just a few days or weeks, which may be insufficient to detect the capacity of an organism to adjust to environmental changes through phenotypic plasticity. Here, the effects and the capacity of sand smelt larvae Atherina presbyter to cope and recover (through a treatment combination strategy) from short (15 days) and long-term exposure (45 days) to increasing pCO 2 levels (control: ~515 μatm, pH = 8.07; medium: ~940 μatm, pH = 7.84; high: ~1500 μatm, pH = 7.66) were measured, addressing larval development traits, behavioural lateralization, and biochemical biomarkers related with oxidative stress and damage, and energy metabolism and reserves. Although behavioural lateralization was not affected by high pCO 2 exposure, morphometric changes, energetic costs, and oxidative stress damage were impacted differently through different exposures periods. Generally, short-time exposures led to different responses to either medium or high pCO 2 levels (e.g. development, cellular metabolism, or damage), while on the long-term the response patterns tend to become similar between them, with both acidification scenarios inducing DNA damage and tending to lower growth rates. Additionally, when organisms were transferred to lower acidified condition, they were not able to recover from the mentioned DNA damage impacts. Overall, results suggest that exposure to future ocean acidification scenarios can induce sublethal effects on early life-stages of fish, but effects are dependent on duration of exposure, and are likely not reversible. Furthermore, to improve our understanding on species sensitivity and adaptation strategies, results reinforce the need to use multiple biological endpoints when assessing the effects of ocean acidification on marine organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The evidence for ocean acidification across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Martindale, R. C.; Greene, S. E.; Ritterbush, K. A.; Bottjer, D. J.; Corsetti, F. A.; Berelson, W.

    2012-12-01

    The end-Triassic extinction is one of the "Big Five" mass extinctions of the Phanerozoic and until recently no consensus regarding the cause of this extinction has been established. Over the last decade, a robust temporal correlation between the eruption of the Central Atlantic Magmatic Province (CAMP) and the end-Triassic extinction has been established. This correlation has led to the speculation that the release of CO2 and volatiles from the CAMP flood basalts induced a carbon cycle perturbation that acidified the Triassic oceans. It has also been suggested that an acidification event could have been the key mechanism that caused the end-Triassic marine ecosystem collapse. By combining observations and data from multiple fields such as volcanology, paleoceanography, chemostratigraphy, paleontology, and sedimentology, one can assess whether or not there was an ocean acidification event and to what degree it contributed to the extinction. The eruption of the CAMP flood basalts began at the very end of the Triassic period, albeit before the official Triassic-Jurassic (T-J) boundary, (defined as the first Jurassic ammonite). CAMP is one of the largest continental flood basalts of the Phanerozoic (2-4 million cubic km) and was emplaced extremely rapidly (<1.6-2 Myr) in three to five pulses (possibly hundreds to tens of thousands of years). The massive injection of CAMP CO2 and other volcanic volatiles over such a short period of time would have caused a major change in ocean carbonate chemistry and, if short enough in duration, could have caused significant declines in oceanic carbonate saturation state (an ocean acidification event), possibly even undersaturating parts of the surface ocean with respect to aragonite and calcite. Although the change in saturation state of the ocean is extremely difficult to detect or quantify in the rock record, there is a distinct paucity of primary carbonate sediments in the T-J boundary interval, consistent with an ocean acidification event. Of the seventeen T-J boundary sections only three or four record potentially continuous carbonate deposition across the extinction interval, even so these carbonates are often marls and so may not be truly continuous. Finally, the end-Triassic extinction was particularly selective against pH-sensitive organisms (more so than perhaps any other extinction event). Not only was this extinction event one of the most severe extinctions of the 'Modern Fauna' in the geologic record, it also decimated reef ecosystems built by corals and hypercalcified sponges. End-Triassic extinction rates amongst acid-intolerant organisms and ecosystems are elevated and differ significantly from background extinction so that ocean acidification is a reasonable explanation for the interpreted extinction selectivity during this time interval. Given the volcanic, geochemical, sedimentological, and paleontological changes or events across the T-J interval it is likely that the end-Triassic extinction was heavily influenced by a CAMP-induced ocean acidification event. The dramatic taxonomic and ecosystem turnover at the T-J event implies that short-term acidification events may have long-term effects on ecosystems, a repercussion that has not previously been correlated with acidification events and has implications for future changes in ocean chemistry.

  13. Development of Ocean Acidification Flow-Thru Experimental Raceway Units (OAFTERU): Simulating the Future Reefs in the Keys Today

    NASA Astrophysics Data System (ADS)

    Hall, E. R.; Vaughan, D.; Crosby, M. P.

    2011-12-01

    Ocean acidification, a consequence of anthropogenic CO2 production due to fossil fuel combustion, deforestation, and cement production, has been referred to as "the other CO2 problem" and is receiving much attention in marine science and public policy communities. Critical needs that have been identified by top climate change and marine scientists include using projected pCO2 (partial pressure of CO2 in seawater) levels in manipulative experiments to determine physiological indices of ecologically important species, such as corals. Coral reefs were one of the first ecosystems to be documented as susceptible to ocean acidification. The Florida Keys reef system has already experienced a long-term deterioration, resulting in increased calls for large scale coral reef ecosystem restoration of these critical resources. It has also been speculated that this decline in reef ecosystem health may be exacerbated by increasing atmospheric CO2 levels with resulting ocean acidification. Therefore, reef resilience to ocean acidification and the potential for successful restoration of these systems under forecasted long-term modified pH conditions in the Florida Keys is of great concern. Many studies for testing effects of ocean acidification on corals have already been established and tested. However, many employ pH modification experimental designs that include addition of acid to seawater which may not mimic conditions of climate change induced ocean acidification. It would be beneficial to develop and maintain an ocean acidification testing system more representative of climate change induced changes, and specific to organisms and ecosystems indigenous to the Florida Keys reef tract. The Mote Marine Laboratory research facility in Summerland Key, FL has an established deep well from which its supply of seawater is obtained. This unique source of seawater is 80 feet deep, "fossil" marine water. It is pumped from the on-site aquifer aerated to reduce H2S and ammonia, and passed through filters for biofiltration, and clarification. The resulting water has a pH that is relatively acidic (pH around 7.6, pCO2 ranging from 200 to 2000 μatm). However, further aeration will adjust the pH of the water, by driving off more CO2, yielding pH levels at varying levels between 7.6 and present day values (>8.0-8.4). We are currently testing methods for utilizing this unique seawater system as the foundation for manipulative ocean acidification studies with Florida Keys corals and other reef ecosystem species in both flow-through and large mesocosm-based designs. Advance knowledge of potential climate-driven trends in coral growth and health will permit improved modeling for prediction and more effectively guide policy decisions for how financial resources should be directed to protection and restoration of coral reef ecosystems. Developing such longterm research infrastructure at the existing Mote Marine Laboratory Summerland Key facility will provide an optimum global research center for examining and modeling effects of ocean acidification on corals as well as other important estuarine and marine species.

  14. A Catalyst for Ocean Acidification Research and Collaboration

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Cooley, Sarah R.; Doney, Scott C.

    2010-03-01

    Ocean Carbon and Biogeochemistry Short Course on Ocean Acidification; Woods Hole, Massachusetts, 2-13 November 2009; The Ocean Carbon and Biogeochemistry (OCB) program is a coordinating body for the U.S. research community that focuses on the ocean's role in the global Earth system, bringing together research in geochemistry, ocean physics, and ecology. With support from its federal sponsors (U.S. National Science Foundation, NASA, and National Oceanic and Atmospheric Administration (NOAA)) and the European Project on Ocean Acidification (EPOCA), the OCB Project Office coordinated and hosted a hands-on ocean acidification short course at the Marine Biological Laboratory (MBL) and the Woods Hole Oceanographic Institution (WHOI). The OCB Ocean Acidification Subcommittee (http://www.us-ocb.org/about.html), chaired by Joan Kleypas (National Center for Atmospheric Research) and Richard Feely (Pacific Marine Environmental Laboratory, NOAA), provided critical guidance on the course scope, curriculum, and instructors.

  15. The exposure of the Great Barrier Reef to ocean acidification

    PubMed Central

    Mongin, Mathieu; Baird, Mark E.; Tilbrook, Bronte; Matear, Richard J.; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J.; Duarte, Carlos M.; Gustafsson, Malin S. M.; Ralph, Peter J.; Steven, Andrew D. L.

    2016-01-01

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation–biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report. PMID:26907171

  16. The exposure of the Great Barrier Reef to ocean acidification.

    PubMed

    Mongin, Mathieu; Baird, Mark E; Tilbrook, Bronte; Matear, Richard J; Lenton, Andrew; Herzfeld, Mike; Wild-Allen, Karen; Skerratt, Jenny; Margvelashvili, Nugzar; Robson, Barbara J; Duarte, Carlos M; Gustafsson, Malin S M; Ralph, Peter J; Steven, Andrew D L

    2016-02-23

    The Great Barrier Reef (GBR) is founded on reef-building corals. Corals build their exoskeleton with aragonite, but ocean acidification is lowering the aragonite saturation state of seawater (Ωa). The downscaling of ocean acidification projections from global to GBR scales requires the set of regional drivers controlling Ωa to be resolved. Here we use a regional coupled circulation-biogeochemical model and observations to estimate the Ωa experienced by the 3,581 reefs of the GBR, and to apportion the contributions of the hydrological cycle, regional hydrodynamics and metabolism on Ωa variability. We find more detail, and a greater range (1.43), than previously compiled coarse maps of Ωa of the region (0.4), or in observations (1.0). Most of the variability in Ωa is due to processes upstream of the reef in question. As a result, future decline in Ωa is likely to be steeper on the GBR than currently projected by the IPCC assessment report.

  17. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

    PubMed

    Olischläger, Mark; Wiencke, Christian

    2013-12-01

    This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

  18. Responses of pink salmon to CO2-induced aquatic acidification

    NASA Astrophysics Data System (ADS)

    Ou, Michelle; Hamilton, Trevor J.; Eom, Junho; Lyall, Emily M.; Gallup, Joshua; Jiang, Amy; Lee, Jason; Close, David A.; Yun, Sang-Seon; Brauner, Colin J.

    2015-10-01

    Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.

  19. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.

    PubMed

    Sampaio, E; Rodil, I F; Vaz-Pinto, F; Fernández, A; Arenas, F

    2017-04-01

    Since the past century, rising CO 2 levels have led to global changes (ocean warming and acidification) with subsequent effects on marine ecosystems and organisms. Macroalgae-herbivore interactions have a main role in the regulation of marine community structure (top-down control). Gradients of warming prompt complex non-linear effects on organism metabolism, cascading into altered trophic interactions and community dynamics. However, not much is known on how will acidification and grazer assemblage composition shape these effects. Within this context, we aimed to assess the combined effects of warming gradients and acidification on macroalgae-herbivore interactions, using three cosmopolitan species, abundant in the Iberian Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO 2 treatments (ΔCO 2 ≃ 450 μatm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 °C), two mesocosm experiments were performed to assess grazer consumption rates and macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and acidification (Experiment II) prompted negative effects in grazer's survival and species-specific differences in consumption rates. M. palmata was shown to be the stronger grazer per biomass (but not per capita), and also the most affected by climate stressors. Macroalgae-herbivore interaction strength was markedly shaped by the temperature gradient, while simultaneous acidification lowered thermal optimal threshold. In the near future, warming and acidification are likely to strengthen top-down control, but further increases in disturbances may lead to bottom-up regulated communities. Finally, our results suggest that grazer assemblage composition may modulate future macroalgae-herbivore interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transgenerational deleterious effects of ocean acidification on the reproductive success of a keystone crustacean (Gammarus locusta).

    PubMed

    Borges, Francisco O; Figueiredo, Cátia; Sampaio, Eduardo; Rosa, Rui; Grilo, Tiago F

    2018-07-01

    Ocean acidification (OA) poses a global threat to marine biodiversity. Notwithstanding, marine organisms may maintain their performance under future OA conditions, either through acclimation or evolutionary adaptation. Surprisingly, the transgenerational effects of high CO 2 exposure in crustaceans are still poorly understood. For the first time, the present study investigated the transgenerational effect of OA, from hatching to maturity, of a key amphipod species (Gammarus locusta). Negative transgenerational effects were observed on survival of the acidified lineage, resulting in significant declines (10-15%) compared to the control groups in each generation. Mate-guarding duration was also significantly reduced under high CO 2 and this effect was not alleviated by transgenerational acclimation, indicating that precopulatory behaviours can be disturbed under a future high CO 2 scenario. Although OA may initially stimulate female investment, transgenerational exposure led to a general decline in egg number and fecundity. Overall, the present findings suggest a potential fitness reduction of natural populations of G. locusta in a future high CO 2 ocean, emphasizing the need of management tools towards species' sustainability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. CO2-induced ocean acidification does not affect individual or group behaviour in a temperate damselfish.

    PubMed

    Kwan, Garfield Tsz; Hamilton, Trevor James; Tresguerres, Martin

    2017-07-01

    Open ocean surface CO 2 levels are projected to reach approximately 800 µatm, and ocean pH to decrease by approximately 0.3 units by the year 2100 due to anthropogenic CO 2 emissions and the subsequent process of ocean acidification (OA). When exposed to these CO 2 /pH values, several fish species display abnormal behaviour in laboratory tests, an effect proposed to be linked to altered neuronal GABA A- receptor function. Juvenile blacksmith ( Chromis punctipinnis ) are social fish that regularly experience CO 2 /pH fluctuations through kelp forest diurnal primary production and upwelling events, so we hypothesized that they might be resilient to OA. Blacksmiths were exposed to control conditions (pH ∼ 7.92; p CO 2  ∼ 540 µatm), constant acidification (pH ∼ 7.71; p CO 2  ∼ 921 µatm) and oscillating acidification (pH ∼ 7.91, p CO 2  ∼ 560 µatm (day), pH ∼ 7.70, p CO 2  ∼ 955 µatm (night)), and caught and tested in two seasons of the year when the ocean temperature was different: winter (16.5 ± 0.1°C) and summer (23.1 ± 0.1°C). Neither constant nor oscillating CO 2 -induced acidification affected blacksmith individual light/dark preference, inter-individual distance in a shoal or the shoal's response to a novel object, suggesting that blacksmiths are tolerant to projected future OA conditions. However, blacksmiths tested during the winter demonstrated significantly higher dark preference in the individual light/dark preference test, thus confirming season and/or water temperature as relevant factors to consider in behavioural tests.

  2. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    PubMed

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems. © 2011 Phycological Society of America.

  3. Ocean acidification and its potential effects on marine ecosystems.

    PubMed

    Guinotte, John M; Fabry, Victoria J

    2008-01-01

    Ocean acidification is rapidly changing the carbonate system of the world oceans. Past mass extinction events have been linked to ocean acidification, and the current rate of change in seawater chemistry is unprecedented. Evidence suggests that these changes will have significant consequences for marine taxa, particularly those that build skeletons, shells, and tests of biogenic calcium carbonate. Potential changes in species distributions and abundances could propagate through multiple trophic levels of marine food webs, though research into the long-term ecosystem impacts of ocean acidification is in its infancy. This review attempts to provide a general synthesis of known and/or hypothesized biological and ecosystem responses to increasing ocean acidification. Marine taxa covered in this review include tropical reef-building corals, cold-water corals, crustose coralline algae, Halimeda, benthic mollusks, echinoderms, coccolithophores, foraminifera, pteropods, seagrasses, jellyfishes, and fishes. The risk of irreversible ecosystem changes due to ocean acidification should enlighten the ongoing CO(2) emissions debate and make it clear that the human dependence on fossil fuels must end quickly. Political will and significant large-scale investment in clean-energy technologies are essential if we are to avoid the most damaging effects of human-induced climate change, including ocean acidification.

  4. Individual and population-level responses to ocean acidification.

    PubMed

    Harvey, Ben P; McKeown, Niall J; Rastrick, Samuel P S; Bertolini, Camilla; Foggo, Andy; Graham, Helen; Hall-Spencer, Jason M; Milazzo, Marco; Shaw, Paul W; Small, Daniel P; Moore, Pippa J

    2016-01-29

    Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.

  5. Vulnerability and adaptation of US shellfisheries to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ekstrom, Julia A.; Suatoni, Lisa; Cooley, Sarah R.; Pendleton, Linwood H.; Waldbusser, George G.; Cinner, Josh E.; Ritter, Jessica; Langdon, Chris; van Hooidonk, Ruben; Gledhill, Dwight; Wellman, Katharine; Beck, Michael W.; Brander, Luke M.; Rittschof, Dan; Doherty, Carolyn; Edwards, Peter E. T.; Portela, Rosimeiry

    2015-03-01

    Ocean acidification is a global, long-term problem whose ultimate solution requires carbon dioxide reduction at a scope and scale that will take decades to accomplish successfully. Until that is achieved, feasible and locally relevant adaptation and mitigation measures are needed. To help to prioritize societal responses to ocean acidification, we present a spatially explicit, multidisciplinary vulnerability analysis of coastal human communities in the United States. We focus our analysis on shelled mollusc harvests, which are likely to be harmed by ocean acidification. Our results highlight US regions most vulnerable to ocean acidification (and why), important knowledge and information gaps, and opportunities to adapt through local actions. The research illustrates the benefits of integrating natural and social sciences to identify actions and other opportunities while policy, stakeholders and scientists are still in relatively early stages of developing research plans and responses to ocean acidification.

  6. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris).

    PubMed

    Rosa, Rui; Trübenbach, Katja; Pimentel, Marta S; Boavida-Portugal, Joana; Faleiro, Filipa; Baptista, Miguel; Dionísio, Gisela; Calado, Ricardo; Pörtner, Hans O; Repolho, Tiago

    2014-02-15

    Little is known about the capacity of early life stages to undergo hypercapnic and thermal acclimation under the future scenarios of ocean acidification and warming. Here, we investigated a comprehensive set of biological responses to these climate change-related variables (2°C above winter and summer average spawning temperatures and ΔpH=0.5 units) during the early ontogeny of the squid Loligo vulgaris. Embryo survival rates ranged from 92% to 96% under present-day temperature (13-17°C) and pH (8.0) scenarios. Yet, ocean acidification (pH 7.5) and summer warming (19°C) led to a significant drop in the survival rates of summer embryos (47%, P<0.05). The embryonic period was shortened by increasing temperature in both pH treatments (P<0.05). Embryo growth rates increased significantly with temperature under present-day scenarios, but there was a significant trend reversal under future summer warming conditions (P<0.05). Besides pronounced premature hatching, a higher percentage of abnormalities was found in summer embryos exposed to future warming and lower pH (P<0.05). Under the hypercapnic scenario, oxygen consumption rates decreased significantly in late embryos and newly hatched paralarvae, especially in the summer period (P<0.05). Concomitantly, there was a significant enhancement of the heat shock response (HSP70/HSC70) with warming in both pH treatments and developmental stages. Upper thermal tolerance limits were positively influenced by acclimation temperature, and such thresholds were significantly higher in late embryos than in hatchlings under present-day conditions (P<0.05). In contrast, the upper thermal tolerance limits under hypercapnia were higher in hatchlings than in embryos. Thus, we show that the stressful abiotic conditions inside the embryo's capsules will be exacerbated under near-future ocean acidification and summer warming scenarios. The occurrence of prolonged embryogenesis along with lowered thermal tolerance limits under such conditions is expected to negatively affect the survival success of squid early life stages during the summer spawning period, but not winter spawning.

  7. Bottom Water Acidification and Warming on the Western Eurasian Arctic Shelves: Dynamical Downscaling Projections

    NASA Astrophysics Data System (ADS)

    Wallhead, P. J.; Bellerby, R. G. J.; Silyakova, A.; Slagstad, D.; Polukhin, A. A.

    2017-10-01

    The impacts of oceanic CO2 uptake and global warming on the surface ocean environment have received substantial attention, but few studies have focused on shelf bottom water, despite its importance as habitat for benthic organisms and demersal fisheries such as cod. We used a downscaling ocean biogeochemical model to project bottom water acidification and warming on the western Eurasian Arctic shelves. A model hindcast produced 14-18 year acidification trends that were largely consistent with observational estimates at stations in the Iceland and Irminger Seas. Projections under SRES A1B scenario revealed a rapid and spatially variable decline in bottom pH by 0.10-0.20 units over 50 years (2.5%-97.5% quantiles) at depths 50-500 m on the Norwegian, Barents, Kara, and East Greenland shelves. Bottom water undersaturation with respect to aragonite occurred over the entire Kara shelf by 2040 and over most of the Barents and East Greenland shelves by 2070. Shelf acidification was predominantly driven by the accumulation of anthropogenic CO2, and was concurrent with warming of 0.1-2.7°C over 50 years. These combined perturbations will act as significant multistressors on the Barents and Kara shelves. Future studies should aim to improve the resolution of shelf bottom processes in models, and should consider the Kara Sea and Russian shelves as possible bellwethers of shelf acidification.

  8. Economic Vulnerability Assessment of U.S. Fishery Revenues to Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Cooley, S. R.; Doney, S. C.

    2008-12-01

    Ocean acidification, a predictable consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by decreasing average ocean pH and the carbonate mineral saturation state worldwide. These conditions slow or reverse marine plant and animal calcium carbonate shell growth, thereby harming economically valuable species. In 2006, shellfish and crustaceans provided 50% of the 4 billion U.S. domestic commercial harvest value; value added to commercial fishery products contributed 35 billion to the gross national product that year. Laboratory studies have shown that ocean acidification decreases shellfish calcification; ocean acidification--driven declines in commercial shellfish and crustacean harvests between now and 2060 could decrease nationwide time-integrated primary commercial revenues by 860 million to 14 billion (net present value, 2006 dollars), depending on CO2 emissions, discount rates, biological responses, and fishery structure. This estimate excludes losses from coral reef damage and possible fishery collapses if ocean acidification pushes ecosystems past ecological tipping points. Expanding job losses and indirect economic costs will follow harvest decreases as ocean acidification broadly damages marine habitats and alters marine resource availability. Losses will harm many regions already possessing little economic resilience. The only true solution to ocean acidification is reducing atmospheric CO2 emissions, but implementing regional adaptive responses now from an ecosystem-wide, fisheries perspective will help better preserve sustainable ecosystem function and economic yields. Comprehensive management strategies must include monitoring critical fisheries, explicitly accounting for ocean acidification in management models, reducing fishing pressure and environmental stresses, and supporting regional economies most sensitive to acidification's impacts.

  9. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    PubMed

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  10. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    PubMed

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the highly variable environment they inhabit.

  11. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae

    PubMed Central

    Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; e Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the highly variable environment they inhabit. PMID:27158820

  12. Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins.

    PubMed

    Emerson, Chloe E; Reinardy, Helena C; Bates, Nicholas R; Bodnar, Andrea G

    2017-05-01

    Increasing atmospheric carbon dioxide (CO 2 ) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO 2 ( p CO 2 ) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated p CO 2 . Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high p CO 2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing p CO 2 , but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms.

  13. Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins

    PubMed Central

    Emerson, Chloe E.; Reinardy, Helena C.; Bates, Nicholas R.

    2017-01-01

    Increasing atmospheric carbon dioxide (CO2) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO2 (pCO2) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated pCO2. Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high pCO2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing pCO2, but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms. PMID:28573022

  14. Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China

    NASA Astrophysics Data System (ADS)

    Liu, Wenguang; He, Maoxian

    2012-03-01

    Oceanic uptake of anthropogenic carbon dioxide results in a decrease in seawater pH, a process known as "ocean acidification". The pearl oyster Pinctada fucata, the noble scallop Chlamys nobilis, and the green-lipped mussel Perna viridis are species of economic and ecological importance along the southern coast of China. We evaluated the effects of seawater acidification on clearance, respiration, and excretion rates in these three species. The ammals were reared in seawater at pH 8.1 (control), 7.7, or 7.4. The clearance rate was highest at pH 7.7 for P. fucata and at pH 8.1 for C. nobilis and P. viridis. The pH had little effect on the respiration rate of P. fucata and P. viridis. In contrast, the respiration rate was significantly lower at pH 7.4 in C. nobilis. The excretion rate was significantly lower at pH 7.4 than pH 8.1 for all species. The results indicate that the reduction in seawater pH likely affected the metabolic process (food intake, oxygen consumption, and ammonia excretion) of these bivalves. Different species respond differently to seawater acidification. Further studies are needed to demonstrate the exact mechamsms for this effect and evaluate adaptability of these bivalves to future acidified oceans.

  15. Impacts of climate variability and future climate change on harmful algal blooms and human health.

    PubMed

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-11-07

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.

  16. Impacts of climate variability and future climate change on harmful algal blooms and human health

    PubMed Central

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675

  17. Effects of Ocean Acidification on Juvenile Red King Crab (Paralithodes camtschaticus) and Tanner Crab (Chionoecetes bairdi) Growth, Condition, Calcification, and Survival

    PubMed Central

    Long, William Christopher; Swiney, Katherine M.; Harris, Caitlin; Page, Heather N.; Foy, Robert J.

    2013-01-01

    Ocean acidification, a decrease in the pH in marine waters associated with rising atmospheric CO2 levels, is a serious threat to marine ecosystems. In this paper, we determine the effects of long-term exposure to near-future levels of ocean acidification on the growth, condition, calcification, and survival of juvenile red king crabs, Paralithodes camtschaticus, and Tanner crabs, Chionoecetes bairdi. Juveniles were reared in individual containers for nearly 200 days in flowing control (pH 8.0), pH 7.8, and pH 7.5 seawater at ambient temperatures (range 4.4–11.9 °C). In both species, survival decreased with pH, with 100% mortality of red king crabs occurring after 95 days in pH 7.5 water. Though the morphology of neither species was affected by acidification, both species grew slower in acidified water. At the end of the experiment, calcium concentration was measured in each crab and the dry mass and condition index of each crab were determined. Ocean acidification did not affect the calcium content of red king crab but did decrease the condition index, while it had the opposite effect on Tanner crabs, decreasing calcium content but leaving the condition index unchanged. This suggests that red king crab may be able to maintain calcification rates, but at a high energetic cost. The decrease in survival and growth of each species is likely to have a serious negative effect on their populations in the absence of evolutionary adaptation or acclimatization over the coming decades. PMID:23593357

  18. The future of the oceans past.

    PubMed

    Jackson, Jeremy B C

    2010-11-27

    Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable.

  19. The future of the oceans past

    PubMed Central

    Jackson, Jeremy B. C.

    2010-01-01

    Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable. PMID:20980323

  20. National Security and the Accelerating Risks of Climate Change

    DTIC Science & Technology

    2014-05-01

    future. A second “wild card” is the ability of the ocean to adapt to increased acidification . The oceans are the world’s largest carbon “sinks,” as they...support systems The projected impacts of climate change—heat waves, intense rainfall, floods and droughts, rising sea levels, more acidic oceans , and...and they had never seen this. That, to me, was pretty profound.” Titley and other scientists say overall ocean temperatures have responded more

  1. Elevated carbon dioxide alters the plasma composition and behaviour of a shark

    PubMed Central

    Green, Leon; Jutfelt, Fredrik

    2014-01-01

    Increased carbon emissions from fossil fuels are increasing the pCO2 of the ocean surface waters in a process called ocean acidification. Elevated water pCO2 can induce physiological and behavioural effects in teleost fishes, although there appear to be large differences in sensitivity between species. There is currently no information available on the possible responses to future ocean acidification in elasmobranch fishes. We exposed small-spotted catsharks (Scyliorhinus canicula) to either control conditions or a year 2100 scenario of 990 μatm pCO2 for four weeks. We did not detect treatment effects on growth, resting metabolic rate, aerobic scope, skin denticle ultrastructure or skin denticle morphology. However, we found that the elevated pCO2 group buffered internal acidosis via accumulation with an associated increase in Na+, indicating that the blood chemistry remained altered despite the long acclimation period. The elevated pCO2 group also exhibited a shift in their nocturnal swimming pattern from a pattern of many starts and stops to more continuous swimming. Although CO2-exposed teleost fishes can display reduced behavioural asymmetry (lateralization), the CO2-exposed sharks showed increased lateralization. These behavioural effects may suggest that elasmobranch neurophysiology is affected by CO2, as in some teleosts, or that the sharks detect CO2 as a constant stressor, which leads to altered behaviour. The potential direct effects of ocean acidification should henceforth be considered when assessing future anthropogenic effects on sharks. PMID:25232027

  2. Climate Change and Future World

    DTIC Science & Technology

    2013-03-01

    the distribution of fish 8 species.37 Increasing ocean acidification is threatening coral reefs that play an important role in mitigating the...into space the power that has not been used. This enormous thermal machine, that is the climate system, is constituted by the atmosphere, oceans ...and extension of the Arctic ice and mountain glaciers in the northern hemisphere are reducing. According to the IPCC, the 5 Arctic Ocean could be

  3. Climate change and the oceans--what does the future hold?

    PubMed

    Bijma, Jelle; Pörtner, Hans-O; Yesson, Chris; Rogers, Alex D

    2013-09-30

    The ocean has been shielding the earth from the worst effects of rapid climate change by absorbing excess carbon dioxide from the atmosphere. This absorption of CO2 is driving the ocean along the pH gradient towards more acidic conditions. At the same time ocean warming is having pronounced impacts on the composition, structure and functions of marine ecosystems. Warming, freshening (in some areas) and associated stratification are driving a trend in ocean deoxygenation, which is being enhanced in parts of the coastal zone by upwelling of hypoxic deep water. The combined impact of warming, acidification and deoxygenation are already having a dramatic effect on the flora and fauna of the oceans with significant changes in distribution of populations, and decline of sensitive species. In many cases, the impacts of warming, acidification and deoxygenation are increased by the effects of other human impacts, such as pollution, eutrophication and overfishing. The interactive effects of this deadly trio mirrors similar events in the Earth's past, which were often coupled with extinctions of major species' groups. Here we review the observed impacts and, using past episodes in the Earth's history, set out what the future may hold if carbon emissions and climate change are not significantly reduced with more or less immediate effect. Copyright © 2013. Published by Elsevier Ltd.

  4. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish.

    PubMed

    Talmage, Stephanie C; Gobler, Christopher J

    2010-10-05

    The combustion of fossil fuels has enriched levels of CO(2) in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO(3) shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO(2) concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenaria and Argopecten irradians). Larvae grown under near preindustrial CO(2) concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO(2) levels. Bivalves grown under near preindustrial CO(2) levels displayed thicker, more robust shells than individuals grown at present CO(2) concentrations, whereas bivalves exposed to CO(2) levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.

  5. Ocean acidification dampens physiological stress response to warming and contamination in a commercially-important fish (Argyrosomus regius).

    PubMed

    Sampaio, Eduardo; Lopes, Ana R; Francisco, Sofia; Paula, Jose R; Pimentel, Marta; Maulvault, Ana L; Repolho, Tiago; Grilo, Tiago F; Pousão-Ferreira, Pedro; Marques, António; Rosa, Rui

    2018-03-15

    Increases in carbon dioxide (CO 2 ) and other greenhouse gases emissions are changing ocean temperature and carbonate chemistry (warming and acidification, respectively). Moreover, the simultaneous occurrence of highly toxic and persistent contaminants, such as methylmercury, will play a key role in further shaping the ecophysiology of marine organisms. Despite recent studies reporting mostly additive interactions between contaminant and climate change effects, the consequences of multi-stressor exposure are still largely unknown. Here we disentangled how Argyrosomus regius physiology will be affected by future stressors, by analysing organ-dependent mercury (Hg) accumulation (gills, liver and muscle) within isolated/combined warming (ΔT=4°C) and acidification (ΔpCO 2 =1100μatm) scenarios, as well as direct deleterious effects and phenotypic stress response over multi-stressor contexts. After 30days of exposure, although no mortalities were observed in any treatments, Hg concentration was enhanced under warming conditions, especially in the liver. On the other hand, elevated CO 2 decreased Hg accumulation and consistently elicited a dampening effect on warming and contamination-elicited oxidative stress (catalase, superoxide dismutase and glutathione-S-transferase activities) and heat shock responses. Thus, potentially unpinned on CO 2 -promoted protein removal and ionic equilibrium between hydrogen and reactive oxygen species, we found that co-occurring acidification decreased heavy metal accumulation and contributed to physiological homeostasis. Although this indicates that fish can be physiologically capable of withstanding future ocean conditions, additional experiments are needed to fully understand the biochemical repercussions of interactive stressors (additive, synergistic or antagonistic). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors.

    PubMed

    Griffith, Andrew W; Gobler, Christopher J

    2017-09-12

    While early life-stage marine bivalves are vulnerable to ocean acidification, effects over successive generations are poorly characterized. The objective of this work was to assess the transgenerational effects of ocean acidification on two species of North Atlantic bivalve shellfish, Mercenaria mercenaria and Argopecten irradians. Adults of both species were subjected to high and low pCO 2 conditions during gametogenesis. Resultant larvae were exposed to low and ambient pH conditions in addition to multiple, additional stressors including thermal stress, food-limitation, and exposure to a harmful alga. There were no indications of transgenerational acclimation to ocean acidification during experiments. Offspring of elevated pCO 2 -treatment adults were significantly more vulnerable to acidification as well as the additional stressors. Our results suggest that clams and scallops are unlikely to acclimate to ocean acidification over short time scales and that as coastal oceans continue to acidify, negative effects on these populations may become compounded and more severe.

  7. Contrasting effects of ocean acidification on reproduction in reef fishes

    NASA Astrophysics Data System (ADS)

    Welch, Megan J.; Munday, Philip L.

    2016-06-01

    Differences in the sensitivity of marine species to ocean acidification will influence the structure of marine communities in the future. Reproduction is critical for individual and population success, yet is energetically expensive and could be adversely affected by rising CO2 levels in the ocean. We investigated the effects of projected future CO2 levels on reproductive output of two species of coral reef damselfish, Amphiprion percula and Acanthochromis polyacanthus. Adult breeding pairs were maintained at current-day control (446 μatm), moderate (652 μatm) or high CO2 (912 μatm) for a 9-month period that included the summer breeding season. The elevated CO2 treatments were consistent with CO2 levels projected by 2100 under moderate (RCP6) and high (RCP8) emission scenarios. Reproductive output increased in A. percula, with 45-75 % more egg clutches produced and a 47-56 % increase in the number of eggs per clutch in the two elevated CO2 treatments. In contrast, reproductive output decreased at high CO2 in Ac. polyacanthus, with approximately one-third as many clutches produced compared with controls. Egg survival was not affected by CO2 for A. percula, but was greater in elevated CO2 for Ac. polyacanthus. Hatching success was also greater for Ac. polyacanthus at elevated CO2, but there was no effect of CO2 treatments on offspring size. Despite the variation in reproductive output, body condition of adults did not differ between control and CO2 treatments in either species. Our results demonstrate different effects of high CO2 on fish reproduction, even among species within the same family. A greater understanding of the variation in effects of ocean acidification on reproductive performance is required to predict the consequences for future populations of marine organisms.

  8. Projecting coral reef futures under global warming and ocean acidification.

    PubMed

    Pandolfi, John M; Connolly, Sean R; Marshall, Dustin J; Cohen, Anne L

    2011-07-22

    Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.

  9. Collection to Archival: A Data Management Strategy for the Ocean Acidification Community

    NASA Astrophysics Data System (ADS)

    Burger, E. F.; Smith, K. M.; Parsons, A. R.; Wanninkhof, R. H.; O'Brien, K.; Barbero, L.; Schweitzer, R.; Manke, A.

    2014-12-01

    Recently new data collection platforms, many of them autonomous mobile platforms, have added immensely to the data volume the Ocean Acidification community is dealing with. This is no exception with NOAA's Pacific Marine Environmental Laboratory (PMEL) Ocean Acidification (OA) effort. Collaboration between the PMEL Carbon group and the PMEL Science Data Integration group to manage local data has spawned the development of a data management strategy that covers the data lifecycle from collection to analysis to quality control to archival. The proposed software and workflow will leverage the successful data management framework pioneered by the Surface Ocean CO2 Atlas (SOCAT) project, but customized for Ocean Acidification requirements. This presentation will give a brief overview of the data management framework that will be implemented for Ocean Acidification data that are collected by PMEL scientists. We will also be discussing our plans to leverage this system to build an east coast ocean acidification management system at NOAA's Atlantic Oceanographic and Meteorological Laboratory (AOML), as well as a national OA management system at NOAA's National Oceanographic Data Center (NODC).

  10. Studying ocean acidification in the Arctic Ocean

    USGS Publications Warehouse

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  11. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming

    PubMed Central

    Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J

    2013-01-01

    Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible. PMID:23610641

  12. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming.

    PubMed

    Harvey, Ben P; Gwynn-Jones, Dylan; Moore, Pippa J

    2013-04-01

    Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta-analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life-history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single-stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.

  13. Transgenerational acclimation of fishes to climate change and ocean acidification.

    PubMed

    Munday, Philip L

    2014-01-01

    There is growing concern about the impacts of climate change and ocean acidification on marine organisms and ecosystems, yet the potential for acclimation and adaptation to these threats is poorly understood. Whereas many short-term experiments report negative biological effects of ocean warming and acidification, new studies show that some marine species have the capacity to acclimate to warmer and more acidic environments across generations. Consequently, transgenerational plasticity may be a powerful mechanism by which populations of some species will be able to adjust to projected climate change. Here, I review recent advances in understanding transgenerational acclimation in fishes. Research over the past 2 to 3 years shows that transgenerational acclimation can partially or fully ameliorate negative effects of warming, acidification, and hypoxia in a range of different species. The molecular and cellular pathways underpinning transgenerational acclimation are currently unknown, but modern genetic methods provide the tools to explore these mechanisms. Despite the potential benefits of transgenerational acclimation, there could be limitations to the phenotypic traits that respond transgenerationally, and trade-offs between life stages, that need to be investigated. Future studies should also test the potential interactions between transgenerational plasticity and genetic evolution to determine how these two processes will shape adaptive responses to environmental change over coming decades.

  14. Divergent ecosystem responses within a benthic marine community to ocean acidification.

    PubMed

    Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R

    2011-08-30

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

  15. Ocean acidification impairs crab foraging behaviour.

    PubMed

    Dodd, Luke F; Grabowski, Jonathan H; Piehler, Michael F; Westfield, Isaac; Ries, Justin B

    2015-07-07

    Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Ocean acidification impairs crab foraging behaviour

    PubMed Central

    Dodd, Luke F.; Grabowski, Jonathan H.; Piehler, Michael F.; Westfield, Isaac; Ries, Justin B.

    2015-01-01

    Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour. PMID:26108629

  17. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    PubMed

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  18. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification

    ERIC Educational Resources Information Center

    Danielson, Kathryn I.; Tanner, Kimberly D.

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What…

  19. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    PubMed

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-06-03

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  20. Investigating Undergraduate Science Students' Conceptions and Misconceptions of Ocean Acidification.

    PubMed

    Danielson, Kathryn I; Tanner, Kimberly D

    2015-01-01

    Scientific research exploring ocean acidification has grown significantly in past decades. However, little science education research has investigated the extent to which undergraduate science students understand this topic. Of all undergraduate students, one might predict science students to be best able to understand ocean acidification. What conceptions and misconceptions of ocean acidification do these students hold? How does their awareness and knowledge compare across disciplines? Undergraduate biology, chemistry/biochemistry, and environmental studies students, and science faculty for comparison, were assessed on their awareness and understanding. Results revealed low awareness and understanding of ocean acidification among students compared with faculty. Compared with biology or chemistry/biochemistry students, more environmental studies students demonstrated awareness of ocean acidification and identified the key role of carbon dioxide. Novel misconceptions were also identified. These findings raise the question of whether undergraduate science students are prepared to navigate socioenvironmental issues such as ocean acidification. © 2015 K. I. Danielson and K. D. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Ocean Acidification Scientific Data Stewardship: An approach for end-to-end data management and integration

    NASA Astrophysics Data System (ADS)

    Arzayus, K. M.; Garcia, H. E.; Jiang, L.; Michael, P.

    2012-12-01

    As the designated Federal permanent oceanographic data center in the United States, NOAA's National Oceanographic Data Center (NODC) has been providing scientific stewardship for national and international marine environmental and ecosystem data for over 50 years. NODC is supporting NOAA's Ocean Acidification Program and the science community by providing end-to-end scientific data management of ocean acidification (OA) data, dedicated online data discovery, and user-friendly access to a diverse range of historical and modern OA and other chemical, physical, and biological oceanographic data. This effort is being catalyzed by the NOAA Ocean Acidification Program, but the intended reach is for the broader scientific ocean acidification community. The first three years of the project will be focused on infrastructure building. A complete ocean acidification data content standard is being developed to ensure that a full spectrum of ocean acidification data and metadata can be stored and utilized for optimal data discovery and access in usable data formats. We plan to develop a data access interface capable of allowing users to constrain their search based on real-time and delayed mode measured variables, scientific data quality, their observation types, the temporal coverage, methods, instruments, standards, collecting institutions, and the spatial coverage. In addition, NODC seeks to utilize the existing suite of international standards (including ISO 19115-2 and CF-compliant netCDF) to help our data producers use those standards for their data, and help our data consumers make use of the well-standardized metadata-rich data sets. These tools will be available through our NODC Ocean Acidification Scientific Data Stewardship (OADS) web page at http://www.nodc.noaa.gov/oceanacidification. NODC also has a goal to provide each archived dataset with a unique ID, to ensure a means of providing credit to the data provider. Working with partner institutions, such as the Carbon Dioxide Information Analysis Center (CDIAC), Biological and Chemical Oceanography Data management Office (BCO-DMO), and federal labs, NODC is exploring the challenges of coordinated data flow and quality control for diverse ocean acidification data sets. These data sets include data from coastal and ocean monitoring, laboratory and field experiments, model output, and remotely sensed data. NODC already has in place automated data extraction protocols for archiving oceanographic data from BCO-DMO and CDIAC. We present a vision for how these disparate data streams can be more fully utilized when brought together using data standards. Like the Multiple-Listing Service in the real estate market, the OADS project is dedicated to developing a repository of ocean acidification data from all sources, and to serving them to the ocean acidification community using a user-friendly interface in a timely manner. For further information please contact NODC.Ocean.Acidification@noaa.gov.

  2. Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity

    NASA Astrophysics Data System (ADS)

    Yeakel, Kiley L.; Andersson, Andreas J.; Bates, Nicholas R.; Noyes, Timothy J.; Collins, Andrew; Garley, Rebecca

    2015-11-01

    Oceanic uptake of anthropogenic carbon dioxide (CO2) has acidified open-ocean surface waters by 0.1 pH units since preindustrial times. Despite unequivocal evidence of ocean acidification (OA) via open-ocean measurements for the past several decades, it has yet to be documented in near-shore and coral reef environments. A lack of long-term measurements from these environments restricts our understanding of the natural variability and controls of seawater CO2-carbonate chemistry and biogeochemistry, which is essential to make accurate predictions on the effects of future OA on coral reefs. Here, in a 5-y study of the Bermuda coral reef, we show evidence that variations in reef biogeochemical processes drive interannual changes in seawater pH and Ωaragonite that are partly controlled by offshore processes. Rapid acidification events driven by shifts toward increasing net calcification and net heterotrophy were observed during the summers of 2010 and 2011, with the frequency and extent of such events corresponding to increased offshore productivity. These events also coincided with a negative winter North Atlantic Oscillation (NAO) index, which historically has been associated with extensive offshore mixing and greater primary productivity at the Bermuda Atlantic Time-series Study (BATS) site. Our results reveal that coral reefs undergo natural interannual events of rapid acidification due to shifts in reef biogeochemical processes that may be linked to offshore productivity and ultimately controlled by larger-scale climatic and oceanographic processes.

  3. Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification.

    PubMed

    Passarelli, M C; Cesar, A; Riba, I; DelValls, T A

    2017-10-01

    Changes in the marine carbonate system may affect various calcifying organisms. This study is aimed to compare the sensitivity of embryo-larval development of two species of sea urchins (Paracentrutos lividus and Lytechinus variegatus) collected and exposed to samples from different coastal zone (Spain and Brazil) to ocean acidification. The results showed that the larval stages are very sensitive to small changes in the seawater's pH. The larvae from P. lividus species showed to be more sensitive to acidified elutriate sediments than larvae from L. variegatus sea urchin. Furthermore, this study has demonstrated that the CO 2 enrichment in aquatic ecosystems cause changes on the mobility of the metals: Zn, Cu, Fe, Al and As, which was presented different behavior among them. Although an increase on the mobility of metals was found, the results using the principal component analysis showed that the pH reduction show the highest correlations with the toxicity and is the main cause of embryo-larval development inhibition. In this comparative study it is demonstrated that both species are able to assess potential effects of the ocean acidification related to CO 2 enrichment by both near future scenarios and the risk associated with CO 2 leakages in the Carbon Capture and Storage (CCS) process, and the importance of comparative studies in different zones to improve the understanding of the impacts caused by ocean acidification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity.

    PubMed

    Yeakel, Kiley L; Andersson, Andreas J; Bates, Nicholas R; Noyes, Timothy J; Collins, Andrew; Garley, Rebecca

    2015-11-24

    Oceanic uptake of anthropogenic carbon dioxide (CO2) has acidified open-ocean surface waters by 0.1 pH units since preindustrial times. Despite unequivocal evidence of ocean acidification (OA) via open-ocean measurements for the past several decades, it has yet to be documented in near-shore and coral reef environments. A lack of long-term measurements from these environments restricts our understanding of the natural variability and controls of seawater CO2-carbonate chemistry and biogeochemistry, which is essential to make accurate predictions on the effects of future OA on coral reefs. Here, in a 5-y study of the Bermuda coral reef, we show evidence that variations in reef biogeochemical processes drive interannual changes in seawater pH and Ωaragonite that are partly controlled by offshore processes. Rapid acidification events driven by shifts toward increasing net calcification and net heterotrophy were observed during the summers of 2010 and 2011, with the frequency and extent of such events corresponding to increased offshore productivity. These events also coincided with a negative winter North Atlantic Oscillation (NAO) index, which historically has been associated with extensive offshore mixing and greater primary productivity at the Bermuda Atlantic Time-series Study (BATS) site. Our results reveal that coral reefs undergo natural interannual events of rapid acidification due to shifts in reef biogeochemical processes that may be linked to offshore productivity and ultimately controlled by larger-scale climatic and oceanographic processes.

  5. Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity

    PubMed Central

    Yeakel, Kiley L.; Andersson, Andreas J.; Bates, Nicholas R.; Noyes, Timothy J.; Collins, Andrew; Garley, Rebecca

    2015-01-01

    Oceanic uptake of anthropogenic carbon dioxide (CO2) has acidified open-ocean surface waters by 0.1 pH units since preindustrial times. Despite unequivocal evidence of ocean acidification (OA) via open-ocean measurements for the past several decades, it has yet to be documented in near-shore and coral reef environments. A lack of long-term measurements from these environments restricts our understanding of the natural variability and controls of seawater CO2-carbonate chemistry and biogeochemistry, which is essential to make accurate predictions on the effects of future OA on coral reefs. Here, in a 5-y study of the Bermuda coral reef, we show evidence that variations in reef biogeochemical processes drive interannual changes in seawater pH and Ωaragonite that are partly controlled by offshore processes. Rapid acidification events driven by shifts toward increasing net calcification and net heterotrophy were observed during the summers of 2010 and 2011, with the frequency and extent of such events corresponding to increased offshore productivity. These events also coincided with a negative winter North Atlantic Oscillation (NAO) index, which historically has been associated with extensive offshore mixing and greater primary productivity at the Bermuda Atlantic Time-series Study (BATS) site. Our results reveal that coral reefs undergo natural interannual events of rapid acidification due to shifts in reef biogeochemical processes that may be linked to offshore productivity and ultimately controlled by larger-scale climatic and oceanographic processes. PMID:26553977

  6. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    PubMed Central

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices. PMID:23980246

  7. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    PubMed

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  8. Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections.

    PubMed

    Marshall, Kristin N; Kaplan, Isaac C; Hodgson, Emma E; Hermann, Albert; Busch, D Shallin; McElhany, Paul; Essington, Timothy E; Harvey, Chris J; Fulton, Elizabeth A

    2017-04-01

    The benefits and ecosystem services that humans derive from the oceans are threatened by numerous global change stressors, one of which is ocean acidification. Here, we describe the effects of ocean acidification on an upwelling system that already experiences inherently low pH conditions, the California Current. We used an end-to-end ecosystem model (Atlantis), forced by downscaled global climate models and informed by a meta-analysis of the pH sensitivities of local taxa, to investigate the direct and indirect effects of future pH on biomass and fisheries revenues. Our model projects a 0.2-unit drop in pH during the summer upwelling season from 2013 to 2063, which results in wide-ranging magnitudes of effects across guilds and functional groups. The most dramatic direct effects of future pH may be expected on epibenthic invertebrates (crabs, shrimps, benthic grazers, benthic detritivores, bivalves), and strong indirect effects expected on some demersal fish, sharks, and epibenthic invertebrates (Dungeness crab) because they consume species known to be sensitive to changing pH. The model's pelagic community, including marine mammals and seabirds, was much less influenced by future pH. Some functional groups were less affected to changing pH in the model than might be expected from experimental studies in the empirical literature due to high population productivity (e.g., copepods, pteropods). Model results suggest strong effects of reduced pH on nearshore state-managed invertebrate fisheries, but modest effects on the groundfish fishery because individual groundfish species exhibited diverse responses to changing pH. Our results provide a set of projections that generally support and build upon previous findings and set the stage for hypotheses to guide future modeling and experimental analysis on the effects of OA on marine ecosystems and fisheries. © 2017 John Wiley & Sons Ltd.

  9. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  10. 77 FR 23209 - Endangered and Threatened Species; Proposed Delisting of Eastern DPS of Steller Sea Lions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... five potential sources of threat under this factor: 1. Global Climate Warming and Ocean Acidification... 5. Oil and Gas Development. Global climate warming and ocean acidification pose a potential threat... information suggests it is likely that global warming and ocean acidification may affect eastern North Pacific...

  11. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis).

    PubMed

    Chen, Wei-Yu; Lin, Hsing-Chieh

    2018-05-01

    Growing evidence indicates that ocean acidification has a significant impact on calcifying marine organisms. However, there is a lack of exposure risk assessments for aquatic organisms under future environmentally relevant ocean acidification scenarios. The objective of this study was to investigate the probabilistic effects of acidified seawater on the life-stage response dynamics of fertilization, larvae growth, and larvae mortality of the green sea urchin (Strongylocentrotus droebachiensis). We incorporated the regulation of primary body cavity (PBC) pH in response to seawater pH into the assessment by constructing an explicit model to assess effective life-stage response dynamics to seawater or PBC pH levels. The likelihood of exposure to ocean acidification was also evaluated by addressing the uncertainties of the risk characterization. For unsuccessful fertilization, the estimated 50% effect level of seawater acidification (EC50 SW ) was 0.55 ± 0.014 (mean ± SE) pH units. This life stage was more sensitive than growth inhibition and mortality, for which the EC50 values were 1.13 and 1.03 pH units, respectively. The estimated 50% effect levels of PBC pH (EC50 PBC ) were 0.99 ± 0.05 and 0.88 ± 0.006 pH units for growth inhibition and mortality, respectively. We also predicted the probability distributions for seawater and PBC pH levels in 2100. The level of unsuccessful fertilization had 50 and 90% probability risks of 5.07-24.51 (95% CI) and 0-6.95%, respectively. We conclude that this probabilistic risk analysis model is parsimonious enough to quantify the multiple vulnerabilities of the green sea urchin while addressing the systemic effects of ocean acidification. This study found a high potential risk of acidification affecting the fertilization of the green sea urchin, whereas there was no evidence for adverse effects on growth and mortality resulting from exposure to the predicted acidified environment.

  12. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles.

    PubMed

    Byrne, Maria; Lamare, Miles; Winter, David; Dworjanyn, Symon A; Uthicke, Sven

    2013-01-01

    The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10-20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems.

  13. The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles

    PubMed Central

    Byrne, Maria; Lamare, Miles; Winter, David; Dworjanyn, Symon A.; Uthicke, Sven

    2013-01-01

    The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10–20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems. PMID:23980242

  14. Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study

    NASA Astrophysics Data System (ADS)

    Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong

    2018-05-01

    This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.

  15. Devising a Coral Reef Ocean Acidification Monitoring Portfolio

    NASA Astrophysics Data System (ADS)

    Gledhill, D. K.; Jewett, L.

    2012-12-01

    Coral reef monitoring has frequently been based only on descriptive science with limited capacity to assign specific attribution to agents of change. There is a requirement to engineer a diagnostic monitoring approach that can test predictions regarding the response of coral reef ecosystems to ocean acidification, and to identify potential areas of refugia or areas of particular concern. The approach should provide the means to detect not only changes in water chemistry but also changes in coral reef community structure and function which can be anticipated based upon our current understanding of paleo-OA events, experimental findings, process investigations, and modeling projections In August, 2012 a Coral Reef Ocean Acidification Monitoring Portfolio Workshop was hosted by the NOAA Ocean Acidification Program and the National Coral Reef Institute at the Nova Southeastern University Oceanographic Center. The workshop convened researchers and project managers from around the world engaged in coral reef ecosystems ocean acidification monitoring and research. The workshop sought to define a suite of metrics to include as part of long-term coral reef monitoring efforts that can contribute to discerning specific attribution of changes in coral reef ecosystems in response to ocean acidification. This portfolio of observations should leverage existing and proposed monitoring initiatives and would be derived from a suite of chemical, biogeochemical and ecological measurements. This talk will report out on the key findings from the workshop which should include identifying the most valuable that should be integrated into long-term coral reef ecosystem monitoring that will aid in discerning changes in coral reef ecosystems in response to ocean acidification. The outcomes should provide: recommendations of the most efficient and robust ways to monitor these metrics; identified augmentations that would be required to current ocean acidification monitoring necessary to achieve these metrics; identify opportunities for immediate collaborations using existing resources that can serve to reduce the identified gaps; and help to clarify expectations for ocean acidification monitoring.

  16. Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Riebesell, U.

    2015-03-01

    Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these physiological responses play out in the natural environment.

  17. Sustainable oceans in a 'civilized' world requires a sustainable human civilization. (Invited)

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Ricke, K.; Maclaren, J. K.

    2013-12-01

    The sustainability of the ocean ecosystems is, in many areas, threatened by local and regional activities, including the discharge of pollutants, loss of wetlands, and overfishing. However, some threats to ocean ecosystems, notably ocean acidification and climate change, are a consequence decisions that cannot be substantively addressed only through action that is proximal to the affected ecosystem. The only practical way to reduce risks to the ocean posed by ocean acidification and climate change is to transform our energy system into one that does not use the atmosphere and the ocean as waste dumps for unwanted byproducts of modern civilization. The required revolution in our systems of energy production and consumption is a key component of the transition to a sustainable human civilization. It would be much easier to maintain a sustainable ocean if doing so did not require creating a sustainable human civilization; but unfortunately the ocean does not get to choose the problems it faces. Damage to the ocean is additive, or perhaps multiplicative. Thus, the response of an ecosystem exposed to coastal pollutants, loss of wetlands, overfishing, ocean acidification, and climate change will likely be more dramatic than the response of an ecosystem exposed to ocean acidification and climate change alone. Thus, there is merit in reducing coastal pollution, preserving and restoring wetlands, and reducing excess fishing, even if the ocean acidification and climate problems are not solved. Furthermore, damage from ocean acidification and climate change is not a yes or no question. Each CO2 emission causes a little more acidification and a little more climate change and thus a little more damage to existing ocean ecosystems. Hence, each CO2 emission that can be avoided helps avoid a little bit of damage to ocean ecosystems the world over. While the overall problem of sustainability of the ocean is very difficult to solve, there is no shortage of things to do that would be helpful. To illustrate the impact of global CO2 emissions on one class of marine ecosystems, we will present results from a recent modeling study on ocean acidification and coral reefs, and discuss recent related observational work we have been conducting in the Great Barrier Reef.

  18. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua

    PubMed Central

    Hu, Marian Y.; Michael, Katharina; Kreiss, Cornelia M.; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO3− cotransporter (NBC1), pendrin-like Cl−/HCO3− exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO3− secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO3− levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans. PMID:27313538

  19. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua.

    PubMed

    Hu, Marian Y; Michael, Katharina; Kreiss, Cornelia M; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid-base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na(+)/K(+)-ATPase (NKA), Na(+)/H(+)-exchanger 3 (NHE3), Na(+)/[Formula: see text] cotransporter (NBC1), pendrin-like Cl(-)/[Formula: see text] exchanger (SLC26a6), V-type H(+)-ATPase subunit a (VHA), and Cl(-) channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal [Formula: see text] secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood [Formula: see text] levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  20. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    PubMed

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica.

    PubMed

    Cummings, Vonda; Hewitt, Judi; Van Rooyen, Anthony; Currie, Kim; Beard, Samuel; Thrush, Simon; Norkko, Joanna; Barr, Neill; Heath, Philip; Halliday, N Jane; Sedcole, Richard; Gomez, Antony; McGraw, Christina; Metcalf, Victoria

    2011-01-05

    Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO(3)) to generate shells or skeletons. Studies of potential effects of future levels of pCO(2) on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO(2) levels of their natural environment (430 µatm, pH 7.99; based on field measurements) with those predicted for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH 8.32). Adult L. elliptica basal metabolism (oxygen consumption rates) and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS), a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (Ω(Ar) = 0.71), the CaCO(3) polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months) that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios.

  2. Elevated carbon dioxide alters the plasma composition and behaviour of a shark.

    PubMed

    Green, Leon; Jutfelt, Fredrik

    2014-09-01

    Increased carbon emissions from fossil fuels are increasing the pCO2 of the ocean surface waters in a process called ocean acidification. Elevated water pCO2 can induce physiological and behavioural effects in teleost fishes, although there appear to be large differences in sensitivity between species. There is currently no information available on the possible responses to future ocean acidification in elasmobranch fishes. We exposed small-spotted catsharks (Scyliorhinus canicula) to either control conditions or a year 2100 scenario of 990 μatm pCO2 for four weeks. We did not detect treatment effects on growth, resting metabolic rate, aerobic scope, skin denticle ultrastructure or skin denticle morphology. However, we found that the elevated pCO2 group buffered internal acidosis via [Formula: see text] accumulation with an associated increase in Na(+), indicating that the blood chemistry remained altered despite the long acclimation period. The elevated pCO2 group also exhibited a shift in their nocturnal swimming pattern from a pattern of many starts and stops to more continuous swimming. Although CO2-exposed teleost fishes can display reduced behavioural asymmetry (lateralization), the CO2-exposed sharks showed increased lateralization. These behavioural effects may suggest that elasmobranch neurophysiology is affected by CO2, as in some teleosts, or that the sharks detect CO2 as a constant stressor, which leads to altered behaviour. The potential direct effects of ocean acidification should henceforth be considered when assessing future anthropogenic effects on sharks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    ERIC Educational Resources Information Center

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  4. Calcification persists with CO2-induced ocean acidification but decreases with warming for the Caribbean coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Castillo, K. D.; Ries, J. B.; Westfield, I. T.; Weiss, J. M.; Bruno, J. F.

    2012-12-01

    Atmospheric carbon dioxide (pCO2) induced ocean acidification and rising seawater temperatures are identified as two of the greatest threats to modern coral reefs. Within this century, surface seawater pH is expected to decrease by at least 0.3 units, and sea surface temperature is predicted to rise by 1 to 3 °C. However, uncertainty remains as to whether ocean acidification or ocean warming will have a more deleterious impact on coral reefs by the end of the century. Here, we present results of 95-day laboratory experiments in which we investigated the impact of CO2-induced ocean acidification and temperature on the calcification rate of the tropical reef-building zooxanthellate scleractinian coral Siderastrea siderea. We found that calcification rates for S. siderea, estimated from buoyant weighing, increased as pCO2 increased from a pre-industrial value of 324 ppm to a near-present-day value of 477 ppm, remained unchanged as pCO2 increased from 477 ppm to the predicted end-of-century value of 604 ppm, and only declined at 6-times the modern pCO2 value of 2553 ppm. Corals reared at average pCO2 of 488 ppm and at temperatures of 25 and 32 °C, approximately the lower and upper temperature extremes for this species, calcified at lower rates relative to corals reared at 28 °C under equivalent pCO2. These results support the existing evidence that scleractinian corals such as S. siderea are able to manipulate the carbonate chemistry at their calcification site, enabling them to maintain their calcification rates under elevated pCO2 levels predicted for the end of this century. However, exposure of S. siderea corals to sea surface temperatures predicted for tropical waters for the end of this century grossly impaired their rate of calcification. These findings suggest that ocean warming poses a more immediate threat to the coral S. siderea than does ocean acidification, at least under scenarios (B1, A1T, and B2) predicted by the Intergovernmental Panel on Climate Change for the end of the 21st century. We are presently investigating the calcification responses of S. siderea to the combined effects of ocean acidification and warming, in order to better constrain how corals will respond to global CO2-induced changes that are predicted for the near future.

  5. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification.

    PubMed

    Crook, Elizabeth Derse; Kroeker, Kristy J; Potts, Donald C; Rebolledo-Vieyra, Mario; Hernandez-Terrones, Laura M; Paytan, Adina

    2016-01-01

    Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag) waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession.

  6. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification

    PubMed Central

    Crook, Elizabeth Derse; Kroeker, Kristy J.; Potts, Donald C.; Rebolledo-Vieyra, Mario; Hernandez-Terrones, Laura M.; Paytan, Adina

    2016-01-01

    Ocean acidification is a pervasive threat to coral reef ecosystems, and our understanding of the ecological processes driving patterns in tropical benthic community development in conditions of acidification is limited. We deployed limestone recruitment tiles in low aragonite saturation (Ωarag) waters during an in-situ field experiment at Puerto Morelos, Mexico, and compared them to tiles placed in control zones over a 14-month investigation. The early stages of succession showed relatively little difference in coverage of calcifying organisms between the low Ωarag and control zones. However, after 14 months of development, tiles from the low Ωarag zones had up to 70% less cover of calcifying organisms coincident with 42% more fleshy algae than the controls. The percent cover of biofilm and turf algae was also significantly greater in the low Ωarag zones, while the number of key grazing taxa remained constant. We hypothesize that fleshy algae have a competitive edge over the primary calcified space holders, coralline algae, and that acidification leads to altered competitive dynamics between various taxa. We suggest that as acidification impacts reefs in the future, there will be a shift in community assemblages away from upright and crustose coralline algae toward more fleshy algae and turf, established in the early stages of succession. PMID:26784986

  7. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.

    PubMed

    Evans, Tyler G; Chan, Francis; Menge, Bruce A; Hofmann, Gretchen E

    2013-03-01

    Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2 . The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2 -acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans. © 2013 Blackwell Publishing Ltd.

  8. Climate and Anthropogenic Change in Aquatic Environments: A Cross Ecosystem Perspective

    DTIC Science & Technology

    2010-01-01

    1009.1004]. Kleypas, J. A., R. A. Feely, V. J. Fabry, C. Langdon, C. L. Sabine, and L. L. Robbins. 2006. Impacts of ocean acidification on coral reefs ...deep sea, coastal oceans , and rocky intertidal) researchers ranked climate-related impacts (i.e., temperature and ocean acidification ) as the highest...related impacts (i.e., temperature and ocean acidification ) as the highest priority threats whereas estuarine, marsh, wetland, stream, and lake

  9. Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata.

    PubMed

    Parker, Laura M; O'Connor, Wayne A; Byrne, Maria; Dove, Michael; Coleman, Ross A; Pörtner, Hans-O; Scanes, Elliot; Virtue, Patti; Gibbs, Mitchell; Ross, Pauline M

    2018-02-14

    Whether sex determination of marine organisms can be altered by ocean acidification and warming during this century remains a significant, unanswered question. Here, we show that exposure of the protandric hermaphrodite oyster, Saccostrea glomerata to ocean acidification, but not warming, alters sex determination resulting in changes in sex ratios. After just one reproductive cycle there were 16% more females than males. The rate of gametogenesis, gonad area, fecundity, shell length, extracellular pH and survival decreased in response to ocean acidification. Warming as a sole stressor slightly increased the rate of gametogenesis, gonad area and fecundity, but this increase was masked by the impact of ocean acidification at a level predicted for this century. Alterations to sex determination, sex ratios and reproductive capacity will have flow on effects to reduce larval supply and population size of oysters and potentially other marine organisms. © 2018 The Author(s).

  10. Cherchez la femme - impact of ocean acidification on the egg jelly coat and attractants for sperm.

    PubMed

    Foo, Shawna A; Deaker, Dione; Byrne, Maria

    2018-04-19

    The impact of ocean acidification on marine invertebrate eggs and consequences for sperm chemotaxis are unknown. In the sea urchins Heliocidaris tuberculata and H. erythrogramma , with small (93µm) and large (393µm) eggs, respectively, we documented the effect of decreased pH on the egg jelly coat, an extracellular matrix that increases target size for sperm and contains sperm attracting molecules. In near future conditions (pH 7.8, 7.6) the jelly coat of H. tuberculata decreased by 11 and 21%, reducing egg target size by 9 and 17%, respectively. In contrast, the egg jelly coat of H. erythrogramma was not affected. The reduction in the jelly coat has implications for sperm chemotaxis in H. tuberculata In the presence of decreased pH and egg chemicals, the sperm of this species increased their velocity, motility and linearity, behaviour that was opposite to that seen for sperm exposed to egg chemicals in ambient conditions. Egg chemistry appears to cause a reduction in sperm velocity where attractants guide them in the direction of the egg. Investigation of the effects of decreased pH on sperm isolated from egg chemistry does not provide an integrative assessment of the effects of ocean acidification on sperm function. Differences in the sensitivity of the jelly coat of the two species is likely associated with egg evolution in H. erythrogramma We highlight important unappreciated impacts of ocean acidification on marine gamete functionality, and insights into potential winners and losers in a changing ocean, pointing to the advantage conveyed by evolution of large eggs. © 2018. Published by The Company of Biologists Ltd.

  11. The Effects of Ocean Acidification on Feeding and Contest Behaviour by the Beadlet Anemone Actinia equina

    NASA Astrophysics Data System (ADS)

    Bamber, Tess Olivia; Jackson, Angus Charles; Mansfield, Robert Philip

    2018-05-01

    Increasing concentrations of atmospheric carbon dioxide are causing oceanic pH to decline worldwide, a phenomenon termed ocean acidification. Mounting experimental evidence indicates that near-future levels of CO2 will affect calcareous invertebrates such as corals, molluscs and gastropods, by reducing their scope for calcification. Despite extensive research into ocean acidification in recent years, the effects on non-calcifying anthozoans, such as sea anemones, remain little explored. In Western Europe, intertidal anemones such as Actinia equina are abundant, lower trophic-level organisms that function as important ecosystem engineers. Changes to behaviours of these simple predators could have implications for intertidal assemblages. This investigation identified the effects of reduced seawater pH on feeding and contest behaviour by A. equina. Video footage was recorded for A. equina feeding at current-day seawater (pH 8.1), and the least (pH 7.9) and most (pH 7.6) severe end-of-century predictions. Footage was also taken of contests over ownership of space between anemones exposed to reduced pH and those that were not. No statistically significant differences were identified in feeding duration or various aspects of contest behaviour including initiating, winning, inflating acrorhagi, inflicting acrorhagial peels and contest duration. Multivariate analyses showed no effect of pH on a combination of these variables. This provides contrast with other studies where anemones with symbiotic algae thrive in areas of natural increased acidity. Thus, novel experiments using intraspecific contests and resource-holding potential may prove an effective approach to understand sub-lethal consequences of ocean acidification for A. equina, other sea anemones and more broadly for marine ecosystems.

  12. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

    PubMed

    Collard, Marie; De Ridder, Chantal; David, Bruno; Dehairs, Frank; Dubois, Philippe

    2015-02-01

    Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change. © 2014 John Wiley & Sons Ltd.

  13. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean.

    PubMed

    Byrne, Maria; Ho, Melanie; Wong, Eunice; Soars, Natalie A; Selvakumaraswamy, Paulina; Shepard-Brennand, Hannah; Dworjanyn, Symon A; Davis, Andrew R

    2011-08-07

    The most fragile skeletons produced by benthic marine calcifiers are those that larvae and juveniles make to support their bodies. Ocean warming, acidification, decreased carbonate saturation and their interactive effects are likely to impair skeletogenesis. Failure to produce skeleton in a changing ocean has negative implications for a diversity of marine species. We examined the interactive effects of warming and acidification on an abalone (Haliotis coccoradiata) and a sea urchin (Heliocidaris erythrogramma) reared from fertilization in temperature and pH/pCO(2) treatments in a climatically and regionally relevant setting. Exposure of ectodermal (abalone) and mesodermal (echinoid) calcifying systems to warming (+2°C to 4°C) and acidification (pH 7.6-7.8) resulted in unshelled larvae and abnormal juveniles. Haliotis development was most sensitive with no interaction between stressors. For Heliocidaris, the percentage of normal juveniles decreased in response to both stressors, although a +2°C warming diminished the negative effect of low pH. The number of spines produced decreased with increasing acidification/pCO(2), and the interactive effect between stressors indicated that a +2°C warming reduced the negative effects of low pH. At +4°C, the developmental thermal tolerance was breached. Our results show that projected near-future climate change will have deleterious effects on development with differences in vulnerability in the two species.

  14. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean

    PubMed Central

    Byrne, Maria; Ho, Melanie; Wong, Eunice; Soars, Natalie A.; Selvakumaraswamy, Paulina; Shepard-Brennand, Hannah; Dworjanyn, Symon A.; Davis, Andrew R.

    2011-01-01

    The most fragile skeletons produced by benthic marine calcifiers are those that larvae and juveniles make to support their bodies. Ocean warming, acidification, decreased carbonate saturation and their interactive effects are likely to impair skeletogenesis. Failure to produce skeleton in a changing ocean has negative implications for a diversity of marine species. We examined the interactive effects of warming and acidification on an abalone (Haliotis coccoradiata) and a sea urchin (Heliocidaris erythrogramma) reared from fertilization in temperature and pH/pCO2 treatments in a climatically and regionally relevant setting. Exposure of ectodermal (abalone) and mesodermal (echinoid) calcifying systems to warming (+2°C to 4°C) and acidification (pH 7.6–7.8) resulted in unshelled larvae and abnormal juveniles. Haliotis development was most sensitive with no interaction between stressors. For Heliocidaris, the percentage of normal juveniles decreased in response to both stressors, although a +2°C warming diminished the negative effect of low pH. The number of spines produced decreased with increasing acidification/pCO2, and the interactive effect between stressors indicated that a +2°C warming reduced the negative effects of low pH. At +4°C, the developmental thermal tolerance was breached. Our results show that projected near-future climate change will have deleterious effects on development with differences in vulnerability in the two species. PMID:21177689

  15. Coral calcifying fluid pH dictates response to ocean acidification.

    PubMed

    Holcomb, M; Venn, A A; Tambutté, E; Tambutté, S; Allemand, D; Trotter, J; McCulloch, M

    2014-06-06

    Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification. Lateral growth was associated with lower pHcf and greater changes with acidification. Calcification showed a pattern similar to pHcf, with lateral growth being more strongly affected by acidification than apical. Regulation of pHcf is therefore spatially variable within a coral and critical to determining the sensitivity of calcification to ocean acidification.

  16. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean.

    PubMed

    Kamya, Pamela Z; Dworjanyn, Symon A; Hardy, Natasha; Mos, Benjamin; Uthicke, Sven; Byrne, Maria

    2014-11-01

    Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems. © 2014 John Wiley & Sons Ltd.

  17. Resilience of SAR11 bacteria to rapid acidification in the high-latitude open ocean.

    PubMed

    Hartmann, Manuela; Hill, Polly G; Tynan, Eithne; Achterberg, Eric P; Leakey, Raymond J G; Zubkov, Mikhail V

    2016-02-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    NASA Astrophysics Data System (ADS)

    Hettinger, A.; Sanford, E.; Hill, T. M.; Hosfelt, J. D.; Russell, A. D.; Gaylord, B.

    2013-03-01

    Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2) enters seawater and alters its pH (termed "ocean acidification"). However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida) larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. High food availability offset the negative consequences of elevated pCO2 on larval shell growth and total dry weight. Low food availability, in contrast, exacerbated these impacts. In both cases, effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

  19. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    NASA Astrophysics Data System (ADS)

    Hettinger, A.; Sanford, E.; Hill, T. M.; Hosfelt, J. D.; Russell, A. D.; Gaylord, B.

    2013-10-01

    Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2) enters seawater and alters ocean pH (termed "ocean acidification"). However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida) larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. Elevated pCO2 had negative effects on larval growth, total dry weight, and metamorphic success, but high food availability partially offset these influences. The combination of elevated pCO2 and low food availability led to the greatest reduction in larval performance. However, the effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

  20. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification

    PubMed Central

    Lohbeck, Kai T.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2014-01-01

    Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. PMID:24827439

  1. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves.

    PubMed

    Gobler, Christopher J; DePasquale, Elizabeth L; Griffith, Andrew W; Baumann, Hannes

    2014-01-01

    Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming. There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2. Presently, however, the concurrent effects of low oxygen and acidification on marine organisms are largely unknown, as most prior studies of marine hypoxia have not considered pH levels. We experimentally assessed the consequences of hypoxic and acidified water for early life stage bivalves (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria), marine organisms of significant economic and ecological value and sensitive to climate change. In larval scallops, experimental and naturally-occurring acidification (pH, total scale  = 7.4-7.6) reduced survivorship (by >50%), low oxygen (30-50 µM) inhibited growth and metamorphosis (by >50%), and the two stressors combined produced additively negative outcomes. In early life stage clams, however, hypoxic waters led to 30% higher mortality, while acidified waters significantly reduced growth (by 60%). Later stage clams were resistant to hypoxia or acidification separately but experienced significantly (40%) reduced growth rates when exposed to both conditions simultaneously. Collectively, these findings demonstrate that the consequences of low oxygen and acidification for early life stage bivalves, and likely other marine organisms, are more severe than would be predicted by either individual stressor and thus must be considered together when assessing how ocean animals respond to these conditions both today and under future climate change scenarios.

  2. Poleward displacement of coastal upwelling-favorable winds through the 21st century

    NASA Astrophysics Data System (ADS)

    Rykaczewski, R. R.; Dunne, J. P.; Sydeman, W. J.; Garcia-Reyes, M.; Black, B.; Bograd, S. J.

    2016-02-01

    Coastal upwelling is a critical factor influencing the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A leading conceptual hypothesis projects that the winds that induce coastal upwelling will intensify in response to increased land-sea temperature differences associated with anthropogenic global warming. We examine this hypothesis using an ensemble of coupled, ocean-atmosphere models and find limited evidence for intensification of upwelling-favorable winds or atmospheric pressure gradients in response to increasing land-sea temperature differences. However, our analyses reveal consistent latitudinal and seasonal dependencies of projected changes in wind intensity associated with poleward migration of major atmospheric high-pressure cells. Summertime winds near poleward boundaries of climatological upwelling zones are projected to intensify, while winds near equatorward boundaries are projected to weaken. Developing a better understanding of future changes in upwelling winds is essential to identifying portions of the oceans susceptible to increased hypoxia, ocean acidification, and eutrophication under climate change.

  3. U.S. ocean acidification researchers: First national meeting

    NASA Astrophysics Data System (ADS)

    Cooley, Sarah R.; Kleypas, Joan; Benway, Heather

    2011-09-01

    Ocean Carbon and Biogeochemistry Program Ocean Acidification Principal Investigators' Meeting; Woods Hole, Massachusetts, 22-24 March 2011 ; Ocean acidification (OA) is the progressive decrease in seawater pH and change in inorganic carbon chemistry caused by uptake of anthropogenic carbon dioxide (CO2). Marine species respond to OA in multiple ways that could profoundly alter ocean ecosystems and the goods and services they provide to human communities. With major support from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Science Foundation (NSF) and additional support from the U.S. Environmental Protection Agency (EPA), the Naval Postgraduate School, and the U.S. Geological Survey (USGS), the Ocean Carbon and Biogeochemistry (OCB) Project Office and Ocean Acidification Subcommittee (http://www.us-ocb.org/about/subcommittees.html) held the first multidisciplinary workshop for U.S. OA researchers at the Woods Hole Oceanographic Institution. The 112 attendees included ecologists, paleoceanographers, instrumentation specialists, chemists, biologists, economists, ocean and ecosystem modelers, and communications specialists.

  4. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule.

    PubMed

    Ong, E Z; Briffa, M; Moens, T; Van Colen, C

    2017-09-01

    The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO 2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO 2 waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Oyster reproduction is compromised by acidification experienced seasonally in coastal regions.

    PubMed

    Boulais, Myrina; Chenevert, Kyle John; Demey, Ashley Taylor; Darrow, Elizabeth S; Robison, Madison Raine; Roberts, John Park; Volety, Aswani

    2017-10-16

    Atmospheric carbon dioxide concentrations have been rising during the past century, leading to ocean acidification (OA). Coastal and estuarine habitats experience annual pH variability that vastly exceeds the magnitude of long-term projections in open ocean regions. Eastern oyster (Crassostrea virginica) reproduction season coincides with periods of low pH occurrence in estuaries, thus we investigated effects of moderate (pH 7.5, pCO 2 2260 µatm) and severe OA (pH 7.1, pCO 2 5584 µatm; and 6.7, pCO 2 18480 µatm) on oyster gametogenesis, fertilization, and early larval development successes. Exposure at severe OA during gametogenesis caused disruption in oyster reproduction. Oogenesis appeared to be more sensitive compared to spermatogenesis. However, Eastern oyster reproduction was resilient to moderate OA projected for the near-future. In the context of projected climate change exacerbating seasonal acidification, OA of coastal habitats could represent a significant bottleneck for oyster reproduction which may have profound negative implications for coastal ecosystems reliant on this keystone species.

  6. Warming up, turning sour, losing breath: ocean biogeochemistry under global change.

    PubMed

    Gruber, Nicolas

    2011-05-28

    In the coming decades and centuries, the ocean's biogeochemical cycles and ecosystems will become increasingly stressed by at least three independent factors. Rising temperatures, ocean acidification and ocean deoxygenation will cause substantial changes in the physical, chemical and biological environment, which will then affect the ocean's biogeochemical cycles and ecosystems in ways that we are only beginning to fathom. Ocean warming will not only affect organisms and biogeochemical cycles directly, but will also increase upper ocean stratification. The changes in the ocean's carbonate chemistry induced by the uptake of anthropogenic carbon dioxide (CO(2)) (i.e. ocean acidification) will probably affect many organisms and processes, although in ways that are currently not well understood. Ocean deoxygenation, i.e. the loss of dissolved oxygen (O(2)) from the ocean, is bound to occur in a warming and more stratified ocean, causing stress to macro-organisms that critically depend on sufficient levels of oxygen. These three stressors-warming, acidification and deoxygenation-will tend to operate globally, although with distinct regional differences. The impacts of ocean acidification tend to be strongest in the high latitudes, whereas the low-oxygen regions of the low latitudes are most vulnerable to ocean deoxygenation. Specific regions, such as the eastern boundary upwelling systems, will be strongly affected by all three stressors, making them potential hotspots for change. Of additional concern are synergistic effects, such as ocean acidification-induced changes in the type and magnitude of the organic matter exported to the ocean's interior, which then might cause substantial changes in the oxygen concentration there. Ocean warming, acidification and deoxygenation are essentially irreversible on centennial time scales, i.e. once these changes have occurred, it will take centuries for the ocean to recover. With the emission of CO(2) being the primary driver behind all three stressors, the primary mitigation strategy is to reduce these emissions. © 2011 The Royal Society

  7. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  8. Combined effects of ocean acidification and temperature on planula larvae of the moon jellyfish Aurelia coerulea.

    PubMed

    Dong, Zhijun; Sun, Tingting

    2018-08-01

    Rapidly rising levels of atmospheric CO 2 have caused two environmental stressors, ocean acidification and seawater temperature increases, which represent major abiotic threats to marine organisms. Here, we investigated for the first time the combined effects of ocean acidification and seawater temperature increases on the behavior, survival, and settlement of the planula larvae of Aurelia coerulea, which is considered a nuisance species around the world. Three pH levels (8.1, 7.7 and 7.3) and two temperature levels (24 °C and 27 °C) were used in the present study. There were no interactive effects of temperature and pH on the behavior, survival, and settlement of planula larvae of A. coerulea. We found that the swimming speed and mortality of the planula larvae of A. coerulea were significantly affected by temperature, and low pH significantly affected settlement. Planula larvae of A. coerulea from the elevated temperature treatment moved faster and showed higher mortality than those at the control temperature. The settlement rate of A. coerulea planulae was significantly higher at the pH level of 7.3 than at other pH levels. These results suggest that seawater temperature increase, rather than reduced pH, was the main stress factor affecting the survival of A. coerulea planulae. Overall, the planula larvae of the common jellyfish A. coerulea appeared to be resistant to ocean acidification, but may be negatively affected by future seawater temperature increases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus

    PubMed Central

    Padilla-Gamiño, Jacqueline L.; Kelly, Morgan W.; Evans, Tyler G.; Hofmann, Gretchen E.

    2013-01-01

    Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species. PMID:23536595

  10. Ocean acidification and its impacts: an expert survey

    NASA Astrophysics Data System (ADS)

    Gattuso, J.; Mach, K.; Morgan, M. G.

    2011-12-01

    The number of scientists investigating ocean acidification as well as the number of papers published on this issue have increased considerably in the past few years. On the one hand, the advances are welcome for the assessment of ocean acidification and its impacts. On the other hand, the volume and rapidity of the scientific developments as well as some contradictory results have created challenges for assessing the current state of knowledge and informing policy makers. Two tools are being used to synthesize the current information: meta-analysis and expert survey. In January this year, Working Groups I and II of the IPCC organized an expert meeting on ocean acidification in Okinawa. Following this meeting, we built a set of 22 statements, in consultation with several of the meeting participants. An expert survey was then conducted. It involved 52 experts who provided a considerable amount of information. The statements covered a broad array of research fields and were grouped in 3 categories: chemical aspects, biological and biogeochemical responses, and policy and socio-economic aspects. The survey results indicate a relatively strong consensus for most statements related to the past, present and future chemical aspects. Examples of consensual issues are: non-anthropogenic ocean acidification events have occurred in the geological past, anthropogenic CO2 emissions is the main (but not the only) mechanism generating the current ocean acidification event, and ocean acidification will be felt for centuries. The experts generally agreed that there will be impacts on biological and ecological processes and biogeochemical feedbacks, but for such statements, the levels of agreement were lower overall, with more variability across responses. Levels of agreements among experts surveyed were comparatively higher for statements regarding calcification, primary production and nitrogen fixation, as compared to impacts on food-webs. The levels of agreement for statements pertaining to policy and socio-economic impacts, for example on food security, were also relatively low. Thanks are due to the respondents: Andreas Andersson, James Barry, Jerry Blackford, Philip Boyd, Ken Caldeira, Long Cao, Sinead Collins, Sarah Cooley, Kim Currie, Allemand Denis, Brad deYoung, Andrew Dickson, Ken Drinkwater, Sam Dupont, Jonathan Erez, Richard Feely, Maoz Fine, Kunshan Gao, Marion Gehlen, Jason Hall-Spencer, Christoph Heinze, Ove Hoegh-Guldberg, Gretchen Hofmann, Roberto Iglesias-Prieto, Maria Debora Iglesias-Rodriguez, Akio Ishida, Masao Ishii, Atsushi Ishimatsu, Haruko Kurihara, Kitack Lee, Su Mei Liu, Salvador Lluch-Cota, Jeremy T. Mathis, Ben McNeil, Philip Munday, John Pandolfi, Gian-Kasper Plattner, Alexander Polonsky, Hans-Otto Pörtner, Ulf Riebesell, Rongshuo, Chris Sabine, Daniela Schmidt, Brad Seibel, Yoshihisa Shirayama, Atsushi Suzuki, Carol Turley, Nicola Wannicke, Poh Poh Wong, Michiyo Yamamoto-Kawai and Peter Zavialov.

  11. Quantifying the Variability in Species' Vulnerability to Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Kroeker, K. J.; Kordas, R. L.; Crim, R.; Gattuso, J.; Hendriks, I.; Singh, G. G.

    2012-12-01

    Ocean acidification represents a threat to marine species and ecosystems worldwide. As such, understanding the potential ecological impacts of acidification is a high priority for science, management, and policy. As research on the biological impacts of ocean acidification continues to expand at an exponential rate, a comprehensive understanding of the generalities and/or variability in organisms' responses and the corresponding levels of certainty of these potential responses is essential. Meta-analysis is a quantitative technique for summarizing the results of primary research studies and provides a transparent method to examine the generalities and/or variability in scientific results across numerous studies. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining the biological impacts of ocean acidification. Our results reveal decreased survival, calcification, growth, reproduction and development in response to acidification across a broad range of marine organisms, as well as significant trait-mediated variation among taxonomic groups and enhanced sensitivity among early life history stages. In addition, our results reveal a pronounced sensitivity of molluscs to acidification, especially among the larval stages, and enhanced vulnerability to acidification with concurrent exposure to increased seawater temperatures across a diversity of organisms.

  12. Sponge biomass and bioerosion rates increase under ocean warming and acidification.

    PubMed

    Fang, James K H; Mello-Athayde, Matheus A; Schönberg, Christine H L; Kline, David I; Hoegh-Guldberg, Ove; Dove, Sophie

    2013-12-01

    The combination of ocean warming and acidification as a result of increasing atmospheric carbon dioxide (CO2 ) is considered to be a significant threat to calcifying organisms and their activities on coral reefs. How these global changes impact the important roles of decalcifying organisms (bioeroders) in the regulation of carbonate budgets, however, is less understood. To address this important question, the effects of a range of past, present and future CO2 emission scenarios (temperature + acidification) on the excavating sponge Cliona orientalis Thiele, 1900 were explored over 12 weeks in early summer on the southern Great Barrier Reef. C. orientalis is a widely distributed bioeroder on many reefs, and hosts symbiotic dinoflagellates of the genus Symbiodinium. Our results showed that biomass production and bioerosion rates of C. orientalis were similar under a pre-industrial scenario and a present day (control) scenario. Symbiodinium population density in the sponge tissue was the highest under the pre-industrial scenario, and decreased towards the two future scenarios with sponge replicates under the 'business-as-usual' CO2 emission scenario exhibiting strong bleaching. Despite these changes, biomass production and the ability of the sponge to erode coral carbonate materials both increased under the future scenarios. Our study suggests that C. orientalis will likely grow faster and have higher bioerosion rates in a high CO2 future than at present, even with significant bleaching. Assuming that our findings hold for excavating sponges in general, increased sponge biomass coupled with accelerated bioerosion may push coral reefs towards net erosion and negative carbonate budgets in the future. © 2013 John Wiley & Sons Ltd.

  13. Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses.

    PubMed

    Collier, Catherine J; Langlois, Lucas; Ow, Yan; Johansson, Charlotte; Giammusso, Manuela; Adams, Matthew P; O'Brien, Katherine R; Uthicke, Sven

    2018-06-01

    Seagrasses are globally important coastal habitat-forming species, yet it is unknown how seagrasses respond to the combined pressures of ocean acidification and warming of sea surface temperature. We exposed three tropical species of seagrass (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri) to increasing temperature (21, 25, 30, and 35°C) and pCO 2 (401, 1014, and 1949 μatm) for 7 wk in mesocosms using a controlled factorial design. Shoot density and leaf extension rates were recorded, and plant productivity and respiration were measured at increasing light levels (photosynthesis-irradiance curves) using oxygen optodes. Shoot density, growth, photosynthetic rates, and plant-scale net productivity occurred at 25°C or 30°C under saturating light levels. High pCO 2 enhanced maximum net productivity for Z. muelleri, but not in other species. Z. muelleri was the most thermally tolerant as it maintained positive net production to 35°C, yet for the other species there was a sharp decline in productivity, growth, and shoot density at 35°C, which was exacerbated by pCO 2 . These results suggest that thermal stress will not be offset by ocean acidification during future extreme heat events and challenges the current hypothesis that tropical seagrass will be a 'winner' under future climate change conditions. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    PubMed

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  15. Development of an Integrated ISFET pH Sensor for High Pressure Applications in the Deep-Sea

    DTIC Science & Technology

    2012-09-30

    Measurements in the upper ocean suggest that sensor precision is comparable to the annual pH change due to ocean acidification (Fig. 2). An array of...profiling floats equipped with pH sensors would be capable of directly monitoring the process of ocean acidification . Further refinement of the sensor...Quality of Life The high pressure pH sensor will have direct applications to our understanding of ocean acidification and the impacts on ecosystem

  16. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Gutowska, M. A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M. C.; Bleich, M.; Pörtner, H.-O.

    2009-10-01

    Future ocean acidification has the potential to adversely affect many marine organisms. A growing body of evidence suggests that many species could suffer from reduced fertilization success, decreases in larval- and adult growth rates, reduced calcification rates, and even mortality when being exposed to near-future levels (year 2100 scenarios) of ocean acidification. Little research focus is currently placed on those organisms/taxa that might be less vulnerable to the anticipated changes in ocean chemistry; this is unfortunate, as the comparison of more vulnerable to more tolerant physiotypes could provide us with those physiological traits that are crucial for ecological success in a future ocean. Here, we attempt to summarize some ontogenetic and lifestyle traits that lead to an increased tolerance towards high environmental pCO2. In general, marine ectothermic metazoans with an extensive extracellular fluid volume may be less vulnerable to future acidification as their cells are already exposed to much higher pCO2 values (0.1 to 0.4 kPa, ca. 1000 to 3900 μatm) than those of unicellular organisms and gametes, for which the ocean (0.04 kPa, ca. 400 μatm) is the extracellular space. A doubling in environmental pCO2 therefore only represents a 10% change in extracellular pCO2 in some marine teleosts. High extracellular pCO2 values are to some degree related to high metabolic rates, as diffusion gradients need to be high in order to excrete an amount of CO2 that is directly proportional to the amount of O2 consumed. In active metazoans, such as teleost fish, cephalopods and many brachyuran crustaceans, exercise induced increases in metabolic rate require an efficient ion-regulatory machinery for CO2 excretion and acid-base regulation, especially when anaerobic metabolism is involved and metabolic protons leak into the extracellular space. These ion-transport systems, which are located in highly developed gill epithelia, form the basis for efficient compensation of pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (>0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, gametes, zygotes and early embryonic stages, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success - even of the more tolerant taxa. Our current understanding of which marine animal taxa will be affected adversely in their physiological and ecological fitness by projected scenarios of anthropogenic ocean acidification is quite incomplete. While a growing amount of empirical evidence from CO2 perturbation experiments suggests that several taxa might react quite sensitively to ocean acidification, others seem to be surprisingly tolerant. However, there is little mechanistic understanding on what physiological traits are responsible for the observed differential sensitivities (see reviews of Seibel and Walsh, 2003; Pörtner et al., 2004; Fabry et al., 2008; Pörtner, 2008). This leads us to the first very basic question of how to define general CO2 tolerance on the species level.

  17. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.

    PubMed

    Benner, Ina; Diner, Rachel E; Lefebvre, Stephane C; Li, Dian; Komada, Tomoko; Carpenter, Edward J; Stillman, Jonathon H

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.

  18. IMBER (Integrated Marine Biogeochemistry and Ecosystem Research: Support of Ocean Carbon Research

    NASA Astrophysics Data System (ADS)

    Rimetz-Planchon, J.; Gattuso, J.; Maddison, L.; Bakker, D. C.; Gruber, N.

    2011-12-01

    IMBER (Integrated Marine Biogeochemistry and Ecosystem Research), co-sponsored by SCOR (Scientific Committee on Oceanic Research) and IGBP (International Geosphere-Biosphere Programme), coordinates research that focuses on understanding and predicting changes in oceanic food webs and biogeochemical cycles that arise from global change. An integral part of this overall goal is to understand the marine carbon cycle, with emphasis on changes that may occur as a result of a changing climate, increased atmospheric CO2 levels and/or reduced oceanic pH. To address these key ocean carbon issues, IMBER and SOLAS (Surface Ocean Lower Atmosphere Study), formed the joint SOLAS-IMBER Carbon, or SIC Working Group. The SIC Working Group activities are organised into three sub-groups. Sub-group 1 (Surface Ocean Systems) focuses on synthesis, instrumentation and technology development, VOS (Voluntary Observing Ships) and mixed layer sampling strategies. The group contributed to the development of SOCAT (Surface Ocean CO2 Atlas, www.socat.info), a global compilation of underway surface water fCO2 (fugacity of CO2) data in common format. It includes 6.3 million measurements from 1767 cruises from 1968 and 2008 by more than 10 countries. SOCAT will be publically available and will serve a wide range of user communities. Its public release is planned for September 2011. SOCAT is strongly supported by IOCCP and CARBOOCEAN. Sub-group 2 (Interior Ocean Carbon Storage) covers inventory and observations, natural variability, transformation and interaction with modelling. It coordinated a review of vulnerabilities of the decadal variations of the interior ocean carbon and oxygen cycle. It has also developed a plan to add dissolved oxygen sensors to the ARGO float program in order to address the expected loss of oxygen as a result of ocean warming. The group also focuses on the global synthesis of ocean interior carbon observations to determine the oceanic uptake of anthropogenic CO2 since the mid 1990s. Sub-group 3 (SOLAS-IMBER Ocean Acidification or SIOA) coordinates international research efforts in ocean acidification and undertakes synthesis activities in ocean acidification at the international level. Several on-going synthesis activities, such as book projects and work by the Intergovernmental Panel on Climate Change (IPCC) are endorsed by this group. The SIOA developed a package of activities which it identified as critical to assess the effects of ocean acidification but are, for the most part, not funded at the national or regional levels and must be carried out at the international level. Among them is the promotion of international experiments, the sharing of experimental platforms, and the undertaking of inter-comparison exercises. The SIOA has submitted a proposal to launch an Ocean Acidification International Coordination Office in March 2011. This poster highlights some results from the SIC Working Group and indicates future challenges.

  19. Differential Effects of Ocean Acidification on Coral Calcification: Insights from Geochemistry.

    NASA Astrophysics Data System (ADS)

    Holcomb, M.; Decarlo, T. M.; Venn, A.; Tambutte, E.; Gaetani, G. A.; Tambutte, S.; Allemand, D.; McCulloch, M. T.

    2014-12-01

    Although ocean acidification is expected to negatively impact calcifying animals due to the formation of CaCO3 becoming less favorable, experimental evidence is mixed. Corals have received considerable attention in this regard; laboratory culture experiments show there to be a wide array of calcification responses to acidification. Here we will show how relationships for the incorporation of various trace elements and boron isotopes into synthetic aragonite can be used to reconstruct carbonate chemistry at the site of calcification. In turn the chemistry at the site of calcification can be determined under different ocean acidification scenarios and differences in the chemistry at the site of calcification linked to different calcification responses to acidification. Importantly we will show that the pH of the calcifying fluid alone is insufficient to estimate calcification responses, thus a multi-proxy approach using multiple trace elements and isotopes is required to understand how the site of calcification is affected by ocean acidification.

  20. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient.

    PubMed

    Pettit, Laura R; Smart, Christopher W; Hart, Malcolm B; Milazzo, Marco; Hall-Spencer, Jason M

    2015-05-01

    Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ∼8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ∼7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.

  1. Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient

    PubMed Central

    Pettit, Laura R; Smart, Christopher W; Hart, Malcolm B; Milazzo, Marco; Hall-Spencer, Jason M

    2015-01-01

    Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ∼8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ∼7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera. PMID:26140195

  2. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).

    PubMed

    Raddatz, Stefanie; Guy-Haim, Tamar; Rilov, Gil; Wahl, Martin

    2017-02-01

    Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO 2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future. © 2016 Phycological Society of America.

  3. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?

    NASA Astrophysics Data System (ADS)

    Feng, Ellias Y.; Keller, David P.; Koeve, Wolfgang; Oschlies, Andreas

    2016-07-01

    Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.

  4. Compensation of ocean acidification effects in Arctic phytoplankton assemblages

    NASA Astrophysics Data System (ADS)

    Hoppe, Clara Jule Marie; Wolf, Klara K. E.; Schuback, Nina; Tortell, Philippe D.; Rost, Björn

    2018-06-01

    The Arctic and subarctic shelf seas, which sustain large fisheries and contribute to global biogeochemical cycling, are particularly sensitive to ongoing ocean acidification (that is, decreasing seawater pH due to anthropogenic CO2 emissions). Yet, little information is available on the effects of ocean acidification on natural phytoplankton assemblages, which are the main primary producers in high-latitude waters. Here we show that coastal Arctic and subarctic primary production is largely insensitive to ocean acidification over a large range of light and temperature levels in different experimental designs. Out of ten CO2-manipulation treatments, significant ocean acidification effects on primary productivity were observed only once (at temperatures below 2 °C), and shifts in the species composition occurred only three times (without correlation to specific experimental conditions). These results imply a high capacity to compensate for environmental variability, which can be understood in light of the environmental history, tolerance ranges and intraspecific diversity of the dominant phytoplankton species.

  5. Climate change and ocean acidification-interactions with aquatic toxicology.

    PubMed

    Nikinmaa, Mikko

    2013-01-15

    The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules.

    PubMed

    Roggatz, Christina C; Lorch, Mark; Hardege, Jörg D; Benoit, David M

    2016-12-01

    Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growth and fitness of marine animals are well documented. Recent evidence also suggests that a range of chemically mediated behaviours and interactions in marine fish and invertebrates will be affected. Marine animals use chemical cues, for example, to detect predators, for settlement, homing and reproduction. But, while effects of high CO 2 conditions on these behaviours are described across many species, little is known about the underlying mechanisms, particularly in invertebrates. Here, we investigate the direct influence of future oceanic pH conditions on the structure and function of three peptide signalling molecules with an interdisciplinary combination of methods. NMR spectroscopy and quantum chemical calculations were used to assess the direct molecular influence of pH on the peptide cues, and we tested the functionality of the cues in different pH conditions using behavioural bioassays with shore crabs (Carcinus maenas) as a model system. We found that peptide signalling cues are susceptible to protonation in future pH conditions, which will alter their overall charge. We also show that structure and electrostatic properties important for receptor binding differ significantly between the peptide forms present today and the protonated signalling peptides likely to be dominating in future oceans. The bioassays suggest an impaired functionality of the signalling peptides at low pH. Physiological changes due to high CO 2 conditions were found to play a less significant role in influencing the investigated behaviour. From our results, we conclude that the change of charge, structure and consequently function of signalling molecules presents one possible mechanism to explain altered behaviour under future oceanic pH conditions. © 2016 John Wiley & Sons Ltd.

  7. Food web changes under ocean acidification promote herring larvae survival.

    PubMed

    Sswat, Michael; Stiasny, Martina H; Taucher, Jan; Algueró-Muñiz, Maria; Bach, Lennart T; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona

    2018-05-01

    Ocean acidification-the decrease in seawater pH due to rising CO 2 concentrations-has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO 2 , but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO 2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO 2 conditions (~760 µatm pCO 2 ) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO 2 -stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO 2 ocean.

  8. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.

    PubMed

    Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H

    2014-07-07

    Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. NOAA activities in support of in situ validation observations for satellite ocean color products and related ocean science research

    NASA Astrophysics Data System (ADS)

    Lance, V. P.; DiGiacomo, P. M.; Ondrusek, M.; Stengel, E.; Soracco, M.; Wang, M.

    2016-02-01

    The NOAA/STAR ocean color program is focused on "end-to-end" production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, "fit for purpose" ocean color products that support users and applications in all NOAA line offices, as well as external (both applied and research) users. The first NOAA/OMAO (Office of Marine and Aviation Operations) sponsored research cruise dedicated to VIIRS SNPP validation was completed aboard the NOAA Ship Nancy Foster in November 2014. The goals and objectives of the 2014 cruise are highlighted in the recently published NOAA/NESDIS Technical Report. A second dedicated validation cruise is planned for December 2015 and will have been completed by the time of this meeting. The goals and objectives of the 2015 cruise will be discussed in the presentation. Participants and observations made will be reported. The NOAA Ocean Color Calibration/Validation (Cal/Val) team also works collaboratively with others programs. A recent collaboration with the NOAA Ocean Acidification program on the East Coast Ocean Acidification (ECOA) cruise during June-July 2015, where biogeochemical and optical measurements were made together, allows for the leveraging of in situ observations for satellite validation and for their use in the development of future ocean acidification satellite products. Datasets from these cruises will be formally archived at NOAA and Digital Object Identifier (DOI) numbers will be assigned. In addition, the NOAA Coast/OceanWatch Program is working to establish a searchable database. The beta version will begin with cruise data and additional in situ calibration/validation related data collected by the NOAA Ocean Color Cal/Val team members. A more comprehensive searchable NOAA database, with contributions from other NOAA ocean observation platforms and cruise collaborations is envisioned. Progress on these activities will be reported.

  10. European sea bass show behavioural resilience to near-future ocean acidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duteil, M.; Pope, E. C.; Pérez-Escudero, A.

    Ocean acidification (OA)-caused by rising concentrations of carbon dioxide (CO 2)-is thought to be a major threat to marine ecosystems and has been shown to induce behavioural alterations in fish. Here we show behavioural resilience to near-future OA in a commercially important and migratory marine finfish, the Sea bass (Dicentrarchus labrax). Sea bass were raised from eggs at 19 °C in ambient or near-future OA (1000 μatm pCO 2) conditions and n = 270 fish were observed 59-68 days post-hatch using automated tracking from video. Fish reared under ambient conditions, OA conditions, and fish reared in ambient conditions but testedmore » in OA water showed statistically similar movement patterns, and reacted to their environment and interacted with each other in comparable ways. Thus our findings indicate behavioural resilience to near-future OA in juvenile sea bass. Moreover, simulated agent-based models indicate that our analysis methods are sensitive to subtle changes in fish behaviour. Lastly, it is now important to determine whether the absences of any differences persist under more ecologically relevant circumstances and in contexts which have a more direct bearing on individual fitness.« less

  11. European sea bass show behavioural resilience to near-future ocean acidification

    DOE PAGES

    Duteil, M.; Pope, E. C.; Pérez-Escudero, A.; ...

    2016-11-02

    Ocean acidification (OA)-caused by rising concentrations of carbon dioxide (CO 2)-is thought to be a major threat to marine ecosystems and has been shown to induce behavioural alterations in fish. Here we show behavioural resilience to near-future OA in a commercially important and migratory marine finfish, the Sea bass (Dicentrarchus labrax). Sea bass were raised from eggs at 19 °C in ambient or near-future OA (1000 μatm pCO 2) conditions and n = 270 fish were observed 59-68 days post-hatch using automated tracking from video. Fish reared under ambient conditions, OA conditions, and fish reared in ambient conditions but testedmore » in OA water showed statistically similar movement patterns, and reacted to their environment and interacted with each other in comparable ways. Thus our findings indicate behavioural resilience to near-future OA in juvenile sea bass. Moreover, simulated agent-based models indicate that our analysis methods are sensitive to subtle changes in fish behaviour. Lastly, it is now important to determine whether the absences of any differences persist under more ecologically relevant circumstances and in contexts which have a more direct bearing on individual fitness.« less

  12. Spatio-temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification

    PubMed Central

    Villanueva, Paola A.; Lopez, Jorge; Torres, Rodrigo; Navarro, Jorge M.; Bacigalupe, Leonardo D.

    2017-01-01

    Phenotypic plasticity is expected to play a major adaptive role in the response of species to ocean acidification (OA), by providing broader tolerances to changes in pCO2 conditions. However, tolerances and sensitivities to future OA may differ among populations within a species because of their particular environmental context and genetic backgrounds. Here, using the climatic variability hypothesis (CVH), we explored this conceptual framework in populations of the sea urchin Loxechinus albus across natural fluctuating pCO2/pH environments. Although elevated pCO2 affected the morphology, physiology, development and survival of sea urchin larvae, the magnitude of these effects differed among populations. These differences were consistent with the predictions of the CVH showing greater tolerance to OA in populations experiencing greater local variation in seawater pCO2/pH. Considering geographical differences in plasticity, tolerances and sensitivities to increased pCO2 will provide more accurate predictions for species responses to future OA. PMID:28179409

  13. Spatio-temporal environmental variation mediates geographical differences in phenotypic responses to ocean acidification.

    PubMed

    Gaitán-Espitia, Juan Diego; Villanueva, Paola A; Lopez, Jorge; Torres, Rodrigo; Navarro, Jorge M; Bacigalupe, Leonardo D

    2017-02-01

    Phenotypic plasticity is expected to play a major adaptive role in the response of species to ocean acidification (OA), by providing broader tolerances to changes in p CO 2 conditions. However, tolerances and sensitivities to future OA may differ among populations within a species because of their particular environmental context and genetic backgrounds. Here, using the climatic variability hypothesis (CVH), we explored this conceptual framework in populations of the sea urchin Loxechinus albus across natural fluctuating p CO 2 /pH environments. Although elevated p CO 2 affected the morphology, physiology, development and survival of sea urchin larvae, the magnitude of these effects differed among populations. These differences were consistent with the predictions of the CVH showing greater tolerance to OA in populations experiencing greater local variation in seawater p CO 2 /pH. Considering geographical differences in plasticity, tolerances and sensitivities to increased p CO 2 will provide more accurate predictions for species responses to future OA. © 2017 The Author(s).

  14. Ocean acidification ameliorates harmful effects of warming in primary consumer.

    PubMed

    Pedersen, Sindre Andre; Hanssen, Anja Elise

    2018-01-01

    Climate change-induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co-occurring warming (+3°C) and ocean acidification (+1,600 μatm CO 2 ), using the key subarctic planktonic copepod, Calanus finmarchicus , as a model species. The animals were generally negatively affected by warming, which significantly reduced the females' energy status and reproductive parameters (respectively, 95% and 69%-87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%-340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.

  15. Impact of ocean acidification and warming on the productivity of a rock pool community.

    PubMed

    Legrand, Erwann; Riera, Pascal; Bohner, Olivier; Coudret, Jérôme; Schlicklin, Ferdinand; Derrien, Marie; Martin, Sophie

    2018-05-01

    This study examined experimentally the combined effect of ocean acidification and warming on the productivity of rock pool multi-specific assemblages, composed of coralline algae, fleshy algae, and grazers. Natural rock pool communities experience high environmental fluctuations. This may confer physiological advantage to rock pool communities when facing predicted acidification and warming. The effect of ocean acidification and warming have been assessed at both individual and assemblage level to examine the importance of species interactions in the response of assemblages. We hypothesized that rock pool assemblages have physiological advantage when facing predicted ocean acidification and warming. Species exhibited species-specific responses to increased temperature and pCO 2 . Increased temperature and pCO 2 have no effect on assemblage photosynthesis, which was mostly influenced by fleshy algal primary production. The response of coralline algae to ocean acidification and warming depended on the season, which evidenced the importance of physiological adaptations to their environment in their response to climate change. We suggest that rock pool assemblages are relatively robust to changes in temperature and pCO 2 , in terms of primary production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios.

    PubMed

    Fang, James K H; Schönberg, Christine H L; Mello-Athayde, Matheus A; Achlatis, Michelle; Hoegh-Guldberg, Ove; Dove, Sophie

    2018-05-01

    The bioeroding sponge Cliona orientalis is photosymbiotic with dinoflagellates of the genus Symbiodinium and is pervasive on the Great Barrier Reef. We investigated how C. orientalis responded to past and future ocean conditions in a simulated community setting. The experiment lasted over an Austral summer under four carbon dioxide emission scenarios: a pre-industrial scenario (PI), a present-day scenario (PD; control), and two future scenarios of combined ocean acidification and ocean warming, i.e., B1 (intermediate) and A1FI (extreme). The four scenarios also simulated natural variability of carbon dioxide partial pressure and temperature in seawater. Responses of C. orientalis generally remained similar between the PI and PD treatments. C. orientalis under B1 displayed a dramatic increase in lateral tissue extension, but bleached and displayed reduced rates of respiration and photosynthesis. Some B1 sponge replicates died by the end of the experiment. Under A1FI, strong bleaching and subsequent mortality of all C. orientalis replicates occurred at an early stage of the experiment. Mortality arrested bioerosion by C. orientalis under B1 and A1FI. Overall, the absolute amount of calcium carbonate eroded by C. orientalis under B1 or A1FI was similar to that under PI or PD at the end of the experiment. Although bioerosion rates were raised by short-term experimental acidification in previous studies, our findings from the photosymbiotic C. orientalis imply that the effects of bioerosion on reef carbonate budgets may only be temporary if the bioeroders cannot survive long-term in the future oceans.

  17. Effects of ocean acidification on the ballast of surface aggregates sinking through the twilight zone.

    PubMed

    de Jesus Mendes, Pedro A; Thomsen, Laurenz

    2012-01-01

    The dissolution of CaCO(3) is one of the ways ocean acidification can, potentially, greatly affect the ballast of aggregates. A diminution of the ballast could reduce the settling speed of aggregates, resulting in a change in the carbon flux to the deep sea. This would mean lower amounts of more refractory organic matter reaching the ocean floor. This work aimed to determine the effect of ocean acidification on the ballast of sinking surface aggregates. Our hypothesis was that the decrease of pH will increase the dissolution of particulate inorganic carbon ballasting the aggregates, consequently reducing their settling velocity and increasing their residence time in the upper twilight zone. Using a new methodology for simulation of aggregate settling, our results suggest that future pCO(2) conditions can significantly change the ballast composition of sinking aggregates. The change in aggregate composition had an effect on the size distribution of the aggregates, with a shift to smaller aggregates. A change also occurred in the settling velocity of the particles, which would lead to a higher residence time in the water column, where they could be continuously degraded. In the environment, such an effect would result in a reduction of the carbon flux to the deep-sea. This reduction would impact those benthic communities, which rely on the vertical flow of carbon as primary source of energy.

  18. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes.

    PubMed

    De Wit, Pierre; Dupont, Sam; Thor, Peter

    2016-10-01

    Ocean acidification is expected to have dramatic impacts on oceanic ecosystems, yet surprisingly few studies currently examine long-term adaptive and plastic responses of marine invertebrates to p CO 2 stress. Here, we exposed populations of the common copepod Pseudocalanus acuspes to three p CO 2 regimes (400, 900, and 1550 μatm) for two generations, after which we conducted a reciprocal transplant experiment. A de novo transcriptome was assembled, annotated, and gene expression data revealed that genes involved in RNA transcription were strongly down-regulated in populations with long-term exposure to a high p CO 2 environment, even after transplantation back to control levels. In addition, 747 000 SNPs were identified, out of which 1513 showed consistent changes in nucleotide frequency between replicates of control and high p CO 2 populations. Functions involving RNA transcription and ribosomal function, as well as ion transport and oxidative phosphorylation, were highly overrepresented. We thus conclude that p CO 2 stress appears to impose selection in copepods on RNA synthesis and translation, possibly modulated by helicase expression. Using a physiological hypothesis-testing strategy to mine gene expression data, we herein increase the power to detect cellular targets of ocean acidification. This novel approach seems promising for future studies of effects of environmental changes in ecologically important nonmodel organisms.

  19. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways.

    PubMed

    Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu

    2016-07-01

    The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa β signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa β signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The stable microbiome of inter and sub-tidal anemone species under increasing pCO2

    PubMed Central

    Muller, Erinn M.; Fine, Maoz; Ritchie, Kim B.

    2016-01-01

    Increasing levels of pCO2 within the oceans will select for resistant organisms such as anemones, which may thrive under ocean acidification conditions. However, increasing pCO2 may alter the bacterial community of marine organisms, significantly affecting the health status of the host. A pH gradient associated with a natural volcanic vent system within Levante Bay, Vulcano Island, Italy, was used to test the effects of ocean acidification on the bacterial community of two anemone species in situ, Anemonia viridis and Actinia equina using 16 S rDNA pyrosequencing. Results showed the bacterial community of the two anemone species differed significantly from each other primarily because of differences in the Gammaproteobacteria and Epsilonproteobacteria abundances. The bacterial communities did not differ within species among sites with decreasing pH except for A. viridis at the vent site (pH = 6.05). In addition to low pH, the vent site contains trace metals and sulfide that may have influenced the bacteria community of A. viridis. The stability of the bacterial community from pH 8.1 to pH 7.4, coupled with previous experiments showing the lack of, or beneficial changes within anemones living under low pH conditions indicates that A. viridis and A. equina will be winners under future ocean acidification scenarios. PMID:27876762

  1. The stable microbiome of inter and sub-tidal anemone species under increasing pCO2

    NASA Astrophysics Data System (ADS)

    Muller, Erinn M.; Fine, Maoz; Ritchie, Kim B.

    2016-11-01

    Increasing levels of pCO2 within the oceans will select for resistant organisms such as anemones, which may thrive under ocean acidification conditions. However, increasing pCO2 may alter the bacterial community of marine organisms, significantly affecting the health status of the host. A pH gradient associated with a natural volcanic vent system within Levante Bay, Vulcano Island, Italy, was used to test the effects of ocean acidification on the bacterial community of two anemone species in situ, Anemonia viridis and Actinia equina using 16 S rDNA pyrosequencing. Results showed the bacterial community of the two anemone species differed significantly from each other primarily because of differences in the Gammaproteobacteria and Epsilonproteobacteria abundances. The bacterial communities did not differ within species among sites with decreasing pH except for A. viridis at the vent site (pH = 6.05). In addition to low pH, the vent site contains trace metals and sulfide that may have influenced the bacteria community of A. viridis. The stability of the bacterial community from pH 8.1 to pH 7.4, coupled with previous experiments showing the lack of, or beneficial changes within anemones living under low pH conditions indicates that A. viridis and A. equina will be winners under future ocean acidification scenarios.

  2. Ocean Acidification Portends Acute Habitat Compression for Atlantic Cod (Gadus morhua) in a Physiologically-informed Metabolic Rate Model

    NASA Astrophysics Data System (ADS)

    Del Raye, G.; Weng, K.

    2011-12-01

    Ocean acidification affects organisms on a biochemical scale, yet its societal impacts manifest from changes that propagate through entire populations. Successful forecasting of the effects of ocean acidification therefore depends on at least two steps: (1) deducing systemic physiology based on subcellular stresses and (2) scaling individual physiology up to ecosystem processes. Predictions that are based on known biological processes (process-based models) may fare better than purely statistical models in both these steps because the latter are less robust to novel environmental conditions. Here we present a process-based model that uses temperature, pO2, and pCO2 to predict maximal aerobic scope in Atlantic cod. Using this model, we show that (i) experimentally-derived physiological parameters are sufficient to capture the response of cod aerobic scope to temperature and oxygen, and (ii) subcellular pH effects can be used to predict the systemic physiological response of cod to an acidified ocean. We predict that acute pH stress (on a scale of hours) could limit the mobility of Atlantic cod during diel vertical migration across a pCO2 gradient, promoting habitat compression. Finally, we use a global sensitivity analysis to identify opportunities for the improvement of model uncertainty as well as some physiological adaptations that could mitigate climate stresses on cod in the future.

  3. Digestion in sea urchin larvae impaired under ocean acidification

    NASA Astrophysics Data System (ADS)

    Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam

    2013-12-01

    Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.

  4. Combined ocean acidification and low temperature stressors cause coral mortality

    NASA Astrophysics Data System (ADS)

    Kavousi, Javid; Parkinson, John Everett; Nakamura, Takashi

    2016-09-01

    Oceans are predicted to become more acidic and experience more temperature variability—both hot and cold—as climate changes. Ocean acidification negatively impacts reef-building corals, especially when interacting with other stressors such as elevated temperature. However, the effects of combined acidification and low temperature stress have yet to be assessed. Here, we exposed nubbins of the scleractinian coral Montipora digitata to ecologically relevant acidic, cold, or combined stress for 2 weeks. Coral nubbins exhibited 100% survival in isolated acidic and cold treatments, but ~30% mortality under combined conditions. These results provide further evidence that coupled stressors have an interactive effect on coral physiology, and reveal that corals in colder environments are also susceptible to the deleterious impacts of coupled ocean acidification and thermal stress.

  5. Ocean acidification and warming will lower coral reef resilience

    PubMed Central

    Anthony, Kenneth R N; Maynard, Jeffrey A; Diaz-Pulido, Guillermo; Mumby, Peter J; Marshall, Paul A; Cao, Long; Hoegh-Guldberg, Ove

    2011-01-01

    Ocean warming and acidification from increasing levels of atmospheric CO2 represent major global threats to coral reefs, and are in many regions exacerbated by local-scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local-scale disturbances on reefs is growing, but their relative contribution to reef resilience and vulnerability in the future is unclear. Here, we analyse quantitatively how different combinations of CO2 and fishing pressure on herbivores will affect the ecological resilience of a simplified benthic reef community, as defined by its capacity to maintain and recover to coral-dominated states. We use a dynamic community model integrated with the growth and mortality responses for branching corals (Acropora) and fleshy macroalgae (Lobophora). We operationalize the resilience framework by parameterizing the response function for coral growth (calcification) by ocean acidification and warming, coral bleaching and mortality by warming, macroalgal mortality by herbivore grazing and macroalgal growth via nutrient loading. The model was run for changes in sea surface temperature and water chemistry predicted by the rise in atmospheric CO2 projected from the IPCC's fossil-fuel intensive A1FI scenario during this century. Results demonstrated that severe acidification and warming alone can lower reef resilience (via impairment of coral growth and increased coral mortality) even under high grazing intensity and low nutrients. Further, the threshold at which herbivore overfishing (reduced grazing) leads to a coral–algal phase shift was lowered by acidification and warming. These analyses support two important conclusions: Firstly, reefs already subjected to herbivore overfishing and nutrification are likely to be more vulnerable to increasing CO2. Secondly, under CO2 regimes above 450–500 ppm, management of local-scale disturbances will become critical to keeping reefs within an Acropora-rich domain.

  6. Hypoxia and Acidification Have Additive and Synergistic Negative Effects on the Growth, Survival, and Metamorphosis of Early Life Stage Bivalves

    PubMed Central

    Gobler, Christopher J.; DePasquale, Elizabeth L.; Griffith, Andrew W.; Baumann, Hannes

    2014-01-01

    Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming. There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2. Presently, however, the concurrent effects of low oxygen and acidification on marine organisms are largely unknown, as most prior studies of marine hypoxia have not considered pH levels. We experimentally assessed the consequences of hypoxic and acidified water for early life stage bivalves (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria), marine organisms of significant economic and ecological value and sensitive to climate change. In larval scallops, experimental and naturally-occurring acidification (pH, total scale  = 7.4–7.6) reduced survivorship (by >50%), low oxygen (30–50 µM) inhibited growth and metamorphosis (by >50%), and the two stressors combined produced additively negative outcomes. In early life stage clams, however, hypoxic waters led to 30% higher mortality, while acidified waters significantly reduced growth (by 60%). Later stage clams were resistant to hypoxia or acidification separately but experienced significantly (40%) reduced growth rates when exposed to both conditions simultaneously. Collectively, these findings demonstrate that the consequences of low oxygen and acidification for early life stage bivalves, and likely other marine organisms, are more severe than would be predicted by either individual stressor and thus must be considered together when assessing how ocean animals respond to these conditions both today and under future climate change scenarios. PMID:24416169

  7. Ocean acidification and fertilization in the antarctic sea urchin Sterechinus neumayeri: the importance of polyspermy.

    PubMed

    Sewell, Mary A; Millar, Russell B; Yu, Pauline C; Kapsenberg, Lydia; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification (OA), the reduction of the seawater pH as a result of increasing levels of atmospheric CO2, is an important climate change stressor in the Southern Ocean and Antarctic. We examined the impact of OA on fertilization success in the Antarctic sea urchin Sterechinus neumayeri using pH treatment conditions reflective of the current and near-future "pH seascape" for this species: current (control: pH 8.052, 384.1 μatm of pCO2), a high CO2 treatment approximating the 0.2-0.3 unit decrease in pH predicted for 2100 (high CO2: pH 7.830, 666.0 μatm of pCO2), and an intermediate medium CO2 (pH 7.967, 473.4 μatm of pCO2). Using a fertilization kinetics approach and mixed-effect models, we observed significant variation in the OA response between individual male/female pairs (N = 7) and a significant population-level increase (70-100%) in tb (time for a complete block to polyspermy) at medium and high CO2, a mechanism that potentially explains the higher levels of abnormal development seen in OA conditions. However, two pairs showed higher fertilization success with CO2 treatment and a nonsignificant effect. Future studies should focus on the mechanisms and levels of interindividual variability in OA response, so that we can consider the potential for selection and adaptation of organisms to a future ocean.

  8. Baseline Monitoring of the Western Arctic Ocean Estimates 20% of Canadian Basin Surface Waters Are Undersaturated with Respect to Aragonite

    PubMed Central

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ∼20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater. PMID:24040074

  9. Baseline monitoring of the western Arctic Ocean estimates 20% of the Canadian Basin surface waters are undersaturated with respect to aragonite

    USGS Publications Warehouse

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ~20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  10. Using Micro CT Scanning to Assess Pteropod Shells in the Modern Ocean

    NASA Astrophysics Data System (ADS)

    Oakes, R. L.; Urbanski, J. M.; Bralower, T. J.

    2016-02-01

    Anthropogenic activities are causing fundamental changes to ocean chemistry. Calcareous plankton and nekton are predicted to be affected by these chemical changes, especially by ocean acidification. These groups are at the base of the marine food chain and therefore their demise will have a strong effect on the marine ecosystem as a whole. One challenge moving forward is to find a method to assess how chemical changes manifest themselves in plankton and nekton shells. Recent advancements in computed tomographic (CT) scanning technology allows for organisms to be imaged in three dimensions at micrometer resolution. CT data enables quantitative measurements of properties such as shell thickness, volume, and morphology. We apply this method to look at pteropods, nektonic molluscs which make their shells from the more soluble form of calcium carbonate, aragonite. Their shell mineralogy, and the fact that some groups live in polar and upwelling waters, place them at high risk for ocean acidification. We have scanned over 70 pteropods from 5 different locations globally. Analysis shows that there is a significant difference in pteropod shell thickness in different ocean basins with the thinnest shells being found off the coast of Washington. Changes in shell thickness may affect pteropod swimming efficiency, predation, and rate of sinking. Shell volume does not seem to vary with shell thickness suggesting that changes will impact pteropods at all ontogenetic stages. We are working towards a geometric morphometric analysis of these shells to see if the shape differs in areas with different ocean conditions. This initial set of CT scans of pteropods can be used as a baseline to which future changes can be compared. Furthermore, this technique has the potential to be easily transferred to other organisms as a method of assessing shell change in response to ocean acidification and associated factors.

  11. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress

    PubMed Central

    Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli’s acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure. PMID:28033367

  12. Coralline algae elevate pH at the site of calcification under ocean acidification.

    PubMed

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-10-01

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pH cf ) using δ 11 B as a proxy. Declines in δ 11 B for all three species are consistent with shifts in δ 11 B expected if B(OH) 4 - was incorporated during precipitation. In particular, the δ 11 B ratio in Amphiroa anceps was too low to allow for reasonable pH cf values if B(OH) 3 rather than B(OH) 4 - was directly incorporated from the calcifying fluid. This points towards δ 11 B being a reliable proxy for pH cf for coralline algal calcite and that if B(OH) 3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH) 4 - . We thus show that pH cf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO 2 , as did their pH cf . Neogoniolithon sp. had the highest pH cf , and most constant calcification rates, with the decrease in pH cf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pH cf under ocean acidification is physiologically important and should be included in future models involving calcification. © 2017 John Wiley & Sons Ltd.

  13. Early-life exposure to climate change impairs tropical shark survival.

    PubMed

    Rosa, Rui; Baptista, Miguel; Lopes, Vanessa M; Pegado, Maria Rita; Paula, José Ricardo; Trübenbach, Katja; Leal, Miguel Costa; Calado, Ricardo; Repolho, Tiago

    2014-10-22

    Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Early-life exposure to climate change impairs tropical shark survival

    PubMed Central

    Rosa, Rui; Baptista, Miguel; Lopes, Vanessa M.; Pegado, Maria Rita; Ricardo Paula, José; Trübenbach, Katja; Leal, Miguel Costa; Calado, Ricardo; Repolho, Tiago

    2014-01-01

    Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species. PMID:25209942

  15. An Ocean Acidification Acclimatised Green Tide Alga Is Robust to Changes of Seawater Carbon Chemistry but Vulnerable to Light Stress.

    PubMed

    Gao, Guang; Liu, Yameng; Li, Xinshu; Feng, Zhihua; Xu, Juntian

    2016-01-01

    Ulva is the dominant genus in the green tide events and is considered to have efficient CO2 concentrating mechanisms (CCMs). However, little is understood regarding the impacts of ocean acidification on the CCMs of Ulva and the consequences of thalli's acclimation to ocean acidification in terms of responding to environmental factors. Here, we grew a cosmopolitan green alga, Ulva linza at ambient (LC) and elevated (HC) CO2 levels and investigated the alteration of CCMs in U. linza grown at HC and its responses to the changed seawater carbon chemistry and light intensity. The inhibitors experiment for photosynthetic inorganic carbon utilization demonstrated that acidic compartments, extracellular carbonic anhydrase (CA) and intracellular CA worked together in the thalli grown at LC and the acquisition of exogenous carbon source in the thalli could be attributed to the collaboration of acidic compartments and extracellular CA. Contrastingly, when U. linza was grown at HC, extracellular CA was completely inhibited, acidic compartments and intracellular CA were also down-regulated to different extents and thus the acquisition of exogenous carbon source solely relied on acidic compartments. The down-regulated CCMs in U. linza did not affect its responses to changes of seawater carbon chemistry but led to a decrease of net photosynthetic rate when thalli were exposed to increased light intensity. This decrease could be attributed to photodamage caused by the combination of the saved energy due to the down-regulated CCMs and high light intensity. Our findings suggest future ocean acidification might impose depressing effects on green tide events when combined with increased light exposure.

  16. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    PubMed

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  17. Lessons from two high CO2 worlds - future oceans and intensive aquaculture.

    PubMed

    Ellis, Robert P; Urbina, Mauricio A; Wilson, Rod W

    2017-06-01

    Exponentially rising CO 2 (currently ~400 μatm) is driving climate change and causing acidification of both marine and freshwater environments. Physiologists have long known that CO 2 directly affects acid-base and ion regulation, respiratory function and aerobic performance in aquatic animals. More recently, many studies have demonstrated that elevated CO 2 projected for end of this century (e.g. 800-1000 μatm) can also impact physiology, and have substantial effects on behaviours linked to sensory stimuli (smell, hearing and vision) both having negative implications for fitness and survival. In contrast, the aquaculture industry was farming aquatic animals at CO 2 levels that far exceed end-of-century climate change projections (sometimes >10 000 μatm) long before the term 'ocean acidification' was coined, with limited detrimental effects reported. It is therefore vital to understand the reasons behind this apparent discrepancy. Potential explanations include 1) the use of 'control' CO 2 levels in aquaculture studies that go beyond 2100 projections in an ocean acidification context; 2) the relatively benign environment in aquaculture (abundant food, disease protection, absence of predators) compared to the wild; 3) aquaculture species having been chosen due to their natural tolerance to the intensive conditions, including CO 2 levels; or 4) the breeding of species within intensive aquaculture having further selected traits that confer tolerance to elevated CO 2 . We highlight this issue and outline the insights that climate change and aquaculture science can offer for both marine and freshwater settings. Integrating these two fields will stimulate discussion on the direction of future cross-disciplinary research. In doing so, this article aimed to optimize future research efforts and elucidate effective mitigation strategies for managing the negative impacts of elevated CO 2 on future aquatic ecosystems and the sustainability of fish and shellfish aquaculture. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  18. Mitigating Local Causes of Ocean Acidification with Existing Laws

    EPA Science Inventory

    The oceans continue to absorb CO2 in step with the increasing atmospheric concentration of CO2. The dissolved CO2 reacts with seawater to form carbonic acid (H2CO3) and liberate hydrogen ions, causing the pH of the oceans to decrease. Ocean acidification is thus an inevitable a...

  19. Effect of Interannual Variability on the Ocean Acidification-induced Habitat Restriction of the Humboldt Current System.

    NASA Astrophysics Data System (ADS)

    Franco, A. C.; Gruber, N.; Munnich, M.

    2016-02-01

    The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water varies substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, accentuating productivity during La Niña events and dampening it during El Niño, altering the dynamics of the whole ecosystem. On top of this natural variability, the continuing acidification of the upper ocean in response to raising atmospheric CO2 may decrease pH further and increase the volume of water corrosive to aragonite in this region, leading to a progressively smaller suitable habitat for sensitive organisms. Here we use an eddy-resolving basin-scale ocean model that covers the whole Pacific Ocean with higher resolution near the coast off South America ( 6 km) to investigate the role of ENSO events on low aragonite saturation episodes and productivity variations. We compare 2 simulations: a hindcast simulation that spans the last 30 years and a future scenario that represents year 2090 (following IPCC's "business-as-usual" scenario). We found that in the region off Peru, the sole effect of increasing atmospheric CO2 to 840 matm shoals the annual average aragonite saturation depth to 30 m, creating a year round presence of aragonite undersaturated water in the euphotic zone. We then contrast the effect on primary productivity and the aragonite saturation state of at least eight El Niño and eight La Niña episodes that have been reported for the past 30 years, in an attempt to answer the question: does habitat availability under future ocean acidification will resemble a pervasive La Niña-like state?

  20. Coral Calcification Across a Natural Gradient in Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; Brainard, R. E.; Young, C.; Shamberger, K. E.; McCorkle, D. C.; Feely, R. A.; Mcleod, E.; Cantin, N.; Rose, K.; Lohmann, G. P.

    2011-12-01

    Much of our understanding of the impact of ocean acidification on coral calcification comes from laboratory manipulation experiments in which corals are reared under a range of seawater pH and aragonite saturation states (μar) equivalent to those projected for the next hundred years. In general, experiments show a consistently negative impact of acidification on coral calcification, leading to predictions of mass coral reef extinctions by dissolution as natural rates of carbonate erosion exceed the rates at which corals and other reef calcifiers can replace it. The tropical oceans provide a natural laboratory within which to test hypotheses about the longer term impact and adaptive potential of corals to acidification of the reef environment. Here we report results of a study in which 3-D CT scan and imaging techniques were used to quantify annual rates of calcification by conspecifics at 12 reefs sites spanning a natural gradient in ocean acidification. In situ μar calculated from alkalinity and DIC measurements of reef seawater ranged from less than 2.7 on an eastern Pacific Reef to greater than 4.0 in the central Red Sea. No correlation between μar and calcification was observed across this range. Corals living on low μar reefs appear to be calcifying as fast, sometimes faster than conspecifics living on high μar reefs. We used total lipid and tissue thickness to index the energetic status of colonies collected at each of our study sites. Our results support the hypothesis that energetics plays a key role in the coral calcification response to ocean acidification. Indeed, the true impact of acidification on coral reefs will likely be felt as temperatures rise and the ocean becomes more stratified, depleting coral energetic reserves through bleaching and reduced nutrient delivery to oceanic reefs.

  1. Ocean acidification alters temperature and salinity preferences in larval fish.

    PubMed

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Connell, Sean D

    2017-02-01

    Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO 2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO 2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO 2 -treated fish showed no such response. Natural estuarine water-of higher temperature, lower salinity, and containing estuarine olfactory cues-was only preferred by fish treated under forecasted high CO 2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO 2 from human emissions.

  2. Reversal of ocean acidification enhances net coral reef calcification.

    PubMed

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  3. Reversal of ocean acidification enhances net coral reef calcification

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; MacLaren, Jana K.; Mason, Benjamin M.; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L.; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-01

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO32-]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO32-], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  4. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Kurihara, H.

    2013-03-01

    The increase in atmospheric CO2 concentration, which has resulted from the burning of fossil fuels, is being absorbed by the oceans and is causing ocean acidification. Ocean acidification involves the decrease of both the pH and the calcium carbonate saturation state. Ocean acidification is predicted to impact the physiology of marine organisms and reduce the calcification rates of corals. In the present study, we measured the rates of calcification, respiration, photosynthesis, and zooxanthellae density of the tropical coral Acropora digitifera under near-natural summertime temperature and sunlight for a 5-week period. We found that these key physiological parameters were not affected by both mid-CO2 (pCO2 = 744 ± 38, pH = 7.97 ± 0.02, Ωarag = 2.6 ± 0.1) and high-CO2 conditions (pCO2 = 2,142 ± 205, pH = 7.56 ± 0.04, Ωarag = 1.1 ± 0.2) throughout the 35 days experimental period. Additionally, there was no significant correlation between calcification rate and seawater aragonite saturation (Ωarag). These results suggest that the impacts of ocean acidification on corals physiology may be more complex than have been previously proposed.

  5. Global declines in oceanic nitrification rates as a consequence of ocean acidification.

    PubMed

    Beman, J Michael; Chow, Cheryl-Emiliane; King, Andrew L; Feng, Yuanyuan; Fuhrman, Jed A; Andersson, Andreas; Bates, Nicholas R; Popp, Brian N; Hutchins, David A

    2011-01-04

    Ocean acidification produced by dissolution of anthropogenic carbon dioxide (CO(2)) emissions in seawater has profound consequences for marine ecology and biogeochemistry. The oceans have absorbed one-third of CO(2) emissions over the past two centuries, altering ocean chemistry, reducing seawater pH, and affecting marine animals and phytoplankton in multiple ways. Microbially mediated ocean biogeochemical processes will be pivotal in determining how the earth system responds to global environmental change; however, how they may be altered by ocean acidification is largely unknown. We show here that microbial nitrification rates decreased in every instance when pH was experimentally reduced (by 0.05-0.14) at multiple locations in the Atlantic and Pacific Oceans. Nitrification is a central process in the nitrogen cycle that produces both the greenhouse gas nitrous oxide and oxidized forms of nitrogen used by phytoplankton and other microorganisms in the sea; at the Bermuda Atlantic Time Series and Hawaii Ocean Time-series sites, experimental acidification decreased ammonia oxidation rates by 38% and 36%. Ammonia oxidation rates were also strongly and inversely correlated with pH along a gradient produced in the oligotrophic Sargasso Sea (r(2) = 0.87, P < 0.05). Across all experiments, rates declined by 8-38% in low pH treatments, and the greatest absolute decrease occurred where rates were highest off the California coast. Collectively our results suggest that ocean acidification could reduce nitrification rates by 3-44% within the next few decades, affecting oceanic nitrous oxide production, reducing supplies of oxidized nitrogen in the upper layers of the ocean, and fundamentally altering nitrogen cycling in the sea.

  6. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    DTIC Science & Technology

    2014-09-30

    identified in task (a). c. Understanding the effect of ocean acidification on acoustic propagation. The PIs (Miller and Potty) are trying to get funding...the half-space. The properties of the sediment used in the model calculation are shown in the top panel. b. Effect of Ocean Acidification on...Acoustic Propagation: One of the consequences of increasing atmospheric CO2 is ocean acidification . The reduction in pH is a direct result of increased

  7. Coral physiology and microbiome dynamics under combined warming and ocean acidification

    PubMed Central

    Dalcin Martins, Paula; Wilkins, Michael J.; Johnston, Michael D.; Warner, Mark E.; Cai, Wei-Jun; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Levas, Stephen; Schoepf, Verena

    2018-01-01

    Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent findings that temperature-stress tolerant corals have a more stable microbiome, and demonstrate for the first time that this is also the case under the dual stresses of ocean warming and acidification. We propose that coral with a stable microbiome are also more physiologically resilient and thus more likely to persist in the future, and shape the coral species diversity of future reef ecosystems. PMID:29338021

  8. Coral physiology and microbiome dynamics under combined warming and ocean acidification.

    PubMed

    Grottoli, Andréa G; Dalcin Martins, Paula; Wilkins, Michael J; Johnston, Michael D; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Levas, Stephen; Schoepf, Verena

    2018-01-01

    Rising seawater temperature and ocean acidification threaten the survival of coral reefs. The relationship between coral physiology and its microbiome may reveal why some corals are more resilient to these global change conditions. Here, we conducted the first experiment to simultaneously investigate changes in the coral microbiome and coral physiology in response to the dual stress of elevated seawater temperature and ocean acidification expected by the end of this century. Two species of corals, Acropora millepora containing the thermally sensitive endosymbiont C21a and Turbinaria reniformis containing the thermally tolerant endosymbiont Symbiodinium trenchi, were exposed to control (26.5°C and pCO2 of 364 μatm) and treatment (29.0°C and pCO2 of 750 μatm) conditions for 24 days, after which we measured the microbial community composition. These microbial findings were interpreted within the context of previously published physiological measurements from the exact same corals in this study (calcification, organic carbon flux, ratio of photosynthesis to respiration, photosystem II maximal efficiency, total lipids, soluble animal protein, soluble animal carbohydrates, soluble algal protein, soluble algal carbohydrate, biomass, endosymbiotic algal density, and chlorophyll a). Overall, dually stressed A. millepora had reduced microbial diversity, experienced large changes in microbial community composition, and experienced dramatic physiological declines in calcification, photosystem II maximal efficiency, and algal carbohydrates. In contrast, the dually stressed coral T. reniformis experienced a stable and more diverse microbiome community with minimal physiological decline, coupled with very high total energy reserves and particulate organic carbon release rates. Thus, the microbiome changed and microbial diversity decreased in the physiologically sensitive coral with the thermally sensitive endosymbiotic algae but not in the physiologically tolerant coral with the thermally tolerant endosymbiont. Our results confirm recent findings that temperature-stress tolerant corals have a more stable microbiome, and demonstrate for the first time that this is also the case under the dual stresses of ocean warming and acidification. We propose that coral with a stable microbiome are also more physiologically resilient and thus more likely to persist in the future, and shape the coral species diversity of future reef ecosystems.

  9. Ocean acidification: One potential driver of phosphorus eutrophication.

    PubMed

    Ge, Changzi; Chai, Yanchao; Wang, Haiqing; Kan, Manman

    2017-02-15

    Harmful algal blooms which may be limited by phosphorus outbreak increases currently and ocean acidification worsens presently, which implies that ocean acidification might lead to phosphorus eutrophication. To verify the hypothesis, oxic sediments were exposed to seawater with different pH 30days. If pH was 8.1 and 7.7, the total phosphorus (TP) content in sediments was 1.52±0.50 and 1.29±0.40mg/g. The inorganic phosphorus (IP) content in sediments exposed to seawater with pH8.1 and 7.7 was 1.39±0.10 and 1.06±0.20mg/g, respectively. The exchangeable phosphorus (Ex-P) content in sediments was 4.40±0.45 and 2.82±0.15μg/g, if seawater pH was 8.1 and 7.7. Ex-P and IP contents in oxic sediments were reduced by ocean acidification significantly (p<5%). The reduced phosphorus in sediments diffused into water, which implied that ocean acidification was one potential facilitator of phosphorus eutrophication in oxic conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs

    NASA Astrophysics Data System (ADS)

    Smith, Joy N.; de'Ath, Glenn; Richter, Claudio; Cornils, Astrid; Hall-Spencer, Jason M.; Fabricius, Katharina E.

    2016-12-01

    The in situ effects of ocean acidification on zooplankton communities remain largely unexplored. Using natural volcanic CO2 seep sites around tropical coral communities, we show a threefold reduction in the biomass of demersal zooplankton in high-CO2 sites compared with sites with ambient CO2. Differences were consistent across two reefs and three expeditions. Abundances were reduced in most taxonomic groups. There were no regime shifts in zooplankton community composition and no differences in fatty acid composition between CO2 levels, suggesting that ocean acidification affects the food quantity but not the quality for nocturnal plankton feeders. Emergence trap data show that the observed reduction in demersal plankton may be partly attributable to altered habitat. Ocean acidification changes coral community composition from branching to massive bouldering coral species, and our data suggest that bouldering corals represent inferior daytime shelter for demersal zooplankton. Since zooplankton represent a major source of nutrients for corals, fish and other planktivores, this ecological feedback may represent an additional mechanism of how coral reefs will be affected by ocean acidification.

  11. Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.

    2013-07-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. Aragonite saturation state within the California Current System is predicted to decrease in the future, with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  12. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H.

    PubMed

    Qu, Chang-Feng; Liu, Fang-Ming; Zheng, Zhou; Wang, Yi-Bin; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; An, Mei-Ling; Wang, Xi-Xi; He, Ying-Ying; Li, Lu-Lu; Miao, Jin-Lai

    2017-07-15

    Ocean acidification (OA) resulting from increasing atmospheric CO 2 strongly influences marine ecosystems, particularly in the polar ocean due to greater CO 2 solubility. Here, we grew the Antarctic sea ice diatom Nitzschia sp. ICE-H in a semicontinuous culture under low (~400ppm) and high (1000ppm) CO 2 levels. Elevated CO 2 resulted in a stimulated physiological response including increased growth rates, chlorophyll a contents, and nitrogen and phosphorus uptake rates. Furthermore, high CO 2 enhanced cellular particulate organic carbon production rates, indicating a greater shift from inorganic to organic carbon. However, the cultures grown in high CO 2 conditions exhibited a decrease in both extracellular and intracellular carbonic anhydrase activity, suggesting that the carbon concentrating mechanisms of Nitzschia sp. ICE-H may be suppressed by elevated CO 2 . Our results revealed that OA would be beneficial to the survival of this sea ice diatom strain, with broad implications for global carbon cycles in the future ocean. Copyright © 2017. Published by Elsevier Ltd.

  13. Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

    NASA Astrophysics Data System (ADS)

    Garilli, Vittorio; Rodolfo-Metalpa, Riccardo; Scuderi, Danilo; Brusca, Lorenzo; Parrinello, Daniela; Rastrick, Samuel P. S.; Foggo, Andy; Twitchett, Richard J.; Hall-Spencer, Jason M.; Milazzo, Marco

    2015-07-01

    Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic effects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.

  14. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish

    NASA Astrophysics Data System (ADS)

    Schunter, Celia; Welch, Megan J.; Ryu, Taewoo; Zhang, Huoming; Berumen, Michael L.; Nilsson, Göran E.; Munday, Philip L.; Ravasi, Timothy

    2016-11-01

    The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt. Recent studies show that the behaviour of reef fishes is impaired at projected CO 2 levels; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO 2 in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO 2-tolerant and CO 2-sensitive parents were reared at near-future CO 2 (754 μatm) or present-day control levels (414 μatm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO 2 and the expression of parental tolerance to high CO 2 in the offspring molecular phenotype. Exposure to high CO 2 resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO 2 conditions. This transgenerational molecular signature suggests that individual variation in CO 2 sensitivity could facilitate adaptation of fish populations to ocean acidification.

  15. NOAA's Ocean Acidification Program - Funding Studies of Species' Responses to Ocean Acidification Since 2012

    NASA Astrophysics Data System (ADS)

    Ombres, E. H.

    2016-02-01

    NOAA's Ocean Acidification Program (OAP) was created as a mandate of the 2009 Federal Ocean Acidification Research and Monitoring (FOARAM) Act and has been directly funding species response research since 2012. Although OA species response is a relatively young field of science, this program built on research already underway across NOAA. That research platform included experimental facilities in the Fishery Sciences Centers of the National Marine Fishery Service (NMFS), `wet' labs of Oceanic and Atmospheric Research (OAR), and the coral reef monitoring studies within the National Ocean Service (NOS). The diversity of research across NOAA allows the program to make interdisciplinary connections among chemists, biologists and oceanographers and creates a more comprehensive and robust approach to understanding species response to this change in the carbon cycle. To date, the program has studied a range of taxa including phytoplankton, molluscs, crustaceans, and fish. This poster describes representative results from the collection of OAP-funded species at nationwide NOAA facilities.

  16. Institutional misfit and environmental change: A systems approach to address ocean acidification.

    PubMed

    Ekstrom, Julia A; Crona, Beatrice I

    2017-01-15

    Emerging environmental threats often lack sufficient governance to address the full extent of the problem. An example is ocean acidification which is a growing concern in fishing and aquaculture economies worldwide, but has remained a footnote in environmental policy at all governance levels. However, existing legal jurisdictions do account for some aspects of the system relating to ocean acidification and these may be leveraged to support adapting to and mitigating ocean acidification. We refine and apply a methodological framework that helps objectively evaluate governance, from a social-ecological systems perspective. We assess how well a set of extant US institutions fits with the social-ecological interactions pertinent to ocean acidification. The assessment points to measured legal gaps, for which we evaluate the government authorities most appropriate to help fill these gaps. The analysis is conducted on United State federal statutes and regulations. Results show quantitative improvement of institutional fit over time (2006 to 2013), but a substantial number of measured legal gaps persist especially around acknowledging local sources of acidification and adaptation strategies to deal with or avoid impacts. We demonstrate the utility of this framework to evaluate the governance surrounding any emerging environmental threat as a first step to guiding the development of jurisdictionally realistic solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The future of the northeast Atlantic benthic flora in a high CO2 world

    PubMed Central

    Brodie, Juliet; Williamson, Christopher J; Smale, Dan A; Kamenos, Nicholas A; Mieszkowska, Nova; Santos, Rui; Cunliffe, Michael; Steinke, Michael; Yesson, Christopher; Anderson, Kathryn M; Asnaghi, Valentina; Brownlee, Colin; Burdett, Heidi L; Burrows, Michael T; Collins, Sinead; Donohue, Penelope J C; Harvey, Ben; Foggo, Andrew; Noisette, Fanny; Nunes, Joana; Ragazzola, Federica; Raven, John A; Schmidt, Daniela N; Suggett, David; Teichberg, Mirta; Hall-Spencer, Jason M

    2014-01-01

    Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds. PMID:25077027

  18. The future of the northeast Atlantic benthic flora in a high CO2 world.

    PubMed

    Brodie, Juliet; Williamson, Christopher J; Smale, Dan A; Kamenos, Nicholas A; Mieszkowska, Nova; Santos, Rui; Cunliffe, Michael; Steinke, Michael; Yesson, Christopher; Anderson, Kathryn M; Asnaghi, Valentina; Brownlee, Colin; Burdett, Heidi L; Burrows, Michael T; Collins, Sinead; Donohue, Penelope J C; Harvey, Ben; Foggo, Andrew; Noisette, Fanny; Nunes, Joana; Ragazzola, Federica; Raven, John A; Schmidt, Daniela N; Suggett, David; Teichberg, Mirta; Hall-Spencer, Jason M

    2014-07-01

    Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.

  19. Expressing the sense of the House of Representatives that the United States should adopt national policies and pursue international agreements to prevent ocean acidification, to study the impacts of ocean acidification, and to address the effects of ocean acidification on marine ecosystems and coastal economies.

    THOMAS, 111th Congress

    Rep. Inslee, Jay [D-WA-1

    2009-12-16

    House - 06/09/2010 On motion to suspend the rules and agree to the resolution Failed by the Yeas and Nays: (2/3 required): 241 - 170 (Roll no. 341). (All Actions) Tracker: This bill has the status Failed HouseHere are the steps for Status of Legislation:

  20. Mechanical robustness of the calcareous tubeworm Hydroides elegans: warming mitigates the adverse effects of ocean acidification.

    PubMed

    Li, Chaoyi; Meng, Yuan; He, Chong; Chan, Vera B S; Yao, Haimin; Thiyagarajan, V

    2016-01-01

    Development of antifouling strategies requires knowledge of how fouling organisms would respond to climate change associated environmental stressors. Here, a calcareous tube built by the tubeworm, Hydroides elegans, was used as an example to evaluate the individual and interactive effects of ocean acidification (OA), warming and reduced salinity on the mechanical properties of a tube. Tubeworms produce a mechanically weaker tube with less resistance to simulated predator attack under OA (pH 7.8). Warming (29°C) increased tube volume, tube mineral density and the tube's resistance to a simulated predatory attack. A weakening effect by OA did not make the removal of tubeworms easier except for the earliest stage, in which warming had the least effect. Reduced salinity (27 psu) did not affect tubes. This study showed that both mechanical analysis and computational modeling can be integrated with biofouling research to provide insights into how fouling communities might develop in future ocean conditions.

  1. The combined effects of ocean warming and acidification on shallow-water meiofaunal assemblages.

    PubMed

    Lee, Matthew R; Torres, Rodrigo; Manríquez, Patricio H

    2017-10-01

    Climate change due to increased anthropogenic CO 2 in the atmosphere is causing an increase in seawater temperatures referred to as ocean warming and a decrease in seawater pH, referred to as ocean acidification. The meiofauna play an important role in the ecology of marine ecosystems and the functions they provide. Using microcosms, meiofaunal assemblages were exposed to two temperatures (15 and 19 °C) and two pHs (pCO 2 of 400 and 1000 ppm), both individually and in combination, for a period of 90 days. The hypothesis that increased temperature will increase meiofaunal abundance was not supported. The hypothesis that a reduced pH will reduce meiofaunal abundance and species richness was supported. The combination of future conditions of temperature and pH (19 °C and pCO 2 of 1000 ppm) did not affect overall abundance but the structure of the nematode assemblage changed becoming dominated by a few opportunistic species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. How can present and future satellite missions support scientific studies that address ocean acidification?

    USGS Publications Warehouse

    Salisbury, Joseph; Vandemark, Douglas; Jonsson, Bror; Balch, William; Chakraborty, Sumit; Lohrenz, Steven; Chapron, Bertrand; Hales, Burke; Mannino, Antonio; Mathis, Jeremy T.; Reul, Nicolas; Signorini, Sergio; Wanninkhof, Rik; Yates, Kimberly K.

    2016-01-01

    Space-based observations offer unique capabilities for studying spatial and temporal dynamics of the upper ocean inorganic carbon cycle and, in turn, supporting research tied to ocean acidification (OA). Satellite sensors measuring sea surface temperature, color, salinity, wind, waves, currents, and sea level enable a fuller understanding of a range of physical, chemical, and biological phenomena that drive regional OA dynamics as well as the potentially varied impacts of carbon cycle change on a broad range of ecosystems. Here, we update and expand on previous work that addresses the benefits of space-based assets for OA and carbonate system studies. Carbonate chemistry and the key processes controlling surface ocean OA variability are reviewed. Synthesis of present satellite data streams and their utility in this arena are discussed, as are opportunities on the horizon for using new satellite sensors with increased spectral, temporal, and/or spatial resolution. We outline applications that include the ability to track the biochemically dynamic nature of water masses, to map coral reefs at higher resolution, to discern functional phytoplankton groups and their relationships to acid perturbations, and to track processes that contribute to acid variation near the land-ocean interface.

  3. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    NASA Astrophysics Data System (ADS)

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  4. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2

    PubMed Central

    Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H.

    2013-01-01

    Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming. PMID:23980248

  5. Impacts of Ocean Acidification on Sensory Function in Marine Organisms.

    PubMed

    Ashur, Molly M; Johnston, Nicole K; Dixson, Danielle L

    2017-07-01

    Ocean acidification has been identified as a major contributor to ocean ecosystem decline, impacting the calcification, survival, and behavior of marine organisms. Numerous studies have observed altered sensory perception of chemical, auditory, and visual cues after exposure to elevated CO2. Sensory systems enable the observation of the external environment and therefore play a critical role in survival, communication, and behavior of marine organisms. This review seeks to (1) summarize the current knowledge of sensory impairment caused by ocean acidification, (2) discuss potential mechanisms behind this disruption, and (3) analyze the expected taxa differences in sensitivities to elevated CO2 conditions. Although a lack of standardized methodology makes cross-study comparisons challenging, trends and biases arise from this synthesis including a substantial focus on vertebrates, larvae or juveniles, the reef ecosystem, and chemosensory perception. Future studies must broaden the scope of the field by diversifying the taxa and ecosystems studied, incorporating ontogenetic comparisons, and focusing on cryptic sensory systems such as electroreception, magnetic sense, and the lateral line system. A discussion of possible mechanisms reveals GABAA receptor reversal as the conspicuous physiological mechanism. However, the potential remains for alternative disruption through structure or cue changes. Finally, a taxonomic comparison of physiological complexity reveals few trends in sensory sensitivities to lowered pH, but we hypothesize potential correlations relating to habitat, life history or relative use of sensory systems. Elevated CO2, in concordance with other global and local stressors, has the potential to drastically shift community composition and structure. Therefore research addressing the extent of sensory impairment, the underlying mechanisms, and the differences between taxa is vital for improved predictions of organismal response to ocean acidification. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Taking action against ocean acidification: a review of management and policy options.

    PubMed

    Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre

    2013-10-01

    Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

  7. Taking Action Against Ocean Acidification: A Review of Management and Policy Options

    NASA Astrophysics Data System (ADS)

    Billé, Raphaël; Kelly, Ryan; Biastoch, Arne; Harrould-Kolieb, Ellycia; Herr, Dorothée; Joos, Fortunat; Kroeker, Kristy; Laffoley, Dan; Oschlies, Andreas; Gattuso, Jean-Pierre

    2013-10-01

    Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.

  8. Communicating Ocean Acidification

    ERIC Educational Resources Information Center

    Pope, Aaron; Selna, Elizabeth

    2013-01-01

    Participation in a study circle through the National Network of Ocean and Climate Change Interpretation (NNOCCI) project enabled staff at the California Academy of Sciences to effectively engage visitors on climate change and ocean acidification topics. Strategic framing tactics were used as staff revised the scripted Coral Reef Dive program,…

  9. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.

    PubMed

    Britton, Damon; Cornwall, Christopher E; Revill, Andrew T; Hurd, Catriona L; Johnson, Craig R

    2016-05-27

    Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.

  10. Global declines in oceanic nitrification rates as a consequence of ocean acidification

    PubMed Central

    Beman, J. Michael; Chow, Cheryl-Emiliane; King, Andrew L.; Feng, Yuanyuan; Fuhrman, Jed A.; Andersson, Andreas; Bates, Nicholas R.; Popp, Brian N.; Hutchins, David A.

    2011-01-01

    Ocean acidification produced by dissolution of anthropogenic carbon dioxide (CO2) emissions in seawater has profound consequences for marine ecology and biogeochemistry. The oceans have absorbed one-third of CO2 emissions over the past two centuries, altering ocean chemistry, reducing seawater pH, and affecting marine animals and phytoplankton in multiple ways. Microbially mediated ocean biogeochemical processes will be pivotal in determining how the earth system responds to global environmental change; however, how they may be altered by ocean acidification is largely unknown. We show here that microbial nitrification rates decreased in every instance when pH was experimentally reduced (by 0.05–0.14) at multiple locations in the Atlantic and Pacific Oceans. Nitrification is a central process in the nitrogen cycle that produces both the greenhouse gas nitrous oxide and oxidized forms of nitrogen used by phytoplankton and other microorganisms in the sea; at the Bermuda Atlantic Time Series and Hawaii Ocean Time-series sites, experimental acidification decreased ammonia oxidation rates by 38% and 36%. Ammonia oxidation rates were also strongly and inversely correlated with pH along a gradient produced in the oligotrophic Sargasso Sea (r2 = 0.87, P < 0.05). Across all experiments, rates declined by 8–38% in low pH treatments, and the greatest absolute decrease occurred where rates were highest off the California coast. Collectively our results suggest that ocean acidification could reduce nitrification rates by 3–44% within the next few decades, affecting oceanic nitrous oxide production, reducing supplies of oxidized nitrogen in the upper layers of the ocean, and fundamentally altering nitrogen cycling in the sea. PMID:21173255

  11. Acidification of subsurface coastal waters enhanced by eutrophication

    EPA Science Inventory

    Uptake of fossil-fuel carbon dioxide (CO2) from the atmosphere has acidified the surface ocean by ~0.1 pH units and driven down the carbonate saturation state. Ocean acidification is a threat to marine ecosystems and may alter key biogeochemical cycles. Coastal oceans have also b...

  12. Understanding feedbacks between ocean acidification and coral reef metabolism

    NASA Astrophysics Data System (ADS)

    Takeshita, Yuichiro

    2017-03-01

    Biogeochemical feedbacks from benthic metabolism have been hypothesized as a potential mechanism to buffer some effects of ocean acidification on coral reefs. The article in JGR-Oceans by DeCarlo et al. demonstrates the importance of benthic community health on this feedback from Dongsha Atoll in the South China Sea.

  13. Ocean Acidification

    EPA Pesticide Factsheets

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  14. Transdisciplinary science: a path to understanding the interactions among ocean acidification, ecosystems, and society

    USGS Publications Warehouse

    Yates, Kimberly K.; Turley, Carol; Hopkinson, Brian M.; Todgham, Anne E.; Cross, Jessica N.; Greening, Holly; Williamson, Phillip; Van Hooidonk, Ruben; Deheyn, Dimitri D.; Johnson, Zachary

    2015-01-01

    The global nature of ocean acidification (OA) transcends habitats, ecosystems, regions, and science disciplines. The scientific community recognizes that the biggest challenge in improving understanding of how changing OA conditions affect ecosystems, and associated consequences for human society, requires integration of experimental, observational, and modeling approaches from many disciplines over a wide range of temporal and spatial scales. Such transdisciplinary science is the next step in providing relevant, meaningful results and optimal guidance to policymakers and coastal managers. We discuss the challenges associated with integrating ocean acidification science across funding agencies, institutions, disciplines, topical areas, and regions, and the value of unifying science objectives and activities to deliver insights into local, regional, and global scale impacts. We identify guiding principles and strategies for developing transdisciplinary research in the ocean acidification science community.

  15. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean

    PubMed Central

    Pimentel, Marta S.; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A.; Pörtner, Hans O.; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems. PMID:26221723

  16. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean.

    PubMed

    Pimentel, Marta S; Faleiro, Filipa; Diniz, Mário; Machado, Jorge; Pousão-Ferreira, Pedro; Peck, Myron A; Pörtner, Hans O; Rosa, Rui

    2015-01-01

    Until now, it is not known how the antioxidant and digestive enzymatic machinery of fish early life stages will change with the combined effects of future ocean acidification and warming. Here we show that high pCO2 (~1600 μatm) significantly decreased metabolic rates (up to 27.4 %) of flatfish larvae, Solea senegalensis, at both present (18 °C) and warmer temperatures (+4 °C). Moreover, both warming and hypercapnia increased the heat shock response and the activity of antioxidant enzymes, namely catalase (CAT) and glutathione S-transferase (GST), mainly in post-metamorphic larvae (30 dph). The lack of changes in the activity of CAT and GST of pre-metamorphic larvae (10 dph) seems to indicate that earlier stages lack a fully-developed antioxidant defense system. Nevertheless, the heat shock and antioxidant responses of post-metamorphic larvae were not enough to avoid the peroxidative damage, which was greatly increased under future environmental conditions. Digestive enzymatic activity of S. senegalensis larvae was also affected by future predictions. Hypercapnic conditions led to a decrease in the activity of digestive enzymes, both pancreatic (up to 26.1 % for trypsin and 74.5 % for amylase) and intestinal enzymes (up to 36.1 % for alkaline phosphatase) in post-metamorphic larvae. Moreover, the impact of ocean acidification and warming on some of these physiological and biochemical variables (namely, lower OCR and higher HSP and MDA levels) were translated into larvae performance, being significantly correlated with decreased larval growth and survival or increased incidence of skeletal deformities. The increased vulnerability of flatfish early life stages under future ocean conditions is expected to potentially determine recruitment and population dynamics in marine ecosystems.

  17. National Security Implications of Climate-related Risks and a Changing Climate

    DTIC Science & Technology

    2015-07-23

    ocean acidification , and increased ocean warming pose threats to fish stocks, coral, mangroves, recreation and tourism, and the control of disease...vulnerable locations. USSOUTHCOM similarly highlights the threat that sea 23 July 2015 8 level rise and ocean acidification and warming...aids to GCCs. In addition, the National Oceanic and Atmospheric Administration (NOAA) provides long-term global climate projections, weather

  18. Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia.

    PubMed

    Foo, Shawna A; Dworjanyn, Symon A; Khatkar, Mehar S; Poore, Alistair G B; Byrne, Maria

    2014-12-01

    To predict the effects of global change on marine populations, it is important to measure the effects of climate stressors on performance and potential for adaptation. Adaptation depends on heritable genetic variance for stress tolerance being present in populations. We determined the effects of near-future ocean conditions on fertilization success of the sea urchin Pseudoboletia indiana. In 16 multiple dam-sire crosses, we quantified genetic variation in tolerance of warming (+3°C) and acidification (-0.3 to 0.5 pH units) at the gastrulation stage. Ocean acidification decreased fertilization across all dam-sire combinations with effects of pH significantly differing among the pairings. Decreased pH reduced the percentage of normal gastrulae with negative effects alleviated by increased temperature. Significant sire by environment interactions indicated the presence of heritable variation in tolerance of stressors at gastrulation and thus the potential for selection of resistant genotypes, which may enhance population persistence. A low genetic correlation indicated that genotypes that performed well at gastrulation in low pH did not necessarily perform well at higher temperatures. Furthermore, performance at fertilization was not necessarily a good predictor of performance at the later stage of gastrulation. Southern range edge populations of Pseudoboletia indiana may benefit from future warming with potential for extension of their distribution in south-east Australia.

  19. Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia

    PubMed Central

    Foo, Shawna A; Dworjanyn, Symon A; Khatkar, Mehar S; Poore, Alistair G B; Byrne, Maria

    2014-01-01

    To predict the effects of global change on marine populations, it is important to measure the effects of climate stressors on performance and potential for adaptation. Adaptation depends on heritable genetic variance for stress tolerance being present in populations. We determined the effects of near-future ocean conditions on fertilization success of the sea urchin Pseudoboletia indiana. In 16 multiple dam-sire crosses, we quantified genetic variation in tolerance of warming (+3°C) and acidification (−0.3 to 0.5 pH units) at the gastrulation stage. Ocean acidification decreased fertilization across all dam-sire combinations with effects of pH significantly differing among the pairings. Decreased pH reduced the percentage of normal gastrulae with negative effects alleviated by increased temperature. Significant sire by environment interactions indicated the presence of heritable variation in tolerance of stressors at gastrulation and thus the potential for selection of resistant genotypes, which may enhance population persistence. A low genetic correlation indicated that genotypes that performed well at gastrulation in low pH did not necessarily perform well at higher temperatures. Furthermore, performance at fertilization was not necessarily a good predictor of performance at the later stage of gastrulation. Southern range edge populations of Pseudoboletia indiana may benefit from future warming with potential for extension of their distribution in south-east Australia. PMID:25558283

  20. Thresholds for Coral Bleaching: Are Synergistic Factors and Shifting Thresholds Changing the Landscape for Management? (Invited)

    NASA Astrophysics Data System (ADS)

    Eakin, C.; Donner, S. D.; Logan, C. A.; Gledhill, D. K.; Liu, G.; Heron, S. F.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Hoegh-Guldberg, O.; Skirving, W. J.; Strong, A. E.

    2010-12-01

    As carbon dioxide rises in the atmosphere, climate change and ocean acidification are modifying important physical and chemical parameters in the oceans with resulting impacts on coral reef ecosystems. Rising CO2 is warming the world’s oceans and causing corals to bleach, with both alarming frequency and severity. The frequent return of stressful temperatures has already resulted in major damage to many of the world’s coral reefs and is expected to continue in the foreseeable future. Warmer oceans also have contributed to a rise in coral infectious diseases. Both bleaching and infectious disease can result in coral mortality and threaten one of the most diverse ecosystems on Earth and the important ecosystem services they provide. Additionally, ocean acidification from rising CO2 is reducing the availability of carbonate ions needed by corals to build their skeletons and perhaps depressing the threshold for bleaching. While thresholds vary among species and locations, it is clear that corals around the world are already experiencing anomalous temperatures that are too high, too often, and that warming is exceeding the rate at which corals can adapt. This is despite a complex adaptive capacity that involves both the coral host and the zooxanthellae, including changes in the relative abundance of the latter in their coral hosts. The safe upper limit for atmospheric CO2 is probably somewhere below 350ppm, a level we passed decades ago, and for temperature is a sustained global temperature increase of less than 1.5°C above pre-industrial levels. How much can corals acclimate and/or adapt to the unprecedented fast changing environmental conditions? Any change in the threshold for coral bleaching as the result of acclimation and/or adaption may help corals to survive in the future but adaptation to one stress may be maladaptive to another. There also is evidence that ocean acidification and nutrient enrichment modify this threshold. What do shifting thresholds mean for identifying limits and taking management actions to adapt to climate change?

  1. Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification.

    PubMed

    Clark, Timothy D; Roche, Dominique G; Binning, Sandra A; Speers-Roesch, Ben; Sundin, Josefin

    2017-10-01

    Theoretical models predict that ocean acidification, caused by increased dissolved CO 2 , will reduce the maximum thermal limits of fishes, thereby increasing their vulnerability to rising ocean temperatures and transient heatwaves. Here, we tested this prediction in three species of damselfishes on the Great Barrier Reef, Australia. Maximum thermal limits were quantified using critical thermal maxima (CT max ) tests following acclimation to either present-day or end-of-century levels of CO 2 for coral reef environments (∼500 or ∼1000 µatm, respectively). While species differed significantly in their thermal limits, whereby Dischistodus perspicillatus exhibited greater CT max (37.88±0.03°C; N =47) than Dascyllus aruanus (37.68±0.02°C; N =85) and Acanthochromis polyacanthus (36.58±0.02°C; N =63), end-of-century CO 2 had no effect ( D. aruanus ) or a slightly positive effect (increase in CT max of 0.16°C in D. perspicillatus and 0.21°C in A. polyacanthus ) on CT max Contrary to expectations, early-stage juveniles were equally as resilient to CO 2 as larger conspecifics, and CT max was higher at smaller body sizes in two species. These findings suggest that ocean acidification will not impair the maximum thermal limits of reef fishes, and they highlight the critical role of experimental biology in testing predictions of theoretical models forecasting the consequences of environmental change. © 2017. Published by The Company of Biologists Ltd.

  2. Effects of ocean acidification on salinity tolerance and seawater growth of Atlantic salmon Salmo salar smolts.

    PubMed

    Mccormick, S D; Regish, A M

    2018-06-23

    Human activity has resulted in increasing atmospheric carbon dioxide (CO 2 ), which will result in reduced pH and higher levels of CO 2 in the ocean, a process known as ocean acidification. Understanding the effects of ocean acidification (OA) on fishes will be important to predicting and mitigating its consequences. Anadromous species such as salmonids may be especially at risk because of their rapid movements between fresh water and seawater, which could minimize their ability to acclimate. In the present study, we examine the effect of future OA on the salinity tolerance and early seawater growth of Atlantic salmon Salmo salar smolts. Exposure to 61.81 Pa and 102.34 Pa CO 2 did not alter salinity tolerance but did result in slightly lower plasma chloride levels in smolts exposed to seawater compared with controls (39.59 Pa). Gill Na + -K + -ATPase activity, plasma cortisol, glucose and haematocrit after seawater exposure were not altered by elevated CO 2 . Growth rate in the first 2 weeks of seawater exposure was greater at 102.34 Pa CO 2 than under control conditions. This study of the effects of OA on S. salar during the transition from fresh water to seawater indicates that elevated CO 2 is not likely to affect osmoregulation negatively and may improve early growth in seawater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis.

    PubMed

    Hancock, Joshua R; Place, Sean P

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis . We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid-base regulatory capacity (Na + ,K + -ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments.

  4. Differential tolerances to ocean acidification by parasites that share the same host.

    PubMed

    MacLeod, C D; Poulin, R

    2015-06-01

    Ocean acidification is predicted to cause major changes in marine ecosystem structure and function over the next century, as species-specific tolerances to acidified seawater may alter previously stable relationships between coexisting organisms. Such differential tolerances could affect marine host-parasite associations, as either host or parasite may prove more susceptible to the stressors associated with ocean acidification. Despite their important role in many ecological processes, parasites have not been studied in the context of ocean acidification. We tested the effects of low pH seawater on the cercariae and, where possible, the metacercariae of four species of marine trematode parasite. Acidified seawater (pH 7.6 and 7.4, 12.5 °C) caused a 40-60% reduction in cercarial longevity and a 0-78% reduction in metacercarial survival. However, the reduction in longevity and survival varied distinctly between parasite taxa, indicating that the effects of reduced pH may be species-specific. These results suggest that ocean acidification has the potential to reduce the transmission success of many trematode species, decrease parasite abundance and alter the fundamental regulatory role of multi-host parasites in marine ecosystems. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator

    PubMed Central

    Couturier, Christine S.; Stecyk, Jonathan A. W.; Rummer, Jodie L.; Munday, Philip L.; Nilsson, Göran E.

    2013-01-01

    Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 μatm by year 2100, with extremes above 2000 μatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 μatm) on resting (Ṁ O2rest) and maximum (Ṁ O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and P. amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28 – 39 % increase in Ṁ O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining Ṁ O2rest. By contrast, the same treatment had no significant effects on Ṁ O2rest or Ṁ O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 μatm CO2 resulted in Ṁ O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the ṀO2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2. PMID:23916817

  6. Impact of Ocean Acidification on Fluxes of non-CO2 Climate-Active Species: Report from the GESAMP WG38 workshop

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Gehlen, Marion; Hopkins, Frances; Duce, Robert; Jickells, Tim; Gesamp WG38 Workshop, Participants

    2017-04-01

    Most investigations of the impact of ocean acidification (OA) have focused on changes in oceanic uptake of anthropogenic CO2, the resulting shifts in carbonate chemical equilibria, and the consequences for marine calcifying organisms. Little attention has been paid to the direct impacts of OA on the ocean sources of a range of other gaseous and aerosol species that are influential in regulating radiative forcing, atmospheric oxidising capacity and atmospheric chemistry. The oceanic processes governing emissions of these species are frequently sensitive to the changes in pH and ocean pCO2 accompanying ocean acidification. Such processes include, for example, metabolic rates of microbial activity, levels of surface primary production, ecosystem composition, and photo-chemical and microbially mediated production/loss pathways for individual species. The direct and indirect influences of these factors on oceanic fluxes of non-CO2 trace-gases and aerosols, and the subsequent feedbacks to climate remain highly uncertain. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, convened a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current science on the direct impacts of ocean acidification on marine emissions to the atmosphere of key species important for climate, and atmospheric chemistry; and to identify the primary needs for new research to improve process understanding and to quantify the impact of ocean acidification on these marine fluxes (i.e., provide recommendations on the specific laboratory process studies, field measurements and model analyses needed to support targeted research activities on this topic). The results, conclusions, and recommendations of this workshop will be presented.

  7. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    PubMed

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. When the Future Becomes the Past: Where will our Print Collection Be in 2050?

    DTIC Science & Technology

    2015-04-01

    acidification ? No. All paper should be properly stored in low temperatures, low hu- midity, and dark storage environments. Many processes such as stencils...It is designed for sailors on submarines who have no wireless internet access, no space, and lots of security concerns as they move about the ocean

  9. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research.

    PubMed

    Lai, Floriana; Jutfelt, Fredrik; Nilsson, Göran E

    2015-01-01

    Studies on the consequences of ocean acidification for the marine ecosystem have revealed behavioural changes in coral reef fishes exposed to sustained near-future CO2 levels. The changes have been linked to altered function of GABAergic neurotransmitter systems, because the behavioural alterations can be reversed rapidly by treatment with the GABAA receptor antagonist gabazine. Characterization of the molecular mechanisms involved would be greatly aided if these can be examined in a well-characterized model organism with a sequenced genome. It was recently shown that CO2-induced behavioural alterations are not confined to tropical species, but also affect the three-spined stickleback, although an involvement of the GABAA receptor was not examined. Here, we show that loss of lateralization in the stickleback can be restored rapidly and completely by gabazine treatment. This points towards a worrying universality of disturbed GABAA function after high-CO2 exposure in fishes from tropical to temperate marine habitats. Importantly, the stickleback is a model species with a sequenced and annotated genome, which greatly facilitates future studies on underlying molecular mechanisms.

  10. Calcification in Caribbean reef-building corals at high pCO2 levels in a recirculating ocean acidification exposure system

    EPA Science Inventory

    Projected increases in ocean pCO2 levels are anticipated to affect calcifying organisms more rapidly and to a greater extent than other marine organisms. The effects of ocean acidification (OA) have been documented in numerous species of corals in laboratory studies, largely test...

  11. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.

    PubMed

    Karelitz, Sam E; Uthicke, Sven; Foo, Shawna A; Barker, Mike F; Byrne, Maria; Pecorino, Danilo; Lamare, Miles D

    2017-02-01

    As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges. © 2016 John Wiley & Sons Ltd.

  12. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal

    PubMed Central

    Watson, Sue-Ann

    2015-01-01

    Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as ‘Vulnerable’ on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are ‘solar-powered’ animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 μatm) and light (photosynthetically active radiation 35, 65 and 304 μmol photons m-2 s-1). Elevated CO2 projected for the end of this century (~650 and ~950 μatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals. PMID:26083404

  13. Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal.

    PubMed

    Watson, Sue-Ann

    2015-01-01

    Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 μatm) and light (photosynthetically active radiation 35, 65 and 304 μmol photons m-2 s-1). Elevated CO2 projected for the end of this century (~650 and ~950 μatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

  14. Capturing the global signature of surface ocean acidification during the PETM

    NASA Astrophysics Data System (ADS)

    Babila, T. L.; Penman, D. E.; Hoenisch, B.; Kelly, D. C.; Bralower, T. J.; Rosenthal, Y.; Zachos, J. C.

    2016-12-01

    Anthropogenic greenhouse gas emissions over the last century have elevated atmospheric carbon dioxide concentrations while concomitantly acidifying the oceans. Instrumental records are sparse and limited in duration, making it difficult to separate regional from global trends of ocean acidification. Geologically rapid carbon perturbations such as the Paleocene-Eocene Thermal Maximum (PETM, 56 Ma) are arguably the closest paleo analogue to present climate change. Marine ecosystems experienced dynamic changes during the event, and parallel environmental changes, including acidification and warming. Here we present a synthesis of new and published geochemical reconstructions from various oceanographic settings to determine the magnitude and spatial extent of surface ocean acidification. In the deep ocean, acidification is inferred from widespread dissolution of seafloor carbonates, whereas evidence for surface ocean acidification has emerged from planktonic foraminifera boron proxy records (B/Ca and δ11B) (Penman et al. 2014; Babila et al. 2016). B/Ca and δ11B in surface and thermocline planktonic foraminifera suggest a simultaneous decrease at the PETM onset in all pelagic and shelf sites. Salinity, diagenesis and foraminiferal symbiont loss can complicate the interpretation of boron proxy records. Local salinity changes (based on paired Mg/Ca and δ18O) account for a relatively small component of total B/Ca change. The large range in environmental conditions between sites could explain the subtle differences in absolute values exhibited by the records. Shelf sites (ODP 174AX Bass River and Ancora, NJ) reveal similar absolute values and trends compared to pelagic sites (ODP 1209, N. Pacific), precluding a significant preservation bias on the geochemical records. Southern Ocean sites (ODP 689 and 690) are located in colder surface waters and exhibit a similar decrease in B/Ca, suggesting that temperature and symbiont loss are likely not major factors. We conclude that while the mass of released carbon is comparable to anthropogenic emissions, the rate is much slower, resulting in a less severe degree of undersaturation. Furthermore, the consistent latitudinal pattern of acidification suggests that thermal stress rather than acidification contributed to the observed biotic responses.

  15. Consumers mediate the effects of experimental ocean acidification and warming on primary producers.

    PubMed

    Alsterberg, Christian; Eklöf, Johan S; Gamfeldt, Lars; Havenhand, Jonathan N; Sundbäck, Kristina

    2013-05-21

    It is well known that ocean acidification can have profound impacts on marine organisms. However, we know little about the direct and indirect effects of ocean acidification and also how these effects interact with other features of environmental change such as warming and declining consumer pressure. In this study, we tested whether the presence of consumers (invertebrate mesograzers) influenced the interactive effects of ocean acidification and warming on benthic microalgae in a seagrass community mesocosm experiment. Net effects of acidification and warming on benthic microalgal biomass and production, as assessed by analysis of variance, were relatively weak regardless of grazer presence. However, partitioning these net effects into direct and indirect effects using structural equation modeling revealed several strong relationships. In the absence of grazers, benthic microalgae were negatively and indirectly affected by sediment-associated microalgal grazers and macroalgal shading, but directly and positively affected by acidification and warming. Combining indirect and direct effects yielded no or weak net effects. In the presence of grazers, almost all direct and indirect climate effects were nonsignificant. Our analyses highlight that (i) indirect effects of climate change may be at least as strong as direct effects, (ii) grazers are crucial in mediating these effects, and (iii) effects of ocean acidification may be apparent only through indirect effects and in combination with other variables (e.g., warming). These findings highlight the importance of experimental designs and statistical analyses that allow us to separate and quantify the direct and indirect effects of multiple climate variables on natural communities.

  16. Saturation-state sensitivity of marine bivalve larvae to ocean acidification

    NASA Astrophysics Data System (ADS)

    Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria

    2015-03-01

    Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid-base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent on seawater saturation state, and not on carbon dioxide partial pressure or pH. Although other physiological processes are affected by pH, mineral saturation state thresholds will be crossed decades to centuries ahead of pH thresholds owing to nonlinear changes in the carbonate system variables as carbon dioxide is added. Our findings were repeatable for two species of bivalve larvae could resolve discrepancies in experimental results, are consistent with a previous model of ocean acidification impacts due to rapid calcification in bivalve larvae, and suggest a fundamental ocean acidification bottleneck at early life-history for some marine keystone species.

  17. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement.

    PubMed

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2015-09-01

    Ocean warming and acidification both impact marine ecosystems. All organisms have a limited body temperature range, outside of which they become functionally constrained. Beyond the absolute extremes of this range, they cannot survive. It is hypothesized that some stressors can present effects that interact with other environmental variables, such as ocean acidification (OA) that have the potential to narrow the thermal range where marine species are functional. An organism's response to ocean acidification can therefore be highly dependent on thermal conditions. This study evaluated the combined effects of predicted ocean warming conditions and acidification, on survival, development, and settlement, of the sea urchin Paracentrotus lividus. Nine combined treatments of temperature (19.0, 20.5 and 22.5 °C) and pH (8.1, 7.7 and 7.4 units) were carried out. All of the conditions tested were either within the current natural ranges of seawater pH and temperature or are within the ranges that have been predicted for the end of the century, in the sampling region (Canary Islands). Our results indicated that the negative effects of low pH on P. lividus larval development and settlement will be mitigated by a rise in seawater temperature, up to a thermotolerance threshold. Larval development and settlement performance of the sea urchin P. lividus was enhanced by a slight increase in temperature, even under lowered pH conditions. However, the species did show negative responses to the levels of ocean warming and acidification that have been predicted for the turn of the century. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS(1).

    PubMed

    Hurd, Catriona L; Hepburn, Christopher D; Currie, Kim I; Raven, John A; Hunter, Keith A

    2009-12-01

    Ocean acidification describes changes in the carbonate chemistry of the ocean due to the increased absorption of anthropogenically released CO2 . Experiments to elucidate the biological effects of ocean acidification on algae are not straightforward because when pH is altered, the carbon speciation in seawater is altered, which has implications for photosynthesis and, for calcifying algae, calcification. Furthermore, photosynthesis, respiration, and calcification will themselves alter the pH of the seawater medium. In this review, algal physiologists and seawater carbonate chemists combine their knowledge to provide the fundamental information on carbon physiology and seawater carbonate chemistry required to comprehend the complexities of how ocean acidification might affect algae metabolism. A wide range in responses of algae to ocean acidification has been observed, which may be explained by differences in algal physiology, timescales of the responses measured, study duration, and the method employed to alter pH. Two methods have been widely used in a range of experimental systems: CO2 bubbling and HCl/NaOH additions. These methods affect the speciation of carbonate ions in the culture medium differently; we discuss how this could influence the biological responses of algae and suggest a third method based on HCl/NaHCO3 additions. We then discuss eight key points that should be considered prior to setting up experiments, including which method of manipulating pH to choose, monitoring during experiments, techniques for adding acidified seawater, biological side effects, and other environmental factors. Finally, we consider incubation timescales and prior conditioning of algae in terms of regulation, acclimation, and adaptation to ocean acidification. © 2009 Phycological Society of America.

  19. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the external environment, such as epithelial tissues, may be susceptible to changes in external pH. Such biochemical systems could be adapted to a reduced pH environment by adjustment of weak bonds in an analogous fashion to biochemical adaptation to temperature. Whether such biochemical adaptation to OA exists remains to be discovered. © 2015. Published by The Company of Biologists Ltd.

  20. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation

    PubMed Central

    Ullah, Hadayet; Goldenberg, Silvan U.; Fordham, Damien A.

    2018-01-01

    Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using a sophisticated mesocosm experiment, we model energy flows through a species-rich multilevel food web, with live habitats, natural abiotic variability, and the potential for intra- and intergenerational adaptation. We show experimentally that the combined stress of acidification and warming reduced energy flows from the first trophic level (primary producers and detritus) to the second (herbivores), and from the second to the third trophic level (carnivores). Warming in isolation also reduced the energy flow from herbivores to carnivores, the efficiency of energy transfer from primary producers and detritus to herbivores and detritivores, and the living biomass of detritivores, herbivores, and carnivores. Whilst warming and acidification jointly boosted primary producer biomass through an expansion of cyanobacteria, this biomass was converted to detritus rather than to biomass at higher trophic levels—i.e., production was constrained to the base of the food web. In contrast, ocean acidification affected the food web positively by enhancing trophic flow from detritus and primary producers to herbivores, and by increasing the biomass of carnivores. Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer–consumer dynamics, both of which have important implications for the structuring of benthic communities. PMID:29315309

  1. Exploring local adaptation and the ocean acidification seascape - studies in the California Current Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.

    2014-02-01

    The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. The aragonite saturation state within the California Current System is predicted to decrease in the future with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the spatial mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, and (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.

  2. Natural ocean acidification at Papagayo upwelling system (north Pacific Costa Rica): implications for reef development

    NASA Astrophysics Data System (ADS)

    Sánchez-Noguera, Celeste; Stuhldreier, Ines; Cortés, Jorge; Jiménez, Carlos; Morales, Álvaro; Wild, Christian; Rixen, Tim

    2018-04-01

    Numerous experiments have shown that ocean acidification impedes coral calcification, but knowledge about in situ reef ecosystem response to ocean acidification is still scarce. Bahía Culebra, situated at the northern Pacific coast of Costa Rica, is a location naturally exposed to acidic conditions due to the Papagayo seasonal upwelling. We measured pH and pCO2 in situ during two non-upwelling seasons (June 2012, May-June 2013), with a high temporal resolution of every 15 and 30 min, respectively, using two Submersible Autonomous Moored Instruments (SAMI-pH, SAMI-CO2). These results were compared with published data from the 2009 upwelling season. Findings revealed that the carbonate system in Bahía Culebra shows a high temporal variability. Incoming offshore waters drive intra- and interseasonal changes. Lowest pH (7.8) and highest pCO2 (658.3 µatm) values measured during a cold-water intrusion event in the non-upwelling season were similar to those minimum values reported from upwelling season (pH = 7.8, pCO2 = 643.5 µatm), unveiling that natural acidification also occurs sporadically in the non-upwelling season. This affects the interaction of photosynthesis, respiration, calcification and carbonate dissolution and the resulting diel cycle of pH and pCO2 in the reefs of Bahía Culebra. During the non-upwelling season, the aragonite saturation state (Ωa) rises to values of > 3.3 and during the upwelling season falls below 2.5. The Ωa threshold values for coral growth were derived from the correlation between measured Ωa and coral linear extension rates which were obtained from the literature and suggest that future ocean acidification will threaten the continued growth of reefs in Bahía Culebra. These data contribute to building a better understanding of the carbonate system dynamics and coral reefs' key response (e.g., coral growth) to natural low-pH conditions, in upwelling areas in the eastern tropical Pacific and beyond.

  3. Responses of the Emiliania huxleyi proteome to ocean acidification.

    PubMed

    Jones, Bethan M; Iglesias-Rodriguez, M Debora; Skipp, Paul J; Edwards, Richard J; Greaves, Mervyn J; Young, Jeremy R; Elderfield, Henry; O'Connor, C David

    2013-01-01

    Ocean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combining tandem mass-spectrometry with isobaric tagging (iTRAQ) and multiple database searching to identify proteins that were differentially expressed in cells of the marine coccolithophore species Emiliania huxleyi (strain NZEH) between two CO2 conditions: 395 (∼current day) and ∼1340 p.p.m.v. CO2. Cells exposed to the higher CO2 condition contained more cellular particulate inorganic carbon (CaCO3) and particulate organic nitrogen and carbon than those maintained in present-day conditions. These results are linked with the observation that cells grew slower under elevated CO2, indicating cell cycle disruption. Under high CO2 conditions, coccospheres were larger and cells possessed bigger coccoliths that did not show any signs of malformation compared to those from cells grown under present-day CO2 levels. No differences in calcification rate, particulate organic carbon production or cellular organic carbon: nitrogen ratios were observed. Results were not related to nutrient limitation or acclimation status of cells. At least 46 homologous protein groups from a variety of functional processes were quantified in these experiments, of which four (histones H2A, H3, H4 and a chloroplastic 30S ribosomal protein S7) showed down-regulation in all replicates exposed to high CO2, perhaps reflecting the decrease in growth rate. We present evidence of cellular stress responses but proteins associated with many key metabolic processes remained unaltered. Our results therefore suggest that this E. huxleyi strain possesses some acclimation mechanisms to tolerate future CO2 scenarios, although the observed decline in growth rate may be an overriding factor affecting the success of this ecotype in future oceans.

  4. Responses of the Emiliania huxleyi Proteome to Ocean Acidification

    PubMed Central

    Jones, Bethan M.; Iglesias-Rodriguez, M. Debora; Skipp, Paul J.; Edwards, Richard J.; Greaves, Mervyn J.; Young, Jeremy R.; Elderfield, Henry; O'Connor, C. David

    2013-01-01

    Ocean acidification due to rising atmospheric CO2 is expected to affect the physiology of important calcifying marine organisms, but the nature and magnitude of change is yet to be established. In coccolithophores, different species and strains display varying calcification responses to ocean acidification, but the underlying biochemical properties remain unknown. We employed an approach combining tandem mass-spectrometry with isobaric tagging (iTRAQ) and multiple database searching to identify proteins that were differentially expressed in cells of the marine coccolithophore species Emiliania huxleyi (strain NZEH) between two CO2 conditions: 395 (∼current day) and ∼1340 p.p.m.v. CO2. Cells exposed to the higher CO2 condition contained more cellular particulate inorganic carbon (CaCO3) and particulate organic nitrogen and carbon than those maintained in present-day conditions. These results are linked with the observation that cells grew slower under elevated CO2, indicating cell cycle disruption. Under high CO2 conditions, coccospheres were larger and cells possessed bigger coccoliths that did not show any signs of malformation compared to those from cells grown under present-day CO2 levels. No differences in calcification rate, particulate organic carbon production or cellular organic carbon: nitrogen ratios were observed. Results were not related to nutrient limitation or acclimation status of cells. At least 46 homologous protein groups from a variety of functional processes were quantified in these experiments, of which four (histones H2A, H3, H4 and a chloroplastic 30S ribosomal protein S7) showed down-regulation in all replicates exposed to high CO2, perhaps reflecting the decrease in growth rate. We present evidence of cellular stress responses but proteins associated with many key metabolic processes remained unaltered. Our results therefore suggest that this E. huxleyi strain possesses some acclimation mechanisms to tolerate future CO2 scenarios, although the observed decline in growth rate may be an overriding factor affecting the success of this ecotype in future oceans. PMID:23593500

  5. Integrating Climate and Ocean Change Vulnerability into Conservation Planning

    NASA Astrophysics Data System (ADS)

    Mcleod, E.; Green, A.; Game, E.; Anthony, K.; Cinner, J.; Heron, S. F.; Kleypas, J. A.; Lovelock, C.; Pandolfi, J.; Pressey, B.; Salm, R.; Schill, S.; Woodroffe, C. D.

    2013-05-01

    Tropical coastal and marine ecosystems are particularly vulnerable to ocean warming, ocean acidification, and sea-level rise. Yet these projected climate and ocean change impacts are rarely considered in conservation planning due to the lack of guidance on how existing climate and ocean change models, tools, and data can be applied. We address this gap by describing how conservation planning can use available tools and data for assessing the vulnerability of tropical marine ecosystems to key climate threats. Additionally, we identify limitations of existing tools and provide recommendations for future research to improve integration of climate and ocean change information and conservation planning. Such information is critical for developing a conservation response that adequately protects these ecosystems and dependent coastal communities in the face of climate and ocean change.

  6. The Interactive Effects of Elevated CO2 and Ammonium Enrichment on the Physiological Performances of Saccharina japonica (Laminariales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Kang, Jin Woo; Chung, Ik Kyo

    2018-04-01

    Environmental challenges such as ocean acidification and eutrophication influence the physiology of kelp species. We investigated their interactive effects on Saccharina japonica (Laminariales, Phaeophyta) under two pH conditions [Low, 7.50; High (control), 8.10] and three NH4 +concentrations (Low, 4; Medium, 60; High, 120 μM). The degree of variation of pH values in the culture medium and inhibition rate of photosynthetic oxygen evolution by acetazolamide were affected by pH treatments. Relative growth rates, carbon, nitrogen, and the C:N ratio in tissue samples were influenced by higher concentrations of NH4 + . Rates of photosynthetic oxygen evolution were enhanced under elevated CO2 or NH4 +conditions, independently, but these two factors did not show an interactive effect. However, rates of NH4 +uptake were influenced by the interactive effect of increased CO2 under elevated NH4 +treatment. Although ocean acidification and eutrophication states had an impact on physiological performance, chlorophyll fluorescence was not affected by those conditions. Our results indicated that the physiological reactions by this alga were influenced to some extent by a rise in the levels of CO2 and NH4 + . Therefore, we expect that the biomass accumulation of S. japonica may well increase under future scenarios of ocean acidification and eutrophication.

  7. Ocean acidification effects on Caribbean scleractinian coral calcification using a recirculating system: a novel approach to OA research

    EPA Science Inventory

    Projected increases in ocean pCO2 levels are likely to affect calcifying organisms more rapidly and to a greater extent than any other marine organisms. The effects of ocean acidification (OA) has been documented in numerous species of corals in both laboratory and field studies....

  8. Demonstrating the Effects of Ocean Acidification on Marine Organisms to Support Climate Change Understanding

    ERIC Educational Resources Information Center

    Kelley, Amanda L.; Hanson, Paul R.; Kelley, Stephanie A.

    2015-01-01

    Ocean acidification, a product of CO[subscript 2] absorption by the world's oceans, is largely driven by the anthropogenic combustion of fossil fuels and has already lowered the pH of marine ecosystems. Organisms with calcium carbonate shells and skeletons are especially susceptible to increasing environmental acidity due to reduction in the…

  9. Potential Impacts of Climate Change in the United States

    DTIC Science & Technology

    2009-05-01

    could experience what are now considered 100-year floods every three to four years by the end of the 21st century.75 Ocean Acidification . The world’s...could be particularly harmful.81 In addition, shellfish, plankton, and corals face a highly uncertain threat from acidification of the world’s...eds., Climate Change 2007: Impacts, Adaptation and Vulnerability, p. 213; Raven and others, Ocean Acidification Due to Increasing Atmospheric

  10. Using Students' Explanatory Models as Sources of Feedback: Conceptualizing Ocean Acidification and Its Impacts

    NASA Astrophysics Data System (ADS)

    Sezen-Barrie, A.; Stapleton, M.; Wolfson, J.

    2017-12-01

    This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.

  11. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis

    PubMed Central

    Hancock, Joshua R.; Place, Sean P.

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis. We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid–base regulatory capacity (Na+,K+-ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments. PMID:27729981

  12. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice

    PubMed Central

    Lewis, Ceri N.; Brown, Kristina A.; Edwards, Laura A.; Cooper, Glenn; Findlay, Helen S.

    2013-01-01

    The Arctic Ocean already experiences areas of low pH and high CO2, and it is expected to be most rapidly affected by future ocean acidification (OA). Copepods comprise the dominant Arctic zooplankton; hence, their responses to OA have important implications for Arctic ecosystems, yet there is little data on their current under-ice winter ecology on which to base future monitoring or make predictions about climate-induced change. Here, we report results from Arctic under-ice investigations of copepod natural distributions associated with late-winter carbonate chemistry environmental data and their response to manipulated pCO2 conditions (OA exposures). Our data reveal that species and life stage sensitivities to manipulated OA conditions were correlated with their vertical migration behavior and with their natural exposures to different pCO2 ranges. Vertically migrating adult Calanus spp. crossed a pCO2 range of >140 μatm daily and showed only minor responses to manipulated high CO2. Oithona similis, which remained in the surface waters and experienced a pCO2 range of <75 μatm, showed significantly reduced adult and nauplii survival in high CO2 experiments. These results support the relatively untested hypothesis that the natural range of pCO2 experienced by an organism determines its sensitivity to future OA and highlight that the globally important copepod species, Oithona spp., may be more sensitive to future high pCO2 conditions compared with the more widely studied larger copepods. PMID:24297880

  13. Mineralogical Plasticity Acts as a Compensatory Mechanism to the Impacts of Ocean Acidification.

    PubMed

    Leung, Jonathan Y S; Russell, Bayden D; Connell, Sean D

    2017-03-07

    Calcifying organisms are considered particularly susceptible to the future impacts of ocean acidification (OA), but recent evidence suggests that they may be able to maintain calcification and overall fitness. The underlying mechanism remains unclear but may be attributed to mineralogical plasticity, which modifies the energetic cost of calcification. To test the hypothesis that mineralogical plasticity enables the maintenance of shell growth and functionality under OA conditions, we assessed the biological performance of a gastropod (respiration rate, feeding rate, somatic growth, and shell growth of Austrocochlea constricta) and analyzed its shell mechanical and geochemical properties (shell hardness, elastic modulus, amorphous calcium carbonate, calcite to aragonite ratio, and magnesium to calcium ratio). Despite minor metabolic depression and no increase in feeding rate, shell growth was faster under OA conditions, probably due to increased precipitation of calcite and trade-offs against inner shell density. In addition, the resulting shell was functionally suitable for increasingly "corrosive" oceans, i.e., harder and less soluble shells. We conclude that mineralogical plasticity may act as a compensatory mechanism to maintain overall performance of calcifying organisms under OA conditions and could be a cornerstone of calcifying organisms to acclimate to and maintain their ecological functions in acidifying oceans.

  14. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza

    NASA Astrophysics Data System (ADS)

    Gao, Guang; Beardall, John; Bao, Menglin; Wang, Can; Ren, Wangwang; Xu, Juntian

    2018-06-01

    Large-scale green tides have been invading the coastal zones of the western Yellow Sea annually since 2008. Meanwhile, oceans are becoming more acidic due to continuous absorption of anthropogenic carbon dioxide, and intensive seaweed cultivation in Chinese coastal areas is leading to severe regional nutrient limitation. However, little is known about the combined effects of global and local stressors on the eco-physiology of bloom-forming algae. We cultured Ulva linza for 9-16 days under two levels of pCO2 (400 and 1000 µatm) and four treatments of nutrients (nutrient repletion, N limitation, P limitation, and N-P limitation) to investigate the physiological responses of this green tide alga to the combination of ocean acidification and nutrient limitation. For both sporelings and adult plants, elevated pCO2 did not affect the growth rate when cultured under nutrient-replete conditions but reduced it under P limitation; N or P limitations by themselves reduced growth rate. P limitation resulted in a larger inhibition in growth for sporelings compared to adult plants. Sporelings under P limitation did not reach the mature stage after 16 days of culture while those under P repletion became mature by day 11. Elevated pCO2 reduced net photosynthetic rate for all nutrient treatments but increased nitrate reductase activity and soluble protein content under P-replete conditions. N or P limitation reduced nitrate reductase activity and soluble protein content. These findings indicate that ocean acidification and nutrient limitation would synergistically reduce the growth of Ulva species and may thus hinder the occurrence of green tides in a future ocean environment.

  15. RNA-seq reveals a diminished acclimation response to the combined effects of ocean acidification and elevated seawater temperature in Pagothenia borchgrevinki.

    PubMed

    Huth, Troy J; Place, Sean P

    2016-08-01

    The IPCC has reasserted the strong influence of anthropogenic CO2 contributions on global climate change and highlighted the polar-regions as highly vulnerable. With these predictions the cold adapted fauna endemic to the Southern Ocean, which is dominated by fishes of the sub-order Notothenioidei, will face considerable challenges in the near future. Recent physiological studies have demonstrated that the synergistic stressors of elevated temperature and ocean acidification have a considerable, although variable, impact on notothenioid fishes. The present study explored the transcriptomic response of Pagothenia borchgrevinki to increased temperatures and pCO2 after 7, 28 and 56days of acclimation. We compared this response to short term studies assessing heat stress alone and foretell the potential impacts of these stressors on P. borchgrevinki's ability to survive a changing Southern Ocean. P. borchgrevinki did demonstrate a coordinated stress response to the dual-stressor condition, and even indicated that some level of inducible heat shock response may be conserved in this notothenioid species. However, the stress response of P. borchgrevinki was considerably less robust than that observed previously in the closely related notothenioid, Trematomus bernacchii, and varied considerably when compared across different acclimation time-points. Furthermore, the molecular response of these fish under multiple stressors displayed distinct differences compared to their response to short term heat stress alone. When exposed to increased sea surface temperatures, combined with ocean acidification, P. borchgrevinki demonstrated a coordinated stress response that has already peaked by 7days of acclimation and quickly diminished over time. However, this response is less dramatic than other closely related notothenioids under identical conditions, supporting previous research suggesting that this notothenioid species is less sensitive to environmental variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    PubMed

    Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-01-01

    As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  17. Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral

    PubMed Central

    Kaniewska, Paulina; Campbell, Paul R.; Kline, David I.; Rodriguez-Lanetty, Mauricio; Miller, David J.

    2012-01-01

    As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification. PMID:22509341

  18. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator.

    PubMed

    Rosa, Rui; Seibel, Brad A

    2008-12-30

    By the end of this century, anthropogenic carbon dioxide (CO(2)) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature. Reduced aerobic and locomotory scope in warm, high-CO(2) surface waters will presumably impair predator-prey interactions with cascading consequences for growth, reproduction, and survival. Moreover, as the OML shoals, squids will have to retreat to these shallower, less hospitable, waters at night to feed and repay any oxygen debt that accumulates during their diel vertical migration into the OML. Thus, we demonstrate that, in the absence of adaptation or horizontal migration, the synergism between ocean acidification, global warming, and expanding hypoxia will compress the habitable depth range of the species. These interactions may ultimately define the long-term fate of this commercially and ecologically important predator.

  19. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator

    PubMed Central

    Rosa, Rui; Seibel, Brad A.

    2008-01-01

    By the end of this century, anthropogenic carbon dioxide (CO2) emissions are expected to decrease the surface ocean pH by as much as 0.3 unit. At the same time, the ocean is expected to warm with an associated expansion of the oxygen minimum layer (OML). Thus, there is a growing demand to understand the response of the marine biota to these global changes. We show that ocean acidification will substantially depress metabolic rates (31%) and activity levels (45%) in the jumbo squid, Dosidicus gigas, a top predator in the Eastern Pacific. This effect is exacerbated by high temperature. Reduced aerobic and locomotory scope in warm, high-CO2 surface waters will presumably impair predator–prey interactions with cascading consequences for growth, reproduction, and survival. Moreover, as the OML shoals, squids will have to retreat to these shallower, less hospitable, waters at night to feed and repay any oxygen debt that accumulates during their diel vertical migration into the OML. Thus, we demonstrate that, in the absence of adaptation or horizontal migration, the synergism between ocean acidification, global warming, and expanding hypoxia will compress the habitable depth range of the species. These interactions may ultimately define the long-term fate of this commercially and ecologically important predator. PMID:19075232

  20. Systemic to Microscale Response of Orbicella faveolata to Future Ocean CO2 Conditions.

    NASA Astrophysics Data System (ADS)

    Dungan, A.; Hall, E. R.; Blackwelder, P. L.; Fogarty, N. D.

    2016-02-01

    Coral reefs are one of the most economically important ecosystems on the planet, supplying roughly $30 billion USD annually into world economies from the goods and services they provide. Despite their great contributions, anthropogenic influence via carbon dioxide emissions is leading to unprecedented changes in the tropical oceans with concerns about subsequent negative impacts on reefs. Surface ocean pH has dropped 0.1 units in the past century, representing a thirty percent increase in hydrogen ion concentration. In spite of this rapid shift in oceanic chemistry, it is unclear how adult corals and their new recruits will be impacted. In this experiment we examined the relationship between CO2-induced seawater acidification, net calcification, and physiological parameters in Orbicella faveolata adults and new recruits under ambient (465 ± 5.52 ppm), and high (1451 ± 6.51 ppm) CO2 conditions. These treatments represented current and end of the century CO2 values predicted under the RCP8.5 scenario developed by the Intergovernmental Panel on Climate Change (IPCC). Electron microscopy (TEM/SEM) was used to examine coral cellular ultrastructure and newly formed aragonite skeletal crystal structures. Orbicella faveolata exhibited no significant difference in skeletal deposition rates under control and high CO2 conditions; however, crystal formations for both adult and juvenile O. faveolata were statistically longer in the high CO2 treatment. No significant differences were seen in photosynthesis or respiration rates. These results suggest that the addition of CO2 may cause a shift in the overall energy budgets causing a modification of skeletal aragonite crystal structures, rather than inhibiting skeletal crystal formation. Consequential to this energy shift, Orbicella faveolata belongs in the category of Scleractinian corals that exhibit a low sensitivity to ocean acidification and existing colonies may continue to calcify and build reefs in the face of ocean acidification. It remains unclear, however, what the long term effects of a more acidic ocean may be on gamete production and other energy expensive processes.

  1. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming.

    PubMed

    Dworjanyn, Symon A; Byrne, Maria

    2018-04-11

    Understanding how growth trajectories of calcifying invertebrates are affected by changing climate requires acclimation experiments that follow development across life-history transitions. In a long-term acclimation study, the effects of increased acidification and temperature on survival and growth of the tropical sea urchin Tripneustes gratilla from the early juvenile (5 mm test diameter-TD) through the developmental transition to the mature adult (60 mm TD) were investigated. Juveniles were reared in a combination of three temperature and three pH/ p CO 2 treatments, including treatments commensurate with global change projections. Elevated temperature and p CO 2 /pH both affected growth, but there was no interaction between these factors. The urchins grew more slowly at pH 7.6, but not at pH 7.8. Slow growth may be influenced by the inability to compensate coelomic fluid acid-base balance at pH 7.6. Growth was faster at +3 and +6°C compared to that in ambient temperature. Acidification and warming had strong and interactive effects on reproductive potential. Warming increased the gonad index, but acidification decreased it. At pH 7.6 there were virtually no gonads in any urchins regardless of temperature. The T. gratilla were larger at maturity under combined near-future warming and acidification scenarios (+3°C/pH 7.8). Although the juveniles grew and survived in near-future warming and acidification conditions, chronic exposure to these stressors from an early stage altered allocation to somatic and gonad growth. In the absence of phenotypic adjustment, the interactive effects of warming and acidification on the benthic life phases of sea urchins may compromise reproductive fitness and population maintenance as global climatic change unfolds. © 2018 The Author(s).

  2. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    PubMed

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  3. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions

    PubMed Central

    Nagelkerken, Ivan; Connell, Sean D.

    2015-01-01

    Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth’s heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems. PMID:26460052

  4. Ocean acidification may increase calcification rates, but at a cost

    PubMed Central

    Wood, Hannah L; Spicer, John I; Widdicombe, Stephen

    2008-01-01

    Ocean acidification is the lowering of pH in the oceans as a result of increasing uptake of atmospheric carbon dioxide. Carbon dioxide is entering the oceans at a greater rate than ever before, reducing the ocean's natural buffering capacity and lowering pH. Previous work on the biological consequences of ocean acidification has suggested that calcification and metabolic processes are compromised in acidified seawater. By contrast, here we show, using the ophiuroid brittlestar Amphiura filiformis as a model calcifying organism, that some organisms can increase the rates of many of their biological processes (in this case, metabolism and the ability to calcify to compensate for increased seawater acidity). However, this upregulation of metabolism and calcification, potentially ameliorating some of the effects of increased acidity comes at a substantial cost (muscle wastage) and is therefore unlikely to be sustainable in the long term. PMID:18460426

  5. Ocean acidification affects prey detection by a predatory reef fish.

    PubMed

    Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I

    2011-01-01

    Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  6. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua).

    PubMed

    Kreiss, C M; Michael, K; Lucassen, M; Jutfelt, F; Motyka, R; Dupont, S; Pörtner, H-O

    2015-10-01

    Ocean warming and acidification are threatening marine ecosystems. In marine animals, acidification is thought to enhance ion regulatory costs and thereby baseline energy demand, while elevated temperature also increases baseline metabolic rate. Here we investigated standard metabolic rates (SMR) and plasma parameters of Atlantic cod (Gadus morhua) after 3-4 weeks of exposure to ambient and future PCO2 levels (550, 1200 and 2200 µatm) and at two temperatures (10, 18 °C). In vivo branchial ion regulatory costs were studied in isolated, perfused gill preparations. Animals reared at 18 °C responded to increasing CO2 by elevating SMR, in contrast to specimens at 10 °C. Isolated gills at 10 °C and elevated PCO2 (≥1200 µatm) displayed increased soft tissue mass, in parallel to increased gill oxygen demand, indicating an increased fraction of gill in whole animal energy budget. Altered gill size was not found at 18 °C, where a shift in the use of ion regulation mechanisms occurred towards enhanced Na(+)/H(+)-exchange and HCO3 (-) transport at high PCO2 (2200 µatm), paralleled by higher Na(+)/K(+)-ATPase activities. This shift did not affect total gill energy consumption leaving whole animal energy budget unaffected. Higher Na(+)/K(+)-ATPase activities in the warmth might have compensated for enhanced branchial permeability and led to reduced plasma Na(+) and/or Cl(-) concentrations and slightly lowered osmolalities seen at 18 °C and 550 or 2200 µatm PCO2 in vivo. Overall, the gill as a key ion regulation organ seems to be highly effective in supporting the resilience of cod to effects of ocean warming and acidification.

  7. Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum.

    PubMed

    Bignami, Sean; Sponaugle, Su; Cowen, Robert K

    2013-04-01

    Currently, ocean acidification is occurring at a faster rate than at any time in the last 300 million years, posing an ecological challenge to marine organisms globally. There is a critical need to understand the effects of acidification on the vulnerable larval stages of marine fishes, as there is potential for large ecological and economic impacts on fish populations and the human economies that rely on them. We expand upon the narrow taxonomic scope found in the literature today, which overlooks many life history characteristics of harvested species, by reporting on the larvae of Rachycentron canadum (cobia), a large, highly mobile, pelagic-spawning, widely distributed species with a life history and fishery value contrasting other species studied to date. We raised larval cobia through the first 3 weeks of ontogeny under conditions of predicted future ocean acidification to determine effects on somatic growth, development, otolith formation, swimming ability, and swimming activity. Cobia exhibited resistance to treatment effects on growth, development, swimming ability, and swimming activity at 800 and 2100 μatm pCO2 . However, these scenarios resulted in a significant increase in otolith size (up to 25% larger area) at the lowest pCO2 levels reported to date, as well as the first report of significantly wider daily otolith growth increments. When raised under more extreme scenarios of 3500 and 5400 μatm pCO2 , cobia exhibited significantly reduced size-at-age (up to 25% smaller) and a 2-3 days developmental delay. The robust nature of cobia may be due to the naturally variable environmental conditions this species currently encounters throughout ontogeny in coastal environments, which may lead to an increased acclimatization ability even during long-term exposure to stressors. © 2012 Blackwell Publishing Ltd.

  8. EPA Issues November 15, 2010 Memorandum: Integrated Reporting and Listing Decisions Related to Ocean Acidification

    EPA Pesticide Factsheets

    The memorandum provides information to assist regions and states in preparing and reviewing Integrated Reports related to ocean acidification (OA) impacts under Sections 303(d), 305(b) and 314 of the Clean Water Act (CWA).

  9. Global patterns of changes in underwater sound transmission caused by ocean acidification

    NASA Astrophysics Data System (ADS)

    Ilyina, T.; Zeebe, R. E.; Brewer, P. G.

    2009-04-01

    Oceanic uptake of man-made CO2 leads to a decrease in the ocean pH and carbonate saturation state. This processes, known as ocean acidification is expected to have adverse effects on a variety of marine organisms. A surprising consequence of ocean acidification, which has gone widely unrecognized, is its effect on underwater sound transmission. Low-frequency sound absorption in the ocean occurs due to chemical relaxation of the pH-dependent boric acid-borate ion reaction. As ocean pH drops, sound absorption in the audible range decreases. The decreased sound absorption will amplify ambient noise levels, and enhance long distance sound transmission, although its exact environmental impact is uncertain. Changes in the underwater sound absorption will affect the operation of scientific, commercial, and naval applications that are based on ocean acoustics, with yet unknown consequences for marine life. We project these changes using a global biogeochemical model (HAMOCC), which is forced by the anthropogenic CO2 emissions during the years 1800-2300. Based on model projections, we quantify when and where in the ocean these ocean chemistry induced perturbations in sound absorption will occur.

  10. Ocean acidification and global warming impair shark hunting behaviour and growth.

    PubMed

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D

    2015-11-12

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs.

  11. Ocean acidification and global warming impair shark hunting behaviour and growth

    PubMed Central

    Pistevos, Jennifer C. A.; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D.

    2015-01-01

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs. PMID:26559327

  12. Juvenile King Scallop, Pecten maximus, Is Potentially Tolerant to Low Levels of Ocean Acidification When Food Is Unrestricted

    PubMed Central

    Sanders, Matthew Burton; Bean, Tim P.; Hutchinson, Thomas H.; Le Quesne, Will J. F.

    2013-01-01

    The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P . maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P . maximus may display a tolerance to limited changes in seawater chemistry. PMID:24023928

  13. Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestricted.

    PubMed

    Sanders, Matthew Burton; Bean, Tim P; Hutchinson, Thomas H; Le Quesne, Will J F

    2013-01-01

    The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry.

  14. Behavioral Response of Hermit Crabs (Clibanarius digueti) to Dissolved Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Maier, H. J.

    2015-12-01

    CO2 induced ocean acidification is currently changing the population dynamics of marine organisms. As a result of ocean acidification, marine organisms expend extra energy on modifying behaviors. The current rate of ocean acidification will deplete the marine food chain that much of the world relies on as their major food supply. The purpose of this study was to understand whether and how ocean acidification affects the behavior of hermit crabs Clibanarius digueti. We hypothesized that an increase in carbonic acid would modify grazing and individual movement, because an increase in acidification alters the normal chemical composition of the water and potentially the niche occupancy of C. digueti. A model tidal pool experiment consisting of two tanks (control and treatment) inhabited with seven living C. digueti was set up in the Ocean Biome of Biosphere-2. Each tank was also provided with uninhabited shells: two Turbo fluctuosa and four Cerithium sp. Gaseous CO2 was dissolved into a treatment tank and measured as dissolved CO2 by using a sodium hydroxide titration method. Additionally, water conditions were characterized for UV- light and temperature. Two trials were run in this experiment with tanks and treatments interchanged in each trial. We assessed whether increased CO2 affected hermit crab shell change rate. We found that shell changes only happened among C. digueti placed under increased CO2. The information from this analysis will allow us to assess whether ocean acidification affects basic behavior in hermit crabs, which could later affect population dynamics. Bringing together all of this information will allow us to measure the effects of climate change on the behavior of C.Digueti.

  15. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    PubMed Central

    Gazeau, Frédéric; van Rijswijk, Pieter; Pozzato, Lara; Middelburg, Jack J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study. PMID:24718610

  16. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.

    PubMed

    Gazeau, Frédéric; van Rijswijk, Pieter; Pozzato, Lara; Middelburg, Jack J

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

  17. Food supply confers calcifiers resistance to ocean acidification.

    PubMed

    Ramajo, Laura; Pérez-León, Elia; Hendriks, Iris E; Marbà, Núria; Krause-Jensen, Dorte; Sejr, Mikael K; Blicher, Martin E; Lagos, Nelson A; Olsen, Ylva S; Duarte, Carlos M

    2016-01-18

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  18. Food supply confers calcifiers resistance to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ramajo, Laura; Pérez-León, Elia; Hendriks, Iris E.; Marbà, Núria; Krause-Jensen, Dorte; Sejr, Mikael K.; Blicher, Martin E.; Lagos, Nelson A.; Olsen, Ylva S.; Duarte, Carlos M.

    2016-01-01

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification.

  19. Food supply confers calcifiers resistance to ocean acidification

    PubMed Central

    Ramajo, Laura; Pérez-León, Elia; Hendriks, Iris E.; Marbà, Núria; Krause-Jensen, Dorte; Sejr, Mikael K.; Blicher, Martin E.; Lagos, Nelson A.; Olsen, Ylva S.; Duarte, Carlos M.

    2016-01-01

    Invasion of ocean surface waters by anthropogenic CO2 emitted to the atmosphere is expected to reduce surface seawater pH to 7.8 by the end of this century compromising marine calcifiers. A broad range of biological and mineralogical mechanisms allow marine calcifiers to cope with ocean acidification, however these mechanisms are energetically demanding which affect other biological processes (trade-offs) with important implications for the resilience of the organisms against stressful conditions. Hence, food availability may play a critical role in determining the resistance of calcifiers to OA. Here we show, based on a meta-analysis of existing experimental results assessing the role of food supply in the response of organisms to OA, that food supply consistently confers calcifiers resistance to ocean acidification. PMID:26778520

  20. Boosted food web productivity through ocean acidification collapses under warming.

    PubMed

    Goldenberg, Silvan U; Nagelkerken, Ivan; Ferreira, Camilo M; Ullah, Hadayet; Connell, Sean D

    2017-10-01

    Future climate is forecast to drive bottom-up (resource driven) and top-down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over-reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three-level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO 2 and elevated temperature boosted primary production. Under elevated CO 2 , the enhanced bottom-up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO 2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO 2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production. © 2017 John Wiley & Sons Ltd.

  1. Contrasting Impact of Future CO2 Emission Scenarios on the Extent of CaCO3 Mineral Undersaturation in the Humboldt Current System

    NASA Astrophysics Data System (ADS)

    Franco, A. C.; Gruber, N.; Frölicher, T. L.; Kropuenske Artman, L.

    2018-03-01

    The eastern boundary upwelling systems are among those regions that are most vulnerable to an ocean acidification-induced transition toward undersaturated conditions with respect to mineral CaCO3, but no assessment exists yet for the Humboldt Current System. Here we use a high-resolution (˜7.5 km) regional ocean model to investigate past and future changes in ocean pH and CaCO3 saturation state in this system. We find that within the next few decades, the nearshore waters off Peru are projected to become corrosive year round with regard to aragonite, the more soluble form of CaCO3. The volume of aragonite undersaturated water off Peru will continue to increase in the future irrespective of the amount of CO2 emitted to the atmosphere. In contrast, the development of the saturation state with regard to calcite, a less soluble form of carbonate, depends strongly on the scenario followed. By 2050, calcite undersaturation appears in the nearshore waters off Peru occasionally, but by 2090 in a high-emission scenario (RCP8.5), ˜60% of the water in the euphotic zone will become permanently calcite undersaturated. Most of this calcite undersaturation off Peru can likely be avoided if a low emission scenario (RCP2.6) consistent with the Paris Agreement is followed. The progression of ocean acidification off Chile follows a similar pattern, except that the saturation states are overall higher. But also here, calcite undersaturated waters will become common in the subsurface waters under the RCP8.5 scenario by the end of this century, while this can be avoided under the RCP2.6 scenario.

  2. Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp . A

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; Liddy, M.; Nguyen, H. D.; Byrne, M.

    2014-09-01

    Increased atmospheric CO2 will have a twofold impact on future marine ecosystems, increasing global sea surface temperatures and uptake of CO2 (Ocean Acidification). Many experiments focus on the investigation of one of these stressors, but under realistic future climate predictions, these stressors may have interactive effects on individuals. Here, we investigate the effect of warming and acidification in combination. We test for interactive effects of potential near-future (2100) temperature (+2 to 3 °C) and pCO2 (~860-940 μAtm) levels on the physiology of the tropical echinoid Echinometra sp . A. The greatest reduction in growth was under simultaneous temperature and pH/ pCO2 stress (marginally significant temperature × pH/ pCO2 interaction). This was mirrored by the physiological data, with highest metabolic activity (measured as respiration and ammonium excretion) occurring at the increased temperature and pCO2 treatment, although this was not significant for excretion. The perivisceral coelomic fluid pH was ~7.5-7.6, as typical for echinoids, and showed no significant changes between treatments. Indicative of active calcification, internal magnesium and calcium concentrations were reduced compared to the external medium, but were not different between treatments. Gonad weight was lower at the higher temperature, and this difference was more distinct and statistically significant for males. The condition of the gonads assessed by histology declined in increased temperature and low pH treatments. The Echinometra grew in all treatments indicating active calcification of their magnesium calcite tests even as carbonate mineral saturation decreased. Our results indicate that the interactive temperature and pH effects are more important for adult echinoids than individual stressors. Although adult specimens grow and survive in near-future conditions, higher energy demands may influence gonad development and thus population maintenance.

  3. Ocean acidification alters fish populations indirectly through habitat modification

    NASA Astrophysics Data System (ADS)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  4. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis.

    PubMed

    Broszeit, Stefanie; Hattam, Caroline; Beaumont, Nicola

    2016-02-15

    Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Possible Late Paleocene-Early Eocene Ocean Acidification Event Recoded in the Adriatic Carbonate Platform

    NASA Astrophysics Data System (ADS)

    Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.

  6. Over-calcified forms of the coccolithophore Emiliania huxleyi in high-CO2 waters are not preadapted to ocean acidification

    NASA Astrophysics Data System (ADS)

    von Dassow, Peter; Díaz-Rosas, Francisco; Mahdi Bendif, El; Gaitán-Espitia, Juan-Diego; Mella-Flores, Daniella; Rokitta, Sebastian; John, Uwe; Torres, Rodrigo

    2018-03-01

    Marine multicellular organisms inhabiting waters with natural high fluctuations in pH appear more tolerant to acidification than conspecifics occurring in nearby stable waters, suggesting that environments of fluctuating pH hold genetic reservoirs for adaptation of key groups to ocean acidification (OA). The abundant and cosmopolitan calcifying phytoplankton Emiliania huxleyi exhibits a range of morphotypes with varying degrees of coccolith mineralization. We show that E. huxleyi populations in the naturally acidified upwelling waters of the eastern South Pacific, where pH drops below 7.8 as is predicted for the global surface ocean by the year 2100, are dominated by exceptionally over-calcified morphotypes whose distal coccolith shield can be almost solid calcite. Shifts in morphotype composition of E. huxleyi populations correlate with changes in carbonate system parameters. We tested if these correlations indicate that the hyper-calcified morphotype is adapted to OA. In experimental exposures to present-day vs. future pCO2 (400 vs. 1200 µatm), the over-calcified morphotypes showed the same growth inhibition (-29.1±6.3 %) as moderately calcified morphotypes isolated from non-acidified water (-30.7±8.8 %). Under the high-CO2-low-pH condition, production rates of particulate organic carbon (POC) increased, while production rates of particulate inorganic carbon (PIC) were maintained or decreased slightly (but not significantly), leading to lowered PIC / POC ratios in all strains. There were no consistent correlations of response intensity with strain origin. The high-CO2-low-pH condition affected coccolith morphology equally or more strongly in over-calcified strains compared to moderately calcified strains. High-CO2-low-pH conditions appear not to directly select for exceptionally over-calcified morphotypes over other morphotypes, but perhaps indirectly by ecologically correlated factors. More generally, these results suggest that oceanic planktonic microorganisms, despite their rapid turnover and large population sizes, do not necessarily exhibit adaptations to naturally high-CO2 upwellings, and this ubiquitous coccolithophore may be near the limit of its capacity to adapt to ongoing ocean acidification.

  7. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter.

    PubMed

    Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto

    2016-11-01

    The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values ​​are re-established. Thus, the effects of ocean acidification could lead to consequences for pathogen resistance and survival of these sea urchin species. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nonuniform ocean acidification and attenuation of the ocean carbon sink

    NASA Astrophysics Data System (ADS)

    Fassbender, Andrea J.; Sabine, Christopher L.; Palevsky, Hilary I.

    2017-08-01

    Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas (pCO2) are rising, pH levels are declining, and the ocean's buffer capacity is eroding. Regional differences in short-term pH trends primarily have been attributed to physical and biological processes; however, heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.

  9. Slowing Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Bravo, A.

    2016-12-01

    Currently our ocean's pH is 8.1, a decrease from 8.2 in the past 200 years since the beginning of the industrial revolution. The ocean absorbs about a third of the carbon dioxide (CO2) from the atmosphere, which is helpful to us, since reducing the amount of CO2 in the atmosphere shows global warming. However, what is the impact of all that CO2 on the ocean? I evaluated the effect of acidic water on bivalves, and found that the shells were broken down with exposure to increased acidity. I am concerned that continued ocean acidification will impact organisms that are unable to adapt to the changing ocean chemistry. While the US currently invests in alternative forms of energy including solar and wind, approximately 66% of our energy comes from sources that are releasing CO2 into the atmosphere. I want to explore the potential of wave energy as another form of renewable energy. When wind blows over the surface of the ocean, it creates a wave. Could this wave energy be a consistent clean energy source? Could a strategy to slow and reverse ocean acidification be found in the ocean?

  10. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Mostofa, Khan M. G.; Liu, Cong-Qiang; Zhai, WeiDong; Minella, Marco; Vione, Davide; Gao, Kunshan; Minakata, Daisuke; Arakaki, Takemitsu; Yoshioka, Takahito; Hayakawa, Kazuhide; Konohira, Eiichi; Tanoue, Eiichiro; Akhand, Anirban; Chanda, Abhra; Wang, Baoli; Sakugawa, Hiroshi

    2016-03-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different timescales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  11. Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Mostofa, K. M. G.; Liu, C.-Q.; Zhai, W. D.; Minella, M.; Vione, D.; Gao, K.; Minakata, D.; Arakaki, T.; Yoshioka, T.; Hayakawa, K.; Konohira, E.; Tanoue, E.; Akhand, A.; Chanda, A.; Wang, B.; Sakugawa, H.

    2015-07-01

    Ocean acidification, a complex phenomenon that lowers seawater pH, is the net outcome of several contributions. They include the dissolution of increasing atmospheric CO2 that adds up with dissolved inorganic carbon (dissolved CO2, H2CO3, HCO3-, and CO32-) generated upon mineralization of primary producers (PP) and dissolved organic matter (DOM). The aquatic processes leading to inorganic carbon are substantially affected by increased DOM and nutrients via terrestrial runoff, acidic rainfall, increased PP and algal blooms, nitrification, denitrification, sulfate reduction, global warming (GW), and by atmospheric CO2 itself through enhanced photosynthesis. They are consecutively associated with enhanced ocean acidification, hypoxia in acidified deeper seawater, pathogens, algal toxins, oxidative stress by reactive oxygen species, and thermal stress caused by longer stratification periods as an effect of GW. We discuss the mechanistic insights into the aforementioned processes and pH changes, with particular focus on processes taking place with different time scales (including the diurnal one) in surface and subsurface seawater. This review also discusses these collective influences to assess their potential detrimental effects to marine organisms, and of ecosystem processes and services. Our review of the effects operating in synergy with ocean acidification will provide a broad insight into the potential impact of acidification itself on biological processes. The foreseen danger to marine organisms by acidification is in fact expected to be amplified by several concurrent and interacting phenomena.

  12. Ocean acidification may aggravate social-ecological trade-offs in coastal fisheries.

    PubMed

    Voss, Rudi; Quaas, Martin F; Schmidt, Jörn O; Kapaun, Ute

    2015-01-01

    Ocean Acidification (OA) will influence marine ecosystems by changing species abundance and composition. Major effects are described for calcifying organisms, which are significantly impacted by decreasing pH values. Direct effects on commercially important fish are less well studied. The early life stages of fish populations often lack internal regulatory mechanisms to withstand the effects of abnormal pH. Negative effects can be expected on growth, survival, and recruitment success. Here we study Norwegian coastal cod, one of the few stocks where such a negative effect was experimentally quantified, and develop a framework for coupling experimental data on OA effects to ecological-economic fisheries models. In this paper, we scale the observed physiological responses to the population level by using the experimentally determined mortality rates as part of the stock-recruitment relationship. We then use an ecological-economic optimization model, to explore the potential effect of rising CO2 concentration on ecological (stock size), economic (profits), consumer-related (harvest) and social (employment) indicators, with scenarios ranging from present day conditions up to extreme acidification. Under the assumptions of our model, yields and profits could largely be maintained under moderate OA by adapting future fishing mortality (and related effort) to changes owing to altered pH. This adaptation comes at the costs of reduced stock size and employment, however. Explicitly visualizing these ecological, economic and social tradeoffs will help in defining realistic future objectives. Our results can be generalized to any stressor (or stressor combination), which is decreasing recruitment success. The main findings of an aggravation of trade-offs will remain valid. This seems to be of special relevance for coastal stocks with limited options for migration to avoid unfavorable future conditions and subsequently for coastal fisheries, which are often small scale local fisheries with limited operational ranges.

  13. Climate Change, National Security, and the Quadrennial Defense Review. Avoiding the Perfect Storm

    DTIC Science & Technology

    2008-01-01

    consequently, higher ocean water temperatures are increasing the occurrence of coral bleaching and coral reef die-offs.57 The IPCC concludes that...unprecedented combination of climate change, associated disturbances (e.g., flooding, drought, wildfire, in- sects, ocean acidification ), and other global...instance, the disintegration of saltwater fishing indus- tries due to ocean acidification could spark inter- and intrastate conflict as numerous

  14. Poles apart: the "bipolar" pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans.

    PubMed

    Hunt, Brian; Strugnell, Jan; Bednarsek, Nina; Linse, Katrin; Nelson, R John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-03-23

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five "forma". However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (+/-0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems.

  15. How Should the Department of Defense Approach Environmental Security Implications of Climate Change

    DTIC Science & Technology

    2009-12-11

    Atlanta: Army Environmental Policy Institute. Kleypas, J. A. 2005. Impacts of ocean acidification on coral reefs and other marine calcifiers. Report......literature review. This chapter includes an introduction to climate change, impacts to the population from sea-level rise, ocean acidification

  16. Long-term exposure to acidification disrupts reproduction in a marine invertebrate

    PubMed Central

    Hattich, Giannina S. I.; Heinrichs, Mara E.; Pansch, Andreas; Zagrodzka, Zuzanna; Havenhand, Jonathan N.

    2018-01-01

    Climate change research is advancing to more complex and more comprehensive studies that include long-term experiments, multiple life-history stages, multi-population, and multi-trait approaches. We used a population of the barnacle Balanus improvisus known to be sensitive to short-term acidification to determine its potential for long-term acclimation to acidification. We reared laboratory-bred individuals (as singles or pairs), and field-collected assemblages of barnacles, at pH 8.1 and 7.5 (≈ 400 and 1600 μatm pCO2 respectively) for up to 16 months. Acidification caused strong mortality and reduced growth rates. Acidification suppressed respiration rates and induced a higher feeding activity of barnacles after 6 months, but this suppression of respiration rate was absent after 15 months. Laboratory-bred barnacles developed mature gonads only when they were held in pairs, but nonetheless failed to produce fertilized embryos. Field-collected barnacles reared in the laboratory for 8 months at the same pH’s developed mature gonads, but only those in pH 8.1 produced viable embryos and larvae. Because survivors of long-term acidification were not capable of reproducing, this demonstrates that B. improvisus can only partially acclimate to long-term acidification. This represents a clear and significant bottleneck in the ontogeny of this barnacle population that may limit its potential to persist in a future ocean. PMID:29408893

  17. Response of High Latitude Coralline Algae to pCO2 and Thermal Stress

    NASA Astrophysics Data System (ADS)

    Garlick-Ott, K.; Williams, B.; Chan, P. T. W.; Westfield, I. T.; Rasher, D.; Ries, J. B.; Adey, W.; Halfar, J.

    2016-12-01

    The impacts of recent and future anthropogenic increases in atmospheric pCO2 causing ocean acidification and temperature on high-latitude oceans, and the marine organisms that inhabit them, are varied and poorly understood. The ecologically important crustose coralline alga Clathromorphum compactum may be particularly vulnerable to ocean acidification due to the relatively high solubility of its high Mg-calcite skeleton . This species of coralline algae is abundant throughout coastal mid-to-high latitude areas of the northern hemisphere, and calcifies annually-banded skeletons with longevities of up to 650 years. Here we used micro-computed tomography (micro-CT) to evaluate the impact of decreasing seawater pH and increasing temperature on skeletal density of algal specimens cultured in a fully crossed pCO2 (280, 400, 700, 2800 µatm) and temperature (6.5, 8.7, 12.4 °C) laboratory experiment. To examine the natural variability in coralline algal skeletal density, additional long-lived wild C. compactum specimens were collected along a latitudinal transect extending from the Gulf of Maine to the Canadian Arctic Archipelago. Density time series generated from the wild specimens spans the past several decades to century, and were used to evaluate other environmental parameters that may influence the skeletal density of coralline algae. This research will evaluate the resiliency of this alga to future environmental change.

  18. Alterations in microbial community composition with increasing fCO2: a mesocosm study in the eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Crawfurd, Katharine J.; Alvarez-Fernandez, Santiago; Mojica, Kristina D. A.; Riebesell, Ulf; Brussaard, Corina P. D.

    2017-08-01

    Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( < 20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.

  19. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification.

    PubMed

    Webster, N S; Negri, A P; Botté, E S; Laffy, P W; Flores, F; Noonan, S; Schmidt, C; Uthicke, S

    2016-01-13

    Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479-499 μatm) and pH 7.9 (pCO2 738-835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.

  20. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population

    PubMed Central

    Stiasny, Martina H.; Mittermayer, Felix H.; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B. H.; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae’s sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks. PMID:27551924

  1. Ocean Acidification Effects on Atlantic Cod Larval Survival and Recruitment to the Fished Population.

    PubMed

    Stiasny, Martina H; Mittermayer, Felix H; Sswat, Michael; Voss, Rüdiger; Jutfelt, Fredrik; Chierici, Melissa; Puvanendran, Velmurugu; Mortensen, Atle; Reusch, Thorsten B H; Clemmesen, Catriona

    2016-01-01

    How fisheries will be impacted by climate change is far from understood. While some fish populations may be able to escape global warming via range shifts, they cannot escape ocean acidification (OA), an inevitable consequence of the dissolution of anthropogenic carbon dioxide (CO2) emissions in marine waters. How ocean acidification affects population dynamics of commercially important fish species is critical for adapting management practices of exploited fish populations. Ocean acidification has been shown to impair fish larvae's sensory abilities, affect the morphology of otoliths, cause tissue damage and cause behavioural changes. Here, we obtain first experimental mortality estimates for Atlantic cod larvae under OA and incorporate these effects into recruitment models. End-of-century levels of ocean acidification (~1100 μatm according to the IPCC RCP 8.5) resulted in a doubling of daily mortality rates compared to present-day CO2 concentrations during the first 25 days post hatching (dph), a critical phase for population recruitment. These results were consistent under different feeding regimes, stocking densities and in two cod populations (Western Baltic and Barents Sea stock). When mortality data were included into Ricker-type stock-recruitment models, recruitment was reduced to an average of 8 and 24% of current recruitment for the two populations, respectively. Our results highlight the importance of including vulnerable early life stages when addressing effects of climate change on fish stocks.

  2. The impacts of pharmaceutical drugs under ocean acidification: New data on single and combined long-term effects of carbamazepine on Scrobicularia plana.

    PubMed

    Freitas, Rosa; Almeida, Ângela; Calisto, Vânia; Velez, Cátia; Moreira, Anthony; Schneider, Rudolf J; Esteves, Valdemar I; Wrona, Frederick J; Figueira, Etelvina; Soares, Amadeu M V M

    2016-01-15

    Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clam Scrobicularia plana. For this, a long-term exposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs.

  3. Impacts of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.; Ghazaleh, Maite N.; Connolly, Brian; Westfield, Isaac; Castillo, Karl D.

    2016-11-01

    Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase-trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers' ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) saturation state, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers' polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg < 4)], consistent with prior studies on sedimentary and inorganic carbonates. Furthermore, the severity of the temperature effects on gross dissolution rates also varied with respect to carbonate polymorph solubility, with warming (10-25 °C) exerting the greatest effect on biogenic high-Mg calcite, an intermediate effect on biogenic aragonite, and the least effect on biogenic low-Mg calcite. These results indicate that both ocean acidification and warming will lead to increased dissolution of biogenic carbonates in future oceans, with shells/skeletons composed of the more soluble polymorphs of CaCO3 being the most vulnerable to these stressors. The effects of saturation state and temperature on gross shell dissolution rate were modeled with an exponential asymptotic function (y =B0 -B2 ·e B1 Ω) that appeals to the general Arrhenius-derived rate equation for mineral dissolution [ r = (C ·e -Ea / RT) (1 - Ω)n]. Although the dissolution curves for the investigated biogenic CaCO3 exhibited exponential asymptotic trends similar to those of inorganic CaCO3, the observation that gross dissolution of whole-shell biogenic CaCO3 occurred (albeit at lower rates) even in treatments that were oversaturated (Ω > 1) with respect to both aragonite and calcite reveals fundamental differences between the dissolution kinetics of whole-shell biogenic CaCO3 and inorganic CaCO3. Thus, applying stoichiometric solubility products derived for inorganic CaCO3 to model gross dissolution of biogenic carbonates may substantially underestimate the impacts of ocean acidification on net calcification (gross calcification minus gross dissolution) of systems ranging in scale from individual organisms to entire ecosystems (e.g., net ecosystem calcification). Finally, these experiments permit rough estimation of the impact of CO2-induced ocean acidification on the gross calcification rates of various marine calcifiers, calculated as the difference between net calcification rates derived empirically in prior studies and gross dissolution rates derived from the present study. Organisms' gross calcification responses to acidification were generally less severe than their net calcification response patterns, with aragonite mollusks (bivalves, gastropods) exhibiting the most negative gross calcification response to acidification, and photosynthesizing organisms, including corals and coralline red algae, exhibiting relative resilience.

  4. Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper

    USGS Publications Warehouse

    Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria

    2010-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  5. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE PAGES

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; ...

    2016-08-01

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  6. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  7. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit

    Continued oceanic uptake of anthropogenic CO 2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representativemore » Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (Ω Ar) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H +] are most sensitive to parameters that directly affect atmospheric CO 2 concentrations – Q 10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in Ω Ar saturation levels are sensitive to changes in ocean salinity and Q 10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.« less

  8. Pteropod eggs released at high pCO2 lack resilience to ocean acidification

    NASA Astrophysics Data System (ADS)

    Manno, Clara; Peck, Victoria L.; Tarling, Geraint A.

    2016-05-01

    The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750 μatm and 1200 μatm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600 m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades.

  9. Long-term impacts of ocean acidification on parent sea urchins and subsequent recruitment

    NASA Astrophysics Data System (ADS)

    Suckling, C. C.; Clark, M. S.; Peck, L. S.; Harper, E.; Beveridge, C.; Brunner, L.; Hughes, A. D.; Davies, A. J.; Cook, E. J.

    2011-12-01

    Our oceans have become progressively more acidic over recent decades, yet we still know little about how this will affect marine biota. To survive, organisms must acclimate and adapt. Surprisingly no studies have investigated this beyond focussing on limited parts of the life-cycle and without pre-exposing parents to reduced pH conditions. Using echinoids, we present our findings on the long-term impacts of exposing parents to forecasted reduced pH conditions (IPCC IS92a scenario; ~1000 ppm CO2) and the consequences on their reproductive success through to recruitment. This study will contribute significantly towards our understanding of organismal reactions towards ocean acidification and determine whether they have intergenerational capacities to acclimate and adapt towards conditions well beyond natural-rates of ocean acidification.

  10. Ocean Acidification

    ERIC Educational Resources Information Center

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin

    2015-01-01

    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  11. Effects of Ocean Acidification on the Life Cycle and Fitness of the Mysid Shrimp Americamysis Bahia

    EPA Science Inventory

    Most concern about effects of CO2-induced ocean acidification focuses on mollusks, corals, and coccolithophores because skeletal and shell formation by these organisms is sensitive to the solubility of calcium minerals. However, many other marine organisms are likely affected by...

  12. Predicting Effects of Coastal Acidification on Marine Bivalve Populations

    EPA Science Inventory

    The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survi...

  13. Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities.

    PubMed

    Coelho, Francisco J R C; Cleary, Daniel F R; Rocha, Rui J M; Calado, Ricardo; Castanheira, José M; Rocha, Sílvia M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Lillebø, Ana I; Almeida, Adelaide; Cunha, Ângela; Lopes, Isabel; Ribeiro, Rui; Moreira-Santos, Matilde; Marques, Catarina R; Costa, Rodrigo; Pereira, Ruth; Gomes, Newton C M

    2015-05-01

    There is growing concern that modifications to the global environment such as ocean acidification and increased ultraviolet radiation may interact with anthropogenic pollutants to adversely affect the future marine environment. Despite this, little is known about the nature of the potential risks posed by such interactions. Here, we performed a multifactorial microcosm experiment to assess the impact of ocean acidification, ultraviolet B (UV-B) radiation and oil hydrocarbon contamination on sediment chemistry, the microbial community (composition and function) and biochemical marker response of selected indicator species. We found that increased ocean acidification and oil contamination in the absence of UV-B will significantly alter bacterial composition by, among other things, greatly reducing the relative abundance of Desulfobacterales, known to be important oil hydrocarbon degraders. Along with changes in bacterial composition, we identified concomitant shifts in the composition of oil hydrocarbons in the sediment and an increase in oxidative stress effects on our indicator species. Interestingly, our study identifies UV-B as a critical component in the interaction between these factors, as its presence alleviates harmful effects caused by the combination of reduced pH and oil pollution. The model system used here shows that the interactive effect of reduced pH and oil contamination can adversely affect the structure and functioning of sediment benthic communities, with the potential to exacerbate the toxicity of oil hydrocarbons in marine ecosystems. © 2014 John Wiley & Sons Ltd.

  14. The development of contemporary European sea bass larvae (Dicentrarchus labrax) is not affected by projected ocean acidification scenarios.

    PubMed

    Crespel, Amélie; Zambonino-Infante, José-Luis; Mazurais, David; Koumoundouros, George; Fragkoulis, Stefanos; Quazuguel, Patrick; Huelvan, Christine; Madec, Laurianne; Servili, Arianna; Claireaux, Guy

    2017-01-01

    Ocean acidification is a recognized consequence of anthropogenic carbon dioxide (CO 2 ) emission in the atmosphere. Despite its threat to marine ecosystems, little is presently known about the capacity for fish to respond efficiently to this acidification. In adult fish, acid-base regulatory capacities are believed to be relatively competent to respond to hypercapnic conditions. However, fish in early life stage could be particularly sensitive to environmental factors as organs and important physiological functions become progressively operational during this period. In this study, the response of European sea bass ( Dicentrarchus labrax ) larvae reared under three ocean acidification scenarios, i.e., control (present condition, [Formula: see text] = 590 µatm, pH total = 7.9), low acidification (intermediate IPCC scenario, [Formula: see text] = 980 µatm, pH total = 7.7), and high acidification (most severe IPCC scenario, [Formula: see text] = 1520 µatm, pH total = 7.5) were compared across multiple levels of biological organizations. From 2 to 45 days-post-hatching, the chronic exposure to the different scenarios had limited influence on the survival and growth of the larvae (in the low acidification condition only) and had no apparent effect on the digestive developmental processes. The high acidification condition induced both faster mineralization and reduction in skeletal deformities. Global (microarray) and targeted (qPCR) analysis of transcript levels in whole larvae did not reveal any significant changes in gene expression across tested acidification conditions. Overall, this study suggests that contemporary sea bass larvae are already capable of coping with projected acidification conditions without having to mobilize specific defense mechanisms.

  15. Anticipating ocean acidification's economic consequences for commercial fisheries

    NASA Astrophysics Data System (ADS)

    Cooley, Sarah R.; Doney, Scott C.

    2009-06-01

    Ocean acidification, a consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the 3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed 34 billion to the US gross national product. Mollusks contributed 19%, or 748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  16. Effects of ocean acidification on the dissolution rates of reef-coral skeletons.

    PubMed

    van Woesik, Robert; van Woesik, Kelly; van Woesik, Liana; van Woesik, Sandra

    2013-01-01

    Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i) the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii) the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii) the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m(-2) y(-1), which is approximately -10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050.

  17. Mussel byssus attachment weakened by ocean acidification

    NASA Astrophysics Data System (ADS)

    O'Donnell, Michael J.; George, Matthew N.; Carrington, Emily

    2013-06-01

    Biomaterials connect organisms to their environments. Their function depends on biological, chemical and environmental factors, both at the time of creation and throughout the life of the material. Shifts in the chemistry of the oceans driven by anthropogenic CO2 (termed ocean acidification) have profound implications for the function of critical materials formed under these altered conditions. Most ocean acidification studies have focused on one biomaterial (secreted calcium carbonate), frequently using a single assay (net rate of calcification) to quantify whether reductions in environmental pH alter how organisms create biomaterials. Here, we examine biological structures critical for the success of ecologically and economically important bivalve molluscs. One non-calcified material, the proteinaceous byssal threads that anchor mytilid mussels to hard substrates, exhibited reduced mechanical performance when secreted under elevated pCO2 conditions, whereas shell and tissue growth were unaffected. Threads made under high pCO2 (>1,200μatm) were weaker and less extensible owing to compromised attachment to the substratum. According to a mathematical model, this reduced byssal fibre performance, decreasing individual tenacity by 40%. In the face of ocean acidification, weakened attachment presents a potential challenge for suspension-culture mussel farms and for intertidal communities anchored by mussel beds.

  18. Pacific Circulation and the Resilience of its Equatorial Reefs

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; Drenkard, E.

    2012-12-01

    High rates of calcification by tropical reef-building corals are paramount to the maintenance of healthy reefs. Investigations of the impact of ocean acidification in both laboratory and field studies demonstrate unequivocally the dependence of coral and coral reef calcification on the carbonate ion concentration of seawater, a dependence predicted by fundamental laws of physical chemistry. Nevertheless, results from a new generation of experiments that exploit the biology of coral calcification, suggest that effects of ocean acidification can - in some instances - be mitigated with simultaneous manipulation of multiple factors. These laboratory results imply that coral reefs in regions projected to experience changes in, for example, nutrient delivery, light and flow, in addition to pH and carbonate ion concentration, may be more resilient (or vulnerable) to the effects of ocean acidification alone. If demonstrated to be true, these observations have profound implications for the conservation and management of coral reefs in the 21st century. We quantified spatial and temporal variability in rates of calcification of a dominant Indo-Pacific reef building coral across sites where changes in ocean circulation patterns drive variability in multiple physical, chemical and biological parameters. Such changes are occurring against a background of variability and trends in carbonate system chemistry. Our field data provide support for hypotheses based on laboratory observations, and show that impacts of ocean acidification on coral calcification can be partially and in some cases, fully, offset by simultaneous changes in multiple factors. Our results imply that projected changes in oceanic and atmospheric circulation patterns, driven by global warming, must be considered when predicting coral reef resilience, or vulnerability, to 21st century ocean acidification.

  19. Ocean Acidification from space: recent advances

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Shutler, Jamie; Land, Peter; Fernandez-Prieto, Diego; Donlon, Craig; Reul, Nicolas

    2017-04-01

    The phenomenon referred to as Ocean Acidification (OA) is gathering increasing attention as one of the major foci of climate-related research, for its profound impact at scientific and socio-economic level. To date, the majority of the scientific studies into the potential impacts of OA have focused on in-situ measurements, laboratory-controlled experiments and models simulations. Satellite remote sensing technology have yet to be fully exploited, despite it has been stressed it could play a significant role by providing synoptic and frequent measurements for investigating globally OA processes, also extending in-situ carbonate chemistry measurements on different spatial/temporal scales [1,2]. Within this context, the purpose of the recently completed ESA "Pathfinders - Ocean Acidification" project was to quantitatively and routinely estimate OA-related parameters by means of a blending of satellite observations and model outputs in five case-study regions (global ocean, Amazon plume, Barents sea, Greater Caribbean and Bay of Bengal). Satellite Ocean Colour, Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) have been exploited, with an emphasis on the latter being the latest addition to the portfolio of satellite measured parameters. A proper merging of these different satellites products allows computing at least two independent proxies among the seawater carbonate system parameters: the partial pressure of CO2 in surface seawater (pCO2); the total Dissolved Inorganic Carbon (DIC), the total alkalinity (TA) and the surface ocean pH. In the project, efforts have been devoted to a systematic characterization of TA and DIC from space in the mentioned case-study regions; in this paper, also through the knowledge of these parameters, the objective is to come up with the currently best educated guess of the surface ocean pH [3] and Aragonite saturation state. This will also include an estimation of the achievable accuracy by propagating the errors in the satellite data sources. The overarching long-term objectives are to develop new algorithms and data processing strategies to overcome the relative immaturity of OA satellite products currently available, and to produce a global, temporally evolving, quasi-operational suite of OA satellite-derived data. References: [1] Land, P., J. Shutler, H. Findlay, F. Girard-Ardhuin, R. Sabia, N. Reul, J.-F. Piolle, B. Chapron, Y. Quilfen, J. Salisbury, D. Vandemark, R. Bellerby, and P. Bhadury, "Salinity from space unlocks satellite-based assessment of ocean acidification", Environmental Science & Technology, DOI: 10.1021/es504849s, Publication Date (Web): January 8, 2015 [2] Salisbury, J., D. Vandemark, B. Jönsson, W. Balch, S. Chakraborty, S. Lohrenz, B. Chapron, B. Hales, A. Mannino, J.T. Mathis, N. Reul, S.R. Signorini, R. Wanninkhof, and K.K. Yates. 2015. How can present and future satellite missions support scientific studies that address ocean acidification? Oceanography 28(2):108-121, http://dx.doi.org/10.5670/oceanog.2015.35. [3] Sabia R., D. Fernández-Prieto, J. Shutler, C. Donlon, P. Land, N. Reul, Remote Sensing of Surface Ocean pH Exploiting Sea Surface Salinity Satellite Observations, IGARSS '15 (International Geoscience and Remote Sensing Symposium), Milano, Italy, July 27 -31, 2015.

  20. Pteropods as indicators for Cumulative Ocean Acidification Exposure

    NASA Astrophysics Data System (ADS)

    Bednarsek, N.; Klinger, T.

    2016-02-01

    Pteropods are ubiquitously distributed pelagic marine zooplankton of importance in productive upwelling regimes, where they represent an important prey item for variety of economically, ecologically, and culturally important fish species. Because of their extreme sensitivity to ocean acidification conditions, pteropods can be used to establish cause and effect relationships between OA status and biological condition. Incorporating biological responses into a successful management framework requires laboratory studies that demonstrate sentinel organism responses to specific stressors, while also documenting population or community level effects in the field linked to that stressor. Here, we describe the state of the science and an approach that demonstrates the linkage necessary to use pteropods as a sentinel organism for resource management under conditions of ocean acidification. To demonstrate this utility, newly developed methods were used to determine and quantify pteropod responses in the natural environment. Responses such as shell dissolution, shell calcification, changes in vertical distribution, and survival success were assessed to establish pteropod condition under a variety of OA conditions. While no single species or set of species can adequately capture all aspects of ecosystem change, pteropods represent first quantifiable, specific indicators for ocean acidification's effects on marine systems. The approach can be used in water quality assessments and in living marine resource management as part of the rapid and cost-effective monitoring of biological responses to ocean acidification. The social challenges of changing ocean chemistry will continue to grow in coming decades, making the availability of such straightforward metrics of impact indispensable across scales of time and space of relevance to managers.

  1. Skeletal trade-offs in coralline algae in response to ocean acidification

    NASA Astrophysics Data System (ADS)

    McCoy, S. J.; Ragazzola, F.

    2014-08-01

    Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types.

  2. Using the Alaska Ocean Observing System to Inform Decision Making for Coastal Resiliency Relating to Inundation, Ocean Acidification, Harmful Algal Blooms, Navigation Safety and Impacts of Vessel Traffic

    NASA Astrophysics Data System (ADS)

    McCammon, M.

    2017-12-01

    State and federal agencies, coastal communities and Alaska Native residents, and non-governmental organizations are increasingly turning to the Alaska Ocean Observing System (AOOS) as a major source of ocean and coastal data and information products to inform decision making relating to a changing Arctic. AOOS implements its mission to provide ocean observing data and information to meet stakeholder needs by ensuring that all programs are "science based, stakeholder driven and policy neutral." Priority goals are to increase access to existing coastal and ocean data; package information and data in useful ways to meet stakeholder needs; and increase observing and forecasting capacity in all regions of the state. Recently certified by NOAA, the AOOS Data Assembly Center houses the largest collection of real-time ocean and coastal data, environmental models, and biological data in Alaska, and develops tools and applications to make it more publicly accessible and useful. Given the paucity of observations in the Alaska Arctic, the challenge is how to make decisions with little data compared to other areas of the U.S. coastline. AOOS addresses this issue by: integrating and visualizing existing data; developing data and information products and tools to make data more useful; serving as a convener role in areas such as coastal inundation and flooding, impacts of warming temperatures on food security, ocean acidification, observing technologies and capacity; and facilitating planning efforts to increase observations. In this presentation, I will give examples of each of these efforts, lessons learned, and suggestions for future actions.

  3. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

    PubMed

    Castillo, Karl D; Ries, Justin B; Bruno, John F; Westfield, Isaac T

    2014-12-22

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

  4. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming

    PubMed Central

    Castillo, Karl D.; Ries, Justin B.; Bruno, John F.; Westfield, Isaac T.

    2014-01-01

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1–0.3 pH units and sea surface temperature to increase by 1–4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate—suggesting that ocean warming poses a more immediate threat than acidification for this important coral species. PMID:25377455

  5. Effects of ocean warming and acidification on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations.

    PubMed

    Ho, M A; Price, C; King, C K; Virtue, P; Byrne, M

    2013-09-01

    The gametes of marine invertebrates are being spawned into an ocean that is simultaneously warming and decreasing in pH. Predicting the potential for interactive effects of these stressors on fertilization is difficult, especially for stenothermal polar invertebrates adapted to fertilization in cold, viscous water and, when decreased sperm availability may be an additional stressor. The impact of increased temperature (2-4 °C above ambient) and decreased pH (0.2-0.4 pH units below ambient) on fertilization in the Antarctic echinoid Sterechinus neumayeri across a range of sperm concentrations was investigated in cross-factorial experiments in context with near future ocean change projections. The high temperature treatment (+4 °C) was also used to assess thermal tolerance. Gametes from multiple males and females in replicate experiments were used to reflect the multiple spawner scenario in nature. For fertilization at low sperm density we tested three hypotheses, 1) increased temperature enhances fertilization success, 2) low pH reduces fertilization and, 3) due to the cold stenothermal physiology of S. neumayeri, temperature would be the more significant stressor. Temperature and sperm levels had a significant effect on fertilization, but decreased pH did not affect fertilization. Warming enhanced fertilization at the lowest sperm concentration tested likely through stimulation of sperm motility and reduced water viscosity. Our results indicate that fertilization in S. neumayeri, even at low sperm levels potentially found in nature, is resilient to near-future ocean warming and acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Cox, T. Erin; Gazeau, Frédéric; Alliouane, Samir; Hendriks, Iris E.; Mahacek, Paul; Le Fur, Arnaud; Gattuso, Jean-Pierre

    2016-04-01

    Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m3, and an additional reference plot in the ambient environment (2 m2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of ˜ 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.

  7. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  8. Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Dorey, Narimane; Martin, Sophie; Oberhänsli, François; Teyssié, Jean-Louis; Jeffree, Ross; Lacoue-Labarthe, Thomas

    2018-10-01

    The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline. The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to -1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide ( 241 Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development. Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241 Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Ocean Acidification Affects Hemocyte Physiology in the Tanner Crab (Chionoecetes bairdi)

    PubMed Central

    Meseck, Shannon L.; Alix, Jennifer H.; Swiney, Katherine M.; Long, W. Christopher; Wikfors, Gary H.; Foy, Robert J.

    2016-01-01

    We used flow cytometry to determine if there would be a difference in hematology, selected immune functions, and hemocyte pH (pHi), under two different, future ocean acidification scenarios (pH = 7.50, 7.80) compared to current conditions (pH = 8.09) for Chionoecetes bairdi, Tanner crab. Hemocytes were analyzed after adult Tanner crabs were held for two years under continuous exposure to acidified ocean water. Total counts of hemocytes did not vary among control and experimental treatments; however, there were significantly greater number of dead, circulating hemocytes in crabs held at the lowest pH treatment. Phagocytosis of fluorescent microbeads by hemocytes was greatest at the lowest pH treatment. These results suggest that hemocytes were dying, likely by apoptosis, at a rate faster than upregulated phagocytosis was able to remove moribund cells from circulation at the lowest pH. Crab hemolymph pH (pHe) averaged 8.09 and did not vary among pH treatments. There was no significant difference in internal pH (pHi) within hyalinocytes among pH treatments and the mean pHi (7.26) was lower than the mean pHe. In contrast, there were significant differences among treatments in pHi of the semi-granular+granular cells. Control crabs had the highest mean semi-granular+granular pHi compared to the lowest pH treatment. As physiological hemocyte functions changed from ambient conditions, interactions with the number of eggs in the second clutch, percentage of viable eggs, and calcium concentration in the adult crab shell was observed. This suggested that the energetic costs of responding to ocean acidification and maintaining defense mechanisms in Tanner crab may divert energy from other physiological processes, such as reproduction. PMID:26859148

  10. Rhodolith holobionts in a changing ocean: Ocean Acidification effects on the free-living coralline algae and their associated microbiota

    NASA Astrophysics Data System (ADS)

    Cavalcanti, G.

    2016-02-01

    Rhodoliths, free-living coralline algae (Rhodophyta, Corallinales), form extensive beds worldwide distributed, ecologically important for the functioning of marine environments. Rhodolith beds are large carbon sinks, but the growth of the Rhodolith holobiont might be affected by changes in ocean carbonate chemistry, predicted to occur in the near future. The term holobiont refers to any organism and all of its associated symbiotic microbes (parasites, mutualists, synergists and amensals), including endobionts and epibionts that perform diverse ecological roles. A holobiont occupies and adapts to an ecological niche, and is able to employ strategies unavailable in any one species alone when challenged by environmental perturbations. The impact of increasing acidification of oceans on Rhodolith holobiont growth might be due to dissolution of their calcium carbonated skeleton, effects over photosynthetic rates, as well as changes in their associated microbial community, herein investigated through physiological assays (photosynthesis) and metagenomics (WGS Illumina sequencing). We used a mesocosm experimental system to assess potential effects of OA on dead and live rhodoliths following a 5 week exposure to increased pCO2. Integrating both taxonomical and functional diversity from multiple players (Eukarya, Bacteria and Archaea) in the acidification context, we have demonstrated that the Rhodolith holobiont harbor an impressive stable microbiome, whereas high pCO2 affect the seawater microbes. Our study has extended the comprehension of physiological relationships within Rhodolith holobiont by including the microbial component in the response of this coralline algae to higher pCO2 levels, and endorsed previous works that indicated a parabolic photosynthetic response to pH and pCO2. The outcomes of this research are an increased understanding of microbes associated with Rhodoliths and additional hints on how the holobiont might thrive in face to global climate changes.

  11. Poles Apart: The “Bipolar” Pteropod Species Limacina helicina Is Genetically Distinct Between the Arctic and Antarctic Oceans

    PubMed Central

    Bednarsek, Nina; Linse, Katrin; Nelson, R. John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-01-01

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five “forma”. However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (±0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems. PMID:20360985

  12. Ocean acidification effects on calcification in pCO2 acclimated Caribbean scleractinian coral

    EPA Science Inventory

    Ocean acidification (OA) is projected to increase the acidity of coral reef habitats 2-3 times that of present day pCO2 levels. Many studies have shown the adverse effects on scleractinian calcification when exposed to elevated pCO2 levels, however, in these studies, corals have ...

  13. The consequences of human-driven ocean acidification for marine life.

    PubMed

    Doney, Scott

    2009-05-08

    Rising atmospheric carbon dioxide is causing a wholesale shift in surface seawater chemistry, potentially threatening many marine organisms that form shells and skeletons from calcium carbonate. Recent papers suggest that the biological consequences of ocean acidification already may be underway and may be more complex, nuanced and widespread than previously thought.

  14. Considering Species Tolerance to Climate Change in Conservation Management at Little Cayman's Coral Reefs

    NASA Astrophysics Data System (ADS)

    Camp, E.; Manfrino, C.; Smith, D.; Suggett, D.

    2013-05-01

    There is growing evidence demonstrating that climate change, notably increased frequency and intensity of thermal anomalies combined with ocean acidification, will negatively impact the future growth and viability of many reef systems, including those in the Caribbean. One key question that remains unanswered is whether or not there are management options aimed at protecting coral species from these threats. Little Cayman (Cayman Islands) provides a rare opportunity to investigate global climate stressors without the confounding impact of local anthropogenic stressors. Our research has focused on two climate change issues: Firstly, we have identified species-specific coral bleaching susceptibility (and the influence of regulation upon this susceptibility) to thermal anomalies. Species level of vulnerability to thermal anomalies can decrease when grown under variable temperature. Environmental variability may be key in influencing the susceptibility of corals to stress. The second part of our research has therefore addressed the variability in inorganic carbon chemistry that naturally occurs where certain reef building corals exist. We have identified how the inorganic carbon chemistry varies naturally among habitats and thus how corals within these habitats are potentially adapted to future acidification. Spatial, diurnal, lunar and seasonal variability have been identified as important factors with pCO2 values of up to 700-800 μatm and pH values as low as 7.801 for lagoon habitats, showing that some species are already being exposed to typical pCO2 and pH levels expected for the oceans in ~50 years' time. Using an eco-physiological approach, we are exploring how some reef-building corals are able to acclimate to more variable chemistry compared to others and whether this natural capacity installs increased tolerance to future acidification. These eco-physiological studies provide important information that can be utilized in a management framework. The aim of this framework will be to provide options to buffer or decrease the future impacts of global climate change on tropical coral reef systems.

  15. Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps.

    PubMed

    Smith, Joy N; Richter, Claudio; Fabricius, Katharina E; Cornils, Astrid

    2017-01-01

    CO2 seeps in coral reefs were used as natural laboratories to study the impacts of ocean acidification on the pontellid copepod, Labidocera spp. Pontellid abundances were reduced by ∼70% under high-CO2 conditions. Biological parameters and substratum preferences of the copepods were explored to determine the underlying causes of such reduced abundances. Stage- and sex-specific copepod lengths, feeding ability, and egg development were unaffected by ocean acidification, thus changes in these physiological parameters were not the driving factor for reduced abundances under high-CO2 exposure. Labidocera spp. are demersal copepods, hence they live amongst reef substrata during the day and emerge into the water column at night. Deployments of emergence traps showed that their preferred reef substrata at control sites were coral rubble, macro algae, and turf algae. However, under high-CO2 conditions they no longer had an association with any specific substrata. Results from this study indicate that even though the biology of a copepod might be unaffected by high-CO2, Labidocera spp. are highly vulnerable to ocean acidification.

  16. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification

    PubMed Central

    Gaitán-Espitia, Juan Diego; Marshall, Dustin; Dupont, Sam; Bacigalupe, Leonardo D.; Bodrossy, Levente; Hobday, Alistair J.

    2017-01-01

    Geographical gradients in selection can shape different genetic architectures in natural populations, reflecting potential genetic constraints for adaptive evolution under climate change. Investigation of natural pH/pCO2 variation in upwelling regions reveals different spatio-temporal patterns of natural selection, generating genetic and phenotypic clines in populations, and potentially leading to local adaptation, relevant to understanding effects of ocean acidification (OA). Strong directional selection, associated with intense and continuous upwellings, may have depleted genetic variation in populations within these upwelling regions, favouring increased tolerances to low pH but with an associated cost in other traits. In contrast, diversifying or weak directional selection in populations with seasonal upwellings or outside major upwelling regions may have resulted in higher genetic variances and the lack of genetic correlations among traits. Testing this hypothesis in geographical regions with similar environmental conditions to those predicted under climate change will build insights into how selection may act in the future and how populations may respond to stressors such as OA. PMID:28148831

  17. Coral reefs under rapid climate change and ocean acidification.

    PubMed

    Hoegh-Guldberg, O; Mumby, P J; Hooten, A J; Steneck, R S; Greenfield, P; Gomez, E; Harvell, C D; Sale, P F; Edwards, A J; Caldeira, K; Knowlton, N; Eakin, C M; Iglesias-Prieto, R; Muthiga, N; Bradbury, R H; Dubi, A; Hatziolos, M E

    2007-12-14

    Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

  18. A coccolithophore concept for constraining the Cenozoic carbon cycle

    NASA Astrophysics Data System (ADS)

    Henderiks, J.; Rickaby, R. E. M.

    2007-06-01

    An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO>sub>2). To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing a constraint on pCO2 over the Cenozoic based on the physiological plasticity of extant coccolithophores. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of evolution of certain morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  19. Carbon dioxide addition to coral reef waters suppresses net community calcification.

    PubMed

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-22

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  20. Net loss of CaCO3 from coral reef communities due to human induced seawater acidification

    USGS Publications Warehouse

    Andersson, A.J.; Kuffner, I.B.; MacKenzie, F.T.; Jokiel, P.L.; Rodgers, K.S.; Tan, A.

    2009-01-01

    Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production – dissolution) was positive at 3.3 mmol CaCO3 m−2 h−1 under ambient seawater pCO2 conditions as opposed to negative at −0.04 mmol CaCO3 m−2h−1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  1. Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: Mesocosm-scale experimental evidence

    USGS Publications Warehouse

    Andersson, A.J.; Kuffner, I.B.; MacKenzie, F.T.; Jokiel, P.L.; Rodgers, K.S.; Tan, A.

    2009-01-01

    Acidification of seawater owing to oceanic uptake of atmospheric CO 2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (N=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NECC=CaCO3 production - dissolution) was positive at 3.3 mmol CaCO3 m-2 h-1 under ambient seawater pCO2 conditions as opposed to negative at -0.04 mmol CaCO3 m-2 h-1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

  2. Carbon dioxide addition to coral reef waters suppresses net community calcification

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Takeshita, Yuichiro; Koweek, David A.; Ninokawa, Aaron; Wolfe, Kennedy; Rivlin, Tanya; Nebuchina, Yana; Young, Jordan; Caldeira, Ken

    2018-03-01

    Coral reefs feed millions of people worldwide, provide coastal protection and generate billions of dollars annually in tourism revenue. The underlying architecture of a reef is a biogenic carbonate structure that accretes over many years of active biomineralization by calcifying organisms, including corals and algae. Ocean acidification poses a chronic threat to coral reefs by reducing the saturation state of the aragonite mineral of which coral skeletons are primarily composed, and lowering the concentration of carbonate ions required to maintain the carbonate reef. Reduced calcification, coupled with increased bioerosion and dissolution, may drive reefs into a state of net loss this century. Our ability to predict changes in ecosystem function and associated services ultimately hinges on our understanding of community- and ecosystem-scale responses. Past research has primarily focused on the responses of individual species rather than evaluating more complex, community-level responses. Here we use an in situ carbon dioxide enrichment experiment to quantify the net calcification response of a coral reef flat to acidification. We present an estimate of community-scale calcification sensitivity to ocean acidification that is, to our knowledge, the first to be based on a controlled experiment in the natural environment. This estimate provides evidence that near-future reductions in the aragonite saturation state will compromise the ecosystem function of coral reefs.

  3. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals

    PubMed Central

    Maier, C.; Watremez, P.; Taviani, M.; Weinbauer, M. G.; Gattuso, J. P.

    2012-01-01

    Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO3 saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO2. At ambient conditions, calcification rates ranged between −0.01 and 0.23% d−1. Calcification rates of M. oculata under variable partial pressure of CO2 (pCO2) were the same for ambient and elevated pCO2 (404 and 867 µatm) with 0.06 ± 0.06% d−1, while calcification was 0.12 ± 0.06% d−1 when pCO2 was reduced to its pre-industrial level (285 µatm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification. PMID:22130603

  4. Global biogeography and evolution of Cuvierina pteropods.

    PubMed

    Burridge, Alice K; Goetze, Erica; Raes, Niels; Huisman, Jef; Peijnenburg, Katja T C A

    2015-03-12

    Shelled pteropods are planktonic gastropods that are potentially good indicators of the effects of ocean acidification. They also have high potential for the study of zooplankton evolution because they are metazoan plankton with a good fossil record. We investigated phenotypic and genetic variation in pteropods belonging to the genus Cuvierina in relation to their biogeographic distribution across the world's oceans. We aimed to assess species boundaries and to reconstruct their evolutionary history. We distinguished six morphotypes based on geometric morphometric analyses of shells from 926 museum and 113 fresh specimens. These morphotypes have distinct geographic distributions across the Atlantic, Pacific and Indian oceans, and belong to three major genetic clades based on COI and 28S DNA sequence data. Using a fossil-calibrated phylogeny, we estimated that these clades separated in the Late Oligocene and Early to Middle Miocene. We found evidence for ecological differentiation among all morphotypes based on ecological niche modelling with sea surface temperature, salinity and phytoplankton biomass as primary determinants. Across all analyses, we found highly congruent patterns of differentiation suggesting species level divergences between morphotypes. However, we also found distinct morphotypes (e.g. in the Atlantic Ocean) that were ecologically, but not genetically differentiated. Given the distinct ecological and phenotypic specializations found among both described and undescribed Cuvierina taxa, they may not respond equally to future ocean changes and may not be equally sensitive to ocean acidification. Our findings support the view that ecological differentiation may be an important driving force in the speciation of zooplankton.

  5. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

    NASA Astrophysics Data System (ADS)

    Melzner, F.; Gutowska, M. A.; Langenbuch, M.; Dupont, S.; Lucassen, M.; Thorndyke, M. C.; Bleich, M.; Pörtner, H.-O.

    2009-05-01

    Future ocean acidification has the potential to adversely affect many marine organisms. A growing body of evidence suggests that many species could suffer from reduced fertilization success, decreases in larval- and adult growth rates, reduced calcification rates, metabolic depression and even mortality when being exposed to near-future levels (year 2100 scenarios) of ocean acidification. Little research focus is currently placed on those organisms/taxa that might be less vulnerable to the anticipated changes in ocean chemistry; this is unfortunate, as the comparison of more vulnerable to more tolerant physiotypes could provide us with those physiological traits that are crucial for ecological success in a future ocean. Here, we attempt to summarize some ontogenetic and lifestyle traits that lead to an increased tolerance towards high environmental pCO2. In general, marine ectothermic metazoans with an extensive extracellular fluid volume may be less vulnerable to future acidification as their cells are already exposed to much higher pCO2 values (0.1 to 0.4 kPa, 1000 to 4000 μatm) than those of unicellular organisms and gametes, for which the ocean (0.04 kPa, 400 μatm) is the extracellular space. A doubling in environmental pCO2 therefore only represents a 10% change in extracellular CO2 in some marine teleosts. High extracellular pCO2 values are to some degree related to high metabolic rates, as diffusion gradients need to be high in order to excrete an amount of CO2 that is directly proportional to the amount of O2 consumed. In active metazoans, such as teleost fish, cephalopods and many brachyuran crustaceans, exercise induced increases in metabolic rate require an efficient ion-regulatory machinery for CO2 excretion and acid-base regulation, especially when anaerobic metabolism is involved and metabolic protons leak into the extracellular space. These ion-transport systems, which are located in highly developed gill epithelia, form the basis for efficient compensation of pH disturbances during exposure to elevated environmental pCO2. Compensation of extracellular acid-base status in turn may be extremely important in avoiding metabolic depression. So far, maintained "performance" at higher seawater pCO2 (>0.3 to 0.6 kPa) has only been observed in adults/juveniles of active, high metabolic species with a powerful ion regulatory apparatus. However, while some of these taxa are adapted to cope with elevated pCO2 during their regular embryonic development, unicellular gametes, which lack specialized ion-regulatory epithelia, may be the true bottleneck for ecological success - even of the more tolerant taxa.

  6. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.

    PubMed

    Byrne, Maria; Ho, Melanie A; Koleits, Lucas; Price, Casandra; King, Catherine K; Virtue, Patti; Tilbrook, Bronte; Lamare, Miles

    2013-07-01

    Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible. © 2013 Blackwell Publishing Ltd.

  7. Impacts of Near-Future Ocean Acidification and Warming on the Shell Mechanical and Geochemical Properties of Gastropods from Intertidal to Subtidal Zones.

    PubMed

    Leung, Jonathan Y S; Connell, Sean D; Nagelkerken, Ivan; Russell, Bayden D

    2017-11-07

    Many marine organisms produce calcareous shells as the key structure for defense, but the functionality of shells may be compromised by ocean acidification and warming. Nevertheless, calcifying organisms may adaptively modify their shell properties in response to these impacts. Here, we examined how reduced pH and elevated temperature affect shell mechanical and geochemical properties of common grazing gastropods from intertidal to subtidal zones. Given the greater environmental fluctuations in the intertidal zone, we hypothesized that intertidal gastropods would exhibit more plastic responses in shell properties than subtidal gastropods. Overall, three out of five subtidal gastropods produced softer shells at elevated temperature, while intertidal gastropods maintained their shell hardness at both elevated pCO 2 (i.e., reduced pH) and temperature. Regardless of pH and temperature, degree of crystallization was maintained (except one subtidal gastropod) and carbonate polymorph remained unchanged in all tested species. One intertidal gastropod produced less soluble shells (e.g., higher calcite/aragonite) in response to reduced pH. In contrast, subtidal gastropods produced only aragonite which has higher solubility than calcite. Overall, subtidal gastropods are expected to be more susceptible than intertidal gastropods to shell dissolution and physical damage under future seawater conditions. The increased vulnerability to shell dissolution and predation could have serious repercussions for their survival and ecological contributions in the future subtidal environment.

  8. Population-dependent effects of ocean acidification.

    PubMed

    Wood, Hannah L; Sundell, Kristina; Almroth, Bethanie Carney; Sköld, Helén Nilsson; Eriksson, Susanne P

    2016-04-13

    Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica.The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects. © 2016 The Author(s).

  9. Population-dependent effects of ocean acidification

    PubMed Central

    Wood, Hannah L.; Sundell, Kristina; Almroth, Bethanie Carney; Sköld, Helén Nilsson; Eriksson, Susanne P.

    2016-01-01

    Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica. The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects. PMID:27053741

  10. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates.

    PubMed

    Pedersen, Sindre A; Håkedal, Ole Jacob; Salaberria, Iurgi; Tagliati, Alice; Gustavson, Liv Marie; Jenssen, Bjørn Munro; Olsen, Anders J; Altin, Dag

    2014-10-21

    The copepod Calanus finmarchicus is a key component of northern Atlantic food webs, linking energy-transfer from phytoplankton to higher trophic levels. We examined the effect of different ocean acidification (OA) scenarios (i.e., ambient, 1080, 2080, and 3080 μatm CO2) over two subsequent generations under limited food availability. Determination of metabolic and feeding rates, and estimations of the scope for growth, suggests that negative effects observed on vital rates (ontogenetic development, somatic growth, fecundity) may be a consequence of energy budget constraints due to higher maintenance costs under high pCO2-environments. A significant delay in development rate among the parental generation animals exposed to 2080 μatm CO2, but not in the following F1 generation under the same conditions, suggests that C. finmarchicus may have adaptive potential to withstand the direct long-term effects of even the more pessimistic future OA scenarios but underlines the importance of transgenerational experiments. The results also indicate that in a more acidic ocean, increased energy expenditure through rising respiration could lower the energy transfer to higher trophic levels and thus hamper the productivity of the northern Atlantic ecosystem.

  11. Ocean life breaking rules by building shells in acidic extremes.

    PubMed

    Doubleday, Zoë A; Nagelkerken, Ivan; Connell, Sean D

    2017-10-23

    Rising levels of carbon dioxide (CO 2 )from fossil fuel combustion is acidifying our oceans [1,2]. This acidification is expected to have negative effects on calcifying animals because it affects their ability to build shells [3,4]. However, the effects of ocean acidification in natural environments, subject to ecological and evolutionary processes (such as predation, competition, and adaptation), is uncertain [5,6]. These processes may buffer, or even reverse, the direct, short-term effects principally measured in laboratory experiments (for example, [6]). Here we describe the discovery of marine snails living at a shallow-water CO 2 vent in the southwest Pacific, an environment 30 times more acidic than normal seawater (Figure 1). By measuring the chemical fingerprints locked within the shell material, we show that these snails have a restricted range of movement, which suggests that they live under these conditions for their entire lives. The existence of these snails demonstrates that calcifying animals can build their shells under the acidic and corrosive conditions caused by extreme CO 2 enrichment. This unforeseen capacity, whether driven by ecological or adaptive processes, is key to understanding whether calcifying life may survive a high-CO 2 future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    PubMed

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  13. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    PubMed Central

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915

  14. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    PubMed

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively regulate immune responses.

  15. Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    NASA Astrophysics Data System (ADS)

    Ni, Sha; Taubner, Isabelle; Böhm, Florian; Winde, Vera; Böttcher, Michael E.

    2018-03-01

    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages but will suffer from an excessive temperature increase and from increasing shell corrosion as a consequence of progressing ocean acidification.

  16. Deepwater Program: Exploration and Research of Northern Gulf of Mexico Deepwater Natural and Artificial Hard Bottom Habitats with Emphasis on Coral Communities: Reefs, Rigs and Wrecks

    DTIC Science & Technology

    2010-01-01

    Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for...Roberts, J.M. & Guinotte, J.J. (2007) Corals in deep water: Will the unseen hand of ocean acidification destroy cold water ecosystems? Coral Reefs ...scleractinians from the NE Atlantic Ocean . Coral Reefs , 24(3), 514-522. Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates

  17. Risk maps for Antarctic krill under projected Southern Ocean acidification

    NASA Astrophysics Data System (ADS)

    Kawaguchi, S.; Ishida, A.; King, R.; Raymond, B.; Waller, N.; Constable, A.; Nicol, S.; Wakita, M.; Ishimatsu, A.

    2013-09-01

    Marine ecosystems of the Southern Ocean are particularly vulnerable to ocean acidification. Antarctic krill (Euphausia superba; hereafter krill) is the key pelagic species of the region and its largest fishery resource. There is therefore concern about the combined effects of climate change, ocean acidification and an expanding fishery on krill and ultimately, their dependent predators--whales, seals and penguins. However, little is known about the sensitivity of krill to ocean acidification. Juvenile and adult krill are already exposed to variable seawater carbonate chemistry because they occupy a range of habitats and migrate both vertically and horizontally on a daily and seasonal basis. Moreover, krill eggs sink from the surface to hatch at 700-1,000m (ref. ), where the carbon dioxide partial pressure (pCO2) in sea water is already greater than it is in the atmosphere. Krill eggs sink passively and so cannot avoid these conditions. Here we describe the sensitivity of krill egg hatch rates to increased CO2, and present a circumpolar risk map of krill hatching success under projected pCO2 levels. We find that important krill habitats of the Weddell Sea and the Haakon VII Sea to the east are likely to become high-risk areas for krill recruitment within a century. Furthermore, unless CO2 emissions are mitigated, the Southern Ocean krill population could collapse by 2300 with dire consequences for the entire ecosystem.

  18. Spatially Resolved Measurements Of Plasma Density Irregularities In The Ionosphere F Region For Scintillation Studies.

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Russ, S.; Clark, D. C.; Latif, S.; Montalvo, C.

    2016-12-01

    This qualitative study focuses on students evidence-based explanatory models on how ocean acidification impacts oysters. Explanatory models are the crucial components of scientific endeavors as it helps scientists explain how the natural world functions and the reasons for the ways it functions. Moreover, these models assemble individual practices to understand how they work together to reach clear conclusions through scientific investigations. Due to their critical roles in making sense of authentic science, recent studies in science education suggest that these models should be part of the curriculum aligned with new science standards, i.e. Next Generation Science Standards, which stress the importance of engaging students in scientific practices. By collecting data from 400 secondary school students in Maryland, we aim to respond to the question: How can we use secondary school students' explanatory models to provide students with constructive feedback for more comprehensive learning of ocean acidification (the related evidence, causes and impact)? The data were analyzed through discourse analysis method. We highlighted and coded students' inscriptions (e.g., drawings, writings, and representations) that are signs of students' understanding (or lack thereof) of ocean acidification. These signs included explanations of pH levels, drawings of oyster growth, and inclusions of relevant data. The findings showed that the explanatory models can be critical forms of feedback as they reveal a) students' alternative conceptions on how ocean acidification impacts oysters or how acidification works in general; b) students' interpretations of oceans' (non)connectedness to Earth system; c) the choice of scientific representations and their sources; and d) the way students' integrate evidence or data from the investigations. Our work tackles an understanding of one of the most vital signs of modern climatic changes. Recent scientific evidence shows that if the change in ocean pH becomes too extreme, many organisms may not be able to adjust to this change. Based on our findings, we suggest that teachers can use explanatory models as sources of feedback to recognize how well their students conceptualize ocean acidification, integrate scientific practices, and use cultural artifacts of doing science.

  19. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function.

    PubMed

    Bignami, Sean; Enochs, Ian C; Manzello, Derek P; Sponaugle, Su; Cowen, Robert K

    2013-04-30

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing.

  20. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function

    PubMed Central

    Bignami, Sean; Enochs, Ian C.; Manzello, Derek P.; Sponaugle, Su; Cowen, Robert K.

    2013-01-01

    Ocean acidification affects a wide diversity of marine organisms and is of particular concern for vulnerable larval stages critical to population replenishment and connectivity. Whereas it is well known that ocean acidification will negatively affect a range of calcareous taxa, the study of fishes is more limited in both depth of understanding and diversity of study species. We used new 3D microcomputed tomography to conduct in situ analysis of the impact of ocean acidification on otolith (ear stone) size and density of larval cobia (Rachycentron canadum), a large, economically important, pantropical fish species that shares many life history traits with a diversity of high-value, tropical pelagic fishes. We show that 2,100 μatm partial pressure of carbon dioxide (pCO2) significantly increased not only otolith size (up to 49% greater volume and 58% greater relative mass) but also otolith density (6% higher). Estimated relative mass in 800 μatm pCO2 treatments was 14% greater, and there was a similar but nonsignificant trend for otolith size. Using a modeling approach, we demonstrate that these changes could affect auditory sensitivity including a ∼50% increase in hearing range at 2,100 μatm pCO2, which may alter the perception of auditory information by larval cobia in a high-CO2 ocean. Our results indicate that ocean acidification has a graded effect on cobia otoliths, with the potential to substantially influence the dispersal, survival, and recruitment of a pelagic fish species. These results have important implications for population maintenance/replenishment, connectivity, and conservation efforts for other valuable fish stocks that are already being deleteriously impacted by overfishing. PMID:23589887

  1. Ca, Sr, Mo and U isotopes evidence ocean acidification and deoxygenation during the Late Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Silva-Tamayo, Juan Carlos; Payne, Jon; Wignall, Paul; Newton, Rob; Eisenhauer, Anton; Weyer, Stenfan; Neubert, Nadja; Lau, Kim; Maher, Kate; Paytan, Adina; Lehrmann, Dan; Altiner, Demir; Yu, Meiyi

    2014-05-01

    The most catastrophic extinction event in the history of animal life occurred at the end of the Permian Period, ca. 252 Mya. Ocean acidification and global oceanic euxinia have each been proposed as causes of this biotic crisis, but the magnitude and timing of change in global ocean chemistry remains poorly constrained. Here we use multiple isotope systems - Ca, Sr, Mo and U - measured from well dated Upper Permian- Lower Triassic sedimentary sections to better constrain the magnitude and timing of change in ocean chemistry and the effects of ocean acidification and de-oxygenation through this interval. All the investigated carbonate successions (Turkey, Italy and China) exhibit decreasing δ44/40Ca compositions, from ~-1.4‰ to -2.0‰ in the interval preceding the main extinction. These values remain low during most of the Griesbachian, to finally return to -1.4‰ in the middle Dienerian. The limestone succession from southern Turkey also displays a major decrease in the δ88/86Sr values from 0.45‰ to 0.3‰ before the extinction. These values remain low during the Griesbachian and finally increase to 0.55‰ by the middle Dienerian. The paired negative anomalies on the carbonate δ44/40Ca and δ88/86Sr suggest a decrease in the carbonate precipitation and thus an episode of ocean acidification coincident with the major biotic crisis. The Mo and U isotope records also exhibit significant rapid negative anomalies at the onset of the main extinction interval, suggesting rapid expansion of anoxic and euxinic marine bottom waters during the extinction interval. The rapidity of the isotope excursions in Mo and U suggests substantially reduced residence times of these elements in seawater relative to the modern, consistent with expectations for a time of widespread anoxia. The large C-isotope variability within Lower Triassic rocks, which is similar to that of the Lower-Middle Cambrian, may reflect biologically controlled perturbations of the oceanic carbon cycle. These findings strengthen the evidence for a global ocean acidification event coupled with rapid expansion of anoxic zones as drivers of end-Permian extinction in the oceans.

  2. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.

    PubMed

    Guenther, Rebecca; Miklasz, Kevin; Carrington, Emily; Martone, Patrick T

    2018-04-01

    Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli. © 2017 Phycological Society of America.

  3. European sea bass, Dicentrarchus labrax, in a changing ocean

    NASA Astrophysics Data System (ADS)

    Pope, E. C.; Ellis, R. P.; Scolamacchia, M.; Scolding, J. W. S.; Keay, A.; Chingombe, P.; Shields, R. J.; Wilcox, R.; Speirs, D. C.; Wilson, R. W.; Lewis, C.; Flynn, K. J.

    2014-05-01

    Ocean acidification, caused by rising concentrations of carbon dioxide (CO2), is widely considered to be a major global threat to marine ecosystems. To investigate the potential effects of ocean acidification on the early life stages of a commercially important fish species, European sea bass (Dicentrarchus labrax), 12 000 larvae were incubated from hatch through metamorphosis under a matrix of two temperatures (17 and 19 °C) and two seawater pCO2 levels (ambient and 1,000 μatm) and sampled regularly for 42 days. Calculated daily mortality was significantly affected by both temperature and pCO2, with both increased temperature and elevated pCO2 associated with lower daily mortality and a significant interaction between these two factors. There was no significant pCO2 effect noted on larval morphology during this period but larvae raised at 19 °C possessed significantly larger eyes and lower carbon:nitrogen ratios at the end of the study compared to those raised under 17 °C. Similarly, when the incubation was continued to post-metamorphic (juvenile) animals (day 67-69), fish raised under a combination of 19 °C and 1000 μatm pCO2 were significantly heavier. However, juvenile D. labrax raised under this combination of 19 °C and 1000 μatm pCO2 also exhibited lower aerobic scopes than those incubated at 19 °C and ambient pCO2. Most studies investigating the effects of near-future oceanic conditions on the early life stages of marine fish have used incubations of relatively short durations and suggested that these animals are resilient to ocean acidification. Whilst the increased survival and growth observed in this study supports this view, we conclude that more work is required to investigate whether the differences in juvenile physiology observed in this study manifest as negative impacts in adult fish.

  4. Ocean Fertilization and Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Cao, L.; Caldeira, K.

    2008-12-01

    It has been suggested that ocean fertilization could help diminish ocean acidification. Here, we quantitatively evaluate this suggestion. Ocean fertilization is one of several ocean methods proposed to mitigate atmospheric CO2 concentrations. The basic idea of this method is to enhance the biological uptake of atmospheric CO2 by stimulating net phytoplankton growth through the addition of iron to the surface ocean. Concern has been expressed that ocean fertilization may not be very effective at reducing atmospheric CO2 concentrations and may produce unintended environmental consequences. The rationale for thinking that ocean fertilization might help diminish ocean acidification is that dissolved inorganic carbon concentrations in the near-surface equilibrate with the atmosphere in about a year. If ocean fertilization could reduce atmospheric CO2 concentrations, it would also reduce surface ocean dissolved inorganic carbon concentrations, and thus diminish the degree of ocean acidification. To evaluate this line of thinking, we use a global ocean carbon cycle model with a simple representation of marine biology and investigate the maximum potential effect of ocean fertilization on ocean carbonate chemistry. We find that the effect of ocean fertilization on ocean acidification depends, in part, on the context in which ocean fertilization is performed. With fixed emissions of CO2 to the atmosphere, ocean fertilization moderately mitigates changes in ocean carbonate chemistry near the ocean surface, but at the expense of further acidifying the deep ocean. Under the SRES A2 CO2 emission scenario, by year 2100 simulated atmospheric CO2, global mean surface pH, and saturation state of aragonite is 965 ppm, 7.74, and 1.55 for the scenario without fertilization and 833 ppm, 7.80, and 1.71 for the scenario with 100-year (between 2000 and 2100) continuous fertilization for the global ocean (For comparison, pre-industrial global mean surface pH and saturation state of aragonite is 8.18 and 3.5). As a result of ocean fertilization, 10 years from now, the depth of saturation horizon (the depth below which ocean water is undersaturated with respect to calcium carbonate) for aragonite in the Southern Ocean shoals from its present average value of about 700 m to 100 m. In contrast, no significant change in the depth of aragonite saturation horizontal is seen in the scenario without fertilization for the corresponding period. By year 2100, global mean calcite saturation horizon shoals from its present value of 3150 m to 2965 and 2534 m in the case without fertilization and with it. In contrast, if the sale of carbon credits from ocean fertilization leads to greater CO2 emissions to the atmosphere (e.g., if carbon credits from ocean fertilization are used to offset CO2 emissions from a coal plant), then there is the potential that ocean fertilization would further acidify the deep ocean without conferring any chemical benefit to surface ocean waters.

  5. Ocean acidification impacts mussel control on biomineralisation

    PubMed Central

    Fitzer, Susan C.; Phoenix, Vernon R.; Cusack, Maggie; Kamenos, Nicholas A.

    2014-01-01

    Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments. PMID:25163895

  6. Ocean acidification impacts mussel control on biomineralisation.

    PubMed

    Fitzer, Susan C; Phoenix, Vernon R; Cusack, Maggie; Kamenos, Nicholas A

    2014-08-28

    Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.

  7. Building a new regulatory paradigm for coastal and estuarine acidification

    NASA Astrophysics Data System (ADS)

    Brodeur, J.; Cai, W. J.

    2016-02-01

    Ocean acidification regulation generally falls under the authority of the Clean Water Act (CWA, P.L. 92-500). The CWA has been a powerful tool to improve the country's water quality, but it is most adept at addressing point-source pollutants and contaminants. It requires policymakers to determine "natural levels" of the target pollutant and to attribute changes in water quality to a specific source, both of which are tough or impossible tests for the diffuse carbon imbalance that is associated with ocean acidification, even if we could easily identify the threshold level for harm to organisms (Boehm, 2015). Even where regulators have tried to apply CWA to address acidification, they have been confronted by a lack of baseline data, an inability to specifically identify sources within their jurisdiction, and the fact that existing water quality standards do not capture the impairments that are associated with ocean acidification (Cooley, 2015). In fact, there was a lawsuit brought by the Center for Biological Diversity against the U.S. Environmental Protection Agency (EPA) alleging the agency had failure to regulate this issue. In the end, the courts sided with the EPA, and it continues to struggle with how to use pH and/or saturation state to define a point at which a water body becomes impaired and a threat to sea-life and natural resources. We present an analysis of the complexities related to regulating ocean acidification, the history of work in this area, and suggest a solution that can be tailored to fit unique coastal and estuarine characteristics.

  8. Building a new regulatory paradigm for coastal and estuarine acidification

    NASA Astrophysics Data System (ADS)

    Brodeur, J.; Cai, W. J.

    2016-12-01

    Ocean acidification regulation generally falls under the authority of the Clean Water Act (CWA, P.L. 92-500). The CWA has been a powerful tool to improve the country's water quality, but it is most adept at addressing point-source pollutants and contaminants. It requires policymakers to determine "natural levels" of the target pollutant and to attribute changes in water quality to a specific source, both of which are tough or impossible tests for the diffuse carbon imbalance that is associated with ocean acidification, even if we could easily identify the threshold level for harm to organisms (Boehm, 2015). Even where regulators have tried to apply CWA to address acidification, they have been confronted by a lack of baseline data, an inability to specifically identify sources within their jurisdiction, and the fact that existing water quality standards do not capture the impairments that are associated with ocean acidification (Cooley, 2015). In fact, there was a lawsuit brought by the Center for Biological Diversity against the U.S. Environmental Protection Agency (EPA) alleging the agency had failure to regulate this issue. In the end, the courts sided with the EPA, and it continues to struggle with how to use pH and/or saturation state to define a point at which a water body becomes impaired and a threat to sea-life and natural resources. We present an analysis of the complexities related to regulating ocean acidification, the history of work in this area, and suggest a solution that can be tailored to fit unique coastal and estuarine characteristics.

  9. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua.

    PubMed

    Dahlke, Flemming T; Leo, Elettra; Mark, Felix C; Pörtner, Hans-Otto; Bickmeyer, Ulf; Frickenhaus, Stephan; Storch, Daniela

    2017-04-01

    Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO 2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO 2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO 2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO 2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO 2 and mitochondrial capacities. Elevated PCO 2 stimulated MO 2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO 2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO 2 . Increased MO 2 in response to elevated PCO 2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO 2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO 2 conditions and suggest that acclimation to elevated PCO 2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification constrains the thermal performance window of embryos, which has important implication for the susceptibility of cod to projected climate change. © 2016 John Wiley & Sons Ltd.

  10. Reef-scale modeling of coral calcification responses to ocean acidification and sea-level rise

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Nadaoka, Kazuo; Watanabe, Atsushi; Yamamoto, Takahiro; Miyajima, Toshihiro; Blanco, Ariel C.

    2018-03-01

    To predict coral responses to future environmental changes at the reef scale, the coral polyp model (Nakamura et al. in Coral Reefs 32:779-794, 2013), which reconstructs coral responses to ocean acidification, flow conditions and other factors, was incorporated into a reef-scale three-dimensional hydrodynamic-biogeochemical model. This coupled reef-scale model was compared to observations from the Shiraho fringing reef, Ishigaki Island, Japan, where the model accurately reconstructed spatiotemporal variation in reef hydrodynamic and geochemical parameters. The simulated coral calcification rate exhibited high spatial variation, with lower calcification rates in the nearshore and stagnant water areas due to isolation of the inner reef at low tide, and higher rates on the offshore side of the inner reef flat. When water is stagnant, bottom shear stress is low at night and thus oxygen diffusion rate from ambient water to the inside of the coral polyp limits respiration rate. Thus, calcification decreases because of the link between respiration and calcification. A scenario analysis was conducted using the reef-scale model with several pCO2 and sea-level conditions based on IPCC (Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, 2013) scenarios. The simulation indicated that the coral calcification rate decreases with increasing pCO2. On the other hand, sea-level rise increases the calcification rate, particularly in the nearshore and the areas where water is stagnant at low tide under present conditions, as mass exchange, especially oxygen exchange at night, is enhanced between the corals and their ambient seawater due to the reduced stagnant period. When both pCO2 increase and sea-level rise occur concurrently, the calcification rate generally decreases due to the effects of ocean acidification. However, the calcification rate in some inner-reef areas will increase because the positive effects of sea-level rise offset the negative effects of ocean acidification, and total calcification rate will be positive only under the best-case scenario (RCP 2.6).

  11. Effects of seawater acidification on a coral reef meiofauna community

    NASA Astrophysics Data System (ADS)

    Sarmento, V. C.; Souza, T. P.; Esteves, A. M.; Santos, P. J. P.

    2015-09-01

    Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.

  12. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

    PubMed Central

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-01-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. PMID:23505245

  13. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.

    PubMed

    Kroeker, Kristy J; Kordas, Rebecca L; Crim, Ryan; Hendriks, Iris E; Ramajo, Laura; Singh, Gerald S; Duarte, Carlos M; Gattuso, Jean-Pierre

    2013-06-01

    Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature. © 2013 Blackwell Publishing Ltd.

  14. Embedding Probeware Technology in the Context of Ocean Acidification in Elementary Science Methods Courses

    NASA Astrophysics Data System (ADS)

    Ensign, Todd I.; Rye, James A.; Luna, Melissa J.

    2017-12-01

    Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an elementary science methods course participated in a mixed-methods study through which they utilized probeware in a thematic experience on ocean acidification. One-way repeated measures ANOVA of pre and post survey data measuring subscales of utility, ability, and intent to use probeware demonstrated a statistically significant increase with medium to large effect sizes for all subscales across all sections (p<0.01,{η}_p^2=0.384;p<0.001,{η}_p^2=0.517;p<0.001,{η}_p^2=0.214) . Analysis of reflective journals revealed over 60% felt the multiple capabilities (notably graphing) of probeware make it a useful classroom tool, and almost one-half believed that its use makes science more enjoyable and engaging. Mapping of the unitized data from the journals on the Next Generation Science Standards suggested that probeware use especially engages learners in planning and carrying out investigations and in analyzing and interpreting data. Journals also revealed that despite PT having prior experience with probeware in science courses, its use in their future elementary classroom is conditional on having a positive experience with probeware in a science methods course. Further, embedding a probeware experience in a unit on ocean acidification provides PT with strategies for addressing climate change and engaging in argument from evidence.

  15. Ocean acidification alters fish–jellyfish symbiosis

    PubMed Central

    Nagelkerken, Ivan; Pitt, Kylie A.; Rutte, Melchior D.; Geertsma, Robbert C.

    2016-01-01

    Symbiotic relationships are common in nature, and are important for individual fitness and sustaining species populations. Global change is rapidly altering environmental conditions, but, with the exception of coral–microalgae interactions, we know little of how this will affect symbiotic relationships. We here test how the effects of ocean acidification, from rising anthropogenic CO2 emissions, may alter symbiotic interactions between juvenile fish and their jellyfish hosts. Fishes treated with elevated seawater CO2 concentrations, as forecast for the end of the century on a business-as-usual greenhouse gas emission scenario, were negatively affected in their behaviour. The total time that fish (yellowtail scad) spent close to their jellyfish host in a choice arena where they could see and smell their host was approximately three times shorter under future compared with ambient CO2 conditions. Likewise, the mean number of attempts to associate with jellyfish was almost three times lower in CO2-treated compared with control fish, while only 63% (high CO2) versus 86% (control) of all individuals tested initiated an association at all. By contrast, none of three fish species tested were attracted solely to jellyfish olfactory cues under present-day CO2 conditions, suggesting that the altered fish–jellyfish association is not driven by negative effects of ocean acidification on olfaction. Because shelter is not widely available in the open water column and larvae of many (and often commercially important) pelagic species associate with jellyfish for protection against predators, modification of the fish–jellyfish symbiosis might lead to higher mortality and alter species population dynamics, and potentially have flow-on effects for their fisheries. PMID:27358374

  16. Changes in coral reef communities across a natural gradient in seawater pH.

    PubMed

    Barkley, Hannah C; Cohen, Anne L; Golbuu, Yimnang; Starczak, Victoria R; DeCarlo, Thomas M; Shamberger, Kathryn E F

    2015-06-01

    Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.

  17. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa.

    PubMed

    Cornwall, Christopher E; Boyd, Philip W; McGraw, Christina M; Hepburn, Christopher D; Pilditch, Conrad A; Morris, Jaz N; Smith, Abigail M; Hurd, Catriona L

    2014-01-01

    Anthropogenically-modulated reductions in pH, termed ocean acidification, could pose a major threat to the physiological performance, stocks, and biodiversity of calcifiers and may devalue their ecosystem services. Recent debate has focussed on the need to develop approaches to arrest the potential negative impacts of ocean acidification on ecosystems dominated by calcareous organisms. In this study, we demonstrate the role of a discrete (i.e. diffusion) boundary layer (DBL), formed at the surface of some calcifying species under slow flows, in buffering them from the corrosive effects of low pH seawater. The coralline macroalga Arthrocardia corymbosa was grown in a multifactorial experiment with two mean pH levels (8.05 'ambient' and 7.65 a worst case 'ocean acidification' scenario projected for 2100), each with two levels of seawater flow (fast and slow, i.e. DBL thin or thick). Coralline algae grown under slow flows with thick DBLs (i.e., unstirred with regular replenishment of seawater to their surface) maintained net growth and calcification at pH 7.65 whereas those in higher flows with thin DBLs had net dissolution. Growth under ambient seawater pH (8.05) was not significantly different in thin and thick DBL treatments. No other measured diagnostic (recruit sizes and numbers, photosynthetic metrics, %C, %N, %MgCO3) responded to the effects of reduced seawater pH. Thus, flow conditions that promote the formation of thick DBLs, may enhance the subsistence of calcifiers by creating localised hydrodynamic conditions where metabolic activity ameliorates the negative impacts of ocean acidification.

  18. Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide

    NASA Astrophysics Data System (ADS)

    Lebrato, M.; Andersson, A. J.; Ries, J. B.; Aronson, R. B.; Lamare, M. D.; Koeve, W.; Oschlies, A.; Iglesias-Rodriguez, M. D.; Thatje, S.; Amsler, M.; Vos, S. C.; Jones, D. O. B.; Ruhl, H. A.; Gates, A. R.; McClintock, J. B.

    2016-07-01

    Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg2+ into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcifiers to ocean acidification appears linked to the relative solubility of their shell or skeletal mineralogy, although some organisms have sophisticated mechanisms for constructing and maintaining their CaCO3 structures causing deviation from this dependence. Nevertheless, few studies consider seawater saturation state with respect to the actual Mg-calcite mineralogy (ΩMg-x) of a species when evaluating the effect of ocean acidification on that species. Here, a global dataset of skeletal mole % MgCO3 of benthic calcifiers and in situ environmental conditions spanning a depth range of 0 m (subtidal/neritic) to 5600 m (abyssal) was assembled to calculate in situ ΩMg-x. This analysis shows that 24% of the studied benthic calcifiers currently experience seawater mineral undersaturation (ΩMg-x < 1). As a result of ongoing anthropogenic ocean acidification over the next 200 to 3000 years, the predicted decrease in seawater mineral saturation will expose approximately 57% of all studied benthic calcifying species to seawater undersaturation. These observations reveal a surprisingly high proportion of benthic marine calcifiers exposed to seawater that is undersaturated with respect to their skeletal mineralogy, underscoring the importance of using species-specific seawater mineral saturation states when investigating the impact of CO2-induced ocean acidification on benthic marine calcification.

  19. Sensitivities of marine carbon fluxes to ocean change.

    PubMed

    Riebesell, Ulf; Körtzinger, Arne; Oschlies, Andreas

    2009-12-08

    Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is approximately 1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial-interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change.

  20. Ocean Acidification: Hands-On Experiments to Explore the Causes and Consequences

    ERIC Educational Resources Information Center

    Bruno, Barbara C.; Tice, Kimberly A.; Puniwai, Noelani; Achilles, Kate

    2011-01-01

    Ocean acidification is one of the most serious environmental issues facing the planet (e.g., Doney 2006; Guinotte and Fabry 2009). It is caused by excess carbon dioxide (CO[subscript 2]) in the atmosphere. Human activities such as burning fossil fuels put CO[subscript 2] and other heat-trapping gases into the atmosphere, which causes the Earth's…

  1. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish.

    PubMed

    Munday, Philip L; Dixson, Danielle L; Donelson, Jennifer M; Jones, Geoffrey P; Pratchett, Morgan S; Devitsina, Galina V; Døving, Kjell B

    2009-02-10

    The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO(2)) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO(2)-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.

  2. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish

    PubMed Central

    Munday, Philip L.; Dixson, Danielle L.; Donelson, Jennifer M.; Jones, Geoffrey P.; Pratchett, Morgan S.; Devitsina, Galina V.; Døving, Kjell B.

    2009-01-01

    The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity. PMID:19188596

  3. The Effects of Ocean Acidification on Predator-Prey Interactions between Mya arenaria and Callinectes sapidus

    NASA Astrophysics Data System (ADS)

    Longmire, K.; Glaspie, C.; Seitz, R.

    2016-02-01

    The study examined the implications of ocean acidification for Mya arenaria and the predator-prey dynamics between M. arenaria and Callinectes sapidus. Clams were subjected to either ambient conditions or acidified conditions and grown over four weeks. Mortality, shell lengths, and biomass (ash-free dry weights) were recorded for clams destructively sampled each week. Clams were subjected to behavioral experiments to determine their response to an approaching physical disturbance. Crabs were exposed to acidified or ambient conditions for 48 hours, and placed in 48 hour mesocosm trials with clams. Shell lengths, mortality and biomass between the ambient and acidified clams were not significantly different between acidified and ambient treatments. Shell ash weights were lower for acidified clams, evidence of shell dissolution. In the behavioral experiment, ocean acidification reduced the ability of clams to respond to a predator stimulus. Lastly, in predator-prey mesocosm trials, in ambient conditions, crabs ate all or none of the available clams, whereas acidified crabs ate all available clams in many trials and ate at least one acidified clam per trial. The early effects of ocean acidification on M. arenaria will manifest in trophic interactions with other species, rather than impacting M. arenaria alone.

  4. Effects of Seawater Acidification on the Liffe Cycle and Fitness of Opossum Shrimp Population

    EPA Science Inventory

    Much of the current concern about ecological effects of ocean acidification focuses on molluscs and coccolithophores because of their importance in the global calcium cycle. However, many other marine organisms are likely to be affected by acidification because of their known se...

  5. Effects of Seawater Acidification on the Life Cycle and fitness of Opossum Shrimp Populations

    EPA Science Inventory

    Much of the current concern about ecological effects of ocean acidification focuses on molluscs and coccolithophores because of their importance in the global calcium cycle. However, many other marine organisms are likely to be affected by acidification because of their known ph...

  6. Present-day nearshore pH differentially depresses fertilization in congeneric sea urchins.

    PubMed

    Frieder, Christina A

    2014-02-01

    Ocean acidification impacts fertilization in some species of sea urchin, but whether sensitivity is great enough to be influenced by present-day pH variability has not been documented. In this study, fertilization in two congeneric sea urchins, Strongylocentrotus purpuratus and S. franciscanus, was found to be sensitive to reduced pH, <7.50, but only within a range of sperm-egg ratios that was species-specific. By further testing fertilization across a broad range of pH, pH-fertilization curves were generated and revealed that S. purpuratus was largely robust to pH, while fertilization in S. franciscanus was sensitive to even modest reductions in pH. Combining the pH-fertilization response curves with pH data collected from these species' habitat demonstrated that relative fertilization success remained high for S. purpuratus but could be as low as 79% for S. franciscanus during periods of naturally low pH. In order for S. franciscanus to maintain high fertilization success in the present and future, adequate adult densities, and thus sufficient sperm-egg ratios, will be required to negate the effects of low pH. In contrast, fertilization of S. purpuratus was robust to a broad range of pH, encompassing both present-day and future ocean acidification scenarios, even though the two congeners have similar habitats.

  7. Pteropod eggs released at high pCO2 lack resilience to ocean acidification

    PubMed Central

    Manno, Clara; Peck, Victoria L.; Tarling, Geraint A.

    2016-01-01

    The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750 μatm and 1200 μatm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600 m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades. PMID:27181210

  8. Larval development and settling of Macoma balthica in a large-scale mesocosm experiment at different fCO2 levels

    NASA Astrophysics Data System (ADS)

    Jansson, A.; Lischka, S.; Boxhammer, T.; Schulz, K. G.; Norkko, J.

    2015-12-01

    Anthropogenic carbon dioxide (CO2) emissions are causing severe changes in the global inorganic carbon balance of the oceans. Associated ocean acidification is expected to impose a major threat to marine ecosystems worldwide, and it is also expected to be amplified in the Baltic Sea where the system is already at present exposed to relatively large natural seasonal and diel pH fluctuations. The response of organisms to future ocean acidification has primarily been studied in single-species experiments, whereas the knowledge of community-wide responses is still limited. To study responses of the Baltic Sea pelagic community to a range of future CO2-scenarios, six ∼ 55 m3 pelagic mesocosms were deployed in the northern Baltic Sea in June 2012. In this specific study we focused on the tolerance, development and subsequent settlement process of the larvae of the benthic key-species Macoma balthica when exposed to different levels of future CO2. We found that the settling of M. balthica was delayed along the increasing CO2 gradient of the mesocosms. Also, when exposed to increasing CO2 levels larvae settled at a larger size, indicating a developmental delay. With on-going climate change, both the frequency and extent of regularly occurring high CO2 conditions is likely to increase, and a permanent pH decrease will likely occur. The strong impact of increasing CO2 levels on early-stage bivalves is alarming as these stages are crucial for sustaining viable populations, and a failure in their recruitment would ultimately lead to negative effects on the population.

  9. Hot and sour in the deep ocean

    NASA Astrophysics Data System (ADS)

    Sabine, Christopher L.

    2017-12-01

    Stable layering in the ocean limits the rate that human-derived carbon dioxide can acidify the deep ocean. Now observations show that ocean warming, however, can enhance deep-ocean acidification through increased organic matter decomposition.

  10. New insights from coral growth band studies in an era of rapid environmental change

    NASA Astrophysics Data System (ADS)

    Lough, Janice M.; Cooper, Timothy F.

    2011-10-01

    The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.

  11. High-resolution ocean pH dynamics in four subtropical Atlantic benthic habitats

    NASA Astrophysics Data System (ADS)

    Hernández, C. A.; Clemente, S.; Sangil, C.; Hernández, J. C.

    2015-12-01

    Oscillations of ocean pH are largely unknown in coastal environments and ocean acidification studies often do not account for natural variability yet most of what is known about marine species and populations is found out via studies conducted in near shore environments. Most experiments designed to make predictions about future climate change scenarios are carried out in coastal environments with no research that takes into account the natural pH variability. In order to fill this knowledge gap and to provide reliable measures of pH oscillation, seawater pH was measured over time using moored pH sensors in four contrasting phytocenoses typical of the north Atlantic subtropical region. Each phytocenosis was characterized by its predominant engineer species: (1) Cystoseira abies-marina, (2) a mix of gelidiales and geniculate corallines, (3) Lobophora variegata, and (4) encrusting corallines. The autonomous pH measuring systems consisted of a pH sensor; a data logger and a battery encased in a waterproof container and allowed the acquisition of high-resolution continuous pH data at each of the study sites. The pH variation observed ranged by between 0.09 and 0.24 pHNBS units. A clear daily variation in seawater pH was detected at all the studied sites (0.04-0.12 pHNBS units). Significant differences in daily pH oscillations were also observed between phytocenoses, which shows that macroalgal communities influence the seawater pH in benthic habitats. Natural oscillations in pH must be taken into account in future ocean acidification studies to put findings in perspective and for any ecological recommendations to be realistic.

  12. Red coral extinction risk enhanced by ocean acidification

    PubMed Central

    Cerrano, Carlo; Cardini, Ulisse; Bianchelli, Silvia; Corinaldesi, Cinzia; Pusceddu, Antonio; Danovaro, Roberto

    2013-01-01

    The red coral Corallium rubrum is a habitat-forming species with a prominent and structural role in mesophotic habitats, which sustains biodiversity hotspots. This precious coral is threatened by both over-exploitation and temperature driven mass mortality events. We report here that biocalcification, growth rates and polyps' (feeding) activity of Corallium rubrum are significantly reduced at pCO2 scenarios predicted for the end of this century (0.2 pH decrease). Since C. rubrum is a long-living species (>200 years), our results suggest that ocean acidification predicted for 2100 will significantly increases the risk of extinction of present populations. Given the functional role of these corals in the mesophotic zone, we predict that ocean acidification might have cascading effects on the functioning of these habitats worldwide. PMID:23492780

  13. The Impact of Ocean Acidification on the Functional Morphology of Foraminifera

    PubMed Central

    Khanna, Nikki; Godbold, Jasmin A.; Austin, William E. N.; Paterson, David M.

    2013-01-01

    Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism's survival and fitness. PMID:24358253

  14. Impact of Idealized Stratospheric Aerosol Injection on the Future Ocean and Land Carbon Cycles

    NASA Astrophysics Data System (ADS)

    Tjiputra, J.; Lauvset, S.

    2017-12-01

    Using a state-of-the-art Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In one of the scenarios, the model able to project future warming below 2 degree toward 2100, despite greatier warming persists in the high latitudes. When SAI is terminated in 2100, a rapid global warming of 0.35 K yr-1 (as compared to 0.05 K yr-1 under RCP8.5) is simulated in the subsequent 10 years, and the global mean temperature rapidly returns to levels close to the reference state. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. Despite inducing little impact on surface acidification, in the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area. Since the deep ocean provides vital ecosystem function and services, e.g., fish stocks, this accelerated changes could introduce broader negative impacts on human welfare.

  15. Element budgets in an Arctic mesocosm CO2 perturbation study

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Boxhammer, T.; Bellerby, R. G. J.; Büdenbender, J.; Engel, A.; Krug, S. A.; Ludwig, A.; Nachtigall, K.; Nondal, G.; Niehoff, B.; Siljakova, A.; Riebesell, U.

    2012-08-01

    Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining the temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air/sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification using KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation) all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down some of the mentioned uncertainties. Water column concentrations of particulate and dissolved organic and inorganic constituents were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution, as well as estimates of wall growth were developed to close the gaps in element budgets. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in 2 of the 3 experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic compounds under nutrient recycling summer conditions. This carbon over-consumption effect becomes evident from budget calculations, but was too small to be resolved by direct measurements of dissolved organics. The out-competing of large diatoms by comparatively small algae in nutrient uptake caused reduced production rates under future ocean CO2 conditions in the end of the experiment. This CO2 induced shift away from diatoms towards smaller phytoplankton and enhanced cycling of dissolved organics was pushing the system towards a retention type food chain with overall negative effects on export potential.

  16. Oceanic ecosystem dynamics during gigantic volcanic episodes: the Ontong Java and Manihiki Plateaus recorded by calcareous nannoplankton. (Invited)

    NASA Astrophysics Data System (ADS)

    Erba, E.

    2010-12-01

    Earth's volcanic activity introduces environmental stress that biota are forced to survive. There is a general consensus on the role of volcanogenic carbon dioxide increases, and implicit tectonic-igneous events, triggering major climate changes and profound variations in chemical, physical and trophic characteristics of the oceans through the Phanerozoic. Cretaceous geological records indicate conditions of excess atmCO2 (up to 2000-3000 ppm) derived from construction of Large Igneous Provinces (LIPs). In such “high CO2 world” and greenhouse conditions, the deep ocean became depleted of oxygen promoting the accumulation and burial of massive amounts of organic matter; such episodes are recognized as Oceanic Anoxic Events (OAEs) and their geological records merit careful examination of how the Earth system, and Life in particular, can overcome extreme experiments of global change. The Early Aptian (˜ 120 million years ago) OAE1a is a complex example of volcanicCO2-induced environmental stress. There is a general consensus on the causes of this case-history, namely excess CO2 derived from the construction of the Ontong Java-Manihiki LIP. Multi- and inter-disciplinary studies of the OAE1a have pointed out C, O, Os, Sr isotopic anomalies, a biocalcification crisis in pelagic and neritic settings, enhanced fertility and primary productivity, as well as ocean acidification. Available cyclochronology allows high-resolution dating of biotic and environmental fluctuations, providing the precision necessary for understanding the role of volcanogenic CO2 on nannoplankton biocalcification, adaptations, evolutionary innovation and/or extinctions. The reconstructed sequence of volcanogenic CO2 pulses, and perhaps some clathrate melting, triggered a climate change to supergreenhouse conditions, anoxia and ocean acidification. The demise of heavily calcified nannoconids and reduced calcite paleofluxes marks beginning of the pre-OAE1a calcification crisis. Ephemeral coccolith dwarfism and malformation represent adjustments to survive lower pH. Deep-water acidification occurs with a delay of 25-30 thousand years: a dissolution event recording 1 to 2km shallowing of the Calcite Compensation Depth anticipated the onset of anoxic sedimentation. A major acceleration in weathering has been identified in the lowermost part of OAE1a. After acidification-dissolution climax, nannoplankton and carbonate recovery developed over ~160 kyr, under persisting global dysoxia-anoxia. This recovery presumably implies a stasis of the LIP activity and gradual buffering of ocean acidification or a decrease in volcanogenic CO2 emissions and consistently higher CO2 drawdown through Corg burial and/or weathering. Rising CO2 and surface-ocean acidification during OAE1a triggered false extinctions among calcareous nannoplankton. Conversely, a major origination episode starts approximately 1 My before global anoxia and persists through OAE1a and associated acidification. Increasing pCO2 caused complex and species-specific reactions, including production of r-strategist taxa, which, however, secreted dwarf and malformed coccoliths as a strategy to overcome acidification.

  17. LiveOcean: A Daily Forecast Model of Ocean Acidification for Shellfish Growers

    NASA Astrophysics Data System (ADS)

    MacCready, P.; Siedlecki, S. A.; McCabe, R. M.

    2016-12-01

    The coastal estuaries of the NE Pacific host a highly productive shellfish industry, but in the past decade they have suffered from many years in which no natural set of oysters occurred. It appears that coastal waters with low Aragonite saturation state may be the cause. This "acidified" water is the result of (i) upwelling of NE Pacific water from near the shelf break that is already low in pH, and (ii) further acidification of that water by productivity and remineralization on the shelf, and (iii) increasing atmospheric CO2. As part of a coordinated research response to this issue, we have developed the LiveOcean modeling system, which creates daily three-day forecasts of circulation and biogeochemical properties in Oregon-Washington-British Columbia coastal and estuarine waters. The system includes realistic tides, atmospheric forcing (from a regional WRF model), ocean boundary conditions (from HYCOM), and rivers (from USGS and Environment Canada). The model is also used for Harmful Algal Bloom prediction. There has been extensive validation of hindcast runs for currents and hydrography, and more limited validation of biogeochemical variables. Model results are pushed daily to the cloud, and made available to the public through the NANOOS Visualization System (NVS). NVS also includes automated model-data comparisons with real-time NDBC and OOI moorings. Future work will focus on optimizing the utility of this system for regional shellfish growers.

  18. Ocean acidification alters the material properties of Mytilus edulis shells

    PubMed Central

    Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie

    2015-01-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  19. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    PubMed

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  20. Carbonate dissolution in mixed waters due to ocean acidification

    NASA Astrophysics Data System (ADS)

    Koski, K.; Wilson, J. L.

    2009-12-01

    Much of the anthropogenically released carbon dioxide has been stored as a dissolved gas in the ocean, causing a 0.1 decrease in ocean surface pH, with models predicting that by 2100 the surface ocean pH will be 0.5 below pre-industrial levels. In mixed ocean water - fresh water environments (e.g. estuaries, coastal aquifers, and edges of ice sheets), the decreased ocean pH couples with the mixed water geochemistry to make water more undersaturated with respect to calcium carbonate than ocean acidification alone. Mixed-water calcite dissolution may be one of the first directly observable effects of ocean acidification, as the ocean water and the fresh water can both be saturated with respect to calcium carbonate while their mixture will be undersaturated. We present a basic quantitative model describing mixed water dissolution in coastal or island freshwater aquifers, using temporally changing ocean pH, sea level, precipitation, and groundwater pumping. The model describes the potential for an increased rate of speleogenesis and porosity/permeability development along the lower edge of a fresh water lens aquifer. The model accounts the indirect effects of rising sea level and a growing coastal population on these processes. Applications are to freshwater carbonate aquifers on islands (e.g. the Bahamas) and in coastal areas (e.g. the unconfined Floridan aquifer of the United States, the Yucatan Peninsula of Mexico).

Top