Science.gov

Sample records for future peak electrical

  1. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  7. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  8. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  9. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  10. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented to the 2012 Western Conference of Public Service Commissioners, during their June, 2012, meeting. The Western Conference of Public Service Commissioners is a regional association within the National Association of Regulatory Utility Commissioners (NARUC).

  11. Electrical futures past.

    PubMed

    Gooday, Graeme J N

    2005-12-01

    Futurist writing about technology emerged in the late 19th century at the same time as new kinds of electrical technology were making utopian futures seem practically attainable. Electrical writers and novelists alike thus borrowed from the popular "science" fiction of Jules Verne, Edward Bellamy and others to try to create self-fulfilling prophecies of a future in which electrical gadgets and machines met all major practical needs of civilization. To the extent that many parts of our world are populated by the hardware that they forecast, they succeeded in their goal.

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect

    DeMeo, E.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at Wind Powering America States Summit. The Summit, which follows the American Wind Energy Association's (AWEA's) annual WINDPOWER Conference and Exhibition, provides state Wind Working Groups, state energy officials, U.S. Energy Department and national laboratory representatives, and professional and institutional partners an opportunity to review successes, opportunities, and challenges for wind energy and plan future collaboration.

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect

    Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented at the 2012 RE AMP Annual Meeting. RE-AMP is an active network of 144 nonprofits and foundations across eight Midwestern states working on climate change and energy policy with the goal of reducing global warming pollution economy-wide 80% by 2050.

  14. America's Electricity Future

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2006-03-01

    Where will America's future electricity supply come from? According to Vice President Cheney's energy task force, the U.S. needs to build about one 1 GW generating facilty a week in perpetuity.^(1) What sort of facilities will they be? Can the economy sustain such growth? Are there other possibilities? One possibility that strikes a chord with physicists is conservation as a source of energy. In this regard, Vice President Cheney famously said that conservation is``a sign of personal virtue, but it is not a sufficient basis---all by itself---for a sound, comprehensive energy policy,''^(2) echoing the Ayn Rand Instituite's view that ``Conservation is not a long- or short-term solution to the energy crisis. Conservation is the un-American idea of resigning oneself to doing with less.''^(3) This poster will explore the possible energy futures, their advantages and disadvantages, with and without conservation. 1. National Energy Policy Development Group (R. Cheney, C. L. Powell, P. O'Neill, G. Norton, A. M. Veneman, D. L. Evans, N. Y. Mineta, S. Abraham, J. M. Allbaugh, C. T. Whitman, J. B. Bolten, M. E. Daniels, L. B. Lindsey, and R. Barrales), National Energy Policy: Report of the National Energy Policy Development Group, (Washington, DC: Government Printing Office, 2001). 2. M. Allen, ``Bush energy plan will emphasize production,'' The Washington Post, 1 May 2001 3. R. Pool, ``Saving power deemed immoral,'' The Los Angeles Times, 12 May 2001.

  15. Is there a future for electricity futures?

    SciTech Connect

    Hettrick, J.R.; Chittenden, W.T.

    1998-12-31

    The market for electricity based commodity trading, including futures and options, is in its infancy in the United States. Formal trading of electricity futures started on the New York Mercantile Exchange (NYMEX) on March 29, 1996 with Options trading following on April 26, 1996. NYMEX started two new contracts, one based at the California-Oregon border (COB) and one based at the Palo Verde switchyard (Palo Verde). NYMEX is the commodity futures exchange in the United States that specializes in energy contracts, historically launching futures contracts in energy sectors immediately after the deregulation of the market and after the formation of a competitive cash or spot market. In the case of electricity, NYMEX established the new electricity futures contracts prior to the deregulation of the market and in the middle of the formation of a working spot market. Several questions remain including if there is enough interest in the market, who will be the participants, how will the physical properties of electricity mold the terms for futures contracts, and how will deregulation affect the outcome?

  16. Off-peak electric energy for poultry feed processing

    SciTech Connect

    Tyson, E.J.

    1987-01-01

    Off-peak electric energy can be used for poultry feed processing, achieving substantial reduction in electric energy cost. In addition, high efficiency equipment and conservation measures add to energy cost savings. Careful planning and evaluation of time-of-use rates can maximize the savings for each type of enterprise.

  17. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). These peak flows are also needed for effective floodplain management. Annual precipitation and air temperature in the northeastern United States are in general projected to increase during the 21st century (Hayhoe and other, 2007). It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This Fact Sheet, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Scientific Investigations Report (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/sir/2013/5080/.

  18. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As

  19. Off-peak electric heat for broiler houses

    SciTech Connect

    Lomax, K.M.; Beston, T.A.; Collins, N.E.; McCarthy, G.S.

    1983-06-01

    An instrumented broiler house (5,000 bird capacity) was heated from September 1982 to February 1983 using off-peak electric energy. A storage/exchange tank containing water received heat energy from 10 PM to 6 AM and transferred heat to house air to maintain temperature. Cost of construction and operation are presented. Off-peak pricing was evaluated using our systems analysis model.

  20. Peaking for optimal performance: Research limitations and future directions.

    PubMed

    Pyne, David B; Mujika, Iñigo; Reilly, Thomas

    2009-02-01

    A key element of the physical preparation of athletes is the taper period in the weeks immediately preceding competition. Existing research has defined the taper, identified various forms used in contemporary sport, and examined the prescription of training volume, load, intensity, duration, and type (progressive or step). Current limitations include: the lack of studies on team, combative, racquet, and precision (target) sports; the relatively small number of randomized controlled trials; the narrow focus on a single competition (single peak) compared with multiple peaking for weekly, multi-day or multiple events; and limited understanding of the physiological, neuromuscular, and biomechanical basis of the taper. Future research should address these limitations, together with the influence of prior training on optimal tapering strategies, and the interactions between the taper and long-haul travel, heat, and altitude. Practitioners seek information on how to prescribe tapers from season to season during an athlete's career, or a team's progression through a domestic league season, or multi-year Olympic or World Cup cycle. Practical guidelines for planning effective tapers for the Vancouver 2010 and London 2012 Olympics will evolve from both experimental investigations and modelling of successful tapers currently employed in a wide range of sports. PMID:19153861

  1. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal

  2. Europe`s electric future

    SciTech Connect

    1994-12-01

    Though the market is developing, independent power producers see strong potential in Europe`s power industry. In Europe`s electricity future, some envision a cohesive marketplace. This market would be characterized by consistent regulations; transparent pricing regimes open access to transmission services; competitive procurement processes; and unbundled generation, transmission and distribution services. This new market structure would mark a change for private power developers, who in the past have faced barriers to development of independent power facilities in many European countries. Progress toward competition is already evident.

  3. PV solar electricity: status and future

    NASA Astrophysics Data System (ADS)

    Hoffmann, Winfried

    2006-04-01

    of new concepts to broaden the product portfolio in coming years). The second topic outlines the most likely development of liberalized electricity markets in various regions worldwide. It will be emphasized that in such markets the future prices for electricity will more and more reflect the different cost for bulk and peak power production. This will not only happen for industrial electricity customers - as already today in many countries - but also for private households. The third topic summarizes the existing data and facts by correlating peak power demand and prices traded in various stock exchange markets with delivered PV kWh. It will be shown that a high degree of correlation is existent. Combining the three topics and postulating reverse net metering the competitiveness of PV solar electricity as described is most likely to occur. The described price decrease of modules will also have a very positive impact on off-grid rural applications, mainly in 3rd world countries. It will be shown that this is strongly advanced due to the development of mini-grids starting from solar home systems - with mini grids looking very similar to on-grid applications in weak grid areas of nowadays electricity network.

  4. Electric Power: Decisions for the Future.

    ERIC Educational Resources Information Center

    Cardon, Phillip L.; Preston, John

    2003-01-01

    Reviews the past 25 years of electricity consumption in the United States and considers the implications for the near future. Discusses strategies for energy conservation and provides a student activity for measuring and conserving electric power. (Author/JOW)

  5. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  6. The history of transportation, with a peak into the future

    NASA Technical Reports Server (NTRS)

    Anderson, John D., Jr.

    1996-01-01

    In the first part of this presentation, a general historical review of the heydays of various modes of transportation will be given, where 'heydays' will be interpreted as periods of fundamental technological development. With this as background, focus will then be placed on the airplane -- the mode of transportation that has changed the world in the 20th century, and which in the minds of many has been the most important technological development in this century. The technical history of air transportation (the airplane) will be reviewed, with special emphasis on the aerodynamic evolution of the airplane. Some specific examples of pivotal technical advances (and breakthroughs) from the history of applied aerodynamics will be discussed. Finally, this historical perspective will be used to help us peek into the future of transportation in the 21st century.

  7. Renewable Electricity Futures for the United States

    SciTech Connect

    Mai, Trieu; Hand, Maureen; Baldwin, Sam F.; Wiser , Ryan; Brinkman, G.; Denholm, Paul; Arent, Doug; Porro, Gian; Sandor, Debra; Hostick, Donna J.; Milligan, Michael; DeMeo, Ed; Bazilian, Morgan

    2014-04-14

    This paper highlights the key results from the Renewable Electricity (RE) Futures Study. It is a detailed consideration of renewable electricity in the United States. The paper focuses on technical issues related to the operability of the U. S. electricity grid and provides initial answers to important questions about the integration of high penetrations of renewable electricity technologies from a national perspective. The results indicate that the future U. S. electricity system that is largely powered by renewable sources is possible and the further work is warranted to investigate this clean generation pathway. The central conclusion of the analysis is that renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of the total U. S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the United States.

  8. Renewable Electricity Futures Study - Volume One

    DOE Data Explorer

    Hand, Maureen; Mai, Treui; Baldwin, Sam; Brinkman, Greg; Sandor, Debbie; Denholm, Paul; Heath, Garvin; Wiser, Ryan

    2016-06-01

    Renewable Electricity Futures Study - Volume One. This is part of a series of four volumes describing exploring a high-penetration renewable electricity future for the United States of America. This data set is provides data for the entire volume one document and includes all data for the charts and graphs included in the document.

  9. Investigation of cost reduction in residential electricity bill using electric vehicle at peak times

    NASA Astrophysics Data System (ADS)

    Elma, Onur; Selamogullari, Ugur Savas

    2012-11-01

    The use of electric vehicles (EVs) is becoming more common in the world. Since these vehicles are equipped with large battery capacity, they can be used as energy provider when they are parked and have enough charge level. This study investigates the possibility of Vehicle to Home (V2H) concept using EV as energy provider for a residential house in Istanbul, Turkey. High resolution residential electrical demand data is obtained to characterize the residential demand. Then, case studies are completed in MATLAB/Simulink to evaluate the cost reduction in residential electricity bill when the EV is used to supply the residential demand at peak times. It is assumed that the EV will be fully charged after midnight when the energy cost is lower. The difference between residential electricity costs at peak times and charging costs after midnight are found considering different EV state of charge conditions due to driving conditions during the day. The results will provide more realistic prediction of cost savings since residential demand dynamics are taken into account.

  10. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  11. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  12. Primer on electricity futures and other derivatives

    SciTech Connect

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

  13. Reducing Gridlock on the Grid: Utility Trends in Managing Peak Electric Load through Residential Demand Response

    NASA Astrophysics Data System (ADS)

    McDonald, Betsy

    Utilities across the United States are piloting residential demand response programs to help manage peak electric demand. Using publicly available program evaluations, this thesis analyzes nine such programs to uncover and synthesize the range of program offerings, goals, enrollment strategies, and customer experiences. This review reveals that program participation, components, and results differ based on a variety of factors, including geographic characteristics, program goals, and implementation strategies. The diversity of program designs and evaluation findings suggests an underlying tension between the need to generate cost-effective program impacts and the desire to increase accessibility so that program benefits are not exclusive to certain segments of the population. For more significant and impactful engagement, program goals may need to shift. State level policy support could help shift program goals toward increasing program accessibility. Future research should explore creative strategies that target existing barriers and allow for more inclusive deployment.

  14. The dilemma of future electric power demand

    NASA Technical Reports Server (NTRS)

    Wu, Y.-C.

    1976-01-01

    Dim prospects are held out for continued exponential growth rates in the generation and use of electric power worldwide and in many local areas, extrapolating from current trends and common projections. While acknowledging the unique advantages of electric power use, the article points out the 30% level of efficiency in conversion of other forms of energy to electrical energy, with huge volumes of wasted energy plus thermal pollution. Even growth at a fixed rate is found problematical, with future needs exhausting water and land resources and fossil fuels in time. Alleviation of the situation by shifting much of the load to still unproven technologies is considered cautiously

  15. Energy infrastructure: Mapping future electricity demand

    NASA Astrophysics Data System (ADS)

    Janetos, Anthony C.

    2016-08-01

    Electricity distribution system planners rely on estimations of future energy demand to build adequate supply, but these are complicated to achieve. An approach that combines spatially resolved projections of population movement and climate change offers a method for building better demand maps to mid-century.

  16. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  17. Analysis on factors affecting household customers decision in using electricity at peak time and its correlation towards saving electricity

    NASA Astrophysics Data System (ADS)

    Pasasa, Linus; Marbun, Parlin; Mariza, Ita

    2015-09-01

    The purpose of this paper is to study and analyse the factors affecting customer decisions in using electricity at peak-load hours (between 17.00 to 22.00 WIB) and their behaviors towards electricity conservation in Indonesian household. The underlying rationale is to influence a reduction in energy consumption by stimulating energy saving behaviors, thereby reducing the impact of energy use on the environment. How is the correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity? The primary data is obtained by distributing questionnaires to customers of PT. PLN Jakarta Raya and Tangerang Distribution from Household segment. The data is analysed using the Structural Equation Model (SEM) and AMOS Software. The research is finding that all factors (Personal, Social, PLN Services, Psychological, and Cultural) are positively influence customer decision in using electricity at peak load hours. There is a correlation between the decisions in using electricity during peak load hours with the household customer's behavior towards saving electricity.

  18. Roadmapping the technological future of electricity

    SciTech Connect

    Yeager, K.; Gehl, S.; Barker, B.; Knight, R.L.

    1998-12-01

    This article reviews the progress of an ongoing collaborative exploration spearheaded by the Electric Power Research Institute (EPRI): the Electricity Technology Roadmap Initiative. With over 150 participating organizations to date, the Roadmap Initiative seeks to develop a comprehensive vision of opportunities for electricity-related innovation through the mid-21st Century to benefit society and business. The Roadmap will also translate that vision into a set of technology development destinations and R and D pathways. EPRI is leading the Roadmapping effort as an investment in the future and as guidance for broad-based public and private R and D investment. The Roadmap is intended to be an ongoing activity with broad participation.

  19. Reducing Residential Peak Electricity Demand with Mechanical Pre-Cooling of Building Thermal Mass

    SciTech Connect

    Turner, Will; Walker, Iain; Roux, Jordan

    2014-08-01

    This study uses an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling of building thermal mass to shift electricity loads away from the peak electricity demand period. The focus of this study is residential buildings with low thermal mass, such as timber-frame houses typical to the US. Simulations were performed for homes in 12 US DOE climate zones. The results show that the effectiveness of mechanical pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown.

  20. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    PubMed

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations

  1. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand.

    PubMed

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers' peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers' location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual 'map' of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations

  2. Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand

    PubMed Central

    Lewis, Jim; Mengersen, Kerrie; Buys, Laurie; Vine, Desley; Bell, John; Morris, Peter; Ledwich, Gerard

    2015-01-01

    Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price, managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tickbox interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the

  3. Temporalization of peak electric generation particulate matter emissions during high energy demand days.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Baker, Kirk R; Rodgers, Mark; Carlton, Annmarie G

    2015-04-01

    Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively. PMID:25705922

  4. Development of flood regressions and climate change scenarios to explore estimates of future peak flows

    USGS Publications Warehouse

    Burns, Douglas A.; Smith, Martyn J.; Freehafer, Douglas A.

    2015-12-31

    The application uses predictions of future annual precipitation from five climate models and two future greenhouse gas emissions scenarios and provides results that are averaged over three future periods—2025 to 2049, 2050 to 2074, and 2075 to 2099. Results are presented in ensemble form as the mean, median, maximum, and minimum values among the five climate models for each greenhouse gas emissions scenario and period. These predictions of future annual precipitation are substituted into either the precipitation variable or a water balance equation for runoff to calculate potential future peak flows. This application is intended to be used only as an exploratory tool because (1) the regression equations on which the application is based have not been adequately tested outside the range of the current climate and (2) forecasting future precipitation with climate models and downscaling these results to a fine spatial resolution have a high degree of uncertainty. This report includes a discussion of the assumptions, uncertainties, and appropriate use of this exploratory application.

  5. Renewable Electricity Futures: Exploration of Up to 80% Renewable Electricity Penetration in the United States (Presentation)

    SciTech Connect

    Hand, M.; DeMeo, E.; Hostick, D.; Mai, T.; Schlosser, C. A.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  6. Influence of electric field on spectral positions of dislocation-related luminescence peaks in silicon: Stark effect

    NASA Astrophysics Data System (ADS)

    Mchedlidze, T.; Arguirov, T.; Kittler, M.; Hoang, T.; Holleman, J.; Schmitz, J.

    2007-11-01

    Spectral positions of dislocation-related luminescence (DRL) peaks from dislocation loops located close to a p-n junction in silicon were shifted by carrier injection level. We suppose that the excitonic transition energies of DRL were reduced by an effective electric field at dislocation sites due to quadratic Stark effect (QSE). The field results from built-in junction field reduced by carrier injection. A constant of the shift, obtained from fitting of the data with QSE equation, was 0.0186meV /(kV/cm)2. The effect can explain the diversity of DRL spectra in silicon and may allow tuning and modulation of DRL for future photonic applications.

  7. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  8. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  9. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  10. Electric steelmaking: recent trends and future constraints

    SciTech Connect

    Burwell, C.C.

    1983-10-01

    The growth of electric steelmaking in recent years is reviewed. Initially electric melting of surplus scrap complmented the shift from the use of the open hearth process to the more productive basic oxygen process with its more limited capability to remelt scrap. More recently, because of high production and energy efficiency characteristics, production in electric mills continued to grow even as production in basic oxygen furnaces declined. As a result, there is an increasing use of old scrap in steel products. The national inventory of scrap is considered, and processing technologies needed to improve scrap quality are discussed.

  11. Performance improvement of a solar heating system utilizing off-peak electric auxiliary

    SciTech Connect

    Eltimsahy, A.H.

    1980-06-01

    The design and construction of a heat pump system suitable for incorporating in a space solar heating system utilizing off-peak storage from the electric utility are described. The performance of the system is evaluated. The refrigerating capacity, heating capacity and compressor horsepower for a heat pump system using a piston type compressor are first determined. The heat pump design is also matched with the existing University of Toledo solar house heating system. The refrigerant is Freon-12 working between a condensing temperature of up to 172/sup 0/F and evaporator temperature between 0/sup 0/F and 75/sup 0/F. The heat pump is then installed. Performance indices for the heat pump and the heating system in general are defined and generated by the on-line computer monitoring system for the 1979/80 heating season operation. Monthly and seasonal indices such as heat pump coefficient of performance, collector efficiency, percent of heating load supplied by solar energy and individual components efficiencies in general are recorded. The data collected is then analyzed and compared with previously collected data. The improvement in the performance resulting from the addition of a piston type compressor with an external motor belt drive is then evaluated. Data collected points to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility. Data shows that the seasonal percent of space heating load supplied by solar is 60% and the seasonal percent cost of space heating load supplied by solar is 82% with a solar collection coefficient of performance of 4.6. Data also indicates that such a system would pay for itself in 14 years when used in Northwest Ohio.

  12. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  13. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  14. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  15. Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.

    2015-01-01

    Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.

  16. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-01

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world. PMID:27385064

  17. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-01

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  18. Managing electricity reliability risk through the futures markets

    SciTech Connect

    Siddiqui, Afzal S.

    2000-10-01

    In competitive electricity markets, the vertically integrated utilities that were responsible for ensuring system reliability in their own service territories, or groups of territories, often cease to exist. Typically, the burden falls to an independent system operator (ISO) to insure that enough ancillary services (AS) are available for safe, stable, and reliable operation of the grid, typically defined, in part, as compliance with officially approved engineering specifications for minimum levels of AS. In order to characterize the behavior of market participants (generators, retailers, and an ISO) in a competitive electricity market with reliability requirements, we model a spot market for electricity and futures markets for both electricity and AS. By assuming that each participant seeks to maximize its expected utility of wealth and that all markets clear, we solve for the optional quantities of electricity and AS traded in each market by all participants, as well as the corresponding market-clearing prices. We show that future prices for both electricity and AS depend on expectations of the spot price, statistical aspects of system demand, and production cost parameters. More important, our model captures the fact that electricity and AS are substitute products for the generators, implying that anticipated changes in the spot market will affect the equilibrium futures positions of both electricity and AS. We apply our model to the California electricity and AS markets to test its viability.

  19. Automatic electrical stimulation of abdominal wall muscles increases tidal volume and cough peak flow in tetraplegia.

    PubMed

    Gollee, H; Hunt, K J; Allan, D B; Fraser, M H; McLean, A N

    2008-01-01

    Paralysis of the respiratory muscles in people with tetraplegia affects their ability to breathe and contributes to respiratory complications. Surface functional electrical stimulation (FES) of abdominal wall muscles can be used to increase tidal volume (V_{T}) and improve cough peak flow (CPF) in tetraplegic subjects who are able to breathe spontaneously. This study aims to evaluate the feasibility and effectiveness of a novel abdominal FES system which generates stimulation automatically, synchronised with the subjects' voluntary breathing activity. Four subjects with complete tetraplegia (C4-C6), breathing spontaneously, were recruited. The automatic stimulation system ensured that consistent stimulation was achieved. We compared spirometry during unassisted and FES-assisted quiet breathing and coughing, and measured the effect of stimulation on end-tidal CO_2 (EtCO_2) during quiet breathing. The system dependably recognised spontaneous respiratory effort, stimulating appropriately, and was well tolerated by patients. Significant increases in V_T during quiet breathing (range 0.05-0.23 L) and in CPF (range 0.04-0.49 L/s) were observed. Respiratory rate during quiet breathing decreased in all subjects when stimulated, whereas minute ventilation increased by 1.05-2.07 L/min. The changes in EtCO_2 were inconclusive. The automatic stimulation system augmented spontaneous breathing and coughing in tetraplegic patients and may provide a potential means of respiratory support for tetraplegic patients with reduced respiratory capacity.

  20. [Future of implantable electrical cardiac devices].

    PubMed

    Daubert, Jean-Claude; Behaghel, Albin; Leclercq, Christophe; Mabo, Philippe

    2014-03-01

    Major improvements in implantable electrical cardiac devices have been made during the last two decades, notably with the advent of automatic internal defibrillation (ICD) to prevent sudden arrhythmic death, and cardiac resynchronisation (CRT) to treat the discoordinated failing heart. They now constitute a major therapeutic option and may eventually supersede drug therapy. The coming era will be marked by a technological revolution, with improvements in treatment delivery, safety and efficacy, and an expansion of clinical indications. Leadless technologyfor cardiac pacemakers and defibrillators is already in the pipeline, endovascular leads currently being responsible for most long-term complications (lead failure, infection, vein thrombosis, etc.). Miniaturized pacemakers based on nanotechnology can now be totally implanted inside the right ventricle through the transvenous route, thus eliminating leads, pockets and scarring In the same way, totally subcutaneous ICD systems are now available, although they are currently only capable of delivering shocks, without pacing (including antitachycardia pacing). In CRT optimised delivery is important to improve clinical responses and to reduce the non-response rate (around 30 % with current technology). Endocardial left ventricular pacing could be a solution if it can be achieved at an acceptable risk. Multisite ventricular pacing is an alternative. Besides CRT neuromodulation, especially by vagal stimulation, is another important field of device researchfor heart failure. Preliminary clinical results are encouraging. PMID:26427291

  1. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  2. Perspectives on the future of the electric utility industry

    SciTech Connect

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  3. Sell lumens, not kilowatts: The future for electric utilities

    SciTech Connect

    Piepmeier, J.M. ); Jermain, D. ); Egnor, T.L. )

    1993-04-01

    The key to the future for electric utilities will not be found in legislation or regulation. Title VII of the Energy Policy Act of 1992 will prove to be just as ineffectual in improving the industry's position as was the Public Utility Regulatory Policies Act of 1978. These legislative palliatives, which produced so much commotion and so many reams of heated commentary, are largely irrelevant to a successful future for electric utilities. The key will be found in economics, not in law, and the future will lie in completing Thomas A. Edison's century-old vision for the industry, half of which the industry has heretofore ignored. The industry must embrace the complete vision and evolve from electric utilities into [open quotes]end-use energy utilities.[close quotes

  4. Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike

    SciTech Connect

    DeForest, Nicholas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2013-06-02

    In much of the developed world, air-conditioning in buildings is the dominant driver of summer peak electricity demand. In the developing world a steadily increasing utilization of air-conditioning places additional strain on already-congested grids. This common thread represents a large and growing threat to the reliable delivery of electricity around the world, requiring capital-intensive expansion of capacity and draining available investment resources. Thermal energy storage (TES), in the form of ice or chilled water, may be one of the few technologies currently capable of mitigating this problem cost effectively and at scale. The installation of TES capacity allows a building to meet its on-peak air conditioning load without interruption using electricity purchased off-peak and operating with improved thermodynamic efficiency. In this way, TES has the potential to fundamentally alter consumption dynamics and reduce impacts of air conditioning. This investigation presents a simulation study of a large office building in four distinct geographical contexts: Miami, Lisbon, Shanghai, and Mumbai. The optimization tool DER-CAM (Distributed Energy Resources Customer Adoption Model) is applied to optimally size TES systems for each location. Summer load profiles are investigated to assess the effectiveness and consistency in reducing peak electricity demand. Additionally, annual energy requirements are used to determine system cost feasibility, payback periods and customer savings under local utility tariffs.

  5. Postglacial volcanic deposits at Glacier Peak, Washington, and potential hazards from future eruptions; a preliminary report

    USGS Publications Warehouse

    Beget, J.E.

    1982-01-01

    Eruptions and other geologic events at Glacier Peak volcano in northern Washington have repeatedly affected areas near the volcano as well as areas far downwind and downstream. This report describes the evidence of this activity preserved in deposits on the west and east flanks of the volcano. On the west side of Glacier Peak the oldest postglacial deposit is a large, clayey mudflow which traveled at least 35 km down the White Chuck River valley sometime after 14,000 years ago. Subsequent large explosive eruptions produced lahars and at least 10 pyroclastic-flow deposits, including a semiwelded vitric tuff in the White Chuck River valley. These deposits, known collectively as the White Chuck assemblage, form a valley fill which is locally preserved as far as 100 km downstream from the volcano in the Stillaguamish River valley. At least some of the assemblage is about 11,670-11,500 radiocarbon years old. A small clayey lahar, containing reworked blocks of the vitric tuff, subsequently traveled at least 15 km down the White Chuck River. This lahar is overlain by lake sediments containing charred wood which is about 5,500 years old. A 150-m-thick assemblage of pyroclastic-flow deposits and lahars, called the Kennedy Creek assemblage, is in part about 5,500-5,100 radiocarbon years old. Lithic lahars from this assemblage extend at least 100 km downstream in the Skagit River drainage. The younger lahar assemblages, each containing at least three lahars and reaching at least 18 km downstream from Glacier Peak in the White Chuck River valley, are about 2,800 and 1,800 years old, respectively. These are postdated by a lahar containing abundant oxyhornblende dacite, which extends at least 30 km to the Sauk River. A still younger lahar assemblage that contains at least five lahars, and that also extends at least 30 km to the Sauk River, is older than a mature forest growing on its surface. At least one lahar and a flood deposit form a low terrace at the confluence of the

  6. Building America Top Innovations 2012: High-Performance with Solar Electric Reduced Peak Demand

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  7. Evaluation of Potential Wetlands to Reduce Peak Flows in Future Climate Scenarios in the Eagle Creek Watershed, IN

    NASA Astrophysics Data System (ADS)

    Walters, K. M.; Babbar-Sebens, M.

    2014-12-01

    Global climate change is expected to increase the severity of floods and droughts and the frequency of extreme streamflow events in the Midwestern United States. Managing these projected impacts poses a major challenge for water resources, conservation, and land use management. Wetlands have been considered as a conservation strategy and work to increase the capacity of watersheds by storing runoff upstream. The implementation of wetlands, especially in tile-drained agricultural watersheds, can reduce peak flows and help mitigate the anticipated impacts of climate change. The goal of this study was to evaluate the long-term performance of wetlands to reduce peak flows in future climate scenarios in the Eagle Creek Watershed in Indiana. A secondary goal of this research was to establish a methodology for incorporating climate change into hydrological models to conduct long-term land management studies and decisions. The Soil and Water Assessment Tool (SWAT) model was forced with an ensemble of bias corrected climate projections from the North American Regional Climate Change Assessment Program (NARCCAP) to evaluate the impacts of climate change on watershed hydrology and the ability of wetlands to reduce peak flows. Long-term monthly streamflow results predicted a slight increase in streamflow in the winter and a slight decrease in the summer from the past (1971-2000) to future (2041-2070) time periods. About half of the climate realizations produced an increase in the 5% exceedance flow and half a decrease, but all predictions agreed that high flow events will increase in frequency in the winter and decrease in the spring and summer. Results from the wetland analysis showed that if all potential wetlands identified in a previous study are installed in the watershed, maximum peak flow reductions of around 20-50 cubic meters per second for the past and future, as well as decreased frequency of extreme events, can be seen. Wetlands proved to be a robust solution for

  8. Minimization of Impact from Electric Vehicle Supply Equipment to the Electric Grid Using a Dynamically Controlled Battery Bank for Peak Load Shaving

    SciTech Connect

    Castello, Charles C

    2013-01-01

    This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoid function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.

  9. IRP and the electricity industry of the future: Workshop results

    SciTech Connect

    Tonn, B.; Hirst, E.; Bauer, D.

    1994-09-01

    During the next several years, the U.S. electricity industry is likely to change dramatically. Instead of an industry dominated by vertically integrated companies that are regulated primarily by state public utility commissions, we may see an industry with many more participants and less regulation. These new participants may include independent power producers, entities that dispatch and control power plants on a real-time basis, entities that build and maintain transmission networks, entities that build and maintain distribution systems and also sell electricity and related to services to some retail customers, and a variety of other organizations that sell electricity and other services to retail customers. Because markets are intended to be the primary determinant of success, the role of state and federal regulators might be less than it has been in the past. During the past decade, utilities and state regulators have developed new ways to meet customer energy-service needs, called integrated resource planning (IRP). IRP provides substantial societal benefits through the consideration and acquisition of a broad array of resources, including renewables and demand-side management (DSM) programs as well as traditional power plants-, explicit consideration of the environmental effects of electricity production and transmission; public participation in utility planning; and attention to the uncertainties associated with different resources, future demands for electricity, and other factors. IRP might evolve in different ways as the electricity industry is restructured (Table S-I). To explore these issues, we ran a Workshop on IRP and the Electricity Industry of the Future in July 1994. This report presents the wisdom and experience of the 30 workshop participants. To focus discussions, we created three scenarios to represent a few of the many ways that the electricity industry might develop.

  10. Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Lajis, M. A.

    2013-12-01

    This experimental work is an attempt to investigate the performance of Copper electrode when EDM of Nickel Based Super Alloy, Inconel 718 is at higher peak current and pulse duration. Peak current, Ip and pulse duration (pulse on-time), ton are selected as the most important electrical pulse parameters. In addition, their influence on material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) are experimentally investigated. The ranges of 10 mm diameter of Copper electrode are used to EDM of Inconel 718. After the experiments, MRR, EWR, and Ra of the machined surfaces need to be measured in order to evaluate the performance of the EDM process. In order to obtain high MRR, higher peak current in range of 20A to 40A and pulse duration in range of 200μs to 400μs were used. Experimental results have shown that machining at a highest peak current used of 40A and the lowest pulse duration of 200μs used for the experiment yields the highest material removal rate (MRR) with value 34.94 mm3/min, whereas machining at a peak current of 20A and pulse duration of 400μs yields the lowest electrode wear rate (EWR) with value -0.0101 mm3/min. The lowest surface roughness (Ra) is 8.53 μm achieved at a lowest peak current used of 20A and pulse duration of 200μs.

  11. The costs, air quality, and human health effects of meeting peak electricity demand with installed backup generators.

    PubMed

    Gilmore, Elisabeth A; Lave, Lester B; Adams, Peter J

    2006-11-15

    Existing generators installed for backup during blackouts could be operated during periods of peak electricity demand, increasing grid reliability and supporting electricity delivery. Many generators, however, have non-negligible air emissions and may potentially damage air quality and harm human health. To evaluate using these generators, we compare the levelized private and social (health) costs of diesel internal combustion engines (ICE) with and without diesel particulate filters (DPF), natural gas ICEs, and microturbines to a new peaking plant in New York, NY. To estimate the social cost, first we calculate the upper range emissions for each generator option from producing 36,000 megawatt-hours (MWh) of electricity over 3 days. We then convert the emissions into ambient concentrations with a 3-D chemical transport model, PMCAMx, and Gaussian dispersion plumes. Using a Monte Carlo approach to incorporate the uncertainties, we calculate the health endpoints using concentration-response functions and multiply the response by its economic value. While uncontrolled diesel ICEs would harm air quality and health, a generator with a DPF has a social cost, comparable to natural gas options. We conclude on a full cost basis that backup generators, including controlled diesel ICEs, are a cost-effective method of meeting peak demand. PMID:17153991

  12. Electric chillers: Cost-effective choice for the future

    SciTech Connect

    Blatt, M.H. )

    1993-03-01

    This article is a summary of the impact of CFC/HCFC phaseout resolutions on future chiller and refrigerant use and the environmental and economic effects of electric and gas cooling options. Growing concerns over stratospheric ozone depletion have been making chiller selection more difficult. To ease ozone depletion, existing regulations are phasing out the production of refrigerants that contain chlorine, and recent resolutions will accelerate these phaseout schedules. Uncertainty about the availability of chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants is causing decision makers to be more cautious when evaluating cooling equipment options. To complicate matters further, the gas industry has--quite understandably--seized the opportunity created by this uncertainty to market gas options vigorously. Some gas utilities are promoting gas chillers by offering rebates of up to $450 per ton of installed cooling capacity. This information is now becoming available in part through research conducted by the Electric Power Research Institute (EPRI). This article's brief summary of EPRI's work helps clarify some key points. It discusses the implications of the November 1992 Copenhagen CFC/HCFC phaseout resolutions and examines equipment and refrigerant alternatives for the near- and longterm future. It also describes the environmental and economic impacts of electric and gas cooling options, examines selection choices in light of these impacts, and looks at some of the parameters that determine the costs of electric and gas options. This information provides a solid base for evaluating specific options and alternatives.

  13. Renewable Electricity Futures: Exploration of a U.S. Grid with 80% Renewable Electricity

    NASA Astrophysics Data System (ADS)

    Mai, Trieu

    2013-04-01

    Renewable Electricity Futures is an initial investigation of the extent to which renewable energy supply can meet the electricity demands of the contiguous United States over the next several decades. This study explores the implications and challenges of very high renewable electricity generation levels: from 30% up to 90% (focusing on 80%) of all U.S. electricity generation from renewable technologies in 2050. At such high levels of renewable electricity penetration, the unique characteristics of some renewable resources, specifically geographical distribution and variability and un-certainty in output, pose challenges to the operability of the nation's electric system. The study focuses on key technical implications of this environment from a national perspective, exploring whether the U.S. power system can supply electricity to meet customer demand on an hourly basis with high levels of renewable electricity, including variable wind and solar generation. The study also identifies some of the potential economic, environmental, and social implications of deploying and integrating high levels of renewable electricity in the U.S. The full report and associated supporting information is available at: http://www.nrel.gov/analysis/refutures/.

  14. Reduction of peak-power demand for electric rail-transit systems. Final report

    SciTech Connect

    Uher, R.A.; Sathi, N.

    1983-12-01

    The objective of the research was the identification of systematic methods and procedures by which rail-transit systems can lower the power-demand component of the electric bill. Four rail-transit systems were selected to examine energy-related data and policies, to simulate the energy-use pattern, and to develop more-general guidelines for energy management in rail transit. Estimates of overall costs and effectiveness of load-management methodologies were made. The cost and benefit of load management is extremely site-specific. A series of guidelines that define an overall transit energy-management program were developed as part of the report.

  15. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  16. Assessing Vulnerability of Electricity Generation Under Potential Future Droughts

    NASA Astrophysics Data System (ADS)

    Yan, E.; Tidwell, V. C.; Wigmosta, M. S.

    2014-12-01

    In the past few decades, the western US experienced increased sever, frequent, and prolonged droughts resulting in significant water availability issues, which raised questions as to how electricity sector might be vulnerable to future droughts. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential droughts on power generation at a local level of the USGS 8-digit watersheds and individual power plants within the context of current and future characteristics of power system and water resource system.The study identified three potential drought scenarios based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Pacific Northwest River Basin and California River Basin. The hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and all major reservoirs that are currently supporting water withdrawal for various sectors and hydroelectric power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds and reservoirs are used as input to power-plant specific models to quantify potential risk of curtailment at each power plant. The key findings from this study will help to improve understanding of spatial distribution of vulnerable power plants and watersheds as well as the scale of potential reduction of electricity generation under various drought scenarios. Beyond impacts to the existing

  17. Electric power industry in Korea: Past, present, and future

    SciTech Connect

    Lee, Hoesung

    1994-12-31

    Electrical power is an indispensable tool in the industrialization of a developing country. An efficient, reliable source of electricity is a key factor in the establishment of a wide range of industries, and the supply of energy must keep pace with the increasing demand which economic growth creates in order for that growth to be sustained. As one of the most successful of all developing countries, Korea has registered impressive economic growth over the last decade, and it could be said that the rapid growth of the Korean economy would not have been possible without corresponding growth in the supply of electric power. Power producers in Korea, and elsewhere in Asia, are to be commended for successfully meeting the challenge of providing the necessary power to spur what some call an economic miracle. The future continues to hold great potential for participants in the electrical power industry, but a number of important challenges must be met in order for that potential to be fully realized. Demand for electricity continues to grow at a staggering rate, while concerns over the environmental impact of power generating facilities must not be ignored. As it becomes increasingly difficult to finance the rapid, and increasingly larger-scale expansion of the power industry through internal sources, the government must find resources to meet the growing demand at least cost. This will lead to important opportunities for the private sector. It is important, therefore, for those interested in participating in the power production industry and taking advantage of the newly emerging opportunities that lie in the Korean market, and elsewhere in Asia, to discuss the relevant issues and become informed of the specific conditions of each market.

  18. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  19. The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity.

    PubMed

    McMahon, Catherine M; Patuzzi, Robert B

    2002-11-01

    presence of two peaks (P(1)* and N(2)*) which follow the intact N(1) peak. The P(1)* and N(2)* peaks were present at the RW, but not at the cochlear nerve as it exits the internal meatus, suggesting that they were not due to double-spiking of some of the neurones, but were probably due to a sub-threshold electrical resonance in the peripheral dendrites. We have successfully modelled the production of the SNN and the compound action potential and SAW in response to 0.25 ms and 25 ms tone-bursts at 20 kHz by including only a damped 900 Hz resonance in the UP, without refractory effects, preferred intervals or synchronisation in the timing of neural spike generation. Such resonances in other neurones are known to be due to the activation kinetics of the voltage-controlled sodium (Na(+)) channels of these neurones. The presence of such sub-threshold oscillations probably indicates that the peripheral dendrites are devoid of stabilising potassium (K(+)) channels. We also discuss the role of this membrane resonance in generating burst-firing of the cochlear nerve (as with salicylate) and the role of such burst-firing in generating tinnitus. PMID:12372642

  20. Impacts of Potential Future Droughts on Electricity Generation

    NASA Astrophysics Data System (ADS)

    Yan, E.; Wigmosta, M. S.; Tidwell, V. C.; King, C. W.

    2013-12-01

    In 2011, the state of Texas experienced the worst single-year drought on record. This recent extreme climate event raised questions as to how future droughts might impact ERCOT operations. To improve our understanding of potential risks of electricity generation curtailment due to drought, an impact analysis was performed with a series of modeling tools including climate downscaling, competitive water-use calculator, hydrologic model for various hydrologic processes, and power-plant specific models. This presentation will demonstrate the predicted effects of potential future droughts on power generation at a local level of the USGS 8-digit watersheds and power plants within the context of long-term transmission planning. The study identified three potential drought scenarios (single- and multiple-year droughts) based on historical drought records and projected climate changes from the GFDL and the PCM global climate models, for greenhouse gas emission scenarios A1B, A2, and B1 defined by the IPCC. The potential impacts under these three drought scenarios were evaluated with a hydrologic model constructed for the Texas-Gulf river basin. The Texas-Gulf hydrologic model incorporates competitive water uses, climate forcing data corresponding to each of drought scenarios, and 125 reservoirs that are currently supporting water withdrawal for various sectors and cooling water for power generation. The hydrologic responses to drought scenarios predicted for each of the USGS 8-digit watersheds (such as evapotranspiration, soil water, water yield from watersheds, stream flow, and water storage in reservoirs) provide a bases to assess if power plants potentially at risk of being of derated and watersheds are vulnerable to droughts. The key findings from this study will help to improve understanding of spatial distribution of power plants at risk and vulnerable watersheds as well as the scale of potential reduction of electricity generation. Beyond impacts to the existing

  1. Future electricity production methods. Part 1: Nuclear energy

    NASA Astrophysics Data System (ADS)

    Nifenecker, Hervé

    2011-02-01

    The global warming challenge aims at stabilizing the concentrations of Green House Gas (GHG) in the atmosphere. Carbon dioxide is the most effective of the anthropogenic GHG and is essentially produced by consumption of fossil fuels. Electricity production is the dominant cause of CO2 emissions. It is, therefore, crucial that the share of 'carbon less' electricity production techniques increases at a fast pace. This is the more so, that 'clean' electricity would be useful to displace 'dirty' techniques in other fields such as heat production and transportation. Here we examine the extent to which nuclear energy could be operational in providing 'clean' electricity. A nuclear intensive scenario is shown to give the possibility to divide CO2 emissions by a factor of 2 worldwide, within 50 years. However, the corresponding sharp increase in nuclear power will put a heavy burden on uranium reserves and will necessitate the development of breeding reactors as soon as possible. A review of present and future reactors is given with special attention to the safety issues. The delicate question of nuclear fuel cycle is discussed concerning uranium reserves and management of used fuels. It is shown that dealing with nuclear wastes is more a socio-political problem than a technical one. The third difficult question associated with the development of nuclear energy is the proliferation risk. It is advocated that, while this is, indeed, a very important question, it is only weakly related to nuclear power development. Finally, the possibilities of nuclear fusion are discussed and it is asserted that, under no circumstances, could nuclear fusion give a significant contribution to the solution of the energy problem before 50 years, too late for dealing with the global warming challenge.

  2. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    SciTech Connect

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    Customer-sited photovoltaic (PV) systems in the United States are often compensated at the customer’s underlying retail electricity rate through net metering. Calculations of the customer economics of PV, meanwhile, often assume that retail rate structures and PV compensation mechanisms will not change and that retail electricity prices will increase (or remain constant) over time, thereby also increasing (or keeping constant) the value of bill savings from PV. Given the multitude of potential changes to retail rates and PV compensation mechanisms in the future, however, understanding how such changes might impact the value of bill savings from PV is critical for policymakers, regulators, utilities, the solar industry, and potential PV owners, i.e., any stakeholder interested in understanding uncertainties in and potential changes to the long-term customer economics of PV. This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV.

  3. Performance requirements of automotive batteries for future car electrical systems

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Richter, G.

    The further increase in the number of power-consuming functions which has been announced for future vehicle electrical systems, and in particular the effects of new starting systems on battery performance, requires a further optimization of the lead acid system coupled with effective energy management, and enhanced battery operating conditions. In the face of these increased requirements, there are proven benefits to splitting the functions of a single SLI battery between two separate, special-purpose batteries, each of which are optimized, for high power output and for high energy throughput, respectively. This will bring about a marked improvement in weight, reliability, and state of charge (SOC). The development of special design starter and service batteries is almost completed and will lead to new products with a high standard of reliability. The design of the power-optimized lead acid accumulator is particularly suitable for further development as the battery for a 42/36 V electrical system. This is intended to improve the efficiency of the generator and the various power-consuming functions and to improve start/stop operation thereby bringing about a marked reduction in the fuel consumption of passenger cars. This improvement can also be assisted by a charge management system used in conjunction with battery status monitoring.

  4. Portable peak flow meters.

    PubMed

    McNaughton, J P

    1997-02-01

    There are several portable peak flow meters available. These instruments vary in construction and performance. Guidelines are recommended for minimum performance and testing of portable peak flow meters, with the aim of establishing a procedure for standardizing all peak flow meters. Future studies to clarify the usefulness of mechanical test apparatus and clinical trials of peak flow meters are also recommended. PMID:9098706

  5. Electric automobiles: energy, environmental, and economic prospects for the future

    SciTech Connect

    Hamilton, W.

    1980-01-01

    The book discusses the pros and cons of electric cars for the motorist as well as for the nation as a whole. For the motorist, it compares the prospective performance and costs of electric cars with those of conventional cars. For the nation, it projects the changes in energy use, petroleum use, air pollution, and traffic noise that would result from substituting electric cars for conventional cars. Specific projections are advanced for the years 1980, 1990, and 2000. Beginning with the reasons for the current interest in electric cars and why they have not yet come into widespread use, the book offers useful information on: prospective propulsion batteries, with projections of battery performance and capabilities; patterns for urban driving, which serve as a basis for determining the applicability of electric cars with different driving ranges and passenger capabilities; comprehensive projections of electric utility capacity and generation by fuel type, both with and without electric cars; the number of electric cars that may be recharged without adding utility capacity beyond that already planned; the requirements of electric cars for battery materials; and the impact of electric cars on urban air quality and traffic noise.

  6. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  7. Electricity from Sunlight: The Future of Photovoltaics. Worldwatch Paper 52.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Solar photovoltaic cells have been called the ultimate energy technology, environmentally benign and without moving parts, solar cells directly convert sunlight into electricity. Photovoltaic energy conversion is fundamentally different from all other forms of electricity generation. Without turbines, generators or other mechanical equipment, it…

  8. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Mars Missions

    NASA Astrophysics Data System (ADS)

    Koppel, Christophe R.; Valentian, Dominique; Latham, Paul; Fearn, David; Bruno, Claudio; Nicolini, David; Roux, Jean-Pierre; Paganucci, F.; Saverdi, Massimo

    2004-02-01

    Recent US and European initiatives in Nuclear Propulsion lend themselves naturally to raising the question of comparing various options and particularly Nuclear Electric Propulsion (NEP) with Solar Electric Propulsion (SEP). SEP is in fact mentioned in one of the latest versions of the NASA Mars Manned Mission as a possible candidate. The purpose of this paper is to compare NEP, for instance, using high power MPD, Ion or Plasma thrusters, with SEP systems. The same payload is assumed in both cases. The task remains to find the final mass ratios and cost estimates and to determine the particular features of each technology. Each technology has its own virtues and vices: NEP implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes compatible with Ariane 5 or the Space Shuttle bay. Issues of safety and launch risks are especially important to public opinion, which is a factor to be reckoned with. Power conversion in space, including thermal cycle efficiency and radiators, is a technical issue in need of attention if power is large, i.e., of order 0.1 MW and above, and so is power conditioning and other ancillary systems. Type of mission, Isp and thrust will ultimately determine a large fraction of the mass to be orbited, as they drive propellant mass. For manned missions, the trade-off also involves consumables and travel time because of exposure to Solar wind and cosmic radiation. Future manned NEP missions will probably need superconducting coils, entailing cryostat technology. The on-board presence of cryogenic propellant (e.g., LH2) may reassure the feasibility of this technology, implying, however, a trade-off between propellant volume to be orbited and reduced thruster mass. SEP is attractive right now in the mind of the public, but also of scientists involved in Solar system exploration. Some of the appeal derives from the hope of reducing propellant mass because

  9. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  10. Application of solar electric propulsion to future planetary missions

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1987-01-01

    Application of solar electric propulsion (SEP) to several near term planetary missions has been investigated and is described in this paper. The missions under consideration include a comet rendezvous-asteroid flyby mission (CRAF), an orbiter mission to Saturn (CASSINI) and a comet nucleus sample return mission (CNSR). Advances in both thruster and solar array technology indicate that these missions could benefit by use of a moderate size solar electric propulsion system. The trajectory scenarios considered in this paper include a solar electric earth gravity assist (SEEGA) mode for all three missions and a SEP rendezvous mode for both the CRAF and CNSR missions. In addition an all SEP propulsion mode and a hybrid SEP-chemical propulsion mode is described for the CNSR mission.

  11. Advanced Hall Electric Propulsion for Future In-space Transportation

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; Sankovic, John M.

    2001-01-01

    The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant thrusters. The Hall thruster operates nominally in the 1500 sec specific impulse regime. It provides greater thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when compared to that technology in Earth orbit applications. The technology in the far term, by adding a second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion engine and necessary for deep space applications. The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant system. The technology is operational and commercially available at the 1.5 kW power level and 5 kW application is underway. NASA is looking toward 10 kW and eventually 50 kW-class engines for ambitious space transportation applications. The former allows launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation human Mars missions.

  12. Electric Field and Plasma Density Observations of Large Scale (100's of km) Waves Below the Equatorial F-peak as Seeds of Spread-F

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.

    2012-12-01

    Electric field and plasma density observations gathered on the C/NOFS satellite are presented in cases where the ionosphere F-peak has been elevated above the satellite perigee of 400 km in the evening. During these passes, data from the electric field and plasma density probes on the satellite frequently show evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. We present statistics of numerous examples of these large scale waves detected by instruments on the C/NOFS satellite.

  13. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  14. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-01

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  15. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    SciTech Connect

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  16. Battery Monitoring and Electrical Energy Management. Precondition for future vehicle electric power systems

    NASA Astrophysics Data System (ADS)

    Meissner, Eberhard; Richter, Gerolf

    New vehicle electric systems are promoted by the needs of fuel economy and ecology as well as by new functions for the improvement of safety and comfort, reliability, and the availability of the vehicle. Electrically controlled and powered systems for braking, steering and stabilisation need a reliable supply of electrical energy. The planned generation of electrical energy (only when it is economically beneficial meaningful), an adequate storage, and thrifty energy housekeeping with an intelligent integration of the battery as the storage medium into the overall concept of the vehicle Energy Management, and early detection of possible restrictions of reliability by Battery Monitoring allows for actions by the Energy Management well in advance, while the driver need not be involved at all. To meet today's requirements for Battery Monitoring and Energy Management, solutions have been developed for series vehicles launched in years 2001-2003, operating at the 14 V level.

  17. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats' Health Status by On-Line Sensors.

    PubMed

    Zaninelli, Mauro; Agazzi, Alessandro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Savoini, Giovanni

    2015-08-21

    The aim of this study is a further characterization of the electrical conductivity (EC) signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0-60 Days In Milking (DIM); 61-120 DIM; 121-180 DIM), for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define the health status of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland's health status. Results also explained how the milk EC signals' pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks) and by an irregular trend (due to the higher amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors.

  18. Evaluation of the Fourier Frequency Spectrum Peaks of Milk Electrical Conductivity Signals as Indexes to Monitor the Dairy Goats’ Health Status by On-Line Sensors

    PubMed Central

    Zaninelli, Mauro; Agazzi, Alessandro; Costa, Annamaria; Tangorra, Francesco Maria; Rossi, Luciana; Savoini, Giovanni

    2015-01-01

    The aim of this study is a further characterization of the electrical conductivity (EC) signal of goat milk, acquired on-line by EC sensors, to identify new indexes representative of the EC variations that can be observed during milking, when considering not healthy (NH) glands. Two foremilk gland samples from 42 Saanen goats, were collected for three consecutive weeks and for three different lactation stages (LS: 0–60 Days In Milking (DIM); 61–120 DIM; 121–180 DIM), for a total amount of 1512 samples. Bacteriological analyses and somatic cells counts (SCC) were used to define the health status of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as NH. For each milk EC signal, acquired on-line and for each gland considered, the Fourier frequency spectrum of the signal was calculated and three representative frequency peaks were identified. To evaluate data acquired a MIXED procedure was used considering the HS, LS and LS × HS as explanatory variables in the statistical model.Results showed that the studied frequency peaks had a significant relationship with the gland’s health status. Results also explained how the milk EC signals’ pattern change in case of NH glands. In fact, it is characterized by slower fluctuations (due to the lower frequencies of the peaks) and by an irregular trend (due to the higher amplitudes of all the main frequency peaks). Therefore, these frequency peaks could be used as new indexes to improve the performances of algorithms based on multivariate models which evaluate the health status of dairy goats through the use of gland milk EC sensors. PMID:26307993

  19. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.

    PubMed

    Shen, Wei; Han, Weijian; Wallington, Timothy J

    2014-06-17

    China's oil imports and greenhouse gas (GHG) emissions have grown rapidly over the past decade. Addressing energy security and GHG emissions is a national priority. Replacing conventional vehicles with electric vehicles (EVs) offers a potential solution to both issues. While the reduction in petroleum use and hence the energy security benefits of switching to EVs are obvious, the GHG benefits are less obvious. We examine the current Chinese electric grid and its evolution and discuss the implications for EVs. China's electric grid will be dominated by coal for the next few decades. In 2015 in Beijing, Shanghai, and Guangzhou, EVs will need to use less than 14, 19, and 23 kWh/100 km, respectively, to match the 183 gCO2/km WTW emissions for energy saving vehicles. In 2020, in Beijing, Shanghai, and Guangzhou EVs will need to use less than 13, 18, and 20 kWh/100 km, respectively, to match the 137 gCO2/km WTW emissions for energy saving vehicles. EVs currently demonstrated in China use 24-32 kWh/100 km. Electrification will reduce petroleum imports; however, it will be very challenging for EVs to contribute to government targets for GHGs emissions reduction.

  20. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    SciTech Connect

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  1. Historical Review of Electric Household Appliances using Induction-Heating and Future Challenging Trends

    NASA Astrophysics Data System (ADS)

    Hirota, Izuo; Yamashita, Hidekazu; Omori, Hideki; Nakaoka, Mutsuo

    This paper presents historical progress on technology evolution of the electric and electronic household appliances using the inverter, especially for Induction-Heating applications, which have been put in practical use as the desk-top cooker for the first time at home in 1974 until being applied to the rice cooker and the multi-burner cooking heater. It also describes the future innovative evolution of the power semiconductor switching devices and the inverter circuit topologies supporting its progressive developments. Looking back its progress, the future trends on consumer power electronics is discussed on the practical problem in the future.

  2. Integrated impacts of future electricity mix scenarios on select southeastern US water resources

    NASA Astrophysics Data System (ADS)

    Yates, D.; Meldrum, J.; Flores-Lopez, F.; Davis, Michelle

    2013-09-01

    Recent studies on the relationship between thermoelectric cooling and water resources have been made at coarse geographic resolution and do not adequately evaluate the localized water impacts on specific rivers and water bodies. We present the application of an integrated electricity generation-water resources planning model of the Apalachicola/Chattahoochee/Flint (ACF) and Alabama-Coosa-Tallapoosa (ACT) rivers based on the regional energy deployment system (ReEDS) and the water evaluation and planning (WEAP) system. A future scenario that includes a growing population and warmer, drier regional climate shows that benefits from a low-carbon, electricity fuel-mix could help maintain river temperatures below once-through coal-plants. These impacts are shown to be localized, as the cumulative impacts of different electric fuel-mix scenarios are muted in this relatively water-rich region, even in a warmer and drier future climate.

  3. Modeling low-carbon US electricity futures to explore impacts on national and regional water use

    NASA Astrophysics Data System (ADS)

    Clemmer, S.; Rogers, J.; Sattler, S.; Macknick, J.; Mai, T.

    2013-03-01

    The US electricity sector is currently responsible for more than 40% of both energy-related carbon dioxide emissions and total freshwater withdrawals for power plant cooling (EIA 2012a Annual Energy Outlook 2012 (Washington, DC: US Department of Energy), Kenny et al 2009 Estimated Use of Water in the United States 2005 (US Geological Survey Circular vol 1344) (Reston, VA: US Geological Survey)). Changes in the future electricity generation mix in the United States will have important implications for water use, particularly given the changing water availability arising from competing demands and climate change and variability. However, most models that are used to make long-term projections of the electricity sector do not have sufficient regional detail for analyzing water-related impacts and informing important electricity- and water-related decisions. This paper uses the National Renewable Energy Laboratory’s Regional Energy Deployment System (ReEDS) to model a range of low-carbon electricity futures nationally that are used to calculate changes in national water use (a sample result, on water consumption, is included here). The model also produces detailed sub-regional electricity results through 2050 that can be linked with basin-level water modeling. The results will allow for sufficient geographic resolution and detail to be relevant from a water management perspective.

  4. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    NASA Astrophysics Data System (ADS)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  5. Enabling renewable energy—and the future grid—with advanced electricity storage

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Liu, Jun; Baskaran, Suresh; Imhoff, Carl H.; Holladay, Jamie D.

    2010-09-01

    Environmental concerns about using fossil fuels, and their resource constraints along with energy security concerns, have spurred great interest in generating electrical energy from renewable sources. The variable and stochastic nature of renewable sources, however, makes solar and wind power difficult to manage, especially at high levels of penetration. Electrical energy storage (EES) is necessary to effectively use intermittent renewable energy, enable its delivery, and improve the reliability, stability, and efficiency of the electrical grid. While EES has gained wide attention for hybrid and electrical vehicle needs, public awareness and understanding of the critical challenges in energy storage for renewable integration and the future grid is relatively lacking. This paper examines the benefits and challenges of EES, in particular electrochemical storage or battery technologies, and discusses the fundamental principles, economics, and feasibility of the storage technologies.

  6. Towards a common energy future: Electric power and natural gas restructuring

    SciTech Connect

    Santa, D.F. Jr.

    1996-12-31

    While the symbiotic relationship between the natural gas and electric power industries is longstanding, the cycle of deregulation and restructuring that has swept both industries is now seen as driving them towards a common future. Until recently, this convergence theory was just that: a theory. Now, however, one is seeing tangible evidence that this convergence actually is occurring in the marketplace. Perhaps there is no greater evidence than the recently announced combination between Enron and Portland General Electric (not to mention the slightly more conventional combination between Houston Industries and NorAm). Without a doubt, there are multiple forces driving the electric power industry`s restructuring. Still, a strong case can be made that, at bottom, restructuring`s fundamental drivers are the combination of economic forces at work in the marketplace and technological innovation. And, with respect to both of these drivers, changes in the natural gas industry helped sow the seeds of electric restructuring.

  7. Enabling Renewable Energy and the Future Grid with Advanced Electricity Storage

    SciTech Connect

    Yang, Zhenguo; Liu, Jun; Baskaran, Suresh; Imhoff, Carl H.; Holladay, Jamelyn D.

    2010-08-06

    Environmental concerns about using fossil fuels and their resource constrains, along with that on energy security, have spurred great interests in generating electrical energy from renewable sources such as wind and solar. The variable and stochastic nature of renewable sources however makes solar and wind power difficult to manage, especially at high levels of penetration. To effectively use the intermittent renewable energy and enable its delivery demand electrical energy storage (EES) that can also improve the reliability, stability, and efficiency of the electrical grid, which is expected to support plug-in electrical vehicles; enable real-time, two-way communication to balance demand and supply. While EES has gained wide attention for hybrid and electrical vehicle (e.g. plug-in-hybrid electrical) needs, public awareness and understanding of the critical challenges in energy storage for renewable integration and the future grid is relatively lacking. This paper examines the benefits and challenges of EES, in particular electrochemical storage or battery technologies, and discusses the fundamental principles, economics, and feasibility of the storage technologies. It intends to provide an understanding of the needs and challenges of electrical storage technologies for the stationary applications and offer general directions of research and development to the materials community.

  8. Future cost-competitive electricity systems and their impact on US CO2 emissions

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander E.; Clack, Christopher T. M.; Alexander, Anneliese; Dunbar, Adam; Wilczak, James; Xie, Yuanfu

    2016-05-01

    Carbon dioxide emissions from electricity generation are a major cause of anthropogenic climate change. The deployment of wind and solar power reduces these emissions, but is subject to the variability of the weather. In the present study, we calculate the cost-optimized configuration of variable electrical power generators using weather data with high spatial (13-km) and temporal (60-min) resolution over the contiguous US. Our results show that when using future anticipated costs for wind and solar, carbon dioxide emissions from the US electricity sector can be reduced by up to 80% relative to 1990 levels, without an increase in the levelized cost of electricity. The reductions are possible with current technologies and without electrical storage. Wind and solar power increase their share of electricity production as the system grows to encompass large-scale weather patterns. This reduction in carbon emissions is achieved by moving away from a regionally divided electricity sector to a national system enabled by high-voltage direct-current transmission.

  9. Modeling future demand for energy resources: A study of residential electricity usage in Thailand

    NASA Astrophysics Data System (ADS)

    Nilagupta, Prapassara

    1999-12-01

    Thailand has a critical need for effective long-term energy planning because of the country's rapidly increasing energy consumption. In this study, the demand for electricity by the residential sector is modeled using a framework that provides detailed estimates of the timing and spatial distribution of changes in energy demand. A population model was developed based on the Cohort-Component method to provide estimates of population by age, sex and urban/non-urban residency in each province. A residential electricity end user model was developed to estimate future electricity usage in urban and non-urban households of the seventy-six provinces in Thailand during the period 1999--2019. Key variables in this model include population, the number of households, family household size, and characteristics of eleven types of electric household appliance such as usage intensity, input power, and saturation rate. The methodology employed in this study is a trending method which utilizes expert opinion to estimate future variables based on a percentage change from the most current value. This study shows that from 1994 to 2019 Thailand will experience an increase in population from 55.4 to 83.6 million. Large percentage population increases will take place in Bangkok, Nonthaburi, Samut Prakarn, Nakhon Pathom and Chonburi. At a national level, the residential electricity consumption will increase from approximately 19,000 to 8 1,000 GWh annually. Consumption in non-urban households will be larger than in urban households, with respective annual increases of 8.0% and 6.2% in 2019. The percent increase of the average annual electricity consumption will be four times the average annual percent population increase. Increased electricity demand is largely a function of increased population and increased demand for high-energy appliances such as air conditioners. In 1994, air conditioning was responsible for xx% of total residential electricity demand. This study estimates that in

  10. Can anything better come along? Reflections on the deep future of hydrogen-electricity systems

    SciTech Connect

    Scott, D. S.

    2006-07-01

    Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22. century rolls around - hydrogen and electricity will have become civilizations staple energy currencies. Building on this dual-currency inevitability we'll then evoke the wisdom that, while we never know everything about the future we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies - but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid setbacks and blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: 'No{exclamation_point} Nothing better will ever come along.'. (authors)

  11. Choosing an electrical energy future for the Pacific Northwest: an Alternative Scenario

    SciTech Connect

    Cavanagh, R.C.; Mott, L.; Beers, J.R.; Lash, T.L.

    1980-08-01

    An Alternative Scenario for the electric energy future of the Pacific Northwest is presented. The Scenario includes an analysis of each major end use of electricity in the residential, commercial, manufacturing, and agricultural sectors. This approach affords the most direct means of projecting the likely long-term growth in consumption and the opportunities for increasing the efficiency with which electricity is used in each instance. The total demand for electricity by these end uses then provides a basis for determining whether additional central station generation is required to 1995. A projection of total demand for electricity depends on the combination of many independent variables and assumptions. Thus, the approach is a resilient one; no single assumption or set of linked assumptions dominates the analysis. End-use analysis allows policymakers to visualize the benefits of alternative programs, and to make comparison with the findings of other studies. It differs from the traditional load forecasts for the Pacific Northwest, which until recently were based largely on straightforward extrapolations of historical trends in the growth of electrical demand. The Scenario addresses the supply potential of alternative energy sources. Data are compiled for 1975, 1985, and 1995 in each end-use sector.

  12. Choosing an electrical energy future for the Pacific Northwest: an alternative scenario

    SciTech Connect

    Beers, J.R.; Cavanagh, R.C.; Lash, T.R.; Mott, L.

    1980-05-19

    A strategy is presented for averting the short-term energy supply uncertainties that undermine prospects for stable economic development in the Pacific Northwest. This strategy is based on: an analysis of the present electric power consumption by various end-use sectors; comparison of incentives to promote energy conservation and lower demand growth; analysis of alternatives to current dependency on hydro power; and a study of the cost of planning and implementing future power supply programs. (LCL)

  13. A Single-Factor Model Analysis of Electricity Futures Price and its Application

    NASA Astrophysics Data System (ADS)

    Itoh, Yasuyuki; Kobayashi, Takenori

    This paper presents a single-factor model to describe the fluctuation of the electricity futures price for its trading risk management. An autoregressive moving-average model (ARMA(2, 1) process) was used to express the stochastic process of the price, instead of a conventionally used Malkov process such as the AR(1) process, where the ARMA(2, 1) process becomes a hybrid of short- and long-term mean-reversion processes in the continuous time model. This model was applied to the analysis of the price of the electricity futures (the PJM Monthly) traded at the New York Mercantile Exchange (NYMEX). The result showed that the model well explained the term structure of the volatility of futures price with respect to the time to maturity, which is important for estimating its trading risk. The expected long-term fixed electricity price and its confidence interval were also estimated by using the obtained model function of the forward curve and its parameters.

  14. Future Market Share of Space Solar Electric Power Under Open Competition

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Mahasenan, N.; Clarke, J. F.; Edmonds, J. A.

    2002-01-01

    This paper assesses the value of Space Solar Power deployed under market competition with a full suite of alternative energy technologies over the 21st century. Our approach is to analyze the future energy system under a number of different scenarios that span a wide range of possible future demographic, socio-economic, and technological developments. Scenarios both with, and without, carbon dioxide concentration stabilization policies are considered. We use the comprehensive set of scenarios created for the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (Nakicenovic and Swart 2000). The focus of our analysis will be the cost of electric generation. Cost is particularly important when considering electric generation since the type of generation is, from a practical point of view, largely irrelevant to the end-user. This means that different electricity generation technologies must compete on the basis of price. It is important to note, however, that even a technology that is more expensive than average can contribute to the overall generation mix due to geographical and economic heterogeneity (Clarke and Edmonds 1993). This type of competition is a central assumption of the modeling approach used here. Our analysis suggests that, under conditions of full competition of all available technologies, Space Solar Power at 7 cents per kW-hr could comprise 5-10% of global electric generation by the end of the century, with a global total generation of 10,000 TW-hr. The generation share of Space Solar Power is limited due to competition with lower-cost nuclear, biomass, and terrestrial solar PV and wind. The imposition of a carbon constraint does not significantly increase the total amount of power generated by Space Solar Power in cases where a full range of advanced electric generation technologies are also available. Potential constraints on the availability of these other electric generation options can increase the amount of

  15. Structural change in industry and futures for the electricity industry. Final report

    SciTech Connect

    Schwartz, P.; Harris, G.

    1995-06-01

    The electricity supply industry in the United States has been experiencing major technological changes and economics of the business have altered dramatically since the passage of the Public Utilities Regulatory Policies Act of 1978 (PURPA). This opening of power generation business to competition was under-pinned by significant increases in gas turbine efficiency, commercialization of smaller units with high efficiencies, low gas prices, and cost consciousness on the part of independent power producers (IPPs) and major industrial customers. The pace of change continues to accelerate, driven by ongoing technological innovations and customer demands for better, more customized services and lower costs. The purpose of this report is to provoke further thought on the likely course of structural change in the electric utility industry over the next twenty years. The prime focus of the report is on technological change and its impact on economics, and the resulting organizational and structural change. This report begins with a brief look at structural change in several capital-intensive industries to identify common patterns applicable to the electricity industry. The industries selected have network-like operations, similar to the electric utility industry. This is followed by two scenarios which illuminate different plausible futures for the electric power industry. The report concludes with insights on the potential course of regulations and suitable strategies to prosper during the transition phase.

  16. Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea

    NASA Astrophysics Data System (ADS)

    Shim, C.; Hong, J.

    2014-12-01

    Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.

  17. Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study

    SciTech Connect

    Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

    1997-07-01

    Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

  18. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  19. Renewable Electricity Futures. Operational Analysis of the Western Interconnection at Very High Renewable Penetrations

    SciTech Connect

    Brinkman, Gregory

    2015-09-01

    The Renewable Electricity Futures Study (RE Futures)--an analysis of the costs and grid impacts of integrating large amounts of renewable electricity generation into the U.S. power system--examined renewable energy resources, technical issues regarding the integration of these resources into the grid, and the costs associated with high renewable penetration scenarios. These scenarios included up to 90% of annual generation from renewable sources, although most of the analysis was focused on 80% penetration scenarios. Hourly production cost modeling was performed to understand the operational impacts of high penetrations. One of the conclusions of RE Futures was that further work was necessary to understand whether the operation of the system was possible at sub-hourly time scales and during transient events. This study aimed to address part of this by modeling the operation of the power system at sub-hourly time scales using newer methodologies and updated data sets for transmission and generation infrastructure. The goal of this work was to perform a detailed, sub-hourly analysis of very high penetration scenarios for a single interconnection (the Western Interconnection). It focused on operational impacts, and it helps verify that the operational results from the capacity expansion models are useful. The primary conclusion of this study is that sub-hourly operation of the grid is possible with renewable generation levels between 80% and 90%.

  20. [Methods of brain stimulation based on weak electric current--future tool for the clinician?].

    PubMed

    Kotilainen, Tuukka; Lehto, Soili M

    2016-01-01

    Methods of brain stimulation based on a weak electric current are non-invasive neuromodulation techniques. They include transcranial direct current, alternating current and random noise stimulation. These methods modify the membrane potential of neurons without triggering the action potential, and have been successfully utilized to influence cognition and regulation of emotions in healthy experimental subjects. In clinical studies, indications of the efficacy of these techniques have been obtained in the treatment of depression, schizophrenia, memory disorders and pain as well as in stroke rehabilitation. It is hoped that these techniques will become established as part of the care and rehabilitation of psychiatric and neurologic patients in the future.

  1. Assessment of arid lands plants as future energy crops for the electric utility industry

    SciTech Connect

    Foster, K.E.; Brooks, W.H.

    1981-12-01

    This technical report has been prepared to assess and estimate the prospects of utilizing selected native arid lands plant species (terpene- and nonterpene-containing species) as future renewable energy resources, especially by US electric utilities, and to familiarize nonspecialists with some major problems that must be resolved before these energy sources can become dependable supplies. The assessment includes descriptions of the processing and production technologies associated with the various plant species as well as recommendations for research procedures and development programs specific to arid lands. Suggestions about the agronomic and economic parameters of growing these plants as energy-source crops are also included.

  2. I've Got the Music in Me: A Study of Peak Musical Memory Age and the Implications for Future Advertising

    ERIC Educational Resources Information Center

    Gerlich, R. Nicholas; Browning, Leigh; Westermann, Lori

    2010-01-01

    Neuropsychologists have demonstrated the effect music has on the human brain, and that a peak "musical memory age" occurs around 14, when normal bodily maturation is in progress. A group of 114 college students between the ages of 19 and 25 was exposed to short clips of the top 20 songs from each of the 11 years during their youth; participants…

  3. Future needs of occupational epidemiology of extremely low frequency electric and magnetic fields: review and recommendations.

    PubMed

    Kheifets, L; Bowman, J D; Checkoway, H; Feychting, M; Harrington, J M; Kavet, R; Marsh, G; Mezei, G; Renew, D C; van Wijngaarden, E

    2009-02-01

    The occupational epidemiological literature on extremely low frequency electric and magnetic fields (EMF) and health encompasses a large number of studies of varying design and quality that have addressed many health outcomes, including various cancers, cardiovascular disease, depression and suicide, and neurodegenerative diseases, such as Alzheimer disease and amyotrophic lateral sclerosis (ALS). At a 2006 workshop we reviewed studies of occupational EMF exposure with an emphasis on methodological weaknesses, and proposed analytical ways to address some of these. We also developed research priorities that we hope will address remaining uncertainties. Broadly speaking, extensive epidemiological research conducted during the past 20 years on occupational EMF exposure does not indicate strong or consistent associations with cancer or any other health outcomes. Inconsistent results for many of the outcomes may be attributable to numerous shortcomings in the studies, most notably in exposure assessment. There is, however, no obvious correlation between exposure assessment quality and observed associations. Nevertheless, for future research, the highest priorities emerge in both the areas of exposure assessment and investigation of ALS. To better assess exposure, we call for the development of a more complete job-exposure matrix that combines job title, work environment and task, and an index of exposure to electric fields, magnetic fields, spark discharge, contact current, and other chemical and physical agents. For ALS, we propose an international collaborative study capable of illuminating a reported association with electrical occupations by disentangling the potential roles of electric shocks, magnetic fields and bias. Such a study will potentially lead to evidence-based measures to protect public health.

  4. Electric Propulsion Interactions Code (EPIC): Recent Enhancements and Goals for Future Capabilities

    NASA Technical Reports Server (NTRS)

    Gardner, Barbara M.; Kuharski, Robert A.; Davis, Victoria A.; Ferguson, Dale C.

    2007-01-01

    The Electric Propulsion Interactions Code (EPIC) is the leading interactive computer tool for assessing the effects of electric thruster plumes on spacecraft subsystems. EPIC, developed by SAIC under the sponsorship of the Space Environments and Effects (SEE) Program at the NASA Marshall Space Flight Center, has three primary modules. One is PlumeTool, which calculates plumes of electrostatic thrusters and Hall-effect thrusters by modeling the primary ion beam as well as elastic scattering and charge-exchange of beam ions with thruster-generated neutrals. ObjectToolkit is a 3-D object definition and spacecraft surface modeling tool developed for use with several SEE Program codes. The main EPIC interface integrates the thruster plume into the 3-D geometry of the spacecraft and calculates interactions and effects of the plume with the spacecraft. Effects modeled include erosion of surfaces due to sputtering, re-deposition of sputtered materials, surface heating, torque on the spacecraft, and changes in surface properties due to erosion and deposition. In support of Prometheus I (JIMO), a number of new capabilities and enhancements were made to existing EPIC models. Enhancements to EPIC include adding the ability to scale and view individual plume components, to import a neutral plume associated with a thruster (to model a grid erosion plume, for example), and to calculate the plume from new initial beam conditions. Unfortunately, changes in program direction have left a number of desired enhancements undone. Variable gridding over a surface and resputtering of deposited materials, including multiple bounces and sticking coefficients, would significantly enhance the erosion/deposition model. Other modifications such as improving the heating model and the PlumeTool neutral plume model, enabling time dependent surface interactions, and including EM1 and optical effects would enable EPIC to better serve the aerospace engineer and electric propulsion systems integrator

  5. PEAK READING VOLTMETER

    DOEpatents

    Dyer, A.L.

    1958-07-29

    An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.

  6. Comparative health and safety assessment of alternative future electrical-generation systems

    SciTech Connect

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated.

  7. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema

    Piette, Mary Ann

    2016-07-12

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  8. Saving Power at Peak Hours (LBNL Science at the Theater)

    SciTech Connect

    Piette, Mary Ann

    2008-03-10

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  9. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  10. Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.

    2014-01-01

    NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance

  11. Large Expanses of Kilometer-Scale Waves Predominantly Observed Below the F-peak Encountered by the Electric Field and Plasma Density Probes on the C/NOFS Satellite

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F.; Liebrecht, C.; Freudenreich, H.; Klenzing, J.

    2013-12-01

    The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set which includes detailed measurements of irregularities associated with the equatorial ionosphere. We present vector AC electric field and plasma density observations gathered on C/NOFS that reveal vast expanses of kilometer scales along the C/NOFS orbit. In many cases, these waves are observed for 1000's of kilometers along the satellite track and appear most prevalent in cases where the ionosphere F-peak has been elevated above the C/NOFS satellite perigee of 400 km. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. The electric field components are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983] and are believed to cause scintillations of VHF radiowaves. Indeed, the observations show that such waves are a common feature in the low latitude ionosphere, particularly below the F-peak. We present detailed analyses of the wave measurements and interpret these new observations in terms of plasma instabilities associated with the nighttime equatorial ionosphere.

  12. Remote Sensing of Surface Electric Potential on the Moon: A New Technique Using ENAs for Future Missions

    NASA Astrophysics Data System (ADS)

    Futaana, Y.; Barabash, S.; Wieser, M.

    2013-09-01

    Electric potential at lunar surface provides essential information for understanding fundamental science and environment of the Moon, which directly impacts on future lunar exploration. Here we present a new technique of remote sensing of surface electric potential at the Moon [4]. The technique relies on the energy spectra of the energetic neutral atoms (ENAs) backscattered from the Moon. We applied this technique to the existing dataset of ENAs, and created the first 2-D image of the electric potential distribution near a magnetic anomaly. The result revealed that the magnetized area provides a preferable landing site of the Moon, while strong surface potential exists.

  13. An electricity-focused economic input-output model: Life-cycle assessment and policy implications of future electricity generation scenarios

    NASA Astrophysics Data System (ADS)

    Marriott, Joe

    The electricity industry is extremely important to both our economy and our environment. We would like to be able to examine the economic, environmental and policy implications of both future electricity scenarios which include advanced generation technologies such as gasified coal, and of the products and processes which will use them, along with the interaction of this industry with the rest of the economy. This work builds upon an existing economic input-output framework, by adding detail about the electricity industry, specifically by differentiating among the various functions of the sector, and the different means of generating power. The mix of electricity consumed at any stage in the life-cycle of a product, process or industrial sector has a significant effect on the associated inventory of emissions. Fossil fuel or nuclear generators, large-scale hydroelectric, and renewable options such as geothermal, wind and solar each have a unique set of issues---both in the production of electricity at the plant and throughout the supply chain. Decision makers need better information regarding the environmental and economic impact of the electricity industry, including full supply chain details---the interaction of the electricity industry with the other 500 sectors of the economy. A systematic method for creating updated state level and sector generation mixes is developed. The results show that most sector mixes are very close to the U.S. average due to geographic dispersion of industries, but that some sectors are different, and they tend to be important raw material extraction or primary manufacturing industries. We then build a flexible framework for creating new sectors, supply chains and emission factors for the generation, transmission and distribution portions of the electricity industry. We look at scenarios of the present and future, for electricity and for particular products, and develop results which show environmental impacts split up by generation

  14. Peak Oil, Peak Coal and Climate Change

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  15. Comparison: Direct thrust nuclear engine, nuclear electric engine, and a chemical engine for future space missions

    SciTech Connect

    Ramsthaler, J.H.; Sulmeisters, T.K.

    1988-01-01

    The need for an advanced direct thrust nuclear rocket propulsion engine has been identified in Project Forecast 2, Air Force Systems Command report which looks into future Air Force needs. The Air Force Astronautical Laboratory (AFAL) has been assigned responsibility for developing the nuclear engine, and they in turn have requested support from teams of contractors who have the full capability to assist in the development of the nuclear engine. The Idaho National Engineering Laboratory (INEL) has formed a team of experts with Martin Marietta for mission analysis. Science Applications International (SAIC) for flight safety analysis, Westinghouse for the nuclear subsystem, and Rocketdyne for the engine system. INEL is the overall program manager and manager for test facility design, construction and operation. The INEL team has produced plans for both the engine system and the ground test facility. AFAL has funded the INEL team to perform mission analyses to evaluate the cost, performance and operational advantages for a nuclear rocket engine in performing Air Force Space Missions. For those studies, the Advanced Nuclear Rocket Engine (ANRE), a scaled down NERVA derivative, was used as the baseline nuclear engine to compare against chemical engines and nuclear electric engines for performance of orbital transfer and maneuvering missions. 3 tabs.

  16. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  17. Co-benefits and trade-offs between future electricity generation and water use on a global scale

    NASA Astrophysics Data System (ADS)

    Ando, N.; Yoshikawa, S.; Kanae, S.

    2015-12-01

    Water is essential to electricity generation. Power plant cooling water is responsible for 40-50% of total freshwater withdrawals in Europe (Rübbelke et al., 2011) and the United States (Kenny et al., 2009). In accordance with growing demands for electricity generation, water demands could be increased. There is concern that the water demands for electricity generation could compete with other major water users. Additionally, many countries are required reviewing energy policies to mitigate climate change. Thermal power replaced low carbon power like renewable energy, nuclear power, Carbon Capture and Storage as a mitigation technology. However, influences of such climate change mitigation technologies on water demands are still uncertain. In this study, we calculated freshwater demands for electricity generation by using the data set of future electricity generation in the twenty-first century which estimated by the Asia-Pacific Integrated Model, and assessed the overall effects of electricity generation on water demands under the Shared Socio-Economic Pathways and the Representative Concentration Pathways which were adopted by IPCC AR5. Water demands for electricity generation depends on cooling types, such as once-through cooling and recirculating cooling. We also took into account cooling system pathways. The result might be useful for deciding energy policies which aim for reduction of water demands, especially in regions experiencing water scarcity.

  18. Electricity's Future: The Shift to Efficiency and Small-Scale Power. Worldwatch Paper 61.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    Electricity, which has largely supplanted oil as the most controversial energy issue of the 1980s, is at the center of some of the world's bitterest economic and environmental controversies. Soaring costs, high interest rates, and environmental damage caused by large power plants have wreaked havoc on the once booming electricity industry.…

  19. Electric utilities in the future: Competition is certain, the impact is not

    SciTech Connect

    Rudden, R.J.; Hornich, R.

    1994-05-01

    This article reviews the results of a survey conducted by R.J. Rudden Associates and Fitch Investors Service that polled state commissions on their practices, policies, attitudes, and opinions regarding electric utility competition. The Rudden/Fitch Survey addressed six different forms of competition that will most greatly influence electric markets - wholesale wheeling, retail wheeling, self-serving wheeling, self-generation, fuel substitution, and municipalization. Dramatic changes are affecting the US electric utility industry as legislative actions and regulatory policies increasingly promote competition. Although unprecedented in the electric power industry, these changes are not so unusual when compared to the extensive deregulation that has already occurred in the railroad, trucking, airline, and telecommunications industries. While the electric utility industry is not poised for immediate, broad-based deregulation, selective deregulation and accelerating competition will have significant implications for all industry stakeholders.

  20. Super-sensing technology: industrial applications and future challenges of electrical tomography.

    PubMed

    Wei, Kent Hsin-Yu; Qiu, Chang-Hua; Primrose, Ken

    2016-06-28

    Electrical tomography is a relatively new imaging technique that can image the distribution of the passive electrical properties of an object. Since electrical tomography technology was proposed in the 1980s, the technique has evolved rapidly because of its low cost, easy scale-up and non-invasive features. The technique itself can be sensitive to all passive electrical properties, such as conductivity, permittivity and permeability. Hence, it has a huge potential to be applied in many applications. Owing to its ill-posed nature and low image resolution, electrical tomography attracts more attention in industrial fields than biomedical fields. In the past decades, there have been many research developments and industrial implementations of electrical tomography; nevertheless, the awareness of this technology in industrial sectors is still one of the biggest limitations for technology implementation. In this paper, the authors have summarized several representative applications that use electrical tomography. Some of the current tomography research activities will also be discussed. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  1. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    PubMed

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. PMID:27240240

  2. Hubbert's Peak: A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-11-01

    Oil and its by-products, as used in manufacturing, agriculture, and transportation, are the lifeblood of today's 7 billion-person population and our 65T world economy. Despite this importance, estimates of future oil production seem dominated by wishful thinking rather than quantitative analysis. Better studies are needed. In 1956, Dr. M.King Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Thus, the peak of oil production is referred to as ``Hubbert's Peak.'' Prof. Al Bartlett extended this work in publications and lectures on population and oil. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. This paper extends this line of work to include analyses of individual countries, inclusion of multiple Gaussian peaks, and analysis of reserves data. While this is not strictly a predictive theory, we will demonstrate a ``closed'' story connecting production, oil-in-place, and reserves. This gives us the ``most likely'' estimate of future oil availability. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  3. The rise of electric two-wheelers in China: Factors for their success and implications for the future

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan Xavier

    This dissertation examines the rise, present use, and future growth of the electric two-wheeler (E2W, a.k.a. E2W or e-scooter) in China, the world's most successful electric-drive vehicle. The E2W market has been experiencing tremendous growth with over 30 million now in regular use on Chinese streets. The adoption of E2W technology is significant because, along with their air quality and energy (low-carbon) benefits compared to gasoline powered motorcycles, E2Ws are driving the development of improved and lower cost batteries and may lead to a shift toward larger three-and four-wheel electric vehicles (EV). This dissertation explores three questions: why the E2W market grew so rapidly in China, what factors are driving and resisting its growth, and how future growth might impact the adoption of electric vehicles. In Chapter 1, the context for this analysis is built by describing China's transportation past, present, and future challenges. E2Ws are also introduced and compared with gasoline-powered motorcycles on several metrics, such as performance, air emissions, and energy use. In Chapter 2, data from the literature was collected and analyzed to understand the history and important reasons for E2W growth in China. To supplement these data, the author and colleagues interviewed leaders of E2W and battery companies and toured several manufacturing plants. In Chapter 3, E2W and bicycles users were surveyed to understand how and why they use (or don't use) E2Ws. In Chapter 4, valve-regulated lead-acid (VRLA) batteries commonly used in today's E2Ws were laboratory tested to determine their performance characteristics. Data were also compiled on their cost, and on the cost and performance of Li-ion batteries. In Chapter 5, the future of E2Ws in China was assessed by integrating data from the previous three chapters and from the literature to create a force-field analysis of the E2W market. This chapter concludes by examining the spillover effects E2W market growth may

  4. Electric and hybrid vehicle site operators program: Thinking of the future

    NASA Astrophysics Data System (ADS)

    Kansas State University, with support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one electric or hybrid van and two electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  5. Electric discharge in the Martian atmosphere, Paschen curves and implications for future missions

    NASA Astrophysics Data System (ADS)

    Manning, H. L. K.; ten Kate, I. L.; Battel, S. J.; Mahaffy, P. R.

    2010-11-01

    Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen's law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space-flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. Here, we present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10 -2 to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410 ± 10 V at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied.

  6. Electric Discharge in the Martian Atmosphere, Paschen Curves and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Manning, Heidi L. K.; ten Kate, I. L.; Battel, S. J.; Mahaffy, P. R.

    2010-10-01

    Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen's law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. We present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10-2 to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410±10 volts at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied. H. Manning was funded in the framework of the Sample Analysis at Mars development; I. ten Kate was funded by the Goddard Center for Astrobiology.

  7. [Electric and hybrid vehicle site operators program]: Thinking of the future

    SciTech Connect

    Not Available

    1993-01-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  8. Future trends in electrical energy generation economics in the United States

    NASA Technical Reports Server (NTRS)

    Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.

    1977-01-01

    Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.

  9. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    SciTech Connect

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    2015-11-01

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s cost and organizational structure.

  10. Hubbert's Peak -- A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  11. Accounting for climate and air quality damages in future U.S. electricity generation scenarios.

    PubMed

    Brown, Kristen E; Henze, Daven K; Milford, Jana B

    2013-04-01

    The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants.

  12. Future electricity: The challenge of reducing both carbon and water footprint.

    PubMed

    Mekonnen, Mesfin M; Gerbens-Leenes, P W; Hoekstra, Arjen Y

    2016-11-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the 'greenest' IEA scenario (with the smallest carbon footprint) shows the largest WF increase over time: an increase by a factor four over the period 2010-2035. In 2010, electricity from solar, wind, and geothermal contributed 1.8% to the total. The increase of this contribution to 19.6% in IEA's '450 scenario' contributes significantly to the decrease of the WF of the global electricity and heat sector, but is offset by the simultaneous increase of the use of firewood and hydropower. Only substantial growth in the fractions of energy sources with small WFs - solar, wind, and geothermal energy - can contribute to a lowering of the WF of the electricity and heat sector in the coming decades. The fifth energy scenario - adapted from the IEA 450 scenario but based on a quick transition to solar, wind and geothermal energy and a minimum in bio-energy - is the only scenario that shows a strong decline in both carbon footprint (-66%) and consumptive WF (-12%) in 2035 compared to the reference year 2010. PMID:27387812

  13. Future electricity: The challenge of reducing both carbon and water footprint.

    PubMed

    Mekonnen, Mesfin M; Gerbens-Leenes, P W; Hoekstra, Arjen Y

    2016-11-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the 'greenest' IEA scenario (with the smallest carbon footprint) shows the largest WF increase over time: an increase by a factor four over the period 2010-2035. In 2010, electricity from solar, wind, and geothermal contributed 1.8% to the total. The increase of this contribution to 19.6% in IEA's '450 scenario' contributes significantly to the decrease of the WF of the global electricity and heat sector, but is offset by the simultaneous increase of the use of firewood and hydropower. Only substantial growth in the fractions of energy sources with small WFs - solar, wind, and geothermal energy - can contribute to a lowering of the WF of the electricity and heat sector in the coming decades. The fifth energy scenario - adapted from the IEA 450 scenario but based on a quick transition to solar, wind and geothermal energy and a minimum in bio-energy - is the only scenario that shows a strong decline in both carbon footprint (-66%) and consumptive WF (-12%) in 2035 compared to the reference year 2010.

  14. Accounting for climate and air quality damages in future U.S. electricity generation scenarios.

    PubMed

    Brown, Kristen E; Henze, Daven K; Milford, Jana B

    2013-04-01

    The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants. PMID:23465362

  15. The future of GPS-based electric power system measurements, operation and control

    SciTech Connect

    Rizy, D.T.; Wilson, R.E.; Martin, K.E.; Litzenberger, W.H.; Hauer, J.F.; Overholt, P.N.; Sobajic, D.J.

    1998-11-01

    Much of modern society is powered by inexpensive and reliable electricity delivered by a complex and elaborate electric power network. Electrical utilities are currently using the Global Positioning System-NAVSTAR (GPS) timekeeping to improve the network`s reliability. Currently, GPS synchronizes the clocks on dynamic recorders and aids in post-mortem analysis of network disturbances. Two major projects have demonstrated the use of GPS-synchronized power system measurements. In 1992, the Electric Power Research Institute`s (EPRI) sponsored Phase Measurements Project used a commercially available Phasor Measurements Unit (PMU) to collect GPS-synchronized measurements for analyzing power system problems. In 1995, Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA) under DOE`s and EPRI`s sponsorship launched the Wide Area Measurements (WAMS) project. WAMS demonstrated GPS-synchronized measurements over a large area of their power networks and demonstrated the networking of GPS-based measurement systems in BPA and WAPA. The phasor measurement technology has also been used to conduct dynamic power system tests. During these tests, a large dynamic resistor was inserted to simulate a small power system disturbance.

  16. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    NASA Astrophysics Data System (ADS)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  17. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    SciTech Connect

    Eto, Joseph; Stovall, John P.

    2003-04-01

    The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

  18. Options Impacting the Electric System of the Future (ESF); NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Cory, Karlynn

    2015-08-10

    As utilities are faced with adapting to new technologies, technology and policy due diligence are necessary to ensure the development of a future grid that brings greater value to utilities and their consumers. This presentation explores the different kinds of future directions the power industry could consider to create, discussing key components necessary for success. It will also discuss the practical application and possible strategies for utilities and innovators to implement smart technologies that will enable an ultimate ‘intelligent’ grid capable of two-way communication, interoperability, and greater efficiency and system resiliency.

  19. Will peak oil accelerate carbon dioxide emissions?

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  20. A preliminary estimate of future communications traffic for the electric power system

    NASA Technical Reports Server (NTRS)

    Barnett, R. M.

    1981-01-01

    Diverse new generator technologies using renewable energy, and to improve operational efficiency throughout the existing electric power systems are presented. A description of a model utility and the information transfer requirements imposed by incorporation of dispersed storage and generation technologies and implementation of more extensive energy management are estimated. An example of possible traffic for an assumed system, and an approach that can be applied to other systems, control configurations, or dispersed storage and generation penetrations is provided.

  1. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    SciTech Connect

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  2. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    SciTech Connect

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report`s purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science & Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  3. How much do electric drive vehicles matter to future U.S. emissions?

    PubMed

    Babaee, Samaneh; Nagpure, Ajay S; DeCarolis, Joseph F

    2014-01-01

    Hybrid, plug-in hybrid, and battery electric vehicles--known collectively as electric drive vehicles (EDVs)--may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is 2-fold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through midcentury. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. data set developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend toward lower system-wide emissions as EDV deployment increases. In addition to the trade-off between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment. PMID:24386958

  4. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    PubMed

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs. PMID:23865424

  5. How much do electric drive vehicles matter to future U.S. emissions?

    PubMed

    Babaee, Samaneh; Nagpure, Ajay S; DeCarolis, Joseph F

    2014-01-01

    Hybrid, plug-in hybrid, and battery electric vehicles--known collectively as electric drive vehicles (EDVs)--may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is 2-fold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through midcentury. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. data set developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend toward lower system-wide emissions as EDV deployment increases. In addition to the trade-off between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment.

  6. SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems.

    PubMed

    Mileva, Ana; Nelson, James H; Johnston, Josiah; Kammen, Daniel M

    2013-08-20

    The United States Department of Energy's SunShot Initiative has set cost-reduction targets of $1/watt for central-station solar technologies. We use SWITCH, a high-resolution electricity system planning model, to study the implications of achieving these targets for technology deployment and electricity costs in western North America, focusing on scenarios limiting carbon emissions to 80% below 1990 levels by 2050. We find that achieving the SunShot target for solar photovoltaics would allow this technology to provide more than a third of electric power in the region, displacing natural gas in the medium term and reducing the need for nuclear and carbon capture and sequestration (CCS) technologies, which face technological and cost uncertainties, by 2050. We demonstrate that a diverse portfolio of technological options can help integrate high levels of solar generation successfully and cost-effectively. The deployment of GW-scale storage plays a central role in facilitating solar deployment and the availability of flexible loads could increase the solar penetration level further. In the scenarios investigated, achieving the SunShot target can substantially mitigate the cost of implementing a carbon cap, decreasing power costs by up to 14% and saving up to $20 billion ($2010) annually by 2050 relative to scenarios with Reference solar costs.

  7. Electric vehicles — are they a realistic option for the future?

    NASA Astrophysics Data System (ADS)

    Dunckley, M.

    In the 1970s, as a result of rising oil prices and supply shortages, the concept of an 'electric vehicle programme' saw increased attention from legislative bodies, the automotive industry and general public groups. At that time, numerous 'experts' foresaw oil and fossil fuels running out early in the twenty-first century. As a result, a number of key issues came to the fore under the broad heading 'energy conservation'. A major part of this initiative was the need for a rethink of the automotive vehicle — the electric vehicle was considered a solution. In the event, the oil crisis of the 1970s came and went and the pressing debate for energy conservation and new vehicles went back into a more considered perspective. What emerged in the early 1980s was a new way of looking at automobiles. Cars were to become generally smaller and more fuel efficient. To add to the development of the car of the 1980s came a further new issue — the environment itself. The car became known as the single largest contributant to pollution. Increasing numbers of vehicles came to be seen as literally choking to death the planet earth. The next step in the story of the evolution of the vehicle was to control exhaust-gas emissions. One city, Los Angeles, even went so far as to legislate that by 1998, 2% of all new vehicles in the State must be 'zero gas' emitting. More North American states were to follow, to a point that every major car manufacturer in the world took note and has now embarked on a programme to develop a 'zero-gas' emitting vehicle. Today, the concept of an electric vehicle is back in focus. Throughout the world, the media are highlighting the electric vehicle as the next generation of transportation. The cynics argue that they have heard it all before, others believe that this time it could actually happen. For the battery industry, the implications could be enormous, and would change the industry as it is known worldwide. This paper discusses the options and

  8. Integrated DEA models and grey system theory to evaluate past-to-future performance: a case of Indian electricity industry.

    PubMed

    Wang, Chia-Nan; Nguyen, Nhu-Ty; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better "past-present-future" insights into performance evaluation in Indian electricity industry.

  9. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    SciTech Connect

    Satchwell, Andrew; Cappers, Peter; Schwartz, Lisa C.; Fadrhonc, Emily Martin

    2015-06-01

    Many regulators, utilities, customer groups, and other stakeholders are reevaluating existing regulatory models and the roles and financial implications for electric utilities in the context of today’s environment of increasing distributed energy resource (DER) penetrations, forecasts of significant T&D investment, and relatively flat or negative utility sales growth. When this is coupled with predictions about fewer grid-connected customers (i.e., customer defection), there is growing concern about the potential for serious negative impacts on the regulated utility business model. Among states engaged in these issues, the range of topics under consideration is broad. Most of these states are considering whether approaches that have been applied historically to mitigate the impacts of previous “disruptions” to the regulated utility business model (e.g., energy efficiency) as well as to align utility financial interests with increased adoption of such “disruptive technologies” (e.g., shareholder incentive mechanisms, lost revenue mechanisms) are appropriate and effective in the present context. A handful of states are presently considering more fundamental changes to regulatory models and the role of regulated utilities in the ownership, management, and operation of electric delivery systems (e.g., New York “Reforming the Energy Vision” proceeding).

  10. Solar Electric Propulsion Vehicle Demonstration to Support Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Nazario, Margaret L.; Cunningham, Cameron C.

    2012-01-01

    Human and robotic exploration beyond Low Earth Orbit (LEO) will require enabling capabilities that are efficient, affordable, and reliable. Solar Electric Propulsion (SEP) is highly advantageous because of its favorable in-space mass transfer efficiency compared to traditional chemical propulsion systems. The NASA studies have demonstrated that this advantage becomes highly significant as missions progress beyond Earth orbit. Recent studies of human exploration missions and architectures evaluated the capabilities needed to perform a variety of human exploration missions including missions to Near Earth Objects (NEOs). The studies demonstrated that SEP stages have potential to be the most cost effective solution to perform beyond LEO transfers of high mass cargoes for human missions. Recognizing that these missions require power levels more than 10X greater than current electric propulsion systems, NASA embarked upon a progressive pathway to identify critical technologies needed and a plan for an incremental demonstration mission. The NASA studies identified a 30kW class demonstration mission that can serve as a meaningful demonstration of the technologies, operational challenges, and provide the appropriate scaling and modularity required. This paper describes the planning options for a representative demonstration 30kW class SEP mission.

  11. Myths of electric regulation: Looking at the future of energy through entrepreneurial eyes

    SciTech Connect

    Casten, T.R.

    1999-11-01

    The US will shortly experience a building boom of new, efficient distributed power plants and a resultant drop in the cost of energy and the pollution associated with energy production. This is a predictable result of unleashing competition in the electric business. The speed of these advances will depend on how fast lawmakers modernize present regulations to eliminate barriers to efficiency. Deregulation has started and the industry is already on the slippery slope of competition, where no monopolist can continue to cling to the old and inefficient ways. It is possible to discern the direction of a competition-driven energy industry from the patterns in other recently deregulated industries. Winners will focus on extracting more value from all raw material and will offer sophisticated energy generation, energy distribution, and energy management to each industrial and commercial firm and each institution. Proven technology will be packaged in small, mass produced CHP plants placed at the sites of thermal users. Costs of CHP will fall due to emerging mass production and growing knowledge of installers and designers. The current electric transmission and distribution system will prove to have been tremendously overbuilt. Gas distribution pipes will enjoy increased use. Fossil fuel use will drop significantly. Finally, the unleashing of this competition will cause the US to drop its carbon dioxide emissions to well below the targets of the Kyoto protocol, while reducing the cost of energy to industry and all citizens. This may not reduce greenhouse gas emissions enough to mitigate climate change, but it is low-hanging fruit and will buy time for advances in renewable energy economics.

  12. Linking brain electrical signals elicited by current outcomes with future risk decision-making

    PubMed Central

    Zhang, Dandan; Gu, Ruolei; Broster, Lucas S.; Jiang, Yang; Luo, Wenbo; Zhang, Jian; Luo, Yue-jia

    2014-01-01

    The experience of current outcomes influences future decisions in various ways. The neural mechanism of this phenomenon may help to clarify the determinants of decision-making. In this study, thirty-nine young adults finished a risky gambling task by choosing between a high- and a low-risk option in each trial during electroencephalographic data collection. We found that risk-taking strategies significantly modulated mean amplitudes of the event-related potential (ERP) component P3, particularly at the central scalp. The event-related spectral perturbation and the inter-trial coherence measurements of the independent component analysis (ICA) data indicated that the “stay” vs. “switch” electrophysiological difference associated with subsequent decision-making was mainly due to fronto-central theta and left/right mu independent components. Event-related cross-coherence results suggested that the neural information of action monitoring and updating emerged in the fronto-central cortex and propagated to sensorimotor area for further behavior adjustment. Based on these findings of ERP and event-related oscillation (ERO) measures, we propose a neural model of the influence of current outcomes on future decisions. PMID:24672447

  13. Reducing Peak Demand by Time Zone Divisions

    NASA Astrophysics Data System (ADS)

    Chakrabarti, A.

    2014-09-01

    For a large country like India, the electrical power demand is also large and the infrastructure cost for power is the largest among all the core sectors of economy. India has an emerging economy which requires high rate of growth of infrastructure in the power generation, transmission and distribution. The current peak demand in the country is approximately 1,50,000 MW which shall have a planned growth of at least 50 % over the next five years (Seventeenth Electric Power Survey of India, Central Electricity Authority, Government of India, March 2007). By implementing the time zone divisions each comprising of an integral number of contiguous states based on their total peak demand and geographical location, the total peak demand of the nation can be significantly cut down by spreading the peak demand of various states over time. The projected reduction in capital expenditure over a plan period of 5 years is substantial. Also, the estimated reduction in operations expenditure cannot be ignored.

  14. Peak Experience Project

    ERIC Educational Resources Information Center

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  15. Comparison of future battery systems for application to general-purpose electric vehicles

    SciTech Connect

    O'Connell, L.G.

    1980-08-01

    The results are presented of a study to compare the aluminium/air battery as a general purpose automobile power source with those secondary batteries evaluated in a four year study entitled Energy Storage Systems for Automobile Propulsion. The results of this study were published in three interim reports, one each in 1977, 1978 and 1979. The final report is being published in 1980. The aluminum/air battery had not developed early enough to be included in the evaluation. Recent progress on this battery makes it important to compare it on a vehicle system basis to other possible future batteries. The analysis techniques used in the comparison were the same as for the four-year study.

  16. 100 years of microbial electricity production: three concepts for the future

    PubMed Central

    Arends, Jan B. A.; Verstraete, Willy

    2012-01-01

    Summary Bioelectrochemical systems (BES) have been explored according to three main concepts: to produce energy from organic substrates, to generate products and to provide specific environmental services. In this work, by using an engineering approach, biological conversion rates are calculated for BES resp. anaerobic digestion. These rates are compared with currents produced by chemical batteries and chemical fuel cells in order to position BES in the ‘energy’‐market. To evaluate the potential of generating various products, the biochemistry behind the biological conversion rates is examined in relation to terminal electron transfer molecules. By comparing kinetics rather than thermodynamics, more insight is gained in the biological bottlenecks that hamper a BES. The short‐term future for BES research and its possible application is situated in smart niches in sustainable environmental development, i.e. in processes where no large currents or investment cost intensive reactors are needed to obtain the desired results. Some specific examples are identified. PMID:21958308

  17. METHOD OF PEAK CURRENT MEASUREMENT

    DOEpatents

    Baker, G.E.

    1959-01-20

    The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.

  18. Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study

    SciTech Connect

    Edwards, Richard E; New, Joshua Ryan; Parker, Lynne Edwards

    2012-01-01

    Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

  19. Demands For Solar Electricity From The BRICS Countries In The Future

    NASA Astrophysics Data System (ADS)

    Fan, Y.

    2015-12-01

    BRICS countries are presently among the leading the economic powers globally, but their increasing demands for energy and sustainable future requires renewed technical progress on implementation of renewable energy (e.g., solar energy) and a sustainable solution rather than extracting finite natural resources. BRICS countries (Brazil, Russia, India, China and South Africa) face both social and environmental pressures as their economy keeps growing. The rapid development of technology in BRICS inevitably altered their culture and behavior, as reflected by education, gender equality, health, and other demographic/socio-economic indicators. These changes coupled with land use/land cover change have altered ecosystem services, as reflected by NEE (Net Ecosystem Exchange of CO2) and NDVI (Normalized Difference Vegetation Index). Global climatic changes also drives the demand for sustainable energy. With a focus on solar energy, we analyzed time series of energy consuming behaviors, government policies, and the ecosystem services. Structural equation modeling was applied to confirm the relationships among societal transition, ecosystem services, and climate change. We compared the energy consumption patterns for the five countries and forecasted the changes through 2025. We found that government policies significantly influenced energy consumption behaviors for BRICS and that solar energy usage would continue to increase to 2025 and beyond.

  20. Pikes Peak, Colorado

    USGS Publications Warehouse

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  1. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  2. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  3. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement

    NASA Astrophysics Data System (ADS)

    Weinert, Jonathan X.; Burke, Andrew F.; Wei, Xuezhe

    China has been experiencing a rapid increase in battery-powered personal transportation since the late 1990s due to the strong growth of the electric bike and scooter (i.e. e-bike) market. Annual sales in China reached 17 million bikes year -1 in 2006. E-bike growth has been in part due to improvements in rechargeable valve-regulated lead-acid (VRLA) battery technology, the primary battery type for e-bikes. Further improvements in technology and a transition from VRLA to lithium-ion (Li-ion) batteries will impact the future market growth of this transportation mode in China and abroad. Battery performance and cost for these two types are compared to assess the feasibility of a shift from VRLA to Li-ion battery e-bikes. The requirements for batteries used in e-bikes are assessed. A widespread shift from VRLA to Li-ion batteries seems improbable in the near future for the mass market given the cost premium relative to the performance advantages of Li-ion batteries. As both battery technologies gain more real-world use in e-bike applications, both will improve. Cell variability is a key problematic area to be addressed with VRLA technology. For Li-ion technology, safety and cost are the key problem areas which are being addressed through the use of new cathode materials.

  4. Correlation-Peak Imaging

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  5. Make peak flow a habit!

    MedlinePlus

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  6. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  7. Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training.

    PubMed

    Krause, Beatrix; Cohen Kadosh, Roi

    2013-10-01

    Learning difficulties in atypical brain development represent serious obstacles to an individual's future achievements and can have broad societal consequences. Cognitive training can improve learning impairments only to a certain degree. Recent evidence from normal and clinical adult populations suggests that transcranial electrical stimulation (TES), a portable, painless, inexpensive, and relatively safe neuroenhancement tool, applied in conjunction with cognitive training can enhance cognitive intervention outcomes. This includes, for instance, numerical processing, language skills and response inhibition deficits commonly associated with profound learning difficulties and attention-deficit hyperactivity disorder (ADHD). The current review introduces the functional principles, current applications and promising results, and potential pitfalls of TES. Unfortunately, research in child populations is limited at present. We suggest that TES has considerable promise as a tool for increasing neuroplasticity in atypically developing children and may be an effective adjunct to cognitive training in clinical settings if it proves safe. The efficacy and both short- and long-term effects of TES on the developing brain need to be critically assessed before it can be recommended for clinical settings. PMID:23770059

  8. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  9. Peak of Desire

    PubMed Central

    Huang, Julie Y.; Bargh, John A.

    2008-01-01

    In three studies, we explore the existence of an evolved sensitivity to the peak as consistent with the evolutionary origins of many of our basic preferences. Activating the evolved motive of mating activates related adaptive mechanisms, including a general sensitivity to cues of growth and decay associated with determining mate value in human courtship. We establish that priming the mating goal also activates as well an evaluative bias that influences how people evaluate cues of growth. Specifically, living kinds that are immature or past their prime are devalued, whereas living kinds at their peak become increasingly valued. Study 1 establishes this goal-driven effect for human stimuli indirectly related to the mating goal. Studies 2 and 3 establish that the evaluative bias produced by the active mating goal extends to living kinds but not artifacts. PMID:18578847

  10. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  11. A Peak of Interest

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color rendering of an image taken by the panoramic camera on NASA's Mars Exploration Rover Spirit shows a view of the peak-like outcrop atop 'West Spur.' Spirit will attempt to drive up the north slope of the 'Columbia Hills' to reach similar rock outcrops and investigate the composition of the hills. The image was taken on sol 178 (July 4, 2004) using the camera's 750-, 530- and 430-nanometer filters.

  12. DIAMOND PEAK WILDERNESS, OREGON.

    USGS Publications Warehouse

    Sherrod, David R.; Moyle, Phillip R.

    1984-01-01

    No metallic mineral resources were identified during a mineral survey of the Diamond Peak Wilderness in Oregon. Cinder cones within the wilderness contain substantial cinder resources, but similar deposits that are more accessible occur outside the wilderness. The area could have geothermal resources, but available data are insufficient to evaluate their potential. Several deep holes could be drilled in areas of the High Cascades outside the wilderness, from which extrapolations of the geothermal potential of the several Cascade wilderness could be made.

  13. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  14. Conversations about electricity and the future: Findings of an international seminar and lessons from a year of surprises

    SciTech Connect

    Rossin, A.D.; Fowler, K.

    1991-06-01

    In January 1990 thirty-two experts from twelve countries convened for a five-day working Seminar on the Berkeley Campus of the University of California to discuss electricity supply and demand. The participants brought with them deep and diverse backgrounds in energy issues. A major concern of the First 1990 Group on Electricity was the potential impact of electricity shortages on the environment, just at a time of growing awareness of environmental deterioration. These concerns extend from local problems to nations, regions and global impacts. Indeed, because of the importance of electricity in our lives, potential electric power shortages already foreseeable in this decade could overwhelm public concern for the environment, unless critical, long-leadtime measures are taken very soon. The First 1990 Group on Electricity's Findings and Conclusions, the thinking that led to them, and the impact of events in the intervening year form the content of this book.

  15. LNG production for peak shaving operations

    SciTech Connect

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  16. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    NASA Astrophysics Data System (ADS)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  17. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. The impact of future carbon dioxide emission reduction targets on U.S. electric sector water use

    NASA Astrophysics Data System (ADS)

    Cameron, Colin MacKay

    The U.S. electric sector's reliance on water makes it vulnerable to the impacts of climate change on water resources. Here we analyze how constraints on U.S. energy system carbon dioxide (CO2) emissions could affect water withdrawal and consumption in the U.S. electric sector through 2055. We use simulations of the EPA's U.S. 9-region (EPAUS9r) MARKAL least-cost optimization energy systems model with updated water use factors for electricity generating technologies. Model results suggest CO2 constraints could force the retirement of old power plants and drive increased use of low water-use renewable and nuclear power as well as natural gas CCS plants with more advanced cooling systems. These changes in electric sector technology mix reduce water withdrawal in all scenarios but increase water consumption in aggressive scenarios. Decreased electric sector water withdrawal would likely reduce electric sector vulnerability to climate change, but the rise in consumption could increase competition with other users.

  19. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    NASA Astrophysics Data System (ADS)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  20. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    PubMed

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  1. Partial Discharge Characteristics of Polymer Nanocomposite Materials in Electrical Insulation: A Review of Sample Preparation Techniques, Analysis Methods, Potential Applications, and Future Trends

    PubMed Central

    Izzati, Wan Akmal; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends. PMID:24558326

  2. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for ~500 km-scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Astrophysics Data System (ADS)

    Pfaff, R. F.; Freudenreich, H. T.; Klenzing, J. H.; Liebrecht, M. C.; Valladares, C. E.

    2011-12-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F-peak at night. The vector electric field insrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983]. We

  3. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  4. Decoupling approximation design using the peak to peak gain

    NASA Astrophysics Data System (ADS)

    Sultan, Cornel

    2013-04-01

    Linear system design for accurate decoupling approximation is examined using the peak to peak gain of the error system. The design problem consists in finding values of system parameters to ensure that this gain is small. For this purpose a computationally inexpensive upper bound on the peak to peak gain, namely the star norm, is minimized using a stochastic method. Examples of the methodology's application to tensegrity structures design are presented. Connections between the accuracy of the approximation, the damping matrix, and the natural frequencies of the system are examined, as well as decoupling in the context of open and closed loop control.

  5. Integrated DEA Models and Grey System Theory to Evaluate Past-to-Future Performance: A Case of Indian Electricity Industry

    PubMed Central

    Wang, Chia-Nan; Tran, Thanh-Tuyen

    2015-01-01

    The growth of economy and population together with the higher demand in energy has created many concerns for the Indian electricity industry whose capacity is at 211 gigawatts mostly in coal-fired plants. Due to insufficient fuel supply, India suffers from a shortage of electricity generation, leading to rolling blackouts; thus, performance evaluation and ranking the industry turn into significant issues. By this study, we expect to evaluate the rankings of these companies under control of the Ministry of Power. Also, this research would like to test if there are any significant differences between the two DEA models: Malmquist nonradial and Malmquist radial. Then, one advance model of MPI would be chosen to see these companies' performance in recent years and next few years by using forecasting results of Grey system theory. Totally, the realistic data 14 are considered to be in this evaluation after the strict selection from the whole industry. The results found that all companies have not shown many abrupt changes on their scores, and it is always not consistently good or consistently standing out, which demonstrated the high applicable usability of the integrated methods. This integrated numerical research gives a better “past-present-future” insights into performance evaluation in Indian electricity industry. PMID:25821854

  6. Planning for future uncertainties in electric power generation; An analysis of transitional strategies for reduction of carbon and sulfur emissions

    SciTech Connect

    Tabors, R.D.; Monroe, B.L. III . Lab. for Electromagnetic and Electronic Systems)

    1991-11-01

    The objective of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gasses. The research used the EPRI Electric Generation Expansion Analysis System (EGEAS) utility optimization/simulation modeling structure and the EPRI developed regional utilities. It focuses on the North East and East Central region of the U.S. Strategies identified were fuel switching -- predominantly between coal and natural gas, mandated emission limits, and a carbon tax. The overall conclusions of the study are that using less (conservation) will always benefit Carbon Emissions but may or may not benefit Acid Rain emissions by the off setting forces of improved performance of new plant as opposed to reduced overall consumption of final product. Results of the study are highly utility and regional demand specific. The study showed, however, that significant reductions in both acid rain and global warming gas production could be achieved with relatively small increases in the overall cost of production of electricity and that the current dispatch logics available to the utility control rooms were adequate to reschedule dispatch to meet these objectives.

  7. Consumer's electric car

    SciTech Connect

    Wakefield, E.H.

    1980-01-01

    Offers fascinating details about electric cars, how they work, their construction, their power sources and complete information on future prospects. Topics include: design of electric vehicles - present and future; efficiency comparisons of electric and gasoline cars; electric car battery and charging systems; alternate motors and controls; troubleshooting an electric car; and other propulsion energies. 88 figures.

  8. Future electricity generation: An economic and environmental life cycle perspective on near-, mid- and long-term technology options and policy implications

    NASA Astrophysics Data System (ADS)

    Bergerson, Joule Andrea

    This thesis evaluates the cost and environmental tradeoffs of current and future electricity generation options from a life cycle perspective. Policy and technology options are considered for each critical time horizon (near-, mid-, and long-term). The framework developed for this analysis is a hybrid life cycle analysis which integrates several models and frameworks including process and input-output life cycle analysis, an integrated environmental control model, social costing, forecasting and future energy scenario analysis. The near-term analysis shows that several recent LCA studies of electricity options have contributed to our understanding of the technologies available and their relative environmental impacts. Several promising options could satisfy our electricity demands. Other options remain unproven or too costly to encourage investment in the near term but show promise for future use (e.g. photovoltaic, fuel cells). Public concerns could impede the use of some desirable technologies (e.g. hydro, nuclear). Finally, less tangible issues such as intermittency of some renewable technologies, social equity and visual and land use impacts, while difficult to quantify, must be considered in the investment decision process. In the mid-term analysis, this thesis explores alternative methods for transport of coal energy. A hybrid life cycle analysis is critical for evaluating the cost, efficiency and environmental tradeoffs of the entire system. If a small amount of additional coal is to be shipped, current rail infrastructure should be used where possible. If entirely new infrastructure is required, the mine mouth generation options are cheaper but have increased environmental impact due to the increased generation required to compensate for transmission line losses. Gasifying the coal to produce methane also shows promise in terms of lowering environmental emissions. The long-term analysis focuses on the implications of a high coal use future. This scenario

  9. Analysis of the need for intermediate and peaking technologies in the year 2000

    SciTech Connect

    Barrager, S.M.; Campbell, G.L.

    1980-04-01

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There will be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service, can economically remove most of the variation from electric-power demands. Therefore, the analysis assesses the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. Section 2 provides a condensed description of the models used in the analysis. (Details and data sets are contained in the appendixes.) Results of sensitivities on growth rates, model parameters, and appliance saturations are discussed in Section 3, which also contains the analysis of the potential impacts of customer energy storage, appliance control, and time-of-use pricing. The future need for intermediate and peaking technologies is analyzed in Section 4.

  10. Central peaking of magnetized gas dischargesa)

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.; Curreli, Davide

    2013-05-01

    Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature Te, drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This "universal" profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a.

  11. Electricity from wind - A survey of the state of the art and future prospects for research and development

    NASA Astrophysics Data System (ADS)

    Windheim, R.

    1982-10-01

    Small, medium-size, and large wind power installations are surveyed. Projects in the first two of these size ranges, from about 10 kW up to 270 kW, are summarized. For large installations, the meteorological situations, the development and construction, the progress in research and technology, and the integration and storage of wind energy in the network are examined. The Growian and Monopteros projects are emphasized, giving relevant data and structural descriptions of both projects. Future projects are covered in some detail, and international activities are summarized.

  12. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  13. Peak load demand forecasting using two-level discrete wavelet decomposition and neural network algorithm

    NASA Astrophysics Data System (ADS)

    Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak

    2010-02-01

    This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.

  14. Improved peak shape fitting in alpha spectra.

    PubMed

    Pommé, S; Caro Marroyo, B

    2015-02-01

    Peak overlap is a recurrent issue in alpha-particle spectrometry, not only in routine analyses but also in the high-resolution spectra from which reference values for alpha emission probabilities are derived. In this work, improved peak shape formulae are presented for the deconvolution of alpha-particle spectra. They have been implemented as fit functions in a spreadsheet application and optimum fit parameters were searched with built-in optimisation routines. Deconvolution results are shown for a few challenging spectra with high statistical precision. The algorithm outperforms the best available routines for high-resolution spectrometry, which may facilitate a more reliable determination of alpha emission probabilities in the future. It is also applicable to alpha spectra with inferior energy resolution. PMID:25497323

  15. On remote measurements of lightning return stroke peak currents

    NASA Astrophysics Data System (ADS)

    Mallick, S.; Rakov, V. A.; Tsalikis, D.; Nag, A.; Biagi, C.; Hill, D.; Jordan, D. M.; Uman, M. A.; Cramer, J. A.

    2014-01-01

    Return-stroke peak current is one of the most important measures of lightning intensity needed in different areas of atmospheric electricity research. It can be estimated from the corresponding electric or magnetic radiation field peak. Electric fields of 89 strokes in lightning flashes triggered using the rocket-and-wire technique at Camp Blanding (CB), Florida, were recorded at the Lightning Observatory in Gainesville, about 45 km from the lightning channel. Lightning return-stroke peak currents were estimated from the measured electric field peaks using the empirical formula of Rakov et al. (1992) and the field-to-current conversion equation based on the transmission line model (Uman and McLain, 1969). These estimates, along with peak currents reported by the U.S. National Lightning Detection Network (NLDN), were compared with the ground-truth data, currents directly measured at the lightning channel base. The empirical formula, based on data for 28 triggered-lightning strokes acquired at the Kennedy Space Center (KSC), tends to overestimate peak currents, whereas the NLDN-reported peak currents are on average underestimates. The field-to-current conversion equation based on the transmission line model gives the best match with directly measured peak currents for return-stroke speeds between c/2 and 2c/3 (1.5 and 2 × 108 m/s, respectively). Possible reasons for the discrepancy in the peak current estimates from the empirical formula and the ground-truth data include an error in the field calibration factor, difference in the typical return-stroke speeds at CB and at the KSC (considered here to be the most likely reason), and limited sample sizes, particularly for the KSC data. A new empirical formula, I = - 0.66-0.028rE, based on data for 89 strokes in lightning flashes triggered at CB, is derived.

  16. Analysis of the need for intermediate and peaking technologies in the year 2000. Final report

    SciTech Connect

    Barrager, S.M.; Campbell, G.L.

    1980-04-01

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There would be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service can economically remove most of the variation from electric power demands. The objective of this analysis is to assess the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. The analysis is exploratory in nature and broad in scope. It does not attempt to predict the future or to model precisely the technical characteristics or economic desirability of load management. Rather, its purpose is to provide research and development planners with some basic insights into the order of magnitude of possible hourly demand shifts on a regional basis and to determine the impact of load management on daily and seasonal variations in electricity demand.

  17. Climate Change and Future U.S. Electricity Infrastructure: the Nexus between Water Availability, Land Suitability, and Low-Carbon Technologies

    NASA Astrophysics Data System (ADS)

    Rice, J.; Halter, T.; Hejazi, M. I.; Jensen, E.; Liu, L.; Olson, J.; Patel, P.; Vernon, C. R.; Voisin, N.; Zuljevic, N.

    2014-12-01

    Integrated assessment models project the future electricity generation mix under different policy, technology, and socioeconomic scenarios, but they do not directly address site-specific factors such as interconnection costs, population density, land use restrictions, air quality, NIMBY concerns, or water availability that might affect the feasibility of achieving the technology mix. Moreover, since these factors can change over time due to climate, policy, socioeconomics, and so on, it is important to examine the dynamic feasibility of integrated assessment scenarios "on the ground." This paper explores insights from coupling an integrated assessment model (GCAM-USA) with a geospatial power plant siting model (the Capacity Expansion Regional Feasibility model, CERF) within a larger multi-model framework that includes regional climate, hydrologic, and water management modeling. GCAM-USA is a dynamic-recursive market equilibrium model simulating the impact of carbon policies on global and national markets for energy commodities and other goods; one of its outputs is the electricity generation mix and expansion at the state-level. It also simulates water demands from all sectors that are downscaled as input to the water management modeling. CERF simulates siting decisions by dynamically representing suitable areas for different generation technologies with geospatial analyses (informed by technology-specific siting criteria, such as required mean streamflow per the Clean Water Act), and then choosing siting locations to minimize interconnection costs (to electric transmission and gas pipelines). CERF results are compared across three scenarios simulated by GCAM-USA: 1) a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail, 2) a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward nuclear, carbon capture and sequestration (CCS), and renewables, and 3) a repeat of scenario (2) in which CCS technologies are

  18. The spatial resolution of epidemic peaks.

    PubMed

    Mills, Harriet L; Riley, Steven

    2014-04-01

    The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city); population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods). Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible. PMID:24722420

  19. Two classes of speculative peaks

    NASA Astrophysics Data System (ADS)

    Roehner, Bertrand M.

    2001-10-01

    Speculation not only occurs in financial markets but also in numerous other markets, e.g. commodities, real estate, collectibles, and so on. Such speculative movements result in price peaks which share many common characteristics: same order of magnitude of duration with respect to amplitude, same shape (the so-called sharp-peak pattern). Such similarities suggest (at least as a first approximation) a common speculative behavior. However, a closer examination shows that in fact there are (at least) two distinct classes of speculative peaks. For the first, referred to as class U, (i) the amplitude of the peak is negatively correlated with the price at the start of the peak (ii) the ensemble coefficient of variation exhibits a trough. Opposite results are observed for the second class that we refer to as class S. Once these empirical observations have been made we try to understand how they should be interpreted. First, we show that the two properties are in fact related in the sense that the second is a consequence of the first. Secondly, by listing a number of cases belonging to each class we observe that the markets in the S-class offer collection of items from which investors can select those they prefer. On the contrary, U-markets consist of undifferentiated products for which a selection cannot be made in the same way. All prices considered in the paper are real (i.e., deflated) prices.

  20. STEM Education in Jordan Applicable to Developing Future Geophysicists: An Example Combining Electrical Engineering and Medical Research

    NASA Astrophysics Data System (ADS)

    Fraiwan, A.; Khadra, L.; Shahab, W.; Olgaard, D. L.

    2010-12-01

    Students in developing countries interested in STEM disciplines (science, technology, engineering & math) often choose majors that will improve their job opportunities in their home country when they graduate, e.g. engineering or medicine. Geoscience might be chosen as a sub-discipline of civil engineering, but rarely as a primary major unless there are local economic natural resources. The Institute of International Education administers the ExxonMobil Middle East and North Africa region scholars program designed to develop skilled students with a focus on geoscience and to build relationships with academic leaders by offering select faculty the opportunity to participation in the AGU fall meeting. At the Jordan University of Science and Technology (JUST), research in electrical engineering applied to medicine has potential links to geosciences. In geophysics, neural wavelet analysis (NWA) is commonly used to process complex seismic signals, e.g. for interpreting lithology or identifying hydrocarbons. In this study, NWA was used to characterize cardiac arrhythmias. A classification scheme was developed in which a neural network is used to identify three types of arrhythmia by distinct frequency bands. The performance of this scheme was tested using patient records from two electrocardiography (ECG) databases. These records contain normal ECG signals, as well as abnormal signals from atrial fibrillation (AF), ventricular tachycardia (VT) and ventricular fibrillation (VF) arrhythmias. The continuous wavelet transform is applied over frequencies of 0-50 Hz for times of 0-2s. For a normal ECG, the results show that the strongest signal is in a frequency range of 4-10 Hz. For AF, a low frequency ECG signal in the range of 0-5 Hz extends over the whole time domain. For VT, the low frequency spectrum is in the range of 2-10 Hz, appearing as three distinct bands. For VF, a continuous band in the range of 2-10 Hz extends over the whole time domain. The classification of

  1. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  2. Peak Stress Testing Protocol Framework

    EPA Science Inventory

    Treatment of peak flows during wet weather is a common challenge across the country for municipal wastewater utilities with separate and/or combined sewer systems. Increases in wastewater flow resulting from infiltration and inflow (I/I) during wet weather events can result in op...

  3. Measuring Your Peak Flow Rate

    MedlinePlus

    ... meter. Proper cleaning with mild detergent in hot water will keep your peak flow meter working accurately and may keep you healthier. Related Content News: American Lung Association Applauds EPA’s Update to Cross-State Air Pollution Rule News: American Lung Association Invests More Than $ ...

  4. Cut Electric Bills by Controlling Demand

    ERIC Educational Resources Information Center

    Grumman, David L.

    1974-01-01

    Electric bills can be reduced by lowering electric consumption and by controlling demand -- the amount of electricity used at a certain point in time. Gives tips to help reduce electric demand at peak power periods. (Author/DN)

  5. Satisfying winter peak-power demand with phased gasification

    SciTech Connect

    Hall, E.H.; Moss, T.E.; Ravikumar, R.

    1987-01-01

    The purpose of this study, commissioned by the Bonneville Power Administration, was to investigate application of this concept to the Pacific Northwest. Coal gasification combined-cycle (GCC) plants are receiving serious attention from eastern utilities. Potomac Electric (PEPCO) has engaged Fluor Technology to perform conceptual and preliminary engineering for a nominal 375-MW coal GCC power generation facility to be located in northern Montgomery County, Maryland. Other eastern utilities are engaged in site-specific investigations of satisfying future power requirements employing this alternative, which involves an environmentally superior method of using coal. Coal is combined with oxygen to produce a medium-heating-value fuel gas as an alternative to natural gas. The fuel gas, cleaned to remove sulfur compounds, is burned in gas turbine-generator sets. The hot exhaust gas is used to generate steam for additional power generation. The gasification combined cycle plant is highly efficient and has a high level of flexibility to meet power demands. This study provided background for consideration of one alternative for satisfying winter peak-load demand. The concept is feasible, depending on the timing of the installation of the gasification system, projections of the cost and the availability of natural gas, and restrictions on the use of natural gas. It has the advantage of deferring capacity addition and capital outlay until power is needed and economics are favorable.

  6. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    USGS Publications Warehouse

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  7. Sample distribution in peak mode isotachophoresis

    SciTech Connect

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran

    2014-01-15

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify and validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.

  8. Sample distribution in peak mode isotachophoresis

    NASA Astrophysics Data System (ADS)

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran

    2014-01-01

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify and validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.

  9. Peak experiences of psilocybin users and non-users.

    PubMed

    Cummins, Christina; Lyke, Jennifer

    2013-01-01

    Maslow (1970) defined peak experiences as the most wonderful experiences of a person's life, which may include a sense of awe, well-being, or transcendence. Furthermore, recent research has suggested that psilocybin can produce experiences subjectively rated as uniquely meaningful and significant (Griffiths et al. 2006). It is therefore possible that psilocybin may facilitate or change the nature of peak experiences in users compared to non-users. This study was designed to compare the peak experiences of psilocybin users and non-users, to evaluate the frequency of peak experiences while under the influence of psilocybin, and to assess the perceived degree of alteration of consciousness during these experiences. Participants were recruited through convenience and snowball sampling from undergraduate classes and at a musical event. Participants were divided into three groups, those who reported a peak experience while under the influence of psilocybin (psilocybin peak experience: PPE), participants who had used psilocybin but reported their peak experiences did not occur while they were under the influence of psilocybin (non-psilocybin peak experience: NPPE), and participants who had never used psilocybin (non-user: NU). A total of 101 participants were asked to think about their peak experiences and complete a measure evaluating the degree of alteration of consciousness during that experience. Results indicated that 47% of psilocybin users reported their peak experience occurred while using psilocybin. In addition, there were significant differences among the three groups on all dimensions of alteration of consciousness. Future research is necessary to identify factors that influence the peak experiences of psilocybin users in naturalistic settings and contribute to the different characteristics of peak experiences of psilocybin users and non-users. PMID:23909006

  10. Peak experiences of psilocybin users and non-users.

    PubMed

    Cummins, Christina; Lyke, Jennifer

    2013-01-01

    Maslow (1970) defined peak experiences as the most wonderful experiences of a person's life, which may include a sense of awe, well-being, or transcendence. Furthermore, recent research has suggested that psilocybin can produce experiences subjectively rated as uniquely meaningful and significant (Griffiths et al. 2006). It is therefore possible that psilocybin may facilitate or change the nature of peak experiences in users compared to non-users. This study was designed to compare the peak experiences of psilocybin users and non-users, to evaluate the frequency of peak experiences while under the influence of psilocybin, and to assess the perceived degree of alteration of consciousness during these experiences. Participants were recruited through convenience and snowball sampling from undergraduate classes and at a musical event. Participants were divided into three groups, those who reported a peak experience while under the influence of psilocybin (psilocybin peak experience: PPE), participants who had used psilocybin but reported their peak experiences did not occur while they were under the influence of psilocybin (non-psilocybin peak experience: NPPE), and participants who had never used psilocybin (non-user: NU). A total of 101 participants were asked to think about their peak experiences and complete a measure evaluating the degree of alteration of consciousness during that experience. Results indicated that 47% of psilocybin users reported their peak experience occurred while using psilocybin. In addition, there were significant differences among the three groups on all dimensions of alteration of consciousness. Future research is necessary to identify factors that influence the peak experiences of psilocybin users in naturalistic settings and contribute to the different characteristics of peak experiences of psilocybin users and non-users.

  11. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so.

  12. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  13. Maxometers (peak wind speed anemometers)

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W.; Camp, D. W.; Turner, R. E. (Inventor)

    1973-01-01

    An instrument for measuring peak wind speeds under severe environmental conditions is described, comprising an elongated cylinder housed in an outer casing. The cylinder contains a piston attached to a longitudinally movable guided rod having a pressure disk mounted on one projecting end. Wind pressure against the pressure disk depresses the movable rod. When the wind reaches its maximum speed, the rod is locked by a ball clutch mechanism in the position of maximum inward movement. Thereafter maximum wind speed or pressure readings may be taken from calibrated indexing means.

  14. Cost estimate of electricity produced by TPV

    NASA Astrophysics Data System (ADS)

    Palfinger, Günther; Bitnar, Bernd; Durisch, Wilhelm; Mayor, Jean-Claude; Grützmacher, Detlev; Gobrecht, Jens

    2003-05-01

    A crucial parameter for the market penetration of TPV is its electricity production cost. In this work a detailed cost estimate is performed for a Si photocell based TPV system, which was developed for electrically self-powered operation of a domestic heating system. The results are compared to a rough estimate of cost of electricity for a projected GaSb based system. For the calculation of the price of electricity, a lifetime of 20 years, an interest rate of 4.25% per year and maintenance costs of 1% of the investment are presumed. To determine the production cost of TPV systems with a power of 12-20 kW, the costs of the TPV components and 100 EUR kW-1el,peak for assembly and miscellaneous were estimated. Alternatively, the system cost for the GaSb system was derived from the cost of the photocells and from the assumption that they account for 35% of the total system cost. The calculation was done for four different TPV scenarios which include a Si based prototype system with existing technology (etasys = 1.0%), leading to 3000 EUR kW-1el,peak, an optimized Si based system using conventional, available technology (etasys = 1.5%), leading to 900 EUR kW-1el,peak, a further improved system with future technology (etasys = 5%), leading to 340 EUR kW-1el,peak and a GaSb based system (etasys = 12.3% with recuperator), leading to 1900 EUR kW-1el,peak. Thus, prices of electricity from 6 to 25 EURcents kWh-1el (including gas of about 3.5 EURcents kWh-1) were calculated and compared with those of fuel cells (31 EURcents kWh-1) and gas engines (23 EURcents kWh-1).

  15. Making sense of peak load cost allocations

    SciTech Connect

    Power, T.M.

    1995-03-15

    When it comes to cost allocation, common wisdom assigns costs in proportion to class contributions to peak loads, The justification is simple: Since the equipment had to be sized to meet peak day loads, those costs should be allocated on the same basis. Many different peak allocators have been developed on this assumption: single coincident peak contribution, sum of coincident peaks, noncoincident peak, average and excess demand, peak and average demand, base and extra capacity, and so on. Such pure peak-load allocators may not be politically acceptable, but conceptually, at least, they appear to offer the only defensible approach. Nevertheless, where capacity can be added with significant economies of scale, making cost allocations in proportion to peak loads violates well-known relationships between economics and engineering. What is missing is any tracing of the way in which the peak-load design criteria actually influence the cost incurred.

  16. Peak load management: Potential options

    SciTech Connect

    Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

    1989-10-01

    This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

  17. Establishment of peak bone mass.

    PubMed

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass. PMID:12699292

  18. , Recorded at Ladron Peak, Central New Mexico

    NASA Astrophysics Data System (ADS)

    Ricketts, J. W.; Kelley, S.; Read, A. S.; Karlstrom, K. E.

    2010-12-01

    facilitated by a high geothermal gradient, although cooling/exhumation post-dated 34 - 28 Ma caldera volcanism in the region. And/or (2) high slip magnitude on the Jeter fault system during uplift of the Ladron block exhumed deeply into the brittle-ductile realms of regional detachment systems, similar to highly extended terranes in the Basin and Range Province. Planned future work will include UTh/He thermochronology, and structural analysis of low and high-angle fault systems associated with the Ladron Peak area and the western margin of the Rio Grande rift. This will allow restoration of the hanging wall block to its pre-rift position, and constrain the geothermal gradient prior to, and during, rifting.

  19. Double-peaked electrostatic ion cyclotron harmonic waves

    NASA Technical Reports Server (NTRS)

    Boardsen, S. A.; Gurnett, D. A.; Peterson, W. K.

    1990-01-01

    Electrostatic H(+) cyclotron harmonic waves are often observed along the auroral field lines at altitudes of 1-3.5 R(E) by the Dynamics Explorer 1 satellite. A small fraction of these waves are found to have two peaks associated with each harmonic instead of one peak. The waves occur below the lower hybrid frequency and are usually relatively weak, about a factor of 4 smaller than typical electric field amplitudes of other H(+) cyclotron harmonic wave events. The double-peaked spectral signature is believed to be produced by Doppler shifts arising from the satellite velocity relative to the plasma rest frame. The waves were found to have wavelengths of the order of 300 m and phase velocities of the order of 150 km/s.

  20. Peak expiratory flow at increased barometric pressure: comparison of peak flow meters and volumetric spirometer.

    PubMed

    Thomas, P S; Ng, C; Bennett, M

    2000-01-01

    Increasing numbers of patients are receiving hyperbaric oxygen therapy as an intensive care treatment, some of whom have pre-existing airway obstruction. Spirometers are the ideal instruments for measuring airway obstruction, but peak flow meters are useful and versatile devices. The behaviour of both types of device was therefore studied in a hyperbaric unit under conditions of increased pressure. It is important to have a non-electrical indicator of airway obstruction, to minimize the fire risk in the hyperoxic environment. The hypothesis was tested that, assuming that dynamic resistance is unchanged, both the Wright's standard and mini-peak flow meters would over-read peak expiratory flow (PEF) under increased pressure when compared with a volumetric spirometer, as the latter is unaffected by air density. It was postulated that a correction factor could be derived so that PEF meters could be used in this setting. Seven normal subjects performed volume-dependent spirometry to derive PEF, and manoeuvres using both standard and mini PEF meters at sea level, under hyperbaric conditions at 303, 253 and 152 kPa (3, 2.5 and 1.5 atmospheres respectively; 1 atmosphere absolute=101.08 kPa), and again at sea level. There was a progressive and significant decline in PEF with increasing pressure as measured by the spirometer (69.46+/-0.8% baseline at 303 kPa compared with 101 kPa), while the PEF meters showed a progressive increase in their readings (an increase of 7.86+/-1.69% at 303 kPa with the mini PEF meter). Using these data points, a correction factor was derived which allows appropriate values to be calculated from the Wright's meter readings under these conditions. PMID:10600666

  1. Discourse Peak as Zone of Turbulence.

    ERIC Educational Resources Information Center

    Longacre, Robert E.

    Defining peak as the climax of discourse, this paper argues that it is important to identify peak in order to get at the overall grammar of a given discourse. The paper presents case studies in which four instances of peak in narrative discourses occur in languages from four different parts of the world. It also illustrates the occurrence of a…

  2. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  3. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  4. A new approach for modeling the peak utility impacts from a proposed CUAC standard

    SciTech Connect

    LaCommare, Kristina Hamachi; Gumerman, Etan; Marnay, Chris; Chan, Peter; Coughlin, Katie

    2004-08-01

    This report describes a new Berkeley Lab approach for modeling the likely peak electricity load reductions from proposed energy efficiency programs in the National Energy Modeling System (NEMS). This method is presented in the context of the commercial unitary air conditioning (CUAC) energy efficiency standards. A previous report investigating the residential central air conditioning (RCAC) load shapes in NEMS revealed that the peak reduction results were lower than expected. This effect was believed to be due in part to the presence of the squelch, a program algorithm designed to ensure changes in the system load over time are consistent with the input historic trend. The squelch applies a system load-scaling factor that scales any differences between the end-use bottom-up and system loads to maintain consistency with historic trends. To obtain more accurate peak reduction estimates, a new approach for modeling the impact of peaky end uses in NEMS-BT has been developed. The new approach decrements the system load directly, reducing the impact of the squelch on the final results. This report also discusses a number of additional factors, in particular non-coincidence between end-use loads and system loads as represented within NEMS, and their impacts on the peak reductions calculated by NEMS. Using Berkeley Lab's new double-decrement approach reduces the conservation load factor (CLF) on an input load decrement from 25% down to 19% for a SEER 13 CUAC trial standard level, as seen in NEMS-BT output. About 4 GW more in peak capacity reduction results from this new approach as compared to Berkeley Lab's traditional end-use decrement approach, which relied solely on lowering end use energy consumption. The new method has been fully implemented and tested in the Annual Energy Outlook 2003 (AEO2003) version of NEMS and will routinely be applied to future versions. This capability is now available for use in future end-use efficiency or other policy analysis that requires

  5. [Electric and hybrid vehicle site operators program]: Thinking of the future. Second year third quarter report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-01

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants` names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State`s campus.

  6. Chirped pulse amplification: Present and future

    SciTech Connect

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm/sup 2/. These pulses will be associated with electric fields in excess of 100 e/a/sub o//sup 2/ and blackbody energy densities equivalent to 3 /times/ 10/sup 10/ J/cm/sup 3/. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs.

  7. On the trail of double peak hydrographs

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; François Iffly, Jean; McDonnell, Jeffrey J.; Pfister, Laurent

    2016-04-01

    A double peak hydrograph features two peaks as a response to a unique rainfall pulse. The first peak occurs at the same time or shortly after the precipitation has started and it corresponds to a fast catchment response to precipitation. The delayed peak normally starts during the recession of the first peak, when the precipitation has already ceased. Double peak hydrographs may occur for various reasons. They can occur (i) in large catchments when lag times in tributary responses are large, (ii) in urban catchments where the first peak is often caused by direct surface runoff on impervious land cover, and the delayed peak to slower subsurface flow, and (iii) in non-urban catchments, where the first and the delayed discharge peaks are explained by different runoff mechanisms (e.g. overland flow, subsurface flow and/or deep groundwater flow) that have different response times. Here we focus on the third case, as a formal description of the different hydrological mechanisms explaining these complex hydrological dynamics across catchments with diverse physiographic characteristics is still needed. Based on a review of studies documenting double peak events we have established a formal classification of catchments presenting double peak events based on their regolith structure (geological substratum and/or its weathered products). We describe the different hydrological mechanisms that trigger these complex hydrological dynamics across each catchment type. We then use hydrometric time series of precipitation, runoff, soil moisture and groundwater levels collected in the Weierbach (0.46 km2) headwater catchment (Luxembourg) to better understand double peak hydrograph generation. Specifically, we aim to find out (1) if the generation of a double peak hydrograph is a threshold process, (2) if the hysteretic relationships between storage and discharge are consistent during single and double peak hydrographs, and (3) if different functional landscape units (the hillslopes

  8. Technical Potential for Peak Load Management Programs in New Jersey

    SciTech Connect

    Kirby, B.J.

    2002-12-13

    Restructuring is attempting to bring the economic efficiency of competitive markets to the electric power industry. To at least some extent it is succeeding. New generation is being built in most areas of the country reversing the decades-long trend of declining reserve margins. Competition among generators is typically robust, holding down wholesale energy prices. Generators have shown that they are very responsive to price signals in both the short and long term. But a market that is responsive only on the supply side is only half a market. Demand response (elasticity) is necessary to gain the full economic advantages that restructuring can offer. Electricity is a form of energy that is difficult to store economically in large quantities. However, loads often have some ability to (1) conveniently store thermal energy and (2) defer electricity consumption. These inherent storage and control capabilities can be exploited to help reduce peak electric system consumption. In some cases they can also be used to provide system reliability reserves. Fortunately too, technology is helping. Advances in communications and control technologies are making it possible for loads ranging from residential through commercial and industrial to respond to economic signals. When we buy bananas, we don't simply take a dozen and wait a month to find out what the price was. We always ask about the price before we decide how many bananas we want. Technology is beginning to allow at least some customers to think about their electricity consumption the same way they think about most of their other purchases. And power system operators and regulators are beginning to understand that customers need to remain in control of their own destinies. Many customers (residential through industrial) are willing to respond to price signals. Most customers are not able to commit to specific responses months or years in advance. Electricity is a fluid market commodity with a volatile value to both

  9. Electric propulsion, circa 2000

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Finke, R. C.

    1980-01-01

    This paper discusses the future of electric propulsion, circa 2000. Starting with the first generation Solar Electric Propulsion (SEP) technology as the first step toward the next century's advanced propulsion systems, the current status and future trends of other systems such as the magnetoplasmadynamic accelerator, the mass driver, the laser propulsion system, and the rail gun are described.

  10. REPORTING PEAK EXPIRATORY FLOW IN OLDER PERSONS

    PubMed Central

    Vaz Fragoso, Carlos A.; Gahbauer, Evelyne A.; Van Ness, Peter H.; Gill, Thomas M.

    2009-01-01

    Background Peak expiratory flow (“peak flow”) predicts important outcomes in older persons. Nevertheless, its clinical application is uncertain because prior strategies for reporting peak flow may not be valid. We thus determined the frequency distribution of peak flow by the conventional strategy of percent predicted (%predicted) and by an alternative method termed standardized residual (SR) percentile, and evaluated how these two metrics relate to health status in older persons. Methods Participants included 754 community-living persons aged ≥ 70 years. Data included chronic conditions, frailty indicators, and peak flow. Results Mean age was 78.4 years, with 63.7% reporting a smoking history, 17.4% chronic lung disease, and 77.1% having one or more frailty indicators. Peak flow ≥ 80 %predicted was recorded in 67.5% of participants, whereas peak flow ≥ 80th SR-percentile was only noted in 15.9%. A graded relationship was observed between peak flow and health status, but %predicted yielded health risk at peak flows currently considered normal (80–100 %predicted), whereas SR-percentile conferred health risk only at severely reduced peak flows (< 50th SR-percentile). Conclusions Peak flow expressed as SR-percentile attains a frequency distribution more consistent with the characteristics of our elderly cohort, and establishes health risk at more appropriate levels of reduced peak flow. These findings establish the need for longitudinal studies based on SR-percentile to further evaluate the use of peak flow as a risk assessment tool in older persons, and to determine if pulmonary function, in general, is better reported in older persons as SR-percentile, rather than as %predicted. PMID:17921429

  11. Electric Vehicle Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2011-01-01

    With President Obama's goal to have one million electric vehicles (EV) on the road by 2015, the electric vehicle technician should have a promising and busy future. "The job force in the car industry is ramping up for a revitalized green car industry," according to Greencareersguide.com. An electric vehicle technician will safely troubleshoot and…

  12. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  13. Origin of weak lensing convergence peaks

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Haiman, Zoltán

    2016-08-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].

  14. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    SciTech Connect

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  15. Electrical circuit for data reduction

    SciTech Connect

    Kronberg, J.W.

    1991-12-31

    This invention is comprised of an electrical circuit for determining characteristic voltages, such as maximum, minimum, average and root mean squared voltages, of a time-varying electrical signal. The circuit comprises a positive and a negative peak detector that feed the positive and negative voltage peaks detected in each of a series of time intervals into a solid-state multiplexer controlled by a process controller. The time intervals are generated by the process controller in combination with a clocking, circuit. The multiplexer applies the positive and negative peak voltages to a set of four capacitors, apply the positive peak to one capacitor during one interval and then the negative peak to that capacitor in a subsequent interval so that each capacitor is alternatingly accumulating a positive peak then a negative peak to obviate the need for resetting each capacitor. After the positive peak voltage is applied to one capacitor, the connection is switched during the next interval for reading the negative peak voltage, then switched again for applying, a negative peak voltage, then switched once more for reading the negative peak voltage, the multiplexer serving, as a solid state commutator for switching the electrical connection. Alternatively, peak maximum and minimum voltage detectors may be replaced with circuitry designed to obtain the additional characteristic voltages desired in each interval.

  16. Training Lessons Learned from Peak Performance Episodes.

    ERIC Educational Resources Information Center

    Fobes, James L.

    A major challenge confronting the United States Army is to obtain optimal performance from both its human and machine resources. This study examines episodes of peak performance in soldiers and athletes. Three cognitive components were found to enable episodes of peak performance: psychological readiness (activating optimal arousal and emotion…

  17. Do dark matter halos explain lensing peaks?

    NASA Astrophysics Data System (ADS)

    Zorrilla Matilla, José Manuel; Haiman, Zoltán; Hsu, Daniel; Gupta, Arushi; Petri, Andrea

    2016-10-01

    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with S /N >1 (where S /N is the ratio of the peak height to the r.m.s. shape noise), we find ≈50 % fewer counts for peaks near S /N =0 and significantly higher counts in the negative S /N tail. Adding shape noise reduces the differences to within 20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the {Ωm,σ8} are ≈30 % larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with 2 peaks (S /N >3 ). Our results confirm the importance of using a cosmology-dependent covariance with at least a 14% improvement in parameter constraints. We identified the covariance estimation as the main driver behind differences in inference, and suggest possible ways to make Camelus even more useful as a highly accurate peak count emulator.

  18. The model electric restaurant

    SciTech Connect

    Frey, D.J.; Oatman, P.A. ); Claar, C.N. )

    1989-12-01

    Restaurants are the most intensive users of energy of all types of commercial buildings. As a result, they have some of the highest energy costs. New and existing restaurants are important customers to electric utilities. Many opportunities exist to use electricity to improve restaurant energy performance. This report discusses a project in which computer simulations were used to investigate restaurant energy subsystem performance and to assess the potential for electric equipment to reduce energy consumption, reduce peak demand improve load factors, and reduce energy cost in new all-electric restaurants. The project investigated typical restaurant designs for all-electric and gas/electric facilities and compared them to high efficiency electric options in all-electric restaurants. This analysis determined which investiments in high-efficiency electric equipment are attractive for restaurant operators. Improved equipment for food preparation, heating and cooling, ventilation, sanitation, and lighting subsystem was studied in cafeteria, full menu, fast food, and pizza restaurants in Atlanta, Cleveland, Los Angeles, and Phoenix. In addition to the actual rate structures, four synthetic rate structures were used to calculate energy costs, so that the results can be applied to other locations. The results indicate that high efficiency and improved all-electric equipment have the potential for significantly reducing energy consumption, peak demand, and operating costs in almost all restaurants in all locations. The all-electric restaurants, with a combination of improved equipment, also offer the customer a competitive choice in fuels in most locations. 12 refs., 26 figs., 55 tabs.

  19. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    SciTech Connect

    Heaton, H.

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  20. Weld peaking on heavy aluminum structures

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Poorman, R.; Sexton, J.

    1978-01-01

    Weld peaking is usually undesirable in any welded structure. In heavy structures, the forces involved in the welding process become very large and difficult to handle. With the shuttle's solid rocket booster, the weld peaking resulted in two major problems: (1) reduced mechanical properties across the weld joint, and (2) fit-up difficulties in subsequent assembly operation. Peaking from the weld shrinkage forces can be fairly well predicted in simple structures; however, in welding complicated assemblies, the amount of peaking is unpredictable because of unknown stresses from machining and forming, stresses induced by the fixturing, and stresses from welds in other parts of the assembly. When excessive peaking is encountered, it can be corrected using the shrinkage forces resulting from the welding process. Application of these forces is discussed in this report.

  1. Multiscale peak detection in wavelet space.

    PubMed

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-01

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  2. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  3. Molten salt thermal energy storage for utility peaking loads

    NASA Technical Reports Server (NTRS)

    Ferrara, A.; Haslett, R.; Joyce, J.

    1977-01-01

    This paper considers the use of thermal energy storage (TES) in molten salts to increase the capacity of power plants. Five existing fossil and nuclear electric utility plants were selected as representative of current technology. A review of system load diagrams indicated that TES to meet loads over 95% of peak was a reasonable goal. Alternate TES heat exchanger locations were evaluated, showing that the stored energy should be used either for feedwater heating or to generate steam for an auxiliary power cycle. Specific salts for each concept are recommended. Design layouts were prepared for one plant, and it was shown that a TES tube/shell heat exchanger system could provide about 7% peaking capability at lower cost than adding steam generation capacity. Promising alternate heat exchanger concepts were also identified.

  4. Quantifying Changes in Building Electricity Use, with Application to Demand Response

    SciTech Connect

    Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann

    2010-11-17

    We present methods for analyzing commercial and industrial facility 15-minute-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to ask the right questions to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence, and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers.

  5. Thermal instability of peak current in tunnel diodes

    SciTech Connect

    Vyatkin, A.P.; Kalinin, Y.M.

    1986-06-01

    This paper examines the effect of temperature change on stability of electrical characteristics in composite GaAs and GaSb tunnel diodes. The experimental results are interpreted with consideration of plastic and creep deformation in the metallic electrode close to the p-n junction. It is shown that thermal stresses developed at the boundary between the electrode alloy and the semiconductor lead to deformations localized mainly in the electrode layer. These deformations are sensed by the p-n junction which lies close to the phase boundary, which leads to a relaxation of peak current, and its hysteresis-type temperature dependence.

  6. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-06-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  7. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry.

    PubMed

    Garimella, Sandilya V B; Ibrahim, Yehia M; Tang, Keqi; Webb, Ian K; Baker, Erin S; Tolmachev, Aleksey V; Chen, Tsung-Chi; Anderson, Gordon A; Smith, Richard D

    2016-06-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. Graphical Abstract ᅟ. PMID:27052738

  8. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    PubMed Central

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-01-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e. peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths for all species. This peak compression occurs with only a modest reduction of resolution, and which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. PMID:27052738

  9. Parallel Planar-Processed and Ion-Induced Electrically Isolated Future Generation AlGaN/GaN HEMT for Gas Sensing and Opto-Telecommunication Applications

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Bokhari, S. H.; Khan, L. A.; Amin, F.; Hussain, Z.

    2013-12-01

    Ion-implanted AlGaN/GaN High Electron Mobility Transistors (HEMT) devices were studied thoroughly to look into the possibilities of enhancing efficiency for high-power and high-frequency electronic and gas sensing applications. A dedicated experimental design was created in order to study the influence of the physical parameters in response to high energy (by virtue of in-situ beam heating due to highly energetic implantation) ion implantation to the active device regions in nitride HEMT structures. Disorder or damage created in the HEMT structure was then studied carefully with electrical characterization techniques such as Hall, I-V and G-V measurements. The evolution of the electrical characteristics affecting the high-power, high-frequency and ultra-high efficiency gas sensing operations were also analyzed by subjecting the HEMT active device regions to progressive time-temperature annealing cycles. Our suggested model can also provide a functional process engineering window to control the extent of 2D Electron mobility in AlGaN/GaN HEMT devices undergoing a full cycle of thermal impact (i.e. from a desirable conductive region to a highly compensated one).

  10. Extreme value statistics of weak lensing shear peak counts

    NASA Astrophysics Data System (ADS)

    Reischke, R.; Maturi, M.; Bartelmann, M.

    2016-02-01

    The statistics of peaks in weak gravitational lensing maps is a promising technique to constrain cosmological parameters in present and future surveys. Here we investigate its power when using general extreme value statistics which is very sensitive to the exponential tail of the halo mass function. To this end, we use an analytic method to quantify the number of weak lensing peaks caused by galaxy clusters, large-scale structures and observational noise. Doing so, we further improve the method in the regime of high signal-to-noise ratios dominated by non-linear structures by accounting for the embedding of those counts into the surrounding shear caused by large-scale structures. We derive the extreme value and order statistics for both overdensities (positive peaks) and underdensities (negative peaks) and provide an optimized criterion to split a wide field survey into subfields in order to sample the distribution of extreme values such that the expected objects causing the largest signals are mostly due to galaxy clusters. We find good agreement of our model predictions with a ray-tracing N-body simulation. For a Euclid-like survey, we find tight constraints on σ8 and Ωm with relative uncertainties of ˜10-3. In contrast, the equation of state parameter w0 can be constrained only with a 10 per cent level, and wa is out of reach even if we include redshift information.

  11. Tectonics, Climate and Earth's highest peaks

    NASA Astrophysics Data System (ADS)

    Robl, Jörg; Prasicek, Günther; Hergarten, Stefan

    2016-04-01

    Prominent peaks characterized by high relief and steep slopes are among the most spectacular morphological features on Earth. In collisional orogens they result from the interplay of tectonically driven crustal thickening and climatically induced destruction of overthickened crust by erosional surface processes. The glacial buzz-saw hypothesis proposes a superior status of climate in limiting mountain relief and peak altitude due to glacial erosion. It implies that peak altitude declines with duration of glacial occupation, i.e., towards high latitudes. This is in strong contrast with high peaks existing in high latitude mountain ranges (e.g. Mt. St. Elias range) and the idea of peak uplift due to isostatic compensation of spatially variable erosional unloading an over-thickened orogenic crust. In this study we investigate landscape dissection, crustal thickness and vertical strain rates in tectonically active mountain ranges to evaluate the influence of erosion on (latitudinal) variations in peak altitude. We analyze the spatial distribution of serval thousand prominent peaks on Earth extracted from the global ETOPO1 digital elevation model with a novel numerical tool. We compare this dataset to crustal thickness, thickening rate (vertical strain rate) and mean elevation. We use the ratios of mean elevation to peak elevation (landscape dissection) and peak elevation to crustal thickness (long-term impact of erosion on crustal thickness) as indicators for the influence of erosional surface processes on peak uplift and the vertical strain rate as a proxy for the mechanical state of the orogen. Our analysis reveals that crustal thickness and peak elevation correlate well in orogens that have reached a mechanically limited state (vertical strain rate near zero) where plate convergence is already balanced by lateral extrusion and gravitational collapse and plateaus are formed. On the Tibetan Plateau crustal thickness serves to predict peak elevation up to an altitude

  12. Helping System Engineers Bridge the Peaks

    NASA Technical Reports Server (NTRS)

    Rungta, Neha; Tkachuk, Oksana; Person, Suzette; Biatek, Jason; Whalen, Michael W.; Castle, Joseph; Castle, JosephGundy-Burlet, Karen

    2014-01-01

    In our experience at NASA, system engineers generally follow the Twin Peaks approach when developing safety-critical systems. However, iterations between the peaks require considerable manual, and in some cases duplicate, effort. A significant part of the manual effort stems from the fact that requirements are written in English natural language rather than a formal notation. In this work, we propose an approach that enables system engineers to leverage formal requirements and automated test generation to streamline iterations, effectively "bridging the peaks". The key to the approach is a formal language notation that a) system engineers are comfortable with, b) is supported by a family of automated V&V tools, and c) is semantically rich enough to describe the requirements of interest. We believe the combination of formalizing requirements and providing tool support to automate the iterations will lead to a more efficient Twin Peaks implementation at NASA.

  13. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  14. Observing at Kitt Peak National Observatory.

    ERIC Educational Resources Information Center

    Cohen, Martin

    1981-01-01

    Presents an abridged version of a chapter from the author's book "In Quest of Telescopes." Includes personal experiences at Kitt Peak National Observatory, and comments on telescopes, photographs, and making observations. (SK)

  15. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOEpatents

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  16. Consortium for Electric Reliability Technology Solutions Grid of the Future White Paper on Review of Recent Reliability Issues and Systems Events

    SciTech Connect

    Hauer, John F.; Dagle, Jeffery E.

    1999-12-01

    This report is one of six reports developed under the U.S. Department of Energy (DOE) program in Power System Integration and Reliability (PSIR). The objective of this report is to review, analyze, and evaluate critical reliability issues demonstrated by recent disturbance events in the North America power system. Eleven major disturbances are examined, most occurring in this decade. The strategic challenge is that the pattern of technical need has persisted for a long period of time. For more than a decade, anticipation of market deregulation has been a major disincentive to new investments in system capacity. It has also inspired reduced maintenance of existing assets. A massive infusion of better technology is emerging as the final option to continue reliable electrical services. If an investment in better technology will not be made in a timely manner, then North America should plan its adjustments to a very different level of electrical service. It is apparent that technical operations staff among the utilities can be very effective at marshaling their forces in the immediate aftermath of a system emergency, and that serious disturbances often lead to improved mechanisms for coordinated operation. It is not at all apparent that such efforts can be sustained through voluntary reliability organizations in which utility personnel external to those organizations do most of the technical work. The eastern interconnection shows several situations in which much of the technical support has migrated from the utilities to the Independent System Operator (ISO), and the ISO staffs or shares staff with the regional reliability council. This process may be a natural and very positive consequence of utility restructuring. If so, the process should be expedited in regions where it is less advanced.

  17. Cosmic microwave background acoustic peak locations

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Knox, L.; Mulroe, B.; Narimani, A.

    2016-07-01

    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and 12 extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g. that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 deg out of phase. However, there are large differences in expectations for extrema locations from simple analytic models versus numerical calculations. Here, we quantitatively explore the origin of these differences in gravitational potential transients, neutrino free-streaming, the breakdown of tight coupling, the shape of the primordial power spectrum, details of the geometric projection from three to two dimensions, and the thickness of the last scattering surface. We also compare the peak locations determined from Planck measurements to expectations under the Λ cold dark matter model. Taking into account how the peak locations were determined, we find them to be in agreement.

  18. Peak Effect in High-Tc Superconductors

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng

    1996-03-01

    Like many low-Tc superconductors, high-quality YBCO single crystals are found(X.S. Ling and J.I. Budnick, in Magnetic Susceptibility of Superconductors and Other Spin Systems), edited by R.A. Hein, T.L. Francavilla, and D.H. Liebenberg (Plenum Press, New York, 1991), p.377. to exhibit a striking peak effect. In a magnetic field, the temperature dependence of the critical current has a pronounced peak below T_c(H). Pippard(A.B. Pippard, Phil. Mag. 19), 217 (1969)., and subsequently Larkin and Ovchinnikov(A.I. Larkin and Yu.N. Ovchinnikov, J. Low Temp. Phys. 34), 409 (1979)., attributed the onset of the peak effect to a softening of the vortex lattice. In this talk, the experimental discovery^1 of the peak effect in high-Tc superconductors will be described, followed by a brief historical perspective of the understanding of this phenomenon and a discussion of a new model(X.S. Ling, C. Tang, S. Bhattacharya, and P.M. Chaikin, cond-mat/9504109, (NEC Preprint 1995).) for the peak effect. In this model, the peak effect is an interesting manifestation of the vortex-lattice melting in the presence of weak random pinning potentials. The rise of critical current with increasing temperature is a signature of the ``melting'' of the Larkin domains. This work is done in collaboration with Joe Budnick, Chao Tang, Shobo Bhattacharya, Paul Chaikin, and Boyd Veal.

  19. Double peak sensory responses: effects of capsaicin.

    PubMed

    Aprile, I; Tonali, P; Stalberg, E; Di Stasio, E; Caliandro, P; Foschini, M; Vergili, G; Padua, L

    2007-10-01

    The aim of this study is to verify whether degeneration of skin receptors or intradermal nerve endings by topical application of capsaicin modifies the double peak response obtained by submaximal anodal stimulation. Five healthy volunteers topically applied capsaicin to the finger-tip of digit III (on the distal phalanx) four times daily for 4-5 weeks. Before and after local capsaicin applications, we studied the following electrophysiological findings: compound sensory action potential (CSAP), double peak response, sensory threshold and double peak stimulus intensity. Local capsaicin application causes disappearance or decrease of the second component of the double peak, which gradually increases after the suspension of capsaicin. Conversely, no significant differences were observed for CSAP, sensory threshold and double peak stimulus intensity. This study suggests that the second component of the double peak may be a diagnostic tool suitable to show an impairment of the extreme segments of sensory nerve fibres in distal sensory axonopathy in the early stages of damage, when receptors or skin nerve endings are impaired but undetectable by standard nerve conduction studies.

  20. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  1. High peak power diode stacks for high energy lasers

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  2. The peaks and geometry of fitness landscapes.

    PubMed

    Crona, Kristina; Greene, Devin; Barlow, Miriam

    2013-01-21

    Fitness landscapes are central in the theory of adaptation. Recent work compares global and local properties of fitness landscapes. It has been shown that multi-peaked fitness landscapes have a local property called reciprocal sign epistasis interactions. The converse is not true. We show that no condition phrased in terms of reciprocal sign epistasis interactions only, implies multiple peaks. We give a sufficient condition for multiple peaks phrased in terms of two-way interactions. This result is surprising since it has been claimed that no sufficient local condition for multiple peaks exist. We show that our result cannot be generalized to sufficient conditions for three or more peaks. Our proof depends on fitness graphs, where nodes represent genotypes and where arrows point toward more fit genotypes. We also use fitness graphs in order to give a new brief proof of the equivalent characterizations of fitness landscapes lacking genetic constraints on accessible mutational trajectories. We compare a recent geometric classification of fitness landscape based on triangulations of polytopes with qualitative aspects of gene interactions. One observation is that fitness graphs provide information that are not contained in the geometric classification. We argue that a qualitative perspective may help relating theory of fitness landscapes and empirical observations.

  3. Electric car arrives - again

    SciTech Connect

    Dunn, S.

    1997-03-01

    The first mass-produced electric cars in modern times are here, although they are expensive, limited in capability and unfamiliar to most prospective consumers. This article presents a brief history of the reintroduction of the modern electric car as well as discussions of the limitations of development, alternative routes to both producing and selling electric cars or some modified version of electric cars, economic incentives and governmental policies, and finally a snapshot description of the future for electric cars. 6 refs., 1 tab.

  4. Solar Electric Propulsion (SEP)

    NASA Video Gallery

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  5. SPANISH PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Budding, Karin E.; Kluender, Steven E.

    1984-01-01

    A geologic and geochemical investigation and a survey of mines and prospects were conducted to evaluate the mineral-resource potential of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas Counties, in south-central Colorado. Anomalous gold, silver, copper, lead, and zinc concentrations in rocks and in stream sediments from drainage basins in the vicinity of the old mines and prospects on West Spanish Peak indicate a substantiated mineral-resource potential for base and precious metals in the area surrounding this peak; however, the mineralized veins are sparse, small in size, and generally low in grade. There is a possibility that coal may underlie the study area, but it would be at great depth and it is unlikely that it would have survived the intense igneous activity in the area. There is little likelihood for the occurrence of oil and gas because of the lack of structural traps and the igneous activity.

  6. The PEAK experience in South Carolina

    SciTech Connect

    1998-11-01

    The PEAK Institute was developed to provide a linkage for formal (schoolteachers) and nonformal educators (extension agents) with agricultural scientists of Clemson University`s South Carolina Agricultural Experiment Station System. The goal of the Institute was to enable teams of educators and researchers to develop and provide PEAK science and math learning experiences related to relevant agricultural and environmental issues of local communities for both classroom and 4-H Club experiences. The Peak Institute was conducted through a twenty day residential Institute held in June for middle school and high school teachers who were teamed with an Extension agent from their community. These educators participated in hands-on, minds-on sessions conducted by agricultural researchers and Clemson University Cooperative Extension specialists. Participants were given the opportunity to see frontier science being conducted by scientists from a variety of agricultural laboratories.

  7. Automatic Locking of Laser Frequency to an Absorption Peak

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.

    2006-01-01

    An electronic system adjusts the frequency of a tunable laser, eventually locking the frequency to a peak in the optical absorption spectrum of a gas (or of a Fabry-Perot cavity that has an absorption peak like that of a gas). This system was developed to enable precise locking of the frequency of a laser used in differential absorption LIDAR measurements of trace atmospheric gases. This system also has great commercial potential as a prototype of means for precise control of frequencies of lasers in future dense wavelength-division-multiplexing optical communications systems. The operation of this system is completely automatic: Unlike in the operation of some prior laser-frequency-locking systems, there is ordinarily no need for a human operator to adjust the frequency manually to an initial value close enough to the peak to enable automatic locking to take over. Instead, this system also automatically performs the initial adjustment. The system (see Figure 1) is based on a concept of (1) initially modulating the laser frequency to sweep it through a spectral range that includes the desired absorption peak, (2) determining the derivative of the absorption peak with respect to the laser frequency for use as an error signal, (3) identifying the desired frequency [at the very top (which is also the middle) of the peak] as the frequency where the derivative goes to zero, and (4) thereafter keeping the frequency within a locking range and adjusting the frequency as needed to keep the derivative (the error signal) as close as possible to zero. More specifically, the system utilizes the fact that in addition to a zero crossing at the top of the absorption peak, the error signal also closely approximates a straight line in the vicinity of the zero crossing (see Figure 2). This vicinity is the locking range because the linearity of the error signal in this range makes it useful as a source of feedback for a proportional + integral + derivative control scheme that

  8. Boson Peaks in Crystals and Glasses

    NASA Astrophysics Data System (ADS)

    Krumhansl, James

    2004-03-01

    In spite of the impression that phonon physics had been well understood by the mid 1900's, particularly with the advent of inelastic neutron scattering, when a number of workers in the later 1900's measured the low temperature heat capacity of some glasses they found, on comparing with Debye theory, a large peaked excess density of states in the energy region 0.1-0.5 Tdeb. The states obeyed boson statistics with variation of T, thus the "boson peak". Over the period after Born, so many measurements of heat capacity on crystals followed Debye theory so well, "within a few percent", that these newer results on glasses were then presented with great excitement to indicate the presence of very complex non-phonon states due to the loss of long range order. For several decades, even until the present, the boson peak has been assumed to hold answers to the physics of the glassy state. I have attempted to understand this phenomenon over the past several years, by careful quantitative analysis of data on materials which can be prepared in either crystalline or amorphous form, e.g. Ge. To my surprise; first, purely from experimental data, many good crystalline materials also have boson peaks essentially identical to those in their amorphous form; loss of long range order certainly does not occur there nor is relevant!! Second, in fact, given the neutron data for Ge, a semi-quantitative thermodynamic Green's function can produce the crystalline boson peak. In short, the boson peaks are not special physical excitations associated with glassy materials, but rather are artifacts of questionable data interpretation approximations. Many experimental data will be cited, as well as the quartz anomaly.

  9. Compact program resolves overlapping voltammetric peaks.

    PubMed

    Dimitrov, Jordan D

    2004-05-01

    A simple self-contained program designed to separate overlapping peaks from electrochemical analyses is presented. Combining an original interactive way to define initial parameter estimates with nonlinear curve fitting based on the simplex method of optimization, it allows the user to resolve voltammograms consisting of 2 to 5 analytical peaks raised on a straight base line. The program provides highly intuitive interface, easy operation, and straightforward result documentation. A free package including the program, three data files and user instructions is available on request.

  10. Separating Peaks in X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Nicolas, David; Taylor, Clayborne; Wade, Thomas

    1987-01-01

    Deconvolution algorithm assists in analysis of x-ray spectra from scanning electron microscopes, electron microprobe analyzers, x-ray fluorescence spectrometers, and like. New algorithm automatically deconvolves x-ray spectrum, identifies locations of spectral peaks, and selects chemical elements most likely producing peaks. Technique based on similarities between zero- and second-order terms of Taylor-series expansions of Gaussian distribution and of damped sinusoid. Principal advantage of algorithm: no requirement to adjust weighting factors or other parameters when analyzing general x-ray spectra.

  11. Relationships between peak ground acceleration, peak ground velocity, and modified mercalli intensity in California

    USGS Publications Warehouse

    Wald, D.J.; Quitoriano, V.; Heaton, T.H.; Kanamori, H.

    1999-01-01

    We have developed regression relationships between Modified Mercalli Intensity (Imm) and peak ground acceleration (PGA) and velocity (PGV) by comparing horizontal peak ground motions to observed intensities for eight significant California earthquakes. For the limited range of Modified Mercalli intensities (Imm), we find that for peak acceleration with V ??? Imm ??? VIII, Imm = 3.66 log(PGA) - 1.66, and for peak velocity with V ??? Imm ??? IX, Imm = 3.47 log(PGV) + 2.35. From comparison with observed intensity maps, we find that a combined regression based on peak velocity for intensity > VII and on peak acceleration for intensity < VII is most suitable for reproducing observed Imm patterns, consistent with high intensities being related to damage (proportional to ground velocity) and with lower intensities determined by felt accounts (most sensitive to higher-frequency ground acceleration). These new Imm relationships are significantly different from the Trifunac and Brady (1975) correlations, which have been used extensively in loss estimation.

  12. Futures Conditional.

    ERIC Educational Resources Information Center

    Theobald, Robert

    The readings presented here are designed to help the reader perceive the future more vividly. Part one of the book suggests the various ways in which the future can be seen; it includes science fiction and the views of various analysts as to what the future holds. Part two collects printed materials about the future from various sources, including…

  13. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    NASA Astrophysics Data System (ADS)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  14. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.

    1985-01-01

    The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.

  15. Three-peak GRBs and their implications for central engines

    NASA Astrophysics Data System (ADS)

    Moreno Méndez, Enrique; Fraija, Nissim; Patricelli, Barbara

    2015-11-01

    GRB 110709B presented a peculiar three-peak lightcurve; this burst twice triggered the BAT detector onboard Swift. The two triggers were separated by ∼10 min. In order to explain such an event, we unify into a single description the millisecond (ms) protomagnetar and the collapsar central-engine models. We find that such a scenario could produce GRBs with three peaks. One for the ms-protomagnetar stage, a second one for the BH-formation event and a third one for the collapsar phase. We show that the three peaks for GRB 110709B originate from different phases of the same collapsing object. We estimate the energies and timescales of the different episodes of this burst using our model and compare with previous results as well as with a reanalysis we perform on the data. We show that not only the light curve, but also the photon index evolution and the delay between the prompt emission and the afterglow of the second central-engine activity phase point toward a model like the one proposed here. We find that, with reasonable assumptions, our model correctly describes the activity in GRB 110709B. We further suggest careful study of future GRBs lightcurves which may help show the validity of our model. If our model is correct, this would be the first time that the formation of a BH from a core-collapse event is observed unimpededly.

  16. Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach

    SciTech Connect

    Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

    2015-01-01

    This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to

  17. Double-peak subauroral ion drifts (DSAIDs)

    NASA Astrophysics Data System (ADS)

    He, Fei; Zhang, Xiao-Xin; Wang, Wenbin; Chen, Bo

    2016-06-01

    This paper reports double-peak subauroral ion drifts (DSAIDs), which is unique subset of subauroral ion drifts (SAIDs). A statistical analysis has been carried out for the first time with a database of 454 DSAID events identified from Defense Meteorological Satellite Program observations from 1987 to 2012. Both case studies and statistical analyses show that the two velocity peaks of DSAIDs are associated with two ion temperature peaks and two region-2 field-aligned currents (R2-FACs) peaks in the midlatitude ionospheric trough located in the low-conductance subauroral region. DSAIDs are regional and vary significantly with magnetic local time. DSAIDs can evolve from/to SAIDs during their lifetimes, which are from several minutes to tens of minutes. Comparisons between the ionospheric parameters of DSAIDs and SAIDs indicate that double-layer region-2 field-aligned currents (R2-FACs) may be the main driver of DSAIDs. It is also found that DSAIDs happen during more disturbed conditions compared with SAIDs.

  18. Hubbert's Peak: the Impending World oil Shortage

    NASA Astrophysics Data System (ADS)

    Deffeyes, K. S.

    2004-12-01

    Global oil production will probably reach a peak sometime during this decade. After the peak, the world's production of crude oil will fall, never to rise again. The world will not run out of energy, but developing alternative energy sources on a large scale will take at least 10 years. The slowdown in oil production may already be beginning; the current price fluctuations for crude oil and natural gas may be the preamble to a major crisis. In 1956, the geologist M. King Hubbert predicted that U.S. oil production would peak in the early 1970s.1 Almost everyone, inside and outside the oil industry, rejected Hubbert's analysis. The controversy raged until 1970, when the U.S. production of crude oil started to fall. Hubbert was right. Around 1995, several analysts began applying Hubbert's method to world oil production, and most of them estimate that the peak year for world oil will be between 2004 and 2008. These analyses were reported in some of the most widely circulated sources: Nature, Science, and Scientific American.2 None of our political leaders seem to be paying attention. If the predictions are correct, there will be enormous effects on the world economy. Even the poorest nations need fuel to run irrigation pumps. The industrialized nations will be bidding against one another for the dwindling oil supply. The good news is that we will put less carbon dioxide into the atmosphere. The bad news is that my pickup truck has a 25-gallon tank.

  19. Absorption, Creativity, Peak Experiences, Empathy, and Psychoticism.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; And Others

    Tellegen and Atkinson suggested that the trait of absorption may play a part in meditative skill, creativity, capacity for peak experiences, and empathy. Although the absorption-meditative skill relationship has been confirmed, other predictions have not been tested. Tellegen and Atkinson's Absorption Scale was completed by undergraduates in four…

  20. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Short, David

    2008-01-01

    This report describes work done by the Applied Meteorology Unit (AMU) in predicting peak winds at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron requested the AMU develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. Based on observations from the KSC/CCAFS wind tower network , Shuttle Landing Facility (SLF) surface observations, and CCAFS sounding s from the cool season months of October 2002 to February 2007, the AMU created mul tiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence , the temperature inversion depth and strength, wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft.

  1. Some Phenomenological Aspects of the Peak Experience

    ERIC Educational Resources Information Center

    Rosenblatt, Howard S.; Bartlett, Iris

    1976-01-01

    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  2. Spanish Peaks, Sangre de Cristo Range, Colorado

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Spanish Peaks, on the eastern flank of the Sangre de Cristo range, abruptly rise 7,000 feet above the western Great Plains. Settlers, treasure hunters, trappers, gold and silver miners have long sighted on these prominent landmarks along the Taos branch of the Santa Fe trail. Well before the westward migration, the mountains figured in the legends and history of the Ute, Apache, Comanche, and earlier tribes. 'Las Cumbres Espanolas' are also mentioned in chronicles of exploration by Spaniards including Ulibarri in 1706 and later by de Anza, who eventually founded San Francisco (California). This exceptional view (STS108-720-32), captured by the crew of Space Shuttle mission STS108, portrays the Spanish Peaks in the context of the southern Rocky Mountains. Uplift of the Sangre de Cristo began about 75 million years ago and produced the long north-trending ridges of faulted and folded rock to the west of the paired peaks. After uplift had ceased (26 to 22 million years ago), the large masses of igneous rock (granite, granodiorite, syenodiorite) that form the Peaks were emplaced (Penn, 1995-2001). East and West Spanish Peaks are 'stocks'-bodies of molten rock that intruded sedimentary layers, cooled and solidified, and were later exposed by erosion. East Peak (E), at 12,708 ft is almost circular and is about 5 1/2 miles long by 3 miles wide, while West Peak (W), at 13,623 ft is roughly 2 3/4 miles long by 1 3/4 miles wide. Great dikes-long stone walls-radiate outward from the mountains like spokes of a wheel, a prominent one forms a broad arc northeast of East Spanish Peak. As the molten rock rose, it forced its way into vertical cracks and joints in the sedimentary strata; the less resistant material was then eroded away, leaving walls of hard rock from 1 foot to 100 feet wide, up to 100 feet high, and as long as 14 miles. Dikes trending almost east-west are also common in the region. For more information visit: Sangres.com: The Spanish Peaks (accessed January 16

  3. R-Peak Time: An Electrocardiographic Parameter with Multiple Clinical Applications.

    PubMed

    Pérez-Riera, Andrés Ricardo; de Abreu, Luiz Carlos; Barbosa-Barros, Raimundo; Nikus, Kjell C; Baranchuk, Adrian

    2016-01-01

    In the 12-lead electrocardiogram (ECG), the time from the onset of the QRS complex (Q or R wave) to the apex or peak of R or to R' (when present), using indirect or semidirect surface unipolar precordial leads, bipolar limb leads or unipolar limb leads, is called ventricular activation time (VAT), R wave peak time (RWPT), R-peak time or intrinsicoid deflection (ID). The R-peak time in a specific ECG lead is the interval from the earliest onset of the QRS complex, preferably determined from multiple simultaneously recorded leads, to the peak (maximum) of the R wave or R' if present. Irrespective of the relative height of the R and R' waves, the R-peak time is measured to the second peak. The parameter corresponds to the time of the electrical activation occurring from the endocardium to the epicardium as reflected by the recording electrode located at a variable distance on the body surface, depending on the lead type: a unipolar precordial lead, a bipolar or unipolar limb lead. In normal conditions, the R-peak time for the thinner-walled right ventricle is measured from lead V1 or V2 and its upper limit of normal is 35 ms. The R-peak time for the left ventricle (LV) is measured from leads V5 to V6 and 45 ms is considered the upper limit of normal. In this manuscript, we review the clinical applications of this parameter.

  4. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    NASA Astrophysics Data System (ADS)

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-08-01

    High average temperatures lead to high regional electricity demand for cooling buildings, and large populations generally require more aggregate electricity than smaller ones do. Thus, future global climate and population changes will present regional infrastructure challenges regarding changing electricity demand. However, without spatially explicit representation of this demand or the ways in which it might change at the neighbourhood scale, it is difficult to determine which electricity service areas are most vulnerable and will be most affected by these changes. Here we show that detailed projections of changing local electricity demand patterns are viable and important for adaptation planning at the urban level in a changing climate. Employing high-resolution and spatially explicit tools, we find that electricity demand increases caused by temperature rise have the greatest impact over the next 40 years in areas serving small populations, and that large population influx stresses any affected service area, especially during peak demand.

  5. Impacts of climate change on sub-regional electricity demand and distribution in the southern United States

    NASA Astrophysics Data System (ADS)

    Allen, Melissa R.; Fernandez, Steven J.; Fu, Joshua S.; Olama, Mohammed M.

    2016-08-01

    High average temperatures lead to high regional electricity demand for cooling buildings, and large populations generally require more aggregate electricity than smaller ones do. Thus, future global climate and population changes will present regional infrastructure challenges regarding changing electricity demand. However, without spatially explicit representation of this demand or the ways in which it might change at the neighbourhood scale, it is difficult to determine which electricity service areas are most vulnerable and will be most affected by these changes. Here we show that detailed projections of changing local electricity demand patterns are viable and important for adaptation planning at the urban level in a changing climate. Employing high-resolution and spatially explicit tools, we find that electricity demand increases caused by temperature rise have the greatest impact over the next 40 years in areas serving small populations, and that large population influx stresses any affected service area, especially during peak demand.

  6. Plant data comparisons for Comanche Peak 1/2 main feedwater pump trip transient

    SciTech Connect

    Boatwright, W.J.; Choe, W.G; Hiltbrand, D.W.

    1995-09-01

    A RETRAN-02 MOD5 model of Comanche Peak Steam Electric Station was developed by TU Electric for the purpose of performing core reload safety analyses. In order to qualify this model, comparisons against plant transient data from a partial loss of main feedwater flow were performed. These comparisons demonstrated that good representations of the plant response could be obtained with RETRAN-02 and the user-developed models of the primary-to-secondary heat transfer and plant control systems.

  7. Effect of reservoir storage on peak flow

    USGS Publications Warehouse

    Mitchell, William D.

    1962-01-01

    For observation of small-basin flood peaks, numerous crest-stage gages now are operated at culverts in roadway embankments. To the extent that they obstruct the natural flood plains of the streams, these embankments serve to create detention reservoirs, and thus to reduce the magnitude of observed peak flows. Hence, it is desirable to obtain a factor, I/O, by which the observed outflow peaks may be adjusted to corresponding inflow peaks. The problem is made more difficult by the fact that, at most of these observation sites, only peak stages and discharges are observed, and complete hydrographs are not available. It is postulated that the inflow hydrographs may be described in terms of Q, the instantaneous discharge; A, the size of drainage area; Pe, the amount of rainfall excess; H, the time from beginning of rainfall excess; D, the duration of rainfall excess; and T and k, characteristic times for the drainage area, and indicative of the time lag between rainfall and runoff. These factors are combined into the dimensionless ratios (QT/APe), (H/T), (k/T), and (D/T), leading to families of inflow hydrographs in which the first ratio is the ordinate, the second is the abscissa, and the third and fourth are distinguishing parameters. Sixteen dimensionless inflow hydrographs have been routed through reservoir storage to obtain 139 corresponding outflow hydrographs. In most of the routings it has been assumed that the storage-outflow relation is linear; that is, that storage is some constant, K, times the outflow. The existence of nonlinear storage is recognized, and exploratory nonlinear routings are described, but analyses and conclusions are confined to the problems of linear storage. Comparisons between inflow hydrographs and outflow hydrographs indicate that, at least for linear storage, I/O=f(k/T, D/T, K/T) in which I and O are, respectively, the magnitudes of the inflow and the outflow peaks, and T, k, D, and K are as defined above. Diagrams are presented to

  8. Peak Oil, Food Systems, and Public Health

    PubMed Central

    Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.

    2011-01-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492

  9. Peak oil, food systems, and public health.

    PubMed

    Neff, Roni A; Parker, Cindy L; Kirschenmann, Frederick L; Tinch, Jennifer; Lawrence, Robert S

    2011-09-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all.

  10. Random matrix definition of the boson peak

    NASA Astrophysics Data System (ADS)

    Manning, M. Lisa; Liu, Andrea J.

    2014-03-01

    The density of vibrational states for glasses and jammed solids exhibits universal features, including an excess of modes above the Debye prediction known as the boson peak, located at a frequency ω*. We show that the eigenvector statistics for modes in the boson peak are universal and emerge from the interplay of disorder and global translation invariance in the dynamical matrix. We demonstrate that a very large class of random matrices contains a band of modes with this same universal structure, and conjecture the existence of a new universality class. We characterize the eigenvector statistics as a function of coordination number, and find that one member of this new class reproduces the scaling of ω* with coordination number that is observed near the jamming transition.

  11. Future accelerators (?)

    SciTech Connect

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  12. Eyesight and the solar Wien peak

    NASA Astrophysics Data System (ADS)

    Overduin, James M.

    2003-03-01

    It is sometimes said that humans see best at yellow-green wavelengths because they have evolved under a Sun whose blackbody spectrum has a Wien peak in the green part of the spectrum. However, as a function of frequency, the solar blackbody spectrum peaks in the infrared. Why did human vision not evolve toward a peak sensitivity in this range, if the eye is an efficient quantum detector of photons? The puzzle is resolved if we assume that natural selection acted in such a way as to maximize the amount of energy that can be detected by the retina across a range of wavelengths (whose upper and lower limits are fixed by biological constraints). It is then found that our eyes are indeed perfectly adapted to life under a class G2 star. Extending this reasoning allows educated guesses to be made about the kind of eyesight that might have evolved in extrasolar planetary systems such as that of the red dwarf Gliese 876.

  13. GLACIER PEAK WILDERNESS STUDY AREA, WASHINGTON.

    USGS Publications Warehouse

    Church, S.E.; Stotelmeyer, R.B.

    1984-01-01

    Geologic, geochemical, gravity, aeromagnetic, and mine and prospect surveys were conducted to evaluate the mineral-resource potential of the Glacier Peak Wilderness study area and proposed additions in Washington. In the study area, six areas containing several base and precious metals have been identified that have substantiated mineral-resource potential, two of which are in areas recommended for wilderness addition. An additional 10 areas have probable mineral-resource potential. The most important demonstrated resource identified is the porphyry copper-molybdenum deposit at Glacier Peak mine near the center of the wilderness study area, where a deposit totaling 1. 9 billion tons of mineralized rock has been delineated by drilling. A possible geothermal potential exists on the east side of the Glacier Peak volcano, and a possible 24-million-cu-yd cinder resource is identified at the White Chuck Cinder Cone in the wilderness study area, but both are remote and no resources were identified. No other energy resource potential was identified in this study.

  14. [Fast spectral modeling based on Voigt peaks].

    PubMed

    Li, Jin-rong; Dai, Lian-kui

    2012-03-01

    Indirect hard modeling (IHM) is a recently introduced method for quantitative spectral analysis, which was applied to the analysis of nonlinear relation between mixture spectrum and component concentration. In addition, IHM is an effectual technology for the analysis of components of mixture with molecular interactions and strongly overlapping bands. Before the establishment of regression model, IHM needs to model the measured spectrum as a sum of Voigt peaks. The precision of the spectral model has immediate impact on the accuracy of the regression model. A spectrum often includes dozens or even hundreds of Voigt peaks, which mean that spectral modeling is a optimization problem with high dimensionality in fact. So, large operation overhead is needed and the solution would not be numerically unique due to the ill-condition of the optimization problem. An improved spectral modeling method is presented in the present paper, which reduces the dimensionality of optimization problem by determining the overlapped peaks in spectrum. Experimental results show that the spectral modeling based on the new method is more accurate and needs much shorter running time than conventional method. PMID:22582612

  15. Investigation of peak load reduction strategies in residential buildings in cooling dominated climates

    NASA Astrophysics Data System (ADS)

    Atallah, Fady

    This investigation of peak load reduction strategies in residential buildings contributes to the global international efforts in reducing energy consumption and is related directly to energy efficiency in residential and commercial buildings. Work reported here involves computer aided building energy simulation of energy efficient and non-energy efficient residential homes coupled with empirical energy consumption data gathered from monitoring an array of energy efficient residential homes. The latter have been implemented for peak load reduction strategies. In addition non-energy efficient residential homes have been monitored to compare performance to the energy efficient homes. This study demonstrates the crucial importance of energy efficiency and peak load reduction strategies in sustaining the energy needs of the southwest US region using Las Vegas for the actual setting. It provides the largest energy consumption data set examined, specifically peak consumption, from energy efficient and non-energy efficient homes at this location. The study demonstrates the peak load reduction benefits of a variety of strategies, namely roof-integrated PV panels, energy efficient building envelope, and substation battery storage. The study focuses on the month of August 2011 and shows how the load reduction can reach 75% at peak times during that month using the computer aided energy simulation. Moreover, the study compares the recorded electrical consumption data from the collection of energy efficient and non-energy efficient residential homes and proves the simulation results in reaching the 75% reduction in electrical consumption at peak times. The study also tries to marry the gathered electrical consumption data of the energy efficient and non-energy efficient homes with the computer simulation model. This is done to reach an actual representative model which behaves similarly to the average of the group of energy and non-energy efficient homes. The benefit of the

  16. VFDs: Are They Electrical Parasites?

    ERIC Educational Resources Information Center

    Frank, Ned

    2013-01-01

    Variable Frequency Drives (VFDs) are electronic speed controllers used mainly to modulate and reduce the overall speed and power consumption of an electrical motor. They can be used as soft starters for equipment that has a large rotational mass, thus reducing belt ware and large electrical peaks when starting large pieces of equipment. VFDs have…

  17. Correcting peak deformation in Rosetta's ROSINA/DFMS mass spectrometer

    NASA Astrophysics Data System (ADS)

    De Keyser, Johan; Dhooghe, Frederik; Gibbons, Andrew; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Briois, Christelle; Calmonte, Ursina; Cessateur, Gaël; Equeter, Eddy; Fiethe, Björn; Fuselier, Stephen; Gombosi, Tamas; Gunell, Herbert; Hässig, Myrttha; Le Roy, Léna; Maggiolo, Romain; Neefs, Eddy; Rubin, Martin; Sémon, Thierry

    2016-04-01

    The Double Focusing Mass Spectrometer (DFMS), part of the ROSINA instrument package aboard the European Space Agency's Rosetta spacecraft visiting comet 67P/Churyumov-Gerasimenko, experiences minor deformation of the mass peaks in the high resolution spectra acquired for m/Z = 16, 17, and to a lesser extent 18. A numerical deconvolution technique has been developed with a two-fold purpose. A first goal is to verify whether the most likely cause of the issue, a lack of stability of one of the electric potentials in the electrostatic analyser, can indeed be held responsible for it. The second goal is to correct for the deformation, in view of the important species located around these masses, and to allow a standard further treatment of the spectra in the automated DFMS data processing chain.

  18. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).

  19. Electric versus hydraulic drives

    SciTech Connect

    Not Available

    1983-01-01

    This volume records the proceedings of a conference organised by the Engineering Manufacturing Industries Division of the Institution of Mechanical Engineers. Topics considered include high performance position control - a review of the current state of developments; hydrostatic drives - present and future; electric drives - present and future trends; electrical and hydraulic drives for heavy industrial robots; the development of an electro-mechanical tilt system for the advanced passenger train; industrial hydraulic ring mains - effective or efficient. the comparison of performance of servo feed-drive systems; overhead crane drives; the future of d.c. servodrives; the choice of actuator for military systems; linear electro-hydraulic actuators; and actuation for industrial robots.

  20. Quantifying peak discharges for historical floods

    USGS Publications Warehouse

    Cook, J.L.

    1987-01-01

    It is usually advantageous to use information regarding historical floods, if available, to define the flood-frequency relation for a stream. Peak stages can sometimes be determined for outstanding floods that occurred many years ago before systematic gaging of streams began. In the United States, this information is usually not available for more than 100-200 years, but in countries with long cultural histories, such as China, historical flood data are available at some sites as far back as 2,000 years or more. It is important in flood studies to be able to assign a maximum discharge rate and an associated error range to the historical flood. This paper describes the significant characteristics and uncertainties of four commonly used methods for estimating the peak discharge of a flood. These methods are: (1) rating curve (stage-discharge relation) extension; (2) slope conveyance; (3) slope area; and (4) step backwater. Logarithmic extensions of rating curves are based on theoretical plotting techniques that results in straight line extensions provided that channel shape and roughness do not change significantly. The slope-conveyance and slope-area methods are based on the Manning equation, which requires specific data on channel size, shape and roughness, as well as the water-surface slope for one or more cross-sections in a relatively straight reach of channel. The slope-conveyance method is used primarily for shaping and extending rating curves, whereas the slope-area method is used for specific floods. The step-backwater method, also based on the Manning equation, requires more cross-section data than the slope-area ethod, but has a water-surface profile convergence characteristic that negates the need for known or estimated water-surface slope. Uncertainties in calculating peak discharge for historical floods may be quite large. Various investigations have shown that errors in calculating peak discharges by the slope-area method under ideal conditions for

  1. Off-peak power use in passive solar homes: Performance, monitoring, and analysis of periodic heating and cooling in high mass homes

    NASA Astrophysics Data System (ADS)

    Peck, J. F.

    1981-08-01

    The thermal performance of two passive solar homes and an identical standard home used as a control are described. The peak hour electrical demand rates of these homes are compared and off peak refrigeration of homes with large quantities of thermal mass is discussed. A computer model which is being developed to assess the potential of off peak refrigeration is also described.

  2. Water-Constrained Electric Sector Capacity Expansion Modeling Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Macknick, J.; Miara, A.; Vorosmarty, C. J.; Averyt, K.; Meldrum, J.; Corsi, F.; Prousevitch, A.; Rangwala, I.

    2015-12-01

    Over 80% of U.S. electricity generation uses a thermoelectric process, which requires significant quantities of water for power plant cooling. This water requirement exposes the electric sector to vulnerabilities related to shifts in water availability driven by climate change as well as reductions in power plant efficiencies. Electricity demand is also sensitive to climate change, which in most of the United States leads to warming temperatures that increase total cooling-degree days. The resulting demand increase is typically greater for peak demand periods. This work examines the sensitivity of the development and operations of the U.S. electric sector to the impacts of climate change using an electric sector capacity expansion model that endogenously represents seasonal and local water resource availability as well as climate impacts on water availability, electricity demand, and electricity system performance. Capacity expansion portfolios and water resource implications from 2010 to 2050 are shown at high spatial resolution under a series of climate scenarios. Results demonstrate the importance of water availability for future electric sector capacity planning and operations, especially under more extreme hotter and drier climate scenarios. In addition, region-specific changes in electricity demand and water resources require region-specific responses that depend on local renewable resource availability and electricity market conditions. Climate change and the associated impacts on water availability and temperature can affect the types of power plants that are built, their location, and their impact on regional water resources.

  3. Calculating weighted estimates of peak streamflow statistics

    USGS Publications Warehouse

    Cohn, Timothy A.; Berenbrock, Charles; Kiang, Julie E.; Mason, Jr., Robert R.

    2012-01-01

    According to the Federal guidelines for flood-frequency estimation, the uncertainty of peak streamflow statistics, such as the 1-percent annual exceedance probability (AEP) flow at a streamgage, can be reduced by combining the at-site estimate with the regional regression estimate to obtain a weighted estimate of the flow statistic. The procedure assumes the estimates are independent, which is reasonable in most practical situations. The purpose of this publication is to describe and make available a method for calculating a weighted estimate from the uncertainty or variance of the two independent estimates.

  4. LARAMIE PEAK WILDERNESS STUDY AREA, WYOMING.

    USGS Publications Warehouse

    Segerstrom, Kenneth; Weisner, R.C.

    1984-01-01

    On the basis of a mineral survey, most of the Laramie Peak Wilderness study area in Wyoming was concluded to have little promise for the occurrence of mineral or energy resources. Only three small areas in the northern part, one extending outside the study area to Esterbrook, were found to have probable mineral-resource potential for copper and lead. The geologic setting precludes the presence of fossil-fuel resources in the study area. There are no surface indications that geothermal energy could be developed within or near the study area.

  5. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    PubMed

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  6. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    PubMed

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported. PMID:26661473

  7. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    PubMed

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

  8. Semi-automated peak trapping recycle chromatography instrument for peak purity investigations.

    PubMed

    Trone, Mark D; Vaughn, Michael S; Cole, Steven R

    2006-11-10

    A peak trapping recycle chromatography system has been developed and optimized for peak purity assessment of active pharmaceutical ingredients analyzed by high performance liquid chromatography (HPLC). After being analyzed using a reversed phase analytical column, peaks of interest are trapped and are subsequently introduced to a recycle chromatography system. In addition to the increased effective length afforded the recycling system, the small selectivity difference between the analytical and recycling methods help separate potential impurities under the main peak. For more difficult to separate components, the increased efficiency of recycle chromatography provides the necessary resolution. Over 227,000 theoretical plates have been obtained in the recycle dimension for some compounds. The sensitivity of the system fell short of the target (0.1%), but it did show sensitivity (0.5%) comparable to other peak purity techniques commonly used in the pharmaceutical industry. The recovery and repeatability have also been shown to be adequate for peak purity assessment. The system has also been automated using a Visual Basic macro, simplifying the interface allowing it to be used as an open access instrument.

  9. Outreach Plans for Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.

  10. Statistical analysis of the low-temperature internal friction dislocation peak (Bordoni peak) in nanostructured copper

    NASA Astrophysics Data System (ADS)

    Vatazhuk, E. N.; Natsik, V. D.

    2011-07-01

    The frequency-temperature relations for internal friction in nanostructured samples of Cu and of fiber composite Cu-32 vol.% Nb with structural fragment sizes of ˜200 nm are analyzed. Data from earlier experiments are used in which a Bordoni peak characteristic of highly deformed copper was found to be localized near a temperature of 90 K in the temperature dependence of the damping decrement for the oscillations (frequencies 73-350 kHz). This peak is caused by a resonance interaction of sound with a system of thermally activated relaxation oscillators, but its width is substantially greater than the width of the standard internal friction peak with a single relaxation time. The peak is analyzed statistically under the assumption that the broadening is caused by the random spread in the activation energy of the relaxation oscillators owing to strong distortions of the crystalline structure of the copper. Good agreement is obtained between the experimental data and the theory of Seeger in which the relaxation oscillators for the Bordoni peak are assumed to be thermally activated kink pairs in rectilinear segments of dislocation lines located in valleys of the Peierls potential relief. It is shown that the experimentally observed height of the peak corresponds to the presence, on the average, of one dislocation segment within a copper crystallite of size 200 nm. Empirical estimates of σP ≈ 2.107 Pa for the Peierls critical stress and ρd ≈ 1013 m-2 for the integrated density of intragrain dislocations are obtained. Nb fibers in the Cu-Nb composite facilitate the formation of nanostructured copper, but have no significant effect on the Bordoni peak.

  11. Peak Wind Tool for General Forecasting

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2010-01-01

    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded

  12. Hubbert's Peak, The Coal Question, and Climate Change

    NASA Astrophysics Data System (ADS)

    Rutledge, D.

    2008-12-01

    The United Nations Intergovernmental Panel on Climate Change (IPCC) makes projections in terms of scenarios that include estimates of oil, gas, and coal production. These scenarios are defined in the Special Report on Emissions Scenarios or SRES (Nakicenovic et al., 2000). It is striking how different these scenarios are. For example, total oil production from 2005 to 2100 in the scenarios varies by 5:1 (Appendix SRES Version 1.1). Because production in some of the scenarios has not peaked by 2100, this ratio would be comparable to 10:1 if the years after 2100 were considered. The IPCC says "... the resultant 40 SRES scenarios together encompass the current range of uncertainties of future GHG [greenhouse gas] emissions arising from different characteristics of these models ..." (Nakicenovic et al., 2000, Summary for Policy Makers). This uncertainty is important for climate modeling, because it is larger than the likely range for the temperature sensitivity, which the IPCC gives as 2.3:1 (Gerard Meehl et al., 2007, the Fourth Assessment Report, Chapter 10, Global Climate Projections, p. 799). The uncertainty indicates that we could improve climate modeling if we could make a better estimate of future oil, gas, and coal production. We start by considering the two major fossil-fuel regions with substantial exhaustion, US oil and British coal. It turns out that simple normal and logistic curve fits to the cumulative production for these regions give quite stable projections for the ultimate production. By ultimate production, we mean total production, past and future. For US oil, the range for the fits for the ultimate is 1.15:1 (225- 258 billion barrels) for the period starting in 1956, when King Hubbert made his prediction of the peak year of US oil production. For UK coal, the range is 1.26:1 for the period starting in 1905, at the time of a Royal Commission on coal supplies. We extend this approach to find fits for world oil and gas production, and by a regional

  13. Comparison of five portable peak flow meters

    PubMed Central

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-01-01

    OBJECTIVE To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman’s test with Dunn’s post-hoc (p<0.05), Spearman’s correlation test and Bland-Altman’s agreement test. RESULTS The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263–688 L/min), 450 (350–800 L/min), 420 (310–720 L/min), 380 (300–735 L/min), 400 (310–685 L/min) and 415 (335–610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001) and Galemed ® (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices’ results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters. PMID:20535364

  14. Caffeine supplementation and peak anaerobic power output.

    PubMed

    Glaister, Mark; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul; McInnes, Gillian

    2015-01-01

    The aim of this study was to investigate the effects of caffeine supplementation on peak anaerobic power output (Wmax). Using a counterbalanced, randomised, double-blind, placebo-controlled design, 14 well-trained men completed three trials of a protocol consisting of a series of 6-s cycle ergometer sprints, separated by 5-min passive recovery periods. Sprints were performed at progressively increasing torque factors to determine the peak power/torque relationship and Wmax. Apart from Trial 1 (familiarisation), participants ingested a capsule containing 5 mg·kg(-1) of caffeine or placebo, one hour before each trial. The effects of caffeine on blood lactate were investigated using capillary samples taken after each sprint. The torque factor which produced Wmax was not significantly different (p ≥ 0.05) between the caffeine (1.15 ± 0.08 N·m·kg(-1)) and placebo (1.13 ± 0.10 N·m·kg(-1)) trials. There was, however, a significant effect (p < 0.05) of supplementation on Wmax, with caffeine producing a higher value (1885 ± 303 W) than placebo (1835 ± 290 W). Analysis of the blood lactate data revealed a significant (p < 0.05) torque factor × supplement interaction with values being significantly higher from the sixth sprint (torque factor 1.0 N·m·kg(-1)) onwards following caffeine supplementation. The results of this study confirm previous reports that caffeine supplementation significantly increases blood lactate and Wmax. These findings may explain why the majority of previous studies, which have used fixed-torque factors of around 0.75 N·m·kg(-1) and thereby failing to elicit Wmax, have failed to find an effect of caffeine on sprinting performance.

  15. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations.

  16. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  17. A framework for understanding and generating integrated solutions for residential peak energy demand.

    PubMed

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  18. DOUBLE-PEAKED NARROW-LINE ACTIVE GALACTIC NUCLEI. II. THE CASE OF EQUAL PEAKS

    SciTech Connect

    Smith, K. L.; Shields, G. A.; Salviander, S.; Stevens, A. C.; Rosario, D. J. E-mail: shields@astro.as.utexas.edu E-mail: acs0196@mail.utexas.edu

    2012-06-10

    Active galactic nuclei (AGNs) with double-peaked narrow lines (DPAGNs) may be caused by kiloparsec-scale binary AGNs, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGNs in which the two narrow-line components have closely similar intensity as being especially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGNs from Smith et al., the 'equal-peaked' objects (EPAGNs) have [Ne V]/[O III]ratios lower than for a control sample of non-double-peaked AGNs. This is unexpected for a pair of normal AGNs in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H{beta} ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.

  19. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more

  20. Temperature and electrical memory of polymer fibers

    SciTech Connect

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-15

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  1. New runners to boost peak output at Niagara Falls

    SciTech Connect

    Reason, J.

    1990-01-01

    Retrofitted Francis turbines will improve the value of power generated from Niagara Falls by increasing the peak output of the hydroturbine units at the Robert Moses hydroelectric plant. The computer-designed runners are expected to add 330 MW to the peak capacity of the 28-yr-old plant and significantly increase the efficiency at high flow rates. Next year, the first new runner will be retrofit to the highly instrumented Unit 4. If the retrofit unit meets it increased-performance expectations, the other 12 units will be upgraded between 1993 and 1998. The work is part of an overall expansion of the Niagara Power Project designed to made better use of the power value of Niagara river water, within the constraints of a treaty with Canada and the scenic value of the falls. These constraints, together with varying flows and heads, introduced enormous complexities into the selection and design of the new runners. The alterations being made to Unit 4, in addition to replacing the turbine runner, include modifying the draft tube-liners, increasing the wicket-gate stroke, replacing the turbine discharge ring (to accommodate longer blades), making various electrical modifications to the generator, and replacing the transformer. But the key to the retrofit is the computer-designed runner. Charles Grose, senior project manager, New York Power Authority, White Plains, NY, emphasizes that such computer design techniques were not available a few years ago; neither were the computer-controlled machining techniques necessary to manufacture the new runners. Other aspects of the upgrading that were analyzed include runner stability, resonance, shaft torsional stress, and runaway speed.

  2. Constraining the mass-concentration relation through weak lensing peak function

    SciTech Connect

    Mainini, R.; Romano, A. E-mail: anna.romano@oar.inaf.it

    2014-08-01

    Halo masses and concentrations have been studied extensively, by means of N-body simulations as well as observationally, during the last decade. Nevertheless, the exact form of the mass-concentration relation is still widely debated. One of the most promising method to estimate masses and concentrations relies on gravitational lensing from massive halos. Here we investigate the impact of the mass-concentration relation on halo peak abundance in weak lensing shear maps relying on the aperture mass method for peak detections. After providing a prescription to take into account the concentration dispersion (always neglected in previous works) in peak number counts predictions, we assess their power to constrain the mass-concentration relation by means of Fisher matrix technique. We find that, when combined with different cosmological probes, peak statistics information from near-future weak lensing surveys provides an interesting and complementary alternative method to lessen the long standing controversy about the mass-concentration relation.

  3. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity

    ERIC Educational Resources Information Center

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-01-01

    Purpose: At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study…

  4. NOx control buys to peak in `98

    SciTech Connect

    McIlvaine, R.W.

    1995-10-01

    Titles I and IV of the Clean Air Act provide the legislative framework for a huge NOx reduction program now in operation. This reduction will have a substantial effect in reducing ground-level ozone. A new McIlvaine report concludes that US utilities and industrial companies during the next 10 years will spend more than $800 million annually to meet CAA`s NOx-control regulations. Much of that investment will be for low-NOx burners, which minimize NOx formation. Many utilities and industrial boilers can be retrofitted with a new generation of burners; however, this technology achieves less than 50% NOx reduction. Post-combustion technologies, such as selective catalytic reduction and selective noncatalytic reduction, can reduce NOx as much as 90%. Therefore, plants needing greater NOx reduction will use post-combustion technologies, often in combination with low-NOx burners. The peak order year for NOx-control equipment will be 1998, primarily because Title IV of CAA requires utilities to comply by 2000. Many industrial sources also will be ordering equipment in 1998.

  5. Asymmetry parameter of peaked Fano line shapes

    NASA Astrophysics Data System (ADS)

    Meierott, S.; Hotz, T.; Néel, N.; Kröger, J.

    2016-10-01

    The spectroscopic line shape of electronic and vibrational excitations is ubiquitously described by a Fano profile. In the case of nearly symmetric and peaked Fano line shapes, the fit of the conventional Fano function to experimental data leads to difficulties in unambiguously extracting the asymmetry parameter, which may vary over orders of magnitude without degrading the quality of the fit. Moreover, the extracted asymmetry parameter depends on initially guessed values. Using the spectroscopic signature of the single-Co Kondo effect on Au(110) the ambiguity of the extracted asymmetry parameter is traced to the highly symmetric resonance profile combined with the inevitable scattering of experimental data. An improved parameterization of the conventional Fano function is suggested that enables the nonlinear optimization in a reduced parameter space. In addition, the presence of a global minimum in the sum of squared residuals and thus the independence of start parameters may conveniently be identified in a two-dimensional plot. An angular representation of the asymmetry parameter is suggested in order to reliably determine uncertainty margins via linear error propagation.

  6. Analysis of ion dynamics and peak shapes for delayed extraction time-of-flight mass spectrometers

    NASA Astrophysics Data System (ADS)

    Collado, V. M.; Ponciano, C. R.; Fernandez-Lima, F. A.; da Silveira, E. F.

    2004-06-01

    The dependence of time-of-flight (TOF) peak shapes on time-dependent extraction electric fields is studied theoretically. Conditions for time focusing are analyzed both analytically and numerically for double-acceleration-region TOF spectrometers. Expressions for the spectrometer mass resolution and for the critical delay time are deduced. Effects due to a leakage field in the first acceleration region are shown to be relevant under certain conditions. TOF peak shape simulations for the delayed extraction method are performed for emitted ions presenting a Maxwellian initial energy distribution. Calculations are compared to experimental results of Cs+ emission due to CsI laser ablation.

  7. MEASURING PRIMORDIAL NON-GAUSSIANITY THROUGH WEAK-LENSING PEAK COUNTS

    SciTech Connect

    Marian, Laura; Hilbert, Stefan; Smith, Robert E.; Schneider, Peter; Desjacques, Vincent

    2011-02-10

    We explore the possibility of detecting primordial non-Gaussianity of the local type using weak-lensing peak counts. We measure the peak abundance in sets of simulated weak-lensing maps corresponding to three models f{sub NL} = 0, - 100, and 100. Using survey specifications similar to those of EUCLID and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f{sub NL} = {+-}100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f{sub NL} = 0 peak function to the f{sub NL} = {+-}100 peak functions is less than 0.1%. Assuming the other cosmological parameters are known, f{sub NL} can be measured with an error {Delta}f{sub NL} {approx} 13. It is therefore possible that future weak-lensing surveys like EUCLID and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide information complementary to that obtained from the cosmic microwave background.

  8. Daily and peak 1 h indoor air pollution and driving factors in a rural Chinese village.

    PubMed

    Fischer, Susan L; Koshland, Catherine P

    2007-05-01

    We investigate wintertime indoor air quality and personal exposures to carbon monoxide (CO) in a rural village in Jilin province, where relatively homogeneous climatic and sociocultural factors facilitate investigation of household structural, fuel-related, and behavioral determinants of air pollution as well as relationships between different measures of air quality. Our time-resolved wintertime measurements of carbon monoxide and respirable particles (RSP) enable exploration of peak pollution periods in a village in Jilin Province, China, characterized by household use of both coal and biomass, as well as several "improved" (gas or electric) fuels. Our data indicate a 6-fold increase in peak 1 h PM (1.9 mg/m3) concentrations relative to 24 h mean PM (0.31 mg/m3). Peak 1 h CO concentrations (20.5 ppm) routinely approached and often (27%) exceeded the World Health Organization's 1 h guideline of 26 ppm, although the vast majority (95%) of kitchens were within China's residential indoor air quality guideline for CO on a 24 h basis. Choice of heating fuel and household smoking status were significant predictors of indoor air quality. Whether solid or "improved" (gas or electric) fuel was used for cooking had an even stronger effect, but in the opposite direction from expected, on both peak and daily average measures of air pollution. Peak pollution period concentrations of CO and PM were strongly correlated to daily concentrations of CO and RSP, respectively. Our results suggestthat due to the primary role of heating as a determinant of wintertime indoor air quality in northern Chinese villages, health-oriented interventions limited to provision of improved cooking fuel are insufficient. Our results illustrate that peak pollution periods may routinely exceed exposure regulations and evacuation limits, although this and previous studies document typical 24 h CO concentrations in rural Chinese kitchens to be within guidelines. Within a given village and for a given

  9. Atmospheric Electricity on Mars

    NASA Astrophysics Data System (ADS)

    Delory, G.; Farrell, W.

    2011-10-01

    The atmosphere of Mars is one compelling example in our solar system that should possess active electrical processes, where dust storms are known to occur on local, regional, and global scales. Laboratory experiments and simulations all indicate that these events are expected to generate substantial quasi-static electric fields via triboelectric (i.e., frictional) charging, perhaps up to the breakdown potential of the Martian atmosphere. However current observations of potential electrical activity on Mars from both ground-based and orbital platforms have yielded conflicting results. If present, significant atmospheric electricity could be an important source of atmospheric chemistry on Mars, and thus impact our understanding of the evolution of the atmosphere and its past or present astrobiological potential. Here we review the current state of understanding regarding atmospheric electricity on Mars, and discuss its implications pending the results of future measurements.

  10. Surface sensitivity of elastic peak electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Jablonski, A.

    2016-08-01

    New theoretical model describing the sampling depth of elastic peak electron spectroscopy (EPES) has been proposed. Surface sensitivity of this technique can be generally identified with the maximum depth reached by trajectories of elastically backscattered electrons. A parameter called the penetration depth distribution function (PDDF) has been proposed for this description. Two further parameters are descendant from this definition: the mean penetration depth (MPD) and the information depth (ID). From the proposed theory, relatively simple analytical expressions describing the above parameters can be derived. Although the Monte Carlo simulations can be effectively used to estimate the sampling depth of EPES, this approach may require a considerable amount of computations. In contrast, the analytical model proposed here (AN) is very fast and provides the parameters PDDF, MPD and ID that very well compare with results of MC simulations. As follows from detailed comparisons performed for four elements (Al, Ni, Pd and Au), the AN model practically reproduced complicated emission angle dependences of the MPDs and the IDs, correctly indicating numerous maximum and minimum positions. In the energy range from 200 eV to 5 keV, the averaged percentage differences between MPDs obtained from the MC and the AN models were close to 4%. An important conclusion resulting from the present studies refers to the procedure of determination of the inelastic mean free path (IMFP) from EPES. Frequently, the analyzed sample is deposited as a thin overlayer on a smooth substrate. From an analysis of the presently obtained IDs, is follows that 99% of trajectories in analyzed experimental configurations reaches depth not exceeding 2.39 in units of IMFP. Thus, one can postulate that a safe minimum thickness of an overlayer should be larger than about 3 IMFPs. For example, the minimum thickness of an Al overlayer shoud be about 8 nm at 5000 eV.

  11. Research Opportunities at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  12. Peak morphology and scalp topography of the pharyngeal sensory evoked potential

    PubMed Central

    Wheeler-Hegland, Karen; Pitts, Teresa; Davenport, Paul W

    2016-01-01

    The initiation of the pharyngeal stage of swallowing is dependent upon sensory input to the brainstem and cortex. The event-related evoked potential provides a measure of neuronal electrical activity as it relates to a specific stimulus. Air-puff stimulation to the posterior pharyngeal wall produces a sensory evoked potential (PSEP) waveform. The goal of this study was to characterize the scalp topography and morphology for the component peaks of the PSEP waveform. Twenty-five healthy men and women served as research participants. PSEPs were measured via 32 electrode cap (10-20 system) connected to SynAmps2 Neuroscan EEG System. Air puffs were delivered directly to the oropharynx using a thin polyethylene tube connected to a flexible laryngoscope. The PSEP waveform is characterized by 4 early and mid-latency components peaks: an early positivity (P1), and negativity (N1), followed by a mid-latency positivity (P2), and negativity (N2). The early positive peak P1 is localized bilaterally to the lateral parietal scalp, the N1 medially in the fronto-parietal region, and the P2 and N2 with diffuse scalp locations. Somatosensory and premotor regions are possible anatomical correlates of peak locations. Based on the latencies of the peaks, they are likely analogous to somatosensory and respiratory related evoked potential peaks. PMID:20890713

  13. Peak morphology and scalp topography of the pharyngeal sensory-evoked potential.

    PubMed

    Wheeler-Hegland, Karen; Pitts, Teresa; Davenport, Paul W

    2011-09-01

    The initiation of the pharyngeal stage of swallowing is dependent upon sensory input to the brainstem and cortex. The event-related evoked potential provides a measure of neuronal electrical activity as it relates to a specific stimulus. Air-puff stimulation to the posterior pharyngeal wall produces a sensory-evoked potential (PSEP) waveform. The goal of this study was to characterize the scalp topography and morphology for the component peaks of the PSEP waveform. Twenty-five healthy men and women served as research participants. PSEPs were measured via a 32-electrode cap (10-20 system) connected to SynAmps2 Neuroscan EEG System. Air puffs were delivered directly to the oropharynx using a thin polyethylene tube connected to a flexible laryngoscope. The PSEP waveform is characterized by four early- and mid-latency component peaks: an early positivity (P1) and negativity (N1), followed by a mid-latency positivity (P2) and negativity (N2). The early positive peak P1 is localized bilaterally to the lateral parietal scalp, the N1 medially in the frontoparietal region, and the P2 and N2 with diffuse scalp locations. Somatosensory and premotor regions are possible anatomical correlates of peak locations. Based on the latencies of the peaks, they are likely analogous to somatosensory- and respiratory-related evoked potential peaks. PMID:20890713

  14. Peak Power Markets for Satellite Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  15. Fracture Permeability Evolution in Desert Peak Quartz Monzonite

    SciTech Connect

    Carlson, S R; Roberts, J J; Detwiler, R L; Viani, B E; Roberts, S K

    2005-05-10

    Fracture flow experiments are being conducted on quartz monzonite core from the Desert Peak East EGS site, Churchill County, Nevada. The flow experiments are conducted at temperatures of 167-169 C and 5.5 MPa confining pressure through artificial fractures. Two injection fluids, a saline solution and a silica-bearing solution, have been used to date. Flow rates are typically 0.02 mL/min, but other rates have been used. The fracture surfaces are characterized with a contact profilometer. The profilometry data demonstrate that it is possible to fabricate statistically similar fracture surfaces and enable us to map aperture variations, which we use in numerical simulations. Effluent samples are collected for chemical analysis. The fluid pressure gradient is measured across the specimen and effective hydraulic apertures are calculated. The experiments show a reduction in permeability over time for both injection fluids, but a more rapid loss of permeability was observed for the silica-bearing solution. The calculated hydraulic aperture is observed to decrease by 17% for the saline solution and 75% for the silica-bearing fluid, respectively. Electrical resistivity measurements, which are sensitive to the ionic content of the pore fluid, provide additional evidence of fluid-rock interactions.

  16. Pulse shortening in high-peak-power Reltron tubes

    NASA Astrophysics Data System (ADS)

    Miller, R. Bruce

    1996-10-01

    Most high-peak-power (>= 100 MW) microwave tubes are seemingly limited to an output RF energy per pulse of about 100 J. While Titan's L-band Reltron tubes have achieved 250 J/pulse, we have also observed pulse-shortening phenomena in both the modulating cavity and output cavity regions. We have examined the effects of construction materials, fabrication techniques, vacuum pressure, and conditioning. We will present data from these experiments and discuss a plausible pulse-shortening hypothesis involving electric- field-induced gas evolution and subsequent ionization. We believe that our energy-per-pulse limitations are the result of our current tube construction approach which uses explosive emission cathodes, plastic insulators, and grids to define cavity boundaries. While some simple extensions of this approach offers some hope for increasing the energy per pulse to perhaps 500 joules in L-band, we believe that achieving >= 1 kJ/pulse will require the use of conventional microwave tube construction techniques, including thermionic cathodes, ceramic insulators, and brazed joining with high-temperature bakeout. We will present the design of an L-band Reltron tube having these features.

  17. Residential implementation of critical-peak pricing ofelectricity

    SciTech Connect

    Herter, Karen

    2006-06-29

    This paper investigates how critical-peak pricing (CPP)affects households with different usage and income levels, with the goalof informing policy makers who are considering the implementation of CPPtariffs in the residential sector. Using a subset of data from theCalifornia Statewide Pricing Pilot of 2003-2004, average load changeduring summer events, annual percent bill change, and post-experimentsatisfaction ratings are calculated across six customer segments,categorized by historical usage and income levels. Findings show thathigh-use customers respond significantly more in kW reduction than dolow-use customers, while low-use customers save significantly more inpercentage reduction of annual electricity bills than do high-usecustomers results that challenge the strategy of targeting only high-usecustomers for CPP tariffs. Across income levels, average load and billchanges were statistically indistinguishable, as were satisfaction ratesresults that are compatible with a strategy of full-scale implementationof CPP rates in the residential sector. Finally, the high-use customersearning less than $50,000 annually were the most likely of the groups tosee bill increases about 5 percent saw bill increases of 10 percent ormore suggesting that any residential CPP implementation might considertargeting this customer group for increased energy efficiencyefforts.

  18. D-peaks: a visual tool to display ChIP-seq peaks along the genome.

    PubMed

    Brohée, Sylvain; Bontempi, Gianluca

    2012-01-01

    ChIP-sequencing is a method of choice to localize the positions of protein binding sites on DNA on a whole genomic scale. The deciphering of the sequencing data produced by this novel technique is challenging and it is achieved by their rigorous interpretation using dedicated tools and adapted visualization programs. Here, we present a bioinformatics tool (D-peaks) that adds several possibilities (including, user-friendliness, high-quality, relative position with respect to the genomic features) to the well-known visualization browsers or databases already existing. D-peaks is directly available through its web interface http://rsat.ulb.ac.be/dpeaks/ as well as a command line tool.

  19. Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants

    NASA Astrophysics Data System (ADS)

    Amsbeck, Lars; Buck, Reiner; Prosin, Tobias

    2016-05-01

    Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.

  20. Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks.

    PubMed

    Valderrama, Joaquin T; de la Torre, Angel; Alvarez, Isaac; Segura, Jose Carlos; Thornton, A Roger D; Sainz, Manuel; Vargas, Jose Luis

    2014-05-01

    The recording of the auditory brainstem response (ABR) is used worldwide for hearing screening purposes. In this process, a precise estimation of the most relevant components is essential for an accurate interpretation of these signals. This evaluation is usually carried out subjectively by an audiologist. However, the use of automatic methods for this purpose is being encouraged nowadays in order to reduce human evaluation biases and ensure uniformity among test conditions, patients, and screening personnel. This article describes a new method that performs automatic quality assessment and identification of the peaks, the fitted parametric peaks (FPP). This method is based on the use of synthesized peaks that are adjusted to the ABR response. The FPP is validated, on one hand, by an analysis of amplitudes and latencies measured manually by an audiologist and automatically by the FPP method in ABR signals recorded at different stimulation rates; and on the other hand, contrasting the performance of the FPP method with the automatic evaluation techniques based on the correlation coefficient, FSP, and cross correlation with a predefined template waveform by comparing the automatic evaluations of the quality of these methods with subjective evaluations provided by five experienced evaluators on a set of ABR signals of different quality. The results of this study suggest (a) that the FPP method can be used to provide an accurate parameterization of the peaks in terms of amplitude, latency, and width, and (b) that the FPP remains as the method that best approaches the averaged subjective quality evaluation, as well as provides the best results in terms of sensitivity and specificity in ABR signals validation. The significance of these findings and the clinical value of the FPP method are highlighted on this paper. PMID:24661606

  1. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality.

    PubMed

    Pundhir, Sachin; Bagger, Frederik O; Lauridsen, Felicia B; Rapin, Nicolas; Porse, Bo T

    2016-05-19

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show that NFRs predicted by H3K4me1 and me3 patterns are associated with active enhancers and promoters, respectively. Furthermore, asymmetry in the height of peaks flanking the central valley can predict the directionality of stable transcription at promoters. Using PARE on ChIP-seq histone modifications from four ENCODE cell lines and four hematopoietic differentiation stages, we identified several enhancers whose regulatory activity is stage specific and correlates positively with the expression of proximal genes in a particular stage. In conclusion, our results demonstrate that PVP patterns delineate both the histone modification landscape and the transcriptional activities governed by active enhancers and promoters, and therefore can be used for their prediction. PARE is freely available at http://servers.binf.ku.dk/pare. PMID:27095194

  2. Electric energy demand and supply prospects for California

    NASA Technical Reports Server (NTRS)

    Jones, H. G. M.

    1978-01-01

    A recent history of electricity forecasting in California is given. Dealing with forecasts and regulatory uncertainty is discussed. Graphs are presented for: (1) Los Angeles Department of Water and Power and Pacific Gas and Electric present and projected reserve margins; (2) California electricity peak demand forecast; and (3) California electricity production.

  3. Relation between High Ionic Conductivity and Boson Peak in Superionic Glass

    NASA Astrophysics Data System (ADS)

    Arai, M.; Iwase, H.; Nakamura, M.; Otomo, T.; Kartini, E.; Itoh, K.; Levett, S. J.; Bennington, S. M.

    2006-05-01

    The inelastic neutron scattering measurements of superionic glass system (AgI)x(Ag2S)x(AgPO3)1-2x reveal that an excess intensity around 3 meV, the so-called boson peak, increases with the dopant salt concentration x. The composition dependence of boson peak intensity has a systematic relation with ionic dc conductivity. These correlated features are discussed from the viewpoint of free spaces involved with the expansion of network structure by salt doping. Cooperative dynamical properties concerned with free spaces contribute to the enhancement of hopping probability of Ag+ ions. Successive hopping is promoted in order to keep electric neutrality, where the hopping events of charged ion microscopically violates the electric neutrality. These processes should result in the high ionic conductivity of superionic glasses.

  4. A criterion of the continuous spectrum for elasticity and other self-adjoint systems on sharp peak-shaped domains*

    NASA Astrophysics Data System (ADS)

    Nazarov, Sergey A.

    2007-12-01

    The spectra of the elasticity and piezo-electricity systems for a solid with a sharp peak point on the boundary, which is free of traction, are not discrete. An algebraic criterion of non-empty continuous spectrum is found for the Neumann problem for rather arbitrary formally self-adjoint elliptic systems of second-order differential equations on a sharp peak-shaped domain. To cite this article: S.A. Nazarov, C. R. Mecanique 335 (2007).

  5. Cyclic responding by pigeons on the peak timing procedure.

    PubMed

    Kirkpatrick-Steger, K; Miller, S S; Betti, C A; Wasserman, E A

    1996-10-01

    The present experiment examined whether discrimination learning shapes the single-peaked response distributions usually obtained with the peak procedure. Two sources of learning in pigeons were disclosed: learning to respond near the time of reinforcement on fixed interval (FI) trials and learning to withhold responding once the FI duration had elapsed on peak interval (PI) trials. Pigeons also produced a highly unexpected second peak in responding on nonreinforced PI trials at 3 times the FI duration. Follow-up experiments showed that a 1:4 FI:PI duration ratio supported double peaks, but only 1 peak was obtained with a 1:8 FI:PI duration ratio. Finally, 4 peaks could be observed on extra-long PI trials under a 1:4:8 FI:PI:PI ratio procedure. The multiple-peaked response distributions are an unprecedented finding that present a major challenge to any theory of time perception.

  6. Thermal storage in waste-to-energy- facilities for meeting peak steam loads

    SciTech Connect

    Abdul-Razzak, H.A. . Dept. of Mechanical and Aerospace Engineering)

    1988-01-01

    This paper developes thermoeconomic (second law and present worth) analysis and investigates the feasibility of employing thermal storage for cogenerated refuse energy recovery using mass-burning water-wall incinerators and topping steam turbines. A typical design is envisioned to be modular in nature so that it may be applied to various size loads without major engineering modifications. Each module is rated at 150 tpd of refuse capacity, 750 kW of electrical power, and 26,200 lbm/hr (11,900 kg/hr) of 150 psig (1400 kPa absolute) steam. As an option, condensing turbines are considered to receive unused process steam in the case of reduced steam load. The results indicate that this option is not economically feasible for a typical off-peak utility-purchase rate which leads to the idea of storing the excess energy during off-peak periods and recuperating it during peak periods.

  7. CO and H2O vibrational emission toward Orion Peak 1 and Peak 2

    NASA Astrophysics Data System (ADS)

    González-Alfonso, E.; Wright, C. M.; Cernicharo, J.; Rosenthal, D.; Boonman, A. M. S.; van Dishoeck, E. F.

    2002-05-01

    ISO/SWS observations of Orion Peak 1 and Peak 2 show strong emission in the ro-vibrational lines of CO v=1-0 at 4.45-4.95 μm and of H2O ν2=1-0 at 6.3-7.0 μm. Toward Peak 1 the total flux in both bands is, assuming isotropic emission, ≈2.4 and ≈0.53 Lsun, respectively. This corresponds to ≈14 and ≈3% of the total H2 luminosity in the same beam. Two temperature components are found to contribute to the CO emission from Peak 1/2: a warm component, with TK=200-400 K, and a hot component with Tk~3×103 K. At Peak 2 the CO flux from the warm component is similar to that observed at Peak 1, but the hot component is a factor of ≈2 weaker. The H2O band is ≈25% stronger toward Peak 2, and seems to arise only in the warm component. The P-branch emission of both bands from the warm component is significantly stronger than the R-branch, indicating that the line emission is optically thick. Neither thermal collisions with H2 nor with H I seem capable of explaining the strong emission from the warm component. Although the emission arises in the postshock gas, radiation from the most prominent mid-infrared sources in Orion BN/KL is most likely pumping the excited vibrational states of CO and H2O. CO column densities along the line of sight of N{(CO)}=5-10×1018 cm-2 are required to explain the band shape, the flux, and the P-R-asymmetry, and beam-filling is invoked to reconcile this high N(CO) with the upper limit inferred from the H2 emission. CO is more abundant than H2O by a factor of at least 2. The density of the warm component is estimated from the H2O emission to be ~ 2×107 cm-3. The CO emission from the hot component is neither satisfactorily explained in terms of non-thermal (streaming) collisions, nor by resonant scattering. Vibrational excitation through collisions with H2 for densities of ~3×108 cm-3 or, alternatively, with atomic hydrogen, with a density of at least 107 cm-3, are invoked to explain simultaneously the emission from the hot component

  8. Futur "simple" et futur "proche" ("Simple" Future and "Immediate" Future).

    ERIC Educational Resources Information Center

    Franckel, Jean-Jacques

    1984-01-01

    An analysis of the use of simple and immediate future tenses in French shows that the expression of time is controlled more by context and modals than by specifically temporal cues. The role of negation in this situation is discussed. (MSE)

  9. SEISMICITY OF THE LASSEN PEAK AREA, CALIFORNIA: 1981-1983.

    USGS Publications Warehouse

    Walter, Stephen R.; Rojas, Vernonica; Kollmann, Auriel

    1984-01-01

    Over 700 earthquakes occurred in the vicinity of Lassen Peak, California, from February 1981 through December 1983. These earthquakes define a broad, northwest-trending seismic zone that extends from the Sierra Nevada through the Lassen Peak area and either terminates or is offset to the northeast about 20 kilometers northwest of Lassen Peak. Approximately 25% of these earthquakes are associated with the geothermal system south of Lassen Peak. Earthquakes in the geothermal area generally occur at depths shallower than 6 kilometers.

  10. Lightning Strike Peak Current Probabilities as Related to Space Shuttle Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Vaughan, William W.

    2000-01-01

    A summary is presented of basic lightning characteristics/criteria applicable to current and future aerospace vehicles. The paper provides estimates on the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating the probabilities of launch vehicles/objects being struck by lightning. This paper presents a summary of these results.

  11. The Electric Vocabulary

    ERIC Educational Resources Information Center

    Sheils, James

    2012-01-01

    Since the 1600s, the developments in the understanding of electrical phenomena have frequently altered the models and metaphors used by physicists to describe and explain their experiments. However, to this day, certain relics of past theories still drench the vocabulary of the subject, serving as distracting fog for future students. This article…

  12. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  13. Reward Value Effects on Timing in the Peak Procedure

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2009-01-01

    Three experiments examined the effect of motivational variables on timing in the peak procedure. In Experiment 1, rats received a 60-s peak procedure that was coupled with long-term, between-phase changes in reinforcer magnitude. Increases in reinforcer magnitude produced a leftward shift in the peak that persisted for 20 sessions of training. In…

  14. Peak water limits to freshwater withdrawal and use.

    PubMed

    Gleick, Peter H; Palaniappan, Meena

    2010-06-22

    Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of "peak oil"--a peaking and then decline in oil production--has long been predicted and debated. We present here a detailed assessment and definition of three concepts of "peak water": peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak "ecological" water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use.

  15. Peak water limits to freshwater withdrawal and use

    PubMed Central

    Gleick, Peter H.; Palaniappan, Meena

    2010-01-01

    Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of “peak oil”—a peaking and then decline in oil production—has long been predicted and debated. We present here a detailed assessment and definition of three concepts of “peak water”: peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak “ecological” water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use. PMID:20498082

  16. Peak water limits to freshwater withdrawal and use.

    PubMed

    Gleick, Peter H; Palaniappan, Meena

    2010-06-22

    Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of "peak oil"--a peaking and then decline in oil production--has long been predicted and debated. We present here a detailed assessment and definition of three concepts of "peak water": peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak "ecological" water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use. PMID:20498082

  17. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery peak inventory endorsement. 457.163 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.163 Nursery peak inventory endorsement. Nursery Crop Insurance Peak Inventory Endorsement This endorsement is not continuous and must...

  18. Evaluation of peak power prediction equations in male basketball players.

    PubMed

    Duncan, Michael J; Lyons, Mark; Nevill, Alan M

    2008-07-01

    This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p < 0.01). Repeated-measures analysis of variance indicated significant differences between actual peak power and estimate peak power from all 4 prediction equations (p < 0.001). Bonferroni post hoc tests indicated that estimated peak power was significantly lower than actual peak power for all 4 prediction equations. Ratio limits of agreement for actual peak power and estimated peak power were 8% for the Harman et al. and Sayers squat jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.

  19. Peak Thrombin Generation and Subsequent Venous Thromboembolism: The Longitudinal Investigation of Thromboembolism Etiology (LITE)

    PubMed Central

    Lutsey, Pamela L.; Folsom, Aaron R.; Heckbert, Susan R.; Cushman, Mary

    2009-01-01

    Background Thrombin is an enzyme essential to the acceleration of the coagulation cascade and the conversion of fibrinogen to clottable fibrin. Objectives We evaluated the relation of basal peak thrombin generation to risk of future VTE, and determined whether associations were independent of other coagulation markers. Methods LITE ascertained VTE in two prospective population-based cohorts: the Atherosclerosis Risk in Communities (ARIC) study and the Cardiovascular Health Study (CHS). Peak thrombin generation was measured on stored plasma in a nested case-control sample (434 cases, 1,004 controls). Logistic regression was used to estimate the relation of peak thrombin generation to VTE, adjusted for age, sex, race, center and BMI. Mediation was evaluated by additionally adjusting for factor VIII and D-dimer. Results Relative to the first quartile of peak thrombin generation, the odds ratio (95% CI) of VTE for those above the median was 1.74 (1.28–2.37). The association was modestly attenuated by adjustment for factor VIII and D-dimer 1.47 (1.05–2.05). Associations appeared stronger for idiopathic than for secondary VTE. Elevated peak thrombin generation more than added to the VTE risk associated with Factor V Leiden or low aPTT. Conclusions In this prospective study of two independent cohorts, elevated basal peak thrombin generation was associated with subsequent risk of VTE, independent of established VTE risk factors. PMID:19656279

  20. Does the Brain Detect 3G Mobile Phone Radiation Peaks? An Explorative In-Depth Analysis of an Experimental Study.

    PubMed

    Roggeveen, Suzanne; van Os, Jim; Lousberg, Richel

    2015-01-01

    This study aimed to investigate whether third generation mobile phone radiation peaks result in event related potentials. Thirty-one healthy females participated. In this single-blind, cross-over design, a 15 minute mobile phone exposure was compared to two 15 minute sham phone conditions, one preceding and one following the exposure condition. Each participant was measured on two separate days, where mobile phone placement was varied between the ear and heart. EEG activity and radiofrequency radiation were recorded jointly. Epochs of 1200 ms, starting 200 ms before and lasting until 1000 ms after the onset of a radiation peak, were extracted from the exposure condition. Control epochs were randomly selected from the two sham phone conditions. The main a-priori hypothesis to be tested concerned an increase of the area in the 240-500 ms post-stimulus interval, in the exposure session with ear-placement. Using multilevel regression analyses the placement*exposure interaction effect was significant for the frontal and central cortical regions, indicating that only in the mobile phone exposure with ear-placement an enlarged cortical reactivity was found. Post-hoc analyses based on visual inspection of the ERPs showed a second significantly increased area between 500-1000 ms post-stimulus for almost every EEG location measured. It was concluded that, when a dialing mobile phone is placed on the ear, its radiation, although unconsciously, is electrically detected by the brain. The question of whether or not this cortical reactivity results in a negative health outcome has to be answered in future longitudinal experiments. PMID:25962168

  1. Quasar Winds Near the Peak in Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Chartas, George; Brandt, Niel; Saez, Cristian; Giustini, Margherita; Garmire, Gordon

    We present results from recent XMM-Newton, Chandra and Suzaku monitoring observations of the BAL quasar APM 08279+5255. We present constraints on the kinematic and photoion-ization properties of the wind in this z=3.91 quasar and find that it is capable of playing an important role in controlling the evolution of the host galaxy and central black hole close to the peak in galaxy merger rate. We place constraints of the X-ray emission region of APM08279 and find it to be comparable to its ISCO radius. The X-ray emission size of APM08279 is consistent with sizes derived from our analysis of microlensing lightcurves of several gravitationally lensed quasars. A possible trend found between the X-ray photon index and the maximum outflow veloc-ity points towards a plausible mechanism that may explain the acceleration of the wind in APM08279. We also present prospects for future advances in our understanding of the role of quasar winds in galaxy feedback with the International X-ray Observatory.

  2. Implications of ``peak oil'' for atmospheric CO2 and climate

    NASA Astrophysics Data System (ADS)

    Kharecha, Pushker A.; Hansen, James E.

    2008-09-01

    Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration, and recent trends are toward lower estimates, we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired power plants without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 beneath the 450 ppm ceiling.

  3. Peak power prediction of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yu, V. K.; Chen, D.

    2014-12-01

    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  4. Twilight of the electric dinosaurs

    SciTech Connect

    Green, L. Jr. )

    1990-11-22

    This article examines the future practicality of large electric generating plants and various technologies for transmitting energy other than electricity. The author describes advantages, cost and methods of chemical energy transmission in the form of methanol. Uses, production (including environmental impacts) and supply of methanol are also discussed.

  5. Climate, extreme heat, and electricity demand in California

    SciTech Connect

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

  6. Memory Effect Manifested by a Boson Peak in Metallic Glass

    NASA Astrophysics Data System (ADS)

    Luo, P.; Li, Y. Z.; Bai, H. Y.; Wen, P.; Wang, W. H.

    2016-04-01

    We explore the correlation between a boson peak and structural relaxation in a typical metallic glass. Consistent with enthalpy recovery, a boson peak shows a memory effect in an aging-and-scan procedure. Single-step isothermal aging produces a monotonic decrease of enthalpy and boson peak intensity; for double-step isothermal aging, both enthalpy and boson peak intensity experience, coincidently, an incipient increase to a maximum and a subsequent decrease toward the equilibrium state. Our results indicate a direct link between slow structural relaxation and fast boson peak dynamics, which presents a profound understanding of the two dynamic behaviors in glass.

  7. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    Flood-frequency analyses use statistical methods to compute peak streamflows for selected recurrence intervals- the average number of years between peak flows that are equal to or greater than a specified peak flow. Analyses are based on annual peak flows at a stream. It has long been assumed that the annual peak streamflows used in these computations were stationary (non-changing) over very long periods of time, except in river basins subject to direct effects of human activities, such as urbanization and regulation. Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned. Maine has many streamgages with 50 to 105 years of recorded annual peak streamflows. In this study, this long-term record has been tested for historical floodfrequency stationarity, to provide some insight into future flood frequency. Changes over time in annual instantaneous peak streamflows at 28 U.S. Geological Survey streamgages with long-term data (50 or more years) and relatively complete records were investigated by examining linear trends for each streamgage's period of record. None of the 28 streamgages had more than 5 years of missing data. Eight streamgages have substantial streamflow regulation. Because previous studies have suggested that changes over time may have occurred as a step change around 1970, step changes between each streamgage's older record (start year to 1970) and newer record (1971 to 2006) also were computed. The median change over time for all 28 streamgages is an increase of 15.9 percent based on a linear change and an increase of 12.4 percent based on a step change. The median change for the 20 unregulated streamgages is slightly higher than for all 28 streamgages; it is 18.4 percent based on a linear change and 15.0 percent based on a step change. Peak flows with 100- and 5-year recurrence intervals were computed for the 28 streamgages using the full annual peak-flow record and

  8. Valuing Confrontations with the Future

    ERIC Educational Resources Information Center

    Kelly, Joseph T.

    1978-01-01

    Suggests teaching methods and materials for use by high school and college social studies teachers as they help students develop valuing skills. Entitled Valuing Confrontation With The Future (VCF), the materials promote consideration of provocative episodes such as electrical stimulation of the human brain and a congressional ban on large pets…

  9. A simple pharmacokinetics subroutine for modeling double peak phenomenon.

    PubMed

    Mirfazaelian, Ahmad; Mahmoudian, Massoud

    2006-04-01

    Double peak absorption has been described with several orally administered drugs. Numerous reasons have been implicated in causing the double peak. DRUG-KNT--a pharmacokinetic software developed previously for fitting one and two compartment kinetics using the iterative curve stripping method--was modified and a revised subroutine was incorporated to solve double-peak models. This subroutine considers the double peak as two hypothetical doses administered with a time gap. The fitting capability of the presented model was verified using four sets of data showing double peak profiles extracted from the literature (piroxicam, ranitidine, phenazopyridine and talinolol). Visual inspection and statistical diagnostics showed that the present algorithm provided adequate curve fit disregarding the mechanism involved in the emergence of the secondary peaks. Statistical diagnostic parameters (RSS, AIC and R2) generally showed good fitness in the plasma profile prediction by this model. It was concluded that the algorithm presented herein provides adequate predicted curves in cases of the double peak phenomenon.

  10. On correlation between zero bias conductance peaks and topological invariants in semiconductor Rashba nanowires

    NASA Astrophysics Data System (ADS)

    Nag, Amit; Sau, Jay

    The observed zero bias peak in tunneling conductance experiments on semiconductor Rashba nanowire is a signature of presence of Majorana zero modes. Characteristics of zero bias conductance peak (ZBCP) namely, height, width and peak splitting, are a function of microscopic parameters. Zero modes have finite splitting as a result of finiteness of the nanowire rendering the ground state only approximately topological i.e. zero modes are only approximately Majoranas. We calculate the scattering matrix topological invariant to quantify the quality of approximate Majorana modes and study its relation to observed characteristics of ZBCP. Furthermore we study the effect of dephasing on the topological invariant. Finally, we draw connection between the characteristics of the ZBCP and probability of observing non-Abelian statistics in proposed future experiments involving braiding of Majorana modes. Work is done in collaboration with Sankar Das Sarma and supported by LPS-MPO-CMTC, Microsoft Q, Univ. of Maryland startup grants and JQI-NSF-PFC.

  11. Control system analysis for off-peak auxiliary heating of passive solar systems

    SciTech Connect

    Murray, H.S.; Melsa, J.L.; Balcomb, J.D.

    1980-01-01

    A computer simulation method is presented for the design of an electrical auxiliary energy system for passive solar heated structures. The system consists of electrical mats buried in the ground underneath the structure. Energy is stored in the ground during utility off-peak hours and released passively to the heated enclosure. An optimal control strategy is used to determine the system design parameters of depth of mat placement and minimum instaled electrical heating capacity. The optimal control applies combinations of fixed duration energy pulses to the heater, which minimize the room temperature error-squared for each day, assuming advance knowledge of the day's weather. Various realizable control schemes are investigated in an attempt to find a system that approaches the performance of the optimal control system.

  12. Future of energy demand in Saudi Arabia

    SciTech Connect

    Elshayal, I.M.; Al-Zakri, A.S.

    1981-01-01

    In this study, the most recent papers on this topic were reviewed to examine the future use of nuclear energy in seawater desalination and electric power generation, as well as its impact on the environment in Saudi Arabia. 14 refs.

  13. Electrical Generation.

    ERIC Educational Resources Information Center

    Science and Children, 1990

    1990-01-01

    Described are two activities designed to help children investigate electrical charges, electric meters, and electromagnets. Included are background information, a list of materials, procedures, and follow-up questions. Sources of additional information are cited. (CW)

  14. Gamma-Ray Peak Integration: Accuracy and Precision

    SciTech Connect

    Richard M. Lindstrom

    2000-11-12

    The accuracy of singlet gamma-ray peak areas obtained by a peak analysis program is immaterial. If the same algorithm is used for sample measurement as for calibration and if the peak shapes are similar, then biases in the integration method cancel. Reproducibility is the only important issue. Even the uncertainty of the areas computed by the program is trivial because the true standard uncertainty can be experimentally assessed by repeated measurements of the same source. Reproducible peak integration was important in a recent standard reference material certification task. The primary tool used for spectrum analysis was SUM, a National Institute of Standards and Technology interactive program to sum peaks and subtract a linear background, using the same channels to integrate all 20 spectra. For comparison, this work examines other peak integration programs. Unlike some published comparisons of peak performance in which synthetic spectra were used, this experiment used spectra collected for a real (though exacting) analytical project, analyzed by conventional software used in routine ways. Because both components of the 559- to 564-keV doublet are from {sup 76}As, they were integrated together with SUM. The other programs, however, deconvoluted the peaks. A sensitive test of the fitting algorithm is the ratio of reported peak areas. In almost all the cases, this ratio was much more variable than expected from the reported uncertainties reported by the program. Other comparisons to be reported indicate that peak integration is still an imperfect tool in the analysis of gamma-ray spectra.

  15. Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands

    PubMed Central

    van Albada, S. J.; Robinson, P. A.

    2013-01-01

    The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663

  16. Electric cars

    SciTech Connect

    Worsnop, R.L.

    1993-07-09

    This article is devoted entirely to the subject of electric cars. Some of the topics covered are alternate fuels in relation to development of electric cars, the impact of zero-emission laws, the range and performance of electric cars, historical aspects, legislative incentives, and battery technology.

  17. Assignment of polarization-dependent peaks in carbon K-edge spectra from biogenic and geologic aragonite.

    PubMed

    Zhou, Dong; Metzler, Rebecca A; Tyliszczak, Tolek; Guo, Jinghua; Abrecht, Mike; Coppersmith, Susan N; Gilbert, P U P A

    2008-10-16

    Many biominerals, including mollusk and echinoderm shells, avian eggshells, modern and fossil bacterial sediments, planktonic coccolithophores, and foraminifera, contain carbonates in the form of biogenic aragonite or calcite. Here we analyze biogenic and geologic aragonite using different kinds of surface- and bulk-sensitive X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge, as well as high-resolution scanning transmission X-ray microscopy (STXM). Besides the well-known main pi* and sigma* carbonate peaks, we observed and fully characterized four minor peaks, at energies between the main pi* and sigma* peaks. As expected, the main peaks are similar in geologic and biogenic aragonite, while the minor peaks differ in relative intensity. In this and previous work, the minor peaks appear to be the ones most affected in biomineralization processes, hence the interest in characterizing them. Peak assignment was achieved by correlation of polarization-dependent behavior of the minor peaks with that of the main pi* and sigma* peaks. The present characterization provides the background for future studies of aragonitic biominerals.

  18. Projecting Electricity Demand in 2050

    SciTech Connect

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael C. W.

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% - 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  19. The model electric restaurant

    SciTech Connect

    Frey, D.J.; Oatman, P.A. ); Claar, C.N. )

    1990-12-01

    Starting in December 1987, the Electric Power Research Institute (EPRI) and Southern California Edison (SCE) initiated a project with the Pennsylvania State University (Penn State) to study the energy performance of restaurants. Penn State formed the Restaurant Subsystems Technology (REST) project team to conduct the Model Restaurant Project. For the first phase of the project, the REST team was charged with the responsibility of identifying and investigating electric technologies to improve energy efficiency and to reduce peak demand in new restaurants. Energy and economic analyses were performed to determine whether these electric technologies are competitive with existing technologies in gas/electric restaurants and whether they are improvements to current technologies in all-electric restaurants. Technologies for heating and cooling, lighting, sanitation, food preparation, ventilation, and refrigeration were studied. This report contains detailed monthly information about the restaurants that were simulated. The results are presented on a monthly basis so the reader can study performance during all seasons. However, this second volume is not a stand alone'' document. To fully understand the information presented here, the reader must have a copy of Volume 1 and be familiar with the terminology used to describe the various restaurants and the process used to analyze the buildings.

  20. Force Irregularity Following Maximal Effort: The After-Peak Reduction.

    PubMed

    Doucet, Barbara M; Mettler, Joni A; Griffin, Lisa; Spirduso, Waneen

    2016-08-01

    Irregularities in force output are present throughout human movement and can impair task performance. We investigated the presence of a large force discontinuity (after-peak reduction, APR) that appeared immediately following peak in maximal effort ramp contractions performed with the thumb adductor and ankle dorsiflexor muscles in 25 young adult participants (76% males, 24% females; M age 24.4 years, SD = 7.1). The after-peak reduction displayed similar parameters in both muscle groups with comparable drops in force during the after-peak reduction minima (thumb adductor: 27.5 ± 7.5% maximal voluntary contraction; ankle dorsiflexor: 25.8 ± 6.2% maximal voluntary contraction). A trend for the presence of fewer after-peak reductions with successive ramp trials was observed, suggesting a learning effect. Further investigation should explore underlying neural mechanisms contributing to the after-peak reduction. PMID:27502241

  1. [The symmetric zero-area conversion adptive peak-seeking method research for LIBS/Raman spectra].

    PubMed

    Bi, Yun-Feng; Li, Ying; Zheng, Rong-Er

    2013-02-01

    Automatic peak seeking is an indispensable link for in situ and real-time spectral detection and analysis, and has important significance for application of spectral technology to such fields as long-term marine monitoring and oil mud logging. Based on some typical LIBS/Raman spectrum data obtained from lab, three kinds of symmetric zero-area transformation functions respectively constructed from Gaussian, Lorentz and Voigt function were compared, and the results show that there exists an optimal symmetrical zero-area transformation function for peak seeking, but all the transformation functions obtain the same peak position and peak width under their optimal parameters. The proposed method is free from spectrum background and baseline trend influence, adaptive to the wide range of SNR, close to or even better than artificial recognition for weak peak, and could be used in future automatic in-situ analysis of LIBS and Raman. PMID:23697128

  2. HVDC transmission: a path to the future?

    SciTech Connect

    Teichler, Stephen L.; Levitine, Ilia

    2010-05-15

    Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

  3. Gamma-ray peak shapes from cadmium zinc telluride detectors

    SciTech Connect

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  4. Electric vehicles

    SciTech Connect

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  5. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    of the soil-root interface (phase peak in the range of 10 Hz) and the root tissue (phase peak above 10 kHz). Importantly, our measurements prove an almost linear relationship between root mass and the electrical polarizability associated with the low-frequency relaxation, suggesting the potential of the method to quantify root structural parameters. In future studies we will in particular investigate a hypothesized relationship between time constant and effective root radius. Based on our results, we believe that spectral EIT, by combining the spatial resolution benefits of a tomographic method with the diagnostic capability of spectroscopy, can be developed into a valuable tool for imaging, characterizing, and monitoring root systems both at laboratory and field scales.

  6. Peak Doctor v 1.0.0 Labview Version

    SciTech Connect

    Garner, Scott

    2014-05-29

    PeakDoctor software works interactively with its user to analyze raw gamma-ray spectroscopic data. The goal of the software is to produce a list of energies and areas of all of the peaks in the spectrum, as accurately as possible. It starts by performing an energy calibration, creating a function that describes how energy can be related to channel number. Next, the software determines which channels in the raw histogram are in the Compton continuum and which channels are parts of a peak. Then the software fits the Compton continuum with cubic polynomials. The last step is to fit all of the peaks with Gaussian functions, thus producing the list.

  7. Zener Relaxation Peak in an Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Cun; Cheng, He-Fa; Gong, Chen-Li; Wei, Jian-Ning; Han, Fu-Sheng

    2002-11-01

    We have studied the temperature spectra of internal friction and relative dynamic modulus of the Fe-(25 wt%)Cr-(5 wt%)Al alloy with different grain sizes. It is found that a peak appears in the internal friction versus temperature plot at about 550°C. The peak is of a stable relaxation and is reversible, which occurs not only during heating but also during cooling. Its activation energy is 2.5 (+/- 0.15) eV in terms of the Arrhenius relation. In addition, the peak is not obvious in specimens with a smaller grain size. It is suggested that the peak originates from Zener relaxation.

  8. Future trends.

    PubMed

    Friedberg, Richard C; Weiss, Ronald L

    2007-12-01

    Several current forces have set anticipated future changes in health care in motion, or, at least, have set the stage for change. End-consumer demand increasingly drives the market; as a result, entire businesses are transforming or emerging anew to meet these demands. In general, consumers demand high quality at reasonable cost, to be delivered as fast as possible with minimal inconvenience. The health care consumer takes this expectation further, to include the desire for all helpful information regarding one's health to be made readily available for him/her to make the best decision and minimize morbidity, mortality, misdiagnosis, and inconvenience. This article addresses the impact upon the laboratory by considering four key interrelated dynamics that affect these trends: market, medicine, technology, and information systems. PMID:17950906

  9. Implications of 'Peak Oil' for Atmospheric CO2 and Climate

    NASA Astrophysics Data System (ADS)

    Kharecha, P. A.; Hansen, J. E.

    2008-12-01

    Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration -- and recent trends are toward lower estimates -- we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired facilities without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 below 450 ppm. It is also plausible that CO2 can be returned below 350 ppm by 2100 or sooner, if more aggressive mitigation measures are enacted, most notably a phase-out of global coal emissions by circa 2030 and large- scale reforestation, primarily in the tropics but also in temperate regions.

  10. Electric propulsion and interstellar flight

    SciTech Connect

    Matloff, G.L.

    1987-01-01

    Two general classes of interstellar space-flights are defined: endothermic and exothermic. Endothermic methods utilize power sources external to the vehicle and associated technology. Faster exothermic methods utilize on-board propulsive power sources or energy-beam technology. Various proposed endothermic electric propulsion methods are described. These include solar electric rockets, mass drivers, and ramjets. A review of previously suggested exothermic electric propulsion methods is presented. Following this review is a detailed discussion of possible near future application of the beamed-laser ramjet, mainly for ultimate relativistic travel. Electric/magnetic techniques offer an excellent possibility for decelerating an interstellar vehicle, regardless of the acceleration technique. 20 references.

  11. Electrical stimulation: a societal perspective.

    PubMed

    Gater, D R; McDowell, S M; Abbas, J J

    2000-01-01

    Societal perspective on functional electrical stimulation is colored by media influence, popular thought, and political climate as much as by the science that supports it. The purpose of this article is to examine how these influences facilitate or inhibit the application of electrical stimulation in today's world and to describe the challenges facing the use of electrical stimulation in the future. Emphasis will be placed on perceived need, cost, and available resources and how these factors must be addressed to utilize functional electrical stimulation successfully in society.

  12. Technology Demonstration Summary Shirco Electric Infrared Incineration At The Peak Oil Superfund Site

    EPA Science Inventory

    Under the auspices of the Superfund Innovative Technology Evaluation or SITE Program, a critical assessment is made of the performance of the transportable Shirco Infrared Thermal Destruction System during three separate test runs at an operating feed rate of 100 tons per day. Th...

  13. 75 FR 34787 - In the Matter of Luminant Generation Company LLC; Comanche Peak Steam Electric Station...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to submit..., and need not submit another set of fingerprints, provided the CHRC was completed not more than three... regulation. 3. All fingerprints obtained by the licensee under this Order, must be submitted to...

  14. Hydrogen: Fueling the Future

    SciTech Connect

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen

  15. Options for Kentucky's Energy Future

    SciTech Connect

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  16. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  17. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  18. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  19. Fracture Permeability Evolution in Rock from the Desert Peak EGS Site

    SciTech Connect

    Carlson, S R; Roberts, J J; Detwiler, R L; Burton, E A; Robertson-Tait, A; Morris, C; Kasameyer, P

    2004-04-08

    Fluid flow experiments are being conducted on core specimens of quartz monzonite retrieved from depths of about 1 km at the Desert Peak East EGS site in Churchill County, Nevada. Our immediate goal is to observe permeability evolution in fractures at pressure and temperature conditions appropriate to the Desert Peak geothermal site. Longer term, we aim to evaluate mechanisms that control the evolution of fracture permeability. In the experiments saline water is flowed through an artificial fracture at a constant rate of 0.02 ml/min over a period of several weeks. The constant flow tests are interrupted at selected times for shorter tests in which flow is either stopped or varied between 0 and 2.0 ml/min. The experiments to date were conducted at a confining pressure of 5.5 MPa, pore pressures of 1.38 MPa or 2.07 MPa and temperatures of 167- 169 C. Measurements include differential pressure and electrical resistance across the specimen. The short-term variable flow rate experiments allow us to calculate the effective hydraulic aperture of the fracture at various times during the experiment. Changes in electrical resistivity provide indirect evidence of ongoing mineral dissolution and precipitation processes that are expected to change fracture permeability over time. The early experiments have shown that electrical resistivity rises during flow and falls during intervals in which flow is stopped.

  20. Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Brophy, John R.

    2013-01-01

    Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.

  1. Weak-lensing Peak Finding: Estimators, Filters, and Biases

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian; Rozo, Eduardo

    2011-07-01

    Large catalogs of shear-selected peaks have recently become a reality. In order to properly interpret the abundance and properties of these peaks, it is necessary to take into account the effects of the clustering of source galaxies, among themselves and with the lens. In addition, the preferred selection of magnified galaxies in a flux- and size-limited sample leads to fluctuations in the apparent source density that correlate with the lensing field. In this paper, we investigate these issues for two different choices of shear estimators that are commonly in use today: globally normalized and locally normalized estimators. While in principle equivalent, in practice these estimators respond differently to systematic effects such as magnification and cluster member dilution. Furthermore, we find that the answer to the question of which estimator is statistically superior depends on the specific shape of the filter employed for peak finding; suboptimal choices of the estimator+filter combination can result in a suppression of the number of high peaks by orders of magnitude. Magnification and size bias generally act to increase the signal-to-noise ν of shear peaks; for high peaks the boost can be as large as Δν ≈ 1-2. Due to the steepness of the peak abundance function, these boosts can result in a significant increase in the observed abundance of shear peaks. A companion paper investigates these same issues within the context of stacked weak-lensing mass estimates.

  2. Single-Peaked Functions and the Theory of Preference

    ERIC Educational Resources Information Center

    Coombs, Clyde H.; Avrunin, George S.

    1977-01-01

    Dependent variables such as preference, hedonic tone, aesthetic appreciation, and developmental stages are frequently observed to be single-peaked functions of the independent variables. This research addresses the problem of deriving, from more elementary underlying processes, a preference function that rises monotonically to a peak and then…

  3. Psychological Preparation for Peak Performance in Sports Competition

    ERIC Educational Resources Information Center

    Ohuruogu, Ben; Jonathan, Ugwuanyi I.; Ikechukwu, Ugwu Jude

    2016-01-01

    This paper attempts to make an overview of various techniques, sport psychologist adopt in psychological preparation of athletes for peak performance. To attain peak performance in sports competitions, coaches and athletes should not base their prospect on physical training on sport skills alone rather should integrate both the mental and physical…

  4. 46. Peaks of Otter. View of the Johnson Farm, one ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Peaks of Otter. View of the Johnson Farm, one of two historic structures left at peak of otter. The farm's interpretation focuses on the 1930's. Looking southeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  5. 42. Peaks of Otter, Abbott Lake. View across lake to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Peaks of Otter, Abbott Lake. View across lake to peaks of Outter Lodge, completed in 1964. Construction of the lake got underway in 1964. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  6. A rise in peak performance age in female athletes.

    PubMed

    Elmenshawy, Ahmed R; Machin, Daniel R; Tanaka, Hirofumi

    2015-06-01

    It was reported in 1980s that ages at which peak performance was observed had remained remarkably stable in the past century, although absolute levels of athletic performance increased dramatically for the same time span. The emergence of older (masters) athletes in the past few decades has changed the demographics and age-spectrum of Olympic athletes. The primary aim of the present study was to determine whether the ages at which peak performance was observed had increased in the recent decades. The data spanning 114 years from the first Olympics (1898) to the most recent Olympics (2014) were collected using the publically available data. In the present study, ages at which Olympic medals (gold, silver, and bronze) were won were used as the indicators of peak performance age. Track and field, swimming, rowing, and ice skating events were analyzed. In men, peak performance age did not change significantly in most of the sporting events (except in 100 m sprint running). In contrast, peak performance ages in women have increased significantly since 1980s and consistently in all the athletic events examined. Interestingly, as women's peak performance age increased, they became similar to men's peak ages in many events. In the last 20-30 years, ages at which peak athletic performance is observed have increased in women but not in men.

  7. Multiple Peaks in SABER Mesospheric OH Emission Altitude Profiles

    NASA Astrophysics Data System (ADS)

    Rozum, J. C.; Ware, G. A.; Baker, D. J.; Mlynczak, M. G.; Russell, J. M.

    2012-12-01

    Since January 2002, the SABER instrument aboard the TIMED satellite has been performing limb-scan measurements of the altitude distribution of the hydroxyl airglow. The majority of the SABER 1.6 μm and 2.0 μm OH volume emission rate (VER) profiles manifest a single peak at around 90 km, and are roughly gaussian in shape. However, a significant number (approximately 10% in nighttime) of these VER profiles have an irregular characteristic of multiple peaks that are comparable in brightness to the absolute maximum. The origin of these multiple peaks in SABER profiles is currently being studied. Single peak and irregular SABER OH VER profiles are compared with OH VER altitude curves obtained via theoretical vertical distribution models. In addition, we compare SABER profiles with OH VER altitude profiles obtained from rocket-borne radiometric experiments. The techniques of Liu and Shepherd's analysis of double-peaked emission profiles obtained by the Wind Imaging Interferometer (WINDII) using similar scan geometry are applied. The geographical distribution of the SABER nighttime multiple-peak VER profiles in the 1.6 μm and 2.0 μm channels is presented, as are the distributions of these profiles with respect to instrument-scan geometry parameters. It is noted that during the night, multiple peak profiles are more common at equatorial latitudes. A relationship has been found between the geographical distribution of two-peaked profiles and spatial orientation of the SABER instrument's viewing field.

  8. Peak Alert Time and Rapport between Residence Hall Roommates.

    ERIC Educational Resources Information Center

    Carey, John C.; And Others

    1988-01-01

    Examined whether peak alert time is related to compatibility for college roommates. Data from 66 male pairs and from 55 female pairs of roommates revealed that pairs who were similar on self-reported peak circadian alertness had higher levels of rapport. (Author/NB)

  9. A rise in peak performance age in female athletes.

    PubMed

    Elmenshawy, Ahmed R; Machin, Daniel R; Tanaka, Hirofumi

    2015-06-01

    It was reported in 1980s that ages at which peak performance was observed had remained remarkably stable in the past century, although absolute levels of athletic performance increased dramatically for the same time span. The emergence of older (masters) athletes in the past few decades has changed the demographics and age-spectrum of Olympic athletes. The primary aim of the present study was to determine whether the ages at which peak performance was observed had increased in the recent decades. The data spanning 114 years from the first Olympics (1898) to the most recent Olympics (2014) were collected using the publically available data. In the present study, ages at which Olympic medals (gold, silver, and bronze) were won were used as the indicators of peak performance age. Track and field, swimming, rowing, and ice skating events were analyzed. In men, peak performance age did not change significantly in most of the sporting events (except in 100 m sprint running). In contrast, peak performance ages in women have increased significantly since 1980s and consistently in all the athletic events examined. Interestingly, as women's peak performance age increased, they became similar to men's peak ages in many events. In the last 20-30 years, ages at which peak athletic performance is observed have increased in women but not in men. PMID:26022534

  10. Constraining cosmology with shear peak statistics: tomographic analysis

    NASA Astrophysics Data System (ADS)

    Martinet, Nicolas; Bartlett, James G.; Kiessling, Alina; Sartoris, Barbara

    2015-09-01

    The abundance of peaks in weak gravitational lensing maps is a potentially powerful cosmological tool, complementary to measurements of the shear power spectrum. We study peaks detected directly in shear maps, rather than convergence maps, an approach that has the advantage of working directly with the observable quantity, the galaxy ellipticity catalog. Using large numbers of numerical simulations to accurately predict the abundance of peaks and their covariance, we quantify the cosmological constraints attainable by a large-area survey similar to that expected from the Euclid mission, focusing on the density parameter, Ωm, and on the power spectrum normalization, σ8, for illustration. We present a tomographic peak counting method that improves the conditional (marginal) constraints by a factor of 1.2 (2) over those from a two-dimensional (i.e., non-tomographic) peak-count analysis. We find that peak statistics provide constraints an order of magnitude less accurate than those from the cluster sample in the ideal situation of a perfectly known observable-mass relation; however, when the scaling relation is not known a priori, the shear-peak constraints are twice as strong and orthogonal to the cluster constraints, highlighting the value of using both clusters and shear-peak statistics.

  11. Reliability quantification and visualization for electric microgrids

    NASA Astrophysics Data System (ADS)

    Panwar, Mayank

    The electric grid in the United States is undergoing modernization from the state of an aging infrastructure of the past to a more robust and reliable power system of the future. The primary efforts in this direction have come from the federal government through the American Recovery and Reinvestment Act of 2009 (Recovery Act). This has provided the U.S. Department of Energy (DOE) with 4.5 billion to develop and implement programs through DOE's Office of Electricity Delivery and Energy Reliability (OE) over the a period of 5 years (2008-2012). This was initially a part of Title XIII of the Energy Independence and Security Act of 2007 (EISA) which was later modified by Recovery Act. As a part of DOE's Smart Grid Programs, Smart Grid Investment Grants (SGIG), and Smart Grid Demonstration Projects (SGDP) were developed as two of the largest programs with federal grants of 3.4 billion and $600 million respectively. The Renewable and Distributed Systems Integration (RDSI) demonstration projects were launched in 2008 with the aim of reducing peak electricity demand by 15 percent at distribution feeders. Nine such projects were competitively selected located around the nation. The City of Fort Collins in co-operative partnership with other federal and commercial entities was identified to research, develop and demonstrate a 3.5MW integrated mix of heterogeneous distributed energy resources (DER) to reduce peak load on two feeders by 20-30 percent. This project was called FortZED RDSI and provided an opportunity to demonstrate integrated operation of group of assets including demand response (DR), as a single controllable entity which is often called a microgrid. As per IEEE Standard 1547.4-2011 (IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems), a microgrid can be defined as an electric power system which has following characteristics: (1) DR and load are present, (2) has the ability to disconnect from

  12. Photoelectric return-stroke velocity and peak current estimates in natural and triggered lightning

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    Two-dimensional photoelectric return stroke velocities from 130 strokes are presented, including 86 negative natural, 41 negative triggered, one positive triggered, and two positive natural return strokes. For strokes starting near the ground and exceeding 500 m in length, the average velocity is 1.3 + or - 0.3 X 10 to the 8th m/s for natural return strokes and 1.2 + or - 0.3 X 10 to the 8th m/s for triggered return strokes. For strokes with lengths less than 500 m, the average velocities are slightly higher. Using the transmission line model (TLM), the shortest segment one-dimensional return stroke velocity, and either the maximum or plateau electric field, it is shown that natural strokes have a peak current distribution that is lognormal with a median value of 16 kA (maximum E) or 12 kA (plateau E). Triggered lightning has a medium peak current value of 21 kA (maximum E) or 15 kA (plateau E). Correlations are found between TLM peak currents and velocities for triggered and natural subsequent return strokes, but not between TLM peak currents and natural first return stroke velocities.

  13. Electrical stator

    DOEpatents

    Fanning, Alan W.; Olich, Eugene E.

    1994-01-01

    An electrical stator of an electromagnetic pump includes first and second spaced apart coils each having input and output terminals for carrying electrical current. An elongate electrical connector extends between the first and second coils and has first and second opposite ends. The connector ends include respective slots receiving therein respective ones of the coil terminals to define respective first and second joints. Each of the joints includes a braze filler fixedly joining the connector ends to the respective coil terminals for carrying electrical current therethrough.

  14. Back-Up/ Peak Shaving Fuel Cell System

    SciTech Connect

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL

  15. Optical generation of single-cycle 10 MW peak power 100 GHz waves.

    PubMed

    Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban; Zhou, Chun; Hemmer, Michael; Reichert, Fabian; Zhang, Dongfang; Cankaya, Huseyin; Zapata, Luis E; Matlis, Nicholas H; Kärtner, Franz X

    2016-09-01

    We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources. PMID:27607709

  16. MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION OF PEAKS IN 1D

    PubMed Central

    Schwartzman, Armin; Gavrilov, Yulia; Adler, Robert J.

    2013-01-01

    A topological multiple testing scheme for one-dimensional domains is proposed where, rather than testing every spatial or temporal location for the presence of a signal, tests are performed only at the local maxima of the smoothed observed sequence. Assuming unimodal true peaks with finite support and Gaussian stationary ergodic noise, it is shown that the algorithm with Bonferroni or Benjamini–Hochberg correction provides asymptotic strong control of the family wise error rate and false discovery rate, and is power consistent, as the search space and the signal strength get large, where the search space may grow exponentially faster than the signal strength. Simulations show that error levels are maintained for nonasymptotic conditions, and that power is maximized when the smoothing kernel is close in shape and bandwidth to the signal peaks, akin to the matched filter theorem in signal processing. The methods are illustrated in an analysis of electrical recordings of neuronal cell activity. PMID:23576826

  17. Optical generation of single-cycle 10 MW peak power 100 GHz waves.

    PubMed

    Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban; Zhou, Chun; Hemmer, Michael; Reichert, Fabian; Zhang, Dongfang; Cankaya, Huseyin; Zapata, Luis E; Matlis, Nicholas H; Kärtner, Franz X

    2016-09-01

    We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources.

  18. Wind electric generator project

    NASA Astrophysics Data System (ADS)

    1983-09-01

    A wind generator was installed and connected at Iowa Western Community College. It is heating water through four hot water tanks and proved to be an excellent demonstration project for the community. The college gets frequent inquiries about the windmill and has been very cooperative in informing the public about the success. The windmill generates more electricity than is needed to heat four hot water heaters and future plans are to hook up more. The project requires very little maintenance.

  19. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    PubMed

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials.

  20. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  1. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model. PMID:27462484

  2. Derived Equivalence Relations of Geometry Skills in Students with Autism: An Application of the PEAK-E Curriculum

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb R.; Daar, Jacob H.; Williams, Leigh Anne

    2016-01-01

    The present study evaluated the efficacy of equivalence-based instruction (EBI) as described in the PEAK-E curriculum (Dixon, 2015) for promoting the emergence of derived geometry skills in two children with high-functioning autism. The results suggested that direct training of shape name (A) to shape property (B) (i.e., A-B relations) was…

  3. The Future of Human Exploration

    NASA Technical Reports Server (NTRS)

    Cooke, Doug

    2001-01-01

    This slide presentation reviews the near term future of human space exploration in terms of possible mission scenarios, propulsion technologies, orbital dynamics that lead to Low-Energy Transfer from Earth-Moon LI to Solar Libration Points and Return Potential Staging Point for Human Mars Missions. It also examines the required evolution of mission architecture, solar electric propulsion concept, vehicle concepts for future Mars missions, and an overview of a Mars Mission, Also in this presentation are pictures of several historic personages and occasions, and a view of a Mars Meteorite (i.e., ALH84001.0)

  4. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  5. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  6. Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Kacprzak, T.; Kirk, D.; Friedrich, O.; Amara, A.; Refregier, A.; Marian, L.; Dietrich, J. P.; Suchyta, E.; Aleksić, J.; Bacon, D.; Becker, M. R.; Bonnett, C.; Bridle, S. L.; Chang, C.; Eifler, T. F.; Hartley, W. G.; Huff, E. M.; Krause, E.; MacCrann, N.; Melchior, P.; Nicola, A.; Samuroff, S.; Sheldon, E.; Troxel, M. A.; Weller, J.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Benoit-Lévy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Evrard, A. E.; Neto, A. Fausti; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Smith, I. Sevilla-Noarbe R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Zhang, Y.; DES Collaboration

    2016-08-01

    Shear peak statistics has gained a lot of attention recently as a practical alternative to the two point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg2 field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0peak counts as a function of cosmological parameters we use a suite of N-body simulations spanning 158 models with varying Ωm and σ8, fixing w = -1, Ωb = 0.04, h = 0.7 and ns = 1, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure σ8(Ωm/0.3)0.6 = 0.77 ± 0.07, after marginalising over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending, and source contamination by cluster members. These models indicate that peaks with mathcal {S} / mathcal {N}>4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.

  7. Understanding the double peaked El Niño in coupled GCMs

    NASA Astrophysics Data System (ADS)

    Graham, Felicity S.; Wittenberg, Andrew T.; Brown, Jaclyn N.; Marsland, Simon J.; Holbrook, Neil J.

    2016-06-01

    Coupled general circulation models (CGCMs) simulate a diverse range of El Niño-Southern Oscillation behaviors. "Double peaked" El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.

  8. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  9. Reduction in peak oxygen uptake after prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.

    1982-01-01

    The hypothesis that the magnitude of the reduction in peak oxygen uptake (VO2) after bed rest is directly proportional to the level of pre-bed rest peak VO2 is tested. Complete pre and post-bed rest working capacity and body weight data were obtained from studies involving 24 men (19-24 years old) and 8 women (23-34 years old) who underwent bed rest for 14-20 days with no remedial treatments. Results of regression analyses of the present change in post-bed rest peak VO2 on pre-bed rest peak VO2 with 32 subjects show correlation coefficients of -0.03 (NS) for data expressed in 1/min and -0.17 for data expressed in ml/min-kg. In addition, significant correlations are found that support the hypothesis only when peak VO2 data are analyzed separately from studies that utilized the cycle ergometer, particularly with subjects in the supine position, as opposed to data obtained from treadmill peak VO2 tests. It is concluded that orthostatic factors, associated with the upright body position and relatively high levels of physical fitness from endurance training, appear to increase the variability of pre and particularly post-bed rest peak VO2 data, which would lead to rejection of the hypothesis.

  10. Peak shift discrimination learning as a mechanism of signal evolution.

    PubMed

    Lynn, Spencer K; Cnaani, Jonathan; Papaj, Daniel R

    2005-06-01

    "Peak shift" is a behavioral response bias arising from discrimination learning in which animals display a directional, but limited, preference for or avoidance of unusual stimuli. Its hypothesized evolutionary relevance has been primarily in the realm of aposematic coloration and limited sexual dimorphism. Here, we develop a novel functional approach to peak shift, based on signal detection theory, which characterizes the response bias as arising from uncertainty about stimulus appearance, frequency, and quality. This approach allows the influence of peak shift to be generalized to the evolution of signals in a variety of domains and sensory modalities. The approach is illustrated with a bumblebee (Bombus impatiens) discrimination learning experiment. Bees exhibited peak shift while foraging in an artificial Batesian mimicry system. Changes in flower abundance, color distribution, and visitation reward induced bees to preferentially visit novel flower colors that reduced the risk of flower-type misidentification. Under conditions of signal uncertainty, peak shift results in visitation to rarer, but more easily distinguished, morphological variants of rewarding species in preference to their average morphology. Peak shift is a common and taxonomically widespread phenomenon. This example of the possible role of peak shift in signal evolution can be generalized to other systems in which a signal receiver learns to make choices in situations in which signal variation is linked to the sender's reproductive success.

  11. On the formation of multiple local peaks in breakthrough curves

    NASA Astrophysics Data System (ADS)

    Siirila-Woodburn, Erica R.; Sanchez-Vila, Xavier; Fernández-Garcia, Daniel

    2015-04-01

    The analysis of breakthrough curves (BTCs) is of interest in hydrogeology as a way to parameterize and explain processes related to anomalous transport. Classical BTCs assume the presence of a single peak in the curve, where the location and size of the peak and the slope of the receding limb has been of particular interest. As more information is incorporated into BTCs (for example, with high-frequency data collection, supercomputing efforts), it is likely that classical definitions of BTC shapes will no longer be adequate descriptors for contaminant transport problems. We contend that individual BTCs may display multiple local peaks depending on the hydrogeologic conditions and the solute travel distance. In such cases, classical definitions should be reconsidered. In this work, the presence of local peaks in BTCs is quantified from high-resolution numerical simulations in synthetic fields with a particle tracking technique and a kernel density estimator to avoid either overly jagged or smoothed curves that could mask the results. Individual BTCs from three-dimensional heterogeneous hydraulic conductivity fields with varying combinations of statistical anisotropy, heterogeneity models, and local dispersivity are assessed as a function of travel distance. The number of local peaks, their corresponding slopes, and a transport connectivity index are shown to strongly depend on statistical anisotropy and travel distance. Results show that the choice of heterogeneity model also affects the frequency of local peaks, but the slope is less sensitive to model selection. We also discuss how solute shearing and rerouting can be determined from local peak quantification.

  12. Two density peaks in low magnetic field helicon plasma

    SciTech Connect

    Wang, Y.; Zhao, G.; Ouyang, J. T. E-mail: lppmchenqiang@hotmail.com; Liu, Z. W.; Chen, Q. E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.

  13. Electrical conductivity of ice VII

    PubMed Central

    Okada, Taku; Iitaka, Toshiaki; Yagi, Takehiko; Aoki, Katsutoshi

    2014-01-01

    It was discovered that a peak appears near a pressure of Pc = 10 GPa in the electrical conductivity of ice VII as measured through impedance spectroscopy in a diamond anvil cell (DAC) during the process of compression from 2 GPa to 40 GPa at room temperature. The activation energy for the conductivity measured in the cooling/heating process between 278 K and 303 K reached a minimum near Pc. Theoretical modelling and molecular dynamics simulations suggest that the origin of this unique peak is the transition of the major charge carriers from the rotational defects to the ionic defects. PMID:25047728

  14. Understanding Human Motion Skill with Peak Timing Synergy

    NASA Astrophysics Data System (ADS)

    Ueno, Ken; Furukawa, Koichi

    The careful observation of motion phenomena is important in understanding the skillful human motion. However, this is a difficult task due to the complexities in timing when dealing with the skilful control of anatomical structures. To investigate the dexterity of human motion, we decided to concentrate on timing with respect to motion, and we have proposed a method to extract the peak timing synergy from multivariate motion data. The peak timing synergy is defined as a frequent ordered graph with time stamps, which has nodes consisting of turning points in motion waveforms. A proposed algorithm, PRESTO automatically extracts the peak timing synergy. PRESTO comprises the following 3 processes: (1) detecting peak sequences with polygonal approximation; (2) generating peak-event sequences; and (3) finding frequent peak-event sequences using a sequential pattern mining method, generalized sequential patterns (GSP). Here, we measured right arm motion during the task of cello bowing and prepared a data set of the right shoulder and arm motion. We successfully extracted the peak timing synergy on cello bowing data set using the PRESTO algorithm, which consisted of common skills among cellists and personal skill differences. To evaluate the sequential pattern mining algorithm GSP in PRESTO, we compared the peak timing synergy by using GSP algorithm and the one by using filtering by reciprocal voting (FRV) algorithm as a non time-series method. We found that the support is 95 - 100% in GSP, while 83 - 96% in FRV and that the results by GSP are better than the one by FRV in the reproducibility of human motion. Therefore we show that sequential pattern mining approach is more effective to extract the peak timing synergy than non-time series analysis approach.

  15. Resonant Orbits and the High Velocity Peaks toward the Bulge

    NASA Astrophysics Data System (ADS)

    Molloy, Matthew; Smith, Martin C.; Evans, N. Wyn; Shen, Juntai

    2015-10-01

    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape toward the Galactic center. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the Apache Point Observatory Galactic Evolution Experiment commissioning data. We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family and that stars on other higher order resonances can contribute to the peaks. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range {10}\\circ ≲ {θ }{bar}≲ 25^\\circ . However, some important questions about the nature of the peaks remain, such as their apparent absence in other surveys of the Bulge and the deviations from symmetry between equivalent fields in the north and south. We show that the absence of a peak in surveys at higher latitudes is likely due to the combination of a less prominent peak and a lower number density of bar supporting orbits at these latitudes.

  16. Electric machine

    SciTech Connect

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  17. Electric avenues

    SciTech Connect

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  18. Analytical design of a superconducting magnetic energy storage for pulsed power peak

    SciTech Connect

    Netter, D.; Leveque, J.; Rezzoug, A.; Caron, J.P.; Sargos, F.M.

    1996-09-01

    A Superconducting Magnetic Energy Storage can be used to produce very high pulsed power peak. A superconducting coil is magnetically coupled with another coil linked to the load. During the storage phase, the current is constant. In order to transfer the energy to the load, the authors cause the quench of the superconducting coil. It is very important to know the efficiency of the transfer and how much energy is discharged in the Helium vessel. In this paper, they propose an analytical method which enables to calculate very quickly the electrical parameters of such a device.

  19. Practical limits to the performance of magnetic bearings: Peak force, slew rate, and displacement sensitivity

    NASA Astrophysics Data System (ADS)

    Maslen, E.; Hermann, P.; Scott, M.; Humphris, R. R.

    Magnetic bearings are subject to performance limits which are quite different from those of conventional bearings. These are due in part to the inherent nonlinearity of the device and in part to its electrical nature. Three important nonideal behaviors are presented: peak force capacity, force slew rate limitation, and sensitivity to rotor motion at large displacements. The problem of identifying the dynamic requirements of a magnetic bearing when used to support a known structure subject to known loads is discussed in the context of these limitations. Several simple design tools result from this investigation.

  20. Peak Oil, Urban Form, and Public Health: Exploring the Connections

    PubMed Central

    Kaza, Nikhil; Knaap, Gerrit-Jan; Knaap, Isolde

    2011-01-01

    We assessed the relationships between peak oil and urban form, travel behavior, and public health. Peak oil will affect the general economy, travel behavior, and urban form through income and substitution effects; however, because of the wide range of substitution possibilities, the impacts are likely to be gradual and relatively small. Furthermore, we suggest that changes in travel behavior and increases in urban density will have both favorable and unfavorable effects on public health. To mitigate the adverse impacts and to maximize the positive effects of peak oil, we recommend that careful attention should be paid to urban design and public health responses for a range of urbanization patterns. PMID:21778494

  1. Determination of the total absorption peak in an electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Hua; Wang, Zhe; Lebanowski, Logan; Lin, Guey-Lin; Chen, Shaomin

    2016-08-01

    A physically motivated function was developed to accurately determine the total absorption peak in an electromagnetic calorimeter and to overcome biases present in many commonly used methods. The function is the convolution of a detector resolution function with the sum of a delta function, which represents the complete absorption of energy, and a tail function, which describes the partial absorption of energy and depends on the detector materials and structures. Its performance was tested with the simulation of three typical cases. The accuracy of the extracted peak value, resolution, and peak area was improved by an order of magnitude on average, relative to the Crystal Ball function.

  2. Robust detection of peak signals for lateral flow immunoassays

    NASA Astrophysics Data System (ADS)

    Kim, Jongwon; Kim, Jong Dae; Nahm, Kie Bong; Choi, Eui Yul; Lee, Geumyoung

    2011-02-01

    Template matching method is presented to identify the peaks from the scanned signals of lateral flow immunoassay strips. The template is composed of two pulses separated by the distance of the control and the target ligand line in the assay, and is convolved with the scanned signal to deliver the maximum at the center of the two peaks. The peak regions were identified with the predefined distances from the center. Glycosylated haemoglobin immunoassay strips and fluorescent strip readers from Boditechmed Inc. were tested to estimate the lot and reader variations of the concentration measurands. The results showed the robustness of the propose method.

  3. The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities

    SciTech Connect

    Jeffrey Wishart

    2012-02-01

    This document reports the work performed under Task 1.2.1.1: 'The development of a charge protocol to take advantage of off- and on-peak demand economics at facilities'. The work involved in this task included understanding the experimental results of the other tasks of SOW-5799 in order to take advantage of the economics of electricity pricing differences between on- and off-peak hours and the demonstrated charging and facility energy demand profiles. To undertake this task and to demonstrate the feasibility of plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) bi-directional electricity exchange potential, BEA has subcontracted Electric Transportation Applications (now known as ECOtality North America and hereafter ECOtality NA) to use the data from the demand and energy study to focus on reducing the electrical power demand of the charging facility. The use of delayed charging as well as vehicle-to-grid (V2G) and vehicle-to-building (V2B) operations were to be considered.

  4. The Spectrum of the Night Sky Over Kitt Peak: Changes Over Two Decades

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip

    2010-10-01

    New absolute spectrophotometry of the Kitt Peak night sky has been obtained in 2009-2010, which we compare to previously published data obtained in 1988 and 1999, allowing us to look for changes over the past two decades. A comparison of the data between 1988, 1999, and 2009-2010 reveals that the sky brightness of Kitt Peak has stayed remarkably constant over the past 20 yr. Compared to 1988, the 2009-2010 data show no change in the sky brightness at zenith though, as expected, the sky glow has increased most dramatically in the direction of Tucson. Comparison between the 1999 and 2009-2010 data suggests that the sky has actually decreased in brightness compared to 10 yr ago. However, both of the older data sets were taken during times of increased solar activity. When we correct the measurements for the solar irradiance fluctuations, we find that compared to 20 yr ago, the sky is ~0.1 mag brighter at zenith and ~0.3 mag brighter toward Tucson. But even after these corrections, we still find that the sky over Kitt Peak is comparable to what it was 10 yr ago at zenith and ~0.1 mag darker toward Tucson. This suggests that the strengthened lighting ordinances established by the city of Tucson and Pima County in the early 2000s have been quite effective. With some care, the Kitt Peak night sky will remain this dark many years into the future.

  5. Periodic transmission peak splitting in one dimensional disordered photonic structures

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco

    2016-08-01

    In the present paper we present ways to modulate the periodic transmission peaks arising in disordered one dimensional photonic structures with hundreds of layers. Disordered structures in which the optical length nd (n is the refractive index and d the layer thickness) is the same for each layer show regular peaks in their transmission spectra. A proper variation of the optical length of the layers leads to a splitting of the transmission peaks. Notably, the variation of the occurrence of high and low refractive index layers, gives a tool to tune also the width of the peaks. These results are of highest interest for optical application, such as light filtering, where the manifold of parameters allows a precise design of the spectral transmission ranges.

  6. Peak Doctor v 1.0.0 Labview Version

    2014-05-29

    PeakDoctor software works interactively with its user to analyze raw gamma-ray spectroscopic data. The goal of the software is to produce a list of energies and areas of all of the peaks in the spectrum, as accurately as possible. It starts by performing an energy calibration, creating a function that describes how energy can be related to channel number. Next, the software determines which channels in the raw histogram are in the Compton continuum andmore » which channels are parts of a peak. Then the software fits the Compton continuum with cubic polynomials. The last step is to fit all of the peaks with Gaussian functions, thus producing the list.« less

  7. Determinants of peak flow rate among Hutterite farmers.

    PubMed

    Ferguson, E; Parry, R R; Schlenker, E H

    1993-05-01

    Observations from respiratory studies of over 1000 Hutterites and 200 control subjects indicated that the percent predicted peak flow rate values were 20% lower among Hutterites than control subjects. The purpose of this study was to determine if the decreased peak flow rate values among male Hutterites were a function of decreased airway patency or decreased respiratory muscle strength. Peak flow rate, muscle and lung function and the prevalence of respiratory symptomatology and disease were evaluated in 27 males from two Hutterite colonies. In one group almost all members consistently used masks while performing farming tasks, while 41% of members from the other colony used masks intermittently. Results suggest that peak flow rate values are decreased predominantly due to decreased airway patency associated with a higher prevalence of respiratory symptoms and disease and are not limited by respiratory muscle strength. PMID:8516681

  8. Roof structural system, similar in design to peaked roofs of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof structural system, similar in design to peaked roofs of rolling mill, yet note abandonment of phoenix columns for compression members. - Phoenix Iron Company, Girder Shop No. 6, North of French Creek, west of Gay Street, Phoenixville, Chester County, PA

  9. The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes

    ERIC Educational Resources Information Center

    Neumann, M. G.

    1976-01-01

    Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)

  10. Potential of solar cooling systems for peak demand reduction

    SciTech Connect

    Pesaran, A A; Neymark, J

    1994-11-01

    We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

  11. 48. VIEW OF SKYLINE DRIVE FROM THE ROCKY PEAK OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. VIEW OF SKYLINE DRIVE FROM THE ROCKY PEAK OF STONY MAN MOUNTAIN (EL. 4,011). LOOKING NORTHEAST. STONY MAN OVERLOOK VISIBLE IN THE DISTANCE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  12. Standardization of 65Zn by sum-peak method.

    PubMed

    Oliveira, E M; Iwahara, A; Poledna, R; Delgado, J U; da Silva, C J; da Silva, R L; Lopes, R T

    2012-09-01

    A commercial solution of (65)Zn was standardized by the sum peak-method using a planar HPGe detector. The activity results were compared with measurements made with a well type 4πγ ionization chamber, which is traceable to BIPM.RI (II)-K2.Zn-65 key-comparison performed in 2002. The sum-peak value was 42.79 kBq/g and the ionization chamber value was 42.74 kBq/g both at the reference date. The uncertainty obtained in the sum peak standardization was 0.25% (k=1), and in the ionization chamber was 0.85% (k=1). The results showed that sum-peak method can be used in (65)Zn standardization and this method is easier, simpler and more practical than others methods. PMID:22425414

  13. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  14. Comparison and optimization of different peak integration methods to determine the variance of unretained and extra-column peaks.

    PubMed

    Vanderheyden, Yoachim; Broeckhoven, Ken; Desmet, Gert

    2014-10-17

    Different automatic peak integration methods have been reviewed and compared for their ability to accurately determine the variance of the very narrow and very fast eluting peaks encountered when measuring the instrument band broadening of today's low dispersion liquid chromatography instruments. Using fully maximized injection concentrations to work at the highest possible signal-to-noise ratio's (SNR), the best results were obtained with the so-called variance profile analysis method. This is an extension (supplemented with a user-independent read-out algorithm) of a recently proposed method which calculates the peak variance value for any possible value of the peak end time, providing a curve containing all the possible variance values and theoretically levelling off to the (best possible estimate of the) true variance. Despite the use of maximal injection concentrations (leading to SNRs over 10,000), the peak variance errors were of the order of some 10-20%, mostly depending on the peak tail characteristics. The accuracy could however be significantly increased (to an error level below 0.5-2%) by averaging over 10-15 subsequent measurements, or by first adding the peak profiles of 10-15 subsequent runs and then analyzing this summed peak. There also appears to be an optimal detector intermediate frequency, with the higher frequencies suffering from their poorer signal-to-noise-ratio and with the smaller detector frequencies suffering from a limited number of data points. When the SNR drops below 1000, an accurate determination of the true variance of extra-column peaks of modern instruments no longer seems to be possible.

  15. Generation of narrow peaks in spectroscopy of charged particles

    NASA Astrophysics Data System (ADS)

    Dubbers, Dirk; Schmidt, Ulrich

    2016-11-01

    In spectroscopy of charged particles, narrow peaks may appear in continuous spectra if magnetic transport of the particles is involved. These artefacts, which so far have escaped the attention of investigators, can develop whenever geometric detection efficiency is less than 100%. As such peaks may be misinterpreted as new physics, their generation is investigated, both analytically and experimentally, for various detector configurations, including those used in searches for the spontaneous decay of the vacuum in heavy-ion collisions.

  16. Standard Test Data and Peak Fitting for XPS Measurements

    National Institute of Standards and Technology Data Gateway

    Standard Test Data and Peak Fitting for XPS Measurements (Web, free access)   This web site provides an extensive set of simulated photoelectron spectroscopy data for users to test software for determining the positions and intensities of overlapping peaks. Users download the data, perform their analyses, and then upload their results. A Java program evaluates the results and provides a graphical presentation of the errors in the user's analyses.

  17. Electric utility system master plan

    SciTech Connect

    Erickson, O.M.

    1992-10-01

    This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

  18. Model documentation: Electricity Market Module, Electricity Capacity Planning submodule

    SciTech Connect

    Not Available

    1994-04-07

    The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

  19. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  20. Observation of low magnetic field density peaks in helicon plasma

    SciTech Connect

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C.

    2013-04-15

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

  1. Which are the highest peaks in the US Arctic? Fodar settles the debate

    NASA Astrophysics Data System (ADS)

    Nolan, Matt; DesLauriers, Kit

    2016-06-01

    Though an outstanding achievement for their time, the United States Geological Survey (USGS) topographic maps of the eastern Alaskan Arctic nonetheless contain significant errors, and in this paper we address one of them. Specifically, USGS maps of different scale made in the late 1950s alternate between Mt. Chamberlin and Mt. Isto as the tallest peak in the US Arctic. Given that many of the peaks here are close in height and covered with glaciers, recent climate change may also have changed their height and their order. We resolved these questions using fodar, a new airborne photogrammetric technique that utilizes structure-from-motion (SfM) software and requires no ground control, and validated it using GPS measurements on the peaks as well as airborne lidar. Here we show that Mt. Chamberlin is currently the third tallest peak and that the order and elevations of the five tallest mountains in the US Arctic are Mt. Isto (2735.6 m), Mt. Hubley (2717.6 m), Mt. Chamberlin (2712.3 m), Mt. Michelson (2698.1 m), and an unnamed peak (2694.9 m); these heights are relative to the NAVD88 GEOID12A vertical datum. We find that it is indeed plausible that this ranking has changed over time and may continue to change as summit glaciers continue to shrink, though Mt. Isto will remain the highest under current climate trends. Mt. Isto is also over 100 m taller than the highest peak in Arctic Canada, making it the highest peak in the North American Arctic. Fodar elevations compared to within a few centimeters of our ground-based GPS measurements of the peaks made a few days later and our complete validation assessment indicates a measurement uncertainty of better than ±20 cm (95 % RMSE). By analyzing time series of fodar maps, we were able to detect topographic change on the centimeter level on these steep slopes, indicating that fodar can be used to measure mountain snow packs for water resource availability or avalanche danger, glacier volume change, and slope subsidence, as

  2. Which are the highest peaks in the US Arctic? Fodar settles the debate

    NASA Astrophysics Data System (ADS)

    Nolan, M.; DesLauriers, K.

    2015-12-01

    While creation of the United States Geological Survey's topographic maps of the eastern Alaska Arctic were an outstanding accomplishment for their time, they nonetheless contained significant errors when made in the late 1950s. One notable discrepancy relates to the tallest peak in the US Arctic: USGS maps of different scale alternate between Mt Chamberlin and Mt Isto. Given that many of the peaks here are close in height and covered with glaciers, recent climate change may also have changed their height and their order. We resolved these questions using fodar, a new airborne photogrammetric technique that utilizes Structure-from-Motion (SfM) software and requires no ground control, and validated it using GPS measurements on the peaks and using airborne lidar. Here we show that Mt Chamberlin is currently the 3rd tallest peak and that the order and elevations of the five tallest mountains in the US Arctic are Mt Isto (2735.6 m), Mt. Hubley (2717.6 m), Mt. Chamberlin (2712.3 m), Mt. Michelson (2698.1 m), and an unnamed peak (2694.9 m); these orthometric heights relative to the NAVD88 vertical datum, established with use of GEOID12B. We find that it is indeed plausible that this ranking has changed over time and may continue to change as summit glaciers continue to shrink, though Mt Isto will remain the highest under current climate trends. Mt Isto is also over 100 m higher than the highest peak in the Canadian Arctic, making it the highest peak in the North American Arctic. Fodar elevations compared to within a few centimeters of our ground-based GPS measurements of the peaks made a few days later and our complete validation assessment indicates a measurement uncertainty of better than ±20 cm (95 % RMSE). By analyzing time-series of fodar maps, we were able to detect topographic change on the centimeter-level on these steep slopes, indicating that fodar can be used to measure mountain snow packs for water resource availability or avalanche danger, to measure glacier

  3. The age of peak performance in Ironman triathlon: a cross-sectional and longitudinal data analysis

    PubMed Central

    2013-01-01

    Background The aims of the present study were, firstly, to investigate in a cross-sectional analysis the age of peak Ironman performance within one calendar year in all qualifiers for Ironman Hawaii and Ironman Hawaii; secondly, to determine in a longitudinal analysis on a qualifier for Ironman Hawaii whether the age of peak Ironman performance and Ironman performance itself change across years; and thirdly, to determine the gender difference in performance. Methods In a cross-sectional analysis, the age of the top ten finishers for all qualifier races for Ironman Hawaii and Ironman Hawaii was determined in 2010. For a longitudinal analysis, the age and the performance of the annual top ten female and male finishers in a qualifier for Ironman Hawaii was determined in Ironman Switzerland between 1995 and 2010. Results In 19 of the 20 analyzed triathlons held in 2010, there was no difference in the age of peak Ironman performance between women and men (p > 0.05). The only difference in the age of peak Ironman performance between genders was in ‘Ironman Canada’ where men were older than women (p = 0.023). For all 20 races, the age of peak Ironman performance was 32.2 ± 1.5 years for men and 33.0 ± 1.6 years for women (p > 0.05). In Ironman Switzerland, there was no difference in the age of peak Ironman performance between genders for top ten women and men from 1995 to 2010 (F = 0.06, p = 0.8). The mean age of top ten women and men was 31.4 ± 1.7 and 31.5 ± 1.7 years (Cohen's d = 0.06), respectively. The gender difference in performance in the three disciplines and for overall race time decreased significantly across years. Men and women improved overall race times by approximately 1.2 and 4.2 min/year, respectively. Conclusions Women and men peak at a similar age of 32–33 years in an Ironman triathlon with no gender difference. In a qualifier for Ironman Hawaii, the age of peak Ironman performance remained unchanged across years. In contrast, gender

  4. Electrical connector

    DOEpatents

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  5. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect

    2012-01-01

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of today’s EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Power’s motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  6. Episodic air quality impacts of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  7. Comparison of peak and average nitrogen dioxide concentrations inside homes

    NASA Astrophysics Data System (ADS)

    Franklin, Peter; Runnion, Tina; Farrar, Drew; Dingle, Peter

    Most health studies measuring indoor nitrogen dioxide (NO 2) concentrations have utilised long-term passive monitors. However, this method may not provide adequate information on short-term peaks, which may be important when examining health effects of this pollutant. The aims of this study were to investigate the relationship between short-term peak (peak) and long-term average (average) NO 2 concentrations in kitchens and the effect of gas cookers on this relationship. Both peak and average NO 2 levels were measured simultaneously in the kitchens of 53 homes using passive sampling techniques. All homes were non-smoking and sampling was conducted in the summer months. Geometric mean (95% confidence interval (CI)) average NO 2 concentrations for all homes were 16.2 μg m -3 (12.7-20.6 μg m -3). There was no difference between homes with and without gas cookers ( p=0.40). Geometric mean (95%CI) peak NO 2 concentrations were 45.3 μg m -3 (36.0-57.1 μg m -3). Unlike average concentrations, peak concentrations were significantly higher in homes with gas cookers (64.0 μg m -3, 48.5-82.0 μg m -3) compared to non-gas homes (25.1 μg m -3, 18.3-35.5 μg m -3) ( p<0.001). There was only a moderate correlation between the peak and average concentrations measured in all homes ( r=0.39, p=0.004). However, when the data were analysed separately based on the presence of gas cookers, the correlation between peak and average NO 2 concentrations was improved in non-gas homes ( r=0.59, p=0.005) but was not significant in homes with gas cookers ( r=0.19, p=0.33). These results suggest that average NO 2 concentrations do not adequately identify exposure to short-term peaks of NO 2 that may be caused by gas cookers. The lack of peak exposure data in many epidemiological studies may explain some of the inconsistent findings.

  8. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Allen, Philip B.

    1979-01-01

    Examines Drude's classical (1900) theory of electrical conduction, details the objections to and successes of the 1900 theory, and investigates the Quantum (1928) theory of conduction, reviewing its successes and limitations. (BT)

  9. Electrical injury

    MedlinePlus

    ... wiring Flashing of electric arcs from high-voltage power lines Lightning Machinery or occupational-related exposures Young ... a passenger in a vehicle struck by a power line, remain in it until help arrives unless ...

  10. Electrical Conductivity.

    ERIC Educational Resources Information Center

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  11. Electrically driven surface plasmon nanosources

    NASA Astrophysics Data System (ADS)

    Boer-Duchemin, Elizabeth; Wang, Tao; Le Moal, Eric; Dujardin, Gérald

    2015-03-01

    Electrical nanosources of surface plasmons will be an integral part of any future plasmonic circuits. Three different types of such nanosources (based on inelastic electron tunneling, high energy electron bombardment, and the electrical injection of a semiconductor device) are briefly described here. An example of a fundamental experiment using an electrical nanosource consisting of the tunnel junction formed between a scanning tunneling microscope (STM) and a metallic sample is given. In this experiment, the temporal coherence of the broadband STM-plasmon source is probed using a variant of Young's double slit experiment, and the coherence time of the broadband source is estimated to be about 5-10 fs.

  12. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  13. Electric generator

    DOEpatents

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  14. Measuring peak expiratory flow in general practice: comparison of mini Wright peak flow meter and turbine spirometer.

    PubMed Central

    Jones, K P; Mullee, M A

    1990-01-01

    OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611

  15. Use of Residential Smart Appliances for Peak Load Shifting & Spinning Reserves: Cost Benefit Analysis

    SciTech Connect

    Sastry, Chellury; Pratt, Robert G.

    2010-12-01

    Abstract In this paper, we present the results of an analytical cost-benefit study of residential smart appliances in support of a joint stakeholder petition to the EPA and DOE to provide a 5% credit to meet ENERGY STAR eligibility criteria for products that meet the definition of a smart appliance. The underlying hypothesis is that smart appliances can play a critical role in addressing some of the challenges associated with increased electricity demand, and increased penetration of renewable sources of power. Our analytical model utilizes current annual appliance electricity consumption data, and estimates what the wholesale grid operating cost savings would be if some percentage of appliance loads were shifted away from peak hours to run during off-peak hours, and appliance loads serve power system balancing needs such as spinning reserves that would otherwise have to be provided by generators. Historical wholesale market clearing prices (location marginal and spinning reserve) from major wholesale power markets in the United States are used to estimate savings. The savings are then compared with the five percent credit, to determine if the savings in grid operating costs (benefits) are at least as high as the credit (cost) if not higher.

  16. Verification of 1921 peak discharge at Skagit River near Concrete, Washington, using 2003 peak-discharge data

    USGS Publications Warehouse

    Mastin, M.C.; Kresch, D.L.

    2005-01-01

    The 1921 peak discharge at Skagit River near Concrete, Washington (U.S. Geological Survey streamflow-gaging station 12194000), was verified using peak-discharge data from the flood of October 21, 2003, the largest flood since 1921. This peak discharge is critical to determining other high discharges at the gaging station and to reliably estimating the 100-year flood, the primary design flood being used in a current flood study of the Skagit River basin. The four largest annual peak discharges of record (1897, 1909, 1917, and 1921) were used to determine the 100-year flood discharge at Skagit River near Concrete. The peak discharge on December 13, 1921, was determined by James E. Stewart of the U.S. Geological Survey using a slope-area measurement and a contracted-opening measurement. An extended stage-discharge rating curve based on the 1921 peak discharge was used to determine the peak discharges of the three other large floods. Any inaccuracy in the 1921 peak discharge also would affect the accuracies of the three other largest peak discharges. The peak discharge of the 1921 flood was recalculated using the cross sections and high-water marks surveyed after the 1921 flood in conjunction with a new estimate of the channel roughness coefficient (n value) based on an n-verification analysis of the peak discharge of the October 21, 2003, flood. The n value used by Stewart for his slope-area measurement of the 1921 flood was 0.033, and the corresponding calculated peak discharge was 240,000 cubic feet per second (ft3/s). Determination of a single definitive water-surface profile for use in the n-verification analysis was precluded because of considerable variation in elevations of surveyed high-water marks from the flood on October 21, 2003. Therefore, n values were determined for two separate water-surface profiles thought to bracket a plausible range of water-surface slopes defined by high-water marks. The n value determined using the flattest plausible slope was 0

  17. Development of near-term batteries for electric vehicles. Summary report, October 1977-September 1979

    SciTech Connect

    Rajan, J.B.

    1980-06-01

    The status and results through FY 1979 on the Near-Term Electric Vehicle Battery Project of the Argonne National Laboratory are summarized. This project conducts R and D on lead-acid, nickel/zinc and nickel/iron batteries with the objective of achieving commercialization in electric vehicles in the 1980's. Key results of the R and D indicate major technology advancements and achievement of most of FY 1979 performance goals. In the lead-acid system the specific energy was increased from less than 30 Wh/kg to over 40 Wh/kg at the C/3 rate; the peak power density improved from 70 W/kg to over 110 W/kg at the 50% state of charge; and over 200 deep-discharge cycle life demonstrated. In the nickel/iron system a specific energy of 48 Wh/kg was achieved; a peak power of about 100 W/kg demonstrated and a life of 36 cycles obtained. In the nickel/zinc system, specific energies of up to 64 Wh/kg were shown; peak powers of 133 W/kg obtained; and a life of up to 120 cycles measured. Future R and D will emphasize increased cycle life for nickel/zinc batteries and increased cycle life and specific energy for lead-acid and nickel/iron batteries. Testing of 145 cells was completed by NBTL. Cell evaluation included a full set of performance tests plus the application of a simulated power profile equivalent to the power demands of an electric vehicle in stop-start urban driving. Simplified test profiles which approximate electric vehicle demands are also described.

  18. Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Boldin, Ivan A; Nikolaev, Eugene N

    2009-10-01

    Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance (FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR experiments. In order to describe the coalescence phenomenon we would like to propose a new theory of motion for ion clouds with close mass-to-charge ratios, driven by a uniform magnetic field and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of their averaged drift motion in crossed magnetic and electric fields. The ion clouds are considered to be of constant size and their motion is studied in two dimensions. The theory deals with the first-order approximation of the equations of motion in relation to dm/m, where dm is the mass difference and m is the mass of a single ion. The analysis was done for an arbitrary inter-cloud interaction potential, which makes it possible to analyze finite-size ion clouds of any shape. The final analytical expression for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical number of ions for the peak coalescence to take place is shown to depend quadratically on the magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to the ion masses.

  19. A new method to induce molecular low bias negative differential resistance with multi-peaks.

    PubMed

    Min, Y; Zhong, C G; Dong, Z C; Zhao, Z Y; Zhou, P X; Yao, K L

    2016-02-14

    According to a first-principles study of the transport properties of two thiolated anthracene-9,10-diono molecules sandwiching ethyl, a new method to induce molecular low bias negative differential resistance with multi-peaks for strong n- or p-type molecules is proposed. The anthracene-9,10-diono molecule shows strong n-type characteristics when in contact with Au and Ag electrodes via a thiolate. The multiple negative differential resistance effect originated from the molecule-electrode couple is different between Ag and Au electrodes. Our investigations may promise potential for applications in molecular devices with low power dissipation and multifunction in the future.

  20. Estimating peak oxygen uptake based on postexercise measurements in swimming.

    PubMed

    Chaverri, Diego; Iglesias, Xavier; Schuller, Thorsten; Hoffmann, Uwe; Rodríguez, Ferran A

    2016-06-01

    To assess the validity of postexercise measurements in estimating peak oxygen uptake (V̇O2peak) in swimming, we compared oxygen uptake (V̇O2) measurements during supramaximal exercise with various commonly adopted methods, including a recently developed heart rate - V̇O2 modelling procedure. Thirty-one elite swimmers performed a 200-m maximal swim where V̇O2 was measured breath-by-breath using a portable gas analyzer connected to a respiratory snorkel, 1 min before, during, and 3 min postexercise. V̇O2peak(-20-0) was the average of the last 20 s of effort. The following postexercise measures were compared: (i) first 20-s average (V̇O2peak(0-20)); (ii) linear backward extrapolation (BE) of the first 20 s (BE(20)), 30 s, and 3 × 20-, 4 × 20-, and 3 or 4 × 20-s averages; (iii) semilogarithmic BE at 20 s (LOG(20)) and at the other same time intervals as in linear BE; and (iv) predicted V̇O2peak using mathematical modelling (pV̇O2(0-20)]. Repeated-measures ANOVA and post-hoc Bonferroni tests compared V̇O2peak (criterion) and each estimated value. Pearson's coefficient of determination (r(2)) was used to assess correlation. Exercise V̇O2peak(-20-0) (mean ± SD 3531 ± 738 mL·min(-1)) was not different (p > 0.30) from pV̇O2(0-20) (3571 ± 735 mL·min(-1)), BE(20) (3617 ± 708 mL·min(-1)), or LOG(20) (3627 ± 746 mL·min(-1)). pV̇O2(0-20) was very strongly correlated with exercise V̇O2peak (r(2) = 0.962; p < 0.001), and showed a low standard error of the estimate (146 mL·min(-1), 4.1%) and the lowest mean difference (40 mL·min(-1); 1.1%). We confirm that the new modelling procedure based on postexercise V̇O2 and heart rate measurements is a valid and accurate procedure for estimating V̇O2peak in swimmers and avoids the estimation bias produced by other methods.