Science.gov

Sample records for future peak electrical

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  7. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  10. Impacts of Climate Change on Electric Transmission Capacity and Peak Electricity Load in the United States

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M. D.; Eisenberg, D. A.; Gorman, B.; Johnson, N.

    2015-12-01

    Climate change may hinder future electricity reliability by reducing electric transmission capacity while simultaneously increasing electricity demand. This study estimates potential climate impacts to electric transmission capacity and peak electricity load in the United States. Electric power cables suffer decreased transmission capacity as they get hotter; similarly, during the summer peak period, electricity demand typically increases with hotter ambient air temperatures due to increased cooling loads. As atmospheric carbon concentrations increase, higher air temperatures may strain power infrastructure by reducing transmission capacity and increasing peak electricity loads. Taken together, these coincident impacts may have unpredictable consequences for electric power reliability. We estimate the effects of climate change on both the rated capacity of transmission infrastructure and expected electricity demand for 120 electrical utilities across the United States. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with downscaled CMIP5 temperature projections to determine the relative change in rated ampacity over the twenty-first century. Next, we assess the impact of climate change on electricity demand by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We use downscaled temperature projections from 11 CMIP5 GCM models under 3 atmospheric carbon scenarios. We find that by mid-century (2040-2060), climate change may reduce average summertime transmission capacity by 4-6% relative to the 1990-2010 reference period. At the same time, peak summertime loads may rise by roughly 2-12% on average due to increases in daily maximum air temperature. In the absence of energy efficiency gains, demand-side management programs

  11. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  12. Electrical futures past.

    PubMed

    Gooday, Graeme J N

    2005-12-01

    Futurist writing about technology emerged in the late 19th century at the same time as new kinds of electrical technology were making utopian futures seem practically attainable. Electrical writers and novelists alike thus borrowed from the popular "science" fiction of Jules Verne, Edward Bellamy and others to try to create self-fulfilling prophecies of a future in which electrical gadgets and machines met all major practical needs of civilization. To the extent that many parts of our world are populated by the hardware that they forecast, they succeeded in their goal.

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  14. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  15. America's Electricity Future

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2006-03-01

    Where will America's future electricity supply come from? According to Vice President Cheney's energy task force, the U.S. needs to build about one 1 GW generating facilty a week in perpetuity.^(1) What sort of facilities will they be? Can the economy sustain such growth? Are there other possibilities? One possibility that strikes a chord with physicists is conservation as a source of energy. In this regard, Vice President Cheney famously said that conservation is``a sign of personal virtue, but it is not a sufficient basis---all by itself---for a sound, comprehensive energy policy,''^(2) echoing the Ayn Rand Instituite's view that ``Conservation is not a long- or short-term solution to the energy crisis. Conservation is the un-American idea of resigning oneself to doing with less.''^(3) This poster will explore the possible energy futures, their advantages and disadvantages, with and without conservation. 1. National Energy Policy Development Group (R. Cheney, C. L. Powell, P. O'Neill, G. Norton, A. M. Veneman, D. L. Evans, N. Y. Mineta, S. Abraham, J. M. Allbaugh, C. T. Whitman, J. B. Bolten, M. E. Daniels, L. B. Lindsey, and R. Barrales), National Energy Policy: Report of the National Energy Policy Development Group, (Washington, DC: Government Printing Office, 2001). 2. M. Allen, ``Bush energy plan will emphasize production,'' The Washington Post, 1 May 2001 3. R. Pool, ``Saving power deemed immoral,'' The Los Angeles Times, 12 May 2001.

  16. Is there a future for electricity futures?

    SciTech Connect

    Hettrick, J.R.; Chittenden, W.T.

    1998-12-31

    The market for electricity based commodity trading, including futures and options, is in its infancy in the United States. Formal trading of electricity futures started on the New York Mercantile Exchange (NYMEX) on March 29, 1996 with Options trading following on April 26, 1996. NYMEX started two new contracts, one based at the California-Oregon border (COB) and one based at the Palo Verde switchyard (Palo Verde). NYMEX is the commodity futures exchange in the United States that specializes in energy contracts, historically launching futures contracts in energy sectors immediately after the deregulation of the market and after the formation of a competitive cash or spot market. In the case of electricity, NYMEX established the new electricity futures contracts prior to the deregulation of the market and in the middle of the formation of a working spot market. Several questions remain including if there is enough interest in the market, who will be the participants, how will the physical properties of electricity mold the terms for futures contracts, and how will deregulation affect the outcome?

  17. Off-peak electric energy for poultry feed processing

    SciTech Connect

    Tyson, E.J.

    1987-01-01

    Off-peak electric energy can be used for poultry feed processing, achieving substantial reduction in electric energy cost. In addition, high efficiency equipment and conservation measures add to energy cost savings. Careful planning and evaluation of time-of-use rates can maximize the savings for each type of enterprise.

  18. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    NASA Astrophysics Data System (ADS)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  19. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). These peak flows are also needed for effective floodplain management. Annual precipitation and air temperature in the northeastern United States are in general projected to increase during the 21st century (Hayhoe and other, 2007). It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This Fact Sheet, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Scientific Investigations Report (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/sir/2013/5080/.

  20. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As

  1. Modelling alternative residential peak-load electricity rate structures

    SciTech Connect

    Caves, D.W.; Christensen, L.R.; Herriges, J.A.

    1982-01-01

    Implementation of optimal peak-load pricing schemes requires information on how customers will change their usage patterns in response to alternative rate structures. The authors propose a modelling framework that can be employed to estimate the effects of a wide range of residential peak-load pricing schemes, including those with a maximum demand charge. The framework is based on the neoclassical theory of consumer behavior and employs a flexible functional form, the generalized Leontief. Estimates are developed using data from the Wisconsin Residential Electricity Pricing Experiment. They find significant, and remarkably similar, changes in patterns of household electricity usage induced by energy-based and maximum demand-based peak-load pricing structures. 17 references, 5 tables.

  2. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal

  3. PV solar electricity: status and future

    NASA Astrophysics Data System (ADS)

    Hoffmann, Winfried

    2006-04-01

    of new concepts to broaden the product portfolio in coming years). The second topic outlines the most likely development of liberalized electricity markets in various regions worldwide. It will be emphasized that in such markets the future prices for electricity will more and more reflect the different cost for bulk and peak power production. This will not only happen for industrial electricity customers - as already today in many countries - but also for private households. The third topic summarizes the existing data and facts by correlating peak power demand and prices traded in various stock exchange markets with delivered PV kWh. It will be shown that a high degree of correlation is existent. Combining the three topics and postulating reverse net metering the competitiveness of PV solar electricity as described is most likely to occur. The described price decrease of modules will also have a very positive impact on off-grid rural applications, mainly in 3rd world countries. It will be shown that this is strongly advanced due to the development of mini-grids starting from solar home systems - with mini grids looking very similar to on-grid applications in weak grid areas of nowadays electricity network.

  4. Electric Power: Decisions for the Future.

    ERIC Educational Resources Information Center

    Cardon, Phillip L.; Preston, John

    2003-01-01

    Reviews the past 25 years of electricity consumption in the United States and considers the implications for the near future. Discusses strategies for energy conservation and provides a student activity for measuring and conserving electric power. (Author/JOW)

  5. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. Renewable Electricity Futures Study Executive Summary

    SciTech Connect

    Mai, Trieu; Sandor, Debra; Wiser, Ryan; Schneider, Thomas

    2012-12-01

    The Renewable Electricity Futures Study (RE Futures) provides an analysis of the grid integration opportunities, challenges, and implications of high levels of renewable electricity generation for the U.S. electric system. The study is not a market or policy assessment. Rather, RE Futures examines renewable energy resources and many technical issues related to the operability of the U.S. electricity grid, and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. RE Futures results indicate that a future U.S. electricity system that is largely powered by renewable sources is possible and that further work is warranted to investigate this clean generation pathway.

  7. Toward Challenging Peaks: Education Personnel for Alternative Futures.

    ERIC Educational Resources Information Center

    Burdin, Joel L.

    Predictions of possible future changes in society are made in this paper, and the role of the teacher in the future is discussed. Several broad topics are introduced and their implications for the teacher examined: (1) Social values will change with mass media a leveling agent -- how can teachers help individuals to attain personally meaningful…

  8. Renewable Electricity Futures for the United States

    SciTech Connect

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  9. Renewable Electricity Futures Study - Volume One

    SciTech Connect

    Hand, Maureen; Mai, Treui; Baldwin, Sam; Brinkman, Greg; Sandor, Debbie; Denholm, Paul; Heath, Garvin; Wiser, Ryan

    2016-06-01

    Renewable Electricity Futures Study - Volume One. This is part of a series of four volumes describing exploring a high-penetration renewable electricity future for the United States of America. This data set is provides data for the entire volume one document and includes all data for the charts and graphs included in the document.

  10. Investigation of cost reduction in residential electricity bill using electric vehicle at peak times

    NASA Astrophysics Data System (ADS)

    Elma, Onur; Selamogullari, Ugur Savas

    2012-11-01

    The use of electric vehicles (EVs) is becoming more common in the world. Since these vehicles are equipped with large battery capacity, they can be used as energy provider when they are parked and have enough charge level. This study investigates the possibility of Vehicle to Home (V2H) concept using EV as energy provider for a residential house in Istanbul, Turkey. High resolution residential electrical demand data is obtained to characterize the residential demand. Then, case studies are completed in MATLAB/Simulink to evaluate the cost reduction in residential electricity bill when the EV is used to supply the residential demand at peak times. It is assumed that the EV will be fully charged after midnight when the energy cost is lower. The difference between residential electricity costs at peak times and charging costs after midnight are found considering different EV state of charge conditions due to driving conditions during the day. The results will provide more realistic prediction of cost savings since residential demand dynamics are taken into account.

  11. The history of transportation, with a peak into the future

    NASA Technical Reports Server (NTRS)

    Anderson, John D., Jr.

    1996-01-01

    In the first part of this presentation, a general historical review of the heydays of various modes of transportation will be given, where 'heydays' will be interpreted as periods of fundamental technological development. With this as background, focus will then be placed on the airplane -- the mode of transportation that has changed the world in the 20th century, and which in the minds of many has been the most important technological development in this century. The technical history of air transportation (the airplane) will be reviewed, with special emphasis on the aerodynamic evolution of the airplane. Some specific examples of pivotal technical advances (and breakthroughs) from the history of applied aerodynamics will be discussed. Finally, this historical perspective will be used to help us peek into the future of transportation in the 21st century.

  12. Climate change and peak demand for electricity: Evaluating policies for reducing peak demand under different climate change scenarios

    NASA Astrophysics Data System (ADS)

    Anthony, Abigail Walker

    This research focuses on the relative advantages and disadvantages of using price-based and quantity-based controls for electricity markets. It also presents a detailed analysis of one specific approach to quantity based controls: the SmartAC program implemented in Stockton, California. Finally, the research forecasts electricity demand under various climate scenarios, and estimates potential cost savings that could result from a direct quantity control program over the next 50 years in each scenario. The traditional approach to dealing with the problem of peak demand for electricity is to invest in a large stock of excess capital that is rarely used, thereby greatly increasing production costs. Because this approach has proved so expensive, there has been a focus on identifying alternative approaches for dealing with peak demand problems. This research focuses on two approaches: price based approaches, such as real time pricing, and quantity based approaches, whereby the utility directly controls at least some elements of electricity used by consumers. This research suggests that well-designed policies for reducing peak demand might include both price and quantity controls. In theory, sufficiently high peak prices occurring during periods of peak demand and/or low supply can cause the quantity of electricity demanded to decline until demand is in balance with system capacity, potentially reducing the total amount of generation capacity needed to meet demand and helping meet electricity demand at the lowest cost. However, consumers need to be well informed about real-time prices for the pricing strategy to work as well as theory suggests. While this might be an appropriate assumption for large industrial and commercial users who have potentially large economic incentives, there is not yet enough research on whether households will fully understand and respond to real-time prices. Thus, while real-time pricing can be an effective tool for addressing the peak load

  13. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  14. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  15. The Future of Electricity Resource Planning

    SciTech Connect

    Kahrl, Fredrich; Mills, Andrew; Lavin, Luke; Ryan, Nancy; Olsen, Arne; Schwartz, Lisa

    2016-09-14

    Electricity resource planning is the process of identifying longer-term investments to meet electricity reliability requirements and public policy goals at a reasonable cost. Resource planning processes provide a forum for regulators, electric utilities, and electricity industry stakeholders to evaluate the economic, environmental, and social benefits and costs of different investment options. By facilitating a discussion on future goals, challenges and strategies, resource planning processes often play an important role in shaping utility business decisions. Resource planning emerged more than three decades ago in an era of transition, where declining electricity demand and rising costs spurred fundamental changes in electricity industry regulation and structure. Despite significant changes in the industry, resource planning continues to play an important role in supporting investment decision making. Over the next two decades, the electricity industry will again undergo a period of transition, driven by technological change, shifting customer preferences and public policy goals. This transition will bring about a gradual paradigm shift in resource planning, requiring changes in scope, approaches and methods. Even as it changes, resource planning will continue to be a central feature of the electricity industry. Its functions — ensuring the reliability of high voltage (“bulk”) power systems, enabling oversight of regulated utilities and facilitating low-cost compliance with public policy goals — are likely to grow in importance as the electricity industry enters a new period of technological, economic and regulatory change. This report examines the future of electricity resource planning in the context of a changing electricity industry. The report examines emerging issues and evolving practices in five key areas that will shape the future of resource planning: (1) central-scale generation, (2) distributed generation, (3) demand-side resources, (4

  16. Primer on electricity futures and other derivatives

    SciTech Connect

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

  17. Strong Peak Electric Field in Streamer Discharges Caused by Rapid Changes in the External Electric Field

    NASA Astrophysics Data System (ADS)

    Ihaddadene, K. M. A.; Celestin, S. J.

    2015-12-01

    Laboratory spark discharges in air and lightning stepped leaders produce X-rays [e.g., Dwyer et al., GRL, 32, L20809, 2005; Nguyen et al., J. Phys. D: Appl. Phys., 41, 234012, 2008; Rahman et al., GRL, 35, L06805, 2008; March and Montanyà, GRL, 37, L19801, 2010; 38, L04803, 2011; Kochkin et al., J. Phys. D: Appl., 45, 425202, 2012; 48, 025205, 2015]. However, the processes behind the production of these X-rays are still not fully understood. Recently, the encounter between negative and positive streamers has been suggested as a plausible mechanism for the production of X-rays by spark discharges [Cooray et al., JASTP, 71, 1890, 2009; Kochkin et al., J. Phys. D: Appl. Phys., 45, 425202, 2012], but the increase of the electric field involved in this process is accompanied by a strong increase of the conductivity, which in turn makes this electric field collapse over a few tens of picoseconds, preventing the production of significant X-ray emissions [Ihaddadene and Celestin, GRL, 45, 5644, 2015]. Moreover, it has been reported that X-ray emission in laboratory spark discharges is influenced by the time derivative of the applied voltage [March and Montanya, GRL, 37, L19801, 2010]. Additionally, Celestin and Pasko [JGR, 116, A03315, 2011, Section 3.3] have indicated that quickly increasing applied voltages had an impact on peak electric fields in streamer numerical models. In this work, we simulate numerically the effect of impulsive applied electric fields on the dynamics of streamer discharges in air at ground level and investigate conditions under which production of thermal runaway electrons and the associated X-rays is possible.

  18. Reducing Gridlock on the Grid: Utility Trends in Managing Peak Electric Load through Residential Demand Response

    NASA Astrophysics Data System (ADS)

    McDonald, Betsy

    Utilities across the United States are piloting residential demand response programs to help manage peak electric demand. Using publicly available program evaluations, this thesis analyzes nine such programs to uncover and synthesize the range of program offerings, goals, enrollment strategies, and customer experiences. This review reveals that program participation, components, and results differ based on a variety of factors, including geographic characteristics, program goals, and implementation strategies. The diversity of program designs and evaluation findings suggests an underlying tension between the need to generate cost-effective program impacts and the desire to increase accessibility so that program benefits are not exclusive to certain segments of the population. For more significant and impactful engagement, program goals may need to shift. State level policy support could help shift program goals toward increasing program accessibility. Future research should explore creative strategies that target existing barriers and allow for more inclusive deployment.

  19. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  20. Effects of muscle electrical stimulation on peak VO2 in cardiac transplant patients.

    PubMed

    Vaquero, A F; Chicharro, J L; Gil, L; Ruiz, M P; Sánchez, V; Lucía, A; Urrea, S; Gómez, M A

    1998-07-01

    Peak oxygen consumption (peak VO2) has become a critical component in the evaluation of heart transplant recipients (HTR). In these patients, peak VO2 remains low after cardiac transplantation mainly because of persisting peripheral limitations in the working muscles. Muscular electrical stimulation, on the other hand, has been shown to enhance the oxidative capacity of healthy muscle. It was the purpose of our investigation to study the effects of ES on the peak VO2 of HTR. Fourteen (11 males and 3 females) HTR (age: 57+/-7yr, mean +/- SD; height: 163+/-7 cm, weight: 70.5+/-8.6 kg) were selected as subjects and each of them was randomly assigned to one of two groups: (a) group EXP (n = 7), receiving electrical stimulation on both quadriceps muscles during a period of 8 weeks, and (b) group CONT (n = 7), not receiving electrical stimulation. Before (PRE) and after (POST) the aforementioned 8-week period, respectively, all the subjects performed a cardiopulmonary exercise test (ramp protocol) on a cycle ergometer for peak VO2 determination. PRE values of peak VO2 were similar in both groups (17.1+/-2.0 vs 16.9+/-3.8ml x kg(-1) x min(-1) in EXP and CONT, respectively). However, peak values of VO2 significantly increased in EXP (p < 0.05) after the period of electrical stimulation (POST peak VO2: 18.7+/-2.0ml x kg(-1)), whereas no change was observed in CONT (POST peak VO2: 16.2+/-3.2 ml x kg(-1) x min(-1)). In conclusion, electrical stimulation could therefore be used to improve the functional capacity of HTR, and might be included in the rehabilitation programs of this population group.

  1. Analysis on factors affecting household customers decision in using electricity at peak time and its correlation towards saving electricity

    NASA Astrophysics Data System (ADS)

    Pasasa, Linus; Marbun, Parlin; Mariza, Ita

    2015-09-01

    The purpose of this paper is to study and analyse the factors affecting customer decisions in using electricity at peak-load hours (between 17.00 to 22.00 WIB) and their behaviors towards electricity conservation in Indonesian household. The underlying rationale is to influence a reduction in energy consumption by stimulating energy saving behaviors, thereby reducing the impact of energy use on the environment. How is the correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity? The primary data is obtained by distributing questionnaires to customers of PT. PLN Jakarta Raya and Tangerang Distribution from Household segment. The data is analysed using the Structural Equation Model (SEM) and AMOS Software. The research is finding that all factors (Personal, Social, PLN Services, Psychological, and Cultural) are positively influence customer decision in using electricity at peak load hours. There is a correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity.

  2. Future drive: Electric vehicles and sustainable transportation

    SciTech Connect

    Sperling, D.

    1996-07-01

    This book discusses the future of electric vehicles by starting with two premises: (1) improvements in the environmental and economic performance of our transportation systems are being overwhelmed by rapid increases in the number of people, cars, and miles traveled, and (2) when we shape our transportation future, we must respect peoples` preferred mode of travel, the private car. An assessment of developing technologies is presented along with the key issues of how new automotive technologies should be integrated into our lives and what types of regulatory reform would facilitate needed changes.

  3. Near-Zero-Energy Homes Help Electric Utilities Meet Record System Peaks

    SciTech Connect

    Christian, Jeffrey E

    2007-01-01

    Five near zero energy houses (ZEH) are under test at an energy research park near Oak Ridge, TN. Data from 2006-2007 show that these homes have {approx}7 kW lower summer peak electric demand than typical conventional homes in the same region. Combining 17,000 such homes in a 'zero energy neighbourhood' could provide a utility with peak demand management capability equivalent to a 120 MW power plant.

  4. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  5. Temporalization of peak electric generation particulate matter emissions during high energy demand days.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Baker, Kirk R; Rodgers, Mark; Carlton, Annmarie G

    2015-04-07

    Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively.

  6. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    PubMed

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations

  7. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand

    PubMed Central

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the

  8. On the anticorrelation of the electric field and peak electron energy within an auroral arc

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.; Carlson, C. W.

    1985-01-01

    The present investigation is concerned with an example of a strongly anticorrelated electric field and particle precipitation, taking into account an application of an extended version of the model of Evans et al. (1977) to the data. A striking feature of the data reported is the high degree of anticorrelation between electric field strength and peak precipitating electron energy. A simple model consisting of a constant current traversing a region in which the conductivities increase in proportion to ionospheric energy deposition provides a qualitative explanation of the observations. However, when the effects of neutral winds, ionization transport, Hall currents, and arc motion, and the nonlinearity of the relationship between peak precipitating electron energy and equilibrium are considered, the conclusions become less clear.

  9. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    USGS Publications Warehouse

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-12-31

    The application uses predictions of future annual precipitation from five climate models and two future greenhouse gas emissions scenarios and provides results that are averaged over three future periods—2025 to 2049, 2050 to 2074, and 2075 to 2099. Results are presented in ensemble form as the mean, median, maximum, and minimum values among the five climate models for each greenhouse gas emissions scenario and period. These predictions of future annual precipitation are substituted into either the precipitation variable or a water balance equation for runoff to calculate potential future peak flows. This application is intended to be used only as an exploratory tool because (1) the regression equations on which the application is based have not been adequately tested outside the range of the current climate and (2) forecasting future precipitation with climate models and downscaling these results to a fine spatial resolution have a high degree of uncertainty. This report includes a discussion of the assumptions, uncertainties, and appropriate use of this exploratory application.

  10. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    SciTech Connect

    Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  11. Electric power sector in Mexico: Past, present, and future developments

    SciTech Connect

    Arriola, E. )

    1994-06-01

    This article reviews electric power sector development in Mexico. The topics of the article include the historic aspects of the development of a national interconnected system, current power demand and system capacity, electric energy exports and imports, expected growth and generation projects under construction, and future development of the electric power sector under the new law.

  12. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  13. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  14. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  15. Temporalization of Electric Generation Emissions for Improved Representation of Peak Air Quality Episodes

    NASA Astrophysics Data System (ADS)

    Farkas, C. M.; Moeller, M.; Carlton, A. G.

    2013-12-01

    Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.

  16. Electric propulsion - Past history and future prospects

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1974-01-01

    Studies of feasibility and flight mechanics of electric propulsion systems began around 1946. Conceptual systems design started in 1954, experimental developments in 1958; flight tests in 1964 and 1970 proved the functioning of electric thrusters in space. Further development of ion thruster systems has concentrated on bombardment ionization in the U.S., and on radiofrequency, bombardment, and surface contact ionization in West Germany, Great Britain, France and Russia. Electrothermal, plasma, and colloid thruster development has been pursued in many contries. Electric thrusters were used successfully during past years for satellite attitude control, and for prime propulsion of the Russian spacecraft Yantar. Further applications for attitude and position control of satellites are planned. Studies are presently underway for solar electric missions to planets, planetary moons, comets, asteroids, and toward the sun, and also for missions in near-earth space involving transfer, servicing, and repair of orbiting spacecraft.

  17. A model of preliminary breakdown pulse peak currents and their relation to the observed electric field pulses

    NASA Astrophysics Data System (ADS)

    Kašpar, Petr; Santolík, Ondřej; Kolmašová, Ivana; Farges, Thomas

    2017-01-01

    Preliminary breakdown pulses (PBPs) occur in the initial phase of lightning. A realistic model for their description is employed to investigate relation between PBP peak currents and PBP electric field amplitudes and their relation to the return stroke (RS) peak currents. We demonstrate that the PBP peak currents can reach 200 kA and can be comparable or higher than the corresponding RS peak currents. For a typical PBP electric field waveform PBP peak currents are approximately proportional to the electric field amplitudes. We show that the PBP bipolar overshoot depends primarily on the characteristic time of the line conductivity increase. The magnitude of the charge centers is demonstrated to be very large in order to model the observed PBPs with amplitudes up to 32 V/m at 100 km. Such energetic current pulses might be capable to produce elves or terrestrial gamma ray flashes.

  18. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  19. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  20. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  1. Performance improvement of a solar heating system utilizing off-peak electric auxiliary

    SciTech Connect

    Eltimsahy, A.H.

    1980-06-01

    The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

  2. Future Electric Ship and Power and Energy

    DTIC Science & Technology

    2010-09-01

    Navy Hybrid Electric Ship S&T Issues/Challenges Power Generation, Energy Storage , Power Distribution & Control, and Thermal Closing Thoughts...development of efficient power systems. 1. Power Generation: • Fuel Cells & Fuel Reforming • Advanced Generators 2. Energy Storage : • Batteries... Storage : •Advanced materials (high purity, high dielectric breakdown) •Increased energy density and high temperature operation Goal: Increased

  3. A novel graphene nanoribbon FET with an extra peak electric field (EFP-GNRFET) for enhancing the electrical performances

    NASA Astrophysics Data System (ADS)

    Akbari Eshkalak, Maedeh; Anvarifard, Mohammad K.

    2017-04-01

    This work has provided an efficient technique to improve the electrical performance for the Graphene Nanoribbon Field Effect Transistors (GNRFETs) successfully. The physical gate length is divided into two gates named as the original gate and the other one as the virtual gate. We have applied a voltage source between these gates to control the channel of the GNRFETs. This technique has created an extra peak electric field in the middle of the channel resulting in the redistribution of surface potential profile. The proposed structure named as EFP-GNRFET has been compared with a simple GNRFET and has shown many improvements in terms of the critical parameters such as short channel effects, leakage current, subthreshold swing, ON-state to OFF-state current ratio, transconductance, output conductance and voltage gain. The structures under the study in this paper benefits from the Non-Equilibrium Green Function (NEGF) approach for solving Schrödinger equation coupled with the two-dimensional (2D) Poisson equation in a self-consistent manner.

  4. Design optimization of the electrically peaking hybrid (ELPH) vehicle. Research report

    SciTech Connect

    Ehsani, M.; Gao, Y.; Butler, K.

    1998-10-01

    Electrically Peaking Hybrid (ELPH) is a parallel hybrid electric vehicle propulsion concept that was invented at Texas A and M University, by the advanced vehicle systems research group. Over the past six years, design methodologies, component development, and system optimization work has been going on for this invention. This project was a first attempt in integrating the above developments into an optimized design of an ELPH passenger car. Design specifications were chosen for a full size passenger car, performing as well as any conventional car, over the EPA-FTP-75 combined city/highway drive cycles. The results of this design project were two propulsion systems. Both were appropriate for commercial production, from the points of view of cost, availability of the technologies, and components. One utilized regenerative braking and the other did not. Substantial fuel savings and emissions reductions resulted from simulating these designs on the FTP-75 drive cycle. For example, the authors` ELPH full size car, with regenerative braking, was capable of delivering over 50 miles per gallon in city driving, with corresponding reductions in its emissions. This project established the viability of the authors` ELPH concept and their design methodologies, in computer simulations. More work remains to be done on investigating more advanced power plants, such as fuel cells, and more advanced components, such as switched reluctance motor drives, for the authors` designs. Furthermore, the authors` design optimization can be carried out to more detailed levels, for prototyping and production.

  5. Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.

    2015-01-01

    Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.

  6. Visions of the Future: Hybrid Electric Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  7. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  8. Perspectives on the future of the electric utility industry

    SciTech Connect

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  9. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  10. Sell lumens, not kilowatts: The future for electric utilities

    SciTech Connect

    Piepmeier, J.M. ); Jermain, D. ); Egnor, T.L. )

    1993-04-01

    The key to the future for electric utilities will not be found in legislation or regulation. Title VII of the Energy Policy Act of 1992 will prove to be just as ineffectual in improving the industry's position as was the Public Utility Regulatory Policies Act of 1978. These legislative palliatives, which produced so much commotion and so many reams of heated commentary, are largely irrelevant to a successful future for electric utilities. The key will be found in economics, not in law, and the future will lie in completing Thomas A. Edison's century-old vision for the industry, half of which the industry has heretofore ignored. The industry must embrace the complete vision and evolve from electric utilities into [open quotes]end-use energy utilities.[close quotes

  11. Study on Operation Optimization of Pumping Station's 24 Hours Operation under Influences of Tides and Peak-Valley Electricity Prices

    NASA Astrophysics Data System (ADS)

    Yi, Gong; Jilin, Cheng; Lihua, Zhang; Rentian, Zhang

    2010-06-01

    According to different processes of tides and peak-valley electricity prices, this paper determines the optimal start up time in pumping station's 24 hours operation between the rating state and adjusting blade angle state respectively based on the optimization objective function and optimization model for single-unit pump's 24 hours operation taking JiangDu No.4 Pumping Station for example. In the meantime, this paper proposes the following regularities between optimal start up time of pumping station and the process of tides and peak-valley electricity prices each day within a month: (1) In the rating and adjusting blade angle state, the optimal start up time in pumping station's 24 hours operation which depends on the tide generation at the same day varies with the process of tides. There are mainly two kinds of optimal start up time which include the time at tide generation and 12 hours after it. (2) In the rating state, the optimal start up time on each day in a month exhibits a rule of symmetry from 29 to 28 of next month in the lunar calendar. The time of tide generation usually exists in the period of peak electricity price or the valley one. The higher electricity price corresponds to the higher minimum cost of water pumping at unit, which means that the minimum cost of water pumping at unit depends on the peak-valley electricity price at the time of tide generation on the same day. (3) In the adjusting blade angle state, the minimum cost of water pumping at unit in pumping station's 24 hour operation depends on the process of peak-valley electricity prices. And in the adjusting blade angle state, 4.85%˜5.37% of the minimum cost of water pumping at unit will be saved than that of in the rating state.

  12. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  13. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  14. An analytic framework to assess future electricity options in Kosovo

    NASA Astrophysics Data System (ADS)

    Kittner, Noah; Dimco, Hilda; Azemi, Visar; Tairyan, Evgenia; Kammen, Daniel M.

    2016-10-01

    We have developed an analytic platform to analyze the electricity options, costs, and impacts for Kosovo, a nation that is a critical part of the debate over centralized versus distributed electricity generation and the role of fossil fuels versus cleaner electricity options to meet growing demands for power. We find that a range of alternatives exists to meet present supply constraints all at a lower cost than constructing a proposed 600 MW coal plant. The options include energy efficiency measures, combinations of solar PV, wind, hydropower, and biomass, and the introduction of natural gas. A 30 EUR ton-1 shadow price on CO2 increases costs of coal generation by at least 330 million EUR. The results indicate that financing a new coal plant is the most expensive pathway to meet future electricity demand.

  15. IRP and the electricity industry of the future: Workshop results

    SciTech Connect

    Tonn, B.; Hirst, E.; Bauer, D.

    1994-09-01

    During the next several years, the U.S. electricity industry is likely to change dramatically. Instead of an industry dominated by vertically integrated companies that are regulated primarily by state public utility commissions, we may see an industry with many more participants and less regulation. These new participants may include independent power producers, entities that dispatch and control power plants on a real-time basis, entities that build and maintain transmission networks, entities that build and maintain distribution systems and also sell electricity and related to services to some retail customers, and a variety of other organizations that sell electricity and other services to retail customers. Because markets are intended to be the primary determinant of success, the role of state and federal regulators might be less than it has been in the past. During the past decade, utilities and state regulators have developed new ways to meet customer energy-service needs, called integrated resource planning (IRP). IRP provides substantial societal benefits through the consideration and acquisition of a broad array of resources, including renewables and demand-side management (DSM) programs as well as traditional power plants-, explicit consideration of the environmental effects of electricity production and transmission; public participation in utility planning; and attention to the uncertainties associated with different resources, future demands for electricity, and other factors. IRP might evolve in different ways as the electricity industry is restructured (Table S-I). To explore these issues, we ran a Workshop on IRP and the Electricity Industry of the Future in July 1994. This report presents the wisdom and experience of the 30 workshop participants. To focus discussions, we created three scenarios to represent a few of the many ways that the electricity industry might develop.

  16. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  17. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    SciTech Connect

    Castello, Charles C

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  18. Postglacial volcanic deposits at Glacier Peak, Washington, and potential hazards from future eruptions; a preliminary report

    USGS Publications Warehouse

    Beget, J.E.

    1982-01-01

    Eruptions and other geologic events at Glacier Peak volcano in northern Washington have repeatedly affected areas near the volcano as well as areas far downwind and downstream. This report describes the evidence of this activity preserved in deposits on the west and east flanks of the volcano. On the west side of Glacier Peak the oldest postglacial deposit is a large, clayey mudflow which traveled at least 35 km down the White Chuck River valley sometime after 14,000 years ago. Subsequent large explosive eruptions produced lahars and at least 10 pyroclastic-flow deposits, including a semiwelded vitric tuff in the White Chuck River valley. These deposits, known collectively as the White Chuck assemblage, form a valley fill which is locally preserved as far as 100 km downstream from the volcano in the Stillaguamish River valley. At least some of the assemblage is about 11,670-11,500 radiocarbon years old. A small clayey lahar, containing reworked blocks of the vitric tuff, subsequently traveled at least 15 km down the White Chuck River. This lahar is overlain by lake sediments containing charred wood which is about 5,500 years old. A 150-m-thick assemblage of pyroclastic-flow deposits and lahars, called the Kennedy Creek assemblage, is in part about 5,500-5,100 radiocarbon years old. Lithic lahars from this assemblage extend at least 100 km downstream in the Skagit River drainage. The younger lahar assemblages, each containing at least three lahars and reaching at least 18 km downstream from Glacier Peak in the White Chuck River valley, are about 2,800 and 1,800 years old, respectively. These are postdated by a lahar containing abundant oxyhornblende dacite, which extends at least 30 km to the Sauk River. A still younger lahar assemblage that contains at least five lahars, and that also extends at least 30 km to the Sauk River, is older than a mature forest growing on its surface. At least one lahar and a flood deposit form a low terrace at the confluence of the

  19. Spin and valley dependent line-type resonant peaks in electrically and magnetically modulated silicene quantum structures

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanshan; Guo, Yong

    2017-02-01

    A barrier with a tunable spin-valley dependent energy gap in silicene could be used as a spin and valley filter. Meanwhile, special resonant modes in unique quantum structure can act as energy filters. Hence we investigate valley and spin transport properties in the potential silicene quantum structures, i.e., single ferromagnetic barrier, single electromagnetic barrier and double electric barriers. Our quantum transport calculation indicates that quantum devices of high accuracy and efficiency (100% polarization), based on modulated silicene quantum structures, can be designed for valley, spin and energy filtering. These intriguing features are revealed by the spin, valley dependent line-type resonant peaks. In addition, line-type peaks in different structure depend on spin and valley diversely. The filter we proposed is controllable by electric gating.

  20. The costs, air quality, and human health effects of meeting peak electricity demand with installed backup generators.

    PubMed

    Gilmore, Elisabeth A; Lave, Lester B; Adams, Peter J

    2006-11-15

    Existing generators installed for backup during blackouts could be operated during periods of peak electricity demand, increasing grid reliability and supporting electricity delivery. Many generators, however, have non-negligible air emissions and may potentially damage air quality and harm human health. To evaluate using these generators, we compare the levelized private and social (health) costs of diesel internal combustion engines (ICE) with and without diesel particulate filters (DPF), natural gas ICEs, and microturbines to a new peaking plant in New York, NY. To estimate the social cost, first we calculate the upper range emissions for each generator option from producing 36,000 megawatt-hours (MWh) of electricity over 3 days. We then convert the emissions into ambient concentrations with a 3-D chemical transport model, PMCAMx, and Gaussian dispersion plumes. Using a Monte Carlo approach to incorporate the uncertainties, we calculate the health endpoints using concentration-response functions and multiply the response by its economic value. While uncontrolled diesel ICEs would harm air quality and health, a generator with a DPF has a social cost, comparable to natural gas options. We conclude on a full cost basis that backup generators, including controlled diesel ICEs, are a cost-effective method of meeting peak demand.

  1. Evaluation of Potential Wetlands to Reduce Peak Flows in Future Climate Scenarios in the Eagle Creek Watershed, IN

    NASA Astrophysics Data System (ADS)

    Walters, K. M.; Babbar-Sebens, M.

    2014-12-01

    Global climate change is expected to increase the severity of floods and droughts and the frequency of extreme streamflow events in the Midwestern United States. Managing these projected impacts poses a major challenge for water resources, conservation, and land use management. Wetlands have been considered as a conservation strategy and work to increase the capacity of watersheds by storing runoff upstream. The implementation of wetlands, especially in tile-drained agricultural watersheds, can reduce peak flows and help mitigate the anticipated impacts of climate change. The goal of this study was to evaluate the long-term performance of wetlands to reduce peak flows in future climate scenarios in the Eagle Creek Watershed in Indiana. A secondary goal of this research was to establish a methodology for incorporating climate change into hydrological models to conduct long-term land management studies and decisions. The Soil and Water Assessment Tool (SWAT) model was forced with an ensemble of bias corrected climate projections from the North American Regional Climate Change Assessment Program (NARCCAP) to evaluate the impacts of climate change on watershed hydrology and the ability of wetlands to reduce peak flows. Long-term monthly streamflow results predicted a slight increase in streamflow in the winter and a slight decrease in the summer from the past (1971-2000) to future (2041-2070) time periods. About half of the climate realizations produced an increase in the 5% exceedance flow and half a decrease, but all predictions agreed that high flow events will increase in frequency in the winter and decrease in the spring and summer. Results from the wetland analysis showed that if all potential wetlands identified in a previous study are installed in the watershed, maximum peak flow reductions of around 20-50 cubic meters per second for the past and future, as well as decreased frequency of extreme events, can be seen. Wetlands proved to be a robust solution for

  2. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  3. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  4. Assessing Vulnerability of Electricity Generation Under Potential Future Droughts

    NASA Astrophysics Data System (ADS)

    Yan, E.; Tidwell, V. C.; Wigmosta, M. S.

    2014-12-01

    In the past few decades, the western US experienced increased sever, frequent, and prolonged droughts resulting in significant water availability issues, which raised questions as to how electricity sector might be vulnerable to future droughts. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential droughts on power generation at a local level of the USGS 8-digit watersheds and individual power plants within the context of current and future characteristics of power system and water resource system.The study identified three potential drought scenarios based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Pacific Northwest River Basin and California River Basin. The hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and all major reservoirs that are currently supporting water withdrawal for various sectors and hydroelectric power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds and reservoirs are used as input to power-plant specific models to quantify potential risk of curtailment at each power plant. The key findings from this study will help to improve understanding of spatial distribution of vulnerable power plants and watersheds as well as the scale of potential reduction of electricity generation under various drought scenarios. Beyond impacts to the existing

  5. All Electric Combat Vehicles (AECV) for Future Applications

    DTIC Science & Technology

    2004-07-01

    NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION AC/323(AVT-047)TP/61 www.rta.nato.int RTO TECHNICAL REPORT TR...RTO TECHNICAL REPORT TR-AVT-047 All Electric Combat Vehicles (AECV) for Future Applications (Les véhicules de combat tout électrique (AECV...Diagnostics 1-4 1.3 Technical Challenges 1-4 1.3.1 Power Electronics 1-4 1.3.2 Energy Storage 1-5 1.3.3 Traction Motors 1-5 1.4 Development

  6. Electric power industry in Korea: Past, present, and future

    SciTech Connect

    Lee, Hoesung

    1994-12-31

    Electrical power is an indispensable tool in the industrialization of a developing country. An efficient, reliable source of electricity is a key factor in the establishment of a wide range of industries, and the supply of energy must keep pace with the increasing demand which economic growth creates in order for that growth to be sustained. As one of the most successful of all developing countries, Korea has registered impressive economic growth over the last decade, and it could be said that the rapid growth of the Korean economy would not have been possible without corresponding growth in the supply of electric power. Power producers in Korea, and elsewhere in Asia, are to be commended for successfully meeting the challenge of providing the necessary power to spur what some call an economic miracle. The future continues to hold great potential for participants in the electrical power industry, but a number of important challenges must be met in order for that potential to be fully realized. Demand for electricity continues to grow at a staggering rate, while concerns over the environmental impact of power generating facilities must not be ignored. As it becomes increasingly difficult to finance the rapid, and increasingly larger-scale expansion of the power industry through internal sources, the government must find resources to meet the growing demand at least cost. This will lead to important opportunities for the private sector. It is important, therefore, for those interested in participating in the power production industry and taking advantage of the newly emerging opportunities that lie in the Korean market, and elsewhere in Asia, to discuss the relevant issues and become informed of the specific conditions of each market.

  7. Impacts of Potential Future Droughts on Electricity Generation

    NASA Astrophysics Data System (ADS)

    Yan, E.; Wigmosta, M. S.; Tidwell, V. C.; King, C. W.

    2013-12-01

    In 2011, the state of Texas experienced the worst single-year drought on record. This recent extreme climate event raised questions as to how future droughts might impact ERCOT operations. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential future droughts on power generation at a local level of the USGS 8-digit watersheds and power plants within the context of long-term transmission planning. The study identified three potential drought scenarios (single- and multiple-year droughts) based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Texas-Gulf river basin. The Texas-Gulf hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and 125 reservoirs that are currently supporting water withdrawal for various sectors and cooling water for power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds (such as evapotranspiration, soil water, water yield from watersheds, stream flow, and water storage in reservoirs) provide a bases to assess if power plants potentially at risk of being of derated and watersheds are vulnerable to droughts. The key findings from this study will help to improve understanding of spatial distribution of power plants at risk and vulnerable watersheds as well as the scale of potential reduction of electricity generation. Beyond impacts to the existing

  8. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    Customer-sited photovoltaic (PV) systems in the United States are often compensated at the customer’s underlying retail electricity rate through net metering. Calculations of the customer economics of PV, meanwhile, often assume that retail rate structures and PV compensation mechanisms will not change and that retail electricity prices will increase (or remain constant) over time, thereby also increasing (or keeping constant) the value of bill savings from PV. Given the multitude of potential changes to retail rates and PV compensation mechanisms in the future, however, understanding how such changes might impact the value of bill savings from PV is critical for policymakers, regulators, utilities, the solar industry, and potential PV owners, i.e., any stakeholder interested in understanding uncertainties in and potential changes to the long-term customer economics of PV. This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV.

  9. Performance requirements of automotive batteries for future car electrical systems

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Richter, G.

    The further increase in the number of power-consuming functions which has been announced for future vehicle electrical systems, and in particular the effects of new starting systems on battery performance, requires a further optimization of the lead acid system coupled with effective energy management, and enhanced battery operating conditions. In the face of these increased requirements, there are proven benefits to splitting the functions of a single SLI battery between two separate, special-purpose batteries, each of which are optimized, for high power output and for high energy throughput, respectively. This will bring about a marked improvement in weight, reliability, and state of charge (SOC). The development of special design starter and service batteries is almost completed and will lead to new products with a high standard of reliability. The design of the power-optimized lead acid accumulator is particularly suitable for further development as the battery for a 42/36 V electrical system. This is intended to improve the efficiency of the generator and the various power-consuming functions and to improve start/stop operation thereby bringing about a marked reduction in the fuel consumption of passenger cars. This improvement can also be assisted by a charge management system used in conjunction with battery status monitoring.

  10. The future market in electricity in the Czech Republic

    SciTech Connect

    Vacik, J.

    1998-07-01

    The Czech Republic has signed the Association Agreement with the European Union in early nineties and it has been the Republic's goal to accede to full membership in the European Union. In the power sector, the Directive 96/92/EC is, in this respect, the most important document. The Czech Energy Law was become effective from 1995 in a compromise form which proved to stay well short of perfection. Unfortunately, a number of articles and provisions fail to be consistent with the relevant EU documents, and even far less so with Directive 96/92/EC. The draft Energy Policy of the Czech Republic as presented officially in May 1997, has already definitely stressed some basic features of the future market in electricity. Regrettably, also in the draft Energy Policy some pressing long-term problems fail to be recognized or addressed and also areas failing to conform with the European power industry laws can be found in it. For the Czech Republic, it will be useful to utilize the experience of mainly the smaller EU countries and to proceed in pursuance of the findings of a thorough analysis and in a stepwise manner. In the first phase, it will be enough to make those moves which are common for all the conceivable solutions. Directive 96/92/EC does not prescribe a change in the structure of the existing electric power sector and far less any change in the ownership relation. In the same token, Directive 96/92/EC does not charge the member states with any duty to launch a wholesale market in electricity (pool of exchange). That is reserved under the discretion of the member states. Nowhere throughout the Directive is encountered any requirement to reduce the market strength of the dominant entities, if such exist.

  11. Using backup generators for meeting peak electricity demand: a sensitivity analysis on emission controls, location, and health endpoints.

    PubMed

    Gilmore, Elisabeth A; Adams, Peter J; Lave, Lester B

    2010-05-01

    Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls.

  12. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Mars Missions

    NASA Astrophysics Data System (ADS)

    Koppel, Christophe R.; Valentian, Dominique; Latham, Paul; Fearn, David; Bruno, Claudio; Nicolini, David; Roux, Jean-Pierre; Paganucci, F.; Saverdi, Massimo

    2004-02-01

    Recent US and European initiatives in Nuclear Propulsion lend themselves naturally to raising the question of comparing various options and particularly Nuclear Electric Propulsion (NEP) with Solar Electric Propulsion (SEP). SEP is in fact mentioned in one of the latest versions of the NASA Mars Manned Mission as a possible candidate. The purpose of this paper is to compare NEP, for instance, using high power MPD, Ion or Plasma thrusters, with SEP systems. The same payload is assumed in both cases. The task remains to find the final mass ratios and cost estimates and to determine the particular features of each technology. Each technology has its own virtues and vices: NEP implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes compatible with Ariane 5 or the Space Shuttle bay. Issues of safety and launch risks are especially important to public opinion, which is a factor to be reckoned with. Power conversion in space, including thermal cycle efficiency and radiators, is a technical issue in need of attention if power is large, i.e., of order 0.1 MW and above, and so is power conditioning and other ancillary systems. Type of mission, Isp and thrust will ultimately determine a large fraction of the mass to be orbited, as they drive propellant mass. For manned missions, the trade-off also involves consumables and travel time because of exposure to Solar wind and cosmic radiation. Future manned NEP missions will probably need superconducting coils, entailing cryostat technology. The on-board presence of cryogenic propellant (e.g., LH2) may reassure the feasibility of this technology, implying, however, a trade-off between propellant volume to be orbited and reduced thruster mass. SEP is attractive right now in the mind of the public, but also of scientists involved in Solar system exploration. Some of the appeal derives from the hope of reducing propellant mass because

  13. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  14. The all-electric aircraft - In your future?

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1984-01-01

    Recent developments in all-electric aircraft technology are reviewed with particular attention given to models with a digital fly-by-wire quadraplex control systems and experimental mechanical actuators. It is shown that all-electric technologies can eliminate many traditional design constraints and open up enormous range of design possibilities.

  15. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  16. Electricity

    SciTech Connect

    Sims, B.

    1983-01-01

    Historical aspects of electricity are reviewed with individual articles on hydroelectric dams, coal-burning power plants, nuclear power plants, electricity distribution, and the energy future. A glossary is included. (PSB)

  17. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States.

    PubMed

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H

    2017-02-21

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today's technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.

  18. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States

    PubMed Central

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H.

    2017-01-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today’s technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual. PMID:28167756

  19. Power Module Cooling for Future Electric Vehicle Applications: A Coolant Comparison of Oil and PGW

    DTIC Science & Technology

    2006-11-01

    POWER MODULE COOLING FOR FUTURE ELECTRIC VEHICLE APPLICATIONS: A COOLANT COMPARISON OF OIL AND PGW T. E. Salem U. S. Naval Academy 105...and efficient power converters are being developed to support the needs of future ground vehicle systems. This progress is being driven by...2006 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Power Module Cooling For Future Electric Vehicle Applications: A Coolant

  20. Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The image was taken by the Imager for Mars Pathfinder (IMP) after its deployment on Sol 3. Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Electric-Field-Induced Amplitude Tuning of Ferromagnetic Resonance Peak in Nano-granular Film FeCoB-SiO2/PMN-PT Composites

    NASA Astrophysics Data System (ADS)

    Luo, Mei; Zhou, Peiheng; Liu, Yunfeng; Wang, Xin; Xie, Jianliang

    2016-11-01

    One of the challenges in the design of microwave absorbers lies in tunable amplitude of dynamic permeability. In this work, we demonstrate that electric-field-induced magnetoelastic anisotropy in nano-granular film FeCoB-SiO2/PMN-PT (011) composites can be used to tune the amplitude of ferromagnetic resonance peak at room temperature. The FeCoB magnetic particles are separated from each other by SiO2 insulating matrix and present slightly different in-plane anisotropy fields. As a result, multi-resonances appear in the imaginary permeability ( μ″) curve and mixed together to form a broadband absorption peak. The amplitude of the resonance peak could be modulated by external electric field from 118 to 266.

  2. Electric-Field-Induced Amplitude Tuning of Ferromagnetic Resonance Peak in Nano-granular Film FeCoB-SiO2/PMN-PT Composites.

    PubMed

    Luo, Mei; Zhou, Peiheng; Liu, Yunfeng; Wang, Xin; Xie, Jianliang

    2016-12-01

    One of the challenges in the design of microwave absorbers lies in tunable amplitude of dynamic permeability. In this work, we demonstrate that electric-field-induced magnetoelastic anisotropy in nano-granular film FeCoB-SiO2/PMN-PT (011) composites can be used to tune the amplitude of ferromagnetic resonance peak at room temperature. The FeCoB magnetic particles are separated from each other by SiO2 insulating matrix and present slightly different in-plane anisotropy fields. As a result, multi-resonances appear in the imaginary permeability (μ″) curve and mixed together to form a broadband absorption peak. The amplitude of the resonance peak could be modulated by external electric field from 118 to 266.

  3. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  4. Application of solar electric propulsion to future planetary missions

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1987-01-01

    Application of solar electric propulsion (SEP) to several near term planetary missions has been investigated and is described in this paper. The missions under consideration include a comet rendezvous-asteroid flyby mission (CRAF), an orbiter mission to Saturn (CASSINI) and a comet nucleus sample return mission (CNSR). Advances in both thruster and solar array technology indicate that these missions could benefit by use of a moderate size solar electric propulsion system. The trajectory scenarios considered in this paper include a solar electric earth gravity assist (SEEGA) mode for all three missions and a SEP rendezvous mode for both the CRAF and CNSR missions. In addition an all SEP propulsion mode and a hybrid SEP-chemical propulsion mode is described for the CNSR mission.

  5. Recent Progress and Future Challenges in MR Electric Properties Tomography

    PubMed Central

    Katscher, Ulrich; Kim, Dong-Hyun

    2013-01-01

    MR Electric Properties Tomography (EPT) is a lately developed medical imaging modality capable of visualizing both conductivity and permittivity of the patient at the Larmor frequency using B1 maps. The paper discusses the development of EPT reconstructions, EPT sequences, EPT experiments, and challenging issues of EPT. PMID:23573170

  6. Solar thermal electricity in 1998: An IEA/SolarPACES summary of status and future prospects

    SciTech Connect

    Tyner, C.E.; Kolb, G.J.; Meinecke, W.; Trieb, F.

    1998-07-01

    Research and development activities sponsored by countries within the International Energy Agency`s solar thermal working group. SolarPACES, have helped reduce the cost of solar thermal systems to one-fifth that of the early pilot plants. Continued technological improvements are currently being proven in next-generation demonstration plants. These advances, along with cost reductions made possible by scale-up to larger production and construction of a succession of power plants, have made solar thermal systems the lowest-cost solar energy in the world and promise cost-competitiveness with fossil-fuel plants in the future. Solar thermal technologies are appropriate for a wide range of applications, including dispatchable central-station power plants where they can meet peak-load to near-base-load needs of a utility, and distributed, modular power plants for both remote and grid-connected applications. In this paper, the authors present the collective position of the SolarPACES community on solar electricity-generating technology. They discuss the current status of the technology and likely near-term improvements; the needs of target markets; and important technical and financial issues that must be resolved for success in near-term global markets.

  7. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  8. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  9. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  10. Oriented electric fields as future smart reagents in chemistry.

    PubMed

    Shaik, Sason; Mandal, Debasish; Ramanan, Rajeev

    2016-11-22

    Oriented external electric fields (OEEFs) as 'smart reagents' are no longer a theoretical dream. Here, we discuss the wide-ranging potential of using OEEFs to catalyse and control a variety of non-redox reactions and impart selectivity at will. An OEEF along the direction of electron reorganization (the so-called reaction axis) will catalyse nonpolar reactions by orders of magnitude, control regioselectivity and induce spin-state selectivity. Simply flipping the direction of the OEEF or orienting it off of the reaction axis, will control at will the endo/exo ratio in Diels-Alder reactions and steps in enzymatic cycles. This Perspective highlights these outcomes using theoretical results for hydrogen abstraction reactions, epoxidation of double bonds, C-C bond forming reactions, proton transfers and the cycle of the enzyme cytochrome P450, as well as recent experimental data. We postulate that, as experimental techniques mature, chemical syntheses may become an exercise in zapping oriented molecules with OEEFs.

  11. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    SciTech Connect

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  12. Current State and Future Prospect of Applications of Elliptic Function to Electric Power Field

    NASA Astrophysics Data System (ADS)

    Kinoshita, Haruka; Watanabe, Kazuo

    The paper deals with the current state and future prospect of applications of elliptic function to the electric power and energy field. In particular, practical use of conformal mapping technology by elliptic function are introduced for electric power cables. Returning to Riemann's basic principle “thinking instead of calculation”, against the main current of numerical calculation, we have a new understanding of elliptic function analysis for the usefulness and the beautiful with simplicity and elegance.

  13. Mobile Electric Power Technologies for the Army of the Future: Engines, Power Source, and Electrical Aspects

    DTIC Science & Technology

    1988-01-01

    cobalt SOFC Solid oxide fuel cell SPE Sulfonic-acid polymer SPL Sound pressure level SR Switched reluctance SSDED Signature-suppressed Diesel Engine...of the committee’s analysis , including the committee’s major conclusions and recommendations. MOBILE ELECTRIC POWER IN THE ARMY The Army currently...operating on a Brayton, Rankine, or Stirling cycle. Based on considerations of cost, safety, and weight, the committee concluded that, below 1 MW , there is

  14. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.

    PubMed

    Shen, Wei; Han, Weijian; Wallington, Timothy J

    2014-06-17

    China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.

  15. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats’ Health Status by On-Line Sensors

    PubMed Central

    Zaninelli, Mauro; Agazzi, Alessandro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Savoini, Giovanni

    2015-01-01

    The aim of this study is a further characterization of the electrical conductivity (EC) signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0–60 Days In Milking (DIM); 61–120 DIM; 121–180 DIM), for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define the health status of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland’s health status. Results also explained how the milk EC signals’ pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks) and by an irregular trend (due to the higher amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors. PMID:26307993

  16. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats' Health Status by On-Line Sensors.

    PubMed

    Zaninelli, Mauro; Agazzi, Alessandro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Savoini, Giovanni

    2015-08-21

    The aim of this study is a further characterization of the electrical conductivity (EC) signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0-60 Days In Milking (DIM); 61-120 DIM; 121-180 DIM), for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define the health status of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland's health status. Results also explained how the milk EC signals' pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks) and by an irregular trend (due to the higher amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors.

  17. Historical Review of Electric Household Appliances using Induction-Heating and Future Challenging Trends

    NASA Astrophysics Data System (ADS)

    Hirota, Izuo; Yamashita, Hidekazu; Omori, Hideki; Nakaoka, Mutsuo

    This paper presents historical progress on technology evolution of the electric and electronic household appliances using the inverter, especially for Induction-Heating applications, which have been put in practical use as the desk-top cooker for the first time at home in 1974 until being applied to the rice cooker and the multi-burner cooking heater. It also describes the future innovative evolution of the power semiconductor switching devices and the inverter circuit topologies supporting its progressive developments. Looking back its progress, the future trends on consumer power electronics is discussed on the practical problem in the future.

  18. Integrated impacts of future electricity mix scenarios on select southeastern US water resources

    NASA Astrophysics Data System (ADS)

    Yates, D.; Meldrum, J.; Flores-Lopez, F.; Davis, Michelle

    2013-09-01

    Recent studies on the relationship between thermoelectric cooling and water resources have been made at coarse geographic resolution and do not adequately evaluate the localized water impacts on specific rivers and water bodies. We present the application of an integrated electricity generation-water resources planning model of the Apalachicola/Chattahoochee/Flint (ACF) and Alabama-Coosa-Tallapoosa (ACT) rivers based on the regional energy deployment system (ReEDS) and the water evaluation and planning (WEAP) system. A future scenario that includes a growing population and warmer, drier regional climate shows that benefits from a low-carbon, electricity fuel-mix could help maintain river temperatures below once-through coal-plants. These impacts are shown to be localized, as the cumulative impacts of different electric fuel-mix scenarios are muted in this relatively water-rich region, even in a warmer and drier future climate.

  19. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  20. Future cost-competitive electricity systems and their impact on US CO2 emissions

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander E.; Clack, Christopher T. M.; Alexander, Anneliese; Dunbar, Adam; Wilczak, James; Xie, Yuanfu

    2016-05-01

    Carbon dioxide emissions from electricity generation are a major cause of anthropogenic climate change. The deployment of wind and solar power reduces these emissions, but is subject to the variability of the weather. In the present study, we calculate the cost-optimized configuration of variable electrical power generators using weather data with high spatial (13-km) and temporal (60-min) resolution over the contiguous US. Our results show that when using future anticipated costs for wind and solar, carbon dioxide emissions from the US electricity sector can be reduced by up to 80% relative to 1990 levels, without an increase in the levelized cost of electricity. The reductions are possible with current technologies and without electrical storage. Wind and solar power increase their share of electricity production as the system grows to encompass large-scale weather patterns. This reduction in carbon emissions is achieved by moving away from a regionally divided electricity sector to a national system enabled by high-voltage direct-current transmission.

  1. Modeling future demand for energy resources: A study of residential electricity usage in Thailand

    NASA Astrophysics Data System (ADS)

    Nilagupta, Prapassara

    1999-12-01

    Thailand has a critical need for effective long-term energy planning because of the country's rapidly increasing energy consumption. In this study, the demand for electricity by the residential sector is modeled using a framework that provides detailed estimates of the timing and spatial distribution of changes in energy demand. A population model was developed based on the Cohort-Component method to provide estimates of population by age, sex and urban/non-urban residency in each province. A residential electricity end user model was developed to estimate future electricity usage in urban and non-urban households of the seventy-six provinces in Thailand during the period 1999--2019. Key variables in this model include population, the number of households, family household size, and characteristics of eleven types of electric household appliance such as usage intensity, input power, and saturation rate. The methodology employed in this study is a trending method which utilizes expert opinion to estimate future variables based on a percentage change from the most current value. This study shows that from 1994 to 2019 Thailand will experience an increase in population from 55.4 to 83.6 million. Large percentage population increases will take place in Bangkok, Nonthaburi, Samut Prakarn, Nakhon Pathom and Chonburi. At a national level, the residential electricity consumption will increase from approximately 19,000 to 8 1,000 GWh annually. Consumption in non-urban households will be larger than in urban households, with respective annual increases of 8.0% and 6.2% in 2019. The percent increase of the average annual electricity consumption will be four times the average annual percent population increase. Increased electricity demand is largely a function of increased population and increased demand for high-energy appliances such as air conditioners. In 1994, air conditioning was responsible for xx% of total residential electricity demand. This study estimates that in

  2. Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario

    NASA Astrophysics Data System (ADS)

    Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey

    2017-03-01

    Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.

  3. Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario

    SciTech Connect

    Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

    1980-08-01

    An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

  4. Can anything better come along? Reflections on the deep future of hydrogen-electricity systems

    SciTech Connect

    Scott, D. S.

    2006-07-01

    Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22. century rolls around - hydrogen and electricity will have become civilizations staple energy currencies. Building on this dual-currency inevitability we'll then evoke the wisdom that, while we never know everything about the future we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies - but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid setbacks and blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: 'No{exclamation_point} Nothing better will ever come along.'. (authors)

  5. Choosing an electrical energy future for the Pacific Northwest: an alternative scenario

    SciTech Connect

    Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

    1980-05-19

    A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

  6. Future Market Share of Space Solar Electric Power Under Open Competition

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Mahasenan, N.; Clarke, J. F.; Edmonds, J. A.

    2002-01-01

    This paper assesses the value of Space Solar Power deployed under market competition with a full suite of alternative energy technologies over the 21st century. Our approach is to analyze the future energy system under a number of different scenarios that span a wide range of possible future demographic, socio-economic, and technological developments. Scenarios both with, and without, carbon dioxide concentration stabilization policies are considered. We use the comprehensive set of scenarios created for the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (Nakicenovic and Swart 2000). The focus of our analysis will be the cost of electric generation. Cost is particularly important when considering electric generation since the type of generation is, from a practical point of view, largely irrelevant to the end-user. This means that different electricity generation technologies must compete on the basis of price. It is important to note, however, that even a technology that is more expensive than average can contribute to the overall generation mix due to geographical and economic heterogeneity (Clarke and Edmonds 1993). This type of competition is a central assumption of the modeling approach used here. Our analysis suggests that, under conditions of full competition of all available technologies, Space Solar Power at 7 cents per kW-hr could comprise 5-10% of global electric generation by the end of the century, with a global total generation of 10,000 TW-hr. The generation share of Space Solar Power is limited due to competition with lower-cost nuclear, biomass, and terrestrial solar PV and wind. The imposition of a carbon constraint does not significantly increase the total amount of power generated by Space Solar Power in cases where a full range of advanced electric generation technologies are also available. Potential constraints on the availability of these other electric generation options can increase the amount of

  7. Structural change in industry and futures for the electricity industry. Final report

    SciTech Connect

    Schwartz, P.; Harris, G.

    1995-06-01

    The electricity supply industry in the United States has been experiencing major technological changes and economics of the business have altered dramatically since the passage of the Public Utilities Regulatory Policies Act of 1978 (PURPA). This opening of power generation business to competition was under-pinned by significant increases in gas turbine efficiency, commercialization of smaller units with high efficiencies, low gas prices, and cost consciousness on the part of independent power producers (IPPs) and major industrial customers. The pace of change continues to accelerate, driven by ongoing technological innovations and customer demands for better, more customized services and lower costs. The purpose of this report is to provoke further thought on the likely course of structural change in the electric utility industry over the next twenty years. The prime focus of the report is on technological change and its impact on economics, and the resulting organizational and structural change. This report begins with a brief look at structural change in several capital-intensive industries to identify common patterns applicable to the electricity industry. The industries selected have network-like operations, similar to the electric utility industry. This is followed by two scenarios which illuminate different plausible futures for the electric power industry. The report concludes with insights on the potential course of regulations and suitable strategies to prosper during the transition phase.

  8. Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea

    NASA Astrophysics Data System (ADS)

    Shim, C.; Hong, J.

    2014-12-01

    Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.

  9. Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study

    SciTech Connect

    Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

    1997-07-01

    Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

  10. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  11. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    SciTech Connect

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessary to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.

  12. [Methods of brain stimulation based on weak electric current--future tool for the clinician?].

    PubMed

    Kotilainen, Tuukka; Lehto, Soili M

    2016-01-01

    Methods of brain stimulation based on a weak electric current are non-invasive neuromodulation techniques. They include transcranial direct current, alternating current and random noise stimulation. These methods modify the membrane potential of neurons without triggering the action potential, and have been successfully utilized to influence cognition and regulation of emotions in healthy experimental subjects. In clinical studies, indications of the efficacy of these techniques have been obtained in the treatment of depression, schizophrenia, memory disorders and pain as well as in stroke rehabilitation. It is hoped that these techniques will become established as part of the care and rehabilitation of psychiatric and neurologic patients in the future.

  13. Assessment of arid lands plants as future energy crops for the electric utility industry

    SciTech Connect

    Foster, K.E.; Brooks, W.H.

    1981-12-01

    This technical report has been prepared to assess and estimate the prospects of utilizing selected native arid lands plant species (terpene- and nonterpene-containing species) as future renewable energy resources, especially by US electric utilities, and to familiarize nonspecialists with some major problems that must be resolved before these energy sources can become dependable supplies. The assessment includes descriptions of the processing and production technologies associated with the various plant species as well as recommendations for research procedures and development programs specific to arid lands. Suggestions about the agronomic and economic parameters of growing these plants as energy-source crops are also included.

  14. Development of Electric Field Investigations for Future Missions in Japan: from Mercury, through Earth, toward Jupiter

    NASA Astrophysics Data System (ADS)

    Kasaba, Yasumasa

    The electric field from DC to several 10s MHz is important for the clarification of global plasma dynamics, energetic processes, and wave-particle interactions in the planetary Magnetospheres by in-situ and remote sensing studies. We have developped the instruments for several missions, i.e., (1) BepiColombo Mercury Mag-netospheric Orbiter (MMO) to Mercury [just in FM development], (2) the small-sized radiation belt mission, ERG (Energization and Radiation in Geospace) [in EM design], (3) the cross-scale formation flight mission, SCOPE [in ceonceptual design], and (4) the future Jovian mission, EJSM, including JAXA Jupiter Magnetospheric Orbiter (JMO) and other elementss [in con-ceptual design]. Those will prevail the universal plasma mechanism and processes in the space laboratory. The common purposes of electric field, plasma waves, and radio waves observa-tion in those missions are: (a) Examination of the theories of high-energy particle acceleration by plasma waves, (b) identification of the origin of electric fields in the magnetosphere asso-ciated with cross-scale coupling processes, (c) diagnosis of plasma density, temperature and composition, and (d) investigation of wave-particle interaction and mode conversion processes. In order to achieve those objectives, the instrument including rigid antenna, wire antenna, and integrated receiver systems are now in development. Some of them were already used on the sounding rocket experiments (S310-23 launched by ISAS/JAXA) in 2007, and will also be used soon. As the applications of those development, we also try to adopt them to the space interferometer and the radar sounder. In this paper, we will summarize the current plan and efforts for those future activities.

  15. Electrical transport and electromigration studies on nickel encapsulated carbon nanotubes: possible future interconnects.

    PubMed

    Kulshrestha, Neha; Misra, Abhishek; Misra, D S

    2013-05-10

    We nominate the nickel filled multiwalled carbon nanotubes (MWNTs) as potential candidates to cope with challenges in persistent scaling for future interconnect technology. The insights into electrical transport through nickel filled carbon nanotubes provide an effective solution for major performance and reliability issues such as the increasing resistivity of metals at reduced scales, electromigration at high current densities and the problem of diffusion and corrosion faced by the existing copper interconnect technology. Furthermore, the nickel filled MWNTs outperform their hollow counterparts, the unfilled MWNTs, carrying at least one order higher current density, with increased time to failure. The results suggest that metal filled carbon nanotubes can provide a twofold benefit: (1) the metal filling provides an increased density of states for the system leading to a higher current density compared to hollow MWNTs, (2) metal out-diffusion and corrosion is prevented by the surrounding graphitic walls.

  16. Strengthening future electricity grid of the Netherlands by integration of HTS transmission cables

    NASA Astrophysics Data System (ADS)

    Zuijderduin, Roy; Chevtchenko, Oleg; Smit, Johan; Aanhaanen, Gert; Ross, Rob

    2014-05-01

    The electricity grid of the Netherlands is changing. There is a call of society to use more underground cables, less overhead lines (OHL) and to reduce magnetic emissions. At the same time, parts of the future transmission grid need strengthening depending on the electricity demand in the coming decades [1]. Novel high temperature superconductor (HTS) AC transmission cables can play a role in strengthening the grid. The advantages as compared to alternatives, are: economic, underground, higher power capacity, lower losses, reduced magnetic field emissions in (existing) OHL, compact: less occupation of land and less permits needed, a possibility to keep 380 kV voltage level in the grid for as long as needed. The main obstacles are: the relatively high price of HTS tapes and insufficient maturity of the HTS cable technology. In the paper we focus on a 34 km long connection in the transmission grid (to be strengthened in three of the four of TenneT scenarios [1]), present the network study results, derive the requirements for corresponding HTS transmission cable system and compare HTS system to the alternatives (OHLs and XLPE cables).

  17. Electrical machines with bulk HTS elements.. The achieved results and future development

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Koneev, S. M.-A.; Modestov, K. A.; Larionoff, S. A.; Gawalek, W.; Oswald, B.

    2001-09-01

    Novel types of electric HTS motors with the rotor containing bulk YBCO and Bi-Ag elements are presented. Different schematics of hysteresis, reluctance “trapped field” and composed HTS motors are discussed. Two-dimensional mathematical models describing the processes in these types of HTS machines were developed on the basis of a theoretical analysis of the electrodynamic and hysteresis processes in multi-domain and single-domain HTS ceramic samples. The test results of these HTS motors with output power 1-37 kW and current frequencies 50 and 400 Hz are given. The results show that in liquid nitrogen the specific output power per one weight unit is 4-5 times better then for conventional electric machines. The design of a new high power HTS motor operating in the liquid nitrogen with output power 200 kW (and more) is discussed. Future applications of new types of HTS motors for airspace and on-land industry and transport systems are discussed.

  18. Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities

    NASA Technical Reports Server (NTRS)

    Gardner, Barbara M.; Kuharski, Robert A.; Davis, Victoria A.; Ferguson, Dale C.

    2007-01-01

    The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator

  19. I've Got the Music in Me: A Study of Peak Musical Memory Age and the Implications for Future Advertising

    ERIC Educational Resources Information Center

    Gerlich, R. Nicholas; Browning, Leigh; Westermann, Lori

    2010-01-01

    Neuropsychologists have demonstrated the effect music has on the human brain, and that a peak "musical memory age" occurs around 14, when normal bodily maturation is in progress. A group of 114 college students between the ages of 19 and 25 was exposed to short clips of the top 20 songs from each of the 11 years during their youth;…

  20. Electricity's future: the shift to efficiency and small-scale power

    SciTech Connect

    Flavin, C.

    1984-01-01

    Because most countries have rigid, centralized utility systems, small-scale power generation has barely caught on outside the US. In many countries a single state utility or a few large private utilities have exclusive rights to generate power, and these bureaucracies have concentrated on large power plants. But rapid advances under way in a wide range of small-scale generating technologies may soon encourage changes worldwide. Research programs are widespread, and international developments are closely followed. Improved energy efficiency and load management should also be considered as alternatives to building new power plants. In most regions of the world inefficient appliances can be replaced, houses weatherized, and industrial equipment upgraded for a fraction of the cost of building a new generating plant. Efficiency can be promoted many ways, but some of the best include utility-sponsored information and financing programs, with a return allowed on the investment, just as a new power plant would receive. Electricity prices can be adjusted to encourage less power use at peak periods, thus avoiding the need to build additional plants. Many utilities have recently adopted efficiency programs at the insistence of government regulators, but most are just token efforts. 101 references.

  1. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  2. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  3. Region-specific study of the electric utility industry: financial history and future power requirements for the VACAR region

    SciTech Connect

    Pochan, M.J.

    1985-07-01

    Financial data for the period 1966 to 1981 are presented for the four investor-owned electric utilities in the VACAR (Virginia-Carolinas) region. This region was selected as representative for the purpose of assessing the availability, reliability, and cost of electric power for the future in the United States. The estimated demand for power and planned additions to generating capacity for the region through the year 2000 are also given.

  4. Quantifying the Opportunity Space for Future Electricity Generation: An Application to Offshore Wind Energy in the United States

    SciTech Connect

    Marcy, Cara; Beiter, Philipp

    2016-09-01

    This report provides a high-level indicator of the future electricity demand for additional electric power generation that is not met by existing generation sources between 2015 and 2050. The indicator is applied to coastal regions, including the Great Lakes, to assess the regional opportunity space for offshore wind. An assessment of opportunity space can be a first step in determining the prospects and the system value of a technology. The metric provides the maximal amount of additional generation that is likely required to satisfy load in future years.

  5. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema

    Piette, Mary Ann

    2016-07-12

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  6. An electricity-focused economic input-output model: Life-cycle assessment and policy implications of future electricity generation scenarios

    NASA Astrophysics Data System (ADS)

    Marriott, Joe

    The electricity industry is extremely important to both our economy and our environment. We would like to be able to examine the economic, environmental and policy implications of both future electricity scenarios which include advanced generation technologies such as gasified coal, and of the products and processes which will use them, along with the interaction of this industry with the rest of the economy. This work builds upon an existing economic input-output framework, by adding detail about the electricity industry, specifically by differentiating among the various functions of the sector, and the different means of generating power. The mix of electricity consumed at any stage in the life-cycle of a product, process or industrial sector has a significant effect on the associated inventory of emissions. Fossil fuel or nuclear generators, large-scale hydroelectric, and renewable options such as geothermal, wind and solar each have a unique set of issues---both in the production of electricity at the plant and throughout the supply chain. Decision makers need better information regarding the environmental and economic impact of the electricity industry, including full supply chain details---the interaction of the electricity industry with the other 500 sectors of the economy. A systematic method for creating updated state level and sector generation mixes is developed. The results show that most sector mixes are very close to the U.S. average due to geographic dispersion of industries, but that some sectors are different, and they tend to be important raw material extraction or primary manufacturing industries. We then build a flexible framework for creating new sectors, supply chains and emission factors for the generation, transmission and distribution portions of the electricity industry. We look at scenarios of the present and future, for electricity and for particular products, and develop results which show environmental impacts split up by generation

  7. PEAK READING VOLTMETER

    DOEpatents

    Dyer, A.L.

    1958-07-29

    An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.

  8. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  9. Futurism.

    ERIC Educational Resources Information Center

    Foy, Jane Loring

    The objectives of this research report are to gain insight into the main problems of the future and to ascertain the attitudes that the general population has toward the treatment of these problems. In the first section of this report the future is explored socially, psychologically, and environmentally. The second section describes the techniques…

  10. Co-benefits and trade-offs between future electricity generation and water use on a global scale

    NASA Astrophysics Data System (ADS)

    Ando, N.; Yoshikawa, S.; Kanae, S.

    2015-12-01

    Water is essential to electricity generation. Power plant cooling water is responsible for 40-50% of total freshwater withdrawals in Europe (Rübbelke et al., 2011) and the United States (Kenny et al., 2009). In accordance with growing demands for electricity generation, water demands could be increased. There is concern that the water demands for electricity generation could compete with other major water users. Additionally, many countries are required reviewing energy policies to mitigate climate change. Thermal power replaced low carbon power like renewable energy, nuclear power, Carbon Capture and Storage as a mitigation technology. However, influences of such climate change mitigation technologies on water demands are still uncertain. In this study, we calculated freshwater demands for electricity generation by using the data set of future electricity generation in the twenty-first century which estimated by the Asia-Pacific Integrated Model, and assessed the overall effects of electricity generation on water demands under the Shared Socio-Economic Pathways and the Representative Concentration Pathways which were adopted by IPCC AR5. Water demands for electricity generation depends on cooling types, such as once-through cooling and recirculating cooling. We also took into account cooling system pathways. The result might be useful for deciding energy policies which aim for reduction of water demands, especially in regions experiencing water scarcity.

  11. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  12. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Splitting and Restoration of Kondo Peak in a Deformed Molecule Quantum Dot Coupled to Ferromagnetic Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Jiang, Kai-Ming

    2010-02-01

    We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak.

  13. Peak Oil, Peak Coal and Climate Change

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  14. Electric field assisted low-temperature growth of SiGe on insulating films for future TFT

    NASA Astrophysics Data System (ADS)

    Miyao, Masanobu; Kanno, Hiroshi; Sadoh, Taizoh

    2008-02-01

    Development of new semiconductors with high mobility is strongly needed to realize future system-in-displays. To achieve this, we have been investigating electric field assisted metal-induced lateral crystallization (MILC) of a-Si 1-XGe X (0electric field assisted low temperature SiGe growth and discusses the possible application to TFTs with high speed operation.

  15. Electricity's Future: The Shift to Efficiency and Small-Scale Power. Worldwatch Paper 61.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Electricity, which has largely supplanted oil as the most controversial energy issue of the 1980s, is at the center of some of the world's bitterest economic and environmental controversies. Soaring costs, high interest rates, and environmental damage caused by large power plants have wreaked havoc on the once booming electricity industry.…

  16. Super-sensing technology: industrial applications and future challenges of electrical tomography.

    PubMed

    Wei, Kent Hsin-Yu; Qiu, Chang-Hua; Primrose, Ken

    2016-06-28

    Electrical tomography is a relatively new imaging technique that can image the distribution of the passive electrical properties of an object. Since electrical tomography technology was proposed in the 1980s, the technique has evolved rapidly because of its low cost, easy scale-up and non-invasive features. The technique itself can be sensitive to all passive electrical properties, such as conductivity, permittivity and permeability. Hence, it has a huge potential to be applied in many applications. Owing to its ill-posed nature and low image resolution, electrical tomography attracts more attention in industrial fields than biomedical fields. In the past decades, there have been many research developments and industrial implementations of electrical tomography; nevertheless, the awareness of this technology in industrial sectors is still one of the biggest limitations for technology implementation. In this paper, the authors have summarized several representative applications that use electrical tomography. Some of the current tomography research activities will also be discussed. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  17. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    PubMed

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system.

  18. A view to the future of natural gas and electricity: An integrated modeling approach

    SciTech Connect

    Cole, Wesley J.; Medlock, Kenneth B.; Jani, Aditya

    2016-03-17

    This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results as when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan).

  19. A view to the future of natural gas and electricity: An integrated modeling approach

    DOE PAGES

    Cole, Wesley J.; Medlock, Kenneth B.; Jani, Aditya

    2016-03-17

    This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results asmore » when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan).« less

  20. Electric and hybrid vehicle site operators program: Thinking of the future

    NASA Astrophysics Data System (ADS)

    Kansas State University, with support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and two electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  1. Electric Discharge in the Martian Atmosphere, Paschen Curves and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L. K.; ten Kate, I. L.; Battel, S. J.; Mahaffy, P. R.

    2010-10-01

    Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen's law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. We present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10-2 to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410±10 volts at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied. H. Manning was funded in the framework of the Sample Analysis at Mars development; I. ten Kate was funded by the Goddard Center for Astrobiology.

  2. [Electric and hybrid vehicle site operators program]: Thinking of the future

    SciTech Connect

    Not Available

    1993-01-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  3. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    SciTech Connect

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    2015-11-01

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s cost and organizational structure.

  4. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    NASA Astrophysics Data System (ADS)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  5. The future of GPS-based electric power system measurements, operation and control

    SciTech Connect

    Rizy, D.T.; Wilson, R.E.; Martin, K.E.; Litzenberger, W.H.; Hauer, J.F.; Overholt, P.N.; Sobajic, D.J.

    1998-11-01

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  6. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  7. Future electricity: The challenge of reducing both carbon and water footprint.

    PubMed

    Mekonnen, Mesfin M; Gerbens-Leenes, P W; Hoekstra, Arjen Y

    2016-11-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the 'greenest' IEA scenario (with the smallest carbon footprint) shows the largest WF increase over time: an increase by a factor four over the period 2010-2035. In 2010, electricity from solar, wind, and geothermal contributed 1.8% to the total. The increase of this contribution to 19.6% in IEA's '450 scenario' contributes significantly to the decrease of the WF of the global electricity and heat sector, but is offset by the simultaneous increase of the use of firewood and hydropower. Only substantial growth in the fractions of energy sources with small WFs - solar, wind, and geothermal energy - can contribute to a lowering of the WF of the electricity and heat sector in the coming decades. The fifth energy scenario - adapted from the IEA 450 scenario but based on a quick transition to solar, wind and geothermal energy and a minimum in bio-energy - is the only scenario that shows a strong decline in both carbon footprint (-66%) and consumptive WF (-12%) in 2035 compared to the reference year 2010.

  8. Accounting for climate and air quality damages in future U.S. electricity generation scenarios.

    PubMed

    Brown, Kristen E; Henze, Daven K; Milford, Jana B

    2013-04-02

    The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants.

  9. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    SciTech Connect

    Eto, Joseph; Stovall, John P.

    2003-04-01

    The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

  10. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    SciTech Connect

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report`s purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science & Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  11. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    SciTech Connect

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  12. A preliminary estimate of future communications traffic for the electric power system

    NASA Technical Reports Server (NTRS)

    Barnett, R. M.

    1981-01-01

    Diverse new generator technologies using renewable energy, and to improve operational efficiency throughout the existing electric power systems are presented. A description of a model utility and the information transfer requirements imposed by incorporation of dispersed storage and generation technologies and implementation of more extensive energy management are estimated. An example of possible traffic for an assumed system, and an approach that can be applied to other systems, control configurations, or dispersed storage and generation penetrations is provided.

  13. Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Cory, Karlynn

    2015-08-10

    As utilities are faced with adapting to new technologies, technology and policy due diligence are necessary to ensure the development of a future grid that brings greater value to utilities and their consumers. This presentation explores the different kinds of future directions the power industry could consider to create, discussing key components necessary for success. It will also discuss the practical application and possible strategies for utilities and innovators to implement smart technologies that will enable an ultimate ‘intelligent’ grid capable of two-way communication, interoperability, and greater efficiency and system resiliency.

  14. How much do electric drive vehicles matter to future U.S. emissions?

    PubMed

    Babaee, Samaneh; Nagpure, Ajay S; DeCarolis, Joseph F

    2014-01-01

    Hybrid, plug-in hybrid, and battery electric vehicles--known collectively as electric drive vehicles (EDVs)--may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is 2-fold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through midcentury. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. data set developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend toward lower system-wide emissions as EDV deployment increases. In addition to the trade-off between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment.

  15. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Kyle, G Page; Morgan, M Granger; Patel, Pralit; Liu, Lu

    2016-11-15

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3-7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35-40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  16. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    PubMed

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  17. Consumptive Water Use from Electricity Generation in the Southwest under Alternative Climate, Technology, and Policy Futures

    SciTech Connect

    Talati, Shuchi; Zhai, Haibo; Kyle, G. Page; Morgan, M. Granger; Patel, Pralit; Liu, Lu

    2016-10-21

    This research assesses climate, technological, and policy impacts on consumptive water use from electricity generation in the Southwest over a planning horizon of nearly a century. We employed an integrated modeling framework taking into account feedbacks between climate change, air temperature and humidity, and consequent power plant water requirements. These direct impacts of climate change on water consumption by 2095 differ with technology improvements, cooling systems, and policy constraints, ranging from a 3–7% increase over scenarios that do not incorporate ambient air impacts. Upon additional factors being changed that alter electricity generation, water consumption increases by up to 8% over the reference scenario by 2095. With high penetration of wet recirculating cooling, consumptive water required for low-carbon electricity generation via fossil fuels will likely exacerbate regional water pressure as droughts become more common and population increases. Adaptation strategies to lower water use include the use of advanced cooling technologies and greater dependence on solar and wind. Water consumption may be reduced by 50% in 2095 from the reference, requiring an increase in dry cooling shares to 35–40%. Alternatively, the same reduction could be achieved through photovoltaic and wind power generation constituting 60% of the grid, consistent with an increase of over 250% in technology learning rates.

  18. Electric vehicles — are they a realistic option for the future?

    NASA Astrophysics Data System (ADS)

    Dunckley, M.

    In the 1970s, as a result of rising oil prices and supply shortages, the concept of an 'electric vehicle programme' saw increased attention from legislative bodies, the automotive industry and general public groups. At that time, numerous 'experts' foresaw oil and fossil fuels running out early in the twenty-first century. As a result, a number of key issues came to the fore under the broad heading 'energy conservation'. A major part of this initiative was the need for a rethink of the automotive vehicle — the electric vehicle was considered a solution. In the event, the oil crisis of the 1970s came and went and the pressing debate for energy conservation and new vehicles went back into a more considered perspective. What emerged in the early 1980s was a new way of looking at automobiles. Cars were to become generally smaller and more fuel efficient. To add to the development of the car of the 1980s came a further new issue — the environment itself. The car became known as the single largest contributant to pollution. Increasing numbers of vehicles came to be seen as literally choking to death the planet earth. The next step in the story of the evolution of the vehicle was to control exhaust-gas emissions. One city, Los Angeles, even went so far as to legislate that by 1998, 2% of all new vehicles in the State must be 'zero gas' emitting. More North American states were to follow, to a point that every major car manufacturer in the world took note and has now embarked on a programme to develop a 'zero-gas' emitting vehicle. Today, the concept of an electric vehicle is back in focus. Throughout the world, the media are highlighting the electric vehicle as the next generation of transportation. The cynics argue that they have heard it all before, others believe that this time it could actually happen. For the battery industry, the implications could be enormous, and would change the industry as it is known worldwide. This paper discusses the options and

  19. Imagining the Future of Electric Vehicles and the Batteries that will Drive them

    SciTech Connect

    Gur, Ilan; Danielson, David

    2011-03-18

    Battery breakthroughs are critical, but it is important to keep in mind that a widespread and robust transportation infrastructure based primarily on EV's will require advances not only in batteries, but in many other areas such as power electronics, next-gen vehicle designs, consumer behavior, new business models, and perhaps most of all, a smarter, cleaner, and more secure electricity grid. ARPA-E is supporting crucial research in several of these areas, and a variety of innovative new concepts, like Better Place's EV battery leasing model, are rapidly coming onto the scene in the United States and around the globe.

  20. Integrated DEA models and grey system theory to evaluate past-to-future performance: a case of Indian electricity industry.

    PubMed

    Wang, Chia-Nan; Nguyen, Nhu-Ty; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better "past-present-future" insights into performance evaluation in Indian electricity industry.

  1. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.

    2012-01-01

    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  2. Updates on gastric electrical stimulation to treat obesity: Systematic review and future perspectives

    PubMed Central

    Cha, Ryan; Marescaux, Jacques; Diana, Michele

    2014-01-01

    AIM: To evaluate the current state-of-the-art of gastric electrical stimulation to treat obesity. METHODS: Systematic reviews of all studies have been conducted to evaluate the effect of different types of gastric electrical stimulation (GES) on obesity. RESULTS: Thirty-one studies consisting of a total of 33 different trials were included in the systematic review for data analysis. Weight loss was achieved in most studies, especially during the first 12 mo, but only very few studies had a follow-up period longer than 1 year. Among those that had a longer follow-up period, many were from the Transcend® (Implantable Gastric Stimulation) device group and maintained significant weight loss. Other significant results included changes in appetite/satiety, gastric emptying rate, blood pressure and neurohormone levels or biochemical markers such as ghrelin or HbA1c respectively. CONCLUSION: GES holds great promises to be an effective obesity treatment. However, stronger evidence is required through more studies with a standardized way of carrying out trials and reporting outcomes, to determine the long-term effect of GES on obesity. PMID:25228944

  3. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    SciTech Connect

    Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa C.; Fadrhonc, Emily Martin

    2015-06-01

    Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approaches that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).

  4. PeakWorks

    SciTech Connect

    2016-11-30

    The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automated allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.

  5. Hubbert's Peak -- A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  6. Peak flow meter (image)

    MedlinePlus

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  7. Myths of electric regulation: Looking at the future of energy through entrepreneurial eyes

    SciTech Connect

    Casten, T.R.

    1999-11-01

    The US will shortly experience a building boom of new, efficient distributed power plants and a resultant drop in the cost of energy and the pollution associated with energy production. This is a predictable result of unleashing competition in the electric business. The speed of these advances will depend on how fast lawmakers modernize present regulations to eliminate barriers to efficiency. Deregulation has started and the industry is already on the slippery slope of competition, where no monopolist can continue to cling to the old and inefficient ways. It is possible to discern the direction of a competition-driven energy industry from the patterns in other recently deregulated industries. Winners will focus on extracting more value from all raw material and will offer sophisticated energy generation, energy distribution, and energy management to each industrial and commercial firm and each institution. Proven technology will be packaged in small, mass produced CHP plants placed at the sites of thermal users. Costs of CHP will fall due to emerging mass production and growing knowledge of installers and designers. The current electric transmission and distribution system will prove to have been tremendously overbuilt. Gas distribution pipes will enjoy increased use. Fossil fuel use will drop significantly. Finally, the unleashing of this competition will cause the US to drop its carbon dioxide emissions to well below the targets of the Kyoto protocol, while reducing the cost of energy to industry and all citizens. This may not reduce greenhouse gas emissions enough to mitigate climate change, but it is low-hanging fruit and will buy time for advances in renewable energy economics.

  8. 100 years of microbial electricity production: three concepts for the future

    PubMed Central

    Arends, Jan B. A.; Verstraete, Willy

    2012-01-01

    Summary Bioelectrochemical systems (BES) have been explored according to three main concepts: to produce energy from organic substrates, to generate products and to provide specific environmental services. In this work, by using an engineering approach, biological conversion rates are calculated for BES resp. anaerobic digestion. These rates are compared with currents produced by chemical batteries and chemical fuel cells in order to position BES in the ‘energy’‐market. To evaluate the potential of generating various products, the biochemistry behind the biological conversion rates is examined in relation to terminal electron transfer molecules. By comparing kinetics rather than thermodynamics, more insight is gained in the biological bottlenecks that hamper a BES. The short‐term future for BES research and its possible application is situated in smart niches in sustainable environmental development, i.e. in processes where no large currents or investment cost intensive reactors are needed to obtain the desired results. Some specific examples are identified. PMID:21958308

  9. Hysteresis and reluctance electric machines with bulk HTS elements. Recent results and future development

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; M-A Koneev, S.; Poltavets, V. N.; Larionoff, A. E.; Modestov, K. A.; Larionoff, S. A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.

    2000-05-01

    Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos ϕ≥0.7 to 0.8).

  10. Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study

    SciTech Connect

    Edwards, Richard E; New, Joshua Ryan; Parker, Lynne Edwards

    2012-01-01

    Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

  11. HTS electrical machines with YBCO bulk and Ag-BSCCO plate-shape HTS elements: recent results and future development

    NASA Astrophysics Data System (ADS)

    Kovalev, L. K.; Ilushin, K. V.; Penkin, V. T.; Kovalev, K. L.; Koneev, S. M.-A.; Modestov, K. A.; Larionoff, S. A.; Gawalek, W.; Oswald, B.

    2001-05-01

    Novel types of electric HTS motors with the rotor containing bulk YBCO elements are presented. Different schematics of hysteresis, reluctance “trapped field” and composed HTS motors are discussed. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the multi-domain and single-domain YBCO ceramic samples. The test results of the series of these HTS motors with output power 1-20 kW and current frequency 50 and 400 Hz are given. These results show that in the media of liquid nitrogen the specific output power per one weight unit is four to five times better then for conventional electric machines. The design of a new high power HTS motor operating in the liquid nitrogen with output power 200 kW (and more) is discussed. Future applications of new types of HTS motors for airspace and on-land industry and transport systems are discussed.

  12. Demands For Solar Electricity From The BRICS Countries In The Future

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2015-12-01

    BRICS countries are presently among the leading the economic powers globally, but their increasing demands for energy and sustainable future requires renewed technical progress on implementation of renewable energy (e.g., solar energy) and a sustainable solution rather than extracting finite natural resources. BRICS countries (Brazil, Russia, India, China and South Africa) face both social and environmental pressures as their economy keeps growing. The rapid development of technology in BRICS inevitably altered their culture and behavior, as reflected by education, gender equality, health, and other demographic/socio-economic indicators. These changes coupled with land use/land cover change have altered ecosystem services, as reflected by NEE (Net Ecosystem Exchange of CO2) and NDVI (Normalized Difference Vegetation Index). Global climatic changes also drives the demand for sustainable energy. With a focus on solar energy, we analyzed time series of energy consuming behaviors, government policies, and the ecosystem services. Structural equation modeling was applied to confirm the relationships among societal transition, ecosystem services, and climate change. We compared the energy consumption patterns for the five countries and forecasted the changes through 2025. We found that government policies significantly influenced energy consumption behaviors for BRICS and that solar energy usage would continue to increase to 2025 and beyond.

  13. Are Bragg Peaks Gaussian?

    PubMed Central

    Hammouda, Boualem

    2014-01-01

    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025

  14. Electrocapillary instability of magnetic fluid peak.

    PubMed

    Mkrtchyan, Levon; Zakinyan, Arthur; Dikansky, Yuri

    2013-07-23

    This Article presents an experimental study of the capillary electrostatic instability occurring under the effect of a constant electric field on a magnetic fluid individual peak. The peaks under study occur at disintegration of a magnetic fluid layer applied on a flat electrode surface under the effect of a perpendicular magnetic field. The electrocapillary instability shows itself as an emission of charged drops jets from the peak point in direction of the opposing electrode. The charged drops emission repeats periodically and results in the peak shape pulsations. It is shown that a magnetic field affects the electrocapillary instability occurrence regularities and can stimulate its development. The critical electric and magnetic field strengths at which the instability occurs have been measured; their dependence on the peak size is shown. The hysteresis in the system has been studied; it consists in that the charged drops emission stops at a lesser electric (or magnetic) field strength than that of the initial occurrence. The peak pulsations frequency depending on the magnetic and electric field strengths and on the peak size has been measured.

  15. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  16. How uncertain is the future of electric vehicle market: Results from Monte Carlo simulations using a nested logit model

    SciTech Connect

    Liu, Changzheng; Lin, Zhenhong

    2016-12-08

    Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market share variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.

  17. How uncertain is the future of electric vehicle market: Results from Monte Carlo simulations using a nested logit model

    DOE PAGES

    Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong; ...

    2016-12-08

    Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less

  18. METHOD OF PEAK CURRENT MEASUREMENT

    DOEpatents

    Baker, G.E.

    1959-01-20

    The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.

  19. Peak Experience Project

    ERIC Educational Resources Information Center

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  20. Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed.

    PubMed

    Yu, Haofei; Stuart, Amy L

    2017-01-15

    'Smart' growth and electric vehicles are potential solutions to the negative impacts of worldwide urbanization on air pollution and health. However, the effects of planning strategies on distinct types of pollutants, and on human exposures, remain understudied. The goal of this work was to investigate the potential impacts of alternative urban designs for the area around Tampa, Florida USA, on emissions, ambient concentrations, and exposures to oxides of nitrogen (NOx), 1,3-butadiene, and benzene. We studied three potential future scenarios: sprawling growth, compact growth, and 100% vehicle fleet electrification with compact growth. We projected emissions in the seven-county region to 2050 based on One Bay regional visioning plan data. We estimated pollutant concentrations in the county that contains Tampa using the CALPUFF dispersion model. We applied residential population projections to forecast acute (highest hour) and chronic (annual average) exposure. The compact scenario was projected to result in lower regional emissions of all pollutants than sprawl, with differences of -18%, -3%, and -14% for NOx, butadiene, and benzene, respectively. Within Hillsborough County, the compact form also had lower emissions, concentrations, and exposures than sprawl for NOx (-16%/-5% for acute/chronic exposures, respectively), but higher exposures for butadiene (+41%/+30%) and benzene (+21%/+9%). The addition of complete vehicle fleet electrification to the compact scenario mitigated these in-county increases for the latter pollutants, lowering predicted exposures to butadiene (-25%/-39%) and benzene (-5%/-19%), but also resulted in higher exposures to NOx (+81%/+30%) due to increased demand on power plants. These results suggest that compact forms may have mixed impacts on exposures and health. 'Smart' urban designs should consider multiple pollutants and the diverse mix of pollutant sources. Cleaner power generation will also likely be needed to support aggressive adoption

  1. Significance of periodogram peaks

    NASA Astrophysics Data System (ADS)

    Süveges, Maria; Guy, Leanne; Zucker, Shay

    2016-10-01

    Three versions of significance measures or False Alarm Probabilities (FAPs) for periodogram peaks are presented and compared for sinusoidal and box-like signals, with specific application on large-scale surveys in mind.

  2. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  3. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  4. Pikes Peak, Colorado

    USGS Publications Warehouse

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  5. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  6. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training☆

    PubMed Central

    Krause, Beatrix; Cohen Kadosh, Roi

    2013-01-01

    Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings. PMID:23770059

  7. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training.

    PubMed

    Krause, Beatrix; Cohen Kadosh, Roi

    2013-10-01

    Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings.

  8. The solar electric future

    NASA Astrophysics Data System (ADS)

    Barnett, A. M.

    1984-07-01

    Developments in markets and technologies for solar cells in the near-term are discussed. The initial market will be remote site battery charging of telecommunications, villages and residence, and marine and space operations batteries. The price will be $7-30 U.S./W. The next step is as a replacement for petroleum-product fueled generators, about 2.6 GW/yr at a cost of $4-7/W. Eventually, the baseload market will be broached, with its potential of 70 GW/yr at $2-3/W. Amorphous Si will replace single crystal Si and in turn be replaced by thin film multijunction devices. Large-scale installations will initially be financed as entrepreneurial ventures.

  9. Correlation-Peak Imaging

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  10. Hale Central Peak

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the mountains that make up the central peak region of Hale Crater, located near 35.8oS, 36.5oW. Dark, smooth-surfaced sand dunes are seen to be climbing up the mountainous slopes. The central peak of a crater consists of rock brought up during the impact from below the crater floor. This autumn image is illuminated from the upper left and covers an area approximately 3 km (1.9 mi) across.

  11. Make peak flow a habit!

    MedlinePlus

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  12. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  13. Conversations about electricity and the future: Findings of an international seminar and lessons from a year of surprises

    SciTech Connect

    Rossin, A.D.; Fowler, K.

    1991-06-01

    In January 1990 thirty-two experts from twelve countries convened for a five-day working Seminar on the Berkeley Campus of the University of California to discuss electricity supply and demand. The participants brought with them deep and diverse backgrounds in energy issues. A major concern of the First 1990 Group on Electricity was the potential impact of electricity shortages on the environment, just at a time of growing awareness of environmental deterioration. These concerns extend from local problems to nations, regions and global impacts. Indeed, because of the importance of electricity in our lives, potential electric power shortages already foreseeable in this decade could overwhelm public concern for the environment, unless critical, long-leadtime measures are taken very soon. The First 1990 Group on Electricity's Findings and Conclusions, the thinking that led to them, and the impact of events in the intervening year form the content of this book.

  14. INDIAN PEAKS WILDERNESS, COLORADO.

    USGS Publications Warehouse

    Pearson, Robert C.; Speltz, Charles N.

    1984-01-01

    The Indian Peaks Wilderness northwest of Denver is partly within the Colorado Mineral Belt, and the southeast part of it contains all the geologic characteristics associated with the several nearby mining districts. Two deposits have demonstrated mineral resources, one of copper and the other of uranium; both are surrounded by areas with probable potential. Two other areas have probable resource potential for copper, gold, and possibly molydenum. Detailed gravity and magnetic studies in the southeast part of the Indian Peaks Wilderness might detect in the subsurface igneous bodies that may be mineralized. Physical exploration such as drilling would be necessary to determine more precisely the copper resources at the Roaring Fork locality and uranium resources at Wheeler Basin.

  15. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  16. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.; Doulgeris, Georgios; Singh, Riti

    2011-07-01

    This paper highlights the role of distributed propulsion technology for future commercial aircraft. After an initial historical perspective on the conceptual aspects of distributed propulsion technology and a glimpse at numerous aircraft that have taken distributed propulsion technology to flight, the focal point of the review is shifted towards a potential role this technology may entail for future commercial aircraft. Technological limitations and challenges of this specific technology are also considered in combination with an all electric aircraft concept, as means of predicting the challenges associated with the design process of a next generation commercial aircraft.

  17. Peak-Finding Algorithms.

    PubMed

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Microarray and next-generation sequencing technologies have greatly expedited the discovery of genomic DNA that can be enriched using various biochemical methods. Chromatin immunoprecipitation (ChIP) is a general method for enriching chromatin fragments that are specifically recognized by an antibody. The resulting DNA fragments can be assayed by microarray (ChIP-chip) or sequencing (ChIP-seq). This introduction focuses on ChIP-seq data analysis. The first step of analyzing ChIP-seq data is identifying regions in the genome that are enriched in a ChIP sample; these regions are called peaks.

  18. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  19. LNG production for peak shaving operations

    SciTech Connect

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  20. The impact of future carbon dioxide emission reduction targets on U.S. electric sector water use

    NASA Astrophysics Data System (ADS)

    Cameron, Colin MacKay

    The U.S. electric sector's reliance on water makes it vulnerable to the impacts of climate change on water resources. Here we analyze how constraints on U.S. energy system carbon dioxide (CO2) emissions could affect water withdrawal and consumption in the U.S. electric sector through 2055. We use simulations of the EPA's U.S. 9-region (EPAUS9r) MARKAL least-cost optimization energy systems model with updated water use factors for electricity generating technologies. Model results suggest CO2 constraints could force the retirement of old power plants and drive increased use of low water-use renewable and nuclear power as well as natural gas CCS plants with more advanced cooling systems. These changes in electric sector technology mix reduce water withdrawal in all scenarios but increase water consumption in aggressive scenarios. Decreased electric sector water withdrawal would likely reduce electric sector vulnerability to climate change, but the rise in consumption could increase competition with other users.

  1. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  2. Kitt Peak Observes Comet

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Kitt Peak National Observatory's 2.1-meter telescope observed comet Tempel 1 on April 11, 2005, when the comet was near its closest approach to the Earth. A pinkish dust jet is visible to the southwest, with the broader neutral gas coma surrounding it. North is up, East is to the left, and the field of view is about 80,000 km (50,000 miles) wide. The Sun was almost directly behind the observer at this time. The red, green and blue bars in the background are stars that moved between the individual images.

    This pseudo-color picture was created by combining three black and white images obtained with different filters. The images were obtained with the HB Narrowband Comet Filters, using CN (3870 A - shown in blue), C2 (5140 A - shown in green) and RC (7128 A - shown in red). The CN and C2 filters capture different gas species (along with the underlying dust) while the RC filter captures just the dust.

  3. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: A Peak in Density Dependence of Electron Spin Relaxation Time in n-Type Bulk GaAs in the Metallic Regime

    NASA Astrophysics Data System (ADS)

    Shen, Ka

    2009-06-01

    We demonstrate that the peak in the density dependence of electron spin relaxation time in n-type bulk GaAs in the metallic regime predicted by Jiang and Wu [Phys. Rev. B 79 (2009) 125206] has been realized experimentally in the latest work [arXiv:0902.0270] by Krauß et al.

  4. Partial Discharge Characteristics of Polymer Nanocomposite Materials in Electrical Insulation: A Review of Sample Preparation Techniques, Analysis Methods, Potential Applications, and Future Trends

    PubMed Central

    Izzati, Wan Akmal; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends. PMID:24558326

  5. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    PubMed

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  6. The past, present, and future of the U.S. electric power sector: Examining regulatory changes using multivariate time series approaches

    NASA Astrophysics Data System (ADS)

    Binder, Kyle Edwin

    The U.S. energy sector has undergone continuous change in the regulatory, technological, and market environments. These developments show no signs of slowing. Accordingly, it is imperative that energy market regulators and participants develop a strong comprehension of market dynamics and the potential implications of their actions. This dissertation contributes to a better understanding of the past, present, and future of U.S. energy market dynamics and interactions with policy. Advancements in multivariate time series analysis are employed in three related studies of the electric power sector. Overall, results suggest that regulatory changes have had and will continue to have important implications for the electric power sector. The sector, however, has exhibited adaptability to past regulatory changes and is projected to remain resilient in the future. Tests for constancy of the long run parameters in a vector error correction model are applied to determine whether relationships among coal inventories in the electric power sector, input prices, output prices, and opportunity costs have remained constant over the past 38 years. Two periods of instability are found, the first following railroad deregulation in the U.S. and the second corresponding to a number of major regulatory changes in the electric power and natural gas sectors. Relationships among Renewable Energy Credit prices, electricity prices, and natural gas prices are estimated using a vector error correction model. Results suggest that Renewable Energy Credit prices do not completely behave as previously theorized in the literature. Potential reasons for the divergence between theory and empirical evidence are the relative immaturity of current markets and continuous institutional intervention. Potential impacts of future CO2 emissions reductions under the Clean Power Plan on economic and energy sector activity are estimated. Conditional forecasts based on an outlined path for CO2 emissions are

  7. Peak resolution by semiderivative voltammetry

    SciTech Connect

    Toman, Jeffrey J.; Brown, Steven D.

    1981-08-01

    One of the limitations of dynamic electrochemistry, when used as a quantitative analytical technique, is the resolution of overlapping waves. Approaches used in the past have been either time intensive methods using many blanks, or have relied on many empirical peak parameters. Using an approach based on semidifferential voltammetry, two new techniques have been developed for rapid peak deconvolution. The first technique, NIFITl, is an iterative stripping routine, while the second, BIMFIT, is based on sequential simplex optimization. Both approaches were characterized by deconvolution of synthetic fused peak systems. Subsequently, both were applied to semi-differentiated linear scan voltammograms of Cd2+, Pb2+ and In3+ and to semi-differentiated linear scan anodic stripping voltammograms of Cd2+, ln3+ and Tl+. Deconvolutions were directly characterized by peak height, peak potential and peak halfwidth, in addition to the total squared deviation of the fit peaks from the real fused peaks. Studies of individual peaks as well as of standard additions to fused peaks showed both methods worked well, with excellent deconvolution efficiencies. Synthetic data were totally deconvoluted with peak separation as small as 25 mv, while real systems were deconvoluted with separations below 40 mv. Peak parameters obtained from these deconvolutions allow observations of electrode processes, even in systems containing overlapping peaks.

  8. Planning for future uncertainties in electric power generation; An analysis of transitional strategies for reduction of carbon and sulfur emissions

    SciTech Connect

    Tabors, R.D.; Monroe, B.L. III . Lab. for Electromagnetic and Electronic Systems)

    1991-11-01

    The objective of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gasses. The research used the EPRI Electric Generation Expansion Analysis System (EGEAS) utility optimization/simulation modeling structure and the EPRI developed regional utilities. It focuses on the North East and East Central region of the U.S. Strategies identified were fuel switching -- predominantly between coal and natural gas, mandated emission limits, and a carbon tax. The overall conclusions of the study are that using less (conservation) will always benefit Carbon Emissions but may or may not benefit Acid Rain emissions by the off setting forces of improved performance of new plant as opposed to reduced overall consumption of final product. Results of the study are highly utility and regional demand specific. The study showed, however, that significant reductions in both acid rain and global warming gas production could be achieved with relatively small increases in the overall cost of production of electricity and that the current dispatch logics available to the utility control rooms were adequate to reschedule dispatch to meet these objectives.

  9. Integrated DEA Models and Grey System Theory to Evaluate Past-to-Future Performance: A Case of Indian Electricity Industry

    PubMed Central

    Wang, Chia-Nan; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better “past-present-future” insights into performance evaluation in Indian electricity industry. PMID:25821854

  10. Scope for future CO{sub 2} emission reductions from electricity generation through the deployment of carbon capture and storage technologies

    SciTech Connect

    Jon Gibbins; Stuart Haszeldine; Sam Holloway; Jonathan Pearce; John Oakey; Simon Shackley; Carol Turley

    2006-02-15

    Ongoing work on the potential for carbon dioxide capture and storage (CCS) from fossil fuel power stations in the UK suggests that this technology may be capable of supplying significant amounts of low-emission electricity within one or two decades. Renewable generation is also planned to increase over similar time scales and there is the additional possibility of nuclear replacements being built. If the political justification for significant UK CO{sub 2} emission reductions emerges from global post-Kyoto negotiations, it is therefore possible that large ({approximately}45%) reductions in CO{sub 2} emissions from UK electricity generation could be achieved by as early as 2020. Both the technical and the political aspects are, however, changing rapidly, with perhaps the conclusion of the post-Kyoto negotiations in 2007 as the first clear pointer for the future. CCS technologies also have considerable potential for future emission reductions world wide, especially in regions where large numbers of new fossil fuel power plants are being built within {approximately}500 km of sedimentary basins. 10 refs., 2 figs., 2 tabs.

  11. Economic and safety analysis of unconventional peak regulation on power unit of peak shifting start-stop

    NASA Astrophysics Data System (ADS)

    Cao, X.; Zhao, J. F.; Duan, X. Q.; Jin, Y. A.

    2017-01-01

    Tthe capacity difference of peak regulation between the power gird and the actual demand has become a serious problem considering the growth in the difference between electricity supply and demand. Therefore, peak regulation of power grid needs to be deeply studied. Unconventional peak regulation on unit of peak shifting start-stop is a way that can broaden the range of power regulation, as well as benefit safe operation of the power grid. However, it requires frequent and fast unit start-stop, complex operation, and more staff labor. By carrying out unconventional thermal power unit load test, the start-stop mode of peak auxiliary equipment is studied in this paper, indicating that it has a positive effect on safety and economic of load-peaking operation. The best working conditions of the peak units is found by analysing consumption cost, safety specifications, and life lost of the start-stop peak regulation mode.

  12. Future electricity generation: An economic and environmental life cycle perspective on near-, mid- and long-term technology options and policy implications

    NASA Astrophysics Data System (ADS)

    Bergerson, Joule Andrea

    This thesis evaluates the cost and environmental tradeoffs of current and future electricity generation options from a life cycle perspective. Policy and technology options are considered for each critical time horizon (near-, mid-, and long-term). The framework developed for this analysis is a hybrid life cycle analysis which integrates several models and frameworks including process and input-output life cycle analysis, an integrated environmental control model, social costing, forecasting and future energy scenario analysis. The near-term analysis shows that several recent LCA studies of electricity options have contributed to our understanding of the technologies available and their relative environmental impacts. Several promising options could satisfy our electricity demands. Other options remain unproven or too costly to encourage investment in the near term but show promise for future use (e.g. photovoltaic, fuel cells). Public concerns could impede the use of some desirable technologies (e.g. hydro, nuclear). Finally, less tangible issues such as intermittency of some renewable technologies, social equity and visual and land use impacts, while difficult to quantify, must be considered in the investment decision process. In the mid-term analysis, this thesis explores alternative methods for transport of coal energy. A hybrid life cycle analysis is critical for evaluating the cost, efficiency and environmental tradeoffs of the entire system. If a small amount of additional coal is to be shipped, current rail infrastructure should be used where possible. If entirely new infrastructure is required, the mine mouth generation options are cheaper but have increased environmental impact due to the increased generation required to compensate for transmission line losses. Gasifying the coal to produce methane also shows promise in terms of lowering environmental emissions. The long-term analysis focuses on the implications of a high coal use future. This scenario

  13. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards

    NASA Astrophysics Data System (ADS)

    Forrest, Kate E.; Tarroja, Brian; Zhang, Li; Shaffer, Brendan; Samuelsen, Scott

    2016-12-01

    Increased usage of renewable energy resources is key for energy system evolution to address environmental concerns. Capturing variable renewable power requires the use of energy storage to shift generation and load demand. The integration of plug-in electric vehicles, however, impacts the load demand profile and therefore the capacity of energy storage required to meet renewable utilization targets. This study examines how the intelligence of plug-in electric vehicle (PEV) integration impacts the required capacity of energy storage systems to meet renewable utilization targets for a large-scale energy system, using California as an example for meeting a 50% and 80% renewable portfolio standard (RPS) in 2030 and 2050. For an 80% RPS in 2050, immediate charging of PEVs requires the installation of an aggregate energy storage system with a power capacity of 60% of the installed renewable capacity and an energy capacity of 2.3% of annual renewable generation. With smart charging of PEVs, required power capacity drops to 16% and required energy capacity drops to 0.6%, and with vehicle-to-grid (V2G) charging, non-vehicle energy storage systems are no longer required. Overall, this study highlights the importance of intelligent PEV charging for minimizing the scale of infrastructure required to meet renewable utilization targets.

  14. Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends.

    PubMed

    Denaï, Mouloud A; Mahfouf, Mahdi; Mohamad-Samuri, Suzani; Panoutsos, George; Brown, Brian H; Mills, Gary H

    2010-05-01

    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.

  15. Analysis of the need for intermediate and peaking technologies in the year 2000

    SciTech Connect

    Barrager, S.M.; Campbell, G.L.

    1980-04-01

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There will be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service, can economically remove most of the variation from electric-power demands. Therefore, the analysis assesses the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. Section 2 provides a condensed description of the models used in the analysis. (Details and data sets are contained in the appendixes.) Results of sensitivities on growth rates, model parameters, and appliance saturations are discussed in Section 3, which also contains the analysis of the potential impacts of customer energy storage, appliance control, and time-of-use pricing. The future need for intermediate and peaking technologies is analyzed in Section 4.

  16. Future Fuels

    DTIC Science & Technology

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...traction power – mission payloads – mobile electric power • Improved survivability • Inherent modularity improves maintainability & upgradability ...threatened the output of the Ploesti oil fields and refineries. In the FT process, so-called syngas (a mixture of molecular hydrogen and carbon monoxide

  17. Climate Change and Future U.S. Electricity Infrastructure: the Nexus between Water Availability, Land Suitability, and Low-Carbon Technologies

    NASA Astrophysics Data System (ADS)

    Rice, J.; Halter, T.; Hejazi, M. I.; Jensen, E.; Liu, L.; Olson, J.; Patel, P.; Vernon, C. R.; Voisin, N.; Zuljevic, N.

    2014-12-01

    Integrated assessment models project the future electricity generation mix under different policy, technology, and socioeconomic scenarios, but they do not directly address site-specific factors such as interconnection costs, population density, land use restrictions, air quality, NIMBY concerns, or water availability that might affect the feasibility of achieving the technology mix. Moreover, since these factors can change over time due to climate, policy, socioeconomics, and so on, it is important to examine the dynamic feasibility of integrated assessment scenarios "on the ground." This paper explores insights from coupling an integrated assessment model (GCAM-USA) with a geospatial power plant siting model (the Capacity Expansion Regional Feasibility model, CERF) within a larger multi-model framework that includes regional climate, hydrologic, and water management modeling. GCAM-USA is a dynamic-recursive market equilibrium model simulating the impact of carbon policies on global and national markets for energy commodities and other goods; one of its outputs is the electricity generation mix and expansion at the state-level. It also simulates water demands from all sectors that are downscaled as input to the water management modeling. CERF simulates siting decisions by dynamically representing suitable areas for different generation technologies with geospatial analyses (informed by technology-specific siting criteria, such as required mean streamflow per the Clean Water Act), and then choosing siting locations to minimize interconnection costs (to electric transmission and gas pipelines). CERF results are compared across three scenarios simulated by GCAM-USA: 1) a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail, 2) a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward nuclear, carbon capture and sequestration (CCS), and renewables, and 3) a repeat of scenario (2) in which CCS technologies are

  18. Cut Electric Bills by Controlling Demand

    ERIC Educational Resources Information Center

    Grumman, David L.

    1974-01-01

    Electric bills can be reduced by lowering electric consumption and by controlling demand -- the amount of electricity used at a certain point in time. Gives tips to help reduce electric demand at peak power periods. (Author/DN)

  19. STEM Education in Jordan Applicable to Developing Future Geophysicists: An Example Combining Electrical Engineering and Medical Research

    NASA Astrophysics Data System (ADS)

    Fraiwan, A.; Khadra, L.; Shahab, W.; Olgaard, D. L.

    2010-12-01

    Students in developing countries interested in STEM disciplines (science, technology, engineering & math) often choose majors that will improve their job opportunities in their home country when they graduate, e.g. engineering or medicine. Geoscience might be chosen as a sub-discipline of civil engineering, but rarely as a primary major unless there are local economic natural resources. The Institute of International Education administers the ExxonMobil Middle East and North Africa region scholars program designed to develop skilled students with a focus on geoscience and to build relationships with academic leaders by offering select faculty the opportunity to participation in the AGU fall meeting. At the Jordan University of Science and Technology (JUST), research in electrical engineering applied to medicine has potential links to geosciences. In geophysics, neural wavelet analysis (NWA) is commonly used to process complex seismic signals, e.g. for interpreting lithology or identifying hydrocarbons. In this study, NWA was used to characterize cardiac arrhythmias. A classification scheme was developed in which a neural network is used to identify three types of arrhythmia by distinct frequency bands. The performance of this scheme was tested using patient records from two electrocardiography (ECG) databases. These records contain normal ECG signals, as well as abnormal signals from atrial fibrillation (AF), ventricular tachycardia (VT) and ventricular fibrillation (VF) arrhythmias. The continuous wavelet transform is applied over frequencies of 0-50 Hz for times of 0-2s. For a normal ECG, the results show that the strongest signal is in a frequency range of 4-10 Hz. For AF, a low frequency ECG signal in the range of 0-5 Hz extends over the whole time domain. For VT, the low frequency spectrum is in the range of 2-10 Hz, appearing as three distinct bands. For VF, a continuous band in the range of 2-10 Hz extends over the whole time domain. The classification of

  20. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    NASA Astrophysics Data System (ADS)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  1. Analysis of the need for intermediate and peaking technologies in the year 2000. Final report

    SciTech Connect

    Barrager, S.M.; Campbell, G.L.

    1980-04-01

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There would be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service can economically remove most of the variation from electric power demands. The objective of this analysis is to assess the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. The analysis is exploratory in nature and broad in scope. It does not attempt to predict the future or to model precisely the technical characteristics or economic desirability of load management. Rather, its purpose is to provide research and development planners with some basic insights into the order of magnitude of possible hourly demand shifts on a regional basis and to determine the impact of load management on daily and seasonal variations in electricity demand.

  2. Peak Oil: Diverging Discursive Pipelines

    NASA Astrophysics Data System (ADS)

    Doctor, Jeff

    Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as to whether or not peak oil represents cause for serious concern. My thesis explores how this controversy unfolds but brackets the ontological status of the reality indexed by the peakoil concept. I do not choose a side in the debate; I look at the debate itself. I examine the energy outlook documents of ExxonMobil, Shell, BP, Chevron, Total and the International Energy Agency (IEA) as well as academic articles and documentaries. Through an in-depth analysis of peak-oil controversy via tenets of actor-network theory (ANT), I show that what is at stake are competing framings of reality itself, which must be understood when engaging with the contentious idea of peak oil.

  3. Flu Season Starting to Peak

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162917.html Flu Season Starting to Peak More severe strain of ... 6, 2017 FRIDAY, Jan. 6, 2017 (HealthDay News) -- Flu season is in full swing and it's starting ...

  4. Two classes of speculative peaks

    NASA Astrophysics Data System (ADS)

    Roehner, Bertrand M.

    2001-10-01

    Speculation not only occurs in financial markets but also in numerous other markets, e.g. commodities, real estate, collectibles, and so on. Such speculative movements result in price peaks which share many common characteristics: same order of magnitude of duration with respect to amplitude, same shape (the so-called sharp-peak pattern). Such similarities suggest (at least as a first approximation) a common speculative behavior. However, a closer examination shows that in fact there are (at least) two distinct classes of speculative peaks. For the first, referred to as class U, (i) the amplitude of the peak is negatively correlated with the price at the start of the peak (ii) the ensemble coefficient of variation exhibits a trough. Opposite results are observed for the second class that we refer to as class S. Once these empirical observations have been made we try to understand how they should be interpreted. First, we show that the two properties are in fact related in the sense that the second is a consequence of the first. Secondly, by listing a number of cases belonging to each class we observe that the markets in the S-class offer collection of items from which investors can select those they prefer. On the contrary, U-markets consist of undifferentiated products for which a selection cannot be made in the same way. All prices considered in the paper are real (i.e., deflated) prices.

  5. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  6. How to use your peak flow meter

    MedlinePlus

    ... get your child used to them. Find Your Personal Best To find your personal best peak flow ... peak flow meter; Bronchial asthma - peak flow meter Images How to measure peak flow References Durrani SR, ...

  7. Peak Stress Testing Protocol Framework

    EPA Science Inventory

    Treatment of peak flows during wet weather is a common challenge across the country for municipal wastewater utilities with separate and/or combined sewer systems. Increases in wastewater flow resulting from infiltration and inflow (I/I) during wet weather events can result in op...

  8. Sample distribution in peak mode isotachophoresis

    SciTech Connect

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran

    2014-01-15

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify and validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.

  9. The cosmological information of shear peaks: beyond the abundance

    NASA Astrophysics Data System (ADS)

    Marian, Laura; Smith, Robert E.; Hilbert, Stefan; Schneider, Peter

    2013-06-01

    We study the cosmological information of weak lensing (WL) peaks, focusing on two other statistics besides their abundance: the stacked tangential-shear profiles and the peak-peak correlation function. We use a large ensemble of simulated WL maps with survey specifications relevant to future missions like Euclid and LSST, to measure and examine the three peak probes. We find that the auto-correlation function of peaks with high signal-to-noise ratio ({S}/{N}) measured from fields of size 144 deg2 has a maximum of ˜0.3 at an angular scale ϑ ˜ 10 arcmin. For peaks with smaller {S}/{N}, the amplitude of the correlation function decreases, and its maximum occurs on smaller angular scales. The stacked tangential-shear profiles of the peaks also increase with their {S}/{N}. We compare the peak observables measured with and without shape noise and find that for {S}/{N}˜ 3 only ˜5 per cent of the peaks are due to large-scale structures, the rest being generated by shape noise. The correlation function of these small peaks is therefore very weak compared to that of small peaks measured from noise-free maps, and also their mean tangential-shear profile is a factor of a few smaller than the noise-free one. The covariance matrix of the probes is examined: the correlation function is only weakly covariant on scales ϑ < 30 arcmin, and slightly more on larger scales; the shear profiles are very correlated for ϑ > 2 arcmin. The cross-covariance of the three probes is relatively weak. Using the Fisher-matrix formalism, we compute the cosmological constraints for {Ωm, σ8, w, ns} considering each probe separately, as well as in combination. We find that the peak-peak correlation and shear profiles yield marginalized errors which are larger by a factor of 2-4 for {Ωm, σ8} than the errors yielded by the peak abundance alone, while the errors for {w, ns} are similar. By combining the three probes, the marginalized constraints are tightened by a factor of ˜2 compared to the

  10. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    USGS Publications Warehouse

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  11. Twin Peaks (B/W)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Twin Peaks are modest-size hills to the southwest of the Mars Pathfinder landing site. They were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The peaks are approximately 30-35 meters (-100 feet) tall. North Twin is approximately 860 meters (2800 feet) from the lander, and South Twin is about a kilometer away (3300 feet). The scene includes bouldery ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of the South Twin Peak. The large rock at the right edge of the scene is nicknamed 'Hippo'. This rock is about a meter (3 feet) across and 25 meters (80 feet) distant.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  12. A peak load simulation model for the Pacific Northwest

    SciTech Connect

    Sands, R.D.; Englin, J.E.; De Steese, J.G. ); Vinnard, A.E. )

    1990-04-01

    A PC-based Peak Load Management (PLM) model was developed by Pacific Northwest Laboratory for the Bonneville Power Administration (Bonneville) to evaluate the effect of demand-side management programs on peak winter loads. The PLM model is based on a similar, but much larger, demand-side analysis model previously developed by PNL for Bonneville. Revisions include (1) a direct comparison between program savings on average winter days and peak winter days; (2) a reduction in size, allowing the model to run much faster and fit on a PC without expanded memory; and (3) greater flexibility for quick modification. Output from the model consists of electricity consumption by hour on each of the two daytypes, with and without a demand-side program in place. A test case evaluating electric thermal storage is presented to describe PLM model operation. 2 refs., 3 figs., 2 tabs.

  13. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  14. Peak experiences of psilocybin users and non-users.

    PubMed

    Cummins, Christina; Lyke, Jennifer

    2013-01-01

    Maslow (1970) defined peak experiences as the most wonderful experiences of a person's life, which may include a sense of awe, well-being, or transcendence. Furthermore, recent research has suggested that psilocybin can produce experiences subjectively rated as uniquely meaningful and significant (Griffiths et al. 2006). It is therefore possible that psilocybin may facilitate or change the nature of peak experiences in users compared to non-users. This study was designed to compare the peak experiences of psilocybin users and non-users, to evaluate the frequency of peak experiences while under the influence of psilocybin, and to assess the perceived degree of alteration of consciousness during these experiences. Participants were recruited through convenience and snowball sampling from undergraduate classes and at a musical event. Participants were divided into three groups, those who reported a peak experience while under the influence of psilocybin (psilocybin peak experience: PPE), participants who had used psilocybin but reported their peak experiences did not occur while they were under the influence of psilocybin (non-psilocybin peak experience: NPPE), and participants who had never used psilocybin (non-user: NU). A total of 101 participants were asked to think about their peak experiences and complete a measure evaluating the degree of alteration of consciousness during that experience. Results indicated that 47% of psilocybin users reported their peak experience occurred while using psilocybin. In addition, there were significant differences among the three groups on all dimensions of alteration of consciousness. Future research is necessary to identify factors that influence the peak experiences of psilocybin users in naturalistic settings and contribute to the different characteristics of peak experiences of psilocybin users and non-users.

  15. WHEELER PEAK ROADLESS AREA, NEVADA.

    USGS Publications Warehouse

    Whitebread, Donald H.; Kluender, Steven E.

    1984-01-01

    Field investigations to evaluate the mineral-resource potential of the Wheeler Peak Roadless Area in east-central Nevada were conducted. The field studies included geologic mapping, geochemical sampling, geophysical surveys, and a survey of mines and prospects. Several areas in the sedimentary and granitic rocks in the lower plate of the Snake Range decollement have probable mineral-resource potential for tungsten, beryllium, and lead. A small area of gravels near the north border of the area has a probable mineral-resource potential for placer gold. The geologic setting is not conducive for the occurrence of energy resources.

  16. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  17. GLACIER PEAK ROADLESS AREA, WASHINGTON.

    USGS Publications Warehouse

    Church, S.E.; Johnson, F.L.

    1984-01-01

    A mineral survey outlined areas of mineral-resource potential in the Glacier Peak Roadless Area, Washington. Substantiated resource potential for base and precious metals has been identified in four mining districts included in whole or in part within the boundary of the roadless area. Several million tons of demonstrated base- and precious-metal resources occur in numerous mines in these districts. Probable resource potential for precious metals exists along a belt of fractured and locally mineralized rock extending northeast from Monte Cristo to the northeast edge of the roadless area.

  18. Electric propulsion, circa 2000

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Finke, R. C.

    1980-01-01

    This paper discusses the future of electric propulsion, circa 2000. Starting with the first generation Solar Electric Propulsion (SEP) technology as the first step toward the next century's advanced propulsion systems, the current status and future trends of other systems such as the magnetoplasmadynamic accelerator, the mass driver, the laser propulsion system, and the rail gun are described.

  19. Voltage sag analysis peaks customer service

    SciTech Connect

    Steciuk, P.B.; Redmon, J.R.

    1996-10-01

    Voltage sags are momentary dips in voltage that may cause misoperations to the utility customers` sensitive loads. These misoperations may only be an annoyance to the residential sector, but, on the industrial and commercial front, they can cost millions of dollars each year. This cost can and probably will negatively affect electric utilities in the evolving competitive market as utility customers look for alternate suppliers of electric power. Voltage sags are usually caused by remote power system faults associated with equipment failures or temporary faults caused by lightning, animals, or other acts of nature. It is impossible to eliminate all of these faults and associated voltage sags, but an improvement can be achieved through system modifications on both the utility system and the industrial or commercial power system. The evaluation of these system modifications was difficult in the past, but a voltage sag analysis program developed by Power Technologies, Inc. (PTI) has simplified the task. The program uses methodologies developed for the update of the IEEE Gold Book (IEEE Standard 493, Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems). The results of this sag analysis program form the basis of possible future cost-benefit analysis enabling utilities and utility customers to make the most economic system modification.

  20. Peak load management: Potential options

    SciTech Connect

    Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

    1989-10-01

    This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

  1. Electric Vehicle Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  2. [Electric and hybrid vehicle site operators program]: Thinking of the future. Second year third quarter report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants` names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State`s campus.

  3. Mortality and morbidity peaks modeling: An extreme value theory approach.

    PubMed

    Chiu, Y; Chebana, F; Abdous, B; Bélanger, D; Gosselin, P

    2016-09-01

    Hospitalizations and deaths belong to the most studied health variables in public health. Those variables are usually analyzed through mean events and trends, based on the whole dataset. However, this approach is not appropriate to comprehend health outcome peaks which are unusual events that strongly impact the health care network (e.g. overflow in hospital emergency rooms). Peaks can also be of interest in etiological research, for instance when analyzing relationships with extreme exposures (meteorological conditions, air pollution, social stress, etc.). Therefore, this paper aims at modeling health variables exclusively through the peaks, which is rarely done except over short periods. Establishing a rigorous and general methodology to identify peaks is another goal of this study. To this end, the extreme value theory appears adequate with statistical tools for selecting and modeling peaks. Selection and analysis for deaths and hospitalizations peaks using extreme value theory have not been applied in public health yet. Therefore, this study also has an exploratory goal. A declustering procedure is applied to the raw data in order to meet extreme value theory requirements. The application is done on hospitalization and death peaks for cardiovascular diseases, in the Montreal and Quebec metropolitan communities (Canada) for the period 1981-2011. The peak return levels are obtained from the modeling and can be useful in hospital management or planning future capacity needs for health care facilities, for example. This paper focuses on one class of diseases in two cities, but the methodology can be applied to any other health peaks series anywhere, as it is data driven.

  4. The Phenomenology of Aesthetic Peak Experiences.

    ERIC Educational Resources Information Center

    Panzarella, Robert

    1980-01-01

    Descriptions of music and visual art peak experiences obtained from persons were content analyzed and factor analyzed. The peak experience accounts for mirrored conflicts in aesthetic norms and suggests a greater role for individual differences in aesthetic theories. (Author)

  5. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...). (c) Boundaries. The Atlas Peak viticultural area is located in Napa County, California. It lies entirely within the Napa Valley viticultural area. The beginning point is Haystack (peak) found in...

  6. A new approach for modeling the peak utility impacts from a proposed CUAC standard

    SciTech Connect

    LaCommare, Kristina Hamachi; Gumerman, Etan; Marnay, Chris; Chan, Peter; Coughlin, Katie

    2004-08-01

    This report describes a new Berkeley Lab approach for modeling the likely peak electricity load reductions from proposed energy efficiency programs in the National Energy Modeling System (NEMS). This method is presented in the context of the commercial unitary air conditioning (CUAC) energy efficiency standards. A previous report investigating the residential central air conditioning (RCAC) load shapes in NEMS revealed that the peak reduction results were lower than expected. This effect was believed to be due in part to the presence of the squelch, a program algorithm designed to ensure changes in the system load over time are consistent with the input historic trend. The squelch applies a system load-scaling factor that scales any differences between the end-use bottom-up and system loads to maintain consistency with historic trends. To obtain more accurate peak reduction estimates, a new approach for modeling the impact of peaky end uses in NEMS-BT has been developed. The new approach decrements the system load directly, reducing the impact of the squelch on the final results. This report also discusses a number of additional factors, in particular non-coincidence between end-use loads and system loads as represented within NEMS, and their impacts on the peak reductions calculated by NEMS. Using Berkeley Lab's new double-decrement approach reduces the conservation load factor (CLF) on an input load decrement from 25% down to 19% for a SEER 13 CUAC trial standard level, as seen in NEMS-BT output. About 4 GW more in peak capacity reduction results from this new approach as compared to Berkeley Lab's traditional end-use decrement approach, which relied solely on lowering end use energy consumption. The new method has been fully implemented and tested in the Annual Energy Outlook 2003 (AEO2003) version of NEMS and will routinely be applied to future versions. This capability is now available for use in future end-use efficiency or other policy analysis that requires

  7. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  8. Chirped pulse amplification: Present and future

    SciTech Connect

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm/sup 2/. These pulses will be associated with electric fields in excess of 100 e/a/sub o//sup 2/ and blackbody energy densities equivalent to 3 /times/ 10/sup 10/ J/cm/sup 3/. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs.

  9. Lander petal & Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes. A lander petal, airbag, and the rear ramp are at the lower area of the image.

    The image was taken by the Imager for Mars Pathfinder (IMP) after its deployment on Sol 3. Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration. The IMP was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. Technical Potential for Peak Load Management Programs in New Jersey

    SciTech Connect

    Kirby, B.J.

    2002-12-13

    Restructuring is attempting to bring the economic efficiency of competitive markets to the electric power industry. To at least some extent it is succeeding. New generation is being built in most areas of the country reversing the decades-long trend of declining reserve margins. Competition among generators is typically robust, holding down wholesale energy prices. Generators have shown that they are very responsive to price signals in both the short and long term. But a market that is responsive only on the supply side is only half a market. Demand response (elasticity) is necessary to gain the full economic advantages that restructuring can offer. Electricity is a form of energy that is difficult to store economically in large quantities. However, loads often have some ability to (1) conveniently store thermal energy and (2) defer electricity consumption. These inherent storage and control capabilities can be exploited to help reduce peak electric system consumption. In some cases they can also be used to provide system reliability reserves. Fortunately too, technology is helping. Advances in communications and control technologies are making it possible for loads ranging from residential through commercial and industrial to respond to economic signals. When we buy bananas, we don't simply take a dozen and wait a month to find out what the price was. We always ask about the price before we decide how many bananas we want. Technology is beginning to allow at least some customers to think about their electricity consumption the same way they think about most of their other purchases. And power system operators and regulators are beginning to understand that customers need to remain in control of their own destinies. Many customers (residential through industrial) are willing to respond to price signals. Most customers are not able to commit to specific responses months or years in advance. Electricity is a fluid market commodity with a volatile value to both

  11. Electrical circuit for data reduction

    SciTech Connect

    Kronberg, J.W.

    1991-12-31

    This invention is comprised of an electrical circuit for determining characteristic voltages, such as maximum, minimum, average and root mean squared voltages, of a time-varying electrical signal. The circuit comprises a positive and a negative peak detector that feed the positive and negative voltage peaks detected in each of a series of time intervals into a solid-state multiplexer controlled by a process controller. The time intervals are generated by the process controller in combination with a clocking, circuit. The multiplexer applies the positive and negative peak voltages to a set of four capacitors, apply the positive peak to one capacitor during one interval and then the negative peak to that capacitor in a subsequent interval so that each capacitor is alternatingly accumulating a positive peak then a negative peak to obviate the need for resetting each capacitor. After the positive peak voltage is applied to one capacitor, the connection is switched during the next interval for reading the negative peak voltage, then switched again for applying, a negative peak voltage, then switched once more for reading the negative peak voltage, the multiplexer serving, as a solid state commutator for switching the electrical connection. Alternatively, peak maximum and minimum voltage detectors may be replaced with circuitry designed to obtain the additional characteristic voltages desired in each interval.

  12. Storing hydroelectricity to meet peak-hour demand

    SciTech Connect

    Valenti, M.

    1992-04-01

    This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

  13. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  14. On the trail of double peak hydrographs

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; François Iffly, Jean; McDonnell, Jeffrey J.; Pfister, Laurent

    2016-04-01

    A double peak hydrograph features two peaks as a response to a unique rainfall pulse. The first peak occurs at the same time or shortly after the precipitation has started and it corresponds to a fast catchment response to precipitation. The delayed peak normally starts during the recession of the first peak, when the precipitation has already ceased. Double peak hydrographs may occur for various reasons. They can occur (i) in large catchments when lag times in tributary responses are large, (ii) in urban catchments where the first peak is often caused by direct surface runoff on impervious land cover, and the delayed peak to slower subsurface flow, and (iii) in non-urban catchments, where the first and the delayed discharge peaks are explained by different runoff mechanisms (e.g. overland flow, subsurface flow and/or deep groundwater flow) that have different response times. Here we focus on the third case, as a formal description of the different hydrological mechanisms explaining these complex hydrological dynamics across catchments with diverse physiographic characteristics is still needed. Based on a review of studies documenting double peak events we have established a formal classification of catchments presenting double peak events based on their regolith structure (geological substratum and/or its weathered products). We describe the different hydrological mechanisms that trigger these complex hydrological dynamics across each catchment type. We then use hydrometric time series of precipitation, runoff, soil moisture and groundwater levels collected in the Weierbach (0.46 km2) headwater catchment (Luxembourg) to better understand double peak hydrograph generation. Specifically, we aim to find out (1) if the generation of a double peak hydrograph is a threshold process, (2) if the hysteretic relationships between storage and discharge are consistent during single and double peak hydrographs, and (3) if different functional landscape units (the hillslopes

  15. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    SciTech Connect

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  16. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  17. Pediatric Exercise Testing: Value and Implications of Peak Oxygen Uptake

    PubMed Central

    Pianosi, Paolo T.; Liem, Robert I.; McMurray, Robert G.; Cerny, Frank J.; Falk, Bareket; Kemper, Han C. G.

    2017-01-01

    Peak oxygen uptake (peakV˙O2) measured by clinical exercise testing is the benchmark for aerobic fitness. Aerobic fitness, estimated from maximal treadmill exercise, is a predictor of mortality in adults. PeakV˙O2 was shown to predict longevity in patients aged 7–35 years with cystic fibrosis over 25 years ago. A surge of exercise studies in young adults with congenital heart disease over the past decade has revealed significant prognostic information. Three years ago, the first clinical trial in children with pulmonary arterial hypertension used peakV˙O2 as an endpoint that likewise delivered clinically relevant data. Cardiopulmonary exercise testing provides clinicians with biomarkers and clinical outcomes, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response hidden at rest. Momentum from these pioneering observations in multiple disease states should impel clinicians to employ similar methods in other patient populations; e.g., sickle cell disease. Advances in pediatric exercise science will elucidate new pathways that may identify novel biomarkers. Our initial aim of this essay is to highlight the clinical relevance of exercise testing to determine peakV˙O2, and thereby convince clinicians of its merit, stimulating future clinical investigators to broaden the application of exercise testing in pediatrics. PMID:28125022

  18. Pediatric Exercise Testing: Value and Implications of Peak Oxygen Uptake.

    PubMed

    Pianosi, Paolo T; Liem, Robert I; McMurray, Robert G; Cerny, Frank J; Falk, Bareket; Kemper, Han C G

    2017-01-24

    Peak oxygen uptake (peak V ˙ O 2 ) measured by clinical exercise testing is the benchmark for aerobic fitness. Aerobic fitness, estimated from maximal treadmill exercise, is a predictor of mortality in adults. Peak V ˙ O 2 was shown to predict longevity in patients aged 7-35 years with cystic fibrosis over 25 years ago. A surge of exercise studies in young adults with congenital heart disease over the past decade has revealed significant prognostic information. Three years ago, the first clinical trial in children with pulmonary arterial hypertension used peak V ˙ O 2 as an endpoint that likewise delivered clinically relevant data. Cardiopulmonary exercise testing provides clinicians with biomarkers and clinical outcomes, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response hidden at rest. Momentum from these pioneering observations in multiple disease states should impel clinicians to employ similar methods in other patient populations; e.g., sickle cell disease. Advances in pediatric exercise science will elucidate new pathways that may identify novel biomarkers. Our initial aim of this essay is to highlight the clinical relevance of exercise testing to determine peak V ˙ O 2 , and thereby convince clinicians of its merit, stimulating future clinical investigators to broaden the application of exercise testing in pediatrics.

  19. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    SciTech Connect

    Heaton, H.

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  20. Constant RMS versus constant peak modulation for the perceptual equivalence of sinusoidal amplitude modulated signals.

    PubMed

    Regele, Oliver B; Koivuniemi, Andrew S; Otto, Kevin J

    2013-01-01

    Neuroprosthetics using intracortical microstimulation can potentially alleviate sensory deprivation due to injury or disease. However the information bandwidth of a single microstimulation channel remains largely unanswered. This paper presents three experiments that examine the importance of Peak Power/Charge and RMS Power/Charge for detection of acoustic and electrical Sinusoidal Amplitude Modulated stimuli by the auditory system. While the peripheral auditory system is sensitive to RMS power cues for the detection of acoustic stimuli, here we provide results that suggest that the auditory cortex is sensitive to peak charge cues for electrical stimuli. Varying the modulation frequency and depth do not change this effect for detection of modulated electrical stimuli.

  1. [Studying the fertility peak in Beijing].

    PubMed

    Zhong, L

    1989-07-01

    Beijing, China, is experiencing a baby boom in response to 2 periods of large population increase in the mid-1950s and early 1960s. The average number of annual births was 220,000 in the first period and 269,000 in the second period. The causes of the large increase in the population in the first period were an improvement of health conditions which led to a reduction in mortality, immigration flow, and an erroneous population policy. The causes in the second period were recuperative fertility after three years of natural calamity and increased fertility among immigrants. Net migration had an important role in population growth these two periods; it also will have an important impact in future population changes. According to population projections, another baby boom is expected to occur before the end of the end of the century. During the up-coming baby boom period, 1.54 million births are expected, 190,000 per annum. The average increase in population size is expected to 127,000 per year. In the peak year, it may be around 200,000. Thanks to the family planning (FP) program the occurrence of the third baby boom in Beijing has been postponed and the duration will be shortened. From 1972 to 1982, 2.57 million births was averted due to FP, which drastically reduced pressure on the demand for resources and on the momentum of the next baby boom. Another baby booms is not expected during the early half of the 21st century, although an elevated birth rate within the range of normal fluctuation is predicted. The projection was based on the assumption of restricted migration and the enforcement of the FP program. The realization of the projected population will depend on deferred marriage, deferred child-bearing, prolonged birth spacing, the prevention of high parity fertility, the maintenance of the current population policy, and control over the reproductive behavior of the new migrant population.

  2. The geomorphic structure of the runoff peak

    NASA Astrophysics Data System (ADS)

    Rigon, R.; D'Odorico, P.; Bertoldi, G.

    2011-06-01

    This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF) curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  3. Origin of weak lensing convergence peaks

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Haiman, Zoltán

    2016-08-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].

  4. Optimized detection of shear peaks in weak lensing maps

    NASA Astrophysics Data System (ADS)

    Marian, Laura; Smith, Robert E.; Hilbert, Stefan; Schneider, Peter

    2012-06-01

    We present a new method to extract cosmological constraints from weak lensing (WL) peak counts, which we denote as ‘the hierarchical algorithm’. The idea of this method is to combine information from WL maps sequentially smoothed with a series of filters of different size, from the largest down to the smallest, thus increasing the cosmological sensitivity of the resulting peak function. We compare the cosmological constraints resulting from the peak abundance measured in this way and the abundance obtained by using a filter of fixed size, which is the standard practice in WL peak studies. For this purpose, we employ a large set of WL maps generated by ray tracing through N-body simulations, and the Fisher matrix formalism. We find that if low signal-to-noise ratio (?) peaks are included in the analysis (?), the hierarchical method yields constraints significantly better than the single-sized filtering. For a large future survey such as Euclid or Large Synoptic Survey Telescope, combined with information from a cosmic microwave background experiment like Planck, the results for the hierarchical (single-sized) method are Δns= 0.0039 (0.004), ΔΩm= 0.002 (0.0045), Δσ8= 0.003 (0.006) and Δw= 0.019 (0.0525). This forecast is conservative, as we assume no knowledge of the redshifts of the lenses, and consider a single broad bin for the redshifts of the sources. If only peaks with ? are considered, then there is little difference between the results of the two methods. We also examine the statistical properties of the hierarchical peak function: Its covariance matrix has off-diagonal terms for bins with ? and aperture mass of M < 3 × 1014 h-1 M⊙, the higher bins being largely uncorrelated and therefore well described by a Poisson distribution.

  5. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    PubMed

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  6. Electric car arrives - again

    SciTech Connect

    Dunn, S.

    1997-03-01

    The first mass-produced electric cars in modern times are here, although they are expensive, limited in capability and unfamiliar to most prospective consumers. This article presents a brief history of the reintroduction of the modern electric car as well as discussions of the limitations of development, alternative routes to both producing and selling electric cars or some modified version of electric cars, economic incentives and governmental policies, and finally a snapshot description of the future for electric cars. 6 refs., 1 tab.

  7. Solar Electric Propulsion (SEP)

    NASA Video Gallery

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  8. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on Review of Recent Reliability Issues and Systems Events

    SciTech Connect

    Hauer, John F.; Dagle, Jeffery E.

    1999-12-01

    This report is one of six reports developed under the U.S. Department of Energy (DOE) program in Power System Integration and Reliability (PSIR). The objective of this report is to review, analyze, and evaluate critical reliability issues demonstrated by recent disturbance events in the North America power system. Eleven major disturbances are examined, most occurring in this decade. The strategic challenge is that the pattern of technical need has persisted for a long period of time. For more than a decade, anticipation of market deregulation has been a major disincentive to new investments in system capacity. It has also inspired reduced maintenance of existing assets. A massive infusion of better technology is emerging as the final option to continue reliable electrical services. If an investment in better technology will not be made in a timely manner, then North America should plan its adjustments to a very different level of electrical service. It is apparent that technical operations staff among the utilities can be very effective at marshaling their forces in the immediate aftermath of a system emergency, and that serious disturbances often lead to improved mechanisms for coordinated operation. It is not at all apparent that such efforts can be sustained through voluntary reliability organizations in which utility personnel external to those organizations do most of the technical work. The eastern interconnection shows several situations in which much of the technical support has migrated from the utilities to the Independent System Operator (ISO), and the ISO staffs or shares staff with the regional reliability council. This process may be a natural and very positive consequence of utility restructuring. If so, the process should be expedited in regions where it is less advanced.

  9. Molten salt thermal energy storage for utility peaking loads

    NASA Technical Reports Server (NTRS)

    Ferrara, A.; Haslett, R.; Joyce, J.

    1977-01-01

    This paper considers the use of thermal energy storage (TES) in molten salts to increase the capacity of power plants. Five existing fossil and nuclear electric utility plants were selected as representative of current technology. A review of system load diagrams indicated that TES to meet loads over 95% of peak was a reasonable goal. Alternate TES heat exchanger locations were evaluated, showing that the stored energy should be used either for feedwater heating or to generate steam for an auxiliary power cycle. Specific salts for each concept are recommended. Design layouts were prepared for one plant, and it was shown that a TES tube/shell heat exchanger system could provide about 7% peaking capability at lower cost than adding steam generation capacity. Promising alternate heat exchanger concepts were also identified.

  10. Do dark matter halos explain lensing peaks?

    NASA Astrophysics Data System (ADS)

    Zorrilla Matilla, José Manuel; Haiman, Zoltán; Hsu, Daniel; Gupta, Arushi; Petri, Andrea

    2016-10-01

    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with S /N >1 (where S /N is the ratio of the peak height to the r.m.s. shape noise), we find ≈50 % fewer counts for peaks near S /N =0 and significantly higher counts in the negative S /N tail. Adding shape noise reduces the differences to within 20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the {Ωm,σ8} are ≈30 % larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with 2 peaks (S /N >3 ). Our results confirm the importance of using a cosmology-dependent covariance with at least a 14% improvement in parameter constraints. We identified the covariance estimation as the main driver behind differences in inference, and suggest possible ways to make Camelus even more useful as a highly accurate peak count emulator.

  11. Training Lessons Learned from Peak Performance Episodes.

    ERIC Educational Resources Information Center

    Fobes, James L.

    A major challenge confronting the United States Army is to obtain optimal performance from both its human and machine resources. This study examines episodes of peak performance in soldiers and athletes. Three cognitive components were found to enable episodes of peak performance: psychological readiness (activating optimal arousal and emotion…

  12. The geomorphic structure of the runoff peak

    NASA Astrophysics Data System (ADS)

    Rigon, R.; D'Odorico, P.; Bertoldi, G.

    2011-01-01

    This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analitical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF) curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period. Further, it is shown that the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. The same results are found when the effects of hydrodynamic dispersion are accounted for. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  13. The Boson peak in supercooled water

    PubMed Central

    Kumar, Pradeep; Wikfeldt, K. Thor; Schlesinger, Daniel; Pettersson, Lars G. M.; Stanley, H. Eugene

    2013-01-01

    We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih. PMID:23771033

  14. Large ion concentration gradients below the equatorial F peak.

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.

    1973-01-01

    Very large vertical and longitudinal gradients in the ion concentrations are observed below the F peak near the magnetic equator with the retarding potential analyzer on Ogo 6. Ion concentration 'bite outs' of up to a factor of 1000 are observed above 400 km. They appear to be associated with the bottomside of the nighttime F layer. The ion composition in the minima may contain large fractions of ions heavier than O(+) (e.g., NO(+) and Fe(+)). It is suggested that convective electric fields associated with spread F steepen the bottomside of the F layer and also introduce longitudinal irregularities in the vertical ion concentration profiles.

  15. Efficient Use of Electricity.

    ERIC Educational Resources Information Center

    Fickett, Arnold P.; And Others

    1990-01-01

    Discussed are advanced technologies which may offer an opportunity to meet the world's future energy needs while minimizing the environmental impact. Savings to both suppliers and consumers are described. International electricity usage is compared. Government standards for the manufacture of electrical products in the United States are…

  16. Electric Drive Study

    DTIC Science & Technology

    1987-03-01

    Track-Laying Combat Vehicles , and (3) Parametric Study of Electric Drive Component Technologies. The technology survey results are given in a separate...and projections of future electric drive system improvements relative to combat vehicle applications. Unclassified SECURITY CLASSIFICATION OF THIS...273 5.7.2.3.1 DC Homopolar Drum Machine, Design and Performance 5-278 APPENDIX A 19.5 TON AND 40.0 TON VEHICLE SPECIFICATION APPENDIX B ELECTRIC

  17. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    PubMed Central

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-01-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e. peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths for all species. This peak compression occurs with only a modest reduction of resolution, and which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. PMID:27052738

  18. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    SciTech Connect

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-04-06

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  19. Estimation of peak winds from hourly observations

    NASA Technical Reports Server (NTRS)

    Graves, M. E.

    1973-01-01

    Two closely related methods to obtain estimates of the hourly peak wind at Cape Kennedy were compared by statistical tests. The methods evaluated the Monin-Obukhov stability length and the standard deviation of the hourly observed wind speed, so as to augment the latter quantity by F standard deviations. F is an optimized factor. A third method utilizing an optimized gust factor was also applied to the hourly wind. The latter procedure estimated 2952 peak winds with an rms error of 2.81 knots, an accuracy which was not surpassed by the other methods. Peak ground wind speed data were developed for use in space shuttle design operation analyses.

  20. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    NASA Astrophysics Data System (ADS)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  1. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOEpatents

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  2. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    NASA Astrophysics Data System (ADS)

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-08-01

    High average temperatures lead to high regional electricity demand for cooling buildings, and large populations generally require more aggregate electricity than smaller ones do. Thus, future global climate and population changes will present regional infrastructure challenges regarding changing electricity demand. However, without spatially explicit representation of this demand or the ways in which it might change at the neighbourhood scale, it is difficult to determine which electricity service areas are most vulnerable and will be most affected by these changes. Here we show that detailed projections of changing local electricity demand patterns are viable and important for adaptation planning at the urban level in a changing climate. Employing high-resolution and spatially explicit tools, we find that electricity demand increases caused by temperature rise have the greatest impact over the next 40 years in areas serving small populations, and that large population influx stresses any affected service area, especially during peak demand.

  3. Amplification of postwildfire peak flow by debris

    USGS Publications Warehouse

    Kean, Jason W.; Mcguire, Luke; Rengers, Francis; Smith, Joel B.; Staley, Dennis M.

    2016-01-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  4. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  5. Observing at Kitt Peak National Observatory.

    ERIC Educational Resources Information Center

    Cohen, Martin

    1981-01-01

    Presents an abridged version of a chapter from the author's book "In Quest of Telescopes." Includes personal experiences at Kitt Peak National Observatory, and comments on telescopes, photographs, and making observations. (SK)

  6. Tectonics, Climate and Earth's highest peaks

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Prasicek, Günther; Hergarten, Stefan

    2016-04-01

    Prominent peaks characterized by high relief and steep slopes are among the most spectacular morphological features on Earth. In collisional orogens they result from the interplay of tectonically driven crustal thickening and climatically induced destruction of overthickened crust by erosional surface processes. The glacial buzz-saw hypothesis proposes a superior status of climate in limiting mountain relief and peak altitude due to glacial erosion. It implies that peak altitude declines with duration of glacial occupation, i.e., towards high latitudes. This is in strong contrast with high peaks existing in high latitude mountain ranges (e.g. Mt. St. Elias range) and the idea of peak uplift due to isostatic compensation of spatially variable erosional unloading an over-thickened orogenic crust. In this study we investigate landscape dissection, crustal thickness and vertical strain rates in tectonically active mountain ranges to evaluate the influence of erosion on (latitudinal) variations in peak altitude. We analyze the spatial distribution of serval thousand prominent peaks on Earth extracted from the global ETOPO1 digital elevation model with a novel numerical tool. We compare this dataset to crustal thickness, thickening rate (vertical strain rate) and mean elevation. We use the ratios of mean elevation to peak elevation (landscape dissection) and peak elevation to crustal thickness (long-term impact of erosion on crustal thickness) as indicators for the influence of erosional surface processes on peak uplift and the vertical strain rate as a proxy for the mechanical state of the orogen. Our analysis reveals that crustal thickness and peak elevation correlate well in orogens that have reached a mechanically limited state (vertical strain rate near zero) where plate convergence is already balanced by lateral extrusion and gravitational collapse and plateaus are formed. On the Tibetan Plateau crustal thickness serves to predict peak elevation up to an altitude

  7. Helping System Engineers Bridge the Peaks

    NASA Technical Reports Server (NTRS)

    Rungta, Neha; Tkachuk, Oksana; Person, Suzette; Biatek, Jason; Whalen, Michael W.; Castle, Joseph; Castle, JosephGundy-Burlet, Karen

    2014-01-01

    In our experience at NASA, system engineers generally follow the Twin Peaks approach when developing safety-critical systems. However, iterations between the peaks require considerable manual, and in some cases duplicate, effort. A significant part of the manual effort stems from the fact that requirements are written in English natural language rather than a formal notation. In this work, we propose an approach that enables system engineers to leverage formal requirements and automated test generation to streamline iterations, effectively "bridging the peaks". The key to the approach is a formal language notation that a) system engineers are comfortable with, b) is supported by a family of automated V&V tools, and c) is semantically rich enough to describe the requirements of interest. We believe the combination of formalizing requirements and providing tool support to automate the iterations will lead to a more efficient Twin Peaks implementation at NASA.

  8. Double peak sensory responses: effects of capsaicin.

    PubMed

    Aprile, I; Tonali, P; Stalberg, E; Di Stasio, E; Caliandro, P; Foschini, M; Vergili, G; Padua, L

    2007-10-01

    The aim of this study is to verify whether degeneration of skin receptors or intradermal nerve endings by topical application of capsaicin modifies the double peak response obtained by submaximal anodal stimulation. Five healthy volunteers topically applied capsaicin to the finger-tip of digit III (on the distal phalanx) four times daily for 4-5 weeks. Before and after local capsaicin applications, we studied the following electrophysiological findings: compound sensory action potential (CSAP), double peak response, sensory threshold and double peak stimulus intensity. Local capsaicin application causes disappearance or decrease of the second component of the double peak, which gradually increases after the suspension of capsaicin. Conversely, no significant differences were observed for CSAP, sensory threshold and double peak stimulus intensity. This study suggests that the second component of the double peak may be a diagnostic tool suitable to show an impairment of the extreme segments of sensory nerve fibres in distal sensory axonopathy in the early stages of damage, when receptors or skin nerve endings are impaired but undetectable by standard nerve conduction studies.

  9. VFDs: Are They Electrical Parasites?

    ERIC Educational Resources Information Center

    Frank, Ned

    2013-01-01

    Variable Frequency Drives (VFDs) are electronic speed controllers used mainly to modulate and reduce the overall speed and power consumption of an electrical motor. They can be used as soft starters for equipment that has a large rotational mass, thus reducing belt ware and large electrical peaks when starting large pieces of equipment. VFDs have…

  10. High peak power diode stacks for high energy lasers

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  11. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  12. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  13. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  14. The PEAK experience in South Carolina

    SciTech Connect

    1998-11-01

    The PEAK Institute was developed to provide a linkage for formal (schoolteachers) and nonformal educators (extension agents) with agricultural scientists of Clemson University`s South Carolina Agricultural Experiment Station System. The goal of the Institute was to enable teams of educators and researchers to develop and provide PEAK science and math learning experiences related to relevant agricultural and environmental issues of local communities for both classroom and 4-H Club experiences. The Peak Institute was conducted through a twenty day residential Institute held in June for middle school and high school teachers who were teamed with an Extension agent from their community. These educators participated in hands-on, minds-on sessions conducted by agricultural researchers and Clemson University Cooperative Extension specialists. Participants were given the opportunity to see frontier science being conducted by scientists from a variety of agricultural laboratories.

  15. Automatic Locking of Laser Frequency to an Absorption Peak

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  16. Separating Peaks in X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Nicolas, David; Taylor, Clayborne; Wade, Thomas

    1987-01-01

    Deconvolution algorithm assists in analysis of x-ray spectra from scanning electron microscopes, electron microprobe analyzers, x-ray fluorescence spectrometers, and like. New algorithm automatically deconvolves x-ray spectrum, identifies locations of spectral peaks, and selects chemical elements most likely producing peaks. Technique based on similarities between zero- and second-order terms of Taylor-series expansions of Gaussian distribution and of damped sinusoid. Principal advantage of algorithm: no requirement to adjust weighting factors or other parameters when analyzing general x-ray spectra.

  17. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to

  18. Futures Conditional.

    ERIC Educational Resources Information Center

    Theobald, Robert

    The readings presented here are designed to help the reader perceive the future more vividly. Part one of the book suggests the various ways in which the future can be seen; it includes science fiction and the views of various analysts as to what the future holds. Part two collects printed materials about the future from various sources, including…

  19. Relationships between peak ground acceleration, peak ground velocity, and modified mercalli intensity in California

    USGS Publications Warehouse

    Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H.

    1999-01-01

    We have developed regression relationships between Modified Mercalli Intensity (Imm) and peak ground acceleration (PGA) and velocity (PGV) by comparing horizontal peak ground motions to observed intensities for eight significant California earthquakes. For the limited range of Modified Mercalli intensities (Imm), we find that for peak acceleration with V ??? Imm ??? VIII, Imm = 3.66 log(PGA) - 1.66, and for peak velocity with V ??? Imm ??? IX, Imm = 3.47 log(PGV) + 2.35. From comparison with observed intensity maps, we find that a combined regression based on peak velocity for intensity > VII and on peak acceleration for intensity < VII is most suitable for reproducing observed Imm patterns, consistent with high intensities being related to damage (proportional to ground velocity) and with lower intensities determined by felt accounts (most sensitive to higher-frequency ground acceleration). These new Imm relationships are significantly different from the Trifunac and Brady (1975) correlations, which have been used extensively in loss estimation.

  20. Plant data comparisons for Comanche Peak 1/2 main feedwater pump trip transient

    SciTech Connect

    Boatwright, W.J.; Choe, W.G; Hiltbrand, D.W.

    1995-09-01

    A RETRAN-02 MOD5 model of Comanche Peak Steam Electric Station was developed by TU Electric for the purpose of performing core reload safety analyses. In order to qualify this model, comparisons against plant transient data from a partial loss of main feedwater flow were performed. These comparisons demonstrated that good representations of the plant response could be obtained with RETRAN-02 and the user-developed models of the primary-to-secondary heat transfer and plant control systems.

  1. OccuPeak: ChIP-Seq Peak Calling Based on Internal Background Modelling

    PubMed Central

    van den Boogaard, Malou; Christoffels, Vincent M.; Barnett, Phil; Ruijter, Jan M.

    2014-01-01

    ChIP-seq has become a major tool for the genome-wide identification of transcription factor binding or histone modification sites. Most peak-calling algorithms require input control datasets to model the occurrence of background reads to account for local sequencing and GC bias. However, the GC-content of reads in Input-seq datasets deviates significantly from that in ChIP-seq datasets. Moreover, we observed that a commonly used peak calling program performed equally well when the use of a simulated uniform background set was compared to an Input-seq dataset. This contradicts the assumption that input control datasets are necessary to fatefully reflect the background read distribution. Because the GC-content of the abundant single reads in ChIP-seq datasets is similar to those of randomly sampled regions we designed a peak-calling algorithm with a background model based on overlapping single reads. The application, OccuPeak, uses the abundant low frequency tags present in each ChIP-seq dataset to model the background, thereby avoiding the need for additional datasets. Analysis of the performance of OccuPeak showed robust model parameters. Its measure of peak significance, the excess ratio, is only dependent on the tag density of a peak and the global noise levels. Compared to the commonly used peak-calling applications MACS and CisGenome, OccuPeak had the highest sensitivity in an enhancer identification benchmark test, and performed similar in an overlap tests of transcription factor occupation with DNase I hypersensitive sites and H3K27ac sites. Moreover, peaks called by OccuPeak were significantly enriched with cardiac disease-associated SNPs. OccuPeak runs as a standalone application and does not require extensive tweaking of parameters, making its use straightforward and user friendly. Availability: http://occupeak.hfrc.nl PMID:24936875

  2. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.

    1985-01-01

    The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.

  3. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  4. Absorption, Creativity, Peak Experiences, Empathy, and Psychoticism.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; And Others

    Tellegen and Atkinson suggested that the trait of absorption may play a part in meditative skill, creativity, capacity for peak experiences, and empathy. Although the absorption-meditative skill relationship has been confirmed, other predictions have not been tested. Tellegen and Atkinson's Absorption Scale was completed by undergraduates in four…

  5. Some Phenomenological Aspects of the Peak Experience

    ERIC Educational Resources Information Center

    Rosenblatt, Howard S.; Bartlett, Iris

    1976-01-01

    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  6. Avoiding the False Peaks in Correlation Discrimination

    SciTech Connect

    Awwal, A S

    2009-07-31

    Fiducials imprinted on laser beams are used to perform video image based alignment of the 192 laser beams in the National Ignition Facility (NIF) of Lawrence Livermore National Laboratory. In many video images, matched filtering is used to detect the location of these fiducials. Generally, the highest correlation peak is used to determine the position of the fiducials. However, when the signal to-be-detected is very weak compared to the noise, this approach totally breaks down. The highest peaks act as traps for false detection. The active target images used for automatic alignment in the National Ignition Facility are examples of such images. In these images, the fiducials of interest exhibit extremely low intensity and contrast, surrounded by high intensity reflection from metallic objects. Consequently, the highest correlation peaks are caused by these bright objects. In this work, we show how the shape of the correlation is exploited to isolate the valid matches from hundreds of invalid correlation peaks, and therefore identify extremely faint fiducials under very challenging imaging conditions.

  7. Spanish Peaks, Sangre de Cristo Range, Colorado

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Spanish Peaks, on the eastern flank of the Sangre de Cristo range, abruptly rise 7,000 feet above the western Great Plains. Settlers, treasure hunters, trappers, gold and silver miners have long sighted on these prominent landmarks along the Taos branch of the Santa Fe trail. Well before the westward migration, the mountains figured in the legends and history of the Ute, Apache, Comanche, and earlier tribes. 'Las Cumbres Espanolas' are also mentioned in chronicles of exploration by Spaniards including Ulibarri in 1706 and later by de Anza, who eventually founded San Francisco (California). This exceptional view (STS108-720-32), captured by the crew of Space Shuttle mission STS108, portrays the Spanish Peaks in the context of the southern Rocky Mountains. Uplift of the Sangre de Cristo began about 75 million years ago and produced the long north-trending ridges of faulted and folded rock to the west of the paired peaks. After uplift had ceased (26 to 22 million years ago), the large masses of igneous rock (granite, granodiorite, syenodiorite) that form the Peaks were emplaced (Penn, 1995-2001). East and West Spanish Peaks are 'stocks'-bodies of molten rock that intruded sedimentary layers, cooled and solidified, and were later exposed by erosion. East Peak (E), at 12,708 ft is almost circular and is about 5 1/2 miles long by 3 miles wide, while West Peak (W), at 13,623 ft is roughly 2 3/4 miles long by 1 3/4 miles wide. Great dikes-long stone walls-radiate outward from the mountains like spokes of a wheel, a prominent one forms a broad arc northeast of East Spanish Peak. As the molten rock rose, it forced its way into vertical cracks and joints in the sedimentary strata; the less resistant material was then eroded away, leaving walls of hard rock from 1 foot to 100 feet wide, up to 100 feet high, and as long as 14 miles. Dikes trending almost east-west are also common in the region. For more information visit: Sangres.com: The Spanish Peaks (accessed January 16

  8. Alaska Village Electric Load Calculator

    SciTech Connect

    Devine, M.; Baring-Gould, E. I.

    2004-10-01

    As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

  9. Effect of reservoir storage on peak flow

    USGS Publications Warehouse

    Mitchell, William D.

    1962-01-01

    For observation of small-basin flood peaks, numerous crest-stage gages now are operated at culverts in roadway embankments. To the extent that they obstruct the natural flood plains of the streams, these embankments serve to create detention reservoirs, and thus to reduce the magnitude of observed peak flows. Hence, it is desirable to obtain a factor, I/O, by which the observed outflow peaks may be adjusted to corresponding inflow peaks. The problem is made more difficult by the fact that, at most of these observation sites, only peak stages and discharges are observed, and complete hydrographs are not available. It is postulated that the inflow hydrographs may be described in terms of Q, the instantaneous discharge; A, the size of drainage area; Pe, the amount of rainfall excess; H, the time from beginning of rainfall excess; D, the duration of rainfall excess; and T and k, characteristic times for the drainage area, and indicative of the time lag between rainfall and runoff. These factors are combined into the dimensionless ratios (QT/APe), (H/T), (k/T), and (D/T), leading to families of inflow hydrographs in which the first ratio is the ordinate, the second is the abscissa, and the third and fourth are distinguishing parameters. Sixteen dimensionless inflow hydrographs have been routed through reservoir storage to obtain 139 corresponding outflow hydrographs. In most of the routings it has been assumed that the storage-outflow relation is linear; that is, that storage is some constant, K, times the outflow. The existence of nonlinear storage is recognized, and exploratory nonlinear routings are described, but analyses and conclusions are confined to the problems of linear storage. Comparisons between inflow hydrographs and outflow hydrographs indicate that, at least for linear storage, I/O=f(k/T, D/T, K/T) in which I and O are, respectively, the magnitudes of the inflow and the outflow peaks, and T, k, D, and K are as defined above. Diagrams are presented to

  10. Investigation of peak load reduction strategies in residential buildings in cooling dominated climates

    NASA Astrophysics Data System (ADS)

    Atallah, Fady

    This investigation of peak load reduction strategies in residential buildings contributes to the global international efforts in reducing energy consumption and is related directly to energy efficiency in residential and commercial buildings. Work reported here involves computer aided building energy simulation of energy efficient and non-energy efficient residential homes coupled with empirical energy consumption data gathered from monitoring an array of energy efficient residential homes. The latter have been implemented for peak load reduction strategies. In addition non-energy efficient residential homes have been monitored to compare performance to the energy efficient homes. This study demonstrates the crucial importance of energy efficiency and peak load reduction strategies in sustaining the energy needs of the southwest US region using Las Vegas for the actual setting. It provides the largest energy consumption data set examined, specifically peak consumption, from energy efficient and non-energy efficient homes at this location. The study demonstrates the peak load reduction benefits of a variety of strategies, namely roof-integrated PV panels, energy efficient building envelope, and substation battery storage. The study focuses on the month of August 2011 and shows how the load reduction can reach 75% at peak times during that month using the computer aided energy simulation. Moreover, the study compares the recorded electrical consumption data from the collection of energy efficient and non-energy efficient residential homes and proves the simulation results in reaching the 75% reduction in electrical consumption at peak times. The study also tries to marry the gathered electrical consumption data of the energy efficient and non-energy efficient homes with the computer simulation model. This is done to reach an actual representative model which behaves similarly to the average of the group of energy and non-energy efficient homes. The benefit of the

  11. Correcting peak deformation in Rosetta's ROSINA/DFMS mass spectrometer

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Dhooghe, Frederik; Gibbons, Andrew; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Briois, Christelle; Calmonte, Ursina; Cessateur, Gaël; Equeter, Eddy; Fiethe, Björn; Fuselier, Stephen; Gombosi, Tamas; Gunell, Herbert; Hässig, Myrttha; Le Roy, Léna; Maggiolo, Romain; Neefs, Eddy; Rubin, Martin; Sémon, Thierry

    2016-04-01

    The Double Focusing Mass Spectrometer (DFMS), part of the ROSINA instrument package aboard the European Space Agency's Rosetta spacecraft visiting comet 67P/Churyumov-Gerasimenko, experiences minor deformation of the mass peaks in the high resolution spectra acquired for m/Z = 16, 17, and to a lesser extent 18. A numerical deconvolution technique has been developed with a two-fold purpose. A first goal is to verify whether the most likely cause of the issue, a lack of stability of one of the electric potentials in the electrostatic analyser, can indeed be held responsible for it. The second goal is to correct for the deformation, in view of the important species located around these masses, and to allow a standard further treatment of the spectra in the automated DFMS data processing chain.

  12. Primary electric propulsion for future space missions

    NASA Technical Reports Server (NTRS)

    Byers, D. C.; Terdan, F. F.; Myers, I. T.

    1979-01-01

    A general methodology is presented which allows prediction of the overall characteristics of thrust systems employing electron-bombardment ion thrusters. Elements of the thrust system are defined and their characteristics presented in a parametric fashion. Two system approaches are evaluated where power management and control elements and thruster characteristics were substantially different. For an assumed system approach, the methodology presented predicts overall system properties, such as input power and mass, when major mission and thrust system parameters, such as trip time and specific impulse, are assumed.

  13. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2017-03-01

    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  14. Status of the Frisco Peak Observatory

    NASA Astrophysics Data System (ADS)

    Ricketts, Paul; Springer, Wayne; Dawson, Kyle; Kieda, Dave; Gondolo, Paolo; Bolton, Adam

    2009-10-01

    The University of Utah has constructed an astronomical observatory located at an elevation of approximately 9600 feet of Frisco Peak west of Milford, Utah. This site was chosen after performing a survey of potential observatory sites throughout Southern Utah. At the time of writing this abstract, the dome and control buildings have been completed. Installation of a 32'' telescope manufactured by DFM Engineering is scheduled to start October 5, 2009. Commissioning of the telescope will take place this fall. A study of the photometric quality of the observatory site will be performed as well. A description of the observatory site survey and the construction and commissioning of the Frisco Peak Observatory will be presented.

  15. Peak oil, food systems, and public health.

    PubMed

    Neff, Roni A; Parker, Cindy L; Kirschenmann, Frederick L; Tinch, Jennifer; Lawrence, Robert S

    2011-09-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all.

  16. Peak Oil, Food Systems, and Public Health

    PubMed Central

    Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.

    2011-01-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492

  17. Electrical injury

    MedlinePlus

    ... damage, especially to the heart, muscles, or brain. Electric current can cause injury in three ways: Cardiac arrest ... How long you were in contact with the electricity How the electricity moved through your body Your ...

  18. Electricity Customers

    EPA Pesticide Factsheets

    This page discusses key sectors and how they use electricity. Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity.

  19. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  20. Reducing Peak Power in Automated Weapon Laying

    DTIC Science & Technology

    2016-02-01

    aiming a weapon is referred to as gun laying. This report describes a method to calculate motion profiles that reach a given lay within the least...amount of time while reducing the amount of peak power required and, therefore, minimizing the forces caused by acceleration. 15. SUBJECT TERMS...Calculating New Acceleration Values 5 Results and Discussions 7 Conclusions 10 Distribution List 11 FIGURES 1 Trapezoidal motion profile 1 2

  1. Quantifying peak discharges for historical floods

    USGS Publications Warehouse

    Cook, J.L.

    1987-01-01

    It is usually advantageous to use information regarding historical floods, if available, to define the flood-frequency relation for a stream. Peak stages can sometimes be determined for outstanding floods that occurred many years ago before systematic gaging of streams began. In the United States, this information is usually not available for more than 100-200 years, but in countries with long cultural histories, such as China, historical flood data are available at some sites as far back as 2,000 years or more. It is important in flood studies to be able to assign a maximum discharge rate and an associated error range to the historical flood. This paper describes the significant characteristics and uncertainties of four commonly used methods for estimating the peak discharge of a flood. These methods are: (1) rating curve (stage-discharge relation) extension; (2) slope conveyance; (3) slope area; and (4) step backwater. Logarithmic extensions of rating curves are based on theoretical plotting techniques that results in straight line extensions provided that channel shape and roughness do not change significantly. The slope-conveyance and slope-area methods are based on the Manning equation, which requires specific data on channel size, shape and roughness, as well as the water-surface slope for one or more cross-sections in a relatively straight reach of channel. The slope-conveyance method is used primarily for shaping and extending rating curves, whereas the slope-area method is used for specific floods. The step-backwater method, also based on the Manning equation, requires more cross-section data than the slope-area ethod, but has a water-surface profile convergence characteristic that negates the need for known or estimated water-surface slope. Uncertainties in calculating peak discharge for historical floods may be quite large. Various investigations have shown that errors in calculating peak discharges by the slope-area method under ideal conditions for

  2. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).

  3. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    PubMed

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  4. Temperature and electrical memory of polymer fibers

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-01

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  5. Temperature and electrical memory of polymer fibers

    SciTech Connect

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-15

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  6. LONE PEAK WILDERNESS STUDY AREA, UTAH.

    USGS Publications Warehouse

    Bromfield, Calvin S.; Patten, Lowell L.

    1984-01-01

    On the basis of a mineral survey, three areas in the Lone Peak Wilderness study area, Utah are classed as having mineral-resource potential. These include the Silver Creek district, near the east boundary of the area, the Alpine district near the southwest boundary, and the White Pine Fork area in the northeast part of the area. The Silver Creek and Alpine districts have probable potential for small deposits of silver, lead, zinc and, in addition, the Silver Creek district has a probable potential for small tungsten deposits. Of more significance, the White Pine Fork area has a probable potential for porphyry-type molybdenum resources.

  7. Probing cosmology with weak lensing peak counts

    SciTech Connect

    Kratochvil, Jan M.; Haiman, Zoltan; May, Morgan

    2010-02-15

    We propose counting peaks in weak lensing (WL) maps, as a function of their height, to probe models of dark energy and to constrain cosmological parameters. Because peaks can be identified in two-dimensional WL maps directly, they can provide constraints that are free from potential selection effects and biases involved in identifying and determining the masses of galaxy clusters. As a pilot study, we have run cosmological N-body simulations to produce WL convergence maps in three models with different constant values of the dark energy equation-of-state parameter, w=-0.8, -1, and -1.2, with a fixed normalization of the primordial power spectrum (corresponding to present-day normalizations of {sigma}{sub 8}=0.742, 0.798, and 0.839, respectively). By comparing the number of WL peaks in eight convergence bins in the range of -0.1<{kappa}<0.4, in multiple realizations of a single simulated 3x3 degree field, we show that the first (last) pair of models differ at the 95% (85%) confidence level. A survey with depth and area comparable to those expected from the Large Synoptic Survey Telescope should have a factor of {approx_equal}50 better parameter sensitivity. These results warrant further investigation, in order to assess the constraints available when marginalization over other uncertain parameters is included, and with the specifications of a realistic survey folded into the analysis. Here we find that relatively low-amplitude peaks ({kappa}{approx}0.03), which typically do not correspond to a single collapsed halo along the line of sight, account for most of the parameter sensitivity. We study a range of smoothing scales and source galaxy redshifts (z{sub s}). With a fixed source galaxy density of 15 arcmin{sup -2}, the best results are provided by the smallest scale we can reliably simulate, 1 arcmin, and z{sub s}=2 provides substantially better sensitivity than z{sub s{<=}}1.5.

  8. SETI at the cosmic blackbody radiation peak

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1990-11-01

    Roughly two-thirds of the past 50 SETI studies have concentrated in or near the 'Water Hole' frequencies (between 18 cm and 21 cm wave-length), with no success so far. Gott (1982) proposed an alternative, namely to look at the frequency where the peak of the 2.735 K Cosmic Blackbody Radiation (CBR) is located. An update is presented here on what little has been done so far there, and on what could be done in the 1990s with current receiver technology.

  9. Calculating weighted estimates of peak streamflow statistics

    USGS Publications Warehouse

    Cohn, Timothy A.; Berenbrock, Charles; Kiang, Julie E.; Mason, Jr., Robert R.

    2012-01-01

    According to the Federal guidelines for flood-frequency estimation, the uncertainty of peak streamflow statistics, such as the 1-percent annual exceedance probability (AEP) flow at a streamgage, can be reduced by combining the at-site estimate with the regional regression estimate to obtain a weighted estimate of the flow statistic. The procedure assumes the estimates are independent, which is reasonable in most practical situations. The purpose of this publication is to describe and make available a method for calculating a weighted estimate from the uncertainty or variance of the two independent estimates.

  10. Electrical Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this electrical program is to prepare students for service, repair, and assembly of electrically driven or controlled devices. The program theory and application includes mechanical assemblies, electrical circuitry, and electronic principles including basic digital circuitry. The electrical program manual includes the following…

  11. Beyond the Peak - Tactile Temporal Discrimination Does Not Correlate with Individual Peak Frequencies in Somatosensory Cortex.

    PubMed

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    The human sensory systems constantly receive input from different stimuli. Whether these stimuli are integrated into a coherent percept or segregated and perceived as separate events, is critically determined by the temporal distance of the stimuli. This temporal distance has prompted the concept of temporal integration windows or perceptual cycles. Although this concept has gained considerable support, the neuronal correlates are still discussed. Studies suggested that neuronal oscillations might provide a neuronal basis for such perceptual cycles, i.e., the cycle lengths of alpha oscillations in visual cortex and beta oscillations in somatosensory cortex might determine the length of perceptual cycles. Specifically, recent studies reported that the peak frequency (the frequency with the highest spectral power) of alpha oscillations in visual cortex correlates with subjects' ability to discriminate two visual stimuli. In the present study, we investigated whether peak frequencies in somatosensory cortex might serve as the correlate of perceptual cycles in tactile discrimination. Despite several different approaches, we were unable to find a significant correlation between individual peak frequencies in the alpha- and beta-band and individual discrimination abilities. In addition, analysis of Bayes factor provided evidence that peak frequencies and discrimination thresholds are unrelated. The results suggest that perceptual cycles in the somatosensory domain are not necessarily to be found in the peak frequency, but in other frequencies. We argue that studies based solely on analysis of peak frequencies might thus miss relevant information.

  12. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    PubMed

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

  13. Outreach Plans for Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.

  14. Equivalence principle and the baryon acoustic peak

    NASA Astrophysics Data System (ADS)

    Baldauf, Tobias; Mirbabayi, Mehrdad; Simonović, Marko; Zaldarriaga, Matias

    2015-08-01

    We study the dominant effect of a long wavelength density perturbation δ (λL) on short distance physics. In the nonrelativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at ℓBAO, this naive expectation breaks down for λL<ℓBAO. We calculate a universal piece of the three-point correlation function in this regime. The same effect is shown to underlie the spread of the acoustic peak, and is calculable to all orders in the long modes. This can be used to improve the result of perturbative calculations—a technique known as "infra-red resummation"—and is explicitly applied to the one-loop calculation of the power spectrum. Finally, the success of baryon acoustic oscillation reconstruction schemes is argued to be another empirical evidence for the validity of the results.

  15. Electric energy demand and supply prospects for California

    NASA Technical Reports Server (NTRS)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  16. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2010-01-01

    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded

  17. The Electric Vocabulary

    ERIC Educational Resources Information Center

    Sheils, James

    2012-01-01

    Since the 1600s, the developments in the understanding of electrical phenomena have frequently altered the models and metaphors used by physicists to describe and explain their experiments. However, to this day, certain relics of past theories still drench the vocabulary of the subject, serving as distracting fog for future students. This article…

  18. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  19. Hubbert's Peak, The Coal Question, and Climate Change

    NASA Astrophysics Data System (ADS)

    Rutledge, D.

    2008-12-01

    The United Nations Intergovernmental Panel on Climate Change (IPCC) makes projections in terms of scenarios that include estimates of oil, gas, and coal production. These scenarios are defined in the Special Report on Emissions Scenarios or SRES (Nakicenovic et al., 2000). It is striking how different these scenarios are. For example, total oil production from 2005 to 2100 in the scenarios varies by 5:1 (Appendix SRES Version 1.1). Because production in some of the scenarios has not peaked by 2100, this ratio would be comparable to 10:1 if the years after 2100 were considered. The IPCC says "... the resultant 40 SRES scenarios together encompass the current range of uncertainties of future GHG [greenhouse gas] emissions arising from different characteristics of these models ..." (Nakicenovic et al., 2000, Summary for Policy Makers). This uncertainty is important for climate modeling, because it is larger than the likely range for the temperature sensitivity, which the IPCC gives as 2.3:1 (Gerard Meehl et al., 2007, the Fourth Assessment Report, Chapter 10, Global Climate Projections, p. 799). The uncertainty indicates that we could improve climate modeling if we could make a better estimate of future oil, gas, and coal production. We start by considering the two major fossil-fuel regions with substantial exhaustion, US oil and British coal. It turns out that simple normal and logistic curve fits to the cumulative production for these regions give quite stable projections for the ultimate production. By ultimate production, we mean total production, past and future. For US oil, the range for the fits for the ultimate is 1.15:1 (225- 258 billion barrels) for the period starting in 1956, when King Hubbert made his prediction of the peak year of US oil production. For UK coal, the range is 1.26:1 for the period starting in 1905, at the time of a Royal Commission on coal supplies. We extend this approach to find fits for world oil and gas production, and by a regional

  20. BUFFALO PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Hedlund, D.C.; Wood, R.H.

    1984-01-01

    Field investigations were conducted to evaluate the mineral-resource potential of the Buffalo Peaks Wilderness Study Area, Colorado. On the basis of this study there is a probable mineral-resource potential for silver vein and bedding replacement deposits along the Weston Pass fault zone, for hydrothermal vein-type uranium deposits in the vicinity of the Parkdale iron pit, and for gold vein deposits in the parts of the Granite and Four Mile districts that are within the wilderness study area. A probable barite resource potential occurs at Rough and Tumbling Creek and near Spring Creek on the east side of the study area. There is little promise for the occurrence of energy resources.

  1. Do we see an 'Iron Peak' ?

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Wolfendale, A. W.

    2011-04-01

    An update of the fine structure in the cosmic ray (CR) energy spectrum at PeV and tens of PeV energies is presented. The existence of the bump at 50-80 PeV found in the GAMMA experiment is supported by 9 other experiments. If it is a real feature it might indicate the existence of the so called 'Iron Peak', i.e. the end of the contribution of a 'Single Source' to the background of CR from other sources. We argue that the new feature in the fine structure of the CR energy spectrum makes the evidence in favour of the presence of a 'Single Source' stronger than before.

  2. Campus Futures

    ERIC Educational Resources Information Center

    Dator, Jim

    2006-01-01

    Most people in the United States, no matter how extensive their education, have never had a course dealing primarily with the future. But they have had at least one course, and probably many courses, dealing with the past. Most also have never questioned why the past is so emphasized in formal education while the future--the only arena over which…

  3. Caffeine supplementation and peak anaerobic power output.

    PubMed

    Glaister, Mark; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul; McInnes, Gillian

    2015-01-01

    The aim of this study was to investigate the effects of caffeine supplementation on peak anaerobic power output (Wmax). Using a counterbalanced, randomised, double-blind, placebo-controlled design, 14 well-trained men completed three trials of a protocol consisting of a series of 6-s cycle ergometer sprints, separated by 5-min passive recovery periods. Sprints were performed at progressively increasing torque factors to determine the peak power/torque relationship and Wmax. Apart from Trial 1 (familiarisation), participants ingested a capsule containing 5 mg·kg(-1) of caffeine or placebo, one hour before each trial. The effects of caffeine on blood lactate were investigated using capillary samples taken after each sprint. The torque factor which produced Wmax was not significantly different (p ≥ 0.05) between the caffeine (1.15 ± 0.08 N·m·kg(-1)) and placebo (1.13 ± 0.10 N·m·kg(-1)) trials. There was, however, a significant effect (p < 0.05) of supplementation on Wmax, with caffeine producing a higher value (1885 ± 303 W) than placebo (1835 ± 290 W). Analysis of the blood lactate data revealed a significant (p < 0.05) torque factor × supplement interaction with values being significantly higher from the sixth sprint (torque factor 1.0 N·m·kg(-1)) onwards following caffeine supplementation. The results of this study confirm previous reports that caffeine supplementation significantly increases blood lactate and Wmax. These findings may explain why the majority of previous studies, which have used fixed-torque factors of around 0.75 N·m·kg(-1) and thereby failing to elicit Wmax, have failed to find an effect of caffeine on sprinting performance.

  4. Twilight of the electric dinosaurs

    SciTech Connect

    Green, L. Jr. )

    1990-11-22

    This article examines the future practicality of large electric generating plants and various technologies for transmitting energy other than electricity. The author describes advantages, cost and methods of chemical energy transmission in the form of methanol. Uses, production (including environmental impacts) and supply of methanol are also discussed.

  5. Electric power for space satellites

    NASA Technical Reports Server (NTRS)

    Mackenzie, C. M.

    1974-01-01

    The development of electric power systems for satellites is discussed as an evolutionary process requiring the integration of power generation, power storage, and power control and distribution. The growth of space electric power systems is traced. The capabilities and limitations of the various elements (i.e. silicon solar cells) are discussed together with their impact on future technological growth.

  6. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  7. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more

  8. Electrical Generation.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Described are two activities designed to help children investigate electrical charges, electric meters, and electromagnets. Included are background information, a list of materials, procedures, and follow-up questions. Sources of additional information are cited. (CW)

  9. Climate, extreme heat, and electricity demand in California

    SciTech Connect

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

  10. Constraining the mass-concentration relation through weak lensing peak function

    SciTech Connect

    Mainini, R.; Romano, A. E-mail: anna.romano@oar.inaf.it

    2014-08-01

    Halo masses and concentrations have been studied extensively, by means of N-body simulations as well as observationally, during the last decade. Nevertheless, the exact form of the mass-concentration relation is still widely debated. One of the most promising method to estimate masses and concentrations relies on gravitational lensing from massive halos. Here we investigate the impact of the mass-concentration relation on halo peak abundance in weak lensing shear maps relying on the aperture mass method for peak detections. After providing a prescription to take into account the concentration dispersion (always neglected in previous works) in peak number counts predictions, we assess their power to constrain the mass-concentration relation by means of Fisher matrix technique. We find that, when combined with different cosmological probes, peak statistics information from near-future weak lensing surveys provides an interesting and complementary alternative method to lessen the long standing controversy about the mass-concentration relation.

  11. Influence of heredity and environment on peak bone density: a review of studies in Croatia.

    PubMed

    Cvijetić Avdagić, Selma; Colić Barić, Irena; Keser, Irena; Rumbak, Ivana; Šatalić, Zvonimir

    2012-01-01

    One of the main determinants of who will develop osteoporosis is the amount of bone accumulated at peak bone density. There is poor agreement, however, on when peak bone density occurs. Ethnic differences were observed in age at peak bone density and their correlates. Since the diagnosis of osteoporosis and osteopaenia is based on the comparison between patients' bone mineral density (BMD) and optimal peak bone density in healthy young people (T-score), it is of great importance that each country should provide its own reference peak bone density data.This review article presents our published results on peak bone density in Croatia and compares them with findings in other populations. Our research included 18 to 25-year-old students from Zagreb University and their parents. The results showed that peak bone mass in young Croatian women was achieved before the age of twenty, but BMD continued to increase after the mid-twenties in the long-bone cortical skeleton. BMD was comparable to the values reported by the National Health and Nutrition Examination Survey (NHANES) and other studies that included the same age groups, except for the cortical part of the radius, where it was significantly lower. Men achieved peak bone density in the spine later than women, which cannot be explained by different diet or physical activity. As expected, heredity was more important for peak bone density than the environmental factors known to be important for bone health. However, the influence of heredity was not as strong as observed in most other populations. It was also weaker in the cortical than in the trabecular parts of the skeleton. Future research should include young adolescent population to define the exact age of achieving peak bone density in different skeletal sites.

  12. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity

    ERIC Educational Resources Information Center

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-01-01

    Purpose: At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study…

  13. Sustainable Futures

    EPA Pesticide Factsheets

    Sustainable Futures is a voluntary program that encourages industry to use predictive models to screen new chemicals early in the development process and offers incentives to companies subject to TSCA section 5.

  14. NOx control buys to peak in `98

    SciTech Connect

    McIlvaine, R.W.

    1995-10-01

    Titles I and IV of the Clean Air Act provide the legislative framework for a huge NOx reduction program now in operation. This reduction will have a substantial effect in reducing ground-level ozone. A new McIlvaine report concludes that US utilities and industrial companies during the next 10 years will spend more than $800 million annually to meet CAA`s NOx-control regulations. Much of that investment will be for low-NOx burners, which minimize NOx formation. Many utilities and industrial boilers can be retrofitted with a new generation of burners; however, this technology achieves less than 50% NOx reduction. Post-combustion technologies, such as selective catalytic reduction and selective noncatalytic reduction, can reduce NOx as much as 90%. Therefore, plants needing greater NOx reduction will use post-combustion technologies, often in combination with low-NOx burners. The peak order year for NOx-control equipment will be 1998, primarily because Title IV of CAA requires utilities to comply by 2000. Many industrial sources also will be ordering equipment in 1998.

  15. North Twin Peak in super resolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This pair of images shows the result of taking a sequence of 25 identical exposures from the Imager for Mars Pathfinder (IMP) of the northern Twin Peak, with small camera motions, and processing them with the Super-Resolution algorithm developed at NASA's Ames Research Center.

    The upper image is a representative input image, scaled up by a factor of five, with the pixel edges smoothed out for a fair comparison. The lower image allows significantly finer detail to be resolved.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    The super-resolution research was conducted by Peter Cheeseman, Bob Kanefsky, Robin Hanson, and John Stutz of NASA's Ames Research Center, Mountain View, CA. More information on this technology is available on the Ames Super Resolution home page at

    http://ic-www.arc.nasa.gov/ic/projects/bayes-group/ group/super-res/

  16. MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS

    SciTech Connect

    Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent

    2011-02-10

    We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f{sub NL} = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f{sub NL} = {+-}100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f{sub NL} = 0 peak function to the f{sub NL} = {+-}100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f{sub NL} can be measured with an error {Delta}f{sub NL} {approx} 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.

  17. Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants

    NASA Astrophysics Data System (ADS)

    Amsbeck, Lars; Buck, Reiner; Prosin, Tobias

    2016-05-01

    Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.

  18. A strategy of load leveling by charging and discharging time control of electric vehicles

    SciTech Connect

    Koyanagi, Fumiko; Uriu, Yoshihisa

    1998-08-01

    By ZEV regulation of the California government in 1992, not only The United States but also many developing countries are largely interested in replacing gasoline car by electric vehicle(EV). The electric utility expects that the electric vehicle improves the difference between the daytime and nighttime of a recent demand as a new market of electric power demand. There are some reports that indicate on the danger which generates the new peaks as the electric vehicles spread through the market in charging start hour. As the countermeasure for avoiding this problem, the authors propose that (1) the regional charging time shift method is introduced in the midnight charging time zone, (2) inverse load flow by the discharge of the contract private use EV is carried out as an energy consumption of the automobile was investigated, and future demand is predicted by the mathematical consumption modeling. Especially, it shows a strategy of optimum introduction on scheme and rate of electric vehicle for effective energy shift. And authors point out the necessity of market regulation for electric vehicle.

  19. Projecting Electricity Demand in 2050

    SciTech Connect

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  20. Electric vehicles

    NASA Astrophysics Data System (ADS)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  1. Peak Power Markets for Satellite Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  2. Fracture Permeability Evolution in Desert Peak Quartz Monzonite

    SciTech Connect

    Carlson, S R; Roberts, J J; Detwiler, R L; Viani, B E; Roberts, S K

    2005-05-10

    Fracture flow experiments are being conducted on quartz monzonite core from the Desert Peak East EGS site, Churchill County, Nevada. The flow experiments are conducted at temperatures of 167-169 C and 5.5 MPa confining pressure through artificial fractures. Two injection fluids, a saline solution and a silica-bearing solution, have been used to date. Flow rates are typically 0.02 mL/min, but other rates have been used. The fracture surfaces are characterized with a contact profilometer. The profilometry data demonstrate that it is possible to fabricate statistically similar fracture surfaces and enable us to map aperture variations, which we use in numerical simulations. Effluent samples are collected for chemical analysis. The fluid pressure gradient is measured across the specimen and effective hydraulic apertures are calculated. The experiments show a reduction in permeability over time for both injection fluids, but a more rapid loss of permeability was observed for the silica-bearing solution. The calculated hydraulic aperture is observed to decrease by 17% for the saline solution and 75% for the silica-bearing fluid, respectively. Electrical resistivity measurements, which are sensitive to the ionic content of the pore fluid, provide additional evidence of fluid-rock interactions.

  3. Residential implementation of critical-peak pricing ofelectricity

    SciTech Connect

    Herter, Karen

    2006-06-29

    This paper investigates how critical-peak pricing (CPP)affects households with different usage and income levels, with the goalof informing policy makers who are considering the implementation of CPPtariffs in the residential sector. Using a subset of data from theCalifornia Statewide Pricing Pilot of 2003-2004, average load changeduring summer events, annual percent bill change, and post-experimentsatisfaction ratings are calculated across six customer segments,categorized by historical usage and income levels. Findings show thathigh-use customers respond significantly more in kW reduction than dolow-use customers, while low-use customers save significantly more inpercentage reduction of annual electricity bills than do high-usecustomers results that challenge the strategy of targeting only high-usecustomers for CPP tariffs. Across income levels, average load and billchanges were statistically indistinguishable, as were satisfaction ratesresults that are compatible with a strategy of full-scale implementationof CPP rates in the residential sector. Finally, the high-use customersearning less than $50,000 annually were the most likely of the groups tosee bill increases about 5 percent saw bill increases of 10 percent ormore suggesting that any residential CPP implementation might considertargeting this customer group for increased energy efficiencyefforts.

  4. Analyses of magnetic-field peak-exposure summary measures.

    PubMed

    Mezei, Gabor; Bracken, T Dan; Senior, Russell; Kavet, Robert

    2006-11-01

    Two previous epidemiologic studies reported an association between the maximum magnetic field exposure logged during a 24-h measurement period and risk of miscarriage. A hypothesis was put forth which argued that the observed association may be the result of behavioral differences between women with healthy pregnancies (less physically active) and women with miscarriage. We analyzed four existing data sets with power-frequency magnetic-field personal exposure (PE) measurements to investigate the characteristics of peak-exposure measures. We found that the value of the measured maximum magnetic-field exposure varied inversely with the sampling interval between magnetic-field measurements and that maximum values demonstrated less stability over time in repeated measurements, compared to time-weighted average and 95th and 99th -percentile values. We also found that the number of activity categories entered by study subjects could be used to estimate the proportion of subjects with exposure above various threshold values. Exposure metrics based on maximum values exceeding thresholds tend to classify active people into higher exposure categories. These findings are consistent with the hypothesis suggesting that the association between maximum magnetic fields and miscarriage are possibly the result of behavioral differences between women with healthy pregnancies and women who experience miscarriages. Thus, generalization from a given study to more global exposure characterization should be made with particular caution and with due consideration to sampling interval and other characteristics of the measurement protocol potentially influencing the measured maximum. Future epidemiologic studies of peak magnetic field exposure and spontaneous abortion should carefully evaluate the potential confounding effect of the women's activity level during pregnancy.

  5. The ultrafast high-peak power lasers in future biomedical and medical x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kieffer, J. C.; Fourmaux, S.; Krol, A.

    2016-01-01

    This paper reviews recent progresses in ultrafast laser-based X-ray sources and their potential applications to high throughput X-ray imaging. Prospects for the utilization of X-rays sources related to the Laser Wakefield electron Acceleration (LWFA) are more specifically discussed with emphasis on application in diagnostic radiology.

  6. Silicon cell module using Fresnel lens and reflector attains 17% peak efficiency in test at Sandia Labs

    SciTech Connect

    Not Available

    1984-08-27

    A photovoltaic solar-cell module designed at the Sandia National Laboratories in Albuquerque attained peak sunlight-to-electricity conversion of 17% last month. The achievement suggests that upper limits on practical efficiency for single-crystal silicon-cell modules may be higer than some previously had thought. The 17% peak efficiency marks a world record for silicon cell technology, according to Sandia. Previously, the best performance attained had been 15%.

  7. Electric propulsion and interstellar flight

    SciTech Connect

    Matloff, G.L.

    1987-01-01

    Two general classes of interstellar space-flights are defined: endothermic and exothermic. Endothermic methods utilize power sources external to the vehicle and associated technology. Faster exothermic methods utilize on-board propulsive power sources or energy-beam technology. Various proposed endothermic electric propulsion methods are described. These include solar electric rockets, mass drivers, and ramjets. A review of previously suggested exothermic electric propulsion methods is presented. Following this review is a detailed discussion of possible near future application of the beamed-laser ramjet, mainly for ultimate relativistic travel. Electric/magnetic techniques offer an excellent possibility for decelerating an interstellar vehicle, regardless of the acceleration technique. 20 references.

  8. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, Igor

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  9. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  10. Reducing the peak-power crisis with residential energy storage systems

    SciTech Connect

    Kunze, J.F.; Miller, W.H.; Durand, J.

    1986-01-01

    A means of delaying the peak-load crisis is proposed that involves a low capital cost investment, better utilization of the existing electrical system (now with average capacity factor of <50%), and that would be able to compensate for more than half of the next 10-yr peak-load growth at the rate of 3% per annum, without building any new generating capacity. The proposed method involves only the residential sector that uses electric powered heat pumps and proposes to accomplish the above goals through time-of-day metering incentives and central station line signal control of the heat pumps and electric hot water heaters. Heat pump compressors and hot water heater elements would be shut off for periods of up to 3 h, and the storage system would later be recharged during off-peak nighttime hours. Two-way communication is preferred, so that the central station computer could assess the condition of each residence and its storage system before turning off the power. An analysis has been done for the central Missouri climate and general utility system characteristics, which it would appear represents a reasonable average for the nation.

  11. Oil from algae; salvation from peak oil?

    PubMed

    Rhodes, Christopher J

    2009-01-01

    A review is presented of the use of algae principally to produce biodiesel fuel, as a replacement for conventional fuel derived from petroleum. The imperative for such a strategy is that cheap supplies of crude oil will begin to wane within a decade and land-based crops cannot provide more than a small amount of the fuel the world currently uses, even if food production were allowed to be severely compromised. For comparison, if one tonne of biodiesel might be produced say, from rape-seed per hectare, that same area of land might ideally yield 100 tonnes of biodiesel grown from algae. Placed into perspective, the entire world annual petroleum demand which is now provided for by 31 billion barrels of crude oil might instead be met from algae grown on an area equivalent to 4% of that of the United States. As an additional benefit, in contrast to growing crops it is not necessary to use arable land, since pond-systems might be placed anywhere, even in deserts, and since algae grow well on saline water or wastewaters, no additional burden is imposed on freshwater-a significant advantage, as water shortages threaten. Algae offer the further promise that they might provide future food supplies, beyond what can be offered by land-based agriculture to a rising global population.

  12. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  13. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    of the soil-root interface (phase peak in the range of 10 Hz) and the root tissue (phase peak above 10 kHz). Importantly, our measurements prove an almost linear relationship between root mass and the electrical polarizability associated with the low-frequency relaxation, suggesting the potential of the method to quantify root structural parameters. In future studies we will in particular investigate a hypothesized relationship between time constant and effective root radius. Based on our results, we believe that spectral EIT, by combining the spatial resolution benefits of a tomographic method with the diagnostic capability of spectroscopy, can be developed into a valuable tool for imaging, characterizing, and monitoring root systems both at laboratory and field scales.

  14. Does the Brain Detect 3G Mobile Phone Radiation Peaks? An Explorative In-Depth Analysis of an Experimental Study.

    PubMed

    Roggeveen, Suzanne; van Os, Jim; Lousberg, Richel

    2015-01-01

    This study aimed to investigate whether third generation mobile phone radiation peaks result in event related potentials. Thirty-one healthy females participated. In this single-blind, cross-over design, a 15 minute mobile phone exposure was compared to two 15 minute sham phone conditions, one preceding and one following the exposure condition. Each participant was measured on two separate days, where mobile phone placement was varied between the ear and heart. EEG activity and radiofrequency radiation were recorded jointly. Epochs of 1200 ms, starting 200 ms before and lasting until 1000 ms after the onset of a radiation peak, were extracted from the exposure condition. Control epochs were randomly selected from the two sham phone conditions. The main a-priori hypothesis to be tested concerned an increase of the area in the 240-500 ms post-stimulus interval, in the exposure session with ear-placement. Using multilevel regression analyses the placement*exposure interaction effect was significant for the frontal and central cortical regions, indicating that only in the mobile phone exposure with ear-placement an enlarged cortical reactivity was found. Post-hoc analyses based on visual inspection of the ERPs showed a second significantly increased area between 500-1000 ms post-stimulus for almost every EEG location measured. It was concluded that, when a dialing mobile phone is placed on the ear, its radiation, although unconsciously, is electrically detected by the brain. The question of whether or not this cortical reactivity results in a negative health outcome has to be answered in future longitudinal experiments.

  15. Does the Brain Detect 3G Mobile Phone Radiation Peaks? An Explorative In-Depth Analysis of an Experimental Study

    PubMed Central

    Roggeveen, Suzanne; van Os, Jim; Lousberg, Richel

    2015-01-01

    This study aimed to investigate whether third generation mobile phone radiation peaks result in event related potentials. Thirty-one healthy females participated. In this single-blind, cross-over design, a 15 minute mobile phone exposure was compared to two 15 minute sham phone conditions, one preceding and one following the exposure condition. Each participant was measured on two separate days, where mobile phone placement was varied between the ear and heart. EEG activity and radiofrequency radiation were recorded jointly. Epochs of 1200ms, starting 200ms before and lasting until 1000ms after the onset of a radiation peak, were extracted from the exposure condition. Control epochs were randomly selected from the two sham phone conditions. The main a-priori hypothesis to be tested concerned an increase of the area in the 240-500ms post-stimulus interval, in the exposure session with ear-placement. Using multilevel regression analyses the placement*exposure interaction effect was significant for the frontal and central cortical regions, indicating that only in the mobile phone exposure with ear-placement an enlarged cortical reactivity was found. Post-hoc analyses based on visual inspection of the ERPs showed a second significantly increased area between 500-1000ms post-stimulus for almost every EEG location measured. It was concluded that, when a dialing mobile phone is placed on the ear, its radiation, although unconsciously, is electrically detected by the brain. The question of whether or not this cortical reactivity results in a negative health outcome has to be answered in future longitudinal experiments. PMID:25962168

  16. Photovoltaic concentrators: performance and reliability data and future design directions

    SciTech Connect

    Edenburn, M.W.; Boes, E.C.

    1984-05-01

    This paper will summarize the status and discuss likely future directions of photovoltaic concentrator technology. A current commercial Si cell module has a peak efficiency of 15.5%, and 17% has been reached for an experimental module. Advanced cells and module design improvements offer still higher efficiencies. Concentrator Fresnel lens array fields installed several years ago have all demonstrated very good electrical performance with little performance degradation. Fresnel lens arrays are commercially available and prices of $7/watt for installed one megawatt systems have been quoted. Cost projections predict that current technology concentrating PV arrays can be installed for less than $2/watt if they are manufactured in large, steady quantities. More advanced designs may cost even less.

  17. Photovoltaic concentrators: Performance and reliability data and future design directions

    SciTech Connect

    Edenbrum, M.

    1984-05-01

    This paper will summarize the status and discuss likely future directions of photovoltaic concentrator technology. A current commercial Si cell module has a peak efficiency of 15.5%, and 17% has been reached for an experimental module. Advanced cells and module design improvements offer still higher efficiencies. Concentrator Fresnel lens array fields installed several years ago have all demonstrated very good electrical performance with little performance degradation. Fresnel lens arrays are commercially available and prices of $7/watt for installed one megawatt systems have been quoted. Cost projections predict that current technology concentrating PV arrays can be installed for less than $2/watt if they are manufactured in large, steady quantities. More advanced designs may cost even less.

  18. CO and H2O vibrational emission toward Orion Peak 1 and Peak 2

    NASA Astrophysics Data System (ADS)

    González-Alfonso, E.; Wright, C. M.; Cernicharo, J.; Rosenthal, D.; Boonman, A. M. S.; van Dishoeck, E. F.

    2002-05-01

    ISO/SWS observations of Orion Peak 1 and Peak 2 show strong emission in the ro-vibrational lines of CO v=1-0 at 4.45-4.95 μm and of H2O ν2=1-0 at 6.3-7.0 μm. Toward Peak 1 the total flux in both bands is, assuming isotropic emission, ≈2.4 and ≈0.53 Lsun, respectively. This corresponds to ≈14 and ≈3% of the total H2 luminosity in the same beam. Two temperature components are found to contribute to the CO emission from Peak 1/2: a warm component, with TK=200-400 K, and a hot component with Tk~3×103 K. At Peak 2 the CO flux from the warm component is similar to that observed at Peak 1, but the hot component is a factor of ≈2 weaker. The H2O band is ≈25% stronger toward Peak 2, and seems to arise only in the warm component. The P-branch emission of both bands from the warm component is significantly stronger than the R-branch, indicating that the line emission is optically thick. Neither thermal collisions with H2 nor with H I seem capable of explaining the strong emission from the warm component. Although the emission arises in the postshock gas, radiation from the most prominent mid-infrared sources in Orion BN/KL is most likely pumping the excited vibrational states of CO and H2O. CO column densities along the line of sight of N{(CO)}=5-10×1018 cm-2 are required to explain the band shape, the flux, and the P-R-asymmetry, and beam-filling is invoked to reconcile this high N(CO) with the upper limit inferred from the H2 emission. CO is more abundant than H2O by a factor of at least 2. The density of the warm component is estimated from the H2O emission to be ~ 2×107 cm-3. The CO emission from the hot component is neither satisfactorily explained in terms of non-thermal (streaming) collisions, nor by resonant scattering. Vibrational excitation through collisions with H2 for densities of ~3×108 cm-3 or, alternatively, with atomic hydrogen, with a density of at least 107 cm-3, are invoked to explain simultaneously the emission from the hot component

  19. Computing Health: Programing Problem 3, Computing Peak Blood Alcohol Levels.

    ERIC Educational Resources Information Center

    Gold, Robert S.

    1985-01-01

    The Alcohol Metabolism Program, a computer program used to compute peak blood alcohol levels, is expanded upon to include a cover page, brief introduction, and techniques for generalizing the program to calculate peak levels for any number of drinks. (DF)

  20. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  1. Lightning Strike Peak Current Probabilities as Related to Space Shuttle Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2000-01-01

    A summary is presented of basic lightning characteristics/criteria applicable to current and future aerospace vehicles. The paper provides estimates on the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating the probabilities of launch vehicles/objects being struck by lightning. This paper presents a summary of these results.

  2. Understanding atmospheric and landscape level drivers of peak flow variability in the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G.; Lewis, S.; Staab, B. P.

    2013-12-01

    Changes in timing and magnitude of streamflows under climate change pose significant risks to ecosystems, infrastructure, and overall availability of water for human use. Previously, we have successfully developed a spatial analysis that predicts how low flows are likely to change in the future over the Pacific Northwest. Potential changes in peak flows pose a very different set of risks and concerns to land managers, but this subject has received little attention despite potentially greater economic and environmental loss. The Pacific Northwest (PNW) is potentially quite vulnerable to changes in peak flow regimes due to a warming climate. In the PNW snowpacks are considered 'warm' by climatological standards, meaning that snow typically falls and snowpacks ripen near the 0 degree C freezing point, so that a change of a few degrees can mean the difference between snow and rain, or between snow accumulation and rapid melt. Nearly 40% of the region is classified as in the transitional snow zone (TSZ), where the precipitation regime shifts between snow and rain depending on temperature. As a consequence of warming, hence changes in snowpack accumulation and melt, winter streamflows are likely to change in the future. The direction and magnitude of these changes are much less certain, however, and can be expected to vary dramatically across the landscape depending on sensitivity of precipitation regime to temperature. For example, in higher elevation watersheds, there may be increased risk for heavy winter rains or rain-on-snow events, both of which are major factors contributing to floods. In other areas, decreased winter snowpacks due to a greater proportion of winter rain may actually decrease the probability of rain-on-snow flooding. In this study we develop a set of spatial tools by combining the estimates of peak flows for a range of recurrence intervals, including 2, 5, 10, and 25 years with climate, hydro-morphologic, and land cover variables. Selected

  3. Random walkers with extreme value memory: modelling the peak-end rule

    NASA Astrophysics Data System (ADS)

    Harris, Rosemary J.

    2015-05-01

    Motivated by the psychological literature on the ‘peak-end rule’ for remembered experience, we perform an analysis within a random walk framework of a discrete choice model where agents’ future choices depend on the peak memory of their past experiences. In particular, we use this approach to investigate whether increased noise/disruption always leads to more switching between decisions. Here extreme value theory illuminates different classes of dynamics indicating that the long-time behaviour is dependent on the scale used for reflection; this could have implications, for example, in questionnaire design.

  4. Lightning Characteristics and Lightning Strike Peak Current Probabilities as Related to Aerospace Vehicle Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    1998-01-01

    A summary is presented of basic lightning characteristics/criteria for current and future NASA aerospace vehicles. The paper estimates the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating probabilities of launch vehicles/objects being struck by lightning. This paper presents these results.

  5. Peak mass in large-scale structure and dynamical friction.

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Gambera, M.

    1996-04-01

    We show how the results given by several authors relatively to the mass of a density peak are changed when small scale substructure induced by dynamical friction are taken into account. The peak mass obtained is compared to the result of Peacock & Heavens (1990) and to the peak mass when dynamical friction is absent to show how these effects conspire to reduce the mass accreted by the peak.

  6. Electrical stator

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.

    1994-01-01

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  7. Electric propulsion

    NASA Astrophysics Data System (ADS)

    Garrison, Philip W.

    Electric propulsion (EP) is an attractive option for unmanned orbital transfer vehicles (OTV's). Vehicles with solar electric propulsion (SEP) could be used routinely to transport cargo between nodes in Earth, lunar, and Mars orbit. Electric propulsion systems are low-thrust, high-specific-impulse systems with fuel efficiencies 2 to 10 times the efficiencies of systems using chemical propellants. The payoff for this performance can be high, since a principal cost for a space transportation system is that of launching to low Earth orbit (LEO) the propellant required for operations between LEO and other nodes. Several aspects of electric propulsion, including candidate systems and the impact of using nonterrestrial materials, are discussed.

  8. Peak water limits to freshwater withdrawal and use.

    PubMed

    Gleick, Peter H; Palaniappan, Meena

    2010-06-22

    Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of "peak oil"--a peaking and then decline in oil production--has long been predicted and debated. We present here a detailed assessment and definition of three concepts of "peak water": peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak "ecological" water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use.

  9. Peak-power-point monitor for solar panel

    NASA Technical Reports Server (NTRS)

    Schloss, A. I.

    1972-01-01

    Attempt was made to determine solar cell panel peak power capability without disrupting power flow from panel. Separate solar cell strings were switched from panel circuits, and increasingly larger loads were added rapidly until peak power points were transversed. String wattage output was recorded and all stored string measurements summed together indicate peak power point in panel.

  10. Reward Value Effects on Timing in the Peak Procedure

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2009-01-01

    Three experiments examined the effect of motivational variables on timing in the peak procedure. In Experiment 1, rats received a 60-s peak procedure that was coupled with long-term, between-phase changes in reinforcer magnitude. Increases in reinforcer magnitude produced a leftward shift in the peak that persisted for 20 sessions of training. In…

  11. Peak water limits to freshwater withdrawal and use

    PubMed Central

    Gleick, Peter H.; Palaniappan, Meena

    2010-01-01

    Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of “peak oil”—a peaking and then decline in oil production—has long been predicted and debated. We present here a detailed assessment and definition of three concepts of “peak water”: peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak “ecological” water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use. PMID:20498082

  12. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the Nursery Crop Insurance Provisions. Peak inventory premium adjustment factor. A factor... coverage termination date from the proration factor for the month in which coverage commenced. Peak... insurance by the appropriate premium rate and by the peak inventory premium adjustment factor. Example...

  13. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of the Nursery Crop Insurance Provisions. Peak inventory premium adjustment factor. A factor... coverage termination date from the proration factor for the month in which coverage commenced. Peak... insurance by the appropriate premium rate and by the peak inventory premium adjustment factor. Example...

  14. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the Nursery Crop Insurance Provisions. Peak inventory premium adjustment factor. A factor... coverage termination date from the proration factor for the month in which coverage commenced. Peak... insurance by the appropriate premium rate and by the peak inventory premium adjustment factor. Example...

  15. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery peak inventory endorsement. 457.163 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.163 Nursery peak inventory endorsement. Nursery Crop Insurance Peak Inventory Endorsement This endorsement is not continuous and must...

  16. Quasar Winds Near the Peak in Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Chartas, George; Brandt, Niel; Saez, Cristian; Giustini, Margherita; Garmire, Gordon

    We present results from recent XMM-Newton, Chandra and Suzaku monitoring observations of the BAL quasar APM 08279+5255. We present constraints on the kinematic and photoion-ization properties of the wind in this z=3.91 quasar and find that it is capable of playing an important role in controlling the evolution of the host galaxy and central black hole close to the peak in galaxy merger rate. We place constraints of the X-ray emission region of APM08279 and find it to be comparable to its ISCO radius. The X-ray emission size of APM08279 is consistent with sizes derived from our analysis of microlensing lightcurves of several gravitationally lensed quasars. A possible trend found between the X-ray photon index and the maximum outflow veloc-ity points towards a plausible mechanism that may explain the acceleration of the wind in APM08279. We also present prospects for future advances in our understanding of the role of quasar winds in galaxy feedback with the International X-ray Observatory.

  17. Peak power prediction of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yu, V. K.; Chen, D.

    2014-12-01

    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  18. A Massive Central Peak and a Low Peak Ring in Gale Crater - Important Influences on the Formation of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2015-01-01

    The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's high central mound. This study addresses the central peak and proposed peak ring, and their influence on the overall morphology of the mountain.

  19. Reliability quantification and visualization for electric microgrids

    NASA Astrophysics Data System (ADS)

    Panwar, Mayank

    The electric grid in the United States is undergoing modernization from the state of an aging infrastructure of the past to a more robust and reliable power system of the future. The primary efforts in this direction have come from the federal government through the American Recovery and Reinvestment Act of 2009 (Recovery Act). This has provided the U.S. Department of Energy (DOE) with 4.5 billion to develop and implement programs through DOE's Office of Electricity Delivery and Energy Reliability (OE) over the a period of 5 years (2008-2012). This was initially a part of Title XIII of the Energy Independence and Security Act of 2007 (EISA) which was later modified by Recovery Act. As a part of DOE's Smart Grid Programs, Smart Grid Investment Grants (SGIG), and Smart Grid Demonstration Projects (SGDP) were developed as two of the largest programs with federal grants of 3.4 billion and $600 million respectively. The Renewable and Distributed Systems Integration (RDSI) demonstration projects were launched in 2008 with the aim of reducing peak electricity demand by 15 percent at distribution feeders. Nine such projects were competitively selected located around the nation. The City of Fort Collins in co-operative partnership with other federal and commercial entities was identified to research, develop and demonstrate a 3.5MW integrated mix of heterogeneous distributed energy resources (DER) to reduce peak load on two feeders by 20-30 percent. This project was called FortZED RDSI and provided an opportunity to demonstrate integrated operation of group of assets including demand response (DR), as a single controllable entity which is often called a microgrid. As per IEEE Standard 1547.4-2011 (IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems), a microgrid can be defined as an electric power system which has following characteristics: (1) DR and load are present, (2) has the ability to disconnect from

  20. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  1. Teaching Electricity.

    ERIC Educational Resources Information Center

    Iona, Mario

    1982-01-01

    To clarify the meaning of electrical terms, a chart is used to compare electrical concepts and relationships with a more easily visualized system in which water flows from a hilltop reservoir through a pipe to drive a mill at the bottom of the hill. A diagram accompanies the chart. (Author/SK)

  2. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    Flood-frequency analyses use statistical methods to compute peak streamflows for selected recurrence intervals- the average number of years between peak flows that are equal to or greater than a specified peak flow. Analyses are based on annual peak flows at a stream. It has long been assumed that the annual peak streamflows used in these computations were stationary (non-changing) over very long periods of time, except in river basins subject to direct effects of human activities, such as urbanization and regulation. Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned. Maine has many streamgages with 50 to 105 years of recorded annual peak streamflows. In this study, this long-term record has been tested for historical floodfrequency stationarity, to provide some insight into future flood frequency. Changes over time in annual instantaneous peak streamflows at 28 U.S. Geological Survey streamgages with long-term data (50 or more years) and relatively complete records were investigated by examining linear trends for each streamgage's period of record. None of the 28 streamgages had more than 5 years of missing data. Eight streamgages have substantial streamflow regulation. Because previous studies have suggested that changes over time may have occurred as a step change around 1970, step changes between each streamgage's older record (start year to 1970) and newer record (1971 to 2006) also were computed. The median change over time for all 28 streamgages is an increase of 15.9 percent based on a linear change and an increase of 12.4 percent based on a step change. The median change for the 20 unregulated streamgages is slightly higher than for all 28 streamgages; it is 18.4 percent based on a linear change and 15.0 percent based on a step change. Peak flows with 100- and 5-year recurrence intervals were computed for the 28 streamgages using the full annual peak-flow record and

  3. The formation of peak rings in large impact craters.

    PubMed

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.

  4. The formation of peak rings in large impact craters

    NASA Astrophysics Data System (ADS)

    Morgan, Joanna V.; Gulick, Sean P. S.; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S.; Coolen, Marco J. L.; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A.; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R.; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R.; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E.; Zylberman, William

    2016-11-01

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.

  5. HVDC transmission: a path to the future?

    SciTech Connect

    Teichler, Stephen L.; Levitine, Ilia

    2010-05-15

    Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

  6. Middle atmospheric electrodynamics - Status and future

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.

    1984-01-01

    Recent theoretical and observational studies of middle atmosphere electrodynamics are reviewed. Attention is given to observations of large electric fields in the mesosphere and stratosphere which suggest magnitudes of about one volt per sq m. Recommendations are offered with respect to areas of future study, with emphasis on studies of the morphology of large electric fields, and their relationship with external influences such as magnetospheric electric fields and tropospheric thunderstorms.

  7. On correlation between zero bias conductance peaks and topological invariants in semiconductor Rashba nanowires

    NASA Astrophysics Data System (ADS)

    Nag, Amit; Sau, Jay

    The observed zero bias peak in tunneling conductance experiments on semiconductor Rashba nanowire is a signature of presence of Majorana zero modes. Characteristics of zero bias conductance peak (ZBCP) namely, height, width and peak splitting, are a function of microscopic parameters. Zero modes have finite splitting as a result of finiteness of the nanowire rendering the ground state only approximately topological i.e. zero modes are only approximately Majoranas. We calculate the scattering matrix topological invariant to quantify the quality of approximate Majorana modes and study its relation to observed characteristics of ZBCP. Furthermore we study the effect of dephasing on the topological invariant. Finally, we draw connection between the characteristics of the ZBCP and probability of observing non-Abelian statistics in proposed future experiments involving braiding of Majorana modes. Work is done in collaboration with Sankar Das Sarma and supported by LPS-MPO-CMTC, Microsoft Q, Univ. of Maryland startup grants and JQI-NSF-PFC.

  8. 75 FR 34787 - In the Matter of Luminant Generation Company LLC; Comanche Peak Steam Electric Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Investigation (FBI) identification and criminal history records check (CHRC). Where an applicant for unescorted..., may be included in addition to the FBI CHRC, and is encouraged if the results of the FBI CHRC... individual who will review the results of the FBI CHRCs to make trustworthiness and...

  9. Technology Demonstration Summary Shirco Electric Infrared Incineration At The Peak Oil Superfund Site

    EPA Science Inventory

    Under the auspices of the Superfund Innovative Technology Evaluation or SITE Program, a critical assessment is made of the performance of the transportable Shirco Infrared Thermal Destruction System during three separate test runs at an operating feed rate of 100 tons per day. Th...

  10. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation.

    PubMed

    Froyd, Christian; Beltrami, Fernando Gabe; Jensen, Jørgen; Noakes, Timothy David

    2013-01-01

    The aim of this study was to measure the extent to which potentiation changes in response to an isometric maximal voluntary contraction. Eleven physically active subjects participated in two separate studies. Single stimulus of electrical stimulation of the femoral nerve was used to measure torque at rest in unpotentiated quadriceps muscles (study 1 and 2), and potentiated quadriceps muscles torque in a 10 min period after a 5 s isometric maximal voluntary contraction of the quadriceps muscles (study 1). Additionally, potentiated quadriceps muscles torque was measured every min after a further 10 maximal voluntary contractions repeated every min (study 2). Electrical stimulation repeated several times without previous maximal voluntary contraction showed similar peak twitch torque. Peak twitch torque 4 s after a 5 s maximal voluntary contraction increased by 45±13% (study 1) and by 56±10% (study 2), the rate of torque development by 53±13% and 82±29%, and the rate of relaxation by 50±17% and 59±22%, respectively, but potentiation was lost already two min after a 5 s maximal voluntary contraction. There was a tendency for peak twitch torque to increase for the first five repeated maximal voluntary contractions, suggesting increased potentiation with additional maximal voluntary contractions. Correlations for peak twitch torque vs the rate of torque development and for the rate of relaxation were r(2)= 0.94 and r(2)=0.97. The correlation between peak twitch torque, the rate of torque development and the rate of relaxation suggests that potentiation is due to instantaneous changes in skeletal muscle contractility and relaxation.

  11. Technical performance of thermal plants worldwide: Experience feedback and objectives for the future

    SciTech Connect

    Glorian, D.

    1996-12-31

    For future thermal electricity generation, the electricity producer facing needs for extension or renewal of his own generating capacity can choose among a large number of proven technologies. These technologies can be nuclear or conventional (fossil-fired): steam turbines, cogeneration or gas turbines. The economic competitiveness of these different types of installations over their entire lifetime is calculated on the basis of various cost assumptions and/or scenarios, taking into account capital investment, fuel, operating and maintenance costs, etc. Equally important are such factors as construction duration, discount rate, service lifetime, usage mode (baseload, intermediate load or peak load). In addition, costs and hypotheses in relation to the environment should be taken into account, including the cost of dismantling nuclear power plants. Hypotheses concerning the service delivered to the grid -- i.e. the expected availability of the plant -- is one of the main factors governing the quality of service provided. It is evident that this factor is an almost perfect mirror of quality of service for units operated in baseload mode. For intermediate or peak load operation, other factors such as successful startup rate and load following capabilities must also be considered. This paper deals with experience feedback in the area of availability factors for nuclear and conventional power plants (steam turbines) of over 100MW around the world. The assumptions for future -- i.e. new -- plants are compared against experience feedback. These results are presented in this paper.

  12. Comparison of experimental and calculated peak shapes for three cylindrical geometry FAIMS prototypes of differing electrode diameters.

    PubMed

    Guevremont, Roger; Purves, Randy

    2005-03-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions at atmospheric pressure and room temperature based on the difference of the mobility of ions in strong electric fields and weak electric fields. This field-dependent mobility of an ion is reflected in the compensation voltage (CV) at which the ion is transmitted through FAIMS, at a given asymmetric waveform dispersion voltage (DV). Experimental CV, relative peak ion intensity, and peak width data were compared for three FAIMS prototypes with concentric cylindrical electrodes having inner/outer electrode radii of: (1) 0.4/0.6 cm, (2) 0.8/1.0 cm, and (3) 1.2/1.4 cm. The annular analyzer space was 0.2 cm wide in each case. A finite-difference numerical computation method is described for evaluation of peak shapes and widths in a CV spectrum collected using cylindrical geometry FAIMS devices. Simulation of the radial distribution of the ion density in the FAIMS analyzer is based upon calculation of diffusion, electric fields, and the electric fields introduced by coulombic ion-ion repulsion. Excellent agreement between experimental and calculated peak shapes were obtained for electrodes of wide diameter and for ions transmitted at low CV.

  13. A new mathematical procedure to evaluate peaks in complex chromatograms.

    PubMed

    Steffen, B; Müller, K P; Komenda, M; Koppmann, R; Schaub, A

    2005-04-15

    Automatic peak evaluation in chromatograms and subsequent quantification of compound concentrations is still a challenge in the analysis of complex samples containing hundreds or thousands of compounds. Although a number of software packages for peak evaluation exist, baseline definition and overlapping peaks of different shapes are the main reasons which prevent reliable automatic analysis of complex chromatograms. A new mathematical procedure is presented which uses peak shapes extracted from the chromatogram itself and modified by nonlinear (in fact, hyperbolic) stretching of the peak head and tail. With this approach, the peak parameters are position, height, scale of front, scale of tail, and smoothness of transition from front to tail scaling. This approach is found to give a substantially better fit than traditional analytically defined peak shapes. Together with a good peak finding heuristic and nonlinear optimization of parameters this allows a reliable automatic analysis of chromatograms with a large number of peaks, even with large groups of overlapping peaks. The analysis matches the quality of standard interactive methods, but still permits interactive refinement. This approach has been implemented and tested on a large set of data from chromatography of hydrocarbons in ambient air samples.

  14. Model documentation: Electricity Market Module, Electricity Capacity Planning submodule

    SciTech Connect

    Not Available

    1994-04-07

    The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

  15. Electrical conductivity of ice VII

    PubMed Central

    Okada, Taku; Iitaka, Toshiaki; Yagi, Takehiko; Aoki, Katsutoshi

    2014-01-01

    It was discovered that a peak appears near a pressure of Pc = 10 GPa in the electrical conductivity of ice VII as measured through impedance spectroscopy in a diamond anvil cell (DAC) during the process of compression from 2 GPa to 40 GPa at room temperature. The activation energy for the conductivity measured in the cooling/heating process between 278 K and 303 K reached a minimum near Pc. Theoretical modelling and molecular dynamics simulations suggest that the origin of this unique peak is the transition of the major charge carriers from the rotational defects to the ionic defects. PMID:25047728

  16. Electrical connector

    DOEpatents

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  17. Future contraceptives.

    PubMed

    Alexander, N J

    1995-09-01

    This article looks at the improvements that may occur in contraceptives in the near future. While no product currently under study would be ideal (highly effective, safe, readily reversible, free of side effects, coitally independent, counteract the spread of sexually transmitted diseases, and inexpensive), several would come closer than those available today. For men, the condom is the only currently available contraception, and a thinner version has recently been introduced in response to the criticism that condoms reduce sexual pleasure. Methods under study for men include manipulating hormones to halt sperm production by the intramuscular injection of an androgen in combination with a progestin or by blocking the activity of gonadotropin-releasing hormone. In the future, long-acting reversible agents should be available to directly halt sperm production or maturation. In men and women, vaccines should become available that would use antibodies to disrupt reproduction. Additional hormonal options in women should include hormone-releasing vaginal rings, a simplified contraceptive implant delivery system, a hormone-releasing IUD, and a monthly pill. Vaginal chemicals could be used to impede some of the necessary changes that sperm undergo after ejaculation. Spermicides will also be available with the ability to prevent STDs. The order of appearance of these new contraceptives will probably be nonlatex condoms, vaginal rings, and new implants, followed by disease-reducing spermicides, hormone-releasing IUDs, new emergency contraceptives, a three-month injectable for men, biodegradable implants for women, and immunocontraceptives (if they receive the backing of the industry).

  18. On the influence of RTA and MSA peak temperature variations on Schottky contact resistances of 6-T SRAM cells

    NASA Astrophysics Data System (ADS)

    Kampen, C.; Burenkov, A.; Pichler, P.; Lorenz, J.

    2011-11-01

    The influence of rapid thermal annealing (RTA) and millisecond annealing (MSA) peak temperature fluctuations, due to pattern effects, on Schottky contact resistances and the electrical properties of 6-T SRAM cells is studied in this work. TCAD simulations of 32 nm gate length single gate fully depleted silicon on insulator MOSFETs were carried out. The contact regions of the n+/p+ layers of a 6-T SRAM cell layout were separately handled in 3D TCAD simulations to calculate the dependence of contact resistances on RTA and MSA peak temperatures. Compact models of the 32 nm gate length transistors were extracted and used in circuit simulations. Finally, the impact of RTA and MSA peak temperature fluctuations on the electrical performance of single devices and 6-T SRAM cells were studied by extended SPICE simulations.

  19. Simulation of the peak-shifting potential of thermal-energy-storage systems for residences in the TVA region

    NASA Astrophysics Data System (ADS)

    Johnson, R.

    1982-02-01

    The simulation and analysis of the load shifting potential of a phase change thermal energy storage (TES) system are described. The interrelationships between peak demand shifting, total energy consumption, and electric utility/customer benefits are explored. Peak shifting criteria are discussed. Possible load management strategies for operating the TES system for residential applications are outlined, and various modes of operation are simulated. Histograms of the time of day average electrical demand over a heating session are presented; and the results of the simulations are analyzed for peak shifting capabilities and total energy consumption, and are compared to resistive heating and heat pump base cases. The performance characteristics of three heat pump/resistive element/phase change material (PCM) storage configurations are studied and evaluated. Results indicate that the load shifting capability of thermal energy storage systems could come at the expense of total energy consumption if the system is not carefully configured.

  20. Understanding Price Formation in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Kadoya, Toshihisa; Sasaki, Tetsuo; Yokoyama, Akihiko; Ihara, Satoru

    The electricity price will influence the future growth and mix of generation capacity that will in turn influence the future electricity price, and therefore, it is important to understand how electricity price is formed as well as its short-term and long-term impacts on the economy. This paper describes evaluation of PJM day-ahead market bidding data and comparison of various electricity markets in terms of the market clearing price and volatility. The objective is to find critical factors and mechanisms determining the movements of electricity price. It was found that speculation by a small number of bidders can cause price spikes, that a Nash equilibrium may exist during a delayed response of the electricity price to a decline of the fuel price, and that the hydro generation with storage capability effectively stabilizes the electricity price.

  1. [The symmetric zero-area conversion adptive peak-seeking method research for LIBS/Raman spectra].

    PubMed

    Bi, Yun-Feng; Li, Ying; Zheng, Rong-Er

    2013-02-01

    Automatic peak seeking is an indispensable link for in situ and real-time spectral detection and analysis, and has important significance for application of spectral technology to such fields as long-term marine monitoring and oil mud logging. Based on some typical LIBS/Raman spectrum data obtained from lab, three kinds of symmetric zero-area transformation functions respectively constructed from Gaussian, Lorentz and Voigt function were compared, and the results show that there exists an optimal symmetrical zero-area transformation function for peak seeking, but all the transformation functions obtain the same peak position and peak width under their optimal parameters. The proposed method is free from spectrum background and baseline trend influence, adaptive to the wide range of SNR, close to or even better than artificial recognition for weak peak, and could be used in future automatic in-situ analysis of LIBS and Raman.

  2. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  3. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  4. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  5. Options for Kentucky's Energy Future

    SciTech Connect

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  6. Oral Contraceptives Use by Young Woman Reduces Peak Bone Mass

    DTIC Science & Technology

    1999-09-01

    metabolism and peak bone mass (PBM) in young female rats. Intact, adolescent / young adult Sprague-Dawley rats were treated with: (1) placebo, (2) OC therapy...steroid (OC) use leads to decreased peak bone mass in young intact female rats. Findings: OC use decreased the peak hone mass of young intact female...non-aromatizable androgenic steroid did not prevent the adverse efforts of OCs to the growing skeleton of young rats at the dose used; and (3) If the

  7. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Ekers, R. D.; Gaensler, B. M.; Line, J. L. B.; Hurley-Walker, N.; Sadler, E. M.; Tingay, S. J.; Hancock, P. J.; Bell, M. E.; Dwarakanath, K. S.; For, B.-Q.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2017-02-01

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift (z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  8. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  9. Modeling Circumgalactic Gas During the Peak Epoch of Galaxy Growth

    NASA Astrophysics Data System (ADS)

    Dave, Romeel

    During the peak of cosmic star formation at z=1-4, galaxy growth is increasingly believed to be modulated by large-scale inflows and outflows of baryons that intimately connect galaxies to their surrounding circumgalactic medium (CGM). Unfortunately, direct observational signatures of these baryon cycling processes are elusive and fragmented, owing to the diffuse and multi- phase nature of the CGM. This proposal aims to use advanced multi-scale cosmological hydrodynamic simulations to investigate how inflows and outflows within circumgalactic gas are manifested in present and future observables, and how those observables in turn constrain the physical processes driving galaxy evolution. The simulation methodology includes ``random" cosmological runs, ``zoom" runs of individual halos, and radiative transfer to better model the ionization conditions. We will focus on absorption and emission signatures in HI and metal lines using common rest-UV and rest-optical tracers. Key questions include: How do metal absorbers trace the enrichment and ionization conditions within circumgalactic gas? How much absorption arises from inflow versus outflow, and what are the characteristic absorption, emission, and/or kinematic signatures of each? What emission lines from CGM gas are predicted to be observable, and how does the combination of emission and absorption constrain CGM properties? What are the roles of metallicity, ionization, and large-scale structure in establishing the correlations of metal absorbers and galaxies on CGM scales? How do all these CGM properties relate to host galaxy properties such as mass, and how do they vary with outflow model? The overall goal is to develop a comprehensive hierarchical-based framework for assembling various observations of circumgalactic gas into a unified scenario for how inflows and outflows govern the growth of galaxies.

  10. Peak Doctor v 1.0.0 Labview Version

    SciTech Connect

    Garner, Scott

    2014-05-29

    PeakDoctor software works interactively with its user to analyze raw gamma-ray spectroscopic data. The goal of the software is to produce a list of energies and areas of all of the peaks in the spectrum, as accurately as possible. It starts by performing an energy calibration, creating a function that describes how energy can be related to channel number. Next, the software determines which channels in the raw histogram are in the Compton continuum and which channels are parts of a peak. Then the software fits the Compton continuum with cubic polynomials. The last step is to fit all of the peaks with Gaussian functions, thus producing the list.

  11. Estimated Prestroke Peak VO2 Is Related to Circulating IGF-1 Levels During Acute Stroke.

    PubMed

    Mattlage, Anna E; Rippee, Michael A; Abraham, Michael G; Sandt, Janice; Billinger, Sandra A

    2017-01-01

    Background Insulin-like growth factor-1 (IGF-1) is neuroprotective after stroke and is regulated by insulin-like binding protein-3 (IGFBP-3). In healthy individuals, exercise and improved aerobic fitness (peak oxygen uptake; peak VO2) increases IGF-1 in circulation. Understanding the relationship between estimated prestroke aerobic fitness and IGF-1 and IGFBP-3 after stroke may provide insight into the benefits of exercise and aerobic fitness on stroke recovery. Objective The purpose of this study was to determine the relationship of IGF-1 and IGFBP-3 to estimated prestroke peak VO2 in individuals with acute stroke. We hypothesized that (1) estimated prestroke peak VO2 would be related to IGF-1 and IGFBP-3 and (2) individuals with higher than median IGF-1 levels will have higher estimated prestroke peak VO2 compared to those with lower than median levels. Methods Fifteen individuals with acute stroke had blood sampled within 72 hours of hospital admission. Prestroke peak VO2 was estimated using a nonexercise prediction equation. IGF-1 and IGFBP-3 levels were quantified using enzyme-linked immunoassay. Results Estimated prestroke peak VO2 was significantly related to circulating IGF-1 levels (r = .60; P = .02) but not IGFBP-3. Individuals with higher than median IGF-1 (117.9 ng/mL) had significantly better estimated aerobic fitness (32.4 ± 6.9 mL kg(-1) min(-1)) than those with lower than median IGF-1 (20.7 ± 7.8 mL kg(-1) min(-1); P = .03). Conclusions Improving aerobic fitness prior to stroke may be beneficial by increasing baseline IGF-1 levels. These results set the groundwork for future clinical trials to determine whether high IGF-1 and aerobic fitness are beneficial to stroke recovery by providing neuroprotection and improving function.

  12. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  13. Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Brophy, John R.

    2013-01-01

    Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.

  14. Fracture Permeability Evolution in Rock from the Desert Peak EGS Site

    SciTech Connect

    Carlson, S R; Roberts, J J; Detwiler, R L; Burton, E A; Robertson-Tait, A; Morris, C; Kasameyer, P

    2004-04-08

    Fluid flow experiments are being conducted on core specimens of quartz monzonite retrieved from depths of about 1 km at the Desert Peak East EGS site in Churchill County, Nevada. Our immediate goal is to observe permeability evolution in fractures at pressure and temperature conditions appropriate to the Desert Peak geothermal site. Longer term, we aim to evaluate mechanisms that control the evolution of fracture permeability. In the experiments saline water is flowed through an artificial fracture at a constant rate of 0.02 ml/min over a period of several weeks. The constant flow tests are interrupted at selected times for shorter tests in which flow is either stopped or varied between 0 and 2.0 ml/min. The experiments to date were conducted at a confining pressure of 5.5 MPa, pore pressures of 1.38 MPa or 2.07 MPa and temperatures of 167- 169 C. Measurements include differential pressure and electrical resistance across the specimen. The short-term variable flow rate experiments allow us to calculate the effective hydraulic aperture of the fracture at various times during the experiment. Changes in electrical resistivity provide indirect evidence of ongoing mineral dissolution and precipitation processes that are expected to change fracture permeability over time. The early experiments have shown that electrical resistivity rises during flow and falls during intervals in which flow is stopped.

  15. Episodic air quality impacts of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  16. Utilizing a constant peak width transform for isothermal gas chromatography.

    PubMed

    Nadeau, Jeremy S; Wilson, Ryan B; Fitz, Brian D; Reed, Jason T; Synovec, Robert E

    2011-06-10

    A computational approach to partially address the general elution problem (GEP), and better visualize, isothermal gas chromatograms is reported. The theoretical computational approach is developed and applied experimentally. We report a high speed temporally increasing boxcar summation (TIBS) transform that, when applied to the raw isothermal GC data, converts the chromatographic data from the initial time domain (in which the peak widths in isothermal GC increase as a function of their retention factors, k), to a data point based domain in which all peaks have the same peak width in terms of number of points in the final data vector, which aides in preprocessing and data analysis, while minimizing data storage size. By applying the TIBS transform, the resulting GC chromatogram (initially collected isothermally), appears with an x-axis point scale as if it were instrumentally collected using a suitable temperature program. A high speed GC isothermal separation with a test mixture containing 10 compounds had a run time of ∼25 s. The peak at a retention factor k ∼0.7 had a peak width of ∼55 ms, while the last eluting peak at k ∼89 (i.e., retention time of ∼22 s) had a peak width of ∼2000 ms. Application of the TIBS transform increased the peak height of the last eluting peak 45-fold, and S/N ∼20-fold. All peaks in the transformed test mixture chromatogram had the width of an unretained peak, in terms of number of data points. A simulated chromatogram at unit resolution, studied using the TIBS transform, provided additional insight into the benefits of the algorithm.

  17. Photoelectric return-stroke velocity and peak current estimates in natural and triggered lightning

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    Two-dimensional photoelectric return stroke velocities from 130 strokes are presented, including 86 negative natural, 41 negative triggered, one positive triggered, and two positive natural return strokes. For strokes starting near the ground and exceeding 500 m in length, the average velocity is 1.3 + or - 0.3 X 10 to the 8th m/s for natural return strokes and 1.2 + or - 0.3 X 10 to the 8th m/s for triggered return strokes. For strokes with lengths less than 500 m, the average velocities are slightly higher. Using the transmission line model (TLM), the shortest segment one-dimensional return stroke velocity, and either the maximum or plateau electric field, it is shown that natural strokes have a peak current distribution that is lognormal with a median value of 16 kA (maximum E) or 12 kA (plateau E). Triggered lightning has a medium peak current value of 21 kA (maximum E) or 15 kA (plateau E). Correlations are found between TLM peak currents and velocities for triggered and natural subsequent return strokes, but not between TLM peak currents and natural first return stroke velocities.

  18. Investigation of the peak shape parameter of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Hartley, I.; Arlt, R.

    2001-02-01

    There is a need to define the magnitude of the asymmetry of the peak shapes (the tailing fraction) of CdTe and CdZnTe detectors. Since this tailing parameter determines to a large extent, the performance of peak fitting programs used to extract the peak areas from gamma spectra taken for the verification of nuclear material, a well-defined knowledge of this parameter is an important factor in such programs. The magnitude of the asymmetry of this tailing fraction was investigated for different models of CdTe and CdZnTe detectors. The gamma peak analysis program PkCheck (R. Gunnink, R. Arlt, Proceedings of 11th International Workshop on room temperature Semiconductor X- and gamma-ray detectors and associated electronics, 11-15 October 1999, Vienna, Austria, Nucl. Instr. and Meth. A 485 (2001) 196, This issue) was used to determine the tailing fraction as a function of detector type, high voltage and other operational parameters. Although there are considerable individual differences between different detector units of the same model, a general trend towards the growing of the tailing fraction with increasing detector volume was clearly observed. The lowest fractions are observed for electrically cooled planar pin CdTe detectors operated with a charge loss corrector, followed by small size hemispheric CdZnTe detectors.

  19. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  20. Surplus from and storage of electricity generated by intermittent sources

    NASA Astrophysics Data System (ADS)

    Wagner, Friedrich

    2016-12-01

    Data from the German electricity system for the years 2010, 2012, 2013, and 2015 are used and scaled up to a 100% supply by intermittent renewable energy sources (iRES). In the average, 330GW wind and PV power are required to meet this 100% target. A back-up system is necessary with the power of 89% of peak load. Surplus electricity accrues at high power levels. Curtailing surplus power to a large extent is found to be uneconomic. Demand-side management will suffer from the strong day-to-day variation of available surplus energy. A day storage is ineffective because of the day-night correlation of surplus power during winter. A seasonal storage loses its character when transformation losses are considered because it can contribute only after periods with excessive surplus production. The option of an oversized iRES system to feed the storage is also not effective because, in this case, energy can be taken directly from the large iRES supply, making storage superfluous. The capacities to be installed stress the difficulty to base heat supply and mobility also on iRES generated electricity in the future. As the German energy transition replaces one CO2-free electricity supply system by another one, no major reduction in CO2 emission can be expected till 2022, when the last nuclear reactor will be switched off. By 2022, an extremely oversized power supply system has to be created, which can be expected to continue running down spot-market electricity prices. The continuation of the economic response -to replace expensive gas fuel by cheap lignite- causes an overall increase in CO2 emission. The German GHG emission targets for 2020 and beyond are therefore in jeopardy.

  1. Psychological Preparation for Peak Performance in Sports Competition

    ERIC Educational Resources Information Center

    Ohuruogu, Ben; Jonathan, Ugwuanyi I.; Ikechukwu, Ugwu Jude

    2016-01-01

    This paper attempts to make an overview of various techniques, sport psychologist adopt in psychological preparation of athletes for peak performance. To attain peak performance in sports competitions, coaches and athletes should not base their prospect on physical training on sport skills alone rather should integrate both the mental and physical…

  2. 46. Peaks of Otter. View of the Johnson Farm, one ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Peaks of Otter. View of the Johnson Farm, one of two historic structures left at peak of otter. The farm's interpretation focuses on the 1930's. Looking southeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  3. 42. Peaks of Otter, Abbott Lake. View across lake to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Peaks of Otter, Abbott Lake. View across lake to peaks of Outter Lodge, completed in 1964. Construction of the lake got underway in 1964. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  4. Students' Peak Experiences: Yes, Psychology Deals with Happiness, Too.

    ERIC Educational Resources Information Center

    Polyson, James

    Based on Maslow's characteristics of a "peak experience," 162 students in three introductory psychology classes and one personality class were asked to write a two-page paper describing a personal "peak experience." Papers were graded based on adherence to requirements, ability to apply Maslow's construct of the peak…

  5. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of the Nursery Crop Insurance Provisions. Peak inventory premium adjustment factor. A factor... insurance by the appropriate premium rate and by the peak inventory premium adjustment factor. Example of... 457.163 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...

  6. Multiple Peaks in SABER Mesospheric OH Emission Altitude Profiles

    NASA Astrophysics Data System (ADS)

    Rozum, J. C.; Ware, G. A.; Baker, D. J.; Mlynczak, M. G.; Russell, J. M.

    2012-12-01

    Since January 2002, the SABER instrument aboard the TIMED satellite has been performing limb-scan measurements of the altitude distribution of the hydroxyl airglow. The majority of the SABER 1.6 μm and 2.0 μm OH volume emission rate (VER) profiles manifest a single peak at around 90 km, and are roughly gaussian in shape. However, a significant number (approximately 10% in nighttime) of these VER profiles have an irregular characteristic of multiple peaks that are comparable in brightness to the absolute maximum. The origin of these multiple peaks in SABER profiles is currently being studied. Single peak and irregular SABER OH VER profiles are compared with OH VER altitude curves obtained via theoretical vertical distribution models. In addition, we compare SABER profiles with OH VER altitude profiles obtained from rocket-borne radiometric experiments. The techniques of Liu and Shepherd's analysis of double-peaked emission profiles obtained by the Wind Imaging Interferometer (WINDII) using similar scan geometry are applied. The geographical distribution of the SABER nighttime multiple-peak VER profiles in the 1.6 μm and 2.0 μm channels is presented, as are the distributions of these profiles with respect to instrument-scan geometry parameters. It is noted that during the night, multiple peak profiles are more common at equatorial latitudes. A relationship has been found between the geographical distribution of two-peaked profiles and spatial orientation of the SABER instrument's viewing field.

  7. Greatest Moments in Interpersonal Communication: Peak Communication Experiencing.

    ERIC Educational Resources Information Center

    Gordon, Ron

    In an exploratory study of peak communication experiences (PCEs), 36 male and 50 female undergraduates from a speech communication course were asked to describe their PCEs using 19 descriptors derived from A. Maslow's model of the generalized peak experience. Two-thirds or more of both sexes used 10 of these 19 descriptors to characterize their…

  8. Simple Suppression of Spurious Peaks in TROSY Experiments

    NASA Astrophysics Data System (ADS)

    Kojima, Chojiro; Kainosho, Masatsune

    2000-04-01

    In 1H-15N TROSY experiments of proteins and nucleic acids, where the second coherence transfer delay time τ‧ has been fixed as 5.6 ms, 1/(21JNH), in order to achieve complete spin-state selection, spurious negative peaks are observed along the 15N axes. These peaks are often annoyingly large, especially for nucleic acids. A simple product operator calculation, however, indicated that the shortening of the second delay time τ‧, which is next to the t1 period, would efficiently suppress these spurious peaks, without sacrificing the sensitivities of the TROSY peaks too much. We have shown for three systems, two 11- and 17-kDa proteins and one 8-kDa DNA duplex, that these spurious peaks can be effectively suppressed with delay times of 3.3 ms for the two proteins and 2.3 ms for the DNA. These delay times, optimized by trial and error, for the spurious peak suppression did not depend on the magnetic field strength and the temperature very much. Although the shortened τ‧ delay times attenuate the TROSY peak intensities by about 10 and 20% for the two proteins and the DNA, respectively, this simple modification will be useful for the quantitative uses of TROSY peaks and will result in cleaner spectra for various TROSY-based multiple resonance experiments.

  9. A rise in peak performance age in female athletes.

    PubMed

    Elmenshawy, Ahmed R; Machin, Daniel R; Tanaka, Hirofumi

    2015-06-01

    It was reported in 1980s that ages at which peak performance was observed had remained remarkably stable in the past century, although absolute levels of athletic performance increased dramatically for the same time span. The emergence of older (masters) athletes in the past few decades has changed the demographics and age-spectrum of Olympic athletes. The primary aim of the present study was to determine whether the ages at which peak performance was observed had increased in the recent decades. The data spanning 114 years from the first Olympics (1898) to the most recent Olympics (2014) were collected using the publically available data. In the present study, ages at which Olympic medals (gold, silver, and bronze) were won were used as the indicators of peak performance age. Track and field, swimming, rowing, and ice skating events were analyzed. In men, peak performance age did not change significantly in most of the sporting events (except in 100 m sprint running). In contrast, peak performance ages in women have increased significantly since 1980s and consistently in all the athletic events examined. Interestingly, as women's peak performance age increased, they became similar to men's peak ages in many events. In the last 20-30 years, ages at which peak athletic performance is observed have increased in women but not in men.

  10. 46 CFR 171.090 - Aft peak bulkhead.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... if approved by the Commanding Officer, Marine Safety Center. ... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.090 Aft peak bulkhead. (a) Each of the following vessels must have an aft peak bulkhead: (1) Each vessel 100 gross tons or more...

  11. 46 CFR 171.090 - Aft peak bulkhead.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... if approved by the Commanding Officer, Marine Safety Center. ... PERTAINING TO VESSELS CARRYING PASSENGERS Additional Subdivision Requirements § 171.090 Aft peak bulkhead. (a) Each of the following vessels must have an aft peak bulkhead: (1) Each vessel 100 gross tons or more...

  12. Peaked Periodic Wave Solutions to the Broer–Kaup Equation

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Bi, Qin-Sheng

    2017-01-01

    By qualitative analysis method, a sufficient condition for the existence of peaked periodic wave solutions to the Broer–Kaup equation is given. Some exact explicit expressions of peaked periodic wave solutions are also presented. Supported by National Nature Science Foundation of China under Grant No. 11102076 and Natural Science Fund for Colleges and Universities in Jiangsu Province under Grant No. 15KJB110005

  13. Constraining cosmology with shear peak statistics: tomographic analysis

    NASA Astrophysics Data System (ADS)

    Martinet, Nicolas; Bartlett, James G.; Kiessling, Alina; Sartoris, Barbara

    2015-09-01

    The abundance of peaks in weak gravitational lensing maps is a potentially powerful cosmological tool, complementary to measurements of the shear power spectrum. We study peaks detected directly in shear maps, rather than convergence maps, an approach that has the advantage of working directly with the observable quantity, the galaxy ellipticity catalog. Using large numbers of numerical simulations to accurately predict the abundance of peaks and their covariance, we quantify the cosmological constraints attainable by a large-area survey similar to that expected from the Euclid mission, focusing on the density parameter, Ωm, and on the power spectrum normalization, σ8, for illustration. We present a tomographic peak counting method that improves the conditional (marginal) constraints by a factor of 1.2 (2) over those from a two-dimensional (i.e., non-tomographic) peak-count analysis. We find that peak statistics provide constraints an order of magnitude less accurate than those from the cluster sample in the ideal situation of a perfectly known observable-mass relation; however, when the scaling relation is not known a priori, the shear-peak constraints are twice as strong and orthogonal to the cluster constraints, highlighting the value of using both clusters and shear-peak statistics.

  14. Future directions.

    PubMed

    Erickson, David L; Kress, W John

    2012-01-01

    It is a risky task to attempt to predict the direction that DNA barcoding and its applications may take in the future. In a very short time, the endeavor of DNA barcoding has gone from being a tool to facilitate taxonomy in difficult to identify species, to an ambitious, global initiative that seeks to tackle such pertinent and challenging issues as quantifying global biodiversity, revolutionizing the forensic identifications of species, advancing the study of interactions among species, and promoting the reconstruction of evolutionary relationships within communities. The core element of DNA barcoding will always remain the same: the generation of a set of well-identified samples collected and genotyped at one or more genetic barcode markers and assembled into a properly curated database. But the application of this body of data will depend on the creativity and need of the research community in using a "gold standard" of annotated DNA sequence data at the species level. We foresee several areas where the application of DNA barcode data is likely to yield important evolutionary, ecological, and societal insights, and while far from exclusive, provide examples of how DNA barcode data will continue to empower scientists to address hypothesis-driven research. Three areas of immediate and obvious concern are (1) biodiversity inventories, (2) phylogenetic applications, and (3) species interactions.

  15. Back-Up/ Peak Shaving Fuel Cell System

    SciTech Connect

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL

  16. The Future of Human Exploration

    NASA Technical Reports Server (NTRS)

    Cooke, Doug

    2001-01-01

    This slide presentation reviews the near term future of human space exploration in terms of possible mission scenarios, propulsion technologies, orbital dynamics that lead to Low-Energy Transfer from Earth-Moon LI to Solar Libration Points and Return Potential Staging Point for Human Mars Missions. It also examines the required evolution of mission architecture, solar electric propulsion concept, vehicle concepts for future Mars missions, and an overview of a Mars Mission, Also in this presentation are pictures of several historic personages and occasions, and a view of a Mars Meteorite (i.e., ALH84001.0)

  17. Accuracy of peak deconvolution algorithms within chromatographic integrators

    SciTech Connect

    Papas, A.N. ); Tougas, T.P. )

    1990-02-01

    The soundness of present-day algorithms to deconvolve overlapping skewed peaks was investigated. From simulated studies based on the exponentially modified Gaussian model (EMG), chromatographic peak area inaccuracies for unresolved peaks are presented for the two deconvolution methods, the tangent skim and the perpendicular drop method. These inherent inaccuracies, in many cases exceeding 50%, are much greater than those calculated from ideal Gaussian profiles. Multiple linear regression (MLR) was used to build models that predict the relative error for either peak deconvolution method. MLR also provided a means for determining influential independent variables, defining the required chromatographic relationships needed for prediction. Once forecasted errors for both methods are calculated, selection of either peak deconvolution method can be made by minimum errors. These selection boundaries are contrasted to method selection criteria of present data systems algorithms.

  18. The resistance peak of helicon plasmas at low magnetic fields

    SciTech Connect

    Cho, Suwon

    2006-03-15

    The dispersion characteristics of the radial eigenmodes and resistive loading of helicon plasmas are studied to explain the occurrence of the density peak at low magnetic fields. The plasma resistance is usually found to be large for the eigenmodes near the magnetic field where the fast and slow waves are coupled and can be peaked at low magnetic fields depending on the antenna configuration. It is explained how reflection of the waves at an axial end causes the resistance peak at low magnetic fields for a single loop antenna and the Nagoya type III or helical antenna itself can give rise to the resistance peak regardless of reflection. Finally, the dependence of the resistance peak on the density and the wave frequency is examined to show that the general trend is consistent with experimental observations.

  19. The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities

    SciTech Connect

    Jeffrey Wishart

    2012-02-01

    This document reports the work performed under Task 1.2.1.1: 'The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities'. The work involved in this task included understanding the experimental results of the other tasks of SOW-5799 in order to take advantage of the economics of electricity pricing differences between on- and off-peak hours and the demonstrated charging and facility energy demand profiles. To undertake this task and to demonstrate the feasibility of plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) bi-directional electricity exchange potential, BEA has subcontracted Electric Transportation Applications (now known as ECOtality North America and hereafter ECOtality NA) to use the data from the demand and energy study to focus on reducing the electrical power demand of the charging facility. The use of delayed charging as well as vehicle-to-grid (V2G) and vehicle-to-building (V2B) operations were to be considered.

  20. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  1. Electrically powered hand tool

    DOEpatents

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  2. Analytical design of a superconducting magnetic energy storage for pulsed power peak

    SciTech Connect

    Netter, D.; Leveque, J.; Rezzoug, A.; Caron, J.P.; Sargos, F.M.

    1996-09-01

    A Superconducting Magnetic Energy Storage can be used to produce very high pulsed power peak. A superconducting coil is magnetically coupled with another coil linked to the load. During the storage phase, the current is constant. In order to transfer the energy to the load, the authors cause the quench of the superconducting coil. It is very important to know the efficiency of the transfer and how much energy is discharged in the Helium vessel. In this paper, they propose an analytical method which enables to calculate very quickly the electrical parameters of such a device.

  3. Carrier concentration dependence of the tunability of the dipole resonance peak in optically excited metamaterials

    NASA Astrophysics Data System (ADS)

    Chatzakis, Ioannis; Luo, Liang; Wang, Jigang; Shen, Nian Hai; Koschny, Thomas; Soukoulis, Costas

    2011-03-01

    Currently, there is strong interest to explore the dynamic control of the electromagnetic properties of metamaterials, which have important implications on their optoelectronic applications. While the design, fabrication and photo-doping of metamaterial/semiconductor structures have been actively pursued, some fundamental issues related to highly photo-excited states, their dynamic tuning and temporal evolution remain open. Using optical-pump terahertz probe spectroscopy, we report on the pump fluence dependence of the electric dipole resonance tunability in metamaterials. We find a previously undiscovered large non-monotonic variation on the strength of the dipole resonance peak with the photo-injected carrier concentration.

  4. Practical limits to the performance of magnetic bearings: Peak force, slew rate, and displacement sensitivity

    NASA Technical Reports Server (NTRS)

    Maslen, E.; Hermann, P.; Scott, M.; Humphris, R. R.

    1993-01-01

    Magnetic bearings are subject to performance limits which are quite different from those of conventional bearings. These are due in part to the inherent nonlinearity of the device and in part to its electrical nature. Three important nonideal behaviors are presented: peak force capacity, force slew rate limitation, and sensitivity to rotor motion at large displacements. The problem of identifying the dynamic requirements of a magnetic bearing when used to support a known structure subject to known loads is discussed in the context of these limitations. Several simple design tools result from this investigation.

  5. Future food.

    PubMed

    Wahlqvist, Mark L

    2016-12-01

    Food systems have changed markedly with human settlement and agriculture, industrialisation, trade, migration and now the digital age. Throughout these transitions, there has been a progressive population explosion and net ecosystem loss and degradation. Climate change now gathers pace, exacerbated by ecological dysfunction. Our health status has been challenged by a developing people-environment mismatch. We have regarded ecological conquest and innovative technology as solutions, but have not understood how ecologically dependent and integrated we are. We are ecological creatures interfaced by our sensoriness, microbiomes, shared regulatory (endocrine) mechanisms, immune system, biorhythms and nutritional pathways. Many of us are 'nature-deprived'. We now suffer what might be termed ecological health disorders (EHD). If there were less of us, nature's resilience might cope, but more than 9 billion people by 2050 is probably an intolerable demand on the planet. Future food must increasingly take into account the pressures on ecosystem-dependent food systems, with foods probably less biodiverse, although eating in this way allows optimal health; energy dysequilibrium with less physical activity and foods inappropriately energy dense; and less socially-conducive food habits. 'Personalised Nutrition', with extensive and resource-demanding nutrigenomic, metabolomic and microbiomic data may provide partial health solutions in clinical settings, but not be justified for ethical, risk management or sustainability reasons in public health. The globally prevalent multidimensional malnutritional problems of food insecurity, quality and equity require local, regional and global action to prevent further ecosystem degradation as well as to educate, provide sustainable livelihoods and encourage respectful social discourse and practice about the role of food.

  6. Current and Future Economics of Parabolic Trough Technology

    SciTech Connect

    Price, H.; Mehos, M.; Kutscher, C.; Blair, N.

    2007-01-01

    Solar energy is the largest energy resource on the planet. Unfortunately, it is largely untapped at present, in part because sunlight is a very diffuse energy source. Concentrating solar power (CSP) systems use low cost reflectors to concentrate the sun's energy to allow it to be used more effectively. Concentrating solar power systems are also well suited for large solar power plants that can be connected into the existing utility infrastructure. These two facts mean that CSP systems can be used to make a meaningful difference in energy supply in a relatively short period. CSP plants are best suited for the arid climates in the Southwestern United States, Northern Mexico, and many desert regions around the globe. A recent Western Governors' Association siting study [1] found that the solar potential in the U.S. Southwest is at least 4 times the total U.S. electric demand even after eliminating urban areas, environmentally sensitive areas, and all regions with a ground slope greater than 1%.While it is currently not practical to power the whole county from the desert southwest, only a small portion of this area is needed to make a substantial contribution to future U.S. electric needs. Many of the best sites are near existing high-voltage transmission lines and close to major power load centers in the Southwest (Los Angeles, Las Vegas, and Phoenix). In addition, the power provided by CSP technologies has strong coincidence with peak electric demand, especially in the Southwest where peak demand corresponds in large part to air conditioning loads. Parabolic troughs currently represent the most cost-effective CSP technology for developing large utility-scale solar electric power systems. These systems are also one of the most mature solar technologies, with commercial utility-scale plants that have been operating for over 20 years. In addition, substantial improvements have been made to the technology in recent years including improved efficiency and the addition of

  7. Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979

    SciTech Connect

    Rajan, J.B.

    1980-06-01

    The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

  8. Space station electrical power distribution analysis using a load flow approach

    NASA Technical Reports Server (NTRS)

    Emanuel, Ervin M.

    1987-01-01

    The space station's electrical power system will evolve and grow in a manner much similar to the present terrestrial electrical power system utilities. The initial baseline reference configuration will contain more than 50 nodes or busses, inverters, transformers, overcurrent protection devices, distribution lines, solar arrays, and/or solar dynamic power generating sources. The system is designed to manage and distribute 75 KW of power single phase or three phase at 20 KHz, and grow to a level of 300 KW steady state, and must be capable of operating at a peak of 450 KW for 5 to 10 min. In order to plan far into the future and keep pace with load growth, a load flow power system analysis approach must be developed and utilized. This method is a well known energy assessment and management tool that is widely used throughout the Electrical Power Utility Industry. The results of a comprehensive evaluation and assessment of an Electrical Distribution System Analysis Program (EDSA) is discussed. Its potential use as an analysis and design tool for the 20 KHz space station electrical power system is addressed.

  9. NASA electric propulsion technology

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stone, J. R.; Aston, G.

    1985-01-01

    It is pointed out that the requirements for future electric propulsion cover an extremely large range of technical and programmatic characteristics. A NASA program is to provide options for the many potential mission applications, taking into account work on electrostatic, electromagnetic, and electrothermal propulsion systems. The present paper is concerned with developments regarding the three classes of electric propulsion. Studies concerning electrostatic propulsion are concerned with ion propulsion for primary propulsion for planetary and earth-orbit transfer vehicles, stationkeeping for geosynchronous spacecraft, and ion thruster systems. In connection with investigations related to electromagnetic propulsion, attention is given to electromagnetic launchers, the Hall current thruster, and magnetoplasmadynamic thrusters. In a discussion of electrothermal developments, space station resistojets are considered along with high performance resistojets, arcjets, and a laser thruster.

  10. Reliability of the peak-analysis results in gamma-ray spectrometry for high relative peak-area uncertainties.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2015-11-01

    When measurement results with values near the decision threshold are being considered, a relative uncertainty of 60% is expected. Since such measurement results can be reported, the performance of the peak-analysing software for gamma-ray spectra needs to be examined for peaks that have a large relative uncertainty. The investigation was performed on a series of spectra measured with a HPGe detector under identical counting conditions. It was found that under a limit value of the relative peak area uncertainty the peak-analysis results are reliable with respect to both the peak location and the peak area evaluation. At relative uncertainties exceeding this uncertainty, the probability of type-II errors increases and a systematic influence on the peak area occurs, which originates in fluctuations of the continuous background in the vicinity of the peak. For the counting conditions used in this investigation, the limit relative uncertainty is about 35%, and whereas a systematic influence can be taken into account by a correction factor, the frequency of the type-II errors can only be reduced at the expense of increasing the frequency of the type-I errors.

  11. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  12. Derived Equivalence Relations of Geometry Skills in Students with Autism: An Application of the PEAK-E Curriculum

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb R.; Daar, Jacob H.; Williams, Leigh Anne

    2016-01-01

    The present study evaluated the efficacy of equivalence-based instruction (EBI) as described in the PEAK-E curriculum (Dixon, 2015) for promoting the emergence of derived geometry skills in two children with high-functioning autism. The results suggested that direct training of shape name (A) to shape property (B) (i.e., A-B relations) was…

  13. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Kacprzak, T.; Kirk, D.; Friedrich, O.; Amara, A.; Refregier, A.; Marian, L.; Dietrich, J. P.; Suchyta, E.; Aleksić, J.; Bacon, D.; Becker, M. R.; Bonnett, C.; Bridle, S. L.; Chang, C.; Eifler, T. F.; Hartley, W. G.; Huff, E. M.; Krause, E.; MacCrann, N.; Melchior, P.; Nicola, A.; Samuroff, S.; Sheldon, E.; Troxel, M. A.; Weller, J.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Zhang, Y.; DES Collaboration

    2016-12-01

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg2 field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0peak counts as a function of cosmological parameters, we use a suite of N-body simulations spanning 158 models with varying Ωm and σ8, fixing w = -1, Ωb = 0.04, h = 0.7 and ns = 1, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure σ8(Ωm/0.3)0.6 = 0.77 ± 0.07, after marginalizing over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending and source contamination by cluster members. These models indicate that peaks with S/N>4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.

  14. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    SciTech Connect

    Kacprzak, T.; Kirk, D.; Friedrich, O.; Amara, A.; Refregier, A.; Marian, L.; Dietrich, J. P.; Suchyta, E.; Aleksić, J.; Bacon, D.; Becker, M. R.; Bonnett, C.; Bridle, S. L.; Chang, C.; Eifler, T. F.; Hartley, W. G.; Huff, E. M.; Krause, E.; MacCrann, N.; Melchior, P.; Nicola, A.; Samuroff, S.; Sheldon, E.; Troxel, M. A.; Weller, J.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Zhang, Y.

    2016-08-19

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg$^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $0<\\mathcal S / \\mathcal N<4$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $\\Omega_{\\rm m}$ and $\\sigma_8$, fixing $w = -1$, $\\Omega_{\\rm b} = 0.04$, $h = 0.7$ and $n_s=1$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $\\sigma_{8}(\\Omega_{\\rm m}/0.3)^{0.6}=0.77 \\pm 0.07$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $\\mathcal S / \\mathcal N>4$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.

  15. Understanding the double peaked El Niño in coupled GCMs

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.

    2017-03-01

    Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.

  16. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  17. Understanding the double peaked El Niño in coupled GCMs

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.

    2016-06-01

    Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.

  18. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    DOE PAGES

    Kacprzak, T.; Kirk, D.; Friedrich, O.; ...

    2016-08-19

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 degmore » $^2$ field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range $$0<\\mathcal S / \\mathcal N<4$$. To predict the peak counts as a function of cosmological parameters we use a suite of $N$-body simulations spanning 158 models with varying $$\\Omega_{\\rm m}$$ and $$\\sigma_8$$, fixing $w = -1$, $$\\Omega_{\\rm b} = 0.04$$, $h = 0.7$ and $$n_s=1$$, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure $$\\sigma_{8}(\\Omega_{\\rm m}/0.3)^{0.6}=0.77 \\pm 0.07$$, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with $$\\mathcal S / \\mathcal N>4$$ would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. As a result, we discuss prospects for future peak statistics analysis with upcoming DES data.« less

  19. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  20. Reduction in peak oxygen uptake after prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.

    1982-01-01

    The hypothesis that the magnitude of the reduction in peak oxygen uptake (VO2) after bed rest is directly proportional to the level of pre-bed rest peak VO2 is tested. Complete pre and post-bed rest working capacity and body weight data were obtained from studies involving 24 men (19-24 years old) and 8 women (23-34 years old) who underwent bed rest for 14-20 days with no remedial treatments. Results of regression analyses of the present change in post-bed rest peak VO2 on pre-bed rest peak VO2 with 32 subjects show correlation coefficients of -0.03 (NS) for data expressed in 1/min and -0.17 for data expressed in ml/min-kg. In addition, significant correlations are found that support the hypothesis only when peak VO2 data are analyzed separately from studies that utilized the cycle ergometer, particularly with subjects in the supine position, as opposed to data obtained from treadmill peak VO2 tests. It is concluded that orthostatic factors, associated with the upright body position and relatively high levels of physical fitness from endurance training, appear to increase the variability of pre and particularly post-bed rest peak VO2 data, which would lead to rejection of the hypothesis.