Sample records for future prey behavior

  1. Potential effects of climate change on the growth of fishes from different thermal guilds in Lakes Michigan and Huron

    USGS Publications Warehouse

    Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie

    2015-01-01

    We used a bioenergetics modeling approach to investigate potential effects of climate change on the growth of two economically important native fishes: yellow perch (Perca flavescens), a cool-water fish, and lake whitefish (Coregonus clupeaformis), a cold-water fish, in deep and oligotrophic Lakes Michigan and Huron. For assessing potential changes in fish growth, we contrasted simulated fish growth in the projected future climate regime during the period 2043-2070 under different prey availability scenarios with the simulated growth during the baseline (historical reference) period 1964-1993. Results showed that effects of climate change on the growth of these two fishes are jointly controlled by behavioral thermoregulation and prey availability. With the ability of behavioral thermoregulation, temperatures experienced by yellow perch in the projected future climate regime increased more than those experienced by lake whitefish. Thus simulated future growth decreased more for yellow perch than for lake whitefish under scenarios where prey availability remains constant into the future. Under high prey availability scenarios, simulated future growth of these two fishes both increased but yellow perch could not maintain the baseline efficiency of converting prey consumption into body weight. We contended that thermal guild should not be the only factor used to predict effects of climate change on the growth of a fish, and that ecosystem responses to climate change should be also taken into account.

  2. Linking Deep-Waer Prey Fields with Odontocete Population Structure and Behavior

    DTIC Science & Technology

    2015-09-30

    potentially mitigate beaked whale responses to disturbance, providing direct input data to PCOD models for beaked whales • Leverage previous...principles of cetacean foraging ecology and responses to disturbance • Identify key prey metrics for future analyses and incorporation into PCOD

  3. Seasonally Varying Predation Behavior and Climate Shifts Are Predicted to Affect Predator-Prey Cycles.

    PubMed

    Tyson, Rebecca; Lutscher, Frithjof

    2016-11-01

    The functional response of some predator species changes from a pattern characteristic for a generalist to that for a specialist according to seasonally varying prey availability. Current theory does not address the dynamic consequences of this phenomenon. Since season length correlates strongly with altitude and latitude and is predicted to change under future climate scenarios, including this phenomenon in theoretical models seems essential for correct prediction of future ecosystem dynamics. We develop and analyze a two-season model for the great horned owl (Bubo virginialis) and snowshoe hare (Lepus americanus). These species form a predator-prey system in which the generalist to specialist shift in predation pattern has been documented empirically. We study the qualitative behavior of this predator-prey model community as summer season length changes. We find that relatively small changes in summer season length can have a profound impact on the system. In particular, when the predator has sufficient alternative resources available during the summer season, it can drive the prey to extinction, there can be coexisting stable states, and there can be stable large-amplitude limit cycles coexisting with a stable steady state. Our results illustrate that the impacts of global change on local ecosystems can be driven by internal system dynamics and can potentially have catastrophic consequences.

  4. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior

    PubMed Central

    Pruitt, Jonathan N.; Howell, Kimberly A.; Gladney, Shaniqua J.; Yang, Yusan; Lichtenstein, James L. L.; Spicer, Michelle Elise; Echeverri, Sebastian A.; Pinter-Wollman, Noa

    2017-01-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals’ behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system. PMID:28221831

  5. Behavioral Hypervolumes of Predator Groups and Predator-Predator Interactions Shape Prey Survival Rates and Selection on Prey Behavior.

    PubMed

    Pruitt, Jonathan N; Howell, Kimberly A; Gladney, Shaniqua J; Yang, Yusan; Lichtenstein, James L L; Spicer, Michelle Elise; Echeverri, Sebastian A; Pinter-Wollman, Noa

    2017-03-01

    Predator-prey interactions often vary on the basis of the traits of the individual predators and prey involved. Here we examine whether the multidimensional behavioral diversity of predator groups shapes prey mortality rates and selection on prey behavior. We ran individual sea stars (Pisaster ochraceus) through three behavioral assays to characterize individuals' behavioral phenotype along three axes. We then created groups that varied in the volume of behavioral space that they occupied. We further manipulated the ability of predators to interact with one another physically via the addition of barriers. Prey snails (Chlorostome funebralis) were also run through an assay to evaluate their predator avoidance behavior before their use in mesocosm experiments. We then subjected pools of prey to predator groups and recorded the number of prey consumed and their behavioral phenotypes. We found that predator-predator interactions changed survival selection on prey traits: when predators were prevented from interacting, more fearful snails had higher survival rates, whereas prey fearfulness had no effect on survival when predators were free to interact. We also found that groups of predators that occupied a larger volume in behavioral trait space consumed 35% more prey snails than homogeneous predator groups. Finally, we found that behavioral hypervolumes were better predictors of prey survival rates than single behavioral traits or other multivariate statistics (i.e., principal component analysis). Taken together, predator-predator interactions and multidimensional behavioral diversity determine prey survival rates and selection on prey traits in this system.

  6. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.

    PubMed

    Higham, Timothy E; Stewart, William J; Wainwright, Peter C

    2015-07-01

    Successful feeding and escape behaviors in fishes emerge from precise integration of locomotion and feeding movements. Fishes inhabit a wide range of habitats, including still ponds, turbulent rivers, and wave-pounded shorelines, and these habitats vary in several physical variables that can strongly impact both predator and prey. Temperature, the conditions of ambient flow, and light regimes all have the potential to affect predator-prey encounters, yet the integration of these factors into our understanding of fish biomechanics is presently limited. We explore existing knowledge of kinematics, muscle function, hydrodynamics, and evolutionary morphology in order to generate a framework for understanding the ecomechanics of predator-prey encounters in fishes. We expect that, in the absence of behavioral compensation, a decrease in temperature below the optimum value will reduce the muscle power available both to predator and prey, thus compromising locomotor performance, suction-feeding mechanics of predators, and the escape responses of prey. Ambient flow, particularly turbulent flow, will also challenge predator and prey, perhaps resulting in faster attacks by predators to minimize mechanical instability, and a reduced responsiveness of prey to predator-generated flow. Reductions in visibility, caused by depth, turbidity, or diel fluctuations in light, will decrease distances at which either predator or prey detect each other, and generally place a greater emphasis on the role of mechanoreception both for predator and prey. We expect attack distances to be shortened when visibility is low. Ultimately, the variation in abiotic features of a fish's environment will affect locomotion and feeding performance of predators, and the ability of the prey to escape. The nature of these effects and how they impact predator-prey encounters stands as a major challenge for future students of the biomechanics of fish during feeding. Just as fishes show adaptations for capturing specific types of prey, we anticipate they are also adapted to the physical features of their preferred habitat and show a myriad of behavioral mechanisms for dealing with abiotic factors during predator-prey encounters. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    PubMed Central

    Catania, Kenneth C.

    2010-01-01

    Background Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed. Conclusions The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale—over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive. PMID:20585384

  8. A predator equalizes rate of capture of a schooling prey in a patchy environment.

    PubMed

    Vijayan, Sundararaj; Kotler, Burt P; Abramsky, Zvika

    2017-05-01

    Prey individuals are often distributed heterogeneously in the environment, and their abundances and relative availabilities vary among patches. A foraging predator should maximize energetic gains by selectively choosing patches with higher prey density. However, catching behaviorally responsive and group-forming prey in patchy environments can be a challenge for predators. First, they have to identify the profitable patches, and second, they must manage the prey's sophisticated anti-predator behavior. Thus, the forager and its prey have to continuously adjust their behavior to that of their opponent. Given these conditions, the foraging predator's behavior should be dynamic with time in terms of foraging effort and prey capture rates across different patches. Theoretically, the allocation of its time among patches of behaviorally responsive prey should be such that it equalizes its prey capture rates across patches through time. We tested this prediction in a model system containing a predator (little egret) and group-forming prey (common gold fish) in two sets of experiments in which (1) patches (pools) contained equal numbers of prey, or in which (2) patches contained unequal densities of prey. The egret equalized the prey capture rate through time in both equal and different density experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits

    PubMed Central

    Villanueva, Roger; Perricone, Valentina; Fiorito, Graziano

    2017-01-01

    The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of mechanoreceptor structures and the presence of long and filamentous arms are more abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in disguise, among others are known modes of hunting in cephalopods. Cannibalism and scavenger behavior is also known for some species and the development of current culture techniques offer evidence of their ability to feed on inert and artificial foods. Feeding requirements and prey choice change throughout development and in some species, strong ontogenetic changes in body form seem associated with changes in their diet and feeding strategies, although this is poorly understood in planktonic and larval stages. Feeding behavior is altered during senescence and particularly in brooding octopus females. Cephalopods are able to feed from a variety of food sources, from detritus to birds. Their particular requirements of lipids and copper may help to explain why marine crustaceans, rich in these components, are common prey in all cephalopod diets. The expected variation in climate change and ocean acidification and their effects on chemoreception and prey detection capacities in cephalopods are unknown and needs future research. PMID:28861006

  10. Watching from a distance: A robotically controlled laser and real-time subject tracking software for the study of conditioned predator/prey-like interactions.

    PubMed

    Wilson, James C; Kesler, Mitch; Pelegrin, Sara-Lynn E; Kalvi, LeAnna; Gruber, Aaron; Steenland, Hendrik W

    2015-09-30

    The physical distance between predator and prey is a primary determinant of behavior, yet few paradigms exist to study this reliably in rodents. The utility of a robotically controlled laser for use in a predator-prey-like (PPL) paradigm was explored for use in rats. This involved the construction of a robotic two-dimensional gimbal to dynamically position a laser beam in a behavioral test chamber. Custom software was used to control the trajectory and final laser position in response to user input on a console. The software also detected the location of the laser beam and the rodent continuously so that the dynamics of the distance between them could be analyzed. When the animal or laser beam came within a fixed distance the animal would either be rewarded with electrical brain stimulation or shocked subcutaneously. Animals that received rewarding electrical brain stimulation could learn to chase the laser beam, while animals that received aversive subcutaneous shock learned to actively avoid the laser beam in the PPL paradigm. Mathematical computations are presented which describe the dynamic interaction of the laser and rodent. The robotic laser offers a neutral stimulus to train rodents in an open field and is the first device to be versatile enough to assess distance between predator and prey in real time. With ongoing behavioral testing this tool will permit the neurobiological investigation of predator/prey-like relationships in rodents, and may have future implications for prosthetic limb development through brain-machine interfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. State of emergency: behavior of gerbils is affected by the hunger state of their predators.

    PubMed

    Berger-Tal, Oded; Kotler, Burt P

    2010-02-01

    Predator-prey interactions are usually composed of behaviorally sophisticated games in which the values of the strategies of foraging prey individuals may depend on those of their predators, and vice versa. Therefore, any change in the behavior of the predator should result in changes to the behavior of the prey. However, this key prediction has rarely been tested. To examine the effects of the predator state on prey behavior, we manipulated the state of captive Barn Owls, Tyto alba, and released them into an enclosure containing Allenby's gerbils, Gerbillus andersoni allenbyi, a common prey of the owls. The owls were significantly more active when hungry. In response, the gerbils altered their behavior according to the state of the owl. When the owl was hungry, the gerbils visited fewer food patches, foraged in fewer patches, and harvested less food from each patch. Moreover, the gerbils kept their foraging bouts closer to their burrow, which reduced the overlap among foraging ranges of individual gerbils. Thus, changes in the state of the predator affect the foraging behavior of its prey and can also mediate competition among prey individuals.

  12. Plasticity of Noddy Parents and Offspring to Sea-Surface Temperature Anomalies

    PubMed Central

    Devney, Carol A.; Caley, M. Julian; Congdon, Bradley C.

    2010-01-01

    Behavioral and/or developmental plasticity is crucial for resisting the impacts of environmental stressors. We investigated the plasticity of adult foraging behavior and chick development in an offshore foraging seabird, the black noddy (Anous minutus), during two breeding seasons. The first season had anomalously high sea-surface temperatures and ‘low’ prey availability, while the second was a season of below average sea-surface temperatures and ‘normal’ food availability. During the second season, supplementary feeding of chicks was used to manipulate offspring nutritional status in order to mimic conditions of high prey availability. When sea-surface temperatures were hotter than average, provisioning rates were significantly and negatively impacted at the day-to-day scale. Adults fed chicks during this low-food season smaller meals but at the same rate as chicks in the unfed treatment the following season. Supplementary feeding of chicks during the second season also resulted in delivery of smaller meals by adults, but did not influence feeding rate. Chick begging and parental responses to cessation of food supplementation suggested smaller meals fed to artificially supplemented chicks resulted from a decrease in chick demands associated with satiation, rather than adult behavioral responses to chick condition. During periods of low prey abundance, chicks maintained structural growth while sacrificing body condition and were unable to take advantage of periods of high prey abundance by increasing growth rates. These results suggest that this species expresses limited plasticity in provisioning behavior and offspring development. Consequently, responses to future changes in sea-surface temperature and other environmental variation may be limited. PMID:20686693

  13. Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Zhang, Tonghua; Meng, Xinzhu; Zhang, Tongqian

    2018-04-01

    In this paper, we propose a predator-prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.

  14. The extent of cultural variation between adjacent chimpanzee (Pan troglodytes verus) communities; a microecological approach.

    PubMed

    Luncz, Lydia V; Boesch, Christophe

    2015-01-01

    Chimpanzees show cultural differences among populations across Africa but also between neighboring communities. The extent of these differences among neighbors, however, remains largely unknown. Comparing three neighboring chimpanzee community in the Taï National Park, Côte d'Ivoire, we found 27 putative cultural traits, including tool use, foraging, social interaction, communication and hunting behavior, exceeding by far previously known diversity. As foraging behavior is predominantly influenced by the environment, we further compared in detail ecological circumstances underlying insectivore feeding behavior to analyze whether foraging differences on Dorylus ants and Thoracotermes termites seen between neighboring chimpanzee communities were caused by environmental factors. Differences in the prey characteristics of Dorylus ants (aggression level, running speed, and nest structure) that could influence the behavior of chimpanzees were excluded, suggesting that the observed group-specific variation is not ecologically driven. Only one community preyed on Thoracotermes termites despite a similar abundance of termite mounds in all three territories, supporting the idea that this difference is also not shaped by the environment. Therefore, our study suggests that transmission of cultural knowledge plays a role in determining insectivory prey behavior. This behavioral plasticity, independent of ecological conditions, can lead to large numbers of cultural diversification between neighboring chimpanzee communities. These findings not only deepen our understanding of the cultural abilities of chimpanzees in the wild but also open up possible future comparisons of the origin of cultural diversification among humans and chimpanzees. © 2014 Wiley Periodicals, Inc.

  15. Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.

    PubMed

    Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy

    2016-07-01

    As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.

  16. Predator and prey activity levels jointly influence the outcome of long-term foraging bouts

    PubMed Central

    2013-01-01

    Consistent interindividual differences in behavior (i.e., “behavioral types”) may be a key factor in determining the outcome of species interactions. Studies that simultaneously account for the behavioral types of individuals in multiple interacting species, such as predator–prey systems, may be particularly strong predictors of ecological outcomes. Here, we test the predator–prey locomotor crossover hypothesis, which predicts that active predators are more likely to encounter and consume prey with the opposing locomotor tendency. We test this hypothesis using intraspecific behavioral variation in both a predator and prey species as predictors of foraging outcomes. We use the old field jumping spider, Phidippus clarus (Araneae, Salticidae), and the house cricket, Acheta domesticus (Orthoptera, Gryllidae), as a model predator–prey system in laboratory mesocosm trials. Stable individual differences in locomotor tendencies were identified in both P. clarus and A. domesticus, and the outcome of foraging bouts depended neither on the average activity level of the predator nor on the average activity level of prey. Instead, an interaction between the activity level of spiders and crickets predicted spider foraging success and prey survivorship. Consistent with the locomotor crossover hypothesis, predators exhibiting higher activity levels consumed more prey when in an environment containing low-activity prey items and vice versa. This study highlights 1) the importance of intraspecific variation in determining the outcome of predator–prey interactions and 2) that acknowledging behavioral variation in only a single species may be insufficient to characterize the performance consequences of intraspecific trait variants. PMID:23935257

  17. The neural basis of visual behaviors in the larval zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2015-01-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836

  18. Behavioral response races, predator-prey shell games, ecology of fear, and patch use of pumas and their ungulate prey.

    PubMed

    Laundré, John W

    2010-10-01

    The predator-prey shell game predicts random movement of prey across the landscape, whereas the behavioral response race and landscape of fear models predict that there should be a negative relationship between the spatial distribution of a predator and its behaviorally active prey. Additionally, prey have imperfect information on the whereabouts of their predator, which the predator should incorporate in its patch use strategy. I used a one-predator-one-prey system, puma (Puma concolor)-mule deer (Odocoileus hemionus) to test the following predictions regarding predator-prey distribution and patch use by the predator. (1) Pumas will spend more time in high prey risk/low prey use habitat types, while deer will spend their time in low-risk habitats. Pumas should (2) select large forage patches more often, (3) remain in large patches longer, and (4) revisit individual large patches more often than individual smaller ones. I tested these predictions with an extensive telemetry data set collected over 16 years in a study area of patchy forested habitat. When active, pumas spent significantly less time in open areas of low intrinsic predation risk than did deer. Pumas used large patches more than expected, revisited individual large patches significantly more often than smaller ones, and stayed significantly longer in larger patches than in smaller ones. The results supported the prediction of a negative relationship in the spatial distribution of a predator and its prey and indicated that the predator is incorporating the prey's imperfect information about its presence. These results indicate a behavioral complexity on the landscape scale that can have far-reaching impacts on predator-prey interactions.

  19. On the amphibious food uptake and prey manipulation behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi, Arntzen and Wielstra, 2013).

    PubMed

    Lukanov, Simeon; Tzankov, Nikolay; Handschuh, Stephan; Heiss, Egon; Naumov, Borislav; Natchev, Nikolay

    2016-06-01

    Feeding behavior in salamanders undergoing seasonal habitat shifts poses substantial challenges caused by differences in the physical properties of air and water. Adapting to these specific environments, urodelans use suction feeding predominantly under water as opposed to lingual food prehension on land. This study aims to determine the functionality of aquatic and terrestrial feeding behavior in the Balkan-Anatolian crested newt (Triturus ivanbureschi) in its terrestrial stage. During the terrestrial stage, these newts feed frequently in water where they use hydrodynamic mechanisms for prey capture. On land, prey apprehension is accomplished mainly by lingual prehension, while jaw prehension seems to be the exception (16.67%) in all terrestrial prey capture events. In jaw prehension events there was no detectable depression of the hyo-lingual complex. The success of terrestrial prey capture was significantly higher when T. ivanbureschi used lingual prehension. In addition to prey capture, we studied the mechanisms involved in the subduction of prey. In both media, the newts frequently used a shaking behavior to immobilize the captured earthworms. Apparently, prey shaking constitutes a significant element in the feeding behavior of T. ivanbureschi. Prey immobilization was applied more frequently during underwater feeding, which necessitates a discussion of the influence of the feeding media on food manipulation. We also investigated the osteology of the cranio-cervical complex in T. ivanbureschi to compare it to that of the predominantly terrestrial salamandrid Salamandra salamandra. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Field evidence for pervasive indirect effects of fishing on prey foraging behavior.

    PubMed

    Madin, Elizabeth M P; Gaines, Steven D; Warner, Robert R

    2010-12-01

    The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.

  1. Altruism: A natural strategy for enhancing survival

    NASA Astrophysics Data System (ADS)

    Rozenfeld, Alejandro F.; Luis Gruver, José; Albano, Ezequiel V.; Havlin, Shlomo

    2006-09-01

    We study the influence of altruistic behavior in a prey-predator model permitting the preys to commit suicide by confronting the predators instead of escaping. Surprising, altruistic behavior at microscopic (local) scale, leads to the emergence of new complex macroscopic (global) phenomena characterized by dramatic changes in the dynamic topology of the prey-predator spatiotemporal distribution, yielding spiral patterns. We show that such dynamics enhances the prey's survivability.

  2. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs.

    PubMed

    Kroeker, Kristy J; Sanford, Eric; Jellison, Brittany M; Gaylord, Brian

    2014-06-01

    The influence of environmental change on species interactions will affect population dynamics and community structure in the future, but our current understanding of the outcomes of species interactions in a high-CO2 world is limited. Here, we draw upon emerging experimental research examining the effects of ocean acidification on coastal molluscs to provide hypotheses of the potential impacts of high-CO2 on predator-prey interactions. Coastal molluscs, such as oysters, mussels, and snails, allocate energy among defenses, growth, and reproduction. Ocean acidification increases the energetic costs of physiological processes such as acid-base regulation and calcification. Impacted molluscs can display complex and divergent patterns of energy allocation to defenses and growth that may influence predator-prey interactions; these include changes in shell properties, body size, tissue mass, immune function, or reproductive output. Ocean acidification has also been shown to induce complex changes in chemoreception, behavior, and inducible defenses, including altered cue detection and predator avoidance behaviors. Each of these responses may ultimately alter the susceptibility of coastal molluscs to predation through effects on predator handling time, satiation, and search time. While many of these effects may manifest as increases in per capita predation rates on coastal molluscs, the ultimate outcome of predator-prey interactions will also depend on how ocean acidification affects the specified predators, which also exhibit complex responses to ocean acidification. Changes in predator-prey interactions could have profound and unexplored consequences for the population dynamics of coastal molluscs in a high-CO2 ocean. © 2014 Marine Biological Laboratory.

  3. Prey transport kinematics in Tupinambis teguixin and Varanus exanthematicus: conservation of feeding behavior in 'chemosensory-tongued' lizards.

    PubMed

    Elias, J A; McBrayer, L D; Reilly, S M

    2000-02-01

    Although lizards have been predicted to show extensive intraoral prey-processing behaviors, quantitative analyses of the types of prey-processing behavior they demonstrate and of their kinematics have been limited. The more basal lizard lineages (Iguanians) have undergone some study, but the prey-processing repertoires of crown taxa have not been thoroughly examined and quantitative comparisons of behaviors within or among species have not been made. In this study, the prey transport behavior of the savannah monitor (Varanus exanthematicus) and gold tegu (Tupinambis teguixin) are described. Although these two lineages have independently evolved tongues that are highly specialized for chemoreception, we found that they share the same three distinct types of transport behavior. These behavior patterns are (i) a purely inertial transport, (ii) an inertial transport with use of the tongue, and (iii) a non-inertial lingual transport. The tongue is used extensively in both the inertial and the purely lingual transport behaviors. More than 75 % of all transport behaviors involved tongue movements. These species appear to exhibit a conservation of feeding kinematics compared with patterns known for basal lizards. A hypothesis for the evolution of inertial feeding is proposed.

  4. Behavioral and physiological responses to prey match-mismatch in larval herring

    NASA Astrophysics Data System (ADS)

    Illing, Björn; Moyano, Marta; Berg, Julia; Hufnagl, Marc; Peck, Myron A.

    2018-02-01

    The year-class success of Atlantic herring (Clupea harengus) spawning in the autumn/winter in the North Sea (NSAS stock) and in the spring in the western Baltic Sea (WBSS) appears driven by prey match-mismatch dynamics affecting the survival of larvae during the first weeks of life. To better understand and model the consequences of prey match-mismatch from an individual-based perspective, we measured aspects of the physiology and behavior of NSAS and WBSS herring larvae foraging in markedly different prey concentrations. When matched with prey (ad libitum concentrations of the copepod Acartia tonsa) larval growth, swimming activity, nutritional condition and metabolic rates were relatively high. When prey was absent (mismatch), swimming and feeding behavior rapidly declined within 2 and 4 days, for WBSS and NSAS larvae, respectively, concomitant with reductions in nutritional (RNA-DNA ratio) and somatic (weight-at-length) condition. After several days without prey, respiration measurements made on WBSS larvae suggested metabolic down-regulation (8-34%). An individual-based model depicting the time course of these Behavioral and physiological responses suggested that 25-mm larvae experiencing a mismatch would survive 25-33% (10, 7 °C) longer than 12-mm larvae. Warmer temperatures exacerbate starvation-induced decrements in performance. Without Behavioral and metabolic adjustments, survival of 25-mm larvae would be reduced from 8 to 6 days at 7 °C. Our findings highlight how adaptive Behavioral and physiological responses are tightly linked to prey match-mismatch dynamics in larval herring and how these responses can be included in models to better explore how bottom-up processes regulate larval fish growth and survival.

  5. The neural basis of visual behaviors in the larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. The Coevolution of "Tyrannosaurus" & Its Prey: Could "Tyrannosaurus" Chase down & Kill a "Triceratops" for Lunch?

    ERIC Educational Resources Information Center

    May, S. Randolph

    2014-01-01

    Students will analyze the coevolution of the predator-prey relationships between "Tyrannosaurus rex" and its prey species using analyses of animal speeds from fossilized trackways, prey-animal armaments, adaptive behaviors, bite marks on prey-animal fossils, predator-prey ratios, and scavenger competition. The students will be asked to…

  7. Outrun or Outmaneuver: Predator-Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context.

    PubMed

    Moore, Talia Y; Biewener, Andrew A

    2015-12-01

    Behavioral studies performed in natural habitats provide a context for the development of hypotheses and the design of experiments relevant both to biomechanics and to evolution. In particular, predator-prey interactions are a model system for integrative study because success or failure of predation has a direct effect on fitness and drives the evolution of specialized performance in both predator and prey. Although all predators share the goal of capturing prey, and all prey share the goal of survival, the behavior of predators and prey are diverse in nature. This article presents studies of some predator-prey interactions sharing common predation strategies that reveal general principles governing the behaviors of predator and prey, even in distantly related taxa. Studies of predator-prey interactions also reveal that maximal performance observed in a laboratory setting is not necessarily the performance that determines fitness. Thus, considering locomotion in the context of predation ecology can aid in evolutionarily relevant experimental design. Classification by strategy reveals that displaying unpredictable trajectories is a relevant anti-predator behavior in response to multiple predation strategies. A predator's perception and pursuit of prey can be affected indirectly by divergent locomotion of similar animals that share an ecosystem. Variation in speed and direction of locomotion that directly increases the unpredictability of a prey's trajectory can be increased through genetic mutation that affects locomotor patterns, musculoskeletal changes that affect maneuverability, and physical interactions between an animal and the environment. By considering the interconnectedness of ecology, physical constraints, and the evolutionary history of behavior, studies in biomechanics can be designed to inform each of these fields. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. BEHAVIOR AND PREY OF NESTING RED-SHOULDERED HAWKS IN SOUTHWESTERN OHIO

    EPA Science Inventory

    We used direct observations to quantify prey types, prey delivery rate, and adult and nestling behavior at nests of Red-shouldered Hawks (Buteo lineatus) in suburban southwestern Ohio. Twenty-one nests were observed for a total of 256 hr in 1997-2001. Small mammals made up the ...

  9. Modeling the Fear Effect in Predator-Prey Interactions with Adaptive Avoidance of Predators.

    PubMed

    Wang, Xiaoying; Zou, Xingfu

    2017-06-01

    Recent field experiments on vertebrates showed that the mere presence of a predator would cause a dramatic change of prey demography. Fear of predators increases the survival probability of prey, but leads to a cost of prey reproduction. Based on the experimental findings, we propose a predator-prey model with the cost of fear and adaptive avoidance of predators. Mathematical analyses show that the fear effect can interplay with maturation delay between juvenile prey and adult prey in determining the long-term population dynamics. A positive equilibrium may lose stability with an intermediate value of delay and regain stability if the delay is large. Numerical simulations show that both strong adaptation of adult prey and the large cost of fear have destabilizing effect while large population of predators has a stabilizing effect on the predator-prey interactions. Numerical simulations also imply that adult prey demonstrates stronger anti-predator behaviors if the population of predators is larger and shows weaker anti-predator behaviors if the cost of fear is larger.

  10. "Freshwater killer whales": beaching behavior of an alien fish to hunt land birds.

    PubMed

    Cucherousset, Julien; Boulêtreau, Stéphanie; Azémar, Frédéric; Compin, Arthur; Guillaume, Mathieu; Santoul, Frédéric

    2012-01-01

    The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ(13)C and δ(15)N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.

  11. The behavioral response of prey fish to predators: the role of predator size.

    PubMed

    Tang, Zhong-Hua; Huang, Qing; Wu, Hui; Kuang, Lu; Fu, Shi-Jian

    2017-01-01

    Predation is one of the key factors governing patterns in natural systems, and adjustments of prey behaviors in response to a predator stimulus can have important ecological implications for wild fish. To investigate the effects of predators on the behavior of prey fish and to test whether the possible effects varied with predator size, black carp (Mylopharyngodon piceus) and snakehead (Channa argus) (a size-matched predator treatment with a similar body size to prey fish and a larger predator treatment with approximately 2.7 times of the body mass of prey fish) were selected to function as prey and predator, respectively. Their spontaneous activities were videorecorded in a central circular arena surrounded by a ring holding the stimulus fish. The distance between prey and predator fish was approximately 200% of the distance between two prey fish, which suggested that black carp can distinguish their conspecifics from heterospecifics and probably recognize the snakehead as a potential predator. The prey fish spent substantially less time moving and exhibited an overall shorter total distance of movement after the size-matched or large predator was introduced, which possibly occurred due to increased vigilance or efforts to reduce the possibility of detection by potential predators. However, there was no significant difference in either distance or spontaneous activities between two predator treatments. These findings suggested that (1) an anti-predator strategy in black carp might involve maintaining a safe distance, decreasing activity and possibly increased vigilance and that (2) the behaviors of prey response to predators were not influenced by their relative size difference.

  12. Sting, Carry and Stock: How Corpse Availability Can Regulate De-Centralized Task Allocation in a Ponerine Ant Colony

    PubMed Central

    Schmickl, Thomas; Karsai, Istvan

    2014-01-01

    We develop a model to produce plausible patterns of task partitioning in the ponerine ant Ectatomma ruidum based on the availability of living prey and prey corpses. The model is based on the organizational capabilities of a “common stomach” through which the colony utilizes the availability of a natural (food) substance as a major communication channel to regulate the income and expenditure of the very same substance. This communication channel has also a central role in regulating task partitioning of collective hunting behavior in a supply&demand-driven manner. Our model shows that task partitioning of the collective hunting behavior in E. ruidum can be explained by regulation due to a common stomach system. The saturation of the common stomach provides accessible information to individual ants so that they can adjust their hunting behavior accordingly by engaging in or by abandoning from stinging or transporting tasks. The common stomach is able to establish and to keep stabilized an effective mix of workforce to exploit the prey population and to transport food into the nest. This system is also able to react to external perturbations in a de-centralized homeostatic way, such as to changes in the prey density or to accumulation of food in the nest. In case of stable conditions the system develops towards an equilibrium concerning colony size and prey density. Our model shows that organization of work through a common stomach system can allow Ectatomma ruidum to collectively forage for food in a robust, reactive and reliable way. The model is compared to previously published models that followed a different modeling approach. Based on our model analysis we also suggest a series of experiments for which our model gives plausible predictions. These predictions are used to formulate a set of testable hypotheses that should be investigated empirically in future experimentation. PMID:25493558

  13. Animal-Borne Imaging Reveals Novel Insights into the Foraging Behaviors and Diel Activity of a Large-Bodied Apex Predator, the American Alligator (Alligator mississippiensis)

    PubMed Central

    Nifong, James C.; Nifong, Rachel L.; Silliman, Brian R.; Lowers, Russell H.; Guillette, Louis J.; Ferguson, Jake M.; Welsh, Matthew; Abernathy, Kyler; Marshall, Greg

    2014-01-01

    Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals’ experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal-borne imaging when studying the behavior of elusive large-bodied, apex predators, as it provides critical insights into their trophic and behavioral interactions. PMID:24454711

  14. Animal-borne imaging reveals novel insights into the foraging behaviors and Diel activity of a large-bodied apex predator, the American alligator (Alligator mississippiensis).

    PubMed

    Nifong, James C; Nifong, Rachel L; Silliman, Brian R; Lowers, Russell H; Guillette, Louis J; Ferguson, Jake M; Welsh, Matthew; Abernathy, Kyler; Marshall, Greg

    2014-01-01

    Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals' experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal-borne imaging when studying the behavior of elusive large-bodied, apex predators, as it provides critical insights into their trophic and behavioral interactions.

  15. Prey-mediated behavioral responses of feeding blue whales in controlled sound exposure experiments.

    PubMed

    Friedlaender, A S; Hazen, E L; Goldbogen, J A; Stimpert, A K; Calambokidis, J; Southall, B L

    2016-06-01

    Behavioral response studies provide significant insights into the nature, magnitude, and consequences of changes in animal behavior in response to some external stimulus. Controlled exposure experiments (CEEs) to study behavioral response have faced challenges in quantifying the importance of and interaction among individual variability, exposure conditions, and environmental covariates. To investigate these complex parameters relative to blue whale behavior and how it may change as a function of certain sounds, we deployed multi-sensor acoustic tags and conducted CEEs using simulated mid-frequency active sonar (MFAS) and pseudo-random noise (PRN) stimuli, while collecting synoptic, quantitative prey measures. In contrast to previous approaches that lacked such prey data, our integrated approach explained substantially more variance in blue whale dive behavioral responses to mid-frequency sounds (r2 = 0.725 vs. 0.14 previously). Results demonstrate that deep-feeding whales respond more clearly and strongly to CEEs than those in other behavioral states, but this was only evident with the increased explanatory power provided by incorporating prey density and distribution as contextual covariates. Including contextual variables increases the ability to characterize behavioral variability and empirically strengthens previous findings that deep-feeding blue whales respond significantly to mid-frequency sound exposure. However, our results are only based on a single behavioral state with a limited sample size, and this analytical framework should be applied broadly across behavioral states. The increased capability to describe and account for individual response variability by including environmental variables, such as prey, that drive foraging behavior underscores the importance of integrating these and other relevant contextual parameters in experimental designs. Our results suggest the need to measure and account for the ecological dynamics of predator-prey interactions when studying the effects of anthropogenic disturbance in feeding animals.

  16. Prey handling and diet of Louisiana pine snakes (Pituophis ruthveni) and black pine snakes (P. melanoleucus lodingi), with comparisons to other selected colubrid snakes

    Treesearch

    D. Craig Rudolph; Shirley J. Burgdorf; Richard N. Conner; Christopher S. Collins; Daniel Saenz; Richard R. Schaefer; Toni Trees; C. Michael Duran; Marc Ealy; John G. Himes

    2002-01-01

    Diet and prey handling behavior were determined for Louisiana pine snakes (Pituophis ruthveni) and black pine snakes (P. melanoleucus lodingi). Louisiana pine snakes prey heavily on Baird's pocket gophers (Geomys breviceps), with which they are sympatric, and exhibit specialized behaviors that facilitate...

  17. Predator identity and consumer behavior: differential effects of fish and crayfish on the habitat use of a freshwater snail.

    PubMed

    Turner, Andrew M; Fetterolf, Shelley A; Bernot, Randall J

    1999-02-01

    Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources.

  18. Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues

    PubMed Central

    Übernickel, Kirstin; Tschapka, Marco; Kalko, Elisabeth K. V.

    2013-01-01

    Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behavior to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behavior. We studied the adaptations in the behavior of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behavior at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behavior to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behavior during approaches within very short reaction times depending on the sensory information available. PMID:23675352

  19. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions

    PubMed Central

    Schmitz, Oswald

    2017-01-01

    Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073

  20. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  1. Capture success and efficiency of dragonflies pursuing different types of prey.

    PubMed

    Combes, S A; Salcedo, M K; Pandit, M M; Iwasaki, J M

    2013-11-01

    The dynamics of predator-prey interactions vary enormously, due both to the heterogeneity of natural environments and to wide variability in the sensorimotor systems of predator and prey. In addition, most predators pursue a range of different types of prey, and most organisms are preyed upon by a variety of predators. We do not yet know whether predators employ a general kinematic and behavioral strategy, or whether they tailor their pursuits to each type of prey; nor do we know how widely prey differ in their survival strategies and sensorimotor capabilities. To gain insight into these questions, we compared aerial predation in 4 species of libelluid dragonflies pursuing 4 types of dipteran prey, spanning a range of sizes. We quantified the proportion of predation attempts that were successful (capture success), as well as the total time spent and the distance flown in pursuit of prey (capture efficiency). Our results show that dragonfly prey-capture success and efficiency both decrease with increasing size of prey, and that average prey velocity generally increases with size. However, it is not clear that the greater distances and times required for capturing larger prey are due solely to the flight performance (e.g., speed or evasiveness) of the prey, as predicted. Dragonflies initiated pursuits of large prey when they were located farther away, on average, as compared to small prey, and the total distance flown in pursuit was correlated with initial distance to the prey. The greater initial distances observed during pursuits of larger prey may arise from constraints on dragonflies' visual perception; dragonflies typically pursued prey subtending a visual angle of 1°, and rarely pursued prey at visual angles greater than 3°. Thus, dragonflies may be unable to perceive large prey flying very close to their perch (subtending a visual angle greater than 3-4°) as a distinct target. In comparing the performance of different dragonfly species that co-occur in the same habitat, we found significant differences that are not explained by body size, suggesting that some dragonflies may be specialized for pursuing particular types of prey. Our results underscore the importance of performing comparative studies of predator-prey interactions with freely behaving subjects in natural settings, to provide insight into how the behavior of both participants influences the dynamics of the interaction. In addition, it is clear that gaining a full understanding of predator-prey interactions requires detailed knowledge not only of locomotory mechanics and behavior, but also of the sensory capabilities and constraints of both predator and prey.

  2. Prey-capture Strategies of Fish-hunting Cone Snails: Behavior, Neurobiology and Evolution

    PubMed Central

    Olivera, Baldomero M.; Seger, Jon; Horvath, Martin P.; Fedosov, Alexander

    2015-01-01

    The venomous fish-hunting cone snails (Conus) comprise eight distinct lineages evolved from ancestors that preyed on worms. In this article we attempt to reconstruct events resulting in this shift in food resource by closely examining patterns of behavior, biochemical agents (toxins) that facilitate prey capture, and the combinations of toxins present in extant species. The first sections introduce three different hunting behaviors associated with piscivory: “taser and tether”, “net engulfment”, and “strike and stalk”. The first two fish-hunting behaviors are clearly associated with distinct groups of venom components, called cabals, which act in concert to modify the behavior of prey in a specific manner. Derived fish-hunting behavior clearly also correlates with physical features of the radular tooth, the device that injects these biochemical components. Mapping behavior, biochemical components, and radular tooth features onto phylogenetic trees shows that fish-hunting behavior emerged at lease twice during evolution. The system presented here may be one of the best examples where diversity in structure, physiology and molecular features was initially driven by particular pathways selected through behavior. PMID:26397110

  3. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?

    PubMed

    Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L

    2017-07-01

    Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.

  4. Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish.

    PubMed

    Schmitt, Russell J; Holbrook, Sally J

    1984-07-01

    Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.

  5. Understory avifauna exhibits altered mobbing behavior in tropical forest degraded by selective logging.

    PubMed

    Hua, Fangyuan; Sieving, Kathryn E

    2016-11-01

    In understanding the impacts of selective logging on biodiversity, relatively little is known about the critical behavioral link between altered forest conditions and population persistence. Predator-mobbing is a widespread anti-predator behavior in birds that expresses a well-known trade-off influencing prey survival under predation risk. Here, we ask whether the predator-mobbing behavior of understory forest birds is altered by selective logging and associated forest structural changes in the highly endangered lowland rainforest of Sumatra. At four study sites spanning a gradient of logging-induced forest degradation, we used standardized mobbing and owl call playbacks with predator model presentation to elicit the predator-mobbing behavior of understory prey birds, compared birds' mobbing intensity across sites, and related variation in this intensity to forest vegetation structure. We found that selective logging altered birds' predator-mobbing intensity (measured by behavioral conspicuousness and propensity to approach the predator) as well as forest structure, and that vegetative changes to canopy and understory were correlated with contrasting responses by the two major bird foraging guilds, gleaning versus flycatching birds. We additionally discuss the implications of our findings for further hypothesis testing pertaining to the impacts of selective logging on the ecological processes underlying prey mobbing behavior, particularly with regards to predator-prey interactions and prey accruement of energy reserves.

  6. Existence and the dynamical behaviors of the positive solutions for a ratio-dependent predator-prey system with the crowing term and the weak growth

    NASA Astrophysics Data System (ADS)

    Zeng, Xianzhong; Gu, Yonggeng

    2018-03-01

    This paper deals with a ratio-dependent predator-prey system with the crowing term and the weak growth in the prey equation. Under the condition that the coefficient λ is less than a critical value λ1D (Ω0), we obtain existence of multiple positive steady state solutions of the predator-prey system and the dynamical behaviors of its positive solutions. Our results show that the predator and the prey possess not only the common coexistence, but also the very weak coexistence which both of the predator and the prey are very low. Meantime, the persistence of the positive solutions for the corresponding parabolic type system sometime depends strictly on the ratio of its initial data. Therefore, our results may be used to explain some special phenomena which under some bad environment, the predator and the prey may still coexist.

  7. Direct injection of venom by a predatory wasp into cockroach brain.

    PubMed

    Haspel, Gal; Rosenberg, Lior Ann; Libersat, Frederic

    2003-09-05

    In this article, we provide direct evidence for injection of venom by a wasp into the central nervous system of its cockroach prey. Venomous predators use neurotoxins that generally act at the neuromuscular junction, resulting in different types of prey paralysis. The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces grooming behavior, followed by a long-term lethargic state of its insect prey, thus ultimately providing a living meal for the newborn wasp larvae. These behavioral modifications are induced only when a sting is inflicted into the head. These unique effects of the wasp venom on prey behavior suggest that the venom targets the insect's central nervous system. The mechanism by which behavior modifying compounds in the venom transverse the blood-brain barrier to induce these central and long-lasting effects has been the subject of debate. In this article, we demonstrate that the wasp stings directly into the target ganglia in the head of its prey. To prove this assertion, we produced "hot" wasps by injecting them with (14)C radiolabeled amino acids and used a combination of liquid scintillation and light microscopy autoradiography to trace radiolabeled venom in the prey. To our knowledge, this is the first direct evidence documenting targeted delivery of venom by a predator into the brain of its prey. Copyright 2003 Wiley Periodicals, Inc. J Neurobiol 56: 287-292, 2003

  8. An Unprecedented Role Reversal: Ground Beetle Larvae (Coleoptera: Carabidae) Lure Amphibians and Prey upon Them

    PubMed Central

    Wizen, Gil; Gasith, Avital

    2011-01-01

    Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae). Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani) lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal. PMID:21957480

  9. Temperature effects induced by climate change on the growth and consumption by salmonines in Lakes Michigan and Huron

    USGS Publications Warehouse

    Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie

    2015-01-01

    We used bioenergetics models to investigate temperature effects induced by climate change on the growth and consumption by Chinook salmon Oncorhynchus tshawytscha, lake trout Salvelinus namaycush, and steelhead O. mykiss in Lakes Michigan and Huron. We updated biological inputs to account for recent changes in the food webs and used temperature inputs in response to regional climate observed in the baseline period (1964–1993) and projected in the future period (2043–2070).Bioenergetics simulations were run across multiple age-classes and across all four seasons in different scenarios of prey availability. Due to the increased capacity of prey consumption, future growth and consumption by these salmonines were projected to increase substantially when prey availability was not limited. When prey consumption remained constant, future growth of these salmonines was projected to decrease in most cases but increase in some cases where the increase in metabolic cost can be compensated by the decrease in waste (egestion and excretion) loss. Consumption by these salmonines was projected to increase the most during spring and fall when prey energy densities are relatively high. Such seasonality benefits their future growth through increasing annual gross energy intake. Our results indicated that lake trout and steelhead would be better adapted to the warming climate than Chinook salmon. To maintain baseline growth into the future, an increase of 10 % in baseline prey consumption was required for Chinook salmon but considerably smaller increases, or no increases, in prey consumption were needed by lake trout and steelhead.

  10. "Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game

    ERIC Educational Resources Information Center

    Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack

    2012-01-01

    "Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…

  11. Foraging mode and evolution of strike-induced chemosensory searching in lizards.

    PubMed

    Cooper, William E

    2003-04-01

    Strike-induced chemosensory searching (SICS) in lizards and snakes is a means of relocating prey by scent-trailing. The two main components of SICS are an elevated tongue-flick rate for vomerolfactory sampling after biting prey (PETF) and searching movements. In combination, these behaviors permit scent-trailing. Prey chemical discrimination, which is a prerequisite for SICS, is present in active foragers, but not in ambush foragers. Using comparative data. I show that searching movements and SICS have undergone correlated evolution with foraging mode and with prey chemical discrimination in lizards. This suggests that active foraging selects for prey chemical discrimination, which is then employed to search for escaped prey using the typical movements and tongue-flicking behaviors of active foragers. SICS in lizards is simply heightened active foraging after biting prey. In nonvenomous snakes, SICS is similar to that in lizards but is not restricted to active foragers. Only highly venomous snakes voluntarily release dangerous prey upon envenomation, pause to let the venom incapacitate the prey, and then relocate the prey by scent-trailing. PETF was observed in two ambush foragers and is not evolutionarily correlated with foraging mode or searching movements. Because it occurs in species lacking prey chemical discrimination, such PETF may be a response to gustatory cues or to internal chemicals not encountered on surfaces or trails of uninjured prey.

  12. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator.

    PubMed

    García, Luis Fernando; Viera, Carmen; Pekár, Stano

    2018-04-02

    Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.

  13. Influence of Siphonophore Behavior upon Their Natural Diets: Evidence for Aggressive Mimicry.

    PubMed

    Purcell, J E

    1980-08-29

    Collection by divers permitted determination of the natural diets of siphonophore species within II genera. Siphonophores that swim rapidly to spread their tentacles capture small prey, whereas those that swim very weakly capture much larger prey. Nematocyst batteries of two species of weak swimmers closely resemble copepods and fish larvae. Morphology, behavior, and diet suggest that these two species attract large prey by mimicking other zooplankton.

  14. Predaceous diving beetle, Dytiscus sharpi sharpi (Coleoptera: Dytiscidae) larvae avoid cannibalism by recognizing prey.

    PubMed

    Inoda, Toshio

    2012-09-01

    Larvae of diving beetles such as the various Dytiscus species (Coleoptera: Dytiscidae) are carnivorous and usually prey on other aquatic animals. Cannibalism among larvae of Dytiscus sharpi sharpi (Wehncke) was observed to begin when they were starved for more than two days under artificial breeding conditions. However, the 2-day starved larvae did not show cannibalism in the presence of intact, motionless, frozen tadpoles, or frozen shrimps. The beetle larvae attacked and captured intact tadpoles faster (15 sec) than other motionless and frozen tadpoles (120 sec), indicating that prey movement was an important factor in stimulating feeding behavior in larvae. Prey density does not have an effect on larval cannibalism. In cases in which preys are present at lower densities than that of larvae, a group of beetle larvae frequently fed on single prey. This feeding behavior, therefore, provides direct evidence of self-other recognition at the species level. Using two traps in one aquarium that allows the larvae to detect only prey smell, one containing tadpoles and another empty, the beetle larvae were attracted to the trap with tadpoles at high frequency, but not to the empty trap. In another experiment, the beetle larvae were not attracted to the trap containing a beetle larva. These results suggest that the larvae of D. sharpi sharpi are capable of recognizing prey scent, which enables the promotion of foraging behavior and the prevention of cannibalism.

  15. Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae).

    PubMed

    Gontijo, Lessando M; Nechols, James R; Margolies, David C; Cloyd, Raymond A

    2012-01-01

    The arrangement, number, and size of plant parts may influence predator foraging behavior, either directly, by altering the rate or pattern of predator movement, or, indirectly, by affecting the distribution and abundance of prey. We report on the effects of both plant architecture and prey distribution on foraging by the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae), on cucumber (Cucumis sativus L.). Plants differed in leaf number (2- or 6-leafed), and there were associated differences in leaf size, plant height, and relative proportions of plant parts; but all had the same total surface area. The prey, the twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), were distributed either on the basal leaf or on all leaves. The effect of plant architecture on predator foraging behavior varied depending on prey distribution. The dimensions of individual plant parts affected time allocated to moving and feeding, but they did not appear to influence the frequency with which predators moved among different plant parts. Overall, P. persimilis moved less, and fed upon prey longer, on 6-leafed plants with prey on all leaves than on plants representing other treatment combinations. Our findings suggest that both plant architecture and pattern of prey distribution should be considered, along with other factors such as herbivore-induced plant volatiles, in augmentative biological control programs.

  16. Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades.

    PubMed

    Rudolf, Volker H W

    2007-12-01

    Cannibalistic and asymmetrical behavioral interactions between stages are common within stage-structured predator populations. Such direct interactions between predator stages can result in density- and trait-mediated indirect interactions between a predator and its prey. A set of structured predator-prey models is used to explore how such indirect interactions affect the dynamics and structure of communities. Analyses of the separate and combined effects of stage-structured cannibalism and behavior-mediated avoidance of cannibals under different ecological scenarios show that both cannibalism and behavioral avoidance of cannibalism can result in short- and long-term positive indirect connections between predator stages and the prey, including "apparent mutualism." These positive interactions alter the strength of trophic cascades such that the system's dynamics are determined by the interaction between bottom-up and top-down effects. Contrary to the expectation of simpler models, enrichment increases both predator and prey abundance in systems with cannibalism or behavioral avoidance of cannibalism. The effect of behavioral avoidance of cannibalism, however, depends on how strongly it affects the maturation rate of the predator. Behavioral interactions between predator stages reduce the short-term positive effect of cannibalism on the prey density, but can enhance its positive long-term effects. Both interaction types reduce the destabilizing effect of enrichment. These results suggest that inconsistencies between data and simple models can be resolved by accounting for stage-structured interactions within and among species.

  17. Foraging efficiency of a predator flock for randomly moving prey: A simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hee; Kwon, Ohsung

    2016-03-01

    Flocking behavior of animals is highly advantageous for taking food resources. The degree of the advantage is related to the ability of flock members to detect their prey and the mobility of prey individuals. In this study, to explore the relation, we constructed a model to simulate a predator flock and its randomly moving prey. The predator members have the prey detection ability, which was characterized as sensing distance, R, and a sensing angle, θ. The mobility of the prey individuals was characterized as the maximum traveling distance of an iteration time step, L. The relative flock foraging efficiency, ɛ, was defined as ɛ = 1 - (Td/Tup). Tup and Td represent the spent time for the flock to eat all prey individuals and to uptake the last remaining 10% prey, respectively. Simulation results showed that ɛ increased, maximized, and decreased with the increase of R, regardless of L. As the number of prey, N, increased, the tendency of the increasing and decreasing was diluted. The result was briefly discussed in relation to the flock foraging behavior and the development of the model toward applications for real ecosystems.

  18. Echolocating bats use future-target information for optimal foraging.

    PubMed

    Fujioka, Emyo; Aihara, Ikkyu; Sumiya, Miwa; Aihara, Kazuyuki; Hiryu, Shizuko

    2016-04-26

    When seeing or listening to an object, we aim our attention toward it. While capturing prey, many animal species focus their visual or acoustic attention toward the prey. However, for multiple prey items, the direction and timing of attention for effective foraging remain unknown. In this study, we adopted both experimental and mathematical methodology with microphone-array measurements and mathematical modeling analysis to quantify the attention of echolocating bats that were repeatedly capturing airborne insects in the field. Here we show that bats select rational flight paths to consecutively capture multiple prey items. Microphone-array measurements showed that bats direct their sonar attention not only to the immediate prey but also to the next prey. In addition, we found that a bat's attention in terms of its flight also aims toward the next prey even when approaching the immediate prey. Numerical simulations revealed a possibility that bats shift their flight attention to control suitable flight paths for consecutive capture. When a bat only aims its flight attention toward its immediate prey, it rarely succeeds in capturing the next prey. These findings indicate that bats gain increased benefit by distributing their attention among multiple targets and planning the future flight path based on additional information of the next prey. These experimental and mathematical studies allowed us to observe the process of decision making by bats during their natural flight dynamics.

  19. Functional analysis of a specialized prey processing behavior: winnowing by surfperches (Teleostei: Embiotocidae).

    PubMed

    Drucker, E G; Jensen, J S

    1991-12-01

    Several surfperches (Embiotocidae), including the black surfperch, Embiotoca jacksoni, exhibit a specialized prey handling behavior known as winnowing, in which ingested food and non-nutritive debris are separated within the oropharyngeal cavity. Prey items are swallowed, and unpalatable material is ejected from the mouth. Winnowing is believed to play an important role in the partitioning of food resources among sympatric embiotocids. We present a mechanistic model for this separative prey processing based on high-speed video analysis, cineradiography, electromyography, and buccal and opercular cavity pressure transducer recording. Winnowing by embiotocids is characterized by premaxillary protrusions repeated cyclically with reduced oral gape. Protrusion is accompanied by depression of the hyoid apparatus and adduction of the opercula. Alternating expansion and contraction of the buccal and opercular cavities generate regular pressure waveforms that indicate bidirectional water flow during processing. Separation of food from debris by Embiotoca jacksoni occurs in three phases. The prey-debris bolus is transported anteriorly and posteriorly within the oropharyngeal cavity and is then sheared by the pharyngeal jaws. Mechanical processing is complemented by the rinsing action of water currents during hydraulic prey transport. The feeding apparatus of Embiotoca jacksoni is functionally versatile, although not obviously specialized relative to that of nonwinnowing surfperches. Protrusion of the premaxillae and depression of the hyoid apparatus are critical to both prey capture and subsequent prey processing. The pharyngeal jaws exhibit kinematic patterns during separation of food from debris distinct from those observed during mastication of uncontaminated prey. This behavioral flexibility facilitates resource partitioning and the coexistence of E. jacksoni in sympatric embiotocid assemblages.

  20. Improving the assessment of predator functional responses by considering alternate prey and predator interactions.

    PubMed

    Chan, K; Boutin, S; Hossie, T J; Krebs, C J; O'Donoghue, M; Murray, D L

    2017-07-01

    To improve understanding of the complex and variable patterns of predator foraging behavior in natural systems, it is critical to determine how density-dependent predation and predator hunting success are mediated by alternate prey or predator interference. Despite considerable theory and debate seeking to place predator-prey interactions in a more realistic context, few empirical studies have quantified the role of alternate prey or intraspecific interactions on predator-prey dynamics. We assessed functional responses of two similarly sized, sympatric carnivores, lynx (Lynx canadensis) and coyotes (Canis latrans), foraging on common primary (snowshoe hares; Lepus americanus) and alternate (red squirrels; Tamiasciurus hudsonicus) prey in a natural system. Lynx exhibited a hyperbolic prey-dependent response to changes in hare density, which is characteristic of predators relying primarily on a single prey species. In contrast, the lynx-squirrel response was found to be linear ratio dependent, or inversely dependent on hare density. The coyote-hare and coyote-squirrel interactions also were linear and influenced by predator density. We explain these novel results by apparent use of spatial and temporal refuges by prey, and the likelihood that predators commonly experience interference and lack of satiation when foraging. Our study provides empirical support from a natural predator-prey system that (1) predation rate may not be limited at high prey densities when prey are small or rarely captured; (2) interference competition may influence the predator functional response; and (3) predator interference has a variable role across different prey types. Ultimately, distinct functional responses of predators to different prey types illustrates the complexity associated with predator-prey interactions in natural systems and highlights the need to investigate predator behavior and predation rate in relation to the broader ecological community. © 2017 by the Ecological Society of America.

  1. Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs?

    PubMed Central

    Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.

    2012-01-01

    Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650

  2. Prey capture behavior and kinematics of the Atlantic cownose ray, Rhinoptera bonasus.

    PubMed

    Sasko, Desirée E; Dean, Mason N; Motta, Philip J; Hueter, Robert E

    2006-01-01

    The structurally reinforced jaws of the cownose ray, Rhinoptera bonasus testify to this species' durophagous diet of mollusks, but seem ill-suited to the behaviors necessary for excavating such prey. This study explores this discordance by investigating the prey excavation and capture kinematics of R. bonasus. Based on the basal suction feeding mechanism in this group of fishes, we hypothesized a hydraulic method of excavation. As expected, prey capture kinematics of R. bonasus show marked differences relative to other elasmobranchs, relating to prey excavation and use of the cephalic lobes (modified anterior pectoral fin extensions unique to derived myliobatiform rays). Prey are excavated by repeated opening and closing of the jaws to fluidize surrounding sand. The food item is then enclosed laterally by the depressed cephalic lobes, which transport it toward the mouth for ingestion by inertial suction. Unlike in most sharks, upper jaw protrusion and mandibular depression are simultaneous. During food capture, the ray's spiracle, mouth, and gill slit movements are timed such that water enters only the mouth (e.g., the spiracle closes prior to prey capture and reopens immediately following). Indigestible parts are then hydraulically winnowed from edible prey portions, by mouth movements similar to those used in excavation, and ejected through the mouth. The unique sensory/manipulatory capabilities of the cephalic lobes, as well as the cownose ray's hydraulic excavation/winnowing behaviors and suction feeding, make this species an effective benthic predator, despite its epibenthic lifestyle.

  3. Nesting habits shape feeding preferences and predatory behavior in an ant genus

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Labrière, Nicolas; Touchard, Axel; Petitclerc, Frédéric; Roux, Olivier

    2014-04-01

    We tested if nesting habits influence ant feeding preferences and predatory behavior in the monophyletic genus Pseudomyrmex (Pseudomyrmecinae) which comprises terrestrial and arboreal species, and, among the latter, plant-ants which are obligate inhabitants of myrmecophytes (i.e., plants sheltering so-called plant-ants in hollow structures). A cafeteria experiment revealed that the diet of ground-nesting Pseudomyrmex consists mostly of prey and that of arboreal species consists mostly of sugary substances, whereas the plant-ants discarded all the food we provided. Workers forage solitarily, detecting prey from a distance thanks to their hypertrophied eyes. Approach is followed by antennal contact, seizure, and the manipulation of the prey to sting it under its thorax (next to the ventral nerve cord). Arboreal species were not more efficient at capturing prey than were ground-nesting species. A large worker size favors prey capture. Workers from ground- and arboreal-nesting species show several uncommon behavioral traits, each known in different ant genera from different subfamilies: leaping abilities, the use of surface tension strengths to transport liquids, short-range recruitment followed by conflicts between nestmates, the consumption of the prey's hemolymph, and the retrieval of entire prey or pieces of prey after having cut it up. Yet, we never noted group ambushing. We also confirmed that Pseudomyrmex plant-ants live in a kind of food autarky as they feed only on rewards produced by their host myrmecophyte, or on honeydew produced by the hemipterans they attend and possibly on the fungi they cultivate.

  4. Observations on the Nesting and Prey of the Solitary Wasp, Tachysphex inconspicuus, with a Review of Nesting Behavior in the T. obscuripennis species group

    PubMed Central

    Kurczewski, Frank E.; Coville, Rollin E.; Schal, Coby

    2010-01-01

    The nesting behaviors of 10 females of Tachysphex inconspicuus (Kirby) (Hymenoptera: Crabronidae) were studied on a sandy, mowed lawn at the La Selva Biological Station in northeastern Costa Rica on 27–29 April 1980. Twenty-four completed nests were observed, excavated, and measured. The nests had oblique, short burrows leading to one or two shallow cells. Prey cockroaches belonging to 11 species of Chorisoneura and Riatia fulgida (Saussure) (Blattaria: Blattellidae), all tropical wet forest canopy indicator species, were removed from the cells, weighed, and identified. The cockroaches consisted mainly of adult females, selectively preyed upon over adult males and nymphs due to their larger sizes. The aggregate prey mass in cells was separable into prospective larger (heavier) female and smaller (lighter) male cells. Wasps usually oviposited on the heaviest cockroach in a cell, in most cases an adult female. Atypical genus behavior included (1) prey being carried to one side of the wasp and perhaps grasped by a hindleg during removal of the temporary entrance closure and nest entry and (2) wasp's egg being laid affixed to a forecoxal corium and extending backward in a longitudinally posteriad position across the prey's ventral thorax. A comparison with the nesting behavior of other species in the Tachysphex obscuripennis species group is made. PMID:21062142

  5. Biomechanics of a convergently derived prey-processing mechanism in fishes: evidence from comparative tongue bite apparatus morphology and raking kinematics.

    PubMed

    Konow, Nicolai; Sanford, Christopher P J

    2008-11-01

    A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineages, the osteoglossomorph and salmoniform fishes. We present data on comparative morphology and kinematics from two representative species, the rainbow trout (Oncorhynchus mykiss) and the Australian arowana (Scleropages jardinii), which suggest that both the TBA and raking are convergently derived in these lineages. Similar TBA morphologies were present, except for differences in TBA dentition and shape of the novel cleithrobranchial ligament (CBL), which is arc-shaped in O. mykiss and straight in S. jardinii. Eight kinematic variables were used to quantify motion magnitude and maximum-timing in the kinematic input mechanisms of the TBA. Five variables differed inter-specifically (pectoral girdle retraction magnitude and timing, cranial and hyoid elevation and gape-distance timing), yet an incomplete taxon separation across multivariate kinematic space demonstrated an overall similarity in raking behavior. An outgroup analysis using bowfin (Amia calva) and pickerel (Esox americanus) to compare kinematics of raking with chewing and prey-capture provided robust quantitative evidence of raking being a convergently derived behavior. Support was also found for the notion that raking more likely evolved from the strike, a functionally distinct behavior, than from chewing, an alternative prey-processing behavior. Based on raking kinematic and muscle-activity data, we propose biomechanical models of the three input mechanisms that govern kinematics of the basihyal output mechanism during the raking power stroke: (1) cranial elevation protracts the upper TBA jaw from the lower (basihyal) TBA jaw; (2) basihyal retraction is caused directly by contraction of the sternohyoideus (SH); (3) hypaxial shortening, relayed via the pectoral girdle and SH-CBL complex, is an indirect basihyal retraction mechanism modeled as a four-bar linkage. These models will aid future analyses mapping structural and functional traits to the evolution of behaviors.

  6. Not So Fast: Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry.

    PubMed

    Marras, Stefano; Noda, Takuji; Steffensen, John F; Svendsen, Morten B S; Krause, Jens; Wilson, Alexander D M; Kurvers, Ralf H J M; Herbert-Read, James; Boswell, Kevin M; Domenici, Paolo

    2015-10-01

    Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

    PubMed

    Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří

    2018-05-01

    The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

  8. When prey provide more than food: mammalian predators appropriating the refugia of their prey

    Treesearch

    Bill Zielinski

    2015-01-01

    Some mammalian predators acquire both food and shelter from their prey, by eating them and using the refugia the prey construct. I searched the literature for examples of predators that exhibit this behavior and summarize their taxonomic affiliations, relative sizes, and distributions. I hypothesized that size ratios of species involved in this dynamic would be near 1....

  9. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    USDA-ARS?s Scientific Manuscript database

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  10. Inter-Cohort Cannibalism of Early Benthic Phase Blue King Crabs (Paralithodes platypus): Alternate Foraging Strategies in Different Habitats Lead to Different Functional Responses

    PubMed Central

    Daly, Benjamin; Long, W. Christopher

    2014-01-01

    Blue king crabs (Paralithodes platypus) are commercially and ecologically important in Alaska, USA, but population abundances have fluctuated over the past several decades likely resulting from a combination of environmental and biological factors, including recruitment variability. Cannibalism between cohorts may be a source of mortality limiting recruitment success in the wild, but the degree of inter-cohort cannibalism is unknown for early benthic phase blue king crabs. In laboratory experiments, we evaluated the effects of habitat type (sand and shell) on the predator functional response and foraging behavior of year-1 blue king crabs as predators of year-0 conspecifics and examined the effects of predator presence on crypsis of prey crabs. In sand, consumption rates increased with predator size and prey density until satiation, while predation rates in shell were low regardless of predator size or prey density. These differential predation rates yielded a type III functional response in sand but a type I functional response in shell habitat. Crypsis of prey crabs was generally high and did not change in the presence of predators. Predator foraging activity was reduced in shell and may be an adaptive behavior to balance foraging efficiency and susceptibility to larger predators. Our results demonstrate that early benthic phase blue king crabs are cannibalistic between cohorts in the laboratory and that shell material is extremely effective for reducing encounter rates with conspecific predators. The distribution and abundance of such habitat may be important for recruitment success in some populations. Future studies should compare benthic habitat and species assemblages in areas with variable abundances, such as the Pribilof Islands and Saint Matthew Island in the eastern Bering Sea, to better understand possible mechanisms for recruitment variability. PMID:24558414

  11. Inter-cohort cannibalism of early benthic phase blue king crabs (Paralithodes platypus): alternate foraging strategies in different habitats lead to different functional responses.

    PubMed

    Daly, Benjamin; Long, W Christopher

    2014-01-01

    Blue king crabs (Paralithodes platypus) are commercially and ecologically important in Alaska, USA, but population abundances have fluctuated over the past several decades likely resulting from a combination of environmental and biological factors, including recruitment variability. Cannibalism between cohorts may be a source of mortality limiting recruitment success in the wild, but the degree of inter-cohort cannibalism is unknown for early benthic phase blue king crabs. In laboratory experiments, we evaluated the effects of habitat type (sand and shell) on the predator functional response and foraging behavior of year-1 blue king crabs as predators of year-0 conspecifics and examined the effects of predator presence on crypsis of prey crabs. In sand, consumption rates increased with predator size and prey density until satiation, while predation rates in shell were low regardless of predator size or prey density. These differential predation rates yielded a type III functional response in sand but a type I functional response in shell habitat. Crypsis of prey crabs was generally high and did not change in the presence of predators. Predator foraging activity was reduced in shell and may be an adaptive behavior to balance foraging efficiency and susceptibility to larger predators. Our results demonstrate that early benthic phase blue king crabs are cannibalistic between cohorts in the laboratory and that shell material is extremely effective for reducing encounter rates with conspecific predators. The distribution and abundance of such habitat may be important for recruitment success in some populations. Future studies should compare benthic habitat and species assemblages in areas with variable abundances, such as the Pribilof Islands and Saint Matthew Island in the eastern Bering Sea, to better understand possible mechanisms for recruitment variability.

  12. The hydrodynamics of predator-prey interactions in zebrafish

    NASA Astrophysics Data System (ADS)

    McHenry, Matthew; Soto, Alberto; Carrillo, Andres; Byron, Margaret

    2017-11-01

    Hydrodynamics govern the behavior of fishes when they operate as predators or prey. In addition to the role of fluid forces in propulsion, fishes relay on flow stimuli to sense a predatory threat and to localize palatable prey. We have performed a series of experiments on zebrafish (Danio rerio) that aim to resolve the major factors that determine whether prey survive an encounter with a predator. Zebrafish serve as a model system in this pursuit because the adults prey on larvae of the same species and the larvae are often successful in evading the attacks of the adults. We use a combination of theoretical and experimental approaches to resolve the behavioral algorithms and kinematics that determined the outcome of these interactions. In this context, the hydrodynamics of intermediate Reynolds numbers largely determines the range of flow stimuli and the limits to locomotor performance at dictate prey survival. These principles have the potential to apply to a broad diversity of fishes and other aquatic animals. ONR: N00014-15-1-2249.

  13. Sparrowhawk movement, calling, and presence of dead conspecifics differentially impact blue tit (Cyanistes caeruleus) vocal and behavioral mobbing responses.

    PubMed

    Carlson, Nora V; Pargeter, Helen M; Templeton, Christopher N

    2017-01-01

    Many animals alter their anti-predator behavior in accordance to the threat level of a predator. While much research has examined variation in mobbing responses to different predators, few studies have investigated how anti-predator behavior is affected by changes in a predator's own state or behavior. We examined the effect of sparrowhawk ( Accipiter nisus ) behavior on the mobbing response of wild blue tits ( Cyanistes caeruleus ) using robotic taxidermy sparrowhawks. We manipulated whether the simulated predator moved its head, produced vocalizations, or held a taxidermy blue tit in its talons. When any sparrowhawk model was present, blue tits decreased foraging and increased anti-predator behavior and vocalizations. Additionally, each manipulation of the model predator's state (moving, vocalizing, or the presence of a dead conspecific) impacted different types of blue tit anti-predator behavior and vocalizations. These results indicate that different components of mobbing vary according to the specific state of a given predator-beyond its presence or absence-and suggest that each might play a different role in the overall mobbing response. Last, our results indicate that using more life-like predator stimuli-those featuring simple head movements and audio playback of vocalizations-changes how prey respond to the predator; these 'robo-raptor' models provide a powerful tool to provide increased realism in simulated predator encounters without sacrificing experimental control. Anti-predatory behavior is often modulated by the threat level posed by a particular predator. While much research has tested how different types of predators change prey behavior, few experiments have examined how predator behavior affects anti-predatory responses of prey. By experimentally manipulating robotic predators, we show that blue tits not only respond to the presence of a sparrowhawk, by decreasing feeding and increasing anti-predator behavior and vocalizations, but that they vary specific anti-predator behaviors when encountering differently behaving predators (moving, vocalizing, or those with captured prey), suggesting that prey pay attention to their predators' state and behavior.

  14. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.

    PubMed

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations, the acoustic sensing and flights of the bats showed narrower vertical ranges than horizontal ranges. This suggests that the bats control their acoustic sensing according to different schemes in the horizontal and vertical planes according to their surroundings. These findings suggest that echolocating bats coordinate their control of the acoustical field of view and flight for consecutive captures in 3D space during natural foraging.

  15. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging

    PubMed Central

    Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko

    2017-01-01

    Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats’ flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat’s wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations, the acoustic sensing and flights of the bats showed narrower vertical ranges than horizontal ranges. This suggests that the bats control their acoustic sensing according to different schemes in the horizontal and vertical planes according to their surroundings. These findings suggest that echolocating bats coordinate their control of the acoustical field of view and flight for consecutive captures in 3D space during natural foraging. PMID:28085936

  16. The effects of chlorpyrifos on cholinesterase activity and foraging behavior in the dragonfly, Anax junius (Odonata)

    USGS Publications Warehouse

    Brewer, S.K.; Atchison, G.J.

    1999-01-01

    We examined head capsule cholinesterase (ChE) and foraging behavior in nymphs of the dragonfly, Anax junius, exposed for 24 h to 0.2, 0.6 and 1.0 ??g l-1 of the organophosphorus (OP) insecticide, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate]. The invertebrate community is an important component of the structure and function of wetland ecosystems, yet the potential effects of insecticides on wetland ecosystems are largely unknown. Our objectives were to determine if exposure to environmentally realistic concentrations of chlorpyrifos affected foraging behavior and ChE activity in head capsules of dragonfly nymphs. Nymphs were exposed to different concentrations of chlorpyrifos and different prey densities in a factorial design. ChE activities and foraging behaviors of treated nymphs were not statistically different (p ??? 0.05) from control groups. Prey density effects exerted a greater effect on dragonfly foraging than toxicant exposures. Nymphs offered higher prey densities exhibited more foraging behaviors but also missed their prey more often. High variability in ChE activities within the control group and across treated groups precluded determination of relationships between ChE and foraging behaviors. It appears that A. junius is relatively tolerant of chlorpyrifos, although the concentrations we tested have been shown in other work to adversely affect the prey base; therefore the introduction of this insecticide may have indirect adverse affects on top invertebrate predators such as Odonata.

  17. Balancing past and present: how experience influences boldness over time in Eurasian perch

    PubMed Central

    Magnhagen, Carin

    2017-01-01

    Abstract Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels. PMID:29491973

  18. Balancing past and present: how experience influences boldness over time in Eurasian perch.

    PubMed

    Hellström, Gustav; Magnhagen, Carin

    2017-04-01

    Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels.

  19. Population interactions among free-living bluefish and prey fish in an ocean environment.

    PubMed

    Safina, Carl; Burger, Joanna

    1989-04-01

    We used sonar to measure relative abundance, location, and depth of prey fish schools (primarily Anchoa and Ammodytes) in the ocean near Fire Island Inlet, New York from May to August for 4 years to examine predatorprey interactions. Prey fish numbers built through May, peaked in June, and thereafter declined coincident with the arrival of predatory bluefish. Bluefish abundance and feeding behavior correlated inversely with prey fish abundance and depth. Bluefish may drive seasonal patterns of prey abundance and distribution in this area through direct predation and by causing prey to flee.

  20. Ablation of a Neuronal Population Using a Two-photon Laser and Its Assessment Using Calcium Imaging and Behavioral Recording in Zebrafish Larvae.

    PubMed

    Muto, Akira; Kawakami, Koichi

    2018-06-02

    To identify the role of a subpopulation of neurons in behavior, it is essential to test the consequences of blocking its activity in living animals. Laser ablation of neurons is an effective method for this purpose when neurons are selectively labeled with fluorescent probes. In the present study, protocols for laser ablating a subpopulation of neurons using a two-photon microscope and testing of its functional and behavioral consequences are described. In this study, prey capture behavior in zebrafish larvae is used as a study model. The pretecto-hypothalamic circuit is known to underlie this visually-driven prey catching behavior. Zebrafish pretectum were laser-ablated, and neuronal activity in the inferior lobe of the hypothalamus (ILH; the target of the pretectal projection) was examined. Prey capture behavior after pretectal ablation was also tested.

  1. Food limitation leads to behavioral diversification and dietary specialization in sea otters

    USGS Publications Warehouse

    Tinker, M.T.; Bentall, G.; Estes, J.A.

    2008-01-01

    Dietary diversity often varies inversely with prey resource abundance. This pattern, although typically measured at the population level, is usually assumed to also characterize the behavior of individual animals within the population. However, the pattern might also be produced by changes in the degree of variation among individuals. Here we report on dietary and associated behavioral changes that occurred with the experimental translocation of sea otters from a food-poor to a food-rich environment. Although the diets of all individuals were broadly similar in the food-rich environment, a behaviorally based dietary polymorphism existed in the food-poor environment. Higher dietary diversity under low resource abundance was largely driven by greater variation among individuals. We further show that the dietary polymorphism in the food-poor environment included a broad suite of correlated behavioral variables and that the individuals that comprised specific behavioral clusters benefited from improved foraging efficiency on their individually preferred prey. Our findings add to the growing list of examples of extreme individuality in behavior and prey choice within populations and suggest that this phenomenon can emerge as a behavioral manifestation of increased population density. Individuality in foraging behavior adds complexity to both the fitness consequences of prey selection and food web dynamics, and it may figure prominently as a diversifying process over evolutionary timescales. ?? 2008 by The National Academy of Sciences of the USA.

  2. The carnivorous syndrome in Nepenthes pitcher plants: current state of knowledge and potential future directions.

    PubMed

    Moran, Jonathan A; Clarke, Charles M

    2010-06-01

    Nepenthes is the largest genus of pitcher plants, with its centre of diversity in SE Asia. The plants grow in substrates that are deficient in N and offset this deficiency by trapping animal prey, primarily arthropods. Recent research has provided new insights into the function of the pitchers, particularly with regard to prey tapping and retention. Species examined to date use combinations of wettable peristomes, wax layers and viscoelastic fluid to trap and retain prey. In many respects, this has redefined our understanding of the functioning of Nepenthes pitchers. In addition, recent research has shown that several Nepenthes species target specific groups of prey animals, or are even evolving away from a strictly carnivorous mode of operation. Future research into nutrient sequestration strategies and mechanisms of prey attraction would no doubt further enhance our knowledge of the ecology of this remarkable genus.

  3. Prey Capture Behavior in an Arboreal African Ponerine Ant

    PubMed Central

    Dejean, Alain

    2011-01-01

    I studied the predatory behavior of Platythyrea conradti, an arboreal ponerine ant, whereas most species in this subfamily are ground-dwelling. The workers, which hunt solitarily only around dusk, are able to capture a wide range of prey, including termites and agile, nocturnal insects as well as diurnal insects that are inactive at that moment of the Nyctemeron, resting on tree branches or under leaves. Prey are captured very rapidly, and the antennal palpation used by ground-dwelling ponerine species is reduced to a simple contact; stinging occurs immediately thereafter. The venom has an instant, violent effect as even large prey (up to 30 times the weight of a worker) never struggled after being stung. Only small prey are not stung. Workers retrieve their prey, even large items, singly. To capture termite workers and soldiers defending their nest entrances, ant workers crouch and fold their antennae backward. In their role as guards, the termites face the crouching ants and end up by rolling onto their backs, their legs batting the air. This is likely due to volatile secretions produced by the ants' mandibular gland. The same behavior is used against competing ants, including territorially-dominant arboreal species that retreat further and further away, so that the P. conradti finally drive them from large, sugary food sources. PMID:21589941

  4. Feeding behavior and venom toxicity of coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity.

    PubMed

    Urdaneta, Aldo H; Bolaños, Federico; Gutiérrez, José María

    2004-08-01

    The feeding behavior and venom toxicity of the coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity were investigated. Coral snakes searched for their prey (the colubrid snake Geophis godmani) in the cages. Once their preys were located, coral snakes stroke them with a rapid forward movement, biting predominantly in the anterior region of the body. In order to assess the role of venom in prey restraint and ingestion, a group of coral snakes was 'milked' in order to drastically reduce the venom content in their glands. Significant differences were observed between snakes with venom, i.e., 'nonmilked' snakes, and 'milked' snakes regarding their behavior after the bite. The former remained hold to the prey until paralysis was achieved, whereas the latter, in the absence of paralysis, moved their head towards the head of the prey and bit the skull to achieve prey immobilization by mechanical means. There were no significant differences in the time of ingestion between these two groups of coral snakes. Susceptibility to the lethal effect of coral snake venom greatly differed in four colubrid species; G. godmani showed the highest susceptibility, followed by Geophis brachycephalus, whereas Ninia psephota and Ninia maculata were highly resistant to this venom. In addition, the blood serum of N. maculata, but not that of G. brachycephalus, prolonged the time of death of mice injected with 2 LD(50)s of M. nigrocinctus venom, when venom and blood serum were incubated before testing. Subcutaneous injection of coral snake venom in G. godmani induced neurotoxicity and myotoxicity, without causing hemorrhage and without affecting heart and lungs. It is concluded that (a) M. nigrocinctus venom plays a role in prey immobilization, (b) venom induces neurotoxic and myotoxic effects in colubrid snakes which comprise part of their natural prey, and (c) some colubrid snakes of the genus Ninia present a conspicuous resistance to the toxic action of M. nigrocinctus venom.

  5. Predatory behaviors of Blarina brevicauda toward a fossorial eastern spadefoot toad (Scaphiopus holbrookii)

    Treesearch

    Thomas J. Maier

    2005-01-01

    Northern short-tailed shrews (Blarina brevicauda) have been reported to prey upon relatively large salamanders and anurans. Nevertheless, detailed observations of such behavior are rare, though important in providing insights into shrew foraging strategies, prey capture and handling, and possibly the coevolution of predator-antipredator mechanisms....

  6. Venom variation and chemoreception of the viperid Agkistrodon contortrix: evidence for adaptation?

    PubMed

    Greenbaum, Eli; Galeva, Nadezhda; Jorgensen, Michael

    2003-08-01

    Previous studies of chemoreceptive behavior in vipers suggest that snakes focus on the scent of envenomated tissue to track their prey following envenomation. Other studies have indicated a correlation between qualitative differences in venom biochemistry and geographic variation in diet. The North American copperhead (Agkistrodon contortrix) varies geographically in diet and venom biochemistry; snakes were collected from three populations (Kansas, Texas, and Louisiana) that are known to have different prey preferences. Behavioral experiments were conducted to assess whether copperheads preferred envenomated prey more than nonenvenomated prey, as do other species of vipers studied thus far. Additional experiments tested the ability of copperheads to distinguish between envenomated prey from different geographic populations, and between geographic populations of copperheads and two other species of viper. Results indicated that copperheads prefer envenomated prey to nonenvenomated prey. In envenomated-prey discrimination experiments, copperheads distinguished between envenomated prey from different geographic populations, and some snakes distinguished envenomated prey of A. contortrix from those of A. piscivorns and Sistrurus catenatus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to study the variation of venom biochemistry in this species and two other taxa (A. piscivorus and S. catenatus), and confirmed intraspecific and interspecific variation of venom proteins. Relative potency of the venom from different populations as indicated by time to immobilization experiments was in the order: Louisiana > Texas > Kansas. The relative potency of the venom from each population matched the order of preference in the chemoreception experiments. These results suggest that chemoreception is sensitive to subtle differences in venom biochemistry and may reflect adaptation to improve efficiency of finding envenomated prey.

  7. No evidence of nonlinear effects of predator density, refuge availability, or body size of prey on prey mortality rates.

    PubMed

    Simkins, Richard M; Belk, Mark C

    2017-08-01

    Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish ( Gambusia affinis ) as the prey, different numbers of green sunfish ( Lepomis cyanellus ) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator-prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.

  8. Are single odorous components of a predator sufficient to elicit defensive behaviors in prey species?

    PubMed

    Apfelbach, Raimund; Parsons, Michael H; Soini, Helena A; Novotny, Milos V

    2015-01-01

    When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or (2) is a whole array of odors required to elicit a response and (3) will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve toward the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and-in some cases-physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology-from chemistry to ecology including anatomy, physiology, and behavior-is needed to understand all the different (relevant) stimuli that govern and guide the interactions between a predator and its potential prey.

  9. The Behavioral Type of a Top Predator Drives the Short-Term Dynamic of Intraguild Predation.

    PubMed

    Michalko, Radek; Pekár, Stano

    2017-03-01

    Variation in behavior among individual top predators (i.e., the behavioral type) can strongly shape pest suppression in intraguild predation (IGP). However, the effect of a top predator's behavioral type-namely, foraging aggressiveness (number of killed divided by prey time) and prey choosiness (preference degree for certain prey type)-on the dynamic of IGP may interact with the relative abundances of top predator, mesopredator, and pest. We investigated the influence of the top predator's behavioral type on the dynamic of IGP in a three-species system with a top predator spider, a mesopredator spider, and a psyllid pest using a simulation model. The model parameters were estimated from laboratory experiments and field observations. The top predator's behavioral type altered the food-web dynamics in a context-dependent manner. The system with an aggressive/nonchoosy top predator, without prey preferences between pest and mesopredator, suppressed the pest more when the top predator to mesopredator abundance ratio was high. In contrast, the system with a timid/choosy top predator that preferred the pest to the mesopredator was more effective when the ratio was low. Our results show that the behavioral types and abundances of interacting species need to be considered together when studying food-web dynamics, because they evidently interact. To improve biocontrol efficiency of predators, research on the alteration of their behavioral types is needed.

  10. Influence of poisoned prey on foraging behavior of ferruginous hawks

    USGS Publications Warehouse

    Vyas, Nimish B.; Kuncir, Frank; Clinton, Criss C.

    2017-01-01

    We recorded 19 visits by ferruginous hawks (Buteo regalis) over 6 d at two black–tailed prairie dog (Cynomys ludovicianus) subcolonies poisoned with the rodenticide Rozol® Prairie Dog Bait (0.005% chlorophacinone active ingredient) and at an adjacent untreated subcolony. Before Rozol® application ferruginous hawks foraged in the untreated and treated subcolonies but after Rozol® application predation by ferruginous hawks was only observed in the treated subcolonies. We suggest that ferruginous hawks' preference for hunting in the treated subcolonies after Rozol® application was influenced by the availability of easy-to-capture prey, presumably due to Rozol® poisoning. The energetically beneficial behavior of favoring substandard prey may increase raptor encounters with rodenticide exposed animals if prey vulnerability has resulted from poisoning.

  11. Complexity and chaos control in a discrete-time prey-predator model

    NASA Astrophysics Data System (ADS)

    Din, Qamar

    2017-08-01

    We investigate the complex behavior and chaos control in a discrete-time prey-predator model. Taking into account the Leslie-Gower prey-predator model, we propose a discrete-time prey-predator system with predator partially dependent on prey and investigate the boundedness, existence and uniqueness of positive equilibrium and bifurcation analysis of the system by using center manifold theorem and bifurcation theory. Various feedback control strategies are implemented for controlling the bifurcation and chaos in the system. Numerical simulations are provided to illustrate theoretical discussion.

  12. Wasp uses venom cocktail to manipulate the behavior of its cockroach prey.

    PubMed

    Libersat, F

    2003-07-01

    The sting of the parasitoid wasp Ampulex compressa is unusual, as it induces a transient paralysis of the front legs followed by grooming behavior and then by a long-term hypokinesia of its cockroach prey. Because the wasp's goal is to provide a living meal for its newborn larva, the behavioral changes in the prey are brought about by manipulating the host behavior in a way beneficial to the wasp and its offspring. To this end, the wasp injects its venom cocktail with two consecutive stings directly into the host's central nervous system. The first sting in the thorax causes a transient front leg paralysis lasting a few minutes. This paralysis is due to the presence of a venom component that induces a postsynaptic block of central cholinergic synaptic transmission. Following the head sting, dopamine identified in the venom appears to induce 30 min of intense grooming. During the long-term hypokinesia that follows the grooming, specific behaviors of the prey are inhibited while others are unaffected. We propose that the venom represses the activity of head ganglia neurons thereby removing the descending excitatory drive to the thoracic neurons.

  13. Prey handling using whole-body fluid dynamics in batoids.

    PubMed

    Wilga, Cheryl D; Maia, Anabela; Nauwelaerts, Sandra; Lauder, George V

    2012-02-01

    Fluid flow generated by body movements is a foraging tactic that has been exploited by many benthic species. In this study, the kinematics and hydrodynamics of prey handling behavior in little skates, Leucoraja erinacea, and round stingrays, Urobatis halleri, are compared using kinematics and particle image velocimetry. Both species use the body to form a tent to constrain the prey with the pectoral fin edges pressed against the substrate. Stingrays then elevate the head, which increases the volume between the body and the substrate to generate suction, while maintaining pectoral fin contact with the substrate. Meanwhile, the tip of the rostrum is curled upwards to create an opening where fluid is drawn under the body, functionally analogous to suction-feeding fishes. Skates also rotate the rostrum upwards although with the open rostral sides and the smaller fin area weaker fluid flow is generated. However, skates also use a rostral strike behavior in which the rostrum is rapidly rotated downwards pushing fluid towards the substrate to potentially stun or uncover prey. Thus, both species use the anterior portion of the body to direct fluid flow to handle prey albeit in different ways, which may be explained by differences in morphology. Rostral stiffness and pectoral fin insertion onto the rostrum differ between skates and rays and this corresponds to behavioral differences in prey handling resulting in distinct fluid flow patterns. The flexible muscular rostrum and greater fin area of stingrays allow more extensive use of suction to handle prey while the stiff cartilaginous rostrum of skates lacking extensive fin insertion is used as a paddle to strike prey as well as to clear away sand cover. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Wasp manipulates cockroach behavior by injecting venom cocktail into prey central nervous system.

    PubMed

    Haspel, G; Libersat, F

    2004-01-01

    The parasitoid wasp Ampulex compressa induces behavioral changes in the cockroach prey by injecting venom into its central nervous system. In contrast to most other venomous predators, the wasp's sting does not induce paralysis. Rather, the two consecutive stings in the thoracic and head ganglia induce three stereotypic behavioral effects. The prey behavior is manipulated in a way beneficial to the wasp and its offspring by providing a living meal for its newborn larva. The first sting in the thorax causes a transient front leg paralysis lasting a few minutes. This paralysis prevents the cockroach from fighting with its front legs, thereby facilitating the second sting in the head. A postsynaptic block of central synaptic transmission mediates this leg paralysis. Following the head sting, dopamine identified in the venom induces 30 minutes of intense grooming that appears to prevent the cockroach from straying until the last and third behavioral effect of hypokinesia commences. In this lethargic state that lasts about three weeks, the cockroach does not respond to various stimuli nor does it initiates movement. However, other specific behaviors of the prey are unaffected. We propose that the venom represses the activity of head ganglia neurons thereby removing the descending excitatory drive to specific thoracic neurons.

  15. Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish

    PubMed Central

    Bianco, Isaac H.; Kampff, Adam R.; Engert, Florian

    2011-01-01

    Understanding how the nervous system recognizes salient stimuli in the environment and selects and executes the appropriate behavioral responses is a fundamental question in systems neuroscience. To facilitate the neuroethological study of visually guided behavior in larval zebrafish, we developed “virtual reality” assays in which precisely controlled visual cues can be presented to larvae whilst their behavior is automatically monitored using machine vision algorithms. Freely swimming larvae responded to moving stimuli in a size-dependent manner: they directed multiple low amplitude orienting turns (∼20°) toward small moving spots (1°) but reacted to larger spots (10°) with high-amplitude aversive turns (∼60°). The tracking of small spots led us to examine how larvae respond to prey during hunting routines. By analyzing movie sequences of larvae hunting paramecia, we discovered that all prey capture routines commence with eye convergence and larvae maintain their eyes in a highly converged position for the duration of the prey-tracking and capture swim phases. We adapted our virtual reality assay to deliver artificial visual cues to partially restrained larvae and found that small moving spots evoked convergent eye movements and J-turns of the tail, which are defining features of natural hunting. We propose that eye convergence represents the engagement of a predatory mode of behavior in larval fish and serves to increase the region of binocular visual space to enable stereoscopic targeting of prey. PMID:22203793

  16. Predators and Prey

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1975-01-01

    Reviews basic concepts of predator-prey interaction, encourages the presentation of the predator's role and describes a model of predator behavior to be used in secondary school or college classes. (LS)

  17. How Doth the Little Crocodilian: Analyzing the Influence of Environmental Viscosity on Feeding Performance of Juvenile Alligator mississippiensis

    PubMed Central

    Kerfoot, James R.; Easter, Emily; Elsey, Ruth M.

    2016-01-01

    Wetland habitats are used as nursery sites for hatchling and juvenile alligators (Alligator mississippiensis), where they utilize prey from aquatic and terrestrial settings. However, little is known about how viscosity of the medium influences feeding performance. We hypothesized that timing and linear excursion feeding kinematic variables would be different for individuals feeding on prey above the water compared with the same individuals feeding underwater. Individuals were fed immobile fish prey and feeding events were recorded using a high speed video camera. Feeding performance was summarized by analyzing three feeding kinematic variables (maximum gape, maximum gape velocity, duration of feeding bout) and success of strike. Results of a series of paired t-tests indicated no significant difference in kinematic variables between feeding events above water compared with underwater. Similarity in feeding performance could indicate that prey-capture is not altered by environmental viscosity or that feeding behavior can mitigate its influence. Behavioral differences were observed during feeding events with alligators approaching underwater prey having their mouths partially opened versus fully closed when feeding above water. This behavior could be an indication of a strategy used to overcome water viscosity. PMID:27706023

  18. Cannibalistic behavior of octopus (Octopus vulgaris) in the wild.

    PubMed

    Hernández-Urcera, Jorge; Garci, Manuel E; Roura, Alvaro; González, Angel F; Cabanellas-Reboredo, Miguel; Morales-Nin, Beatriz; Guerra, Angel

    2014-11-01

    The first description of cannibalism in wild adult Octopus vulgaris is presented from 3 observations made in the Ría de Vigo (NW Spain), which were filmed by scuba divers. These records document common traits in cannibalistic behavior: (a) it was intercohort cannibalism; (b) attacks were made by both males and females; (c) in 2 of the records, the prey were transported to the den, which was covered with stones of different sizes; (d) the predator started to eat the tip of the arms of its prey; (e) predation on conspecifics occurred even if there were other abundant prey available (i.e., mussels); and (f) the prey/predator weight ratio in the 3 cases ranged from 20% to 25% body weight. The relationships between this behavior and sex, defense of territory, energy balance, food shortage, competition and predation, as well as how the attacker kills its victim are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  19. Nutrient-Specific Foraging in Invertebrate Predators

    NASA Astrophysics Data System (ADS)

    Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.

    2005-01-01

    Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.

  20. Oxytocin mediated behavior in invertebrates: An evolutionary perspective.

    PubMed

    Lockard, Meghan A; Ebert, Margaret S; Bargmann, Cornelia I

    2017-02-01

    The molecular and functional conservation of oxytocin-related neuropeptides in behavior is striking. In animals separated by at least 600 million years of evolution, from roundworms to humans, oxytocin homologs play critical roles in the modulation of reproductive behavior and other biological functions. Here, we review the roles of oxytocin in invertebrate behavior from an evolutionary perspective. We begin by tracing the evolution of oxytocin through the invertebrate animal lineages, and then describe common themes in invertebrate behaviors that are mediated by oxytocin-related peptides, including reproductive behavior, learning and memory, food arousal, and predator/prey relationships. Finally, we discuss interesting future directions that have recently become experimentally tractable. Studying oxytocin in invertebrates offers precise insights into the activity of neuropeptides on well-defined neural circuits; the principles that emerge may also be represented in the more complex vertebrate brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 128-142, 2017. © 2016 Wiley Periodicals, Inc.

  1. The ethological trap: functional and numerical responses of highly efficient invasive predators driving prey extinctions.

    PubMed

    Spencer, Ricky-John; Van Dyke, James U; Thompson, Michael B

    2016-10-01

    Ecological traps are threats to organisms, and exist in a range of biological systems. A subset of ecological trap theory is the "ethological trap," whereby behaviors canalized by past natural selection become traps when environments change rapidly. Invasive predators are major threats to imperiled species and their ability to exploit canalized behaviors of naive prey is particularly important for the establishment of the predator and the decline of the native prey. Our study uses ecological theory to demonstrate that invasive predator controls require shifts in management priorities. Total predation rate (i.e., total response) is the product of both the functional response and numerical response of predators to prey. Functional responses are the changes in the rate of prey consumption by individual predators, relative to prey abundance. Numerical responses are the aggregative rates of prey consumption by all predators relative to prey density, which change with predator density via reproduction or migration, in response to changes in prey density. Traditional invasive predator management methods focus on reducing predator populations, and thus manage for numerical responses. These management efforts fail to manage for functional responses, and may not eliminate impacts of highly efficient individual predators. We explore this problem by modeling the impacts of functional and numerical responses of invasive foxes depredating imperiled Australian turtle nests. Foxes exhibit exceptionally efficient functional responses. A single fox can destroy >95% of turtle nests in a nesting area, which eliminates juvenile recruitment. In this case, the ethological trap is the "Arribada" nesting strategy, an emergent behavior whereby most turtles in a population nest simultaneously in the same nesting grounds. Our models show that Arribada nesting events do not oversaturate foxes, and small numbers of foxes depredate all of the nests in a given Arribada. Widely scattering nests may reduce fox predation rates, but the long generation times of turtles combined with their rapid recent decline suggests that evolutionary responses in nesting strategy may be unlikely. Our study demonstrates that reducing populations of highly efficient invasive predators is insufficient for preserving native prey species. Instead, management must reduce individual predator efficiency, independent of reducing predator population size. © 2016 by the Ecological Society of America.

  2. Predation among armored arachnids: Bothriurus bonariensis (Scorpions, Bothriuridae) versus four species of harvestmen (Harvestmen, Gonyleptidae).

    PubMed

    Albín, Andrea; Toscano-Gadea, Carlos A

    2015-12-01

    Natural selection shapes prey-predator relationships and their behavioral adaptations, which seek to maximize capture success in the predator and avoidance in the prey. We tested the ability of adults of the scorpion Bothriurus bonariensis (Bothriuridae) to prey on synchronous and sympatric adults harvestmen of Acanthopachylus aculeatus, Discocyrtus prospicuus, Parampheres bimaculatus and Pachyloides thorellii (Gonyleptidae). In 72.5% of the cases B. bonariensis tried to prey on the harvestmen. The most successful captures occurred in the trials against A. aculeatus and D. prospicuus. In all the successful attacks the scorpions stung the prey between the chelicerae and consumed them, starting by the anterior portion of their bodies. The harvestmen used different defensive strategies such as fleeing before or after contact with the predator, exudating of chemical substances or staying still at the scorpion's touch. When scorpions contacted the chemical substances secreted by the harvestmen, they immediately rubbed the affected appendix against the substrate. However, exudating of chemical substances did not prevent, in any case, predation on the harvestmen. This is the first study showing the ability of scorpions to prey on different species of harvestmen, as well as the capture and defensive behaviors used by the predator and the prey. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Predator-prey interactions between shell-boring beetle larvae and rock-dwelling land snails.

    PubMed

    Baalbergen, Els; Helwerda, Renate; Schelfhorst, Rense; Castillo Cajas, Ruth F; van Moorsel, Coline H M; Kundrata, Robin; Welter-Schultes, Francisco W; Giokas, Sinos; Schilthuizen, Menno

    2014-01-01

    Drilus beetle larvae (Coleoptera: Elateridae) are specialized predators of land snails. Here, we describe various aspects of the predator-prey interactions between multiple Drilus species attacking multiple Albinaria (Gastropoda: Clausiliidae) species in Greece. We observe that Drilus species may be facultative or obligate Albinaria-specialists. We map geographically varying predation rates in Crete, where on average 24% of empty shells carry fatal Drilus bore holes. We also provide first-hand observations and video-footage of prey entry and exit strategies of the Drilus larvae, and evaluate the potential mutual evolutionary impacts. We find limited evidence for an effect of shell features and snail behavioral traits on inter- and intra-specifically differing predation rates. We also find that Drilus predators adjust their predation behavior based on specific shell traits of the prey. In conclusion, we suggest that, with these baseline data, this interesting predator-prey system will be available for further, detailed more evolutionary ecology studies.

  4. Behavioral variation post-invasion: resemblance in some, but not all, behavioral patterns among invasive and native praying mantids.

    PubMed

    Jones, Cameron; DiRienzo, Nicolas

    2018-05-23

    Animal invasions can be devastating for native species. Behavioral variation is known to influence animal invasions, yet comparatively less is known about how behavioral variation influences invasive-native species interactions. Here we examined how the mean and variance surrounding several behavioral traits in two sympatric species of praying mantis differ and how these behavioral types translate to actual prey capture success using the introduced European mantis, Mantis religiosa, and the native bordered mantis, Stagmomantis limbata. We assayed time spent in the open (risk proneness), response towards a novel prey, and voracity within a population of M. religiosa and S. limbata. We found that the native and invasive mantids displayed no differences in their average behavioral tendencies. The native exhibited significant levels of repeatability in voracity while the invasive did not. The lack of repeatability in the invasive appears to be driven by lower levels of among-individual variation in voracity. This may have evolutionary consequences for native S. limbata if it results in strong selection in native levels of mean and among-individual variation. Significant levels of among-individual differences were found in other behaviors (response to a novel prey and risk proneness) across species, suggesting less selection on invasive behavioral variation in these traits. Risk proneness and response towards a novel prey also formed a behavioral syndrome across species, yet neither behavior was correlated with voracity in either species. Our results illustrate the need to examine the ecological effects of behavioral variation of both invasive and native species to determine how that might impact invasive-native interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effect of acute low body temperature on predatory behavior and prey-capture efficiency in a plethodontid salamander.

    PubMed

    Marvin, Glenn A; Davis, Kayla; Dawson, Jacob

    2016-05-01

    The low-temperature limit for feeding in some salamander species (Desmognathus, Plethodontidae) has been inferred from field studies of seasonal variation in salamander activity and gut contents, which could not determine whether feeding is more dependent on environmental conditions influencing salamander foraging behavior or prey availability and movement. We performed two controlled laboratory experiments to examine the effect of short-term (acute) low body temperature on predatory behavior and prey-capture efficiency in a semiaquatic plethodontid salamander (Desmognathus conanti). In the first experiment, we quantified variation in the feeding responses of cold salamanders (at 1, 3, 5 and 7°C) to a video recording of a walking, warm (15°C) cricket to determine the lower thermal limit for predatory behavior, independent of any temperature effect on movement of prey. Experimental-group salamanders exhibited vigorous feeding responses at 5 and 7°C, large variation in feeding responses both among and within individuals (over time) at 3°C, and little to no feeding response at 1°C. Feeding responses at both 1 and 3°C were significantly less than at each higher temperature, whereas responses of control-group individuals at 15°C did not vary over time. In the second experiment, we quantified feeding by cold salamanders (at 3, 5, 7 and 11°C) on live, warm crickets to examine thermal effects on prey-capture ability. The mean feeding response to live crickets was significantly less at 3°C than at higher temperatures; however, 50% of salamanders captured and ingested prey with high efficiency at this temperature. We conclude that many individuals stalk and capture prey at very low temperatures (down to 3°C). Our results support a growing body of data that indicate many plethodontid salamanders feed at temperatures only a few degrees above freezing. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tidal regime dictates the cascading consumptive and nonconsumptive effects of multiple predators on a marsh plant.

    PubMed

    Kimbro, David L

    2012-02-01

    Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.

  7. From cues to signals: evolution of interspecific communication via aposematism and mimicry in a predator-prey system.

    PubMed

    Lehmann, Kenna D S; Goldman, Brian W; Dworkin, Ian; Bryson, David M; Wagner, Aaron P

    2014-01-01

    Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment.

  8. From Cues to Signals: Evolution of Interspecific Communication via Aposematism and Mimicry in a Predator-Prey System

    PubMed Central

    Lehmann, Kenna D. S.; Goldman, Brian W.; Dworkin, Ian; Bryson, David M.; Wagner, Aaron P.

    2014-01-01

    Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signaling in a digital predator-prey system in which prey could evolve to alter their appearance to mimic poison-free or poisonous prey. In predators, we observed rapid evolution of cue recognition (i.e. active behavioral responses) when presented with sufficiently poisonous prey. In addition, active signaling (i.e. mimicry) evolved in prey under all conditions that led to cue utilization. Thus we show that despite imperfect and dishonest signaling, given a high cost of consuming poisonous prey, complex systems of interspecific communication can evolve via predator cue recognition and prey signal manipulation. This provides evidence supporting hypotheses that cues may serve as stepping-stones in the evolution of more advanced communication and signaling systems that incorporate information about the environment. PMID:24614755

  9. Interactive effects of pesticide exposure and habitat structure on behavior and predation of a marine larval fish.

    PubMed

    Renick, Violet Compton; Anderson, Todd W; Morgan, Steven G; Cherr, Gary N

    2015-03-01

    Coastal development has generated multiple stressors in marine and estuarine ecosystems, including habitat degradation and pollutant exposure, but the effects of these stressors on the ecology of fishes remain poorly understood. We studied the separate and combined effects of an acute 4 h sublethal exposure of the pyrethroid pesticide esfenvalerate and structural habitat complexity on behavior and predation risk of larval topsmelt (Atherinops affinis). Larvae were exposed to four nominal esfenvalerate concentrations (control, 0.12, 0.59, 1.18 μg/L), before placement into 12 L mesocosms with a three-spine stickleback (Gasterosteus aculeatus) predator. Five treatments of artificial eelgrass included a (1) uniform and (2) patchy distribution of eelgrass at a low density (500 shoots per m(2)), a (3) uniform and (4) patchy distribution of eelgrass at a high density (1,000 shoots per m(2)), and (5) the absence of eelgrass. The capture success of predators and aggregative behavior of prey were observed in each mesocosm for 10 min of each trial, and mortality of prey was recorded after 60 min. Exposure to esfenvalerate increased the proportion of larvae with swimming abnormalities. Surprisingly, prey mortality did not increase linearly with pesticide exposure but increased with habitat structure (density of eelgrass), which may have been a consequence of compensating predator behavior. The degree of prey aggregation decreased with both habitat structure and pesticide exposure, suggesting that anti-predator behaviors by prey may have been hampered by the interactive effects of both of these factors.

  10. The predatory behavior of wintering Accipiter hawks: temporal patterns in activity of predators and prey.

    PubMed

    Roth, Timothy C; Lima, Steven L

    2007-05-01

    Studies focused on how prey trade-off predation and starvation risk are prevalent in behavioral ecology. However, our current understanding of these trade-offs is limited in one key respect: we know little about the behavior of predators. In this study, we provide some of the first detailed information on temporal patterns in the daily hunting behavior of bird-eating Accipiter hawks and relate that to their prey. During the winters of 1999-2004, twenty-one sharp-shinned hawks (A. striatus) and ten Cooper's hawks (A. cooperii) were intensively radio tracked in rural and urban habitats in western Indiana, USA. Cooper's hawks left roost before sunrise and usually returned to roost around sunset, while sharp-shinned hawks left roost at sunrise or later and returned to roost well before sunset. An overall measure of Cooper's-hawk-induced risk (a composite variable of attack rate and activity patterns) generally reflected the timing of prey activity, with peaks occurring around sunrise and sunset. In contrast, risk induced by the smaller sharp-shinned hawk did not strongly reflect the activity of their prey. Specifically, an early morning peak in prey activity did not correspond to a period with intense hawk activity. The lack of early morning hunting by sharp-shinned hawks may reflect the high risk of owl-induced predation experienced by these hawks. The net effect of this intraguild predation may be to "free" small birds from much hawk-induced predation risk prior to sunrise. This realization presents an alternative to energetics as an explanation for the early morning peak in small bird activity during the winter.

  11. Taking movement data to new depths: Inferring prey availability and patch profitability from seabird foraging behavior.

    PubMed

    Chimienti, Marianna; Cornulier, Thomas; Owen, Ellie; Bolton, Mark; Davies, Ian M; Travis, Justin M J; Scott, Beth E

    2017-12-01

    Detailed information acquired using tracking technology has the potential to provide accurate pictures of the types of movements and behaviors performed by animals. To date, such data have not been widely exploited to provide inferred information about the foraging habitat. We collected data using multiple sensors (GPS, time depth recorders, and accelerometers) from two species of diving seabirds, razorbills ( Alca torda , N  = 5, from Fair Isle, UK) and common guillemots ( Uria aalge , N  = 2 from Fair Isle and N  = 2 from Colonsay, UK). We used a clustering algorithm to identify pursuit and catching events and the time spent pursuing and catching underwater, which we then used as indicators for inferring prey encounters throughout the water column and responses to changes in prey availability of the areas visited at two levels: individual dives and groups of dives. For each individual dive ( N  = 661 for guillemots, 6214 for razorbills), we modeled the number of pursuit and catching events, in relation to dive depth, duration, and type of dive performed (benthic vs. pelagic). For groups of dives ( N  = 58 for guillemots, 156 for razorbills), we modeled the total time spent pursuing and catching in relation to time spent underwater. Razorbills performed only pelagic dives, most likely exploiting prey available at shallow depths as indicated by the vertical distribution of pursuit and catching events. In contrast, guillemots were more flexible in their behavior, switching between benthic and pelagic dives. Capture attempt rates indicated that they were exploiting deep prey aggregations. The study highlights how novel analysis of movement data can give new insights into how animals exploit food patches, offering a unique opportunity to comprehend the behavioral ecology behind different movement patterns and understand how animals might respond to changes in prey distributions.

  12. The scent of wolves: pyrazine analogs induce avoidance and vigilance behaviors in prey

    PubMed Central

    Osada, Kazumi; Miyazono, Sadaharu; Kashiwayanagi, Makoto

    2015-01-01

    The common gray wolf (Canis lupus) is an apex predator located at the top of the food chain in the Northern Hemisphere. It preys on rodents, rabbits, ungulates, and many other kinds of mammal. However, the behavioral evidence for, and the chemical basis of, the fear-inducing impact of wolf urine on prey are unclear. Recently, the pyrazine analogs 2, 6-dimethylpyrazine, 2, 3, 5-trimethylpyrazine and 3-ethyl-2, 5-dimethyl pyrazine were identified as kairomones in the urine of wolves. When mice were confronted with a mixture of purified pyrazine analogs, vigilance behaviors, including freezing and excitation of neurons at the accessory olfactory bulb, were markedly increased. Additionally, the odor of the pyrazine cocktail effectively suppressed the approach of deer to a feeding area, and for those close to the feeding area elicited fear-related behaviors such as the “tail-flag,” “flight,” and “jump” actions. In this review, we discuss the transfer of chemical information from wolf to prey through the novel kairomones identified in wolf urine and also compare the characteristics of wolf kairomones with other predator-produced kairomones that affect rodents. PMID:26500485

  13. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?

    PubMed

    Hayward, Matt W; Hayward, Gina J; Tambling, Craig J; Kerley, Graham I H

    2011-01-01

    Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.

  14. Simulation and analysis of a model dinoflagellate predator-prey system

    NASA Astrophysics Data System (ADS)

    Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.

    2015-12-01

    This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.

  15. Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs.

    PubMed

    Seibel, Brad A; Dymowska, Agnieszka; Rosenthal, Joshua

    2007-12-01

    Gymnosomatous pteropods are highly specialized planktonic predators that feed exclusively on their thecosomatous relatives. Feeding behavior and the morphology of gymnosome feeding structures are diverse and have evolved in concert with the size, shape, and consistency of the thecosome shell. Here, we show that the metabolic capacity and locomotory behaviors of gymnosomes are similarly diverse and vary with those of their prey. Both gymnosomes and thecosomes range from gelatinous sit-and-wait forms to active predators with high-performance locomotory muscles. We find more than 10-fold variation in size-adjusted and temperature-adjusted metabolic rates within both the Gymnosomata and Thecosomata and a strong correlation between the metabolic rates of predators and of prey. Furthermore, these characteristics are strongly influenced by environmental parameters and predator and prey converge upon similar physiological capacities under similar selection. For example, compensation of locomotory capacity in cold waters leads to elevated metabolic rates in polar species. This highly coevolved system is discussed in terms of a predator-prey "arms race" and the impending loss of both predator and prey as elevated atmospheric carbon dioxide levels threaten to dissolve prey shells via oceanic acidification.

  16. Food or threat? Wild capuchin monkeys (Sapajus libidinosus) as both predators and prey of snakes.

    PubMed

    Falótico, Tiago; Verderane, Michele P; Mendonça-Furtado, Olívia; Spagnoletti, Noemi; Ottoni, Eduardo B; Visalberghi, Elisabetta; Izar, Patrícia

    2018-01-01

    Snakes present a hazard to primates, both as active predators and by defensive envenomation. This risk might have been a selective pressure on the evolution of primate visual and cognitive systems, leading to several behavioral traits present in human and non-human primates, such as the ability to quickly learn to fear snakes. Primates seldom prey on snakes, and humans are one of the few primate species that do. We report here another case, the wild capuchin monkey (Sapajus libidinosus), which preys on snakes. We hypothesized that capuchin monkeys, due to their behavioral plasticity, and cognitive and visual skills, would be capable of discriminating dangerous and non-dangerous snakes and behave accordingly. We recorded the behavioral patterns exhibited toward snakes in two populations of S. libidinosus living 320 km apart in Piauí, Brazil. As expected, capuchins have a fear reaction to dangerous snakes (usually venomous or constricting snakes), presenting mobbing behavior toward them. In contrast, they hunt and consume non-dangerous snakes without presenting the fear response. Our findings support the tested hypothesis that S. libidinosus are capable of differentiating snakes by level of danger: on the one hand they protect themselves from dangerous snakes, on the other hand they take opportunities to prey on non-dangerous snakes. Since capuchins and humans are both predators and prey of snakes, further studies of this complex relationship may shed light on the evolution of these traits in the human lineage.

  17. A Modeled Comparison of Direct and Food Web-Mediated Impacts of Common Pesticides on Pacific Salmon

    PubMed Central

    Macneale, Kate H.; Spromberg, Julann A.; Baldwin, David H.; Scholz, Nathaniel L.

    2014-01-01

    In the western United States, pesticides used in agricultural and urban areas are often detected in streams and rivers that support threatened and endangered Pacific salmon. Although concentrations are rarely high enough to cause direct salmon mortality, they can reach levels sufficient to impair juvenile feeding behavior and limit macroinvertebrate prey abundance. This raises the possibility of direct adverse effects on juvenile salmon health in tandem with indirect effects on salmon growth as a consequence of reduced prey abundance. We modeled the growth of ocean-type Chinook salmon (Oncorhynchus tshawytscha) at the individual and population scales, investigating insecticides that differ in how long they impair salmon feeding behavior and in how toxic they are to salmon compared to macroinvertebrates. The relative importance of these direct vs. indirect effects depends both on how quickly salmon can recover and on the relative toxicity of an insecticide to salmon and their prey. Model simulations indicate that when exposed to a long-acting organophosphate insecticide that is highly toxic to salmon and invertebrates (e.g., chlorpyrifos), the long-lasting effect on salmon feeding behavior drives the reduction in salmon population growth with reductions in prey abundance having little additional impact. When exposed to short-acting carbamate insecticides at concentrations that salmon recover from quickly but are lethal to invertebrates (e.g., carbaryl), the impacts on salmon populations are due primarily to reductions in their prey. For pesticides like carbaryl, prey sensitivity and how quickly the prey community can recover are particularly important in determining the magnitude of impact on their predators. In considering both indirect and direct effects, we develop a better understanding of potential impacts of a chemical stressor on an endangered species and identify data gaps (e.g., prey recovery rates) that contribute uncertainty to these assessments. PMID:24686837

  18. Watch Out for Your Neighbor: Climbing onto Shrubs Is Related to Risk of Cannibalism in the Scorpion Buthus cf. occitanus

    PubMed Central

    Urbano-Tenorio, Fernando

    2016-01-01

    The distribution and behavior of foraging animals usually imply a balance between resource availability and predation risk. In some predators such as scorpions, cannibalism constitutes an important mortality factor determining their ecology and behavior. Climbing on vegetation by scorpions has been related both to prey availability and to predation (cannibalism) risk. We tested different hypotheses proposed to explain climbing on vegetation by scorpions. We analyzed shrub climbing in Buthus cf. occitanus with regard to the following: a) better suitability of prey size for scorpions foraging on shrubs than on the ground, b) selection of shrub species with higher prey load, c) seasonal variations in prey availability on shrubs, and d) whether or not cannibalism risk on the ground increases the frequency of shrub climbing. Prey availability on shrubs was compared by estimating prey abundance in sticky traps placed in shrubs. A prey sample from shrubs was measured to compare prey size. Scorpions were sampled in six plots (50 m x 10 m) to estimate the proportion of individuals climbing on shrubs. Size difference and distance between individuals and their closest scorpion neighbor were measured to assess cannibalism risk. The results showed that mean prey size was two-fold larger on the ground. Selection of particular shrub species was not related to prey availability. Seasonal variations in the number of scorpions on shrubs were related to the number of active scorpions, but not with fluctuations in prey availability. Size differences between a scorpion and its nearest neighbor were positively related with a higher probability for a scorpion to climb onto a shrub when at a disadvantage, but distance was not significantly related. These results do not support hypotheses explaining shrub climbing based on resource availability. By contrast, our results provide evidence that shrub climbing is related to cannibalism risk. PMID:27655347

  19. Watch Out for Your Neighbor: Climbing onto Shrubs Is Related to Risk of Cannibalism in the Scorpion Buthus cf. occitanus.

    PubMed

    Sánchez-Piñero, Francisco; Urbano-Tenorio, Fernando

    The distribution and behavior of foraging animals usually imply a balance between resource availability and predation risk. In some predators such as scorpions, cannibalism constitutes an important mortality factor determining their ecology and behavior. Climbing on vegetation by scorpions has been related both to prey availability and to predation (cannibalism) risk. We tested different hypotheses proposed to explain climbing on vegetation by scorpions. We analyzed shrub climbing in Buthus cf. occitanus with regard to the following: a) better suitability of prey size for scorpions foraging on shrubs than on the ground, b) selection of shrub species with higher prey load, c) seasonal variations in prey availability on shrubs, and d) whether or not cannibalism risk on the ground increases the frequency of shrub climbing. Prey availability on shrubs was compared by estimating prey abundance in sticky traps placed in shrubs. A prey sample from shrubs was measured to compare prey size. Scorpions were sampled in six plots (50 m x 10 m) to estimate the proportion of individuals climbing on shrubs. Size difference and distance between individuals and their closest scorpion neighbor were measured to assess cannibalism risk. The results showed that mean prey size was two-fold larger on the ground. Selection of particular shrub species was not related to prey availability. Seasonal variations in the number of scorpions on shrubs were related to the number of active scorpions, but not with fluctuations in prey availability. Size differences between a scorpion and its nearest neighbor were positively related with a higher probability for a scorpion to climb onto a shrub when at a disadvantage, but distance was not significantly related. These results do not support hypotheses explaining shrub climbing based on resource availability. By contrast, our results provide evidence that shrub climbing is related to cannibalism risk.

  20. Release from prey preservation behavior via prey switch allowed diversification of cuticular hydrocarbon profiles in digger wasps.

    PubMed

    Wurdack, Mareike; Polidori, Carlo; Keller, Alexander; Feldhaar, Heike; Schmitt, Thomas

    2017-11-01

    The cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles. Here, we show that in Philanthinae digger wasps (Crabronidae) the CHC profile coevolved with a peculiar brood-care strategy. In particular, we found that the behavior to embalm prey stored in the nest with hydrocarbons is adaptive to protect larval food from fungi in those species hunting for Hymenoptera. The prey embalming secretion is identical in composition to the alkene-dominated CHC profile in these species, suggesting that their profile is adaptively conserved for this purpose. In contrast, prey embalming is not required in those species that switched to Coleoptera as prey. Released from this chemical brood-care strategy, Coleoptera-hunting species considerably diversified their CHC profiles. Differential needs to successfully protect prey types used as larval food have thus driven the diversification of CHCs profiles of female Philanthinae wasps. To the best of our knowledge, this is the first evidence of a direct link between selection pressure for food preservation and CHC diversity. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  1. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1993-February 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.

    1994-08-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish.

  2. Are single odorous components of a predator sufficient to elicit defensive behaviors in prey species?

    PubMed Central

    Apfelbach, Raimund; Parsons, Michael H.; Soini, Helena A.; Novotny, Milos V.

    2015-01-01

    When exposed to the odor of a sympatric predator, prey animals typically display escape or defensive responses. These phenomena have been well-documented, especially in rodents, when exposed to the odor of a cat, ferret, or fox. As a result of these experiments new discussions center on the following questions: (1) is a single volatile compound such as a major or a minor mixture constituent in urine or feces, emitted by the predator sufficient to cause defensive reactions in a potential prey species or (2) is a whole array of odors required to elicit a response and (3) will the relative size or escapability of the prey as compared to the predator influence responsiveness. Most predator-prey studies on this topic have been performed in the laboratory or under semi-natural conditions. Field studies could help to find answers to these questions. Australian mammals are completely naïve toward the introduced placental carnivores. That offers ideal opportunities to analyze in the field the responses of potential prey species to unknown predator odors. During the last decades researchers have accumulated an enormous amount of data exploring the effects of eutherian predator odors on native marsupial mammals. In this review, we will give a survey about the development of olfactory research, chemical signals and their influence on the behavior and—in some cases—physiology of prey species. In addition, we report on the effects of predator odor experiments performed under natural conditions in Australia. When studying all these literature we learned that data gained under controlled laboratory conditions elucidate the role of individual odors on brain structures and ultimately on a comparatively narrow range behaviors. In contrast to single odors odor arrays mimic much more the situation prey animals are confronted to in nature. Therefore, a broad range of methodology—from chemistry to ecology including anatomy, physiology, and behavior—is needed to understand all the different (relevant) stimuli that govern and guide the interactions between a predator and its potential prey. PMID:26283903

  3. Nutrient balance affects foraging behaviour of a trap-building predator

    PubMed Central

    Mayntz, David; Toft, Søren; Vollrath, Fritz

    2009-01-01

    Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey flies of different nutrient composition and in different amounts during their first instar and measured the subsequent frequency of web building and aspects of web architecture. We found that both the likelihood of web building and the number of radii in the web were affected by prey nutrient composition while prey availability affected capture area and mesh height. Our results show that both the balance of nutrients in captured prey and the previous capture rate may affect future foraging behaviour of predators. PMID:19640870

  4. Predator-prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods.

    PubMed

    Santonja, Mathieu; Minguez, Laetitia; Gessner, Mark O; Sperfeld, Erik

    2017-03-01

    Increasing inputs of colored dissolved organic matter (cDOM), which is mainly composed of humic substances (HS), are a widespread phenomenon of environmental change in aquatic ecosystems. This process of brownification alters the chemical conditions of the environment, but knowledge is lacking of whether elevated cDOM and HS levels interfere with the ability of prey species to evade chemical predator cues and thus affect predator-prey interactions. We assessed the effects of acute and prolonged exposure to HS at increasing concentrations on the ability of freshwater zooplankton to avoid predator threat (imposed by fish kairomones) in laboratory trials with two calanoid copepods (Eudiaptomus gracilis and Heterocope appendiculata). Populations of both species clearly avoided water containing fish kairomones. However, the avoidance behavior weakened with increasing HS concentration, suggesting that HS affected the ability of copepods to perceive or respond to the predator cue. The behavioral responses of the two copepod populations to increasing HS concentrations differed, with H. appendiculata being more sensitive than E. gracilis in an acute exposure scenario, whereas E. gracilis responded more strongly after prolonged exposure. Both showed similar physiological impairment after prolonged exposure, as revealed by their oxidative balance as a stress indicator, but mortality increased more strongly for H. appendiculata when the HS concentration increased. These results indicate that reduced predator threat evasion in the presence of cDOM could make copepods more susceptible to predation in future, with variation in the strength of responses among populations leading to changes in zooplankton communities and lake food-web structure.

  5. Differing foraging strategies influence mercury (Hg) exposure in an Antarctic penguin community.

    PubMed

    Polito, Michael J; Brasso, Rebecka L; Trivelpiece, Wayne Z; Karnovsky, Nina; Patterson, William P; Emslie, Steven D

    2016-11-01

    Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Traffic noise reduces foraging efficiency in wild owls

    NASA Astrophysics Data System (ADS)

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D.; Nakamura, Futoshi

    2016-08-01

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls’ ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls’ ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.

  7. Traffic noise reduces foraging efficiency in wild owls.

    PubMed

    Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D; Nakamura, Futoshi

    2016-08-18

    Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls' ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls' ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.

  8. The relationship between direct predation and antipredator responses: a test with multiple predators and multiple prey.

    PubMed

    Creel, Scott; Dröge, Egil; M'soka, Jassiel; Smit, Daan; Becker, Matt; Christianson, Dave; Schuette, Paul

    2017-08-01

    Most species adjust their behavior to reduce the likelihood of predation. Many experiments have shown that antipredator responses carry energetic costs that can affect growth, survival, and reproduction, so that the total cost of predation depends on a trade-off between direct predation and risk effects. Despite these patterns, few field studies have examined the relationship between direct predation and the strength of antipredator responses, particularly for complete guilds of predators and prey. We used scan sampling in 344 observation periods over a four-year field study to examine behavioral responses to the immediate presence of predators for a complete antelope guild (dominated by wildebeest, zebra, and oribi) in Liuwa Plains National Park, Zambia, testing for differences in response to all large carnivores in the ecosystem (lions, spotted hyenas, cheetahs, and African wild dogs). We quantified the proportion that each prey species contributed to the kills made by each predator (516 total kills), used distance sampling on systematic line transects to determine the abundance of each prey species, and combined these data to quantify the per-capita risk of direct predation for each predator-prey pair. On average, antelopes increased their vigilance by a factor of 2.4 when predators were present. Vigilance varied strongly among prey species, but weakly in response to different predators. Increased vigilance was correlated with reduced foraging in a similar manner for all prey species. The strength of antipredator response was not detectably related to patterns of direct predation (n = 15 predator-prey combinations with sufficient data). This lack of correlation has implications for our understanding of the role of risk effects as part of the limiting effect of predators on prey. © 2017 by the Ecological Society of America.

  9. Do Lions Panthera leo Actively Select Prey or Do Prey Preferences Simply Reflect Chance Responses via Evolutionary Adaptations to Optimal Foraging?

    PubMed Central

    Hayward, Matt W.; Hayward, Gina J.; Tambling, Craig J.; Kerley, Graham I. H.

    2011-01-01

    Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success. PMID:21915261

  10. Nephila clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense of numerosity in an orb-weaver.

    PubMed

    Rodríguez, Rafael L; Briceño, R D; Briceño-Aguilar, Eduardo; Höbel, Gerlinde

    2015-01-01

    Nephila clavipes golden orb-web spiders accumulate prey larders on their webs and search for them if they are removed from their web. Spiders that lose larger larders (i.e., spiders that lose larders consisting of more prey items) search for longer intervals, indicating that the spiders form memories of the size of the prey larders they have accumulated, and use those memories to regulate recovery efforts when the larders are pilfered. Here, we ask whether the spiders represent prey counts (i.e., numerosity) or a continuous integration of prey quantity (mass) in their memories. We manipulated larder sizes in treatments that varied in either prey size or prey numbers but were equivalent in total prey quantity (mass). We then removed the larders to elicit searching and used the spiders' searching behavior as an assay of their representations in memory. Searching increased with prey quantity (larder size) and did so more steeply with higher prey counts than with single prey of larger sizes. Thus, Nephila spiders seem to track prey quantity in two ways, but to attend more to prey numerosity. We discuss alternatives for continuous accumulator mechanisms that remain to be tested against the numerosity hypothesis, and the evolutionary and adaptive significance of evidence suggestive of numerosity in a sit-and-wait invertebrate predator.

  11. Corridors and olfactory predator cues affect small mammal behavior.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkerhoff, Robert Jory; Haddad, Nick M.; Orrock, John L.

    2005-03-30

    Abstract The behavior of prey individuals is influenced by a variety of factors including, but not limited to, habitat configuration, risk of predation, and availability of resources, and these habitat-dependent factors may have interactive effects. We studied the responses of mice to an increase in perceived predation risk in a patchy environment to understand how habitat corridors might affect interactions among species in a fragmented landscape. We used a replicated experiment to investigate corridor-mediated prey responses to predator cues in a network of open habitat patches surrounded by a matrix of planted pine forest. Some of the patches were connectedmore » by corridors. We used mark–recapture techniques and foraging trays to monitor the movement, behavior, and abundance of small mammals. Predation threat was manipulated in one-half of the replicates by applying an olfactory predator cue. Corridors synchronized small mammal foraging activity among connected patches. Foraging also was inhibited in the presence of an olfactory predator cue but apparently increased in adjacent connected patches. Small mammal abundance did not change as a result of the predator manipulation and was not influenced by the presence of corridors. This study is among the 1st to indicate combined effects of landscape configuration and predation risk on prey behavior. These changes in prey behavior may, in turn, have cascading effects on community dynamics where corridors and differential predation risk influence movement and patch use.« less

  12. Prey-tracking behavior in the invasive terrestrial planarian Platydemus manokwari (Platyhelminthes, Tricladida)

    NASA Astrophysics Data System (ADS)

    Iwai, Noriko; Sugiura, Shinji; Chiba, Satoshi

    2010-11-01

    Platydemus manokwari is a broadly distributed invasive terrestrial flatworm that preys heavily on land snails and has been credited with the demise of numerous threatened island faunas. We examined whether P. manokwari tracks the mucus trails of land snail prey, investigated its ability to determine trail direction, and evaluated prey preference among various land snail species. A plastic treatment plate with the mucus trail of a single species and a control plate without the trail were placed side by side at the exit of cages housing P. manokwari. All trials were then videotaped overnight. The flatworms moved along plates with mucus trails, but did not respond to plates without trails, blank control (distilled water), or with conspecific flatworm trails. When presented at the midpoint of a snail mucus trail, the flatworms followed the trail in a random direction. The flatworms showed a preference when choosing between two plates, each with a mucus trail of different land snail species. Our results suggest that P. manokwari follows snail mucus trails based on chemical cues to increase the chance of encountering prey; however, trail-tracking behavior showed no directionality.

  13. Residential development alters behavior, movement, and energetics in an apex predator, the puma

    PubMed Central

    Wang, Yiwei; Wilmers, Christopher C.

    2017-01-01

    Human development strongly influences large carnivore survival and persistence globally. Behavior changes are often the first measureable responses to human disturbances, and can have ramifications on animal populations and ecological communities. We investigated how a large carnivore responds to anthropogenic disturbances by measuring activity, movement behavior, and energetics in pumas along a housing density gradient. We used log-linear analyses to examine how habitat, time of day, and proximity to housing influenced the activity patterns of both male and female pumas in the Santa Cruz Mountains. We used spatial GPS location data in combination with Overall Dynamic Body Acceleration measurements recorded by onboard accelerometers to quantify how development density affected the average distances traveled and energy expended by pumas. Pumas responded to development differently depending on the time of day; at night, they were generally more active and moved further when they were in developed areas, but these relationships were not consistent during the day. Higher nighttime activity in developed areas increased daily caloric expenditure by 10.1% for females and 11.6% for males, resulting in increases of 3.4 and 4.0 deer prey required annually by females and males respectively. Our results support that pumas have higher energetic costs and resource requirements in human-dominated habitats due to human-induced behavioral change. Increased energetic costs for pumas are likely to have ramifications on prey species and exacerbate human-wildlife conflict, especially as exurban growth continues. Future conservation work should consider the consequences of behavioral shifts on animal energetics, individual fitness, and population viability. PMID:29020087

  14. Scavenging by spiders (Araneae) and its relationship to pest management of the brown recluse spider.

    PubMed

    Vetter, Richard S

    2011-06-01

    Experiments reported in Sandidge (2003; Nature 426: 30) indicated that the brown recluse spider, Loxosceles reclusa Gertsch & Mulaik, preferred to scavenge dead prey over live prey and that the spiders were not detrimentally affected when fed insecticide-killed crickets. Extrapolations made in subsequent media coverage disseminating the results of this research made counter-intuitive statements that pesticide treatment in houses would increase brown recluse populations in homes. This information was presented as if the scavenging behavior was specialized in the brown recluse; however, it was more likely that this behavior has not been well studied in other species. To provide a comparison, the current laboratory study examined the likelihood of non-Loxosceles spiders to scavenge dead prey. Of 100 non-Loxosceles spiders that were tested (from 11 families, 24 genera, and at least 29 species from a variety of spider hunting guilds), 99 scavenged dead crickets when offered in petri dishes. Some of the spiders were webspinners in which real-world scavenging of dead prey is virtually impossible, yet they scavenge when given the opportunity. Therefore, scavenging is a flexible opportunistic predatory behavior that is spread across a variety of taxa and is not a unique behavior in brown recluses. These findings are discussed in relation to pest management practices.

  15. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  16. Underwater behavior of sperm whales off Kaikoura, New Zealand, as revealed by a three-dimensional hydrophone array.

    PubMed

    Miller, Brian; Dawson, Stephen; Vennell, Ross

    2013-10-01

    Observations are presented of the vocal behavior and three dimensional (3D) underwater movements of sperm whales measured with a passive acoustic array off the coast of Kaikoura, New Zealand. Visual observations and vocal behaviors of whales were used to divide dive tracks into different phases, and depths and movements of whales are reported for each of these phases. Diving depths and movement information from 75 3D tracks of whales in Kaikoura are compared to one and two dimensional tracks of whales studied in other oceans. While diving, whales in Kaikoura had a mean swimming speed of 1.57 m/s, and, on average, dived to a depth of 427 m (SD = 117 m), spending most of their time at depths between 300 and 600 m. Creak vocalizations, assumed to be the prey capture phase of echolocation, occurred throughout the water column from sea surface to sea floor, but most occurred at depths of 400-550 m. Three dimensional measurement of tracking revealed several different "foraging" strategies, including active chasing of prey, lining up slow-moving or unsuspecting prey, and foraging on demersal or benthic prey. These movements provide the first 3D descriptions underwater behavior of whales at Kaikoura.

  17. Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.

    PubMed

    Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood

    2010-12-01

    It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.

  18. Durophagy in sharks: feeding mechanics of the hammerhead Sphyrna tiburo.

    PubMed

    Wilga, C D; Motta, P J

    2000-09-01

    This study investigates the motor pattern and head movements during feeding of a durophagus shark, the bonnethead Sphyrna tiburo, using electromyography and simultaneous high-speed video. Sphyrna tiburo feeds almost exclusively on hard-shelled crabs, with shrimp and fish taken occasionally. It captures crabs by ram feeding, then processes or reduces the prey by crushing it between molariform teeth, finally transporting the prey by suction for swallowing. The prey-crushing mechanism is distinct from that of ram or bite capture and suction transport. This crushing mechanism is accomplished by altering the duration of jaw adductor muscle activity and modifying jaw kinematics by the addition of a second jaw-closing phase. In crushing events, motor activity of the jaw adductor muscles continues (biting of the prey occurs as the jaws close and continues after the jaws have closed) throughout a second jaw-closing phase, unlike capture and transport events during which motor activity (biting) ceases at jaw closure. Sphyrna tiburo is able to take advantage of a resource (hard prey) that is not readily available to most sharks by utilizing a suite of durophagous characteristics: molariform teeth, a modified jaw protrusor muscle, altered jaw adductor activity and modified jaw kinematics. Sphyrna tiburo is a specialist feeder on crab prey as demonstrated by the lack of differences in kinematic or motor patterns when offered prey of differing hardness and its apparent lack of ability to modulate its behavior when feeding on other prey. Functional patterns are altered and coupled with modifications in dental and jaw morphology to produce diverse crushing behaviors in elasmobranchs.

  19. Development of survival skills in captive-raised Siberian polecats (Mustela eversmanni) I: locating prey

    USGS Publications Warehouse

    Miller, Brian; Biggins, Dean; Wemmer, Chris; Powell, Roger; Hanebury, Lou; Horn, Deborah; Vargas, Astrid

    1990-01-01

    Captive-raised mustelids appear to have a rudimentary capacity to kill prey, but the skills necessary for locating prey may be eroded during captivity. We tested the maturational component of prey-searching behavior with captive-raised Siberian polecats (Mustela eversmanni) by subjecting polecats to a simulated prairie dog colony of 6 burrows within a 200 m2 arena. Ten naive Siberian polecats at ages 2.5, 3.5, and 4.5 months (30 total) were deprived of food for 12 hours. A dead prairie dog was placed in 1 prairie dog burrow and the other 5 were empty. A single Siberian polecat was released onto the colony shortly before sunset and its movements monitored from an observation tower. Older Siberian polecats located prey significantly quicker than younger polecats, but all age groups spent a great deal of time in surface activity not directed toward a burrow. When Siberian polecats were about 10 months old, all burrows in the arena were plugged with dirt including the burrow with the prairie dog. In this winter test, Siberian polecats located the prey but still spent a great deal of time in non-burrow directed surface activity. Economical use of surface time, with a low amount of non-burrow directed behavior, would presumably reduce the risk of predation for hunting polecats.

  20. The role of methyl salicylate in prey searching behavior of the predatory mite phytoseiulus persimilis.

    PubMed

    De Boer, Jetske G; Dicke, Marcel

    2004-02-01

    Many carnivorous arthropods use herbivore-induced plant volatiles to locate their prey. These plant volatiles are blends of up to hundreds of compounds. It is often unknown which compounds in such a complex volatile blend represent the signal to the foraging carnivore. We studied the role of methyl salicylate (MeSA) as part of the volatile blend in the foraging behavior of the predatory mite Phytoseiulus persimilis by using a Y-tube olfactometer. MeSA is one of the compounds released by lima bean, infested with Tetranychus urticae--a prey species of the predatory mite. MeSA attracted satiated predatory mites in a dose-dependent way with optimum attraction at a dose of 0.2 microg. Predatory mites did not discriminate between a prey-induced lima bean volatile blend (that contains MeSA) and a prey-induced volatile blend to which an extra amount of synthetic MeSA had been added. However, they preferred a MeSA-containing volatile blend (induced by T. urticae) to an otherwise similar but MeSA-free blend (induced by jasmonic acid). Adding synthetic MeSA to the MeSA-free blend significantly increased the mites' choice for this odor, suggesting an important role for MeSA. This study is a new step toward unraveling the role of herbivore-induced plant volatiles in the foraging behavior of predatory arthropods.

  1. Assessment of prey vulnerability through analysis of wolf movements and kill sites.

    PubMed

    Bergman, Eric J; Garrott, Robert A; Creel, Scott; Borkowski, John J; Jaffe, Rosemary; Watson, E G R

    2006-02-01

    Within predator-prey systems behavior can heavily influence spatial dynamics, and accordingly, the theoretical study of how spatial dynamics relate to stability within these systems has a rich history. However, our understanding of these behaviors in large mammalian systems is poorly developed. To address the relationship between predator selection patterns, prey density, and prey vulnerability, we quantified selection patterns for two fine-scale behaviors of a recovering wolf (Canis lupus) population in Yellowstone National Park, Wyoming, USA. Wolf spatial data were collected between November and May from 1998-1999 until 2001-2002. Over four winters, 244 aerial locations, 522 ground-based telemetry locations, 1287 km of movement data from snow tracking, and the locations of 279 wolf kill sites were recorded. There was evidence that elk (Cervus elaphus) and bison (Bison bison) densities had a weak effect on the sites where wolves traveled and made kills. Wolf movements showed a strong selection for geothermal areas, meadows, and areas near various types of habitat edges. Proximity to edge and habitat class also had a strong influence on the locations where elk were most vulnerable to predation. There was little evidence that wolf kill sites differed from the places where wolves traveled, indicating that elk vulnerability influenced where wolves selected to travel. Our results indicate that elk are more vulnerable to wolves under certain conditions and that wolves are capable of selecting for these conditions. As such, vulnerability plays a central role in predator-prey behavioral games and can potentially impact the systems to which they relate.

  2. Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum.

    PubMed

    Filosa, Alessandro; Barker, Alison J; Dal Maschio, Marco; Baier, Herwig

    2016-05-04

    Animals use the sense of vision to scan their environment, respond to threats, and locate food sources. The neural computations underlying the selection of a particular behavior, such as escape or approach, require flexibility to balance potential costs and benefits for survival. For example, avoiding novel visual objects reduces predation risk but negatively affects foraging success. Zebrafish larvae approach small, moving objects ("prey") and avoid large, looming objects ("predators"). We found that this binary classification of objects by size is strongly influenced by feeding state. Hunger shifts behavioral decisions from avoidance to approach and recruits additional prey-responsive neurons in the tectum, the main visual processing center. Both behavior and tectal function are modulated by signals from the hypothalamic-pituitary-interrenal axis and the serotonergic system. Our study has revealed a neuroendocrine mechanism that modulates the perception of food and the willingness to take risks in foraging decisions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Prey and mound disassembly, manipulation and transport by fire ant collectives

    NASA Astrophysics Data System (ADS)

    Dutta, Bahnisikha; Monaenkova, Daria; Goodisman, Michael A.; Goldman, Daniel

    Fire ants inhabit subterranean nests covered by a hemispherical mound of soil permeated by narrow ( 1 body length diameter) tunnels. Fire ants can use their mound for long-term food storage [Gayahan &Tschinkel, J. Insect Sci.,2008]. Since mound tunnels are narrow, we expect that in addition to prey manipulation, mound reconfiguration could also be an important aspect of the food storage strategy. Ant colonies collected from wild were allowed to build nests in containers filled with clay soil in the laboratory. These colonies were offered diverse prey embedded with lead markers, including mealworms, crickets and shrimp. Ant-prey-soil interactions on the nest surface were recorded using overhead video and subsurface using x-ray imaging. Individual ants involved in prey storage exhibited three distinct behaviors: prey maneuvering, prey dissection and mound reconfiguration. Small prey (e.g. mealworms) were collectively carried intact into the mound through a tunnel, and then disassembled within the mound. Larger prey (e.g. shrimp) were dismantled into small pieces above the surface and carried to mound tunnels. The bodies of hard medium-sized prey (e.g. crickets) were buried after limb removal and then disassembled and moved into tunnels. Soil reconfiguration occurred in all cases.

  4. Behavioral responses of native prey to disparate predators: naiveté and predator recognition.

    PubMed

    Anson, Jennifer R; Dickman, Chris R

    2013-02-01

    It is widely accepted that predator recognition and avoidance are important behaviors in allowing prey to mitigate the impacts of their predators. However, while prey species generally develop anti-predator behaviors through coevolution with predators, they sometimes show accelerated adoption of these behaviors under strong selection pressure from novel species. We used a field manipulation experiment to gauge the ability of the common ringtail possum (Pseudocheirus peregrinus), a semi-arboreal Australian marsupial, to recognize and respond to olfactory cues of different predator archetypes. We predicted that ringtails would display stronger anti-predator behaviors to cues of the invasive European red fox (Vulpes vulpes) in areas where fox impacts had been greatest, and to cues of the native lace monitor (Varanus varius) in areas of sympatry compared with allopatry. We found that ringtails fled quickly and were more alert when exposed to the fecal odors of both predators compared to neutral and pungent control odors, confirming that predator odors are recognized and avoided. However, these aversive responses were similar irrespective of predator presence or level of impact. These results suggest that selection pressure from the fox has been sufficient for ringtails to develop anti-predator behaviors over the few generations since foxes have become established. In contrast, we speculate that aversive responses by ringtails to the lace monitor in areas where this predator is absent reflect recent coexistence of the two species. We conclude that rapid evolution of anti-predator behaviors may occur when selection is strong. The maintenance of these behaviors should allow re-establishment of predator-prey relationships if the interactants regain sympatry via range shifts or management actions to reintroduce them to their former ranges.

  5. Modulation of shark prey capture kinematics in response to sensory deprivation.

    PubMed

    Gardiner, Jayne M; Atema, Jelle; Hueter, Robert E; Motta, Philip J

    2017-02-01

    The ability of predators to modulate prey capture in response to the size, location, and behavior of prey is critical to successful feeding on a variety of prey types. Modulating in response to changes in sensory information may be critical to successful foraging in a variety of environments. Three shark species with different feeding morphologies and behaviors were filmed using high-speed videography while capturing live prey: the ram-feeding blacktip shark, the ram-biting bonnethead, and the suction-feeding nurse shark. Sharks were examined intact and after sensory information was blocked (olfaction, vision, mechanoreception, and electroreception, alone and in combination), to elucidate the contribution of the senses to the kinematics of prey capture. In response to sensory deprivation, the blacktip shark demonstrated the greatest amount of modulation, followed by the nurse shark. In the absence of olfaction, blacktip sharks open the jaws slowly, suggestive of less motivation. Without lateral line cues, blacktip sharks capture prey from greater horizontal angles using increased ram. When visual cues are absent, blacktip sharks elevate the head earlier and to a greater degree, allowing them to overcome imprecise position of the prey relative to the mouth, and capture prey using decreased ram, while suction remains unchanged. When visual cues are absent, nurse sharks open the mouth wider, extend the labial cartilages further, and increase suction while simultaneously decreasing ram. Unlike some bony fish, neither species switches feeding modalities (i.e. from ram to suction or vice versa). Bonnetheads failed to open the mouth when electrosensory cues were blocked, but otherwise little to no modulation was found in this species. These results suggest that prey capture may be less plastic in elasmobranchs than in bony fishes, possibly due to anatomical differences, and that the ability to modulate feeding kinematics in response to available sensory information varies by species, rather than by feeding modality. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Predator cannibalism can intensify negative impacts on heterospecific prey.

    PubMed

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing of hatching can strengthen predatory effects on heterospecific prey and can have impacts on various, traits of both predator and prey. Because animals commonly broaden their diet as they grow, such negative impacts of predator cannibalism on the heterospecific prey may be common in interactions between predators and prey species of similar size.

  7. Predatory behavior of grizzly bears feeding on elk calves in Yellowstone National Park

    USGS Publications Warehouse

    French, Steven P.; French, Marilynn G.

    1990-01-01

    Grizzly bears (Ursus arctos horribilis) were observed preying on elk calves (Cervus elaphus) on 60 occasions in Yellowstone National Park, with 29 confirmed kills. Some bears were deliberate predators and effectively preyed on elk calves for short periods each spring, killing up to 1 calf daily. Primary hunting techniques were searching and chasing although some bears used a variety of techniques during a single hunt. They hunted both day and night and preyed on calves in the open and in the woods. Excess killing occurred when circumstances permitted. One bear caught 5 calves in a 15-minute interval. Elk used a variety of antipredator defenses and occasionally attacked predacious bears. The current level of this feeding behavior appears to be greater than previously reported. This is probably related to the increased availability of calves providing a greater opportunity for learning, and the adaptation of a more predatory behavior by some grizzly bears in Yellowstone.

  8. Neuroendocrine changes upon exposure to predator odors.

    PubMed

    Hegab, Ibrahim M; Wei, Wanhong

    2014-05-28

    Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic-pituitary-adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of anti-predator responses in prey species. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evolution of Swarming Behavior Is Shaped by How Predators Attack.

    PubMed

    Olson, Randal S; Knoester, David B; Adami, Christoph

    2016-01-01

    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.

  10. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya.

    PubMed

    Aryal, Achyut; Shrestha, Uttam Babu; Ji, Weihong; Ale, Som B; Shrestha, Sujata; Ingty, Tenzing; Maraseni, Tek; Cockfield, Geoff; Raubenheimer, David

    2016-06-01

    Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator-prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy-deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate-only model shows that only 11.64% (17,190 km(2)) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km(2) (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate-only model. It is predicted that future climate may alter the predator-prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards - a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.

  11. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.

    PubMed

    Razak, Khaleel A

    2018-06-06

    Substrate gleaning is a foraging strategy in which bats use a mixture of echolocation, prey-generated sounds, and vision to localize and hunt surface-dwelling prey. Many substrate-gleaning species depend primarily on prey-generated noise to hunt. Use of echolocation is limited to general orientation and obstacle avoidance. This foraging strategy involves a different set of selective pressures on morphology, behavior, and auditory system organization of bats compared to the use of echolocation for both hunting and navigation. Gleaning likely evolved to hunt in cluttered environments and/or as a counterstrategy to reduce detection by eared prey. Gleaning bats simultaneously receive streams of echoes from obstacles and prey-generated noise, and have to segregate these acoustic streams to attend to one or both. Not only do these bats have to be exquisitely sensitive to the soft, low frequency sounds produced by walking/rustling prey, they also have to precisely localize these sounds. Gleaners typically use low intensity echolocation calls. Such stealth echolocation requires a nervous system that is attuned to low intensity sound processing. In addition, landing on the ground to hunt may bring gleaners in close proximity to venomous prey. In fact, at least 2 gleaning bat species are known to hunt highly venomous scorpions. While a number of studies have addressed adaptations for echolocation in bats that hunt in the air, very little is known about the morphological, behavioral, and neural specializations for gleaning in bats. This review highlights the novel insights gleaning bats provide into bat evolution, particularly auditory pathway organization and ion channel structure/function relationships. Gleaning bats are found in multiple families, suggesting convergent evolution of specializations for gleaning as a foraging strategy. However, most of this review is based on recent work on a single species - the pallid bat (Antrozous palli dus) - symptomatic of the fact that more comparative work is needed to identify the mechanisms that facilitate gleaning behavior. © 2018 S. Karger AG, Basel.

  12. Sequential assessment of prey through the use of multiple sensory cues by an eavesdropping bat

    NASA Astrophysics Data System (ADS)

    Page, Rachel A.; Schnelle, Tanja; Kalko, Elisabeth K. V.; Bunge, Thomas; Bernal, Ximena E.

    2012-06-01

    Predators are often confronted with a broad diversity of potential prey. They rely on cues associated with prey quality and palatability to optimize their hunting success and to avoid consuming toxic prey. Here, we investigate a predator's ability to assess prey cues during capture, handling, and consumption when confronted with conflicting information about prey quality. We used advertisement calls of a preferred prey item (the túngara frog) to attract fringe-lipped bats, Trachops cirrhosus, then offered palatable, poisonous, and chemically manipulated anurans as prey. Advertisement calls elicited an attack response, but as bats approached, they used additional sensory cues in a sequential manner to update their information about prey size and palatability. While both palatable and poisonous small anurans were readily captured, large poisonous toads were approached but not contacted suggesting the use of echolocation for assessment of prey size at close range. Once prey was captured, bats used chemical cues to make final, post-capture decisions about whether to consume the prey. Bats dropped small, poisonous toads as well as palatable frogs coated in toad toxins either immediately or shortly after capture. Our study suggests that echolocation and chemical cues obtained at close range supplement information obtained from acoustic cues at long range. Updating information about prey quality minimizes the occurrence of costly errors and may be advantageous in tracking temporal and spatial fluctuations of prey and exploiting novel food sources. These findings emphasize the sequential, complex nature of prey assessment that may allow exploratory and flexible hunting behaviors.

  13. Chemical discrimination by tongue-flicking in lizards: A review with hypotheses on its origin and its ecological and phylogenetic relationships.

    PubMed

    Cooper, W E

    1994-02-01

    Tongue-flicking is a synapomorphy of squamate reptiles functioning to sample chemicals for vomerolfactory analysis, which became possible in primitive squamates when ducts opened from the vomeronasal organs to the roof of the mouth. Extant iguanian lizards in families that do not use the tongue to sample chemical prey cues prior to attack partially protrude it in two feeding contexts: during capture by lingual prehension and after oral contact with prey. These lizards do not exhibit strike-induced chemosensory searching. Lingual prey prehension is present in iguanian lizards and inSphenodon, the sister taxon of Squamata. During attempts to capture prey, the tongues of primitive squamates inevitably made incidental contact with environmental substrates bearing chemicals deposited by prey, conspecifics, and predators. Such contact presumably induced selection for tongue-flicking and ability to identify biologically important chemicals. Most iguanian lizards are ambush foragers that use immobility as a major antipredatory defense. Because tongue-flicking at an ambush post would not allow chemical search beyond the vicinity of the head and would render them easier for predators and prey to detect, typical iguanians tongue-flick neither while foraging nor to identify predators. They do detect pheromones by tongue-flicking. Scleroglossan lizards are typically active foragers that rely on speed to escape. Being freer to move the tongue, they have evolved lingual sampling allowing detection of chemical cues of conspecifics, predators, and prey, as well as strike-induced chemosensory searching, some can follow pheromone trails by tongue-flicking. Some families have lingual morphology and behavior specialized for chemosensory sampling. In varanids and snakes, the taxa showing the greatest lingual specialization, additional prey-related chemosensory behaviors have evolved. In iguanian and scleroglossan families that have secondarily adopted the foraging mode typical of the other taxon, prey chemical discrimination involving tongue-flicking and strike-induced chemosensory searching are typical for the foraging mode rather than the taxon. Because foraging mode and state of prey chemical discrimination are stable within squamate families and to a large extent in higher taxa, both features have been retained from the ancestral condition in most families. However, in three cases in which foraging mode has changed from its ancestral state, the state of prey chemical discrimination has also changed, indicating that prey chemical discrimination is adaptively adjusted to foraging mode. Indeed, acquisition of lingually mediated prey chemical discrimination may have made feasible the evolution of active foraging, which in turn appears to have profoundly influenced the further evolution of squamate chemosensory structures and behavior, placing a selective premium on features enhancing the tongue's efficiency as a chemical sampling device. The advent of tongue-flicking to sample prey chemicals and thus detect hidden prey may have allowed generalist (cruise) or ambush foragers, if early squamates were such, to become specialists in active foraging. Alternatively, if the common ancestors of squamates were active foragers, the adoption of ambush foraging would have selected against participation of the tongue in locating prey. Acting jointly, tongue-flicking and active foraging have had momentous consequences for squamate diversification. Specialization for active foraging would appear to have had ramifying effects on antipredatory defenses, body form, territoriality, mating systems, and reproductive physiology.

  14. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture.

    PubMed

    Trivedi, Chintan A; Bollmann, Johann H

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.

  15. Predator-Prey Dynamics in the Mesopelagic: Odontocete Foraging Ecology and Anti-predator Behavior of Prey

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, K. J.

    2016-02-01

    We explored the behavior of Risso's dolphins foraging in scattering layers off California using an integrated approach comprising echosounders deployed in a deep-diving autonomous underwater vehicle, ship based acoustics, visual observations, direct prey sampling, and animal-borne tags on deep-diving predators. We identified three distinct prey layers: a persistent layer around 425 m, a vertically migrating layer around 300 m, and a layer intermittently present near 50 m, all of which were used by individual tagged animals. Active acoustic measurements demonstrated that Risso's dolphins dove to discrete prey layers throughout the day and night with only slightly higher detection rates at night. Dolphins were detected in all three layers during the day with over half of detections in the middle layer, 20% of detections in the deepest layer, and 10% falling outside the main layers. Dolphins were found less frequently in areas where the shallow, intermittent layer was absent, suggesting that this layer, while containing the smallest prey and the lowest densities of squid, was an important component of their foraging strategy. The deepest layer was targeted equally both during the day and at night. Using acoustic data collected from the AUV, we found layers were made up of distinct, small patches of animals of similar size and taxonomy adjacent to contrasting patches. Squid made up over 70% of the patches in which dolphins were found and more than 95% of those in deep water. Squid targeted by dolphins in deep water were also relatively large, indicating significant benefit from these relatively rare, physically demanding dives. Within these patches, prey formed tighter aggregations when Risso's dolphins were present. Careful integration of a suite of traditional and novel tools is providing insight into the ecology and dynamics of predator and prey in the mesopelagic.

  16. Evaluation of Trail-Cameras for Analyzing the Diet of Nesting Raptors Using the Northern Goshawk as a Model

    PubMed Central

    García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel

    2015-01-01

    Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007–2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1–2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts. PMID:25992956

  17. Evaluation of trail-cameras for analyzing the diet of nesting raptors using the Northern Goshawk as a model.

    PubMed

    García-Salgado, Gonzalo; Rebollo, Salvador; Pérez-Camacho, Lorenzo; Martínez-Hesterkamp, Sara; Navarro, Alberto; Fernández-Pereira, José-Manuel

    2015-01-01

    Diet studies present numerous methodological challenges. We evaluated the usefulness of commercially available trail-cameras for analyzing the diet of Northern Goshawks (Accipiter gentilis) as a model for nesting raptors during the period 2007-2011. We compared diet estimates obtained by direct camera monitoring of 80 nests with four indirect analyses of prey remains collected from the nests and surroundings (pellets, bones, feather-and-hair remains, and feather-hair-and-bone remains combined). In addition, we evaluated the performance of the trail-cameras and whether camera monitoring affected Goshawk behavior. The sensitivity of each diet-analysis method depended on prey size and taxonomic group, with no method providing unbiased estimates for all prey sizes and types. The cameras registered the greatest number of prey items and were probably the least biased method for estimating diet composition. Nevertheless this direct method yielded the largest proportion of prey unidentified to species level, and it underestimated small prey. Our trail-camera system was able to operate without maintenance for longer periods than what has been reported in previous studies with other types of cameras. Initially Goshawks showed distrust toward the cameras but they usually became habituated to its presence within 1-2 days. The habituation period was shorter for breeding pairs that had previous experience with cameras. Using trail-cameras to monitor prey provisioning to nests is an effective tool for studying the diet of nesting raptors. However, the technique is limited by technical failures and difficulties in identifying certain prey types. Our study also shows that cameras can alter adult Goshawk behavior, an aspect that must be controlled to minimize potential negative impacts.

  18. Males choose to keep their heads: Preference for lower risk females in a praying mantid.

    PubMed

    Avigliano, Esteban; Scardamaglia, Romina C; Gabelli, Fabián M; Pompilio, Lorena

    2016-08-01

    Male reproductive success is obviously mate limited, which implies that males should rarely be choosy. One extreme case of a reproductive (or mating) cost is sexual cannibalism. Recent research has proposed that male mantids (Parastagmatoptera tessellata) are choosy and not complicit in cannibalism and that they modify behavior towards females based on the risk imposed by them. Since female cannibalism depends on females' energetic state (i.e. hunger) we investigated whether male mantids are capable of using environmental cues that provide information regarding the energetic state of females to make their mate choices. Under laboratory conditions, males were confronted individually with three options: a female eating a prey, a female without a prey, and a male eating a prey (as a control for the presence of prey). Each subject comprising a choice was harnessed and placed in the corners of a triangular experimental arena at an equidistant distance from the focal male. The prey was a middle size cricket that subjects ate in approximately twenty minutes. The behavior of focal males was recorded for six hours. Females were under the same deprivation regime and, in line with previous studies, consuming one cricket did not significantly increase females' abdomen girth. Male mantids significantly preferred females that were eating a prey. In all cases choices were made after the females consumed the whole prey. This suggests that males did not use the prey as a direct way to avoid being cannibalized by keeping the female busy. The preference for females that had recently fed may have evolved because of the potential reduction in sexual cannibalism. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Prozac in the water: Chronic fluoxetine exposure and predation risk interact to shape behaviors in an estuarine crab.

    PubMed

    Peters, Joseph R; Granek, Elise F; de Rivera, Catherine E; Rollins, Matthew

    2017-11-01

    Predators exert considerable top-down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes. Yet, limited attention has been paid to the effects of chronic pharmaceutical exposure on risk behavior or as an ecological stressor, despite widespread detection and persistence of these contaminants in aquatic environments. In the laboratory, we simulated estuarine conditions of the shore crab, Hemigrapsus oregonensis, and investigated whether chronic exposure (60 days) to field-detected concentrations (0, 3, and 30 ng/L) of the antidepressant fluoxetine affected diurnal and nocturnal risk behaviors in the presence of a predator, Cancer productus . We found that exposure to fluoxetine influenced both diurnal and nocturnal prey risk behaviors by increasing foraging and locomotor activity in the presence of predators, particularly during the day when these crabs normally stay hidden. Crabs exposed to fluoxetine were also more aggressive, with a higher frequency of agonistic interactions and increased mortality due to conflicts with conspecifics. These results suggest that exposure to field-detected concentrations of fluoxetine may alter the trade-off between resource acquisition and predation risk among crabs in estuaries. This fills an important data gap, highlighting how intra- and interspecific behaviors are altered by exposure to field concentrations of pharmaceuticals; such data more explicitly identify potential ecological impacts of emerging contaminants on aquatic ecosystems and can aid water quality management.

  20. Interactions Among Behavioral Responses of Baleen Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability

    DTIC Science & Technology

    2015-05-31

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (■DD-MM-YYYV9 05/31/2015 2. REPORT TYPE...completely describe and quantify behavioral responses of baleen whales to controlled exposure experiments while including the effects of prey provides a...novel and powerful insight into interpreting responses to sound and controlling for environmental factors. In order to determine whether and how

  1. Evidence of behavioral co-option from context-dependent variation in mandible use in trap-jaw ants ( Odontomachus spp.)

    NASA Astrophysics Data System (ADS)

    Spagna, Joseph C.; Schelkopf, Adam; Carrillo, Tiana; Suarez, Andrew V.

    2009-02-01

    Evolutionary co-option of existing structures for new functions is a powerful yet understudied mechanism for generating novelty. Trap-jaw ants of the predatory genus Odontomachus are capable of some of the fastest self-propelled appendage movements ever recorded; their devastating strikes are not only used to disable and capture prey, but produce enough force to launch the ants into the air. We tested four Odontomachus species in a variety of behavioral contexts to examine if their mandibles have been co-opted for an escape mechanism through ballistic propulsion. We found that nest proximity makes no difference in interactions with prey, but that prey size has a strong influence on the suite of behaviors employed by the ants. In trials involving a potential threat (another trap-jaw ant species), vertical jumps were significantly more common in ants acting as intruders than in residents (i.e. a dangerous context), while horizontal jumps occurred at the same rate in both contexts. Additionally, horizontal jump trajectories were heavily influenced by the angle at which the substrate was struck and appear to be under little control by the ant. We conclude that while horizontal jumps may be accidental side-effects of strikes against hard surfaces, vertical escape jumps are likely intentional defensive behaviors that have been co-opted from the original prey-gathering and food-processing functions of Odontomachus jaws.

  2. Intersexual and temporal variation in foraging ecology of prothonotary warblers during the breeding season

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.

  3. Utilizing Biological Models to Determine the Recruitment of the IRA by Modeling the Voting Behavior of Sinn Fein

    DTIC Science & Technology

    2006-03-01

    models, the thesis applies a biological model, the Lotka - Volterra predator- prey model, to a highly suggestive case study, that of the Irish Republican...Model, Irish Republican Army, Sinn Féin, Lotka - Volterra Predator Prey Model, Recruitment, British Army 16. PRICE CODE 17. SECURITY CLASSIFICATION OF...weaknesses of sociological and biological models, the thesis applies a biological model, the Lotka - Volterra predator-prey model, to a highly suggestive

  4. Some Mixotrophic Flagellate Species Selectively Graze on Archaea

    PubMed Central

    Ballen-Segura, Miguel; Catalan, Jordi

    2016-01-01

    ABSTRACT Many phototrophic flagellates ingest prokaryotes. This mixotrophic trait becomes a critical aspect of the microbial loop in planktonic food webs because of the typical high abundance of these flagellates. Our knowledge of their selective feeding upon different groups of prokaryotes, particularly under field conditions, is still quite limited. In this study, we investigated the feeding behavior of three species (Rhodomonas sp., Cryptomonas ovata, and Dinobryon cylindricum) via their food vacuole content in field populations of a high mountain lake. We used the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) protocol with probes specific for the domain Archaea and three groups of Eubacteria: Betaproteobacteria, Actinobacteria, and Cytophaga-Flavobacteria of Bacteroidetes. Our results provide field evidence that contrasting selective feeding exists between coexisting mixotrophic flagellates under the same environmental conditions and that some prokaryotic groups may be preferentially impacted by phagotrophic pressure in aquatic microbial food webs. In our study, Archaea were the preferred prey, chiefly in the case of Rhodomonas sp., which rarely fed on any other prokaryotic group. In general, prey selection did not relate to prey size among the grazed groups. However, Actinobacteria, which were clearly avoided, mostly showed a size of <0.5 μm, markedly smaller than cells from the other groups. IMPORTANCE That mixotrophic flagellates are not randomly feeding in the main prokaryotic groups under field conditions is a pioneer finding in species-specific behavior that paves the way for future studies according to this new paradigm. The particular case that Archaea were preferentially affected in the situation studied shows that phagotrophic pressure cannot be disregarded when considering the distribution of this group in freshwater oligotrophic systems. PMID:27815273

  5. Prey-mediated avoidance of an intraguild predator by its intraguild prey

    USGS Publications Warehouse

    Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.

    2010-01-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.

  6. The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations

    PubMed Central

    Preisser, Evan L.; Bolnick, Daniel I.

    2008-01-01

    Background Most ecological models assume that predator and prey populations interact solely through consumption: predators reduce prey densities by killing and consuming individual prey. However, predators can also reduce prey densities by forcing prey to adopt costly defensive strategies. Methodology/Principal Findings We build on a simple Lotka-Volterra predator-prey model to provide a heuristic tool for distinguishing between the demographic effects of consumption (consumptive effects) and of anti-predator defenses (nonconsumptive effects), and for distinguishing among the multiple mechanisms by which anti-predator defenses might reduce prey population growth rates. We illustrate these alternative pathways for nonconsumptive effects with selected empirical examples, and use a meta-analysis of published literature to estimate the mean effect size of each pathway. Overall, predation risk tends to have a much larger impact on prey foraging behavior than measures of growth, survivorship, or fecundity. Conclusions/Significance While our model provides a concise framework for understanding the many potential NCE pathways and their relationships to each other, our results confirm empirical research showing that prey are able to partially compensate for changes in energy income, mitigating the fitness effects of defensive changes in time budgets. Distinguishing the many facets of nonconsumptive effects raises some novel questions, and will help guide both empirical and theoretical studies of how predation risk affects prey dynamics. PMID:18560575

  7. Vulnerability of age-0 pallid sturgeon Scaphirhynchus albus to predation; effects of predator type, turbidity, body size, and prey density

    USGS Publications Warehouse

    French, William E.; Graeb, Brian D. S.; Chipps, Steven R.; Klumb, Robert A.

    2014-01-01

    Predation can play an important role in the recruitment dynamics of fishes with intensity regulated by behavioral (i.e., prey selectivity) and/or environmental conditions that may be especially important for rare or endangered fishes. We conducted laboratory experiments to quantify prey selection and capture efficiency by three predators employing distinct foraging strategies: pelagic piscivore (walleye Sander vitreus); benthic piscivore (flathead catfish Pylodictis olivaris) and generalist predator (smallmouth bass Micropterus dolomieu) foraging on two size classes of age-0 pallid sturgeon: large (75–100 mm fork length [FL]) and small (40–50 mm FL). Experiments at high (> 70 nephalometric turbidity units [NTU]) and low (< 5 NTU) turbidity for each predator were conducted with high and low densities of pallid sturgeon and contrasting densities of an alternative prey, fathead minnow Pimephales promelas. Predator behaviors (strikes, captures, and consumed prey) were also quantified for each prey type. Walleye and smallmouth bass negatively selected pallid sturgeon (Chesson’s α = 0.04–0.1) across all treatments, indicating low relative vulnerability to predation. Relative vulnerability to predation by flathead catfish was moderate for small pallid sturgeon (α = 0.44, neutral selection), but low for large pallid sturgeon (α = 0.11, negative selection). Turbidity (up to 100 NTU) did not affect pallid sturgeon vulnerability, even at low density of alternative prey. Age-0 pallid sturgeon were easily captured by all predators, but were rarely consumed, suggesting mechanisms other than predator capture efficiency govern sturgeon predation vulnerability.

  8. The Impact of Detoxification Costs and Predation Risk on Foraging: Implications for Mimicry Dynamics

    PubMed Central

    Skelhorn, John; Rowe, Candy; Ruxton, Graeme D.; Higginson, Andrew D.

    2017-01-01

    Prey often evolve defences to deter predators, such as noxious chemicals including toxins. Toxic species often advertise their defence to potential predators by distinctive sensory signals. Predators learn to associate toxicity with the signals of these so-called aposematic prey, and may avoid them in future. In turn, this selects for mildly toxic prey to mimic the appearance of more toxic prey. Empirical evidence shows that mimicry could be either beneficial (‘Mullerian’) or detrimental (‘quasi-Batesian’) to the highly toxic prey, but the factors determining which are unknown. Here, we use state-dependent models to explore how tri-trophic interactions could influence the evolution of prey defences. We consider how predation risk affects predators’ optimal foraging strategies on aposematic prey, and explore the resultant impact this has on mimicry dynamics between unequally defended species. In addition, we also investigate how the potential energetic cost of metabolising a toxin can alter the benefits to eating toxic prey and thus impact on predators’ foraging decisions. Our model predicts that both how predators perceive their own predation risk, and the cost of detoxification, can have significant, sometimes counterintuitive, effects on the foraging decisions of predators. For example, in some conditions predators should: (i) avoid prey they know to be undefended, (ii) eat more mildly toxic prey as detoxification costs increase, (iii) increase their intake of highly toxic prey as the abundance of undefended prey increases. These effects mean that the relationship between a mimic and its model can qualitatively depend on the density of alternative prey and the cost of metabolising toxins. In addition, these effects are mediated by the predators’ own predation risk, which demonstrates that, higher trophic levels than previously considered can have fundamental impacts on interactions among aposematic prey species. PMID:28045959

  9. Interspecific differences in susceptibility to competition and predation in a species-pair of larval amphibians

    USGS Publications Warehouse

    Walls, S.C.; Taylor, D.G.; Wilson, C.M.

    2002-01-01

    Fundamental issues in the study of predator-prey interactions include addressing how prey coexist with their predators and, moreover, whether predators promote coexistence among competing prey. We conducted a series of laboratory experiments with a freshwater assemblage consisting of two predators that differed in their foraging modes (a crayfish, Procambarus sp., and the western mosquitofish, Gambusia affinis) and their prospective anuran prey (tadpoles of the narrow-mouthed toad, Gastrophryne carolinensis, and the squirrel treefrog, Hyla squirella). We examined whether competition occurs within and between these two prey species and, if so, whether the non-lethal presence of predators alters the outcome of competitive interactions. We also asked whether the two species of prey differ in their susceptibility to the two types of predators and whether interspecific differences in predator avoidance behavior might account for this variation. Our results indicated that Gastrophryne was a stronger competitor than Hyla; at high densities, Gastrophryne reduced the body size of both congeners and conspecifics, as well as the proportion of surviving conspecifics that metamorphosed. However, the presence of mosquitofish did not alter the outcome of this competition, nor did either type of predator affect the density-dependent responses of Gastrophryne. In laboratory foraging trials, the number of tadpoles of each prey species that was killed, but not completely consumed by mosquitofish, was similar for Gastrophryne and Hyla. Yet, significantly more individuals of Gastrophryne than of Hyla were the first prey eaten by mosquitofish; there was no difference in the number of individuals of each species eaten by crayfish. Overall, more individuals of Gastrophryne than of Hyla were killed and completely eaten by mosquitofish at the end of the experiment. The two species of prey did not differ in their spatial avoidance of either type of predator, suggesting that this behavior did not play a significant role in the differential vulnerability of the prey to predation. By reducing the abundance of G. carolinensis, the potential exists for predators, such as mosquitofish, to ameliorate this species' competitive impact on other species. In this way, predators may promote coexistence of species within some assemblages of amphibians.

  10. Odor tracking in sharks is reduced under future ocean acidification conditions.

    PubMed

    Dixson, Danielle L; Jennings, Ashley R; Atema, Jelle; Munday, Philip L

    2015-04-01

    Recent studies show that ocean acidification impairs sensory functions and alters the behavior of teleost fishes. If sharks and other elasmobranchs are similarly affected, this could have significant consequences for marine ecosystems globally. Here, we show that projected future CO2 levels impair odor tracking behavior of the smooth dogfish (Mustelus canis). Adult M. canis were held for 5 days in a current-day control (405 ± 26 μatm) and mid (741 ± 22 μatm) or high CO2 (1064 ± 17 μatm) treatments consistent with the projections for the year 2100 on a 'business as usual' scenario. Both control and mid CO2 -treated individuals maintained normal odor tracking behavior, whereas high CO2 -treated sharks significantly avoided the odor cues indicative of food. Control sharks spent >60% of their time in the water stream containing the food stimulus, but this value fell below 15% in high CO2 -treated sharks. In addition, sharks treated under mid and high CO2 conditions reduced attack behavior compared to the control individuals. Our findings show that shark feeding could be affected by changes in seawater chemistry projected for the end of this century. Understanding the effects of ocean acidification on critical behaviors, such as prey tracking in large predators, can help determine the potential impacts of future ocean acidification on ecosystem function. © 2014 John Wiley & Sons Ltd.

  11. Vision drives accurate approach behavior during prey capture in laboratory mice

    PubMed Central

    Hoy, Jennifer L.; Yavorska, Iryna; Wehr, Michael; Niell, Cristopher M.

    2016-01-01

    Summary The ability to genetically identify and manipulate neural circuits in the mouse is rapidly advancing our understanding of visual processing in the mammalian brain [1,2]. However, studies investigating the circuitry that underlies complex ethologically-relevant visual behaviors in the mouse have been primarily restricted to fear responses [3–5]. Here, we show that a laboratory strain of mouse (Mus musculus, C57BL/6J) robustly pursues, captures and consumes live insect prey, and that vision is necessary for mice to perform the accurate orienting and approach behaviors leading to capture. Specifically, we differentially perturbed visual or auditory input in mice and determined that visual input is required for accurate approach, allowing maintenance of bearing to within 11 degrees of the target on average during pursuit. While mice were able to capture prey without vision, the accuracy of their approaches and capture rate dramatically declined. To better explore the contribution of vision to this behavior, we developed a simple assay that isolated visual cues and simplified analysis of the visually guided approach. Together, our results demonstrate that laboratory mice are capable of exhibiting dynamic and accurate visually-guided approach behaviors, and provide a means to estimate the visual features that drive behavior within an ethological context. PMID:27773567

  12. Dangerous prey and daring predators: a review.

    PubMed

    Mukherjee, Shomen; Heithaus, Michael R

    2013-08-01

    How foragers balance risks during foraging is a central focus of optimal foraging studies. While diverse theoretical and empirical work has revealed how foragers should and do manage food and safety from predators, little attention has been given to the risks posed by dangerous prey. This is a potentially important oversight because risk of injury can give rise to foraging costs similar to those arising from the risk of predation, and with similar consequences. Here, we synthesize the literature on how foragers manage risks associated with dangerous prey and adapt previous theory to make the first steps towards a framework for future studies. Though rarely documented, it appears that in some systems predators are frequently injured while hunting and risk of injury can be an important foraging cost. Fitness costs of foraging injuries, which can be fatal, likely vary widely but have rarely been studied and should be the subject of future research. Like other types of risk-taking behaviour, it appears that there is individual variation in the willingness to take risks, which can be driven by social factors, experience and foraging abilities, or differences in body condition. Because of ongoing modifications to natural communities, including changes in prey availability and relative abundance as well as the introduction of potentially dangerous prey to numerous ecosystems, understanding the prevalence and consequences of hunting dangerous prey should be a priority for behavioural ecologists. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  13. Moving to stay in place: behavioral mechanisms for coexistence of African large carnivores.

    PubMed

    Vanak, Abi Tamim; Fortin, Daniel; Thaker, Maria; Ogden, Monika; Owen, Cailey; Greatwood, Sophie; Slotow, Rob

    2013-11-01

    Most ecosystems have multiple predator species that not only compete for shared prey, but also pose direct threats to each other. These intraguild interactions are key drivers of carnivore community structure, with ecosystem-wide cascading effects. Yet, behavioral mechanisms for coexistence of multiple carnivore species remain poorly understood. The challenges of studying large, free-ranging carnivores have resulted in mainly coarse-scale examination of behavioral strategies without information about all interacting competitors. We overcame some of these challenges by examining the concurrent fine-scale movement decisions of almost all individuals of four large mammalian carnivore species in a closed terrestrial system. We found that the intensity ofintraguild interactions did not follow a simple hierarchical allometric pattern, because spatial and behavioral tactics of subordinate species changed with threat and resource levels across seasons. Lions (Panthera leo) were generally unrestricted and anchored themselves in areas rich in not only their principal prey, but also, during periods of resource limitation (dry season), rich in the main prey for other carnivores. Because of this, the greatest cost (potential intraguild predation) for subordinate carnivores was spatially coupled with the highest potential benefit of resource acquisition (prey-rich areas), especially in the dry season. Leopard (P. pardus) and cheetah (Acinonyx jubatus) overlapped with the home range of lions but minimized their risk using fine-scaled avoidance behaviors and restricted resource acquisition tactics. The cost of intraguild competition was most apparent for cheetahs, especially during the wet season, as areas with energetically rewarding large prey (wildebeest) were avoided when they overlapped highly with the activity areas of lions. Contrary to expectation, the smallest species (African wild dog, Lycaon pictus) did not avoid only lions, but also used multiple tactics to minimize encountering all other competitors. Intraguild competition thus forced wild dogs into areas with the lowest resource availability year round. Coexistence of multiple carnivore species has typically been explained by dietary niche separation, but our multi-scaled movement results suggest that differences in resource acquisition may instead be a consequence of avoiding intraguild competition. We generate a more realistic representation of hierarchical behavioral interactions that may ultimately drive spatially explicit trophic structures of multi-predator communities.

  14. What do predators really want? The role of gerbil energetic state in determining prey choice by Barn Owls.

    PubMed

    Embar, Keren; Mukherjee, Shomen; Kotler, Burt P

    2014-02-01

    In predator-prey foraging games, predators should respond to variations in prey state. The value of energy for the prey changes depending on season. Prey in a low energetic state and/or in a reproductive state should invest more in foraging and tolerate higher predation risk. This should make the prey more catchable, and thereby, more preferable to predators. We ask, can predators respond to prey state? How does season and state affect the foraging game from the predator's perspective? By letting owls choose between gerbils whose states we experimentally manipulated, we could demonstrate predator sensitivity to prey state and predator selectivity that otherwise may be obscured by the foraging game. During spring, owls invested more time and attacks in the patch with well-fed gerbils. During summer, owls attacked both patches equally, yet allocated more time to the patch with hungry gerbils. Energetic state per se does not seem to be the basis of owl choice. The owls strongly responded to these subtle differences. In summer, gerbils managed their behavior primarily for survival, and the owls equalized capture opportunities by attacking both patches equally.

  15. Insect prey eaten by Hoary Bats (Lasiurus cinereus) prior to fatal collisions with wind turbines

    USGS Publications Warehouse

    Valdez, Ernest W.; Cryan, Paul M.

    2013-01-01

    Wind turbines are being deployed all across the world to meet the growing demand for energy, and in many areas, these turbines are causing the deaths of insectivorous migratory bats. One of the hypothesized causes of bat susceptibility is that bats are attracted to insects on or near the turbines. We examined insect remains in the stomachs and intestines of hoary bats (Lasiurus cinereus) found dead beneath wind turbines in New York and Texas to evaluate the hypothesis that bats die while feeding at turbines. Most of the bats we examined had full stomachs, indicating that they fed in the minutes to hours leading up to their deaths. However, we did not find prey in the mouths or throats of any bats that would indicate the bats died while capturing prey. Hoary bats fed mostly on moths, but we also detected the regular presence of beetles, true bugs, and crickets. Presence of terrestrial insects in stomachs indicates that bats may have gleaned them from the ground or the turbine surfaces, yet aerial capture of winged insect stages cannot be ruled out. Our findings confirm earlier studies that indicate hoary bats feed during migration and eat mostly moths. Future studies on bat behaviors and insect presence at wind turbines could help determine whether feeding at turbines is a major fatality risk for bats.

  16. Effects of prey size and foraging mode on the ontogenetic change in feeding niche ofColostethus stepheni (Anura: Dendrobatidae).

    PubMed

    Lima, Albertina P; Moreira, Gloria

    1993-03-01

    The feeding niche ofColostethus stepheni changes during ontogeny. Small individuals eat small arthropods, principally mites and collembolans, and larger frogs eat bigger prey of other types. The shift in prey types is not a passive effect of selection for bigger prey. There is a strong relationship between electivity for prey types and frog size, independent of electivity for prey size. Four indices of general activity during foraging (number of movements, velocity, total area utilized and time spent moving), which are associated with electivity for prey types in adult frogs and lizards, did not predict the ontogenetic change in the diet ofC. stepheni. Apparently, the behavioral changes that cause the ontogenetic change inC. stepheni are more subtle than shifts in general activity during foraging. Studies of niche partitioning in communities of anurans that do not take into consideration ontogenetic changes in diet and seasonal changes in the size structures of populations present a partial and possibly erroneous picture of the potential interactions among species.

  17. Dynamics in a ratio-dependent predator-prey model with predator harvesting

    NASA Astrophysics Data System (ADS)

    Xiao, Dongmei; Li, Wenxia; Han, Maoan

    2006-12-01

    The objective of this paper is to study systematically the dynamical properties of a ratio-dependent predator-prey model with nonzero constant rate predator harvesting. It is shown that the model has at most two equilibria in the first quadrant and can exhibit numerous kinds of bifurcation phenomena, including the bifurcation of cusp type of codimension 2 (i.e., Bogdanov-Takens bifurcation), the subcritical and supercritical Hopf bifurcations. These results reveal far richer dynamics compared to the model with no harvesting and different dynamics compared to the model with nonzero constant rate prey harvesting in [D. Xiao, L. Jennings, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM Appl. Math. 65 (2005) 737-753]. Biologically, it is shown that nonzero constant rate predator harvesting can prevent mutual extinction as a possible outcome of the predator prey interaction, and remove the singularity of the origin, which was regarded as "pathological behavior" for a ratio-dependent predator prey model in [P. Yodzis, Predator-prey theory and management of multispecies fisheries, Ecological Applications 4 (2004) 51-58].

  18. Recolonizing carnivores and naïve prey: conservation lessons from Pleistocene extinctions.

    PubMed

    Berger, J; Swenson, J E; Persson, I L

    2001-02-09

    The current extinction of many of Earth's large terrestrial carnivores has left some extant prey species lacking knowledge about contemporary predators, a situation roughly parallel to that 10,000 to 50,000 years ago, when naive animals first encountered colonizing human hunters. Along present-day carnivore recolonization fronts, brown (also called grizzly) bears killed predator-naive adult moose at disproportionately high rates in Scandinavia, and moose mothers who lost juveniles to recolonizing wolves in North America's Yellowstone region developed hypersensitivity to wolf howls. Although prey that had been unfamiliar with dangerous predators for as few as 50 to 130 years were highly vulnerable to initial encounters, behavioral adjustments to reduce predation transpired within a single generation. The fact that at least one prey species quickly learns to be wary of restored carnivores should negate fears about localized prey extinction.

  19. Prey selection by the Lake Superior fish community

    USGS Publications Warehouse

    Isaac, Edmund J.; Hrabik, Thomas R.; Stockwell, Jason D.; Gamble, Allison E.

    2012-01-01

    Mysis diluviana is an important prey item to the Lake Superior fish community as found through a recent diet study. We further evaluated this by relating the quantity of prey found in fish diets to the quantity of prey available to fish, providing insight into feeding behavior and prey preferences. We describe the seasonal prey selection of major fish species collected across 18 stations in Lake Superior in spring, summer, and fall of 2005. Of the major nearshore fish species, bloater (Coregonus hoyi), rainbow smelt (Osmerus mordax), and lake whitefish (Coregonus clupeaformis) consumed Mysis, and strongly selected Mysis over other prey items each season. However, lake whitefish also selected Bythotrephes in the fall when Bythotrephes were numerous. Cisco (Coregonus artedi), a major nearshore and offshore species, fed largely on calanoid copepods, and selected calanoid copepods (spring) and Bythotrephes (summer and fall). Cisco also targeted prey similarly across bathymetric depths. Other major offshore fish species such as kiyi (Coregonus kiyi) and deepwater sculpin (Myoxocephalus thompsoni) fed largely on Mysis, with kiyi targeting Mysis exclusively while deepwater sculpin did not prefer any single prey organism. The major offshore predator siscowet lake trout (Salvelinus namaycush siscowet) consumed deepwater sculpin and coregonines, but selected deepwater sculpin and Mysis each season, with juveniles having a higher selection for Mysis than adults. Our results suggest that Mysis is not only a commonly consumed prey item, but a highly preferred prey item for pelagic, benthic, and piscivorous fishes in nearshore and offshore waters of Lake Superior.

  20. Reconciling actual and perceived rates of predation by domestic cats

    PubMed Central

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-01-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats’ impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on “predation awareness” campaigns or restrictions of cat freedom. PMID:26306163

  1. The Killer Fly Hunger Games: Target Size and Speed Predict Decision to Pursuit

    PubMed Central

    Wardill, Trevor J.; Knowles, Katie; Barlow, Laura; Tapia, Gervasio; Nordström, Karin; Olberg, Robert M.; Gonzalez-Bellido, Paloma T.

    2015-01-01

    Predatory animals have evolved to optimally detect their prey using exquisite sensory systems such as vision, olfaction and hearing. It may not be so surprising that vertebrates, with large central nervous systems, excel at predatory behaviors. More striking is the fact that many tiny insects, with their miniscule brains and scaled down nerve cords, are also ferocious, highly successful predators. For predation, it is important to determine whether a prey is suitable before initiating pursuit. This is paramount since pursuing a prey that is too large to capture, subdue or dispatch will generate a substantial metabolic cost (in the form of muscle output) without any chance of metabolic gain (in the form of food). In addition, during all pursuits, the predator breaks its potential camouflage and thus runs the risk of becoming prey itself. Many insects use their eyes to initially detect and subsequently pursue prey. Dragonflies, which are extremely efficient predators, therefore have huge eyes with relatively high spatial resolution that allow efficient prey size estimation before initiating pursuit. However, much smaller insects, such as killer flies, also visualize and successfully pursue prey. This is an impressive behavior since the small size of the killer fly naturally limits the neural capacity and also the spatial resolution provided by the compound eye. Despite this, we here show that killer flies efficiently pursue natural (Drosophila melanogaster) and artificial (beads) prey. The natural pursuits are initiated at a distance of 7.9 ± 2.9 cm, which we show is too far away to allow for distance estimation using binocular disparities. Moreover, we show that rather than estimating absolute prey size prior to launching the attack, as dragonflies do, killer flies attack with high probability when the ratio of the prey's subtended retinal velocity and retinal size is 0.37. We also show that killer flies will respond to a stimulus of an angular size that is smaller than that of the photoreceptor acceptance angle, and that the predatory response is strongly modulated by the metabolic state. Our data thus provide an exciting example of a loosely designed matched filter to Drosophila, but one which will still generate successful pursuits of other suitable prey. PMID:26398293

  2. Specialized morphology corresponds to a generalist diet: linking form and function in smashing mantis shrimp crustaceans.

    PubMed

    deVries, Maya S; Stock, Brian C; Christy, John H; Goldsmith, Gregory R; Dawson, Todd E

    2016-10-01

    Many animals are considered to be specialists because they have feeding structures that are fine-tuned for consuming specific prey. For example, "smasher" mantis shrimp have highly specialized predatory appendages that generate forceful strikes to break apart hard-shelled prey. Anecdotal observations suggest, however, that the diet of smashers may include soft-bodied prey as well. Our goal was to examine the diet breadth of the smasher mantis shrimp, Neogonodactylus bredini, to determine whether it has a narrow diet of hard-shelled prey. We combined studies of prey abundance, feeding behavior, and stable isotope analyses of diet in both seagrass and coral rubble to determine if N. bredini's diet was consistent across different habitat types. The abundances of hard-shelled and soft-bodied prey varied between habitats. In feeding experiments, N. bredini consumed both prey types. N. bredini consumed a range of different prey in the field as well and, unexpectedly, the stable isotope analysis demonstrated that soft-bodied prey comprised a large proportion (29-53 %) of the diet in both habitats. Using a Bayesian mixing model framework (MixSIAR), we found that this result held even when we used uninformative, or generalist, priors and informative priors reflecting a specialist diet on hard-shelled prey and prey abundances in the field. Thus, contrary to expectation, the specialized feeding morphology of N. bredini corresponds to a broad diet of both hard-shelled and soft-bodied prey. Using multiple lines of study to describe the natural diets of other presumed specialists may demonstrate that specialized morphology often broadens rather than narrows diet breadth.

  3. The comparative imperative: genetics and ontogeny of chemoreceptive prey responses in natricine snakes.

    PubMed

    Burghardt, G M

    1993-01-01

    Reptiles offer a rich diversity for the study of chemoreception, and snakes are a particularly appropriate group for comparative, evolutionary, genetic, developmental, and mechanistic studies. A long-term program of research is described that attempts to integrate these approaches, focusing on the widespread North American genus Thamnophis (Natricinae). Prior to their first meal, neonatal snakes respond to aqueous surface substances from species-typical prey with increased tongue-flicking and open-mouth attacks; these responses are mediated by the vomeronasal organ. Such responses predict what prey snakes will eat and can also predict relative prey preference. Species, population, litter, and individual differences exists and are important at different levels of analysis. Chemoreceptive responses are heritable, although they may show different developmental trends. Some species respond to prey types they do not eat in nature. In the earthworm specialist, T. butleri, response to fish chemicals can be interpreted as a chemoreceptive response inertially inherited from ancestral species, decoupled from prey capture techniques, and in the process of being lost. Ontogeny and experience can modify behavior of the neonate in various ways. Feeding experience can alter response to some prey more than others, and ambient prey odor may shift prey preference. Psychophysical studies show that prey preference and threshold sensitivity to prey chemicals can be independent and differ between closely related species, indicating that neural tissue is devoted to recognition of specific types of prey. In site choice tests, garter snakes can also discriminate between feces derived from conspecific snakes fed similar or different diets.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Territory surveillance and prey management: Wolves keep track of space and time.

    PubMed

    Schlägel, Ulrike E; Merrill, Evelyn H; Lewis, Mark A

    2017-10-01

    Identifying behavioral mechanisms that underlie observed movement patterns is difficult when animals employ sophisticated cognitive-based strategies. Such strategies may arise when timing of return visits is important, for instance to allow for resource renewal or territorial patrolling. We fitted spatially explicit random-walk models to GPS movement data of six wolves ( Canis lupus ; Linnaeus, 1758) from Alberta, Canada to investigate the importance of the following: (1) territorial surveillance likely related to renewal of scent marks along territorial edges, to reduce intraspecific risk among packs, and (2) delay in return to recently hunted areas, which may be related to anti-predator responses of prey under varying prey densities. The movement models incorporated the spatiotemporal variable "time since last visit," which acts as a wolf's memory index of its travel history and is integrated into the movement decision along with its position in relation to territory boundaries and information on local prey densities. We used a model selection framework to test hypotheses about the combined importance of these variables in wolf movement strategies. Time-dependent movement for territory surveillance was supported by all wolf movement tracks. Wolves generally avoided territory edges, but this avoidance was reduced as time since last visit increased. Time-dependent prey management was weak except in one wolf. This wolf selected locations with longer time since last visit and lower prey density, which led to a longer delay in revisiting high prey density sites. Our study shows that we can use spatially explicit random walks to identify behavioral strategies that merge environmental information and explicit spatiotemporal information on past movements (i.e., "when" and "where") to make movement decisions. The approach allows us to better understand cognition-based movement in relation to dynamic environments and resources.

  5. Movements of wintering surf scoters: Predator responses to different prey landscapes

    USGS Publications Warehouse

    Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.

    2008-01-01

    The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.

  6. Feast or flee: bioelectrical regulation of feeding and predator evasion behaviors in the planktonic alveolate Favella sp. (Spirotrichia).

    PubMed

    Echevarria, Michael L; Wolfe, Gordon V; Taylor, Alison R

    2016-02-01

    Alveolate (ciliates and dinoflagellates) grazers are integral components of the marine food web and must therefore be able to sense a range of mechanical and chemical signals produced by prey and predators, integrating them via signal transduction mechanisms to respond with effective prey capture and predator evasion behaviors. However, the sensory biology of alveolate grazers is poorly understood. Using novel techniques that combine electrophysiological measurements and high-speed videomicroscopy, we investigated the sensory biology of Favella sp., a model alveolate grazer, in the context of its trophic ecology. Favella sp. produced frequent rhythmic depolarizations (∼500 ms long) that caused backward swimming and are responsible for endogenous swimming patterns relevant to foraging. Contact of both prey cells and non-prey polystyrene microspheres at the cilia produced immediate mechanostimulated depolarizations (∼500 ms long) that caused backward swimming, and likely underlie aggregative swimming patterns of Favella sp. in response to patches of prey. Contact of particles at the peristomal cavity that were not suitable for ingestion resulted in depolarizations after a lag of ∼600 ms, allowing time for particles to be processed before rejection. Ingestion of preferred prey particles was accompanied by transient hyperpolarizations (∼1 s) that likely regulate this step of the feeding process. Predation attempts by the copepod Acartia tonsa elicited fast (∼20 ms) animal-like action potentials accompanied by rapid contraction of the cell to avoid predation. We have shown that the sensory mechanisms of Favella sp. are finely tuned to the type, location, and intensity of stimuli from prey and predators. © 2016. Published by The Company of Biologists Ltd.

  7. Moorea BIOCODE barcode library as a tool for understanding predator-prey interactions: insights into the diet of common predatory coral reef fishes

    NASA Astrophysics Data System (ADS)

    Leray, M.; Boehm, J. T.; Mills, S. C.; Meyer, C. P.

    2012-06-01

    Identifying species involved in consumer-resource interactions is one of the main limitations in the construction of food webs. DNA barcoding of prey items in predator guts provides a valuable tool for characterizing trophic interactions, but the method relies on the availability of reference sequences to which prey sequences can be matched. In this study, we demonstrate that the COI sequence library of the Moorea BIOCODE project, an ecosystem-level barcode initiative, enables the identification of a large proportion of semi-digested fish, crustacean and mollusks found in the guts of three Hawkfish and two Squirrelfish species. While most prey remains lacked diagnostic morphological characters, 94% of the prey found in 67 fishes had >98% sequence similarity with BIOCODE reference sequences. Using this species-level prey identification, we demonstrate how DNA barcoding can provide insights into resource partitioning, predator feeding behaviors and the consequences of predation on ecosystem function.

  8. Prey Capture Ecology of the Cubozoan Carukia barnesi

    PubMed Central

    Sachlikidis, Nik; Jones, Rhondda

    2015-01-01

    Adult Carukia barnesi medusae feed predominantly on larval fish; however, their mode of prey capture seems more complex than previously described. Our findings revealed that during light conditions, this species extends its tentacles and ‘twitches’ them frequently. This highlights the lure-like nematocyst clusters in the water column, which actively attract larval fish that are consequently stung and consumed. This fishing behavior was not observed during dark conditions, presumably to reduce energy expenditure when they are not luring visually oriented prey. We found that larger medusae have longer tentacles; however, the spacing between the nematocyst clusters is not dependent on size, suggesting that the spacing of the nematocyst clusters is important for prey capture. Additionally, larger specimens twitch their tentacles more frequently than small specimens, which correlate with their recent ontogenetic prey shift from plankton to larval fish. These results indicate that adult medusae of C. barnesi are not opportunistically grazing in the water column, but instead utilize sophisticated prey capture techniques to specifically target larval fish. PMID:25970583

  9. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    PubMed

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes. © 2016 by the Ecological Society of America.

  10. Effects of bioflavonoids on oviposition behavior in the pink-spotted ladybird beetle Coleomegilla maculata (Coleoptera: Coccinellidae)

    USDA-ARS?s Scientific Manuscript database

    One goal of our current research is to mass produce ladybird beetles for biological control of plant pests in greenhouses and other protective structures. Cost-effective mass production involves the use of alternative prey/foods or artificial diets (rather than natural prey, e.g., aphids). One chall...

  11. Competitive interactions between walleye (Sander vitreus) and smallmouth bass (Micropterus dolomieu) under various controlled conditions

    USGS Publications Warehouse

    Wuellner, M.R.; Graeb, B.D.S.; Willis, D.W.; Galster, B.J.; Selch, T.M.; Chipps, S.R.

    2011-01-01

    The range of smallmouth bass (Micropterus dolomieu) is expanding northward, creating new interactions with native predators, including walleye (Sander vitreus). We used a series of experiments to investigate competition between walleye (WAE) and smallmouth bass (SMB) at different life stages and light conditions, identified behaviors that allowed one fish to outcompete another, and evaluated whether prey switching mitigated competitive interactions. Juvenile and adult SMB appeared to outcompete WAE when fed during the daytime; neither species dominated when fed near dusk. Attack rates and capture efficiencies of both species were similar with an intra- or interspecific competitor, but SMB often exploited prey before the competitor had a chance to feed (exploitative competition) or displayed agonistic behaviors toward a potential competitor (interference competition). Prey selectivity of WAE or SMB did not differ when by themselves or with a potential competitor. These results indicate that SMB could outcompete WAE under limiting prey conditions due to the aggressive nature of SMB, but resources may be partitioned at least along a temporal scale. ?? 2011 Taylor & Francis.

  12. Induced changes in island fox (Urocyon littoralis) activity do not mitigate the extinction threat posed by a novel predator.

    PubMed

    Hudgens, Brian R; Garcelon, David K

    2011-03-01

    Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-naïve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.

  13. Seabirds as indicators of marine food supplies: Cairns revisited

    USGS Publications Warehouse

    Piatt, John F.; Harding, Ann M.A.; Shultz, Michael T.; Speckman, Suzann G.; van Pelt, Thomas I.; Drew, Gary S.; Kettle, Arthur B.

    2007-01-01

    In his seminal paper about using seabirds as indicators of marine food supplies, Cairns (1987, Biol Oceanogr 5:261–271) predicted that (1) parameters of seabird biology and behavior would vary in curvilinear fashion with changes in food supply, (2) the threshold of prey density over which birds responded would be different for each parameter, and (3) different seabird species would respond differently to variation in food availability depending on foraging behavior and ability to adjust time budgets. We tested these predictions using data collected at colonies of common murre Uria aalge and black-legged kittiwake Rissa tridactyla in Cook Inlet, Alaska. (1) Of 22 seabird responses fitted with linear and non-linear functions, 16 responses exhibited significant curvilinear shapes, and Akaike’s information criterion (AIC) analysis indicated that curvilinear functions provided the best-fitting model for 12 of those. (2) However, there were few differences among parameters in their threshold to prey density, presumably because most responses ultimately depend upon a single threshold for prey acquisition at sea. (3) There were similarities and some differences in how species responded to variability in prey density. Both murres and kittiwakes minimized variability (CV < 15%) in their own body condition and growth of chicks in the face of high annual variability (CV = 69%) in local prey density. Whereas kittiwake breeding success (CV = 63%, r2 = 0.89) reflected prey variability, murre breeding success did not (CV = 29%, r2< 0.00). It appears that murres were able to buffer breeding success by reallocating discretionary ‘loafing’ time to foraging effort in response (r2 = 0.64) to declining prey density. Kittiwakes had little or no discretionary time, so fledging success was a more direct function of local prey density. Implications of these results for using ‘seabirds as indicators’ are discussed.

  14. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture

    PubMed Central

    Trivedi, Chintan A.; Bollmann, Johann H.

    2013-01-01

    Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback. PMID:23675322

  15. Carnivore repatriation and holarctic prey: narrowing the deficit in ecological effectiveness.

    PubMed

    Berger, Joel

    2007-08-01

    The continuing global decline of large carnivores has catalyzed great interest in reintroduction to restore populations and to reestablish ecologically functional relationships. I used variation in the distribution of four Holarctic prey species and their behavior as proxies to investigate the pace and intensity by which responses are lost or reinvigorated by carnivore repatriation. By simulating the presence of wolves (Canis lupus), tigers (Panthera tigris), and brown bears (Ursus arctos) at 19 transcontinental sites, I assayed three metrics of prey performance in areas with no large terrestrial carnivores (the polar islands of Greenland and Svalbard), extant native carnivores (Eastern Siberian Shield, boreal Canada, and Alaska); and repatriated carnivores (the Yellowstone region and Rocky Mountains). The loss and reestablishment of large carnivores changed the ecological effectiveness of systems by (1) dampening immediate group benefits, diminishing awareness, and diminishing flight reaction in caribou (Rangifer tarandus) where predation was eliminated and (2) reinstituting sensitivity to carnivores by elk (Cervus elaphus) and moose (Alces alces) in the Yellowstone region to levels observed in Asian elk when sympatric with Siberian tigers and wolves or in Alaskan moose sympatric with wolves. Behavioral compensation to reintroduced carnivores occurred within a single generation, but only the vigilance reaction of bison (Bison bison) in Yellowstone exceeded that of their wolf-exposed conspecifics from boreal Canada. Beyond these overt responses by prey, snow depth and distance to suitably vegetated habitat was related to heightened vigilance in moose and elk, respectively, but only at sites with carnivores. These findings are insufficient to determine whether similar patterns might apply to other species or in areas with alien predators, and they suggest that the presumed excessive vulnerability of naïve prey to repatriated carnivores may be ill-founded. Although behavior offers a proxy to evaluate ecological effectiveness, a continuing challenge will be to understand how naïve prey respond to novel or introduced predators.

  16. Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America

    PubMed Central

    Urban, Tommy M.; Raichlen, David A.; Budka, Marcin; Reynolds, Sally C.; Love, David W.; Santucci, Vincent L.; Willey, Patrick; McDonald, H. Gregory

    2018-01-01

    Predator-prey interactions revealed by vertebrate trace fossils are extremely rare. We present footprint evidence from White Sands National Monument in New Mexico for the association of sloth and human trackways. Geologically, the sloth and human trackways were made contemporaneously, and the sloth trackways show evidence of evasion and defensive behavior when associated with human tracks. Behavioral inferences from these trackways indicate prey selection and suggest that humans were harassing, stalking, and/or hunting the now-extinct giant ground sloth in the terminal Pleistocene. PMID:29707640

  17. Effects of bottom trawling on fish foraging and feeding.

    PubMed

    Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar

    2015-01-22

    The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.

  18. Effects of bottom trawling on fish foraging and feeding

    PubMed Central

    Johnson, Andrew Frederick; Gorelli, Giulia; Jenkins, Stuart Rees; Hiddink, Jan Geert; Hinz, Hilmar

    2015-01-01

    The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries. PMID:25621336

  19. Using odor cues to elicit a behavioral and hormonal response in zoo-housed African wild dogs.

    PubMed

    Rafacz, Michelle L; Santymire, Rachel M

    2014-01-01

    Olfactory enrichment, like odor cues, can positively affect behavior, reproductive success, and stress physiology in zoo-housed species. Our goal was to determine if odor cues were enriching to the African wild dog (AWD; Lycaon pictus), a species with a complex social structure and a highly developed sense of smell. Our objectives were to: (1) examine changes in activity levels and stress hormone physiology in response to fecal odor cues from natural competitor and natural/unnatural prey species; and (2) determine whether these odor cues could function as effective enrichment for zoo-housed AWDs. Over a 6-month period, fecal samples were collected from two males (AWD 1: dominant, AWD 2: subordinate), fecal glucocorticoid metabolites (FGMs) were validated using an ACTH-challenge, and hormones were analyzed for FGMs by enzyme immunoassay. Behavioral observations were conducted using scan-sampling, and contact and proximity were recorded. AWDs were presented with three fecal odor cues: LION (competitor), CATTLE (unnatural prey), and GAZELLE (natural prey). Only the GAZELLE cue elicited an increase in activity (10.6%) in both individuals and increased positive social behaviors with higher frequencies of affiliative, submissive, and dominant behavior. AWD 1 demonstrated lower (P < 0.05) FGMs than AWD 2 both before and after all odor cues, and FGMs decreased (P = 0.08) in AWD 2 after all cues. We conclude that exposure to natural prey odor cues may be used as effective enrichment for AWDs, and that changes in stress hormone physiology in response to odor cues may be dependent on social rank in this species. © 2013 Wiley Periodicals, Inc.

  20. Cuticular bacteria appear detrimental to social spiders in mixed but not monoculture exposure

    PubMed Central

    Keiser, Carl N.; Shearer, Taylor A.; DeMarco, Alexander E.; Brittingham, Hayley A.; Knutson, Karen A.; Kuo, Candice; Zhao, Katherine; Pruitt, Jonathan N.

    2016-01-01

    Abstract Much of an animal’s health status, life history, and behavior are dictated by interactions with its endogenous and exogenous bacterial communities. Unfortunately, interactions between hosts and members of their resident bacterial community are often ignored in animal behavior and behavioral ecology. Here, we aim to identify the nature of host–microbe interactions in a nonmodel organism, the African social spider Stegodyphus dumicola. We collected and identified bacteria from the cuticles of spiders in situ and then exposed spiders to bacterial monocultures cultures via topical application or injection. We also topically inoculated spiders with a concomitant “cocktail” of bacteria and measured the behavior of spiders daily for 24 days after inoculation. Lastly, we collected and identified bacteria from the cuticles of prey items in the capture webs of spiders, and then fed spiders domestic crickets which had been injected with these bacteria. We also injected 1 species of prey-borne bacteria into the hemolymph of spiders. Only Bacillus thuringiensis caused increased mortality when injected into the hemolymph of spiders, whereas no bacterial monocultures caused increased mortality when applied topically, relative to control solutions. However, a bacterial cocktail of cuticular bacteria caused weight loss and mortality when applied topically, yet did not detectibly alter spider behavior. Consuming prey injected with prey-borne bacteria was associated with an elongated lifespan in spiders. Thus, indirect evidence from multiple experiments suggests that the effects of these bacteria on spider survivorship appear contingent on their mode of colonization and whether they are applied in monoculture or within a mixed cocktail. We urge that follow-up studies should test these host–microbe interactions across different social contexts to determine the role that microbes play in colony performance. PMID:29491926

  1. Integrated Control of Predatory Hunting by the Central Nucleus of the Amygdala

    PubMed Central

    Han, Wenfei; Tellez, Luis A; Rangel, Miguel; Motta, Simone C; Zhang, Xiaobing; Perez, Isaac O; Canteras, Newton S; Shammah-Lagnado, Sarah J; van den Pol, Anthony N; de Araujo, Ivan E

    2017-01-01

    Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules, and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates. PMID:28086095

  2. Spatiotemporal predictability of schooling and nonschooling prey of Pigeon Guillemots

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Speckman, Suzann G.; Arimitsu, Mayumi L.; Figurski, Jared D.

    2004-01-01

    Low spatiotemporal variability in the abundance of nonschooling prey might allow Pigeon Guillemots (Cepphus columba) to maintain the high chick provisioning rates that are characteristic of the species. We tested predictions of this hypothesis with data collected with beach seines and scuba and hydroacoustic surveys in Kachemak Bay, Alaska, during 1996–1999. Coefficients of variability were 20–211% greater for schooling than nonschooling prey on day, seasonal, and km scales. However, the proportion of schooling prey in chick diets explained relatively little variability in Pigeon Guillemot meal delivery rates at the scale of hours (r2 = 0.07) and weeks (r2 = 0.19). Behavioral adaptations such as flexible time budgets likely ameliorate the negative effects of high resource variability, but we propose that these adaptations are only effective when schooling prey are available at distances well below the maximum foraging range of the species.

  3. Interannual variability, growth, reproduction and feeding of Pelagia noctiluca (Cnidaria: Scyphozoa) in the Straits of Messina (Central Mediterranean Sea): Linkages with temperature and diet

    NASA Astrophysics Data System (ADS)

    Rosa, S.; Pansera, M.; Granata, A.; Guglielmo, L.

    2013-02-01

    To identify some of the possible environmental factors stimulating the increasingly frequent outbreaks of the scyphomedusa Pelagia noctiluca in the Straits of Messina, we investigated its abundance, growth, reproduction and feeding over a 4-year period, from 2007 to 2011, at two coastal sites. Using either field investigations and manipulative experiments we show that, among the various factors considered, shifts in water temperature (influencing medusae metabolism, growth and reproduction rates) and the size structure of the zooplankton community (their natural preys) can promote the proliferation of P. noctiluca. In particular, we show that increased temperature let jellyfishes to grow more rapidly and reach exceptional sizes. We also report a peculiar opportunistic behavior of P. noctiluca, which makes this species a potentially strong competitor in the pelagic trophic web of the Straits ecosystem. We therefore propose that more frequent P. noctiluca outbreaks stimulated by increasing sea surface temperature and shifts in their prey availability and composition would become, in the near future, a major cause of ecosystem shift.

  4. Mobbing: a problem in flocking and deterrence

    NASA Astrophysics Data System (ADS)

    Elias Tousley, M.; Glaze, Owen; Schall, Anna; Amador Kane, Suzanne

    2010-03-01

    We present experimental and theoretical studies of one type of mobbing behavior in which swarms of prey animals (e.g., tree swallows) harass a predator (e.g., a red-tailed hawk). Empirical field data were collected for tree swallows mobbing a fixed model predator; previous studies have established that this experimental design provokes the same response as actual ``perch-and-wait'' predator behavior. We extended these earlier studies using stereometric video to record the three-dimensional trajectories of prey birds and mobbing cries; we also analyzed single-angle video data taken of crows mobbing red-tailed hawks in flight. Video recordings of red-tailed hawk flight were filmed and analyzed to establish the dynamics of potential predator attacks. The trajectory analysis employed particle-tracking methods and statistical analyses to understand and model the dynamical rules governing this behavior. Swarming behavior during mobbing exhibited a high degree of periodicity and coordination both for fixed predator and in-flight mobbing attacks. The trajectories of individual mobbing birds were analyzed as a random walk superimposed on an approximately elliptical flightpath. Computer simulation studies reproduce several aspects of this behavior, in particular explaining how the mobbing strategy employed by prey birds minimizes the risk of hawk predation while optimizing the frequency of harassing attacks.

  5. Specialists and generalists coexist within a population of spider-hunting mud dauber wasps

    PubMed Central

    Taylor, Lisa A.

    2017-01-01

    Abstract Individual foraging specialization describes the phenomenon where conspecifics within a population of generalists exhibit differences in foraging behavior, each specializing on different prey types. Individual specialization is widespread in animals, yet is understudied in invertebrates, despite potential impacts to food web and population dynamics. Sceliphron caementarium (Hymenoptera: Sphecidae) is an excellent system to examine individual specialization. Females of these mud dauber wasps capture and paralyze spiders which they store in mud nests to provision their offspring. Individuals may make hundreds of prey choices in their short lifespan and fully intact prey items can be easily excavated from their mud nests, where each distinct nest cell represents a discrete foraging bout. Using data collected from a single population of S. caementarium (where all individuals had access to the same resources), we found evidence of strong individual specialization; individuals utilized different resources (with respect to prey taxa, prey ecological guild, and prey size) to provision their nests. The extent of individual specialization differed widely within the population with some females displaying extreme specialization (taking only prey from a single species) while others were generalists (taking prey from up to 6 spider families). We also found evidence of temporal consistency in individual specialization over multiple foraging events. We discuss these findings broadly in the context of search images, responses to changing prey availability, and intraspecific competition pressure. PMID:29622922

  6. Does small-scale vertical distribution of juvenile schooling fish affect prey availability to surface-feeding seabirds in the Wadden Sea?

    NASA Astrophysics Data System (ADS)

    Dänhardt, Andreas; Becker, Peter H.

    2011-02-01

    Food availability is a key variable influencing breeding performance and demography of marine top predators. Due to methodological problems, proportionality between fish abundance and availability is often assumed without being explicitly tested. More specifically, better breeding performance of surface-feeding seabirds at times of large prey stocks suggests that prey availability is also a function of prey abundance. Using vertically resolved stow net sampling we tested whether local abundance and length composition of pelagic fish are reliable predictors of the availability of these fish to surface-feeding Common Terns ( Sterna hirundo) breeding in the German Wadden Sea. Prey fish were found to concentrate below the maximum diving depth of the terns. Individuals caught close to the surface were in most cases smaller than conspecifics caught at greater depth. Correlations between fish abundance within and out of reach of the terns appeared to be both species- and site-specific rather than driven by overall fish abundance. Vertical distribution patterns of the terns' main prey fish could be explained as anti-predator behavior, reducing prey availability to the terns. In 2007, when breeding performance was much better than in 2006, herring and whiting were much more abundant, suggesting that overall prey abundance may also increase prey availability in habitats other than those represented by the stow net sampling.

  7. Wolves on the hunt: The behavior of wolves hunting wild prey

    USGS Publications Warehouse

    Mech, L. David; Smith, Douglas W.; MacNulty, Daniel R.

    2015-01-01

    The interactions between apex predators and their prey are some of the most awesome and meaningful in nature—displays of strength, endurance, and a deep coevolutionary history. And there is perhaps no apex predator more impressive and important in its hunting—or more infamous, more misjudged—than the wolf. Because of wolves’ habitat, speed, and general success at evading humans, researchers have faced great obstacles in studying their natural hunting behaviors. The first book to focus explicitly on wolf hunting of wild prey, Wolves on the Hunt seeks to fill these gaps in our knowledge and understanding. Combining behavioral data, thousands of hours of original field observations, research in the literature, a wealth of illustrations, and—in the e-book edition and online—video segments from cinematographer Robert K. Landis, the authors create a compelling and complex picture of these hunters. The wolf is indeed an adept killer, able to take down prey much larger than itself. While adapted to hunt primarily hoofed animals, a wolf—or especially a pack of wolves—can kill individuals of just about any species. But even as wolves help drive the underlying rhythms of the ecosystems they inhabit, their evolutionary prowess comes at a cost: wolves spend one-third of their time hunting—the most time consuming of all wolf activities—and success at the hunt only comes through traveling long distances, persisting in the face of regular failure, detecting and taking advantage of deficiencies in the physical condition of individual prey, and through ceaseless trial and error, all while risking injury or death. By describing and analyzing the behaviors wolves use to hunt and kill various wild prey—including deer, moose, caribou, elk, Dall sheep, mountain goats, bison, musk oxen, arctic hares, beavers, and others—Wolves on the Hunt provides a revelatory portrait of one of nature’s greatest hunters.

  8. Dynamics for a diffusive prey-predator model with different free boundaries

    NASA Astrophysics Data System (ADS)

    Wang, Mingxin; Zhang, Yang

    2018-03-01

    To understand the spreading and interaction of prey and predator, in this paper we study the dynamics of the diffusive Lotka-Volterra type prey-predator model with different free boundaries. These two free boundaries, which may intersect each other as time evolves, are used to describe the spreading of prey and predator. We investigate the existence and uniqueness, regularity and uniform estimates, and long time behaviors of global solution. Some sufficient conditions for spreading and vanishing are established. When spreading occurs, we provide the more accurate limits of (u , v) as t → ∞, and give some estimates of asymptotic spreading speeds of u , v and asymptotic speeds of g , h. Some realistic and significant spreading phenomena are found.

  9. Dynamics of a prey-predator system under Poisson white noise excitation

    NASA Astrophysics Data System (ADS)

    Pan, Shan-Shan; Zhu, Wei-Qiu

    2014-10-01

    The classical Lotka-Volterra (LV) model is a well-known mathematical model for prey-predator ecosystems. In the present paper, the pulse-type version of stochastic LV model, in which the effect of a random natural environment has been modeled as Poisson white noise, is investigated by using the stochastic averaging method. The averaged generalized Itô stochastic differential equation and Fokker-Planck-Kolmogorov (FPK) equation are derived for prey-predator ecosystem driven by Poisson white noise. Approximate stationary solution for the averaged generalized FPK equation is obtained by using the perturbation method. The effect of prey self-competition parameter ɛ2 s on ecosystem behavior is evaluated. The analytical result is confirmed by corresponding Monte Carlo (MC) simulation.

  10. Identifying Variations in Baseline Behavior of Killer Whales (Orcinus orca) to Contextualize Their Responses to Anthropogenic Noise.

    PubMed

    Samarra, Filipa I P; Miller, Patrick J O

    2016-01-01

    Determining the baseline behavior of a whale requires understanding natural variations occurring due to environmental context, such as changes in prey behavior. Killer whales feeding on herring consistently encircle herring schools; however, depth of feeding differs from near the surface in winter to deeper than 10 m in spring and summer. These variations in feeding depth are probably due to the depth of the prey and the balance between the costs and benefits of bringing schools of herring to the surface. Such variation in baseline behavior may incur different energetic costs and consequently change the motivation of whales to avoid a feeding area. Here, we discuss these variations in feeding behavior in the context of exposure to noise and interpret observed responses to simulated navy sonar signals.

  11. Effects of Deprivation of Vomeronasal Chemoreception on Prey Discrimination in Rattlesnakes

    ERIC Educational Resources Information Center

    Stark, C. Patrick; Tiernan, Chelsea; Chiszar, David

    2011-01-01

    It has been demonstrated that rattlesnakes can discriminate between envenomed and nonenvenomed rodent prey based on venom-related cues deposited during the strike. This behavior is crucial to the snake's ability to choose the chemical trail left by an envenomed rodent fleeing the strike area and aids in the snake's ability to relocate the rodent.…

  12. Characterization of restricted area searching behavior following consumption of prey and non-prey food in a cursorial spider, Hibana futilis

    USDA-ARS?s Scientific Manuscript database

    Cursorial spiders are important predators of crop pests in a variety of agricultural systems. Their survivorship, growth, and fecundity can be enhanced by the consumption of extra-floral nectar. We recently showed that Hibana futilis Banks (Araneae:Anyphaenidae) engages in restricted area search f...

  13. Activity patterns of nesting Mexican Spotted Owls

    Treesearch

    David K. Delaney; Teryl G. Grubb; Paul Beier

    1999-01-01

    We collected 2,665 hr of behavioral information using video surveillance on 19 Mexican Spotted Owl (Strix occidentalis lucida) pairs between 25 April and 26 July 1996. Prey deliveries per day increased as the nesting season progressed, with an average of 2.68 prey deliveries during incubation, 4.10 items during brooding, and 4.51 items during the...

  14. By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle

    NASA Astrophysics Data System (ADS)

    Simonis, Anne Elizabeth

    The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian Islands can likely be attributed to the presence of distinct populations or social clusters with dissimilar foraging strategies. Consistent observations of reduced acoustic activity during times of increased lunar illumination show that the lunar cycle is an important predictor for nocturnal dolphin foraging behavior. The result of this research advances the scientific understanding of how dolphins optimize their foraging behavior in response to the changing distribution and abundance of their prey.

  15. Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey.

    PubMed

    Ruxton, Graeme D; Franks, Dan W; Balogh, Alexandra C V; Leimar, Olof

    2008-11-01

    Generalization is at the heart of many aspects of behavioral ecology; for foragers it can be seen as an essential feature of learning about potential prey, because natural populations of prey are unlikely to be perfectly homogenous. Aposematic signals are considered to aid predators in learning to avoid a class of defended prey. Predators do this by generalizing between the appearance of prey they have previously sampled and the appearance of prey they subsequently encounter. Mimicry arises when such generalization occurs between individuals of different species. Our aim here is to explore whether the specific shape of the generalization curve can be expected to be important for theoretical predictions relating to the evolution of aposematism and mimicry. We do this by a reanalysis and development of the models provided in two recent papers. We argue that the shape of the generalization curve, in combination with the nature of genetic and phenotypic variation in prey traits, can have evolutionary significance under certain delineated circumstances. We also demonstrate that the process of gradual evolution of Müllerian mimicry proposed by Fisher is particularly efficient in populations with a rich supply of standing genetic variation in mimetic traits.

  16. Numerical and behavioral effects within a pulse-driven system: consequences for shared prey.

    PubMed

    Schmidt, Kenneth A; Ostfeld, Richard S

    2008-03-01

    Some of the clearest examples of the ramifying effects of resource pulses exist in deciduous forests dominated by mast-producing trees, such as oaks, beech, and hornbeam. Seed production in these forests represents only the first of several pulsed events. Secondary pulses emerge as mast-consuming small rodents numerically respond to seed production and tertiary pulses emerge as generalist predators numerically respond to rodents. Raptors may also respond behaviorally (i.e., diet shifts) to subsequent crashes in small rodents following the crash phase in seed production. In oak-dominated forest in the Hudson Valley, New York, these various pulse and crash phases act synergistically, although not simultaneously, to influence thrush population dynamics through predation on nests, juveniles, and adults. As a consequence, factors limiting population growth rate and their age-specific action vary as a function of past acorn production. We highlight these interactions based on our eight-year study of thrush demography, acorn production, and small mammal abundance coupled with information on regional adult thrush population trends from the Breeding Bird Survey. We use these data sets to demonstrate the sequence of primary to tertiary pulses and how they influence breeding thrush populations. To extend our discussion beyond masting phenomena in the eastern United States, we briefly review the literature of alternative avian prey within pulsed systems to show (1) numerical and behavioral responses by generalist predators are ubiquitous in pulsed systems, and this contributes to (2) variability in reproduction and survivorship of avian prey linked to the underlying dynamics of the pulse. We conclude by exploring the broad consequences of cascading resource pulses for alternative prey based upon the indirect interaction of apparent competition among shared prey and the nature of temporal variability on populations.

  17. Behavioral Response of Corophium volutator to Shorebird Predation in the Upper Bay of Fundy, Canada

    PubMed Central

    MacDonald, Elizabeth C.; Frost, Elisabeth H.; MacNeil, Stephanie M.; Hamilton, Diana J.; Barbeau, Myriam A.

    2014-01-01

    Predator avoidance is an important component of predator-prey relationships and can affect prey availability for foraging animals. Each summer, the burrow-dwelling amphipod Corophium volutator is heavily preyed upon by Semipalmated Sandpipers (Calidris pusilla) on mudflats in the upper Bay of Fundy, Canada. We conducted three complementary studies to determine if adult C. volutator exhibit predator avoidance behavior in the presence of sandpipers. In a field experiment, we monitored vertical distribution of C. volutator adults in bird exclosures and adjacent control plots before sandpipers arrived and during their stopover. We also made polymer resin casts of C. volutator burrows in the field throughout the summer. Finally, we simulated shorebird pecking in a lab experiment and observed C. volutator behavior in their burrows. C. volutator adults were generally distributed deeper in the sediment later in the summer (after sandpipers arrived). In August, this response was detectably stronger in areas exposed to bird predation than in bird exclosures. During peak predator abundance, many C. volutator adults were beyond the reach of feeding sandpipers (>1.5 cm deep). However, burrow depth did not change significantly throughout the summer. Detailed behavioral observations indicated that C. volutator spent more time at the bottom of their burrow when exposed to a simulated predator compared to controls. This observed redistribution suggests that C. volutator adults move deeper into their burrows as an anti-predator response to the presence of sandpipers. This work has implications for predators that feed on burrow-dwelling invertebrates in soft-sediment ecosystems, as density may not accurately estimate prey availability. PMID:25354218

  18. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus.

    PubMed

    Chiu, Chen; Reddy, Puduru Viswanadha; Xian, Wei; Krishnaprasad, Perinkulam S; Moss, Cynthia F

    2010-10-01

    Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were recorded by a microphone array and two high-speed cameras, respectively. Bats often remained in nearly classical pursuit (CP) states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific's movement and to track the prey. Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the same food source with conspecifics.

  19. Information theory and robotics meet to study predator-prey interactions

    NASA Astrophysics Data System (ADS)

    Neri, Daniele; Ruberto, Tommaso; Cord-Cruz, Gabrielle; Porfiri, Maurizio

    2017-07-01

    Transfer entropy holds promise to advance our understanding of animal behavior, by affording the identification of causal relationships that underlie animal interactions. A critical step toward the reliable implementation of this powerful information-theoretic concept entails the design of experiments in which causal relationships could be systematically controlled. Here, we put forward a robotics-based experimental approach to test the validity of transfer entropy in the study of predator-prey interactions. We investigate the behavioral response of zebrafish to a fear-evoking robotic stimulus, designed after the morpho-physiology of the red tiger oscar and actuated along preprogrammed trajectories. From the time series of the positions of the zebrafish and the robotic stimulus, we demonstrate that transfer entropy correctly identifies the influence of the stimulus on the focal subject. Building on this evidence, we apply transfer entropy to study the interactions between zebrafish and a live red tiger oscar. The analysis of transfer entropy reveals a change in the direction of the information flow, suggesting a mutual influence between the predator and the prey, where the predator adapts its strategy as a function of the movement of the prey, which, in turn, adjusts its escape as a function of the predator motion. Through the integration of information theory and robotics, this study posits a new approach to study predator-prey interactions in freshwater fish.

  20. How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them.

    PubMed

    Fux, Michal; Eilam, David

    2009-09-07

    The present study focused on the movements that owls perform before they swoop down on their prey. The working hypothesis was that owl head movements reflect the capacity to efficiently follow visually and auditory a moving prey. To test this hypothesis, five tame barn owls (Tyto alba) were each exposed 10 times to a live vole in a laboratory setting that enabled us to simultaneously record the behavior of both owl and vole. Bi-dimensional analysis of the horizontal and vertical projections of movements revealed that owl head movements increased in amplitude parallel to the vole's direction of movement (sideways or away from/toward the owl). However, the owls also performed relatively large repetitive horizontal head movements when the voles were progressing in any direction, suggesting that these movements were critical for the owl to accurately locate the prey, independent of prey behavior. From the pattern of head movements we conclude that owls orient toward the prospective clash point, and then return to the target itself (the vole) - a pattern that fits an interception rather than a tracking mode of following a moving target. The large horizontal component of head movement in following live prey may indicate that barn owls either have a horizontally narrow fovea or that these movements serve in forming a motion parallax along with preserving image acuity on a horizontally wide fovea.

  1. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    PubMed

    Horswill, Cat; Trathan, Philip N; Ratcliffe, Norman

    2017-01-01

    Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  2. Prey availability affects territory size, but not territorial display behavior, in green anole lizards

    NASA Astrophysics Data System (ADS)

    Stehle, Chelsea M.; Battles, Andrew C.; Sparks, Michelle N.; Johnson, Michele A.

    2017-10-01

    The availability of food resources can affect the size and shape of territories, as well as the behaviors used to defend territories, in a variety of animal taxa. However, individuals within a population may respond differently to variation in food availability if the benefits of territoriality vary among those individuals. For example, benefits to territoriality may differ for animals of differing sizes, because larger individuals may require greater territory size to acquire required resources, or territorial behavior may differ between the sexes if males and females defend different resources in their territories. In this study, we tested whether arthropod abundance and biomass were associated with natural variation in territory size and defense in insectivorous green anole lizards, Anolis carolinensis. Our results showed that both male and female lizards had smaller territories in a habitat with greater prey biomass than lizards in habitats with less available prey, but the rates of aggressive behaviors used to defend territories did not differ among these habitats. Further, we did not find a relationship between body size and territory size, and the sexes did not differ in their relationships between food availability and territory size or behavioral defense. Together, these results suggest that differences in food availability influenced male and female territorial strategies similarly, and that territory size may be more strongly associated with variation in food resources than social display behavior. Thus, anole investment in the behavioral defense of a territory may not vary with territory quality.

  3. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey.

    PubMed

    Kooi, Bob W; Venturino, Ezio

    2016-04-01

    In this paper we analyse a predator-prey model where the prey population shows group defense and the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig-MacArthur predator-prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group defense leads to a square root dependence in the Holling type II functional for the predator-prey interaction term. The system dynamics is investigated using simulations, classical existence and asymptotic stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and Hopf bifurcations which occur commonly in predator-prey systems will be found. Because of the square root interaction term there is non-uniqueness of the solution and a singularity where the prey population goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability similar to what is found in predator-prey models with a strong Allee effect. For the two-dimensional disease-free (i.e. the purely demographic) system the region in the parameter space where bistability occurs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destructed. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator-prey system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by varying one parameter of the emerging quasi-periodic dynamics from a torus bifurcation can lead to its destruction by a collision with a saddle-cycle. Under other conditions the quasi-periodic dynamics changes gradually in a trajectory that lands on a boundary point where the prey go extinct in finite time after which a total collapse of the three-dimensional system occurs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Flee or fight: ontogenetic changes in the behavior of cobweb spiders in encounters with spider-hunting wasps.

    PubMed

    Uma, Divya B; Weiss, Martha R

    2012-12-01

    An animal's body size plays a predominant role in shaping its interspecific interactions, and, in encounters between two predators, often determines which shall be predator and which shall be prey. Spiders are top predators of insects, yet can fall prey to mud-dauber wasps that provision their larval nests with paralyzed spiders. Here we examined predator-prey interactions between Chalybion californicum (Saussure) (Sphecidae), a mud-dauber wasp, and Parasteatoda tepidariorum C. L. Koch (Theridiidae), a cobweb spider. We examined whether a spider's size influences its response to an attacking wasp, and report a size-dependent change in spider behavior: small-sized spiders fled, whereas medium- and large-sized spiders fought in response to wasp attacks. From the wasps' perspective, we examined whether spider size influences a wasp's hunting behavior and capture success. We found that wasps commonly approached small spiders, but were much less likely to approach medium and large spiders. However, wasp capture success did not vary with spider size. We also report a strategy used by Chalybion wasps toward cobweb spiders that is consistent with an interpretation of aggressive mimicry.

  5. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator-prey interactions.

    PubMed

    Selden, Rebecca L; Batt, Ryan D; Saba, Vincent S; Pinsky, Malin L

    2018-01-01

    Asymmetries in responses to climate change have the potential to alter important predator-prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968-2014) and with a doubling in CO 2 . Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator-prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species' range it occupied and caused a potential reduction in its ability to exert top-down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience. © 2017 John Wiley & Sons Ltd.

  6. Effect of sociality and season on gray wolf (Canis lupus) foraging behavior: implications for estimating summer kill rate.

    PubMed

    Metz, Matthew C; Vucetich, John A; Smith, Douglas W; Stahler, Daniel R; Peterson, Rolf O

    2011-03-01

    Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA) for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging). We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf) decreased from 8.4±0.9 kg (mean ± SE) in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.

  7. Effect of Sociality and Season on Gray Wolf (Canis lupus) Foraging Behavior: Implications for Estimating Summer Kill Rate

    PubMed Central

    Metz, Matthew C.; Vucetich, John A.; Smith, Douglas W.; Stahler, Daniel R.; Peterson, Rolf O.

    2011-01-01

    Background Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer. Methodology/Principal Findings For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA) for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging). We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf) decreased from 8.4±0.9 kg (mean ± SE) in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size. Conclusions/Significance Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior. PMID:21390256

  8. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants

    PubMed Central

    Chin, Lijin; Chung, Arthur YC; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes. PMID:24481246

  9. Interspecific variation in prey capture behavior by co-occurring Nepenthes pitcher plants: evidence for resource partitioning or sampling-scheme artifacts?

    PubMed

    Chin, Lijin; Chung, Arthur Y C; Clarke, Charles

    2014-01-01

    Pitcher plants of the genus Nepenthes capture a wide range of arthropod prey for nutritional benefit, using complex combinations of visual and olfactory signals and gravity-driven pitfall trapping mechanisms. In many localities throughout Southeast Asia, several Nepenthes different species occur in mixed populations. Often, the species present at any given location have strongly divergent trap structures and preliminary surveys indicate that different species trap different combinations of arthropod prey, even when growing at the same locality. On this basis, it has been proposed that co-existing Nepenthes species may be engaged in niche segregation with regards to arthropod prey, avoiding direct competition with congeners by deploying traps that have modifications that enable them to target specific prey types. We examined prey capture among 3 multi-species Nepenthes populations in Borneo, finding that co-existing Nepenthes species do capture different combinations of prey, but that significant interspecific variations in arthropod prey combinations can often be detected only at sub-ordinal taxonomic ranks. In all lowland Nepenthes species examined, the dominant prey taxon is Formicidae, but montane Nepenthes trap few (or no) ants and 2 of the 3 species studied have evolved to target alternative sources of nutrition, such as tree shrew feces. Using similarity and null model analyses, we detected evidence for niche segregation with regards to formicid prey among 5 lowland, sympatric Nepenthes species in Sarawak. However, we were unable to determine whether these results provide support for the niche segregation hypothesis, or whether they simply reflect unquantified variation in heterogeneous habitats and/or ant communities in the study sites. These findings are used to propose improvements to the design of field experiments that seek to test hypotheses about targeted prey capture patterns in Nepenthes.

  10. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews

    PubMed Central

    2012-01-01

    Background Killer whales (Orcinus orca) are the most widely distributed cetacean, occurring in all oceans worldwide, and within ocean regions different ecotypes are defined based on prey preferences. Prey items are largely unknown in the eastern Canadian Arctic and therefore we conducted a survey of Inuit Traditional Ecological Knowledge (TEK) to provide information on the feeding ecology of killer whales. We compiled Inuit observations on killer whales and their prey items via 105 semi-directed interviews conducted in 11 eastern Nunavut communities (Kivalliq and Qikiqtaaluk regions) from 2007-2010. Results Results detail local knowledge of killer whale prey items, hunting behaviour, prey responses, distribution of predation events, and prey capture techniques. Inuit TEK and published literature agree that killer whales at times eat only certain parts of prey, particularly of large whales, that attacks on large whales entail relatively small groups of killer whales, and that they hunt cooperatively. Inuit observations suggest that there is little prey specialization beyond marine mammals and there are no definitive observations of fish in the diet. Inuit hunters and elders also documented the use of sea ice and shallow water as prey refugia. Conclusions By combining TEK and scientific approaches we provide a more holistic view of killer whale predation in the eastern Canadian Arctic relevant to management and policy. Continuing the long-term relationship between scientists and hunters will provide for successful knowledge integration and has resulted in considerable improvement in understanding of killer whale ecology relevant to management of prey species. Combining scientists and Inuit knowledge will assist in northerners adapting to the restructuring of the Arctic marine ecosystem associated with warming and loss of sea ice. PMID:22520955

  11. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews.

    PubMed

    Ferguson, Steven H; Higdon, Jeff W; Westdal, Kristin H

    2012-01-30

    Killer whales (Orcinus orca) are the most widely distributed cetacean, occurring in all oceans worldwide, and within ocean regions different ecotypes are defined based on prey preferences. Prey items are largely unknown in the eastern Canadian Arctic and therefore we conducted a survey of Inuit Traditional Ecological Knowledge (TEK) to provide information on the feeding ecology of killer whales. We compiled Inuit observations on killer whales and their prey items via 105 semi-directed interviews conducted in 11 eastern Nunavut communities (Kivalliq and Qikiqtaaluk regions) from 2007-2010. Results detail local knowledge of killer whale prey items, hunting behaviour, prey responses, distribution of predation events, and prey capture techniques. Inuit TEK and published literature agree that killer whales at times eat only certain parts of prey, particularly of large whales, that attacks on large whales entail relatively small groups of killer whales, and that they hunt cooperatively. Inuit observations suggest that there is little prey specialization beyond marine mammals and there are no definitive observations of fish in the diet. Inuit hunters and elders also documented the use of sea ice and shallow water as prey refugia. By combining TEK and scientific approaches we provide a more holistic view of killer whale predation in the eastern Canadian Arctic relevant to management and policy. Continuing the long-term relationship between scientists and hunters will provide for successful knowledge integration and has resulted in considerable improvement in understanding of killer whale ecology relevant to management of prey species. Combining scientists and Inuit knowledge will assist in northerners adapting to the restructuring of the Arctic marine ecosystem associated with warming and loss of sea ice.

  12. Diets and foraging behavior of northern spotted owls in Oregon.

    Treesearch

    Eric D. Forsman; Robert G. Anthony; E. Charles Meslow; Cynthia J. Zabel

    2004-01-01

    We describe local, regional, and annual variation in diets of northern Spotted Owls (Strix occidaatalis caurina) in Oregon based on 24497 prey collected at 1118 owl territories in 1970-2003. The sample included 91.5% mammals, 4.3% birds, 4.1% insects, and 0.1% other prey. The diet included 2131 species, including 49 mammals, 41 birds, 3 reptiles, 1...

  13. Do Predators Always Win? Starfish versus Limpets: A Hands-On Activity Examining Predator-Prey Interactions

    ERIC Educational Resources Information Center

    Faria, Claudia; Boaventura, Diana; Galvao, Cecilia; Chagas, Isabel

    2011-01-01

    In this article we propose a hands-on experimental activity about predator-prey interactions that can be performed both in a research laboratory and in the classroom. The activity, which engages students in a real scientific experiment, can be explored not only to improve students' understanding about the diversity of anti-predator behaviors but…

  14. Hunting on a hot day: effects of temperature on interactions between African wild dogs and their prey.

    PubMed

    Creel, Scott; Creel, Nancy M; Creel, Andrea M; Creel, Bridget M

    2016-11-01

    As global temperatures increase, interactions between species are affected by changes in distribution, abundance and phenology, but also by changes in behavior. The heat dissipation limitation hypothesis suggests that the ability to dissipate heat commonly limits the activity of endotherms, a problem that should be particularly acute for cursorial predators and their prey in equatorial ecosystems. Allometric relationships suggest that heat dissipation should be a stronger constraint for larger species, so that (smaller) predators should be less affected than (larger) prey. We used data from 266 complete days of direct observation of African wild dogs (Lycaon pictus) in five packs over a period of 2 yr to test how deviations of temperature from that expected for the time of day affected eight measures of hunting effort and success. We found that higher temperatures disadvantaged the prey of wild dogs more than the dogs themselves, with increased hunting success and shorter pursuits on warmer days. Broadly, our results demonstrate that effects of temperature on behavior can alter interactions between species, exacerbating or offsetting the direct effects of climate change. © 2016 by the Ecological Society of America.

  15. The role of tragus on echolocating bat, Eptesicus fuscus

    NASA Astrophysics Data System (ADS)

    Chiu, Chen; Moss, Cynthia

    2005-04-01

    Echolocating bats produce ultrasonic vocal signals and utilize the returning echoes to detect, localize and track prey, and also to avoid obstacles. The pinna and tragus, two major components of the bats external ears, play important roles in filtering returning echoes. The tragus is generally believed to play a role in vertical sound localization. The purpose of this study is to further examine how manipulation of the tragus affects a free-flying bat's prey capture and obstacle avoidance behavior. The first part of this study involved a prey capture experiment, and the bat was trained to catch the tethered mealworms in a large room. The second experiment involved obstacle avoidance, and the bat's task was to fly through the largest opening from a horizontal wire array without touching the wires. In both experiments, the bat performed the tasks under three different conditions: with intact tragus, tragus-deflection and recovery from tragus-deflection. Significantly lower performance was observed in both experiments when tragi were glued down. However, the bat adjusted quickly and returned to baseline performance a few days after the manipulation. The results suggest that tragus-deflection does have effects on both the prey capture and obstacle avoidance behavior. [Work supported by NSF.

  16. Complexity of the prey spectrum of Agaronia propatula (Caenogastropoda: Olividae), a dominant predator in sandy beach ecosystems of Pacific Central America

    PubMed Central

    Robinson, Nathan J.

    2018-01-01

    Olivid gastropods of the genus Agaronia are dominant predators within invertebrate communities on sandy beaches throughout Pacific Central America. At Playa Grande, on the Pacific Coast of Costa Rica, we observed 327 natural predation events by Agaronia propatula. For each predation event, we documented prey taxa and body size of both predator and prey. The relationship between predator and prey size differed for each of the four main prey taxa: bivalves, crustaceans, heterospecific gastropods, and conspecific gastropods (representing cannibalism). For bivalve prey, there was increased variance in prey size with increasing predator size. Crustaceans were likely subdued only if injured or otherwise incapacitated. Heterospecific gastropods (mostly Olivella semistriata) constituted half of all prey items, but were only captured by small and intermediately sized A. propatula. Large O. semistriata appeared capable of avoiding predation by A. propatula. Cannibalism was more prevalent among large A. propatula than previously estimated. Our findings suggested ontogenetic niche shifts in A. propatula and a significant role of cannibalism in its population dynamics. Also indicated were size-dependent defensive behavior in some prey taxa and a dynamic, fine-scale zonation of the beach. The unexpected complexity of the trophic relations of A. propatula was only revealed though analysis of individual predation events. This highlights the need for detailed investigations into the trophic ecology of marine invertebrates to understand the factors driving ecosystem structuring in sandy beaches. PMID:29736346

  17. Penguin head movement detected using small accelerometers: a proxy of prey encounter rate.

    PubMed

    Kokubun, Nobuo; Kim, Jeong-Hoon; Shin, Hyoung-Chul; Naito, Yasuhiko; Takahashi, Akinori

    2011-11-15

    Determining temporal and spatial variation in feeding rates is essential for understanding the relationship between habitat features and the foraging behavior of top predators. In this study we examined the utility of head movement as a proxy of prey encounter rates in medium-sized Antarctic penguins, under the presumption that the birds should move their heads actively when they encounter and peck prey. A field study of free-ranging chinstrap and gentoo penguins was conducted at King George Island, Antarctica. Head movement was recorded using small accelerometers attached to the head, with simultaneous monitoring for prey encounter or body angle. The main prey was Antarctic krill (>99% in wet mass) for both species. Penguin head movement coincided with a slow change in body angle during dives. Active head movements were extracted using a high-pass filter (5 Hz acceleration signals) and the remaining acceleration peaks (higher than a threshold acceleration of 1.0 g) were counted. The timing of head movements coincided well with images of prey taken from the back-mounted cameras: head movement was recorded within ±2.5 s of a prey image on 89.1±16.1% (N=7 trips) of images. The number of head movements varied largely among dive bouts, suggesting large temporal variations in prey encounter rates. Our results show that head movement is an effective proxy of prey encounter, and we suggest that the method will be widely applicable for a variety of predators.

  18. Response of pumas (Puma concolor) to migration of their primary prey in Patagonia.

    PubMed

    Gelin, Maria L; Branch, Lyn C; Thornton, Daniel H; Novaro, Andrés J; Gould, Matthew J; Caragiulo, Anthony

    2017-01-01

    Large-scale ungulate migrations result in changes in prey availability for top predators and, as a consequence, can alter predator behavior. Migration may include entire populations of prey species, but often prey populations exhibit partial migration with some individuals remaining resident and others migrating. Interactions of migratory prey and predators have been documented in North America and some other parts of the world, but are poorly studied in South America. We examined the response of pumas (Puma concolor) to seasonal migration of guanacos (Lama guanicoe) in La Payunia Reserve in northern Patagonia Argentina, which is the site of the longest known ungulate migration in South America. More than 15,000 guanacos migrate seasonally in this landscape, and some guanacos also are resident year-round. We hypothesized that pumas would respond to the guanaco migration by consuming more alternative prey rather than migrating with guanacos because of the territoriality of pumas and availability of alternative prey throughout the year at this site. To determine whether pumas moved seasonally with the guanacos, we conducted camera trapping in the summer and winter range of guanacos across both seasons and estimated density of pumas with spatial mark-resight (SMR) models. Also, we analyzed puma scats to assess changes in prey consumption in response to guanaco migration. Density estimates of pumas did not change significantly in the winter and summer range of guanacos when guanacos migrated to and from these areas, indicating that pumas do not follow the migration of guanacos. Pumas also did not consume more alternative native prey or livestock when guanaco availability was lower, but rather fed primarily on guanacos and some alternative prey during all seasons. Alternative prey were most common in the diet during summer when guanacos also were abundant on the summer range. The response of pumas to the migration of guanacos differs from sites in the western North America where entire prey populations migrate and pumas migrate with their prey or switch to more abundant prey when their primary prey migrates.

  19. Response of pumas (Puma concolor) to migration of their primary prey in Patagonia

    PubMed Central

    Gelin, Maria L.; Thornton, Daniel H.; Novaro, Andrés J.; Gould, Matthew J.; Caragiulo, Anthony

    2017-01-01

    Large-scale ungulate migrations result in changes in prey availability for top predators and, as a consequence, can alter predator behavior. Migration may include entire populations of prey species, but often prey populations exhibit partial migration with some individuals remaining resident and others migrating. Interactions of migratory prey and predators have been documented in North America and some other parts of the world, but are poorly studied in South America. We examined the response of pumas (Puma concolor) to seasonal migration of guanacos (Lama guanicoe) in La Payunia Reserve in northern Patagonia Argentina, which is the site of the longest known ungulate migration in South America. More than 15,000 guanacos migrate seasonally in this landscape, and some guanacos also are resident year-round. We hypothesized that pumas would respond to the guanaco migration by consuming more alternative prey rather than migrating with guanacos because of the territoriality of pumas and availability of alternative prey throughout the year at this site. To determine whether pumas moved seasonally with the guanacos, we conducted camera trapping in the summer and winter range of guanacos across both seasons and estimated density of pumas with spatial mark–resight (SMR) models. Also, we analyzed puma scats to assess changes in prey consumption in response to guanaco migration. Density estimates of pumas did not change significantly in the winter and summer range of guanacos when guanacos migrated to and from these areas, indicating that pumas do not follow the migration of guanacos. Pumas also did not consume more alternative native prey or livestock when guanaco availability was lower, but rather fed primarily on guanacos and some alternative prey during all seasons. Alternative prey were most common in the diet during summer when guanacos also were abundant on the summer range. The response of pumas to the migration of guanacos differs from sites in the western North America where entire prey populations migrate and pumas migrate with their prey or switch to more abundant prey when their primary prey migrates. PMID:29211753

  20. Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry.

    PubMed

    Raffa, Kenneth F; Hobson, Kenneth R; Lafontaine, Sara; Aukema, Brian H

    2007-10-01

    Predators and parasites commonly use chemical cues associated with herbivore feeding and reproduction to locate prey. However, we currently know little about mechanisms by which herbivores may avoid such natural enemies. Pheromones are crucial to many aspects of herbivore life history, so radical alterations of these compounds could be disadvantageous despite their exploitation by predators. Instead, minor modifications in pheromone chemistry may facilitate partial escape while maintaining intraspecific functionality. We tested this hypothesis using Ips pini, an endophytic beetle that develops in the phloem tissue of pine trees. Its predominant predators in the Great Lakes region of North America are Thanasimus dubius and Platysoma cylindrica, both of which are highly attracted to I. pini's pheromones. However, there are significant disparities between prey and predator behaviors that relate to nuances of pheromone chemistry. Thanasimus dubius is most attracted to the (+) stereoisomer of ipsdienol, and P. cylindrica is most attracted to the (-) form; Ips pini prefers racemic mixtures intermediate between each predator's preferences. Further, a component that is inactive by itself, lanierone, greatly synergizes the attraction of I. pini to ipsdienol, but has a weak or no effect on its predators. A temporal component adds to this behavioral disparity: lanierone is most important in the communication of I. pini during periods when its predators are most abundant. The difficulties involved in tracking prey are further compounded by spatial and temporal variation in prey signaling on a local scale. For example, the preferences of I. pini vary significantly among sites only 50 km apart. This chemical crypsis is analogous to morphological forms of camouflage, such as color and mimicry, that are widely recognized as evasive adaptations against visually searching predators. Presumably these relationships are dynamic, with predators and prey shifting responses in microevolutionary time. However, several factors may delay predator counter adaptations. The most important appears to be the availability of alternate prey, specifically I. grandicollis, whose pheromone ipsenol is highly attractive to the above predators but not cross-attractive with I. pini. Consistent with this view, the specialist parasitoid, Tomicobia tibialis, has behavioral preferences for pheromone components that closely correspond with those of I. pini. These results are discussed in terms of population dynamics and coevolutionary theory.

  1. Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts.

    PubMed

    Hunsicker, Mary E; Ciannelli, Lorenzo; Bailey, Kevin M; Buckel, Jeffrey A; Wilson White, J; Link, Jason S; Essington, Timothy E; Gaichas, Sarah; Anderson, Todd W; Brodeur, Richard D; Chan, Kung-Sik; Chen, Kun; Englund, Göran; Frank, Kenneth T; Freitas, Vânia; Hixon, Mark A; Hurst, Thomas; Johnson, Darren W; Kitchell, James F; Reese, Doug; Rose, George A; Sjodin, Henrik; Sydeman, William J; van der Veer, Henk W; Vollset, Knut; Zador, Stephani

    2011-12-01

    Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management. 2011 Blackwell Publishing Ltd/CNRS.

  2. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus).

    PubMed

    Mallott, Elizabeth K; Garber, Paul A; Malhi, Ripan S

    2017-02-01

    Invertebrate foraging strategies in nonhuman primates often require complex extractive foraging or prey detection techniques. As these skills take time to master, juveniles may have reduced foraging efficiency or concentrate their foraging efforts on easier to acquire prey than adults. We use DNA barcoding, behavioral observations, and ecological data to assess age-based differences in invertebrate prey foraging strategies in a group of white-faced capuchins (Cebus capucinus) in northeastern Costa Rica. Invertebrate availability was monitored using canopy traps and sweep netting. Fecal samples were collected from adult female, adult male, and juvenile white-faced capuchins (n = 225). COI mtDNA sequences were compared with known sequences in GenBank and the Barcode of Life Database. Frequencies of Lepidoptera and Hymenoptera consumption were higher in juveniles than in adults. A significantly smaller proportion of juvenile fecal samples contained Gryllidae and Cercopidae sequences, compared with adults (0% and 4.2% vs. 4.6% and 12.5%), and a significantly larger proportion contained Tenthredinidae, Culicidae, and Crambidae (5.6%, 9.7%, and 5.6% vs. 1.3%, 0.7%, and 1.3%). Juveniles spent significantly more time feeding and foraging than adults, and focused their foraging efforts on prey that require different skills to capture or extract. Arthropod availability was not correlated with foraging efficiency, and the rate of consumption of specific orders of invertebrates was not correlated with the availability of those same taxa. Our data support the hypothesis that juveniles are concentrating their foraging efforts on different prey than adults, potentially focusing their foraging efforts on more easily acquired types of prey. © 2016 Wiley Periodicals, Inc.

  3. Hawk Eyes II: Diurnal Raptors Differ in Head Movement Strategies When Scanning from Perches

    PubMed Central

    O'Rourke, Colleen T.; Pitlik, Todd; Hoover, Melissa; Fernández-Juricic, Esteban

    2010-01-01

    Background Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Conclusions Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction. PMID:20877650

  4. Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches.

    PubMed

    O'Rourke, Colleen T; Pitlik, Todd; Hoover, Melissa; Fernández-Juricic, Esteban

    2010-09-22

    Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.

  5. Detection and avoidance of a carnivore odor by prey

    PubMed Central

    Ferrero, David M.; Lemon, Jamie K.; Fluegge, Daniela; Pashkovski, Stan L.; Korzan, Wayne J.; Datta, Sandeep Robert; Spehr, Marc; Fendt, Markus; Liberles, Stephen D.

    2011-01-01

    Predator–prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals. PMID:21690383

  6. Rearing environment influences boldness and prey acquisition behavior, and brain and lens development of bull trout

    USGS Publications Warehouse

    Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.

    2018-01-01

    Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.

  7. Nuisance Ecology: Do Scavenging Condors Exact Foraging Costs on Pumas in Patagonia?

    PubMed Central

    Elbroch, L. Mark; Wittmer, Heiko U.

    2013-01-01

    Predation risk describes the energetic cost an animal suffers when making a trade off between maximizing energy intake and minimizing threats to its survival. We tested whether Andean condors (Vultur gryphus) influenced the foraging behaviors of a top predator in Patagonia, the puma (Puma concolor), in ways comparable to direct risks of predation for prey to address three questions: 1) Do condors exact a foraging cost on pumas?; 2) If so, do pumas exhibit behaviors indicative of these risks?; and 3) Do pumas display predictable behaviors associated with prey species foraging in risky environments? Using GPS location data, we located 433 kill sites of 9 pumas and quantified their kill rates. Based upon time pumas spent at a carcass, we quantified handling time. Pumas abandoned >10% of edible meat at 133 of 266 large carcasses after a single night, and did so most often in open grasslands where their carcasses were easily detected by condors. Our data suggested that condors exacted foraging costs on pumas by significantly decreasing puma handling times at carcasses, and that pumas increased their kill rates by 50% relative to those reported for North America to compensate for these losses. Finally, we determined that the relative risks of detection and associated harassment by condors, rather than prey densities, explained puma “giving up times” (GUTs) across structurally variable risk classes in the study area, and that, like many prey species, pumas disproportionately hunted in high-risk, high-resource reward areas. PMID:23301093

  8. Clam density and scaup feeding behavior in San Pablo Bay, California

    USGS Publications Warehouse

    Poulton, Victoria K.; Lovvorn, James R.; Takekawa, John Y.

    2002-01-01

    San Pablo Bay, in northern San Francisco Bay, California, is an important wintering area for Greater (Aythya marila) and Lesser Scaup (A. affinis). We investigated variation in foraging behavior of scaup among five sites in San Pablo Bay, and whether such variation was related to densities of their main potential prey, the clams Potamocorbula amurensis and Macoma balthica. Time-activity budgets showed that scaup spent most of their time sleeping at some sites, and both sleeping and feeding at other sites, with females feeding more than males. In the first half of the observation period (12 January–5 February 2000), percent time spent feeding increased with increasing density of P. amurensis, but decreased with increasing density of M. balthica (diet studies have shown that scaup ate mostly P. amurensis and little or no M. balthica). Densities of M. balthica stayed about the same between fall and spring benthic samples, while densities of P. amurensis declined dramatically at most sites. In the second half of the observation period (7 February–3 March 2000), percent time feeding was no longer strongly related to P. amurensis densities, and dive durations increased by 14%. These changes probably reflected declines of P. amurensis, perhaps as affected by scaup predation. The large area of potential feeding habitat, and alternative prey elsewhere in the estuary, might have resulted in the low correlations between scaup behavior and prey densities in San Pablo Bay. These low correlations made it difficult to identify specific areas of prey concentrations important to scaup.

  9. Nuisance ecology: do scavenging condors exact foraging costs on pumas in Patagonia?

    PubMed

    Elbroch, L Mark; Wittmer, Heiko U

    2013-01-01

    Predation risk describes the energetic cost an animal suffers when making a trade off between maximizing energy intake and minimizing threats to its survival. We tested whether Andean condors (Vultur gryphus) influenced the foraging behaviors of a top predator in Patagonia, the puma (Puma concolor), in ways comparable to direct risks of predation for prey to address three questions: 1) Do condors exact a foraging cost on pumas?; 2) If so, do pumas exhibit behaviors indicative of these risks?; and 3) Do pumas display predictable behaviors associated with prey species foraging in risky environments? Using GPS location data, we located 433 kill sites of 9 pumas and quantified their kill rates. Based upon time pumas spent at a carcass, we quantified handling time. Pumas abandoned >10% of edible meat at 133 of 266 large carcasses after a single night, and did so most often in open grasslands where their carcasses were easily detected by condors. Our data suggested that condors exacted foraging costs on pumas by significantly decreasing puma handling times at carcasses, and that pumas increased their kill rates by 50% relative to those reported for North America to compensate for these losses. Finally, we determined that the relative risks of detection and associated harassment by condors, rather than prey densities, explained puma "giving up times" (GUTs) across structurally variable risk classes in the study area, and that, like many prey species, pumas disproportionately hunted in high-risk, high-resource reward areas.

  10. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    USGS Publications Warehouse

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  11. Prey Localization in Aquatic Surroundings: The Paddlefish

    NASA Astrophysics Data System (ADS)

    Russell, David F.

    2000-03-01

    Paddlefish locate aquatic prey by electrosense, using arrays of 50,000 passive electroreceptors to sense the microvolt-scale oscillatory electrical signals emitted by small planktonic prey such as Daphnia. Many electroreceptors cover a special flattened appendage projecting in front of the head, the rostrum, which acts as an electrosensory antenna and "early warning system" for approaching plankton, as a paddlefish swims forward. To unravel how this electrosensory nervous system works, we use infrared video to observe fish feeding behavior in a recirculating stream of water, complemented by microelectrode and staining experiments on the electroreceptors and brain. Fish appear to use simple search algorithms based on stimulus intensity to locate plankton, divisible into early-phase ballistic motions, followed by finer late-phase tracking to align the mouth, before the final lunge and prey engulfment. An example of how physical principles from nonlinear dynamics can be applied is our observation of stochastic resonance (SR) at the level of paddlefish feeding behavior (Nature 402: 291-294, 1999). We presented electrical noise, at different rms amplitudes, in the water where a fish was feeding on plankton. A certain optimal amplitude of noise (0.5 x 10-6 V/cm) increased the spatial range of prey localization by 60along the vertical axis (above or below the fish). The noisy electrical stimulus apparently increases the sensitivity of the electrosensory nervous system, by SR. As confirmation, we have also demonstrated SR in the response properties of individual electroreceptors. Additional information is available at the

  12. Fast sensory–motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept

    PubMed Central

    Geberl, Cornelia; Brinkløv, Signe; Wiegrebe, Lutz; Surlykke, Annemarie

    2015-01-01

    Echolocation is an active sense enabling bats and toothed whales to orient in darkness through echo returns from their ultrasonic signals. Immediately before prey capture, both bats and whales emit a buzz with such high emission rates (≥180 Hz) and overall duration so short that its functional significance remains an enigma. To investigate sensory–motor control during the buzz of the insectivorous bat Myotis daubentonii, we removed prey, suspended in air or on water, before expected capture. The bats responded by shortening their echolocation buzz gradually; the earlier prey was removed down to approximately 100 ms (30 cm) before expected capture, after which the full buzz sequence was emitted both in air and over water. Bats trawling over water also performed the full capture behavior, but in-air capture motions were aborted, even at very late prey removals (<20 ms = 6 cm before expected contact). Thus, neither the buzz nor capture movements are stereotypical, but dynamically adapted based on sensory feedback. The results indicate that echolocation is controlled mainly by acoustic feedback, whereas capture movements are adjusted according to both acoustic and somatosensory feedback, suggesting separate (but coordinated) central motor control of the two behaviors based on multimodal input. Bat echolocation, especially the terminal buzz, provides a unique window to extremely fast decision processes in response to sensory feedback and modulation through attention in a naturally behaving animal. PMID:25775538

  13. Corrigendum to "Foraging behavior of lactating South American sea lions (Otaria flavescens) and spatial-temporal resource overlap with the Uruguayan fisheries" [Deep-Sea Res. II 88-89 (2013) 106-109

    NASA Astrophysics Data System (ADS)

    Riet-Sapriza, Federico G.; Costa, Daniel P.; Franco-Trecu, Valentina; Marín, Yamandú; Chocca, Julio; González, Bernardo; Beathyate, Gastón; Louise Chilvers, B.; Hückstadt, Luis A.

    2016-10-01

    The authors of Riet-Sapriza et al. (2013) regret that after publication of the original manuscript an error was found in the estimation of lactating South American sea lions prey consumption and led to an overestimation of the daily and annual prey consumption.

  14. The response of adult red-cockaded woodpeckers to a fallen nestling

    Treesearch

    Richard R. Schaefer; D. Craig Rudolph; Richard N. Conner

    1991-01-01

    The response of adult Red-cockaded Woodpeckers to a fallen nestling- On 31 May 1990, while watching a pair of Red-cockaded Woodpeckers (Picoides borealis) feeding two 20- day-old nestlings, we observed the following behavior. At 6:30 DST, the adult male flew to the entrance of the nest cavity with prey. He did not immediately offer the prey to the...

  15. Predator-prey pursuit-evasion games in structurally complex environments.

    PubMed

    Morice, Sylvie; Pincebourde, Sylvain; Darboux, Frédéric; Kaiser, Wilfried; Casas, Jérôme

    2013-11-01

    Pursuit and evasion behaviors in many predator-prey encounters occur in a geometrically structured environment. The physical structures in the environment impose strong constraints on the perception and behavioral responses of both antagonists. Nevertheless, no experimental or theoretical study has tackled the issue of quantifying the role of the habitat's architecture on the joint trajectories during a predator-prey encounter. In this study, we report the influence of microtopography of forest leaf litter on the pursuit-evasion trajectories of wolf spiders Pardosa sp. attacking the wood cricket Nemobius sylvestris. Fourteen intact leaf litter samples of 1 m × 0.5 m were extracted from an oak-beech forest floor in summer and winter, with later samples having the most recently fallen leaves. Elevation was mapped at a spatial resolution of 0.5 mm using a laser scanner. Litter structuring patterns were identified by height transects and experimental semi-variograms. Detailed analysis of all visible leaf-fragments of one sample enabled us to relate the observed statistical patterns to the underlying geometry of individual elements. Video recording of pursuit-evasion sequences in arenas with flat paper or leaf litter enabled us to estimate attack and fleeing distances as a function of substrate. The compaction index, the length of contiguous flat surfaces, and the experimental variograms showed that the leaf litter was smoother in summer than in winter. Thus, weathering as well as biotic activities compacted and flattened the litter over time. We found good agreement between the size of the structuring unit of leaf litter and the distance over which attack and escape behaviors both were initiated (both ∼3 cm). There was a four-fold topographical effect on pursuit-escape sequences; compared with a flat surface, leaf litter (1) greatly reduced the likelihood of launching a pursuit, (2) reduced pursuit and escape distances by half, (3) put prey and predator on par in terms of pursuit and escape distances, and (4) reduced the likelihood of secondary pursuits, after initial escape of the prey, to nearly zero. Thus, geometry of the habitat strongly modulates the rules of pursuit-evasion in predator-prey interactions in the wild.

  16. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions.

    PubMed

    Zu, Jian; Wang, Jinliang; Huang, Gang

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey's trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator's trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a possible outcome under asymmetric predator-prey interactions.

  17. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey

    PubMed Central

    Schartel, Tyler E.; Schauber, Eric M.

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference. PMID:26978659

  18. Relative Preference and Localized Food Affect Predator Space Use and Consumption of Incidental Prey.

    PubMed

    Schartel, Tyler E; Schauber, Eric M

    2016-01-01

    Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.

  19. Prey species as possible sources of PBDE exposures for peregrine falcons (Falco peregrinus) nesting in major California cities.

    PubMed

    Park, June-Soo; Fong, Alison; Chu, Vivian; Holden, Arthur; Linthicum, Janet; Hooper, Kim

    2011-04-01

    Our earlier findings indicate that (1) peregrine falcons (Falco peregrinus anatum Bonaparte) nesting in major California cities have among the highest polybrominated diphenyl ether (PBDE) levels in the world (max ∑PBDEs=100 ppm), and (2) Big City peregrines have higher levels and proportions of the higher-brominated congeners (hepta- to deca-BDEs) than do their Coastal counterparts. In this study we classified the prey species (n =185) from the remains of prey (feathers) at 38 peregrine nest sites over 25 years (1974-1998). We grouped the prey species into 15 categories based on diet and found distinctly different prey patterns for Big City vs. Coastal peregrines. Big City peregrines had a higher (almost three times) weight percentage intake of food waste-eating birds (e.g., rock pigeons, Columba livia) than Coastal peregrines. These differing prey patterns suggest diet as a potential source of the unusually high levels and proportions of higher-brominated PBDEs in Big City peregrines. The relative contributions of diet and dust (e.g., preening) exposure to PBDE patterns in Big City peregrines will be explored in future investigations. © Springer Science+Business Media, LLC 2010

  20. Effects of degeneracy and response function in a diffusion predator-prey model

    NASA Astrophysics Data System (ADS)

    Li, Shanbing; Wu, Jianhua; Dong, Yaying

    2018-04-01

    In this paper, we consider positive solutions of a diffusion predator-prey model with a degeneracy under the Dirichlet boundary conditions. We first obtain sufficient conditions of the existence of positive solutions by the Leray-Schauder degree theory, and then analyze the limiting behavior of positive solutions as the growth rate of the predator goes to infinity and the conversion rates of the predator goes to zero, respectively. It is shown that these results for Holling II response function (i.e. m  >  0) reveal interesting contrast with that for the classical Lotka-Volterra predator-prey model (i.e. m  =  0).

  1. The economics of protecting tiger populations: Linking household behavior to poaching and prey depletion

    USGS Publications Warehouse

    Damania, R.; Stringer, R.; Karanth, K.U.; Stith, B.

    2003-01-01

    The tiger (Panthera tigris) is classified as endangered and populations continue to decline. This paper presents a formal economic analysis of the two most imminent threats to the survival of wild tigers: poaching tigers and hunting their prey. A model is developed to examine interactions between tigers and farm households living in and around tiger habitats. The analysis extends the existing literature on tiger demography, incorporating predator-prey interactions and exploring the sensitivity of tiger populations to key economic parameters. The analysis aims to contribute to policy debates on how best to protect one of the world's most endangered wild cats.

  2. The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs.

    PubMed

    Vanas, V; Enigl, M; Walzer, A; Schausberger, P

    2006-01-01

    Integration of optimal foraging and optimal oviposition theories suggests that predator females should adjust patch leaving to own and progeny prey needs to maximize current and future reproductive success. We tested this hypothesis in the predatory mite Phytoseiulus persimilis and its patchily distributed prey, the two-spotted spider mite Tetranychus urticae. In three separate experiments we assessed (1) the minimum number of prey needed to complete juvenile development, (2) the minimum number of prey needed to produce an egg, and (3) the ratio between eggs laid and spider mites left when a gravid P. persimilis female leaves a patch. Experiments (1) and (2) were the pre-requirements to assess the fitness costs associated with staying or leaving a prey patch. Immature P. persimilis needed at least 7 and on average 14+/-3.6 (SD) T. urticae eggs to reach adulthood. Gravid females needed at least 5 and on average 8.5+/-3.1 (SD) T. urticae eggs to produce an egg. Most females left the initial patch before spider mite extinction, leaving prey for progeny to develop to adulthood. Females placed in a low density patch left 5.6+/-6.1 (SD) eggs per egg laid, whereas those placed in a high density patch left 15.8+/-13.7 (SD) eggs per egg laid. The three experiments in concert suggest that gravid P. persimilis females are able to balance the trade off between optimal foraging and optimal oviposition and adjust patch-leaving to own and progeny prey needs.

  3. Effect of elevated CO2 and small boat noise on the kinematics of predator-prey interactions.

    PubMed

    McCormick, Mark I; Watson, Sue-Ann; Simpson, Stephen D; Allan, Bridie J M

    2018-03-28

    Oceans of the future are predicted to be more acidic and noisier, particularly along the productive coastal fringe. This study examined the independent and combined effects of short-term exposure to elevated CO 2 and boat noise on the predator-prey interactions of a pair of common coral reef fishes ( Pomacentrus wardi and its predator, Pseudochromis fuscus ). Successful capture of prey by predators was the same regardless of whether the pairs had been exposed to ambient control conditions, the addition of either playback of boat noise, elevated CO 2 (925 µatm) or both stressors simultaneously. The kinematics of the interaction were the same for all stressor combinations and differed from the controls. The effects of CO 2 or boat noise were the same, suggesting that their effects were substitutive in this situation. Prey reduced their perception of threat under both stressors individually and when combined, and this coincided with reduced predator attack distances and attack speeds. The lack of an additive or multiplicative effect when both stressors co-occurred was notable given the different mechanisms involved in sensory disruptions and highlights the importance of determining the combined effects of key drivers to aid in predicting community dynamics under future environmental scenarios. © 2018 The Author(s).

  4. Ocean acidification alters predator behaviour and reduces predation rate.

    PubMed

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  5. Ocean acidification alters predator behaviour and reduces predation rate

    PubMed Central

    Fields, Jennifer B.; Munday, Philip L.

    2017-01-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO2) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus. Projected near-future seawater CO2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min−1) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO2 reduced predation rate during predator–prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator–prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator–prey relationship are altered by elevated CO2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. PMID:28148828

  6. Predatory behavior in a necrophagous bee Trigona hypogea (Hymenoptera; Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Mateus, Sidnei; Noll, Fernando B.

    Although most bees feed on nectar and pollen, several exceptions have been reported. The strangest of all is the habit found in some neotropical stingless bees, which have completely replaced pollen-eating by eating animal protein from corpses. For more than 20 years, it was believed that carrion was the only protein source for these bees. We report that these bees feed not only off dead animals, but on the living brood of social wasps and possibly other similar sources. Using well developed prey location and foraging behaviors, necrophagous bees discover recently abandoned wasps' nests and, within a few hours, prey upon all immatures found there.

  7. Influence of military activities on raptor abundance and behavior

    USGS Publications Warehouse

    Schueck, Linda S.; Marzluff, J.M.; Steenhof, Karen

    2001-01-01

    We investigated the influence of military training on the abundance and behavior of raptors at a military training area in the Snake River Birds of Prey National Conservation Area in Idaho during the breeding seasons of 1991a??1994. Raptor counts on military training ranges did not differ when we compared all training days to all non-training days. However, during one period of intensive military training in one breeding season, raptor counts were lower during training than on non-training days. During training, Northern Harriers (Circus cyaneus) did not alter their behavior on training days. In years when prey numbers were low, falcons, hawks, and eagles perched and flew at low levels less often and flew at higher altitudes more often during training than they did when training did not occur. We observed fewer prey capture attempts on ranges on days with training than on days without training. Specific types of military training activity affected counts of raptors on ranges. The lowest raptor counts were associated with firing of artillery, small arms, and main turret guns or machine guns on tanks. Raptor counts associated with tank preparation (i.e., assembling and loading ammunition), driving, laser training, and convoy traffic were similar to non-training periods.

  8. On the barn owl's visual pre-attack behavior: I. Structure of head movements and motion patterns.

    PubMed

    Ohayon, Shay; van der Willigen, Robert F; Wagner, Hermann; Katsman, Igor; Rivlin, Ehud

    2006-09-01

    Barn owls exhibit a rich repertoire of head movements before taking off for prey capture. These movements occur mainly at light levels that allow for the visual detection of prey. To investigate these movements and their functional relevance, we filmed the pre-attack behavior of barn owls. Off-line image analysis enabled reconstruction of all six degrees of freedom of head movements. Three categories of head movements were observed: fixations, head translations and head rotations. The observed rotations contained a translational component. Head rotations did not follow Listing's law, but could be well described by a second-order surface, which indicated that they are in close agreement with Donder's law. Head translations did not contain any significant rotational components. Translations were further segmented into straight-line and curved paths. Translations along an axis perpendicular to the line of sight were similar to peering movements observed in other animals. We suggest that these basic motion elements (fixations, head rotations, translations along a straight line, and translation along a curved trajectory) may be combined to form longer and more complex behavior. We speculate that these head movements mainly underlie estimation of distance during prey capture.

  9. Lotka-Volterra system in a random environment.

    PubMed

    Dimentberg, Mikhail F

    2002-03-01

    Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic "damping" term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent gamma-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.

  10. Lotka-Volterra system in a random environment

    NASA Astrophysics Data System (ADS)

    Dimentberg, Mikhail F.

    2002-03-01

    Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.

  11. Feeding patterns of migratory and non-migratory fourth instar larvae of two coexisting Chaoborus species in an acidic and metal contaminated lake: Importance of prey ingestion rate in predicting metal bioaccumulation

    USGS Publications Warehouse

    Croteau, M.-N.; Hare, L.; Marcoux, P.

    2003-01-01

    We studied diel variations in the feeding habits and migratory behaviors of two coexisting Chaoborus species in an acidic and metal contaminated lake (Lake Turcotte, QC, Canada). We found that although the zooplankton community was dominated by rotifers, both Chaoborus species fed mostly on chironomids and crustaceans despite the relatively low abundance of these prey types in the lake plankton. Chaoborus americanus larvae fed on those of Chaoborus punctipennis, but not vice versa. The non-migratory species (C. americanus) fed throughout the day and night whereas the migratory species (C. punctipennis) fed only at night while in the water column. The larger-bodied C. americanus consumed more prey and had a more diverse diet than did the smaller-bodied C. punctipennis. Differences in feeding habits between the Chaoborus species inhabiting Lake Turcotte (prey biomass, prey types) likely explain in part their ability to coexist. Attempts to predict Cd in the Chaoborus species using our measurements of Cd in their prey and their prey ingestion rates met with mixed success; although we correctly predicted higher Cd concentrations for C. americanus larvae than for C. punctipennis larvae, we under-predicted absolute Cd concentrations. We suggest that studies such as ours that are based on analyses of gut contents of larvae collected at intervals of 4h or longer likely underestimate prey ingestion rates.

  12. Contribution of different functional groups to the diet of major predatory fishes at a seagrass meadow in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, Katsumasa; Hori, Masakazu; Tanaka, Yoshiyuki; Hasegawa, Natsuki; Nakaoka, Masahiro

    2010-01-01

    We examined the variation in habitat use and diet of three dominant fish species ( Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.

  13. Marginal predation: do encounter or confusion effects explain the targeting of prey group edges?

    PubMed

    Duffield, Callum; Ioannou, Christos C

    2017-01-01

    Marginal predation, also known as the edge effect, occurs when aggregations of prey are preferentially targeted on their periphery by predators and has long been established in many taxa. Two main processes have been used to explain this phenomenon, the confusion effect and the encounter rate between predators and prey group edges. However, it is unknown at what size a prey group needs to be before marginal predation is detectable and to what extent each mechanism drives the effect. We conducted 2 experiments using groups of virtual prey being preyed upon by 3-spined sticklebacks ( Gasterosteus aculeatus ) to address these questions. In Experiment 1, we show that group sizes do not need to be large for marginal predation to occur, with this being detectable in groups of 16 or more. In Experiment 2, we find that encounter rate is a more likely explanation for marginal predation than the confusion effect in this system. We find that while confusion does affect predatory behaviors (whether or not predators make an attack), it does not affect marginal predation. Our results suggest that marginal predation is a more common phenomenon than originally thought as it also applies to relatively small groups. Similarly, as marginal predation does not need the confusion effect to occur, it may occur in a wider range of predator-prey species pairings, for example those where the predators search for prey using nonvisual sensory modalities.

  14. A circumpolar monitoring framework for polar bears

    USGS Publications Warehouse

    Vongraven, Dag; Aars, Jon; Amstrup, Steven C.; Atkinson, Stephen N.; Belikov, Stanislav; Born, Erik W.; DeBruyn, T.D.; Derocher, Andrew E.; Durner, George M.; Gill, Michael J.; Lunn, Nicholas J.; Obbard, Martyn E.; Omelak, Jack; Ovsyanikov, Nikita; Peacock, Elizabeth; Richardson, E.E.; Sahanatien, Vicki; Stirling, Ian; Wiig, Øystein

    2012-01-01

    Polar bears (Ursus maritimus) occupy remote regions that are characterized by harsh weather and limited access. Polar bear populations can only persist where temporal and spatial availability of sea ice provides adequate access to their marine mammal prey. Observed declines in sea ice availability will continue as long as greenhouse gas concentrations rise. At the same time, human intrusion and pollution levels in the Arctic are expected to increase. A circumpolar understanding of the cumulative impacts of current and future stressors is lacking, long-term trends are known from only a few subpopulations, and there is no globally coordinated effort to monitor effects of stressors. Here, we describe a framework for an integrated circumpolar monitoring plan to detect ongoing patterns, predict future trends, and identify the most vulnerable polar bear subpopulations. We recommend strategies for monitoring subpopulation abundance and trends, reproduction, survival, ecosystem change, human-caused mortality, human–bear conflict, prey availability, health, stature, distribution, behavioral change, and the effects that monitoring itself may have on polar bears. We assign monitoring intensity for each subpopulation through adaptive assessment of the quality of existing baseline data and research accessibility. A global perspective is achieved by recommending high intensity monitoring for at least one subpopulation in each of four major polar bear ecoregions. Collection of data on harvest, where it occurs, and remote sensing of habitat, should occur with the same intensity for all subpopulations. We outline how local traditional knowledge may most effectively be combined with the best scientific methods to provide comparable and complementary lines of evidence. We also outline how previously collected intensive monitoring data may be sub-sampled to guide future sampling frequencies and develop indirect estimates or indices of subpopulation status. Adoption of this framework will inform management and policy responses to changing worldwide polar bear status and trends.

  15. How Nature-Based Tourism Might Increase Prey Vulnerability to Predators.

    PubMed

    Geffroy, Benjamin; Samia, Diogo S M; Bessa, Eduardo; Blumstein, Daniel T

    2015-12-01

    Tourism can be deleterious for wildlife because it triggers behavioral changes in individuals with cascading effects on populations and communities. Among these behavioral changes, animals around humans often reduce their fearfulness and antipredator responses towards humans. A straightforward prediction is that habituation to humans associated with tourism would negatively influence reaction to predators. This could happen indirectly, where human presence decreases the number of natural predators and thus prey become less wary, or directly, where human-habituated individuals become bolder and thus more vulnerable to predation. Building on ideas from the study of traits associated with domestication and urbanization, we develop a framework to understand how behavioral changes associated with nature-based tourism can impact individual fitness, and thus the demographic trajectory of a population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Owls may use faeces and prey feathers to signal current reproduction.

    PubMed

    Penteriani, Vincenzo; Delgado, Maria del Mar

    2008-08-20

    Many animals communicate by marking focal elements of their home range with different kinds of materials. Visual signaling has been demonstrated to play a previously unrecognized role in the intraspecific communication of eagle owls (Bubo bubo), in both territorial and parent-offspring contexts. Visual signals may play a role in a variety of circumstances in this crepuscular and nocturnal species. Here, we report that a large amount of extremely visible white faeces and prey feathers appear during the breeding season on posts and plucking sites in proximity to the nest, potentially representing a way for eagle owls to mark their territory. We present descriptive and experimental evidence showing that faeces and prey remains could act as previously unrecognized visual signals in a nocturnal avian predator. This novel signaling behavior could indicate the owls' current reproductive status to potential intruders, such as other territorial owls or non-breeding floaters. Faeces and prey feather markings may also advertise an owl's reproductive status or function in mate-mate communication. We speculate that faeces marks and plucking may represent an overlooked but widespread method for communicating current reproduction to conspecifics. Such marking behavior may be common in birds, and we may now be exploring other questions and mechanisms in territoriality.

  17. Owls May Use Faeces and Prey Feathers to Signal Current Reproduction

    PubMed Central

    Penteriani, Vincenzo; del Mar Delgado, Maria

    2008-01-01

    Background Many animals communicate by marking focal elements of their home range with different kinds of materials. Visual signaling has been demonstrated to play a previously unrecognized role in the intraspecific communication of eagle owls (Bubo bubo), in both territorial and parent-offspring contexts. Visual signals may play a role in a variety of circumstances in this crepuscular and nocturnal species. Methodology/Principal Findings Here, we report that a large amount of extremely visible white faeces and prey feathers appear during the breeding season on posts and plucking sites in proximity to the nest, potentially representing a way for eagle owls to mark their territory. We present descriptive and experimental evidence showing that faeces and prey remains could act as previously unrecognized visual signals in a nocturnal avian predator. This novel signaling behavior could indicate the owls' current reproductive status to potential intruders, such as other territorial owls or non-breeding floaters. Faeces and prey feather markings may also advertise an owl's reproductive status or function in mate-mate communication. Conclusions/Significance We speculate that faeces marks and plucking may represent an overlooked but widespread method for communicating current reproduction to conspecifics. Such marking behavior may be common in birds, and we may now be exploring other questions and mechanisms in territoriality. PMID:18714382

  18. Orientation and navigation relative to water flow, prey, conspecifics, and predators by the nudibranch mollusc Tritonia diomedea.

    PubMed

    Wyeth, Russell C; Woodward, Owen M; Willows, A O Dennis

    2006-04-01

    Progress in understanding sensory and locomotory systems in Tritonia diomedea has created the potential for the neuroethological study of animal navigation in this species. Our goal is to describe the navigational behaviors to guide further work on how the nervous system integrates information from multiple senses to produce oriented locomotion. Observation of T. diomedea in its habitat has suggested that it uses water flow to navigate relative to prey, predators, and conspecifics. We test these hypotheses in the field by comparing slug orientation in time-lapse videos to flow direction in circumstances with and without prey, predators, or conspecifics upstream. T. diomedea oriented upstream both while crawling and after turning. This trend was strongest before feeding or mating; after feeding or mating, the slugs did not orient significantly to flow. Slugs turned downstream away from an upstream predator but did not react in control situations without an upstream predator. These data support the hypothesis that T. diomedea uses a combination of odors (or some other cue transported downstream) and water flow to navigate relative to prey, predators, and conspecifics. Understanding the context-dependent choice between upstream and downstream crawling in T. diomedea provides an opportunity for further work on the sensory integration underlying navigation behavior.

  19. Breeding behavior of northern saw-whet owls in Oregon

    USGS Publications Warehouse

    McCullough, Jenna M.; Conway, Courtney J.

    2017-01-01

    We know little about the breeding behavior of most nocturnal raptors. Nest attendance and prey delivery rates can be used as indices of relative habitat quality or extent of parental care. We used video cameras to document and observe prey delivery rates, nest attendance and bout durations at two northern saw-whet owl (Aegolius acadicus) nests in two artificial nest boxes in north-central Oregon. We collected 858 hours of video surveillance between 21 March and 01 June 2014. The number of prey deliveries per night increased as the nesting season progressed: 1.25 during laying, 1.33 during incubation, and 4.0 during the nestling phase. Prey was delivered most often between 2100 and 2200. Nest attendance by females was high during pre-laying (97.8%), laying (97.9%) and incubation (98.2%), but decreased during the nestling phase (55.7%). Nest attendance was higher during diurnal hours than nocturnal hours across all nesting phases. Duration of off bouts (recesses) was similar during pre-laying and laying (26 min), decreased during incubation (19 min), then increased during the nestling phase (55 min). One of the nesting attempts was successful and the female abandoned the other clutch 22 days after initiation. The incubation and nestling periods were 30 days each.

  20. The nutritional nexus: linking niche, habitat variability and prey composition in a generalist marine predator.

    PubMed

    Machovsky-Capuska, Gabriel E; Miller, Mark G R; Silva, Fabiola R O; Amiot, Christophe; Stockin, Karen A; Senior, Alistair M; Schuckard, Rob; Melville, David; Raubenheimer, David

    2018-06-05

    1.Our understanding of the niche concept will remain limited while the quantity and range of different food types eaten remains a dominant proxy for niche breadth, as this does not account for the broad ecological context that governs diet. Linking nutrition, physiology and behaviour are critical to predict the extent to which a species adjusts its nutritional niche breadth at the levels of prey ("prey composition niche", defined as the range of prey compositions eaten), and diet ("realized nutritional niche" is the range of diets composed through feeding on the prey). 2.Here we studied adult-chick rearing Australasian gannets (Morus serrator) to propose an integrative approach using sea surface temperature anomalies (SSTa), geographic location and bathymetry over different years, to explore their relationship with the nutritional composition of prey and diets (i.e., prey composition and nutritional niche breadth), habitat use and foraging behavior. 3.We found that gannets feed on prey that varied widely in their nutritional composition (have a broad prey composition niche), and composed diets from these prey that likewise varied in composition (have a broad realized nutritional niche), suggesting generalism at two levels of macronutrient selection. 4.Across seasons, we established "nutritional landscapes" (hereafter nutriscapes), linking the nutritional content of prey (wet mass protein to-lipid ratio -P:L-) to the most likely geographic area of capture and bathymetry. Nutriscapes varied in their P:L from 6.06 to 15.28, over time, space and bathymetry (0 to 150 m). 5.During warm water events (strong positive SSTa), gannets expanded their foraging habitat, increased their foraging trip duration and consumed prey and diets with low macronutrient content (wet mass proportions of P and L). They were also constrained to the smallest prey composition and realized nutritional niche breadths. 6.Our findings are consistent with previous suggestions that dietary generalism evolves in heterogeneous environments, and provide a framework for understanding the nutritional goals in wild marine predators and how these goals drive ecological interactions and are, in turn, ultimately shaped by environmental fluctuations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. The effects of predator odors in mammalian prey species: a review of field and laboratory studies.

    PubMed

    Apfelbach, Raimund; Blanchard, Caroline D; Blanchard, Robert J; Hayes, R Andrew; McGregor, Iain S

    2005-01-01

    Prey species show specific adaptations that allow recognition, avoidance and defense against predators. For many mammalian species this includes sensitivity towards predator-derived odors. The typical sources of such odors include predator skin and fur, urine, feces and anal gland secretions. Avoidance of predator odors has been observed in many mammalian prey species including rats, mice, voles, deer, rabbits, gophers, hedgehogs, possums and sheep. Field and laboratory studies show that predator odors have distinctive behavioral effects which include (1) inhibition of activity, (2) suppression of non-defensive behaviors such as foraging, feeding and grooming, and (3) shifts to habitats or secure locations where such odors are not present. The repellent effect of predator odors in the field may sometimes be of practical use in the protection of crops and natural resources, although not all attempts at this have been successful. The failure of some studies to obtain repellent effects with predator odors may relate to (1) mismatches between the predator odors and prey species employed, (2) strain and individual differences in sensitivity to predator odors, and (3) the use of predator odors that have low efficacy. In this regard, a small number of recent studies have suggested that skin and fur-derived predator odors may have a more profound lasting effect on prey species than those derived from urine or feces. Predator odors can have powerful effects on the endocrine system including a suppression of testosterone and increased levels of stress hormones such as corticosterone and ACTH. Inhibitory effects of predator odors on reproductive behavior have been demonstrated, and these are particularly prevalent in female rodent species. Pregnant female rodents exposed to predator odors may give birth to smaller litters while exposure to predator odors during early life can hinder normal development. Recent research is starting to uncover the neural circuitry activated by predator odors, leading to hypotheses about how such activation leads to observable effects on reproduction, foraging and feeding.

  2. Functional traits determine heterospecific use of risk-related social information in forest birds of tropical South-East Asia.

    PubMed

    Hua, Fangyuan; Yong, Ding Li; Janra, Muhammad Nazri; Fitri, Liza M; Prawiradilaga, Dewi; Sieving, Kathryn E

    2016-12-01

    In birds and mammals, mobbing calls constitute an important form of social information that can attract numerous sympatric species to localized mobbing aggregations. While such a response is thought to reduce the future predation risk for responding species, there is surprisingly little empirical evidence to support this hypothesis. One way to test the link between predation risk reduction and mobbing attraction involves testing the relationship between species' attraction to mobbing calls and the functional traits that define their vulnerability to predation risk. Two important traits known to influence prey vulnerability include relative prey-to-predator body size ratio and the overlap in space use between predator and prey; in combination, these measures strongly influence prey accessibility, and therefore their vulnerability, to predators. Here, we combine community surveys with behavioral experiments of a diverse bird assemblage in the lowland rainforest of Sumatra to test whether the functional traits of body mass (representing body size) and foraging height (representing space use) can predict species' attraction to heterospecific mobbing calls. At four forest sites along a gradient of forest degradation, we characterized the resident bird communities using point count and mist-netting surveys, and determined the species groups attracted to standardized playbacks of mobbing calls produced by five resident bird species of roughly similar body size and foraging height. We found that (1) a large, diverse subcommunity of bird species was attracted to the mobbing calls and (2) responding species (especially the most vigorous respondents) tended to be (a) small (b) mid-storey foragers (c) with similar trait values as the species producing the mobbing calls. Our findings from the relatively lesser known bird assemblages of tropical Asia add to the growing evidence for the ubiquity of heterospecific information networks in animal communities, and provide empirical support for the long-standing hypothesis that predation risk reduction is a major benefit of mobbing information networks.

  3. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions

    PubMed Central

    Zu, Jian; Wang, Jinliang; Huang, Gang

    2016-01-01

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey’s trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator’s trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a possible outcome under asymmetric predator-prey interactions. PMID:27685540

  4. Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Yong; Pei, Li-Jun

    2011-04-01

    Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluctuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratio-dependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.

  5. Multisensory Integration and Behavioral Plasticity in Sharks from Different Ecological Niches

    PubMed Central

    Gardiner, Jayne M.; Atema, Jelle; Hueter, Robert E.; Motta, Philip J.

    2014-01-01

    The underwater sensory world and the sensory systems of aquatic animals have become better understood in recent decades, but typically have been studied one sense at a time. A comprehensive analysis of multisensory interactions during complex behavioral tasks has remained a subject of discussion without experimental evidence. We set out to generate a general model of multisensory information extraction by aquatic animals. For our model we chose to analyze the hierarchical, integrative, and sometimes alternate use of various sensory systems during the feeding sequence in three species of sharks that differ in sensory anatomy and behavioral ecology. By blocking senses in different combinations, we show that when some of their normal sensory cues were unavailable, sharks were often still capable of successfully detecting, tracking and capturing prey by switching to alternate sensory modalities. While there were significant species differences, odor was generally the first signal detected, leading to upstream swimming and wake tracking. Closer to the prey, as more sensory cues became available, the preferred sensory modalities varied among species, with vision, hydrodynamic imaging, electroreception, and touch being important for orienting to, striking at, and capturing the prey. Experimental deprivation of senses showed how sharks exploit the many signals that comprise their sensory world, each sense coming into play as they provide more accurate information during the behavioral sequence of hunting. The results may be applicable to aquatic hunting in general and, with appropriate modification, to other types of animal behavior. PMID:24695492

  6. An integrated approch to the foraging ecology of marine birds and mammals

    NASA Astrophysics Data System (ADS)

    Croll, Donald A.; Tershy, Bernie R.; Hewitt, Roger P.; Demer, David A.; Fiedler, Paul C.; Smith, Susan E.; Armstrong, Wesley; Popp, Jacqueline M.; Kiekhefer, Thomas; Lopez, Vanesa R.; Urban, Jorge; Gendron, Diane

    Birds and mammals are important components of pelagic marine ecosystems, but our knowledge of their foraging ecology is limited. We distinguish six distinct types of data that can be used in various combinations to understand their foraging behavior and ecology. We describe methods that combine concurrent dive recorder deployment, oceanographic sampling, and hydroacoustic surveys to generate hypotheses about interactions between the physical environment and the distribution, abundance, and behavior of pelagic predators and their prey. Our approach is to (1) map the distribution of whales in relation to the distribution of their prey and the physical features of the study area (bottom topography, temperature, and salinity); and (2) measure the foraging behavior and diet of instrumented whales in the context of the fine-scale distribution and composition of their prey and the physical environment. We use this approach to demonstrate a relationship between blue whale distribution, sea surface temperature, and concentrations of their euphausiid prey at different spatial scales offshore of the Channel Islands, California. Blue whale horizontal spatial distribution was correlated with regions of high acoustic backscatter. Blue whale dive depths closely tracked the depth distribution of krill. Net sampling and whale diet revealed that whales fed exclusively upon dense schools of Euphausia pacifica (between 100 and 200 m) and Thysanoessa spinifera (from the surface to 100 m). Whales concentrated foraging efforts upon those dense euphausiid schools that form downstream from an upwelling center in close proximity to regions of steep topographic relief. We propose that (1) the distribution of Balaenoptera whales in the coastal California Current region is defined by their attraction to areas of predictably high prey density; (2) the preferred prey of these whales are several species of euphausiids ( E. pacifica, T. spinifera, and N. simplex) that are abundant in the California Current region; (3) blue whales concentrate their foraging efforts on dense aggregations of euphausiids found at discrete depths in the water column; (4) these localized areas of high euphausiid densities are predictable and sustained by enhanced levels of primary productivity in regions which are located downstream from coastal upwelling centers (indicated by sea surface temperature); (5) topographic breaks in the continental shelf located downstream from these upwelling centers work in concert with euphausiid behavior to collect and maintain large concentrations of euphausiids swarms, and (6) despite seasonal and inter-annual variability, these processes are sufficiently consistent that the distribution of Balaenoptera whales can be predicted.

  7. Stochastic analysis of a pulse-type prey-predator model

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  8. Stochastic analysis of a pulse-type prey-predator model.

    PubMed

    Wu, Y; Zhu, W Q

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  9. Geospatial Analysis of Grey Wolf Movement Patterns

    NASA Astrophysics Data System (ADS)

    Sur, D.

    2017-12-01

    The grey wolf is a top predator that lives across a diverse habitat, ranging from Europe to North America. They often hunt in packs, preferring caribou, deer and elk as prey. Currently, many gray wolves live in Denali National Park and Preserve. In this study, several wolf packs were studied in three distinct regions of Denali. The purpose of my research was to investigate the links between wolf habitat, movement patterns, and prey thresholds. These are needed for projecting future population, growth and distribution of wolves in the studied region. I also investigated the effect wolves have on the ecological structure of the communities they inhabit. In the study I carried out a quantitative analysis of wolf population trends and daily distance movement by utilizing an analysis of variance (ANOVA) in the program JmpPro12 (SAS Institute, Crary, NC) to assess regional differences in pack size, wolf density, average daily distance moved. I found a clear link between the wolf habitat and prey thresholds; the habitat directly influences the types of prey available. However there was no link between the daily distance movement, the wolf habitat and prey density.

  10. Titmouse calling and foraging are affected by head and body orientation of cat predator models and possible experience with real cats.

    PubMed

    Book, D L; Freeberg, Todd M

    2015-09-01

    Although anti-predator behavior systems have been studied in diverse taxa, less is known about how prey species detect and assess the immediate threat posed by a predator based on its behavior. In this study, we evaluated a potential cue that some species may utilize when assessing predation threat-the predator's body and head orientation. We tested the effect of this orientation cue on signaling and predation-risk-sensitive foraging of a prey species, tufted titmice (Baeolophus bicolor). Earlier work revealed sensitivity of titmice and related species to the presence of predator stimuli. Here, we manipulated cat models to face either toward or away from a food source preferred by titmice and then measured titmouse calling and seed-taking behavior. Titmice showed greater feeder avoidance when the cat predator models faced the feeder, compared to when the models faced away from the feeder or when titmice were exposed to control stimuli. Titmouse calling was also sensitive to predator head/body orientation, depending upon whether titmice were from sites where real cats had been observed or not. This study experimentally demonstrated that both calling and foraging of prey species can be affected by the head and body orientation of an important terrestrial predator. Prey species may therefore signal in strategic ways to conspecifics not just about predator presence, but also urgency of threat related to the more subtle cue of the head and body orientation of the predator. These findings hold potential implications for understanding animal cognition and learning processes.

  11. Wasp venom injected into the prey's brain modulates thoracic identified monoaminergic neurons.

    PubMed

    Rosenberg, Lior Ann; Pflüger, Hans-Joachim; Wegener, Gerhard; Libersat, Frederic

    2006-02-05

    The wasp Ampulex compressa injects a cocktail of neurotoxins into the brain of its cockroach prey to induce an enduring change in the execution of locomotory behaviors. Our hypothesis is that the venom injected into the brain indirectly alters the activity of monoaminergic neurons, thus changing the levels of monoamines that tune the central synapses of locomotory circuits. The purpose of the present investigation was to establish whether the venom alters the descending control, from the brain, of octopaminergic neurons in the thorax. This question was approached by recording the activity of specific identified octopaminergic neurons after removing the input from the brain or after a wasp sting into the brain. We show that the activity of these neurons is altered in stung and "brainless" animals. The spontaneous firing rate of these neurons in stung and brainless animals is approximately 20% that in control animals. Furthermore, we show that an identified octopamine neuron responds more weakly both to sensory stimuli and to direct injection of current in all treated groups. The alteration in the activity of octopamine neurons is likely to be part of the mechanism by which the wasp induces a change in the behavioral state of its prey and also affects its metabolism by reducing the potent glycolytic activator fructose 2,6-bisphosphate in leg muscle. To our knowledge, this is the first direct evidence of a change in electrical activity of specific monoaminergic neurons that can be so closely associated with a venom-induced change in behavioral state of a prey animal.

  12. Potential trophic cascades triggered by the barred owl range expansion

    USGS Publications Warehouse

    Holm, Samantha R.; Noon, Barry R.; Wiens, David; Ripple, William J.

    2016-01-01

    Recently, the barred owl (Strix varia) has expanded its range into the Pacific Northwest of the United States resulting in pronounced effects on the demography and behavior of the northern spotted owl (S. occidentalis caurina). The range expansion has brought together historically allopatric species, creating the potential for significant changes in the avian predator community with possible cascading effects on food-web dynamics. The adverse effects of the barred owl on the behavior and demography of the northern spotted owl are well-documented, but little is known about the immediate and long-term effects changes in the predator community may have on native species composition and ecosystem processes. Based on northern spotted owl and barred owl selection for diet and habitat resources, there is a potential for trophic cascades within the region's predator and prey communities, differing responses by their shared and unique prey species, and possible direct and indirect effects on ecosystem processes. We explored the possible ecological consequences of the barred owl range expansion to wildlife communities of the Pacific Northwest based on the theoretical underpinnings of predator–prey relationships, interspecific competition, intraguild predation, and potential cascading trophic interactions. Negative effects on fitness of northern spotted owls because of interspecific competition with barred owls are strong selection forces that may contribute to the regional extinction of the northern spotted owl. In addition, we posit that shared prey species and those uniquely consumed by barred owls, along with other competing native predators, may experience changes in behavior, abundance, and distribution as a result of increased rates of predation by rapidly expanding populations of barred owls.

  13. Activity patterns and time budgets of the declining sea otter population at Amchitka Island, Alaska

    USGS Publications Warehouse

    Gelatt, Thomas S.; Siniff, Donald B.; Estes, James A.

    2002-01-01

    Time budgets of predators may reflect population status if time spent foraging varies with local prey abun- dance. We assumed that the sea otter (Enhydra lutris) population at Amchitka Island, Alaska, USA, had been at equilibrium since the early 1960s and collected time budgets of otters to be used to represent future conditions of currently expanding sea otter populations. We used radiotelemetry to monitor activity-time budgets of otters from August 1992 to March 1994. Sea otter activity was directly linked to sex, age, weather condition, season, and time of day. Sea otters differed in percent time foraging among cohorts but not within cohorts. Percent time foraging ranged from 21% for females with very young (≤ 3weeks of age) dependent pups to 52% for females with old (≥10 weeks of age) pups. Otters foraged more and hauled out more as local sea conditions worsened. Adult males spent less time foraging during winter and spring, consistent with seasonal changes in prey selection. Time spent for- aging was similar to that reported for otters in California and an established population in Prince William Sound, Alaska, but greater than that of otters in recently established populations in Oregon and Alaska. Despite current evidence indicating that the population was in decline during our study, we were unable to recognize this change using time budgets. Our results illustrate the importance of stratifying analyses of activity patterns by age and sex cohorts and the complexity inherent in comparisons of behavioral data between different populations relying on distinct prey bases.

  14. Sharks modulate their escape behavior in response to predator size, speed and approach orientation.

    PubMed

    Seamone, Scott; Blaine, Tristan; Higham, Timothy E

    2014-12-01

    Escape responses are often critical for surviving predator-prey interactions. Nevertheless, little is known about how predator size, speed and approach orientation impact escape performance, especially in larger prey that are primarily viewed as predators. We used realistic shark models to examine how altering predatory behavior and morphology (size, speed and approach orientation) influences escape behavior and performance in Squalus acanthias, a shark that is preyed upon by apex marine predators. Predator models induced C-start escape responses, and increasing the size and speed of the models triggered a more intense response (increased escape turning rate and acceleration). In addition, increased predator size resulted in greater responsiveness from the sharks. Among the responses, predator approach orientation had the most significant impact on escapes, such that the head-on approach, as compared to the tail-on approach, induced greater reaction distances and increased escape turning rate, speed and acceleration. Thus, the anterior binocular vision in sharks renders them less effective at detecting predators approaching from behind. However, it appears that sharks compensate by performing high-intensity escapes, likely induced by the lateral line system, or by a sudden visual flash of the predator entering their field of view. Our study reveals key aspects of escape behavior in sharks, highlighting the modulation of performance in response to predator approach. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells.

    PubMed

    Tsvilling, Vadim; Donchin, Opher; Shamir, Maoz; Segev, Ronen

    2012-02-01

    Archer fish are known for their unique hunting method, where one fish in a group shoots down an insect with a jet of water while all the other fish are observing the prey's motion. To reap its reward, the archer fish must reach the prey before its competitors. This requires fast computation of the direction of motion of the prey, which enables the fish to initiate a turn towards the prey with an accuracy of 99%, at about 100 ms after the prey is shot. We explored the hypothesis that direction-selective retinal ganglion cells may underlie this rapid processing. We quantified the degree of directional selectivity of ganglion cells in the archer fish retina. The cells could be categorized into three groups: sharply (5%), broadly (37%) and non-tuned (58%) directionally selective cells. To relate the electrophysiological data to the behavioral results we studied a computational model and estimated the time required to accumulate sufficient directional information to match the decision accuracy of the fish. The computational model is based on two direction-selective populations that race against each other until one reaches the threshold and drives the decision. We found that this competition model can account for the observed response time at the required accuracy. Thus, our results are consistent with the hypothesis that the fast response behavior of the archer fish relies on retinal identification of movement direction. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Mechanisms of drift-feeding behavior in juvenile Chinook salmon and the role of inedible debris in a clear water Alaskan stream

    USGS Publications Warehouse

    Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.

    2014-01-01

    Drift-feeding fish are challenged to discriminate between prey and similar-sized particles of debris, which are ubiquitous even in clear-water streams. Spending time and energy pursuing debris mistaken as prey could affect fish growth and the fitness potential of different foraging strategies. Our goal was to determine the extent to which debris influences drift-feeding fish in clear water under low-flow conditions when the distracting effect of debris should be at a minimum. We used high-definition video to measure the reactions of drift-feeding juvenile Chinook salmon (Oncorhynchus tshawytscha) to natural debris and prey in situ in the Chena River, Alaska. Among all potential food items fish pursued, 52 % were captured and quickly expelled from the mouth, 39 % were visually inspected but not captured, and only 9 % were ingested. Foraging attempt rate was only moderately correlated with ingestion rate (Kendall’s τ = 0.55), raising concerns about the common use of foraging attempts as a presumed index of foraging success. The total time fish spent handling debris increased linearly with foraging attempt rate and ranged between 4 and 25 % of total foraging time among observed groups. Our results help motivate a revised theoretical view of drift feeding that emphasizes prey detection and discrimination, incorporating ideas from signal detection theory and the study of visual attention in cognitive ecology. We discuss how these ideas could lead to better explanations and predictions of the spatial behavior, prey selection, and energy intake of drift-feeding fish.

  17. Bats aggregate to improve prey search but might be impaired when their density becomes too high.

    PubMed

    Cvikel, Noam; Egert Berg, Katya; Levin, Eran; Hurme, Edward; Borissov, Ivailo; Boonman, Arjan; Amichai, Eran; Yovel, Yossi

    2015-01-19

    Social foraging is a very common yet extremely complex behavior. Numerous studies attempted to model it with little supporting evidence. Studying it in the wild is difficult because it requires monitoring the animal's movement, its foraging success, and its interactions with conspecifics. We present a novel system that enables full night ultrasonic recording of freely foraging bats, in addition to GPS tracking. As they rely on echolocation, audio recordings of bats allow tapping into their sensory acquisition of the world. Rapid changes in echolocation allowed us to reveal the bats' dynamic reactions in response to prey or conspecifics—two key behaviors that are extremely difficult to assess in most animals. We found that bats actively aggregate and forage as a group. However, we also found that when the group became too dense, bats were forced to devote sensory attention to conspecifics that frequently entered their biosonar "field of view," impairing the bats' prey detection performance. Why then did bats fly in such high densities? By emitting echolocation calls, bats constantly provide public information about their detection of prey. Bats could therefore benefit from intentionally flying at a distance that enables eavesdropping on conspecifics. Group foraging, therefore, probably allowed bats to effectively operate as an array of sensors, increasing their searching efficiency. We suggest that two opposing forces are at play in determining the efficient foraging density: on the one hand, higher densities improve prey detection, but on the other hand, they increase conspecific interference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spatial match-mismatch between juvenile fish and prey provides a mechanism for recruitment variability across contrasting climate conditions in the eastern Bering Sea.

    PubMed

    Siddon, Elizabeth Calvert; Kristiansen, Trond; Mueter, Franz J; Holsman, Kirstin K; Heintz, Ron A; Farley, Edward V

    2013-01-01

    Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth 'hot spots', for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.

  19. Carnivore stable carbon isotope niches reflect predator-prey size relationships in African savannas.

    PubMed

    Codron, Jacqueline; Avenant, Nico L; Wigley-Coetsee, Corli; Codron, Daryl

    2018-03-01

    Predator-prey size relationships are among the most important patterns underlying the structure and function of ecological communities. Indeed, these relationships have already been shown to be important for understanding patterns of macroevolution and differential extinction in the terrestrial vertebrate fossil record. Stable isotope analysis (SIA) is a powerful remote approach to examining animal diets and paleodiets. The approach is based on the principle that isotope compositions of consumer tissues reflect those of their prey. In systems where resource isotope compositions are distributed along a body size gradient, SIA could be used to reconstruct predator-prey size relationships. We analyzed stable carbon isotope distributions amongst mammalian herbivores in extant and Plio-Pleistocene African savanna assemblages, and show that the range of δ 13 C values among mammalian prey species (herbivores and rodents) increases with body mass (BM), because C 4 plant feeding (essentially grazing) is more common among larger taxa. Consequently, δ 13 C values of mammalian carnivores in these systems are related to species' BM, reflecting a higher average C 4 prey component in the diets of larger-bodied carnivores. This pattern likely emerges because only the largest carnivores in these systems have regular access to the C 4 prey base, whereas smaller carnivores do not. The δ 13 C-BM relationship observed in mammalian carnivores is a potentially powerful approach for reconstructing and parameterizing predator-prey size relationships in contemporary and fossil savanna assemblages, and for interpreting how various behavioral, ecological and environmental factors influence prey size selection. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  20. Innate Pattern Recognition and Categorization in a Jumping Spider

    PubMed Central

    Dolev, Yinnon; Nelson, Ximena J.

    2014-01-01

    The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli - abstract ‘stick figure’ representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals. PMID:24893306

  1. First longitudinal study of seal-feeding killer whales (Orcinus orca) in Norwegian coastal waters.

    PubMed

    Jourdain, Eve; Vongraven, Dag; Bisther, Anna; Karoliussen, Richard

    2017-01-01

    Killer whales (Orcinus orca) have been documented preying on either fish or marine mammals in several regions, suggesting that this odontocete species has the ability to specialize on different types of prey. Off Norway, killer whales have been shown to rely on the Atlantic herring (Clupea harengus) as a main prey resource. Infrequent observations have revealed seals as an additional component of their diet, yet the extent of predation on marine mammals has remained largely unknown. Here, we present the findings of 29 years of photographic and observational data on seal-feeding killer whale groups identified in Norwegian coastal waters. Four groups have been observed preying and feeding on seals over several years, taking both harbor (Phoca vitulina) and grey (Halichoerus grypus) seals. These stable groups are shown to adopt small group sizes, were typically observed in near-shore areas and were not encountered on herring wintering grounds. Behavioral and social traits adopted by these groups are similar to those of pinniped-feeding killer whales from other regions. The potential ecological reasons and the extent of such prey specializations are discussed.

  2. First longitudinal study of seal-feeding killer whales (Orcinus orca) in Norwegian coastal waters

    PubMed Central

    Bisther, Anna; Karoliussen, Richard

    2017-01-01

    Killer whales (Orcinus orca) have been documented preying on either fish or marine mammals in several regions, suggesting that this odontocete species has the ability to specialize on different types of prey. Off Norway, killer whales have been shown to rely on the Atlantic herring (Clupea harengus) as a main prey resource. Infrequent observations have revealed seals as an additional component of their diet, yet the extent of predation on marine mammals has remained largely unknown. Here, we present the findings of 29 years of photographic and observational data on seal-feeding killer whale groups identified in Norwegian coastal waters. Four groups have been observed preying and feeding on seals over several years, taking both harbor (Phoca vitulina) and grey (Halichoerus grypus) seals. These stable groups are shown to adopt small group sizes, were typically observed in near-shore areas and were not encountered on herring wintering grounds. Behavioral and social traits adopted by these groups are similar to those of pinniped-feeding killer whales from other regions. The potential ecological reasons and the extent of such prey specializations are discussed. PMID:28666015

  3. Modelling foraging movements of diving predators: a theoretical study exploring the effect of heterogeneous landscapes on foraging efficiency

    PubMed Central

    Bartoń, Kamil A.; Scott, Beth E.; Travis, Justin M.J.

    2014-01-01

    Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m) created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m) however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model represents a useful starting point to understand the energetic reasons for a range of potential predator responses to spatial heterogeneity and environmental uncertainties in terms of search behaviour and predator–prey interactions. We highlight future directions that integrated empirical and modelling studies should take to improve our ability to predict how diving predators will be impacted by the deployment of manmade structures in the marine environment. PMID:25250211

  4. Modeling marine protected areas for threatened eiders in a climatically changing Bering Sea.

    PubMed

    Lovvorn, James R; Grebmeier, Jacqueline M; Cooper, Lee W; Bump, Joseph K; Richman, Samantha E

    2009-09-01

    Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long-term shifts in habitat conditions. Better knowledge of patterns of natural disturbance experienced by prey communities, and appropriate allocation of human disturbance over seasons or years, may yield alternative strategies to large-scale closures that may be politically and economically problematic.

  5. Interactions Among Behavioral Responses of Baleen Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability

    DTIC Science & Technology

    2014-09-30

    partitioning between humpback and minke whales around the western Antarctic Peninsula. Marine Mammal Science. 25: 402-415. 11 Friedlaender, A. S., J. A... Humpback whales (Megaptera novaengliae). Marine Ecology Progress Series 395: 75-89. Watkins, J.L., and A.S. Brierley. 2002. Verification of acoustic... Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability Ari S. Friedlaender, PhD & Brandon L. Southall, PhD Southall Environmental

  6. Ancient fish and recent invaders: white sturgeon Acipenser transmontanus diet response to invasive-species-mediated changes in a benthic prey assemblage

    USGS Publications Warehouse

    Zeug, Steven C; Brodsky, Annie; Kogut, Nina; Stewart, Robin; Merz, Joe

    2014-01-01

    Invasive organisms can have significant impacts on native species, and the San Francisco Estuary (SFE), California, USA, is one of the world's most invaded estuaries. Decline of native white sturgeon Acipenser transmontanus abundance in the SFE has been acknowledged, but underlying mechanisms are poorly understood. Invasion by the overbite clam Potamocorbula amurensis has drastically altered the SFE benthic prey community, yet little is known about how this change has affected sturgeon diets. We investigated changes in the diet of white sturgeon following the overbite clam invasion and subsequent shift in the SFE benthic prey assemblage. Gut content analysis was used to compare white sturgeon prey composition and importance between the pre- and post-invasion periods. Additionally, stable isotope analysis was employed to estimate the assimilation of prey items to sturgeon biomass. Overbite clams dominated diets in the post-invasion period, accounting for 82 to 93% of total volume. Stable isotope analysis confirmed the importance of this prey item, although their assimilated contribution to sturgeon biomass was estimated to be less (70 to 83%) than gut contents indicated. The frequency of fish in white sturgeon guts increased in the post-invasion period, and isotope analysis indicated relatively large contributions of fish to sturgeon biomass (3.7 to 19%). The trophic adaptability of white sturgeon has allowed them to exploit this new prey source (overbite clam). Future conservation and restoration efforts must consider a potentially destabilized food web given the large importance of a single prey item.

  7. Stable isotopes confirm a coastal diet for critically endangered Mediterranean monk seals.

    PubMed

    Karamanlidis, Alexandros A; Curtis, P Jeff; Hirons, Amy C; Psaradellis, Marianna; Dendrinos, Panagiotis; Hopkins, John B

    2014-01-01

    Understanding the ecology and behaviour of endangered species is essential for developing effective management and conservation strategies. We used stable isotope analysis to investigate the foraging behaviour of critically endangered Mediterranean monk seals (Monachus monachus) in Greece. We measured carbon and nitrogen isotope ratios (expressed as δ(13)C and δ(15)N values, respectively) derived from the hair of deceased adult and juvenile seals and the muscle of their known prey to quantify their diets. We tested the hypothesis that monk seals primarily foraged for prey that occupy coastal habitats in Greece. We compared isotope values from seal hair to their coastal and pelagic prey (after correcting all prey for isotopic discrimination) and used these isotopic data and a stable isotope mixing model to estimate the proportion of coastal and pelagic resources consumed by seals. As predicted, we found that seals had similar δ(13)C values as many coastal prey species and higher δ(13)C values than pelagic species; these results, in conjunction with mean dietary estimates (coastal=61 % vs. pelagic=39 %), suggest that seals have a diverse diet comprising prey from multiple trophic levels that primarily occupy the coast. Marine resource managers should consider using the results from this study to inform the future management of coastal habitats in Greece to protect Mediterranean monk seals.

  8. Cannibalism and Intraguild Predation Community Dynamics: Coexistence, Competitive Exclusion, and the Loss of Alternative Stable States.

    PubMed

    Toscano, Benjamin J; Hin, Vincent; Rudolf, Volker H W

    2017-11-01

    Predators often exert strong top-down regulation of prey, but in many systems, juvenile predators must compete with their future prey for a shared resource. In such life-history intraguild predation (LHIGP) systems, prey can therefore also regulate the recruitment and thus population dynamics of their predator via competition. Theory predicts that such stage-structured systems exhibit a wide range of dynamics, including alternative stable states. Here we show that cannibalism is an exceedingly common interaction within natural LHIGP systems that determines what coexistence states are possible. Using a modeling approach that simulates a range of ontogenetic diet shift scenarios along a productivity gradient, we demonstrate that only if the predator is competitively dominant can cannibalism promote coexistence by allowing prey to persist. If the prey is competitively dominant, cannibalism instead results in competitive exclusion of the predator and the loss of potential alternative stable states. Further, predator exclusion occurs at low cannibalistic preference relative to empirical estimates and is consistent across LHIGP systems in which the predator undergoes a complete diet shift or diet broadening over ontogeny. Given that prey is frequently competitively dominant in natural systems, our results demonstrate that even weak cannibalism can inhibit predator persistence, prompting exploration of mechanisms that reconcile theory with the common occurrence of such interactions in nature.

  9. Activity cycles and foraging behaviors of free-ranging sidewinder rattlesnakes (Crotalus cerastes): the ontogeny of hunting in a precocial vertebrate.

    PubMed

    Clark, Rulon W; Dorr, Scott W; Whitford, Malachi D; Freymiller, Grace A; Putman, Breanna J

    2016-06-01

    Predators often employ a complex series of behaviors to overcome antipredator defenses and effectively capture prey. Although hunting behaviors can improve with age and experience, many precocial species are necessarily effective predators from birth. Additionally, many predators experience innate ontogenetic shifts in predatory strategies as they grow, allowing them to adapt to prey more appropriate for their increased size and energetic needs. Understanding how the relative roles of innate age-specific adaptation and learning have evolved requires information on how predation behavior develops in situ, in free-ranging predators. However, most of the research on the ontogeny of predation behavior is based on laboratory studies of captive animals, largely due to the difficulty of following newborn individuals in nature. Here, we take advantage of the unique tracks left by juveniles of a precocial viperid, the sidewinder rattlesnake (Crotalus cerastes), which we used to follow free-ranging snakes in the field. We recorded details of their ambush hunting behavior, and compared the behaviors of these juveniles to adult snakes that we monitored in the field via radio telemetry. Although juvenile and adult behaviors were similar in most respects, we did find that adults chose more effective ambush sites, which may be due to their increased experience. We also found that juveniles (but typically not adults) perform periodic tail undulations while in ambush, and that juveniles displayed slightly different activity cycles. Both of these latter differences are likely the result of age-specific adaptations for juveniles' greater reliance on lizards versus small mammals as prey. We also compared the general predatory behavior of sidewinders to that of other species in the genus Crotalus. These findings will provide important baseline field information for more detailed empirical research on the ontogeny of predation behavior in precocial vertebrates. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey

    USGS Publications Warehouse

    Dodd, L.E.; Lacki, M.J.; Britzke, E.R.; Buehler, D.A.; Keyser, P.D.; Larkin, J.L.; Rodewald, A.D.; Wigley, T.B.; Wood, P.B.; Rieske, L.K.

    2012-01-01

    Vertebrate insectivores such as bats are a pervasive top-down force on prey populations in forest ecosystems. Conservation focusing on forest-dwelling bats requires understanding of community-level interactions between these predators and their insect prey. Our study assessed bat activity and insect occurrence (abundance and diversity) across a gradient of forest disturbance and structure (silvicultural treatments) in the Central Appalachian region of North America. We conducted acoustic surveys of bat echolocation concurrent with insect surveys using blacklight and malaise traps over 2 years. Predator activity, prey occurrence and prey biomass varied seasonally and across the region. The number of bat echolocation pulses was positively related with forest disturbance, whereas prey demonstrated varied trends. Lepidopteran abundance was negatively related with disturbance, while dipteran abundance and diversity was positively related with disturbance. Coleoptera were unaffected. Neither bat nor insect response variables differed between plot interiors and edges. Correlations between bat activity and vegetative structure reflected differences in foraging behavior among ensembles. Activity of myotine bats was correlated with variables describing sub-canopy vegetation, whereas activity of lasiurine bats was more closely correlated with canopy-level vegetation. Lepidopteran abundance was correlated with variables describing canopy and sub-canopy vegetation, whereas coleopteran and dipteran occurrence were more closely correlated with canopy-level vegetative structure. Our study demonstrates regional variation in bat activity and prey occurrence across a forested disturbance gradient. Land management and conservation efforts should consider the importance of vegetation structure and plant species richness to sustain forest-dwelling bats and their insect prey.

  11. Foraging behavior of Long-tailed Ducks in a ferry wake

    USGS Publications Warehouse

    Perry, Matthew C.

    2012-01-01

    Clangula hyemalis (Long-tailed Ducks) were observed diving in the wake of the Nantucket Island ferry during December over a 5-year period (2005–2009). The unusual diving behavior appeared to be related to foraging, but could not be confirmed. Long-tailed Ducks typically feed on more mobile prey than most other diving ducks, and it is speculated that the propeller wash in shallow water dislodged or disturbed prey and provided an enhanced feeding opportunity. Long-tailed Ducks collected while feeding in a disturbed area near a clamming boat not far from the ferry channel were feeding predominantly on Crangon septemspinosa (Sand Shrimp) that apparently had been dislodged by the clamming operation.

  12. Relationships between direct predation and risk effects.

    PubMed

    Creel, Scott; Christianson, David

    2008-04-01

    Risk effects arise when prey alter their behavior in response to predators, and these responses carry costs. Empirical studies have found that risk effects can be large. Nonetheless, studies of predation in vertebrate conservation and management usually consider only direct predation. Given the ubiquity and strength of behavioral responses to predators by vertebrate prey, it is not safe to assume that risk effects on dynamics can be ignored. Risk effects can be larger than direct effects. Risk effects can exist even when the direct rate of predation is zero. Risk effects and direct effects do not necessarily change in parallel. When risk effects reduce reproduction rather than survival, they are easily mistaken for limitation by food supply.

  13. Notes on spider (Theridiidae, Salticidae) predation of the harvester ant, Pogonomyrmex salinus Olsen (Hymenoptera: Formicidae: Myrmicinae), and a possible parasitoid fly (Chloropidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, W.H.; Blom, P.E.

    1992-12-01

    Spiders are known predators of ants. Pressure exerted by consistent spider predation can alter the behavior of ant colonies (MacKay 1982) and may be a selective pressure contributing to the seed-harvesting behavior of Pogonomyrmex (MacKay and MacKay 1984). The authors observed the spider Euryopis formosa Banks (Araneae: Theridiidae) capture and transport workers of the harvester ant (Pogonomyrmex salinus Olsen [Hymenoptera: Formicidae, Myrmicinae]) in southeastern Idaho. Additional observations revealed a crab spider of the genus Xysticus preying on P. salinus and the presence of a chloropid fly (Incertella) that may have been parasitizing the moribund prey subdued by the spider.

  14. Subcellular controls of mercury trophic transfer to a marine fish.

    PubMed

    Dang, Fei; Wang, Wen-Xiong

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies. 2010 Elsevier B.V. All rights reserved.

  15. Predator-Prey Interactions Shape Thermal Patch Use in a Newt Larvae-Dragonfly Nymph Model

    PubMed Central

    Gvoždík, Lumír; Černická, Eva; Van Damme, Raoul

    2013-01-01

    Thermal quality and predation risk are considered important factors influencing habitat patch use in ectothermic prey. However, how the predator’s food requirement and the prey’s necessity to avoid predation interact with their respective thermoregulatory strategies remains poorly understood. The recently developed ‘thermal game model’ predicts that in the face of imminent predation, prey should divide their time equally among a range of thermal patches. In contrast, predators should concentrate their hunting activities towards warmer patches. In this study, we test these predictions in a laboratory setup and an artificial environment that mimics more natural conditions. In both cases, we scored thermal patch use of newt larvae (prey) and free-ranging dragonfly nymphs (predators). Similar effects were seen in both settings. The newt larvae spent less time in the warm patch if dragonfly nymphs were present. The patch use of the dragonfly nymphs did not change as a function of prey availability, even when the nymphs were starved prior to the experiment. Our behavioral observations partially corroborate predictions of the thermal game model. In line with asymmetric fitness pay-offs in predator-prey interactions (the ‘life-dinner’ principle), the prey’s thermal strategy is more sensitive to the presence of predators than vice versa. PMID:23755175

  16. Prey Vulnerability Limits Top-Down Control and Alters Reciprocal Feedbacks in a Subsidized Model Food Web

    PubMed Central

    Atlas, William I.; Palen, Wendy J.

    2014-01-01

    Resource subsidies increase the productivity of recipient food webs and can affect ecosystem dynamics. Subsidies of prey often support elevated predator biomass which may intensify top-down control and reduce the flow of reciprocal subsidies into adjacent ecosystems. However, top-down control in subsidized food webs may be limited if primary consumers posses morphological or behavioral traits that limit vulnerability to predation. In forested streams, terrestrial prey support high predator biomass creating the potential for strong top-down control, however armored primary consumers often dominate the invertebrate assemblage. Using empirically based simulation models, we tested the response of stream food webs to variations in subsidy magnitude, prey vulnerability, and the presence of two top predators. While terrestrial prey inputs increased predator biomass (+12%), the presence of armored primary consumers inhibited top-down control, and diverted most aquatic energy (∼75%) into the riparian forest through aquatic insect emergence. Food webs without armored invertebrates experienced strong trophic cascades, resulting in higher algal (∼50%) and detrital (∼1600%) biomass, and reduced insect emergence (−90%). These results suggest prey vulnerability can mediate food web responses to subsidies, and that top-down control can be arrested even when predator-invulnerable consumers are uncommon (20%) regardless of the level of subsidy. PMID:24465732

  17. Oxytocin tempers calculated greed but not impulsive defense in predator-prey contests.

    PubMed

    De Dreu, Carsten K W; Scholte, H Steven; van Winden, Frans A A M; Ridderinkhof, K Richard

    2015-05-01

    Human cooperation and competition is modulated by oxytocin, a hypothalamic neuropeptide that functions as both hormone and neurotransmitter. Oxytocin's functions can be captured in two explanatory yet largely contradictory frameworks: the fear-dampening (FD) hypothesis that oxytocin has anxiolytic effects and reduces fear-motivated action; and the social approach/avoidance (SAA) hypothesis that oxytocin increases cooperative approach and facilitates protection against aversive stimuli and threat. We tested derivations from both frameworks in a novel predator-prey contest game. Healthy males given oxytocin or placebo invested as predator to win their prey's endowment, or as prey to protect their endowment against predation. Neural activity was registered using 3T-MRI. In prey, (fear-motivated) investments were fast and conditioned on the amygdala. Inconsistent with FD, oxytocin did not modulate neural and behavioral responding in prey. In predators, (greed-motivated) investments were slower, and conditioned on the superior frontal gyrus (SFG). Consistent with SAA, oxytocin reduced predator investment, time to decide and activation in SFG. Thus, whereas oxytocin does not incapacitate the impulsive ability to protect and defend oneself, it lowers the greedy and more calculated appetite for coming out ahead. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Spatial and temporal patterns in golden eagle diets in the western United States, with implications for conservation planning

    USGS Publications Warehouse

    Bedrosian, Geoffrey; Watson, James W.; Steenhof, Karen; Kochert, Michael N.; Preston, Charles R.; Woodbridge, Brian; Williams, Gary E.; Keller, Kent R.; Crandall, Ross H.

    2017-01-01

    Detailed information on diets and predatory ecology of Golden Eagles (Aquila chrysaetos) is essential to prioritize prey species management and to develop landscape-specific conservation strategies, including mitigation of the effects of energy development across the western United States. We compiled published and unpublished data on Golden Eagle diets to (1) summarize available information on Golden Eagle diets in the western U.S., (2) compare diets among biogeographic provinces, and (3) discuss implications for conservation planning and future research. We analyzed 35 studies conducted during the breeding season at 45 locations from 1940–2015. Golden Eagle diet differed among western ecosystems. Lower dietary breadth was associated with desert and shrub-steppe ecosystems and higher breadth with mountain ranges and the Columbia Plateau. Correlations suggest that percentage of leporids in the diet is the factor driving overall diversity of prey and percentage of other prey groups in the diet of Golden Eagles. Leporids were the primary prey of breeding Golden Eagles in 78% of study areas, with sciurids reported as primary prey in 18% of study areas. During the nonbreeding season, Golden Eagles were most frequently recorded feeding on leporids and carrion. Golden Eagles can be described as both generalist and opportunistic predators; they can feed on a wide range of prey species but most frequently feed on abundant medium-sized prey species in a given habitat. Spatial variations in Golden Eagle diet likely reflect regional differences in prey community, whereas temporal trends likely reflect responses to long-term change in prey populations. Evidence suggests dietary shifts from traditional (leporid) prey can have adverse effects on Golden Eagle reproductive rates. Land management practices that support or restore shrub-steppe ecosystem diversity should benefit Golden Eagles. More information is needed on nonbreeding-season diet to determine what food resources, such as carrion, are important for overwinter survival.

  19. Lizards on newly created islands independently and rapidly adapt in morphology and diet

    PubMed Central

    Eloy de Amorim, Mariana; Schoener, Thomas W.; Santoro, Guilherme Ramalho Chagas Cataldi; Lins, Anna Carolina Ramalho; Piovia-Scott, Jonah; Brandão, Reuber Albuquerque

    2017-01-01

    Rapid adaptive changes can result from the drastic alterations humans impose on ecosystems. For example, flooding large areas for hydroelectric dams converts mountaintops into islands and leaves surviving populations in a new environment. We report differences in morphology and diet of the termite-eating gecko Gymnodactylus amarali between five such newly created islands and five nearby mainland sites located in the Brazilian Cerrado, a biodiversity hotspot. Mean prey size and dietary prey-size breadth were larger on islands than mainlands, expected because four larger lizard species that also consume termites, but presumably prefer larger prey, went extinct on the islands. In addition, island populations had larger heads relative to their body length than mainland populations; larger heads are more suited to the larger prey taken, and disproportionately larger heads allow that functional advantage without an increase in energetic requirements resulting from larger body size. Parallel morphological evolution is strongly suggested, because there are indications that, before flooding, relative head size did not differ between future island and future mainland sites. Females and males showed the same trend of relatively larger heads on islands, so the difference between island and mainland sites is unlikely to be due to greater male–male competition for mates on islands. We thus discovered a very fast (at most 15 y) case of independent parallel adaptive change in response to catastrophic human disturbance. PMID:28760959

  20. Effect of downed woody debris on small mammal anti-predator behavior

    Treesearch

    Travis M. Hinkelman; John L. Orrock; Susan C Loeb

    2011-01-01

    Anti-Predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used giving-up densities to quantify...

  1. Fine-scale spatio-temporal variation in tiger Panthera tigris diet: Effect of study duration and extent on estimates of tiger diet in Chitwan National Park, Nepal

    USGS Publications Warehouse

    Kapfer, Paul M.; Streby, Henry M.; Gurung, B.; Simcharoen, A.; McDougal, C.C.; Smith, J.L.D.

    2011-01-01

    Attempts to conserve declining tiger Panthera tigris populations and distributions have experienced limited success. The poaching of tiger prey is a key threat to tiger persistence; a clear understanding of tiger diet is a prerequisite to conserve dwindling populations. We used unpublished data on tiger diet in combination with two previously published studies to examine fine-scale spatio-temporal changes in tiger diet relative to prey abundance in Chitwan National Park, Nepal, and aggregated data from the three studies to examine the effect that study duration and the size of the study area have on estimates of tiger diet. Our results correspond with those of previous studies: in all three studies, tiger diet was dominated by members of Cervidae; small to medium-sized prey was important in one study. Tiger diet was unrelated to prey abundance, and the aggregation of studies indicates that increasing study duration and study area size both result in increased dietary diversity in terms of prey categories consumed, and increasing study duration changed which prey species contributed most to tiger diet. Based on our results, we suggest that managers focus their efforts on minimizing the poaching of all tiger prey, and that future studies of tiger diet be of long duration and large spatial extent to improve our understanding of spatio-temporal variation in estimates of tiger diet. ?? 2011 Wildlife Biology, NKV.

  2. Crushing motor patterns in drum (Teleostei: Sciaenidae): functional novelties associated with molluscivory.

    PubMed

    Grubich, J R

    2000-10-01

    This study explores the evolution of molluscivory in the marine teleost family Sciaenidae by comparing the motor activity patterns of the pharyngeal muscles of two closely related taxa, the molluscivorous black drum (Pogonias cromis) and the generalist red drum (Sciaenops ocellatus). Muscle activity patterns were recorded simultaneously from eight pharyngeal muscles. Electromyographic (EMG) activity was recorded during feeding on three prey types that varied in shell hardness. Canonical variate and discriminant function analyses were used to describe the distinctness of drum pharyngeal processing behaviors. Discriminant functions built of EMG timing variables were more accurate than muscle activity intensity at identifying cycles by prey type and species. Both drum species demonstrated the ability to modulate pharyngeal motor patterns in response to prey hardness. The mean motor patterns and the canonical variate space of crushing behavior indicated that black drum employed a novel motor pattern during molluscivory. The mollusc-crushing motor pattern of black drum is different from other neoteleost pharyngeal behaviors in lacking upper jaw retraction by the retractor dorsalis muscle. This functional modification suggests that crushing hard-shelled marine bivalves requires a 'vice-like' compression bite in contrast to the shearing forces that are applied to weaker-shelled fiddler crabs by red drum and to freshwater snails by redear sunfish.

  3. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation.

    PubMed

    Higham, Timothy E; Rogers, Sean M; Langerhans, R Brian; Jamniczky, Heather A; Lauder, George V; Stewart, William J; Martin, Christopher H; Reznick, David N

    2016-09-14

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. © 2016 The Author(s).

  4. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation

    PubMed Central

    Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.

    2016-01-01

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033

  5. Fortuitous encounters between seagliders and adult female northern fur seals (Callorhinus ursinus) off the Washington (USA) coast: upper ocean variability and links to top predator behavior.

    PubMed

    Pelland, Noel A; Sterling, Jeremy T; Lea, Mary-Anne; Bond, Nicholas A; Ream, Rolf R; Lee, Craig M; Eriksen, Charles C

    2014-01-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA)--a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species.

  6. Fortuitous Encounters between Seagliders and Adult Female Northern Fur Seals (Callorhinus ursinus) off the Washington (USA) Coast: Upper Ocean Variability and Links to Top Predator Behavior

    PubMed Central

    Pelland, Noel A.; Sterling, Jeremy T.; Lea, Mary-Anne; Bond, Nicholas A.; Ream, Rolf R.; Lee, Craig M.; Eriksen, Charles C.

    2014-01-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. In this study, migratory movements and, in some cases, diving behavior of 40 adult female northern fur seals (NFS; Callorhinus ursinus) were quantified across their range and compared to remotely-sensed environmental data in the Gulf of Alaska and California Current ecosystems, with a particular focus off the coast of Washington State (USA) – a known foraging ground for adult female NFS and where autonomous glider sampling allowed opportunistic comparison of seal behavior to subsurface biophysical measurements. The results show that in these ecosystems, adult female habitat utilization was concentrated near prominent coastal topographic, riverine, or inlet features and within 200 km of the continental shelf break. Seal dive depths, in most ecosystems, were moderated by surface light level (solar or lunar), mirroring known behaviors of diel vertically-migrating prey. However, seal dives differed in the California Current ecosystem due to a shift to more daytime diving concentrated at or below the surface mixed layer base. Seal movement models indicate behavioral responses to season, ecosystem, and surface wind speeds; individuals also responded to mesoscale eddies, jets, and the Columbia River plume. Foraging within small scale surface features is consistent with utilization of the inner coastal transition zone and habitats near coastal capes, which are known eddy and filament generation sites. These results contribute to our knowledge of NFS migratory patterns by demonstrating surface and subsurface behavioral responses to a spatially and temporally dynamic ocean environment, thus reflecting its influence on associated NFS prey species. PMID:25153524

  7. Omnidirectional Sensory and Motor Volumes in Electric Fish

    PubMed Central

    Snyder, James B; Nelson, Mark E; Burdick, Joel W; MacIver, Malcolm A

    2007-01-01

    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals. PMID:18001151

  8. Aquatic prey capture in snakes: the link between morphology, behavior and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Segall, Marion; Herrel, Anthony; Godoy-Diana, Ramiro; Funevol Team; Pmmh Team

    2017-11-01

    Natural selection favors animals that are the most successful in their fitness-related behaviors, such as foraging. Secondary adaptations pose the problem of re-adapting an already 'hypothetically optimized' phenotype to new constraints. When animals forage underwater, they face strong physical constraints, particularly when capturing a prey. The capture requires the predator to be fast and to generate a high acceleration to catch the prey. This involves two main constraints due to the surrounding fluid: drag and added mass. Both of these constraints are related to the shape of the animal. We experimentally explore the relationship between shape and performance in the context of an aquatic strike. As a model, we use 3D-printed snake heads of different shapes and frontal strike kinematics based on in vivo observations. By using direct force measurements, we compare the drag and added mass generated by aquatic and non-aquatic snake models during a strike. Our results show that drag is optimized in aquatic snakes. Added mass appears less important than drag for snakes during an aquatic strike. The flow features associated to the hydrodynamic forces measured allows us to propose a mechanism rendering the shape of the head of aquatic snakes well adapted to catch prey underwater. Region Ile de France and the doctoral school Frontieres du Vivant (FdV) - Programme Bettencourt.

  9. Provisioning rates and time budgets of adult and nestling Bald Eagles at Inland Wisconsin nests

    USGS Publications Warehouse

    Keith, Warnke D.; Andersen, D.E.; Dykstra, C.R.; Meyer, M.W.; Karasov, W.H.

    2002-01-01

    We used a remote video recording system and direct observation to quantify provisioning rate and adult and nestling behavior at Bald Eagle (Haliaeetus leucocephalus) nests in north-central Wisconsin in 1992 (N = 5) and 1993 (N = 8). Eagles nesting in this region have a high reproductive rate (??? 1.3 young/occupied territory), and the number of occupied territories has expanded nearly three-fold since 1980. The season-long provisioning rate averaged 5.2 prey deliveries/nest/d and 3.0 prey deliveries/nestling/d, and did not vary by year or with nestling number or age. Fish (Osteichthyes) made up 97% of identified prey deliveries followed by reptiles (Reptilia) (1.5%), birds (Aves) (1.2%), and mammals (Mammalia) (0.6%). Nearly 85% of prey items were >15 cm and 90% of the day and was negatively correlated with nestling age. Time adults spent feeding nestlings was negatively correlated with nestling age. Nestlings stood or sat in the nest >30% of the day, began to feed themselves, and exhibited increased mobility in the nest at 6-8 wk. We identified three stages of the nestling period and several benchmarks that may be useful when scheduling data collection for comparison of Bald Eagle nesting behavior. Our results support the hypothesis that food was not limiting this breeding population of Bald Eagles. ?? 2002 The Raptor Research Foundation, Inc.

  10. The diel rhythms of biosonar behavior in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the port of the Yangtze River: The correlation between prey availability and boat traffic.

    PubMed

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise.

  11. The Diel Rhythms of Biosonar Behavior in the Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) in the Port of the Yangtze River: The Correlation between Prey Availability and Boat Traffic

    PubMed Central

    Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding

    2014-01-01

    Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise. PMID:24823945

  12. Behavioral ecology of the Swainson's Hawk (Buteo swainsoni) in Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.

    1980-12-01

    This study examines the breeding ecology and behavior of the Swainson's Hawk (Buteo swainsoni) on its breeding ground in southeastern Washington. Seasonal movements and distribution of the buteo are also described. The birds were observed from blinds, or filmed by Super-8mm time-lapse cameras, during courtship, nest building, egg laying, incubation, and nestling and post-fledging development. Food habits were examined during the nestling and post-fledging periods. Snakes, especially the abundant Western Yellow-bellied racers, were a prey staple, and insects became an important food source during the post-fledging period. It was apparent that Swainson's Hawks feed on smaller and more diverse preymore » than sympatric buteos (Red-tailed and Ferruginous Hawks), thus reducing competition with neighboring congenerics. Interactions with buteos and other raptor genera were observed, and nearest neighbor distances measured. Organochlorine pesticides in prey species consumed by Swainson's Hawks are concentrated from prey to predator through the food chain. The hawk pellets (regurgitated castings) would contain those concentrations and could easily be monitored without sacrificing any part of the food chain.« less

  13. Ecology, behavior, and conservation of the Maui parrotbill

    USGS Publications Warehouse

    Mountainspring, S.

    1987-01-01

    The distribution, habitat response, sexual dimorphism, foraging, breeding, and flocking behavior of Maui Parrotbills (Pseudonestor xanthophrys ) were studied over a five year period. The species' present range is confined to montane rainforest on eastern Maui, but dry lowland habitats on Maui and Molokai were occupied before Polynesian contact. Birds occurred from 1,250 to 2,150 m elevation, becoming most abundant at 1,750 to 2,000 m. In Kipahulu Valley, birds moved to lower elevations in some seasons. Birds tended to forage in the subcanopy and understory, with 66% of the prey captured 1 to 5 m above ground. Plant species use deviated from expectations based on availability. The most frequent means of prey capture was excavation for timber-boring insects in dead branches on live plants. Foraging accounted for 39% of the diurnal time budget; an average prey item appeared to account for 1% of the daily energy intake. The principal limiting factors appeared to be habitat loss, avian disease, habitat degradation, predation, and competition from exotic species. Control of pig populations is a needed management action.

  14. Biodiversity effects of the predation gauntlet

    NASA Astrophysics Data System (ADS)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  15. Rich Global Dynamics in a Prey-Predator Model with Allee Effect and Density Dependent Death Rate of Predator

    NASA Astrophysics Data System (ADS)

    Sen, Moitri; Banerjee, Malay

    In this work we have considered a prey-predator model with strong Allee effect in the prey growth function, Holling type-II functional response and density dependent death rate for predators. It presents a comprehensive study of the complete global dynamics for the considered system. Especially to see the effect of the density dependent death rate of predator on the system behavior, we have presented the two parametric bifurcation diagrams taking it as one of the bifurcation parameters. In course of that we have explored all possible local and global bifurcations that the system could undergo, namely the existence of transcritical bifurcation, saddle node bifurcation, cusp bifurcation, Hopf-bifurcation, Bogdanov-Takens bifurcation and Bautin bifurcation respectively.

  16. The effect of varying protein levels on blood chemistry, food consumption, and behavior of captive seaducks

    USGS Publications Warehouse

    Wells-Berlin, A. M.; Perry, M.C.; Olsen, Glenn H.

    2005-01-01

    The Chesapeake Bay is a primary wintering area for scoters and the long-tailed ducks (Clangia hyemalis) that migrate along the Atlantic Flyway. Recently, the Chesapeake Bay had undergone an ecosystem shift and little is known about how this is affecting the seaduck populations. We are determining what are the preferred food sources of the seaducks wintering on the Bay and analyzing the factors influencing prey selection whether it is prey composition, energy assimilated, prey availability, or a combination of any or all of these factors. We have established a captive colony of surf (Melanitta perspicillata) and white-winged scoters (Melanitta fusca) as well as long-tailed ducks at Patuxent Wildlife Research Center to allow us to examine these factors in a more controlled environment. This project contains a multitude of experiments and the resultant data will be compiled into a compartmental model on the feeding ecology of seaducks wintering on the Bay. The first experiment entailed feeding groups of each species (four ducks per pen of equal sex ratio, if possible, and four pens per species) three diets varying in percent protein levels from November to February. Each diet was randomly assigned to each pen and the amount of food consumed was recorded each day. New feed was given when all existing food was consumed. Behavioral trials and blood profiles were completed on all study birds to determine the effects of the varying diets. There were no significant differences in food consumption, blood chemistry, and behavior detected at the 5% level among the diets for all three species of interest. There was a seasonal effect determined based on the food consumption data for white-winged scoters, but not for surf scoters or long-tailed ducks. The blood profiles of the surf scoters were compared to blood profiles of wild surf scoters and a there was no difference detected at the 5% level. As a health check of the ducks an aspergillosis test was run on the blood obtained during the experiment and it was found that surf scoters are more resistant to the disease than the other species. In the next two winters natural prey items available to seaducks wintering in the Chesapeake Bay will be offered on palettes to examine preference without the additional energetic costs of diving. Assimilation efficiency trials will be run on all three species to determine amount of energy the ducks obtain from each food source. Finally, using two large aquariums, prey preference will be analyzed with the additional energetic costs of diving and searching for prey. In addition, we will determine the effect of availability of a prey item on the prey selection of seaducks. We hope the model created from these experiments will allow managers to examine the effects of changes in the benthos on the seaduck populations wintering in the Chesapeake Bay.

  17. Effects of intraguild predators on nest-site selection by prey.

    PubMed

    Huang, Wen-San; Pike, David A

    2012-01-01

    Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.

  18. Diet composition and terrestrial prey selection of the Laysan teal on Laysan Island

    USGS Publications Warehouse

    Reynolds, M.H.; Slotterback, J.W.; Walters, J.R.

    2006-01-01

    The Laysan teal (Anas laysanensis) is an endangered dabbling duck endemic to the Hawaiian Archipelago but currently restricted to a single breeding population on Laysan Island. We studied its diet using fecal analysis and behavioral observations. Laysan teal fecal samples (N=118) contained prey items in 15 primary prey categories with a mean of 2.9 (range 0-7) taxa per sample. Sixty-two of these fecal samples were quantified with 2,270 prey items identified (mean items per sample 37; range 0-205). Based on fecal analysis and behavioral observations, we learned that the Laysan teal is not strictly a macroinsectivore as previously reported, but consumed seeds, succulent leaves, and algae, in addition to adult and larval diptera, ants, lepidoptera, coleoptera, and Artemia. We compared abundance of invertebrates from two terrestrial foraging substrates, soil and standing vegetation, to the abundance of invertebrate prey items counted in fecal samples collected from these habitats for the same period. In the soil substrate, Laysan teal selected two of the most abundant invertebrates, lepidoptera larvae and coleoptera. In the standing vegetation, Laysan teal selected the most abundant taxa: coleoptera. Amphipods were consumed in proportion to their abundance, and small gastropods (Tornatellides sp.), isopods, and arachnids were avoided or were identified in fecal matter in disproportion to their abundance in the foraging habitat. We compared fecal composition of samples collected in aquatic and terrestrial habitats and detected significant differences in samples' species compositions. The conservation implications of the adult Laysan teal's diet are positive, since results indicate that the Laysan teal are opportunistic insectivores, and exhibit dietary flexibility that includes seeds and other food. Dietary flexibility improves the possibility of successfully reestablishing populations on other predator-free islands.

  19. Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.).

    PubMed

    Wright, Brianna M; Ford, John K B; Ellis, Graeme M; Deecke, Volker B; Shapiro, Ari Daniel; Battaile, Brian C; Trites, Andrew W

    2017-01-01

    We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales ( Orcinus orca ), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon ( Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. Three-dimensional dive tracks indicated that foraging ( N  = 701) and non-foraging dives ( N  = 10,618) were kinematically distinct (Wilks' lambda: λ 16  = 0.321, P  < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.

  20. Bats as the main prey of wintering long-eared owl (Asio otus) in Beijing: Integrating biodiversity protection and urban management.

    PubMed

    Tian, Long; Zhou, Xuwei; Shi, Yang; Guo, Yumin; Bao, Weidong

    2015-03-01

    The loss of biodiversity from urbanized areas is a major environmental problem challenging policy-makers throughout the world. Solutions to this problem are urgently required in China. We carried out a case study of wintering long-eared owls (Asio otus) and their main prey to illustrate the negative effects of urbanization combined with ineffective conservation of biodiversity in Beijing. Field monitoring of owl numbers at two roosting sites from 2004 to 2012 showed that the owl population had fallen rapidly in metropolitan Beijing. Analysis of pellet contents identified only seven individuals of two species of shrew. The majority of mammalian prey comprised four bat and seven rodent species, making up 29.3% and 29.5% of the prey items, respectively. Prey composition varied significantly among years at the two sample sites. At the urban site the consumption of bats and rodents declined gradually over time, while predation on birds increased. In contrast, at the suburban site the prey composition showed an overall decrease in the number of bats, a sharp increase and a subsequent decrease in bird prey, and the number of rodent prey fell to a low point. Rapid development of real estate and inadequate greenfield management in city parks resulted in negative effects on the bird and small mammal habitat of urban areas in Beijing. We suggest that measures to conserve biodiversity should be integrated into future urban planning to maintain China's rich biodiversity while also achieving sustainable economic development. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  1. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    PubMed

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  2. Nonlinear dynamics support a linear population code in a retinal target-tracking circuit.

    PubMed

    Leonardo, Anthony; Meister, Markus

    2013-10-23

    A basic task faced by the visual system of many organisms is to accurately track the position of moving prey. The retina is the first stage in the processing of such stimuli; the nature of the transformation here, from photons to spike trains, constrains not only the ultimate fidelity of the tracking signal but also the ease with which it can be extracted by other brain regions. Here we demonstrate that a population of fast-OFF ganglion cells in the salamander retina, whose dynamics are governed by a nonlinear circuit, serve to compute the future position of the target over hundreds of milliseconds. The extrapolated position of the target is not found by stimulus reconstruction but is instead computed by a weighted sum of ganglion cell outputs, the population vector average (PVA). The magnitude of PVA extrapolation varies systematically with target size, speed, and acceleration, such that large targets are tracked most accurately at high speeds, and small targets at low speeds, just as is seen in the motion of real prey. Tracking precision reaches the resolution of single photoreceptors, and the PVA algorithm performs more robustly than several alternative algorithms. If the salamander brain uses the fast-OFF cell circuit for target extrapolation as we suggest, the circuit dynamics should leave a microstructure on the behavior that may be measured in future experiments. Our analysis highlights the utility of simple computations that, while not globally optimal, are efficiently implemented and have close to optimal performance over a limited but ethologically relevant range of stimuli.

  3. Cognition and the evolution of camouflage.

    PubMed

    Skelhorn, John; Rowe, Candy

    2016-02-24

    Camouflage is one of the most widespread forms of anti-predator defence and prevents prey individuals from being detected or correctly recognized by would-be predators. Over the past decade, there has been a resurgence of interest in both the evolution of prey camouflage patterns, and in understanding animal cognition in a more ecological context. However, these fields rarely collide, and the role of cognition in the evolution of camouflage is poorly understood. Here, we review what we currently know about the role of both predator and prey cognition in the evolution of prey camouflage, outline why cognition may be an important selective pressure driving the evolution of camouflage and consider how studying the cognitive processes of animals may prove to be a useful tool to study the evolution of camouflage, and vice versa. In doing so, we highlight that we still have a lot to learn about the role of cognition in the evolution of camouflage and identify a number of avenues for future research. © 2016 The Author(s).

  4. Cognition and the evolution of camouflage

    PubMed Central

    2016-01-01

    Camouflage is one of the most widespread forms of anti-predator defence and prevents prey individuals from being detected or correctly recognized by would-be predators. Over the past decade, there has been a resurgence of interest in both the evolution of prey camouflage patterns, and in understanding animal cognition in a more ecological context. However, these fields rarely collide, and the role of cognition in the evolution of camouflage is poorly understood. Here, we review what we currently know about the role of both predator and prey cognition in the evolution of prey camouflage, outline why cognition may be an important selective pressure driving the evolution of camouflage and consider how studying the cognitive processes of animals may prove to be a useful tool to study the evolution of camouflage, and vice versa. In doing so, we highlight that we still have a lot to learn about the role of cognition in the evolution of camouflage and identify a number of avenues for future research. PMID:26911959

  5. Microhabitat and biology of Sphaerium striatinum in a central New York stream

    USGS Publications Warehouse

    Dittman, Dawn E.; Johnson, James H.; Nack, Christopher C.

    2018-01-01

    In many lotic systems, drastic declines in freshwater bivalve populations, including fingernail clams (Sphaeriidae), have created concerns about biodiversity and future ecosystem services. We examined the local occurrence of the historically common fingernail clam, Sphaerium striatinum, in a central New York stream. We sampled the density of sphaeriids and measured the associated habitat variables (substrate, depth, water flow) to test within-stream multivariate benthic microhabitat association. Size distribution, density, and diel feeding periodicity were measured as focal aspects of fingernail clam biology and ecology. S. striatinum tended to be found in microhabitats that had harder substrates and faster flow. The Labrador Creek fingernail clam local population had positive indicators (size distribution, density). There was significant diel periodicity in feeding behavior. The clams fed most actively during the 0400–0800 h periods. This kind of behavioral periodicity can indicate a significant ecological interaction between predators and bivalve prey. Increased understanding of the behavioral ecology of small native freshwater bivalves in an unimpacted headwater stream is a fundamental building block for development of overall ecological conservation goals for freshwater bivalves and their lotic habitats.

  6. Generalists or Specialists: Stable Isotope Analysis of Humpback Whales (Megapteranoveangliae) to Infer Variation in Feeding Preferences

    NASA Astrophysics Data System (ADS)

    Brownstein, A.; Boswell, K. M.

    2016-02-01

    Though humpback whales (Megapteranovaeangliae) are commonly observed in coastal waters of the Gulf of Alaska, their massive size, behavior, and weather conditionsmake it difficult to make accurate observations regarding their feeding habits. These whales can be highly abundant during feeding aggregations, and given their large energetic needs, they have the potential to impact populations of ecologically important forage such as krill and herring. Previous studies in other areas, such as the Gulf of Maine and the North Pacific Ocean, classify humpback whales as generalists that can efficiently feed on both schooling fish and large zooplankton. In Prince William Sound, scientists have observed the humpbacks feedingprimarily on herring. It is unclear if these whalesfeed exclusively on fish prior to returning to the Sound, and can therefore be considered specialists. Stable isotope analysis of carbon and nitrogen were used to determine the preferred diet of humpback whales (N=22) in 6 sampling regions along the Gulf of Alaska. Isotope analyses were conducted on humpback whale skin, as well as local forage species and basal resources to be used in Bayesian isotope mixing models to elucidate the trophic relationships between whales and their prey, and provide insight to whether location is an important driver in prey selection. This information will not only lead to a better understanding of the potential to use tissue isotopes to elucidate foraging behaviors of humpback whales, but also offer insight into individual feeding preferences and how increasing whale populations may affect the populations of local forage in the future.

  7. Evolution of brains and behavior for optimal foraging: A tale of two predators

    PubMed Central

    Catania, Kenneth C.

    2012-01-01

    Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch—rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in anatomically visible neocortical modules. The somatosensory system parallels visual system organization, illustrating general features of high-resolution sensory representations. Star-nosed moles are the fastest mammalian foragers, able to identify and eat small prey in 120 ms. Optimal foraging theory suggests that the star evolved for profitably exploiting small invertebrates in a competitive wetland environment. The tentacled snake’s facial appendages are superficially similar to the mole’s nasal rays, but they have a very different function. These snakes are fully aquatic and use tentacles for passive detection of nearby fish. Trigeminal afferents respond to water movements and project tentacle information to the tectum in alignment with vision, illustrating a general theme for the integration of different sensory modalities. Tentacled snakes act as rare enemies, taking advantage of fish C-start escape responses by startling fish toward their strike—often aiming for the future location of escaping fish. By turning fish escapes to their advantage, snakes increase strike success and reduce handling time with head-first captures. The latter may, in turn, prevent snakes from becoming prey when feeding. Findings in these two unusual predators emphasize the importance of a multidisciplinary approach for understanding the evolution of brains and behavior. PMID:22723352

  8. Can Interactions Between an Omnivorous Hemipteran and an Egg Parasitoid Limit the Level of Biological Control for the Tomato Pinworm?

    PubMed

    Cabello, Tomas; Bonfil, Francisco; Gallego, Juan R; Fernandez, Francisco J; Gamez, Manuel; Garay, Jozsef

    2015-02-01

    Relationships between the omnivorous predator Nesidiocoris tenuis (Reuter) and the egg parasitoid Trichogramma achaeae Nagaraja and Nagarkatti were studied in the laboratory (no-choice and choice assays, and functional responses) and in a greenhouse experiment. Both natural enemies are utilized in the biological control of tomato pinworm on greenhouse-grown tomato crops. Three different food items were offered to the predator: nonparasitized prey, prey parasitized for less than 4 d by T. achaeae, and prey parasitized for more than 4 d by the parasitoid. There were significant differences in consumption of food types, with highest consumption for nonparasitized prey, followed by parasitized (<4 d) and then parasitized (>4 d), both in no-choice and choice trials. At the same time, the predator causes a significant mortality in the prey (over 80%) regardless of previous parasitism, resulting in a very coincidental intraguild predation detrimental to the parasitoid. It has also been observed that there was a change in the functional response by the predator from Type II in presence of nonparasitized prey to Type I when there was a combination of parasitized and nonparasitized prey. This represents an increase of instantaneous search rate (a') and a decrease of handling time (Th), which indicates a change in feeding behavior on the two prey types. Under greenhouse conditions, the intraguild predation reduced the percentage of parasitism by T. achaeae in just over 20%. However, when both natural enemies were present, a better control of pest Tuta absoluta (Meyrick) was achieved than in the case of application of any of them alone. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Optimal Predator Risk Assessment by the Sonar-Jamming Arctiine Moth Bertholdia trigona

    PubMed Central

    Corcoran, Aaron J.; Wagner, Ryan D.; Conner, William E.

    2013-01-01

    Nearly all animals face a tradeoff between seeking food and mates and avoiding predation. Optimal escape theory holds that an animal confronted with a predator should only flee when benefits of flight (increased survival) outweigh the costs (energetic costs, lost foraging time, etc.). We propose a model for prey risk assessment based on the predator's stage of attack. Risk level should increase rapidly from when the predator detects the prey to when it commits to the attack. We tested this hypothesis using a predator – the echolocating bat – whose active biosonar reveals its stage of attack. We used a prey defense – clicking used for sonar jamming by the tiger moth Bertholdia trigona– that can be readily studied in the field and laboratory and is enacted simultaneously with evasive flight. We predicted that prey employ defenses soon after being detected and targeted, and that prey defensive thresholds discriminate between legitimate predatory threats and false threats where a nearby prey is attacked. Laboratory and field experiments using playbacks of ultrasound signals and naturally behaving bats, respectively, confirmed our predictions. Moths clicked soon after bats detected and targeted them. Also, B. trigona clicking thresholds closely matched predicted optimal thresholds for discriminating legitimate and false predator threats for bats using search and approach phase echolocation – the period when bats are searching for and assessing prey. To our knowledge, this is the first quantitative study to correlate the sensory stimuli that trigger defensive behaviors with measurements of signals provided by predators during natural attacks in the field. We propose theoretical models for explaining prey risk assessment depending on the availability of cues that reveal a predator's stage of attack. PMID:23671686

  10. Foraging mechanisms of siscowet lake trout (Salvelinus namaycush siscowet) on pelagic prey

    USGS Publications Warehouse

    Keyler, Trevor D.; Hrabik, Thomas R.; Austin, C. Lee; Gorman, Owen T.; Mensinger, Allen F.

    2015-01-01

    The reaction distance, angle of attack, and foraging success were determined for siscowet lake trout (Salvelinus namaycush siscowet) during laboratory trials under lighting conditions that approximated downwelling spectral irradiance and intensity (9.00 × 108–1.06 × 1014 photons m− 2 s− 1) at daytime depths. Siscowet reaction distance in response to golden shiners (Notemigonus crysoleucas) was directly correlated with increasing light intensity until saturation at 1.86 × 1011 photons m− 2 s− 1, above which reaction distance was constant within the range of tested light intensities. At the lowest tested light intensity, sensory detection was sufficient to locate prey at 25 ± 2 cm, while increasing light intensities increased reaction distance up to 59 ± 2 cm at 1.06 × 1014 photons m− 2 s− 1. Larger prey elicited higher reaction distances than smaller prey at all light intensities while moving prey elicited higher reaction distances than stationary prey at the higher light intensities (6.00 × 109 to 1.06 × 1014 photons m− 2 s− 1). The capture and consumption of prey similarly increased with increasing light intensity while time to capture decreased with increasing light intensity. The majority of orientations toward prey occurred within 120° of the longitudinal axis of the siscowet's eyes, although reaction distances among 30° increments along the entire axis were not significantly different. The developed predictive model will help determine reaction distances for siscowet in various photic environments and will help identify the mechanisms and behavior that allow for low light intensity foraging within freshwater systems.

  11. Importance of the predator's ecological neighborhood in modeling predation on migrating prey

    USGS Publications Warehouse

    DeAngelis, Donald L.; Petersen, James H.

    2001-01-01

    Most mathematical descriptions of predator-prey interactions fail to take into account the spatio-temporal structures of the populations, which can lead to errors or misinterpretations. For example, a compact pulse of prey migrating through a field of quasi-stationary predators may not be well described by standard predator-prey models, because the predators and prey are unlikely to be well mixed; that is, the prey may be exposed to only a fraction of the predator population at a time. This underscores the importance of properly accounting for the ecological neighborhood, or effective feeding range, of predators in models. We illustrate this situation with a series of models of salmon smolts migrating through a reservoir arrayed with predators. The reservoir is divided into a number of longitudinal compartments or spatial cells, the length of each cell representing the upstream-downstream range over which predators can forage. In this series of models a 100-km-long reservoir is divided, successively into 2, 5, 10, 25, 50, 100, 200, and 400 cells, with respective cell lengths of 50, 20, 10, 4, 2, 1, 0.5, and 0.25 km. We used a detailed individual-based simulation model at first, but to ensure robustness of results we supplemented this with a simple analytic model. Both models showed sharp differences in the predicted mortality to a compact pulse of smolt prey moving through the reservoir, depending on the number of spatial cells in the model. In particular, models with fewer than about 10 cells vastly overpredicted the amount of mortality due to predators with activity ranges of not more than a few kilometers. These results corroborate recent theoretical and simulation studies on the importance of spatial scale and behavior in modeling predator-prey dynamics.

  12. Prey Foraging Under Sublethal Lambda-Cyhalothrin Exposure on Pyrethroid-Susceptible and -Resistant Lady Beetles (Eriopis connexa (Coleoptera: Coccinelidae)).

    PubMed

    D'Ávila, V A; Reis, L C; Barbosa, W F; Cutler, G C; Torres, J B; Guedes, R N C

    2018-05-28

    Sublethal insecticide exposure may affect foraging of insects, including natural enemies, although the subject is usually neglected. The lady beetle Eriopis connexa (Germar, 1824) (Coleoptera: Coccinelidae) is an important predator of aphids with existing pyrethroid-resistant populations that are undergoing scrutiny for potential use in pest management systems characterized by frequent insecticide use. However, the potential effect of sublethal pyrethroid exposure on this predator's foraging activity has not yet been assessed and may compromise its use in biological control. Therefore, our objective was to assess the effect of sublethal lambda-cyhalothrin exposure on three components of the prey foraging activity (i.e., walking, and prey searching and handling), in both pyrethroid-susceptible and -resistant adults of E. connexa. Both lady beetle populations exhibited similar walking patterns without insecticide exposure in noncontaminated arenas, but in partially contaminated arenas walking differed between strains, such that the resistant insects exhibited greater walking activity. Behavioral avoidance expressed as repellence to lambda-cyhalothrin was not observed for either the susceptible or resistant populations of E. connexa, but the insecticide caused avoidance by means of inducing irritability in 40% of the individuals, irrespective of the strain. Insects remained in the insecticide-contaminated portion of the arena for extended periods resulting in greater exposure. Although lambda-cyhalothrin exposure did not affect prey searching by susceptible lady beetles, prey searching was extended for exposed resistant predators. In contrast, prey handling was not affected by population or by lambda-cyhalothrin exposure. Thus, sublethal exposure to the insecticide in conjunction with the insect resistance profile can affect prey foraging with pyrethroid-exposed resistant predators exhibiting longer prey searching time associated with higher walking activity reducing its predatory performance.

  13. Sling, Scoop, and Squirter: Anatomical Features Facilitating Prey Transport, Processing, and Swallowing in Rorqual Whales (Mammalia: Balaenopteridae).

    PubMed

    Werth, Alexander J; Ito, Haruka

    2017-11-01

    Much is known about lunge feeding in balaenopterid whales, but many key aspects of structure, function, and behavior have not yet been explained in detail, especially with regard to concentrating, positioning, and swallowing large aggregations of prey. We describe a novel system of three integrated structural components, all of which are involved in sequential feeding activities (intraoral transport, filtration, and swallowing of prey) that follow lunge-feeding engulfment of prey-laden water in rorquals: (1) a hammock-like muscular sling comprising extrinsic lingual musculature along the midline of the ventral pouch; (2) the flattened scoop-like arrangement of caudal-most baleen plates converging in the oropharynx adjacent to the esophageal opening; and (3) a flow-diverting flange at the posterior dorsum of the lip, by a flow channel at the angle of the mouth. Subsequent to contraction of the ventral pouch and concomitant expulsion of the mouthful of ingested water, these three structures together, we contend, aid in (1) channeling prey posteriorly toward the esophageal opening; (2) concentrating prey as excess water is squeezed from (what is presumed to be) the slurry-like mixture of nektonic and/or planktonic prey and water; and (3) guiding prey into the isthmus of the fauces while simultaneously (4) facilitating expulsion of water. These related functions occur along with, and are in part achieved by, elevation and retraction of the tongue and oral floor. Given their presumed functional role, these systems are best described as a suite of integrated structural adaptations. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2070-2086, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Oxytocin tempers calculated greed but not impulsive defense in predator–prey contests

    PubMed Central

    Scholte, H. Steven; van Winden, Frans A. A. M.; Ridderinkhof, K. Richard

    2015-01-01

    Human cooperation and competition is modulated by oxytocin, a hypothalamic neuropeptide that functions as both hormone and neurotransmitter. Oxytocin’s functions can be captured in two explanatory yet largely contradictory frameworks: the fear-dampening (FD) hypothesis that oxytocin has anxiolytic effects and reduces fear-motivated action; and the social approach/avoidance (SAA) hypothesis that oxytocin increases cooperative approach and facilitates protection against aversive stimuli and threat. We tested derivations from both frameworks in a novel predator–prey contest game. Healthy males given oxytocin or placebo invested as predator to win their prey’s endowment, or as prey to protect their endowment against predation. Neural activity was registered using 3T-MRI. In prey, (fear-motivated) investments were fast and conditioned on the amygdala. Inconsistent with FD, oxytocin did not modulate neural and behavioral responding in prey. In predators, (greed-motivated) investments were slower, and conditioned on the superior frontal gyrus (SFG). Consistent with SAA, oxytocin reduced predator investment, time to decide and activation in SFG. Thus, whereas oxytocin does not incapacitate the impulsive ability to protect and defend oneself, it lowers the greedy and more calculated appetite for coming out ahead. PMID:25140047

  15. Lotka-Volterra systems in environments with randomly disordered temporal periodicity.

    PubMed

    Naess, Arvid; Dimentberg, Michael F; Gaidai, Oleg

    2008-08-01

    A generalized Lotka-Volterra model for a pair of interacting populations of predators and prey is studied. The model accounts for the prey's interspecies competition and therefore is asymptotically stable, whereas its oscillatory behavior is induced by temporal variations in environmental conditions simulated by those in the prey's reproduction rate. Two models of the variations are considered, each of them combining randomness with "hidden" periodicity. The stationary joint probability density function (PDF) of the number of predators and prey is calculated numerically by the path integration (PI) method based on the use of characteristic functions and the fast Fourier transform. The numerical results match those for the asymptotic case of white-noise variations for which an analytical solution is available. Several examples are studied, with calculations of important characteristics of oscillations, for example the expected rate of up-crossings given the level of the predator number. The calculated PDFs may be of predominantly random (unimodal) or predominantly periodic nature (bimodal). Thus, the PI method has been demonstrated to be a powerful tool for studies of the dynamics of predator-prey pairs. The method captures the random oscillations as observed in nature, taking into account potential periodicity in the environmental conditions.

  16. Feeding by Actinophrys sol (Protista, Heliozoa): 1 light microscopy.

    PubMed

    Patterson, D J; Hausmann, K

    1981-01-01

    The feeding behavior of the heliozoon Actinophrys sol was investigated using the ciliate Colpidium colpoda as food. The ciliate is caught by adhesion to the arms of the heliozoon. Within 20 min the prey is enclosed by a funnel-shaped pseudopodium which progresses over the prey by the action of its differentiated leading edge. Independent Actinophrys cells may fuse together during prey capture and the early stages of prey digestion. After prey ingestion, the ciliate is lysed and the contents of the food vacuole coagulate. Much of the fluid is removed from the food vacuole and, within 4 h of feeding, the food vacuole has condensed around its coagulated contents. As food vacuole condensation occurs, the peripheral region of the heliozoon cell becomes vacuolated. The appearance of the cell and of the food vacuole remain the same for about 12 h, after which time the undigested residues in the food vacuoles are egested, fused masses of cells separate as uninucleate cells and nuclear division may occur. During feeding, the extrusomes are greatly depleted. These bodies are implicated in the processes of food capture and in the production of food vacuole membrane.

  17. Optimal flight initiation distance.

    PubMed

    Cooper, William E; Frederick, William G

    2007-01-07

    Decisions regarding flight initiation distance have received scant theoretical attention. A graphical model by Ydenberg and Dill (1986. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229-249) that has guided research for the past 20 years specifies when escape begins. In the model, a prey detects a predator, monitors its approach until costs of escape and of remaining are equal, and then flees. The distance between predator and prey when escape is initiated (approach distance = flight initiation distance) occurs where decreasing cost of remaining and increasing cost of fleeing intersect. We argue that prey fleeing as predicted cannot maximize fitness because the best prey can do is break even during an encounter. We develop two optimality models, one applying when all expected future contribution to fitness (residual reproductive value) is lost if the prey dies, the other when any fitness gained (increase in expected RRV) during the encounter is retained after death. Both models predict optimal flight initiation distance from initial expected fitness, benefits obtainable during encounters, costs of escaping, and probability of being killed. Predictions match extensively verified predictions of Ydenberg and Dill's (1986) model. Our main conclusion is that optimality models are preferable to break-even models because they permit fitness maximization, offer many new testable predictions, and allow assessment of prey decisions in many naturally occurring situations through modification of benefit, escape cost, and risk functions.

  18. C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor

    PubMed Central

    Tran, Alan; Tang, Angelina; O'Loughlin, Colleen T; Jimenez, Vanessa; Pyle, Jacqueline; Tsujimoto, Bryan; Wellbrook, Christopher; Vargas, Christopher; Duong, Alex; Ali, Nebat; Matthews, Sarah Y; Levinson, Samantha; Woldemariam, Sarah; Khuri, Sami; Bremer, Martina; Eggers, Daryl K; L'Etoile, Noelle

    2017-01-01

    Predators and prey co-evolve, each maximizing their own fitness, but the effects of predator–prey interactions on cellular and molecular machinery are poorly understood. Here, we study this process using the predator Caenorhabditis elegans and the bacterial prey Streptomyces, which have evolved a powerful defense: the production of nematicides. We demonstrate that upon exposure to Streptomyces at their head or tail, nematodes display an escape response that is mediated by bacterially produced cues. Avoidance requires a predicted G-protein-coupled receptor, SRB-6, which is expressed in five types of amphid and phasmid chemosensory neurons. We establish that species of Streptomyces secrete dodecanoic acid, which is sensed by SRB-6. This behavioral adaptation represents an important strategy for the nematode, which utilizes specialized sensory organs and a chemoreceptor that is tuned to recognize the bacteria. These findings provide a window into the molecules and organs used in the coevolutionary arms race between predator and potential prey. PMID:28873053

  19. Slow swimming, fast strikes: effects of feeding behavior on scaling of anaerobic metabolism in epipelagic squid.

    PubMed

    Trueblood, Lloyd A; Seibel, Brad A

    2014-08-01

    Many pelagic fishes engage prey at high speeds supported by high metabolic rates and anaerobic metabolic capacity. Epipelagic squids are reported to have among the highest metabolic rates in the oceans as a result of demanding foraging strategies and the use of jet propulsion, which is inherently inefficient. This study examined enzymatic proxies of anaerobic metabolism in two species of pelagic squid, Dosidicus gigas and Doryteuthis pealeii (Lesueur 1821), over a size range of six orders of magnitude. We hypothesized that activity of the anaerobically poised enzymes would be high and increase with size as in ecologically similar fishes. In contrast, we demonstrate that anaerobic metabolic capacity in these organisms scales negatively with body mass. We explored several cephalopod-specific traits, such as the use of tentacles to capture prey, body morphology and reduced relative prey size of adult squids, that may create a diminished reliance on anaerobically fueled burst activity during prey capture in large animals. © 2014. Published by The Company of Biologists Ltd.

  20. Foraging proficiency during the nonbreeding season of a specialized forager: are juvenile American Oystercatchers "bumble-beaks" compared to adults?

    USGS Publications Warehouse

    Hand, Christine E.; Sanders, Felicia J.; Jodice, Patrick G.R.

    2010-01-01

    In many species, immature individuals are less proficient at foraging than are adults, and this difference may be especially critical during winter when survival can be at its minimum. We investigated the foraging proficiency of adult and immature American Oystercatchers (Haematopus palliatus) during the nonbreeding season. Oystercatchers forage on prey that must be handled with specialized skills, so age-related differences in foraging behavior may be expected. We found that adults spent more time searching than did immatures, a trend toward immatures taking longer to handle prey than did adults, and immatures more often handling prey unsuccessfully than did adults. Feeding rates and diet composition did not differ by age class. We posit that the immature birds traded off longer handling times with shorter searching times and that ultimately the abundant prey in the region may contribute to the ability of immature birds to feed at rates similar to those of adults.

  1. Infomechanical specializations for prey capture in knifefish

    NASA Astrophysics Data System (ADS)

    Maciver, Malcolm; Patankar, Neelesh; Curet, Oscar; Shirgaonkar, Anup

    2007-11-01

    How does an animal's mechanics and its information acquisition system work together to solve crucial behavioral tasks? We examine this question for the black ghost weakly electric knifefish (Apteronotus albifrons), which is a leading model system for the study of sensory processing in vertebrates. These animals hunt at night by detecting perturbations of a self-generated electric field caused by prey. While the fish searches for prey, it pitches at 30 . Fully resolved Navier-Stokes simulations of their swimming, which occurs through undulations of a long ribbon-like fin along the bottom edge of the body, indicates that this configuration enables maximal thrust while minimizing pitch moment. However, pitching the body also increases drag. Our analysis of the sensory volume for detection of prey shows this volume to be similar to a cylinder around the body. Thus, pitching the body enables a greater swept volume of scanned fluid. Examining the mechanical and information acquisition demands on the animal in this task gives insight into how these sometimes conflicting demands are resolved.

  2. Chemical cues used by prairie rattlesnakes (Crotalus viridis) to follow trails of rodent prey.

    PubMed

    Chiszar, D; Melcer, T; Lee, R; Radcliffe, C W; Duvall, D

    1990-01-01

    Each of 10 prairie rattlesnakes (Crotalus viridis) was exposed to three types of trails after striking rodent prey (Mus musculus). One trail was made with mouse urine, another was made with tap water, and the third consisted of materials from mouse integument. The snakes exhibited trailing behavior only when integumentary trails were available. It was concluded that prairie rattlesnakes do not utilize urinary cues; instead they attend to materials associated with rodent skin and fur.

  3. Anti-Aversive Effects of Cannabidiol on Innate Fear-Induced Behaviors Evoked by an Ethological Model of Panic Attacks Based on a Prey vs the Wild Snake Epicrates cenchria crassus Confrontation Paradigm

    PubMed Central

    Uribe-Mariño, Andrés; Francisco, Audrey; Castiblanco-Urbina, Maria Angélica; Twardowschy, André; Salgado-Rohner, Carlos José; Crippa, José Alexandre S; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2012-01-01

    Several pharmacological targets have been proposed as modulators of panic-like reactions. However, interest should be given to other potential therapeutic neurochemical agents. Recent attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm. Male Swiss mice were submitted to habituation in an arena containing a burrow and subsequently pre-treated with intraperitoneal administrations of vehicle or cannabidiol. A constrictor snake was placed inside the arena, and defensive and non-defensive behaviors were recorded. Cannabidiol caused a clear anti-aversive effect, decreasing explosive escape and defensive immobility behaviors outside and inside the burrow. These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli, even in a potentially safe environment following a fear response, suggesting a panicolytic effect. PMID:21918503

  4. The Effect of Keystone Individuals on Collective Outcomes Can Be Mediated through Interactions or Behavioral Persistence

    PubMed Central

    Pinter-Wollman, Noa; Keiser, Carl N.; Wollman, Roy; Pruitt, Jonathan N.

    2017-01-01

    Collective behavior emerges from interactions among group members who often vary in their behavior. The presence of just one or a few keystone individuals, such as leaders or tutors, may have a large effect on collective outcomes. These individuals can catalyze behavioral changes in other group members, thus altering group composition and collective behavior. The influence of keystone individuals on group function may lead to trade-offs between ecological situations, because the behavioral composition they facilitate may be suitable in one situation but not another. We use computer simulations to examine various mechanisms that allow keystone individuals to exert their influence on group members. We further discuss a trade-off between two potentially conflicting collective outcomes, cooperative prey attack and disease dynamics. Our simulations match empirical data from a social spider system and produce testable predictions for the causes and consequences of the influence of keystone individuals on group composition and collective outcomes. We find that a group’s behavioral composition can be impacted by the keystone individual through changes to interaction patterns or behavioral persistence over time. Group behavioral composition and the mechanisms that drive the distribution of phenotypes influence collective outcomes and lead to trade-offs between disease dynamics and cooperative prey attack. PMID:27420788

  5. Decomposing risk: landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates.

    PubMed

    Gervasi, Vincenzo; Sand, Hakan; Zimmermann, Barbara; Mattisson, Jenny; Wabakken, Petter; Linnell, John D C

    2013-10-01

    Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower hunting success for wolves. Such constant efficiency in wolf predation during the recolonization process is in line with previous findings about the naive nature of Scandinavian moose to wolf predation. This, together with the human-dominated nature of the Scandinavian ecosystem, seems to limit the possibility for wolves to have large ecosystem effects and to establish a behaviorally mediated trophic cascade in Scandinavia.

  6. Spatio-Temporal Variation in Predation by Urban Domestic Cats (Felis catus) and the Acceptability of Possible Management Actions in the UK

    PubMed Central

    Thomas, Rebecca L.; Fellowes, Mark D. E.; Baker, Philip J.

    2012-01-01

    Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners. PMID:23173057

  7. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.

    PubMed

    Peckarsky, Barbara L; Abrams, Peter A; Bolnick, Daniel I; Dill, Lawrence M; Grabowski, Jonathan H; Luttbeg, Barney; Orrock, John L; Peacor, Scott D; Preisser, Evan L; Schmitz, Oswald J; Trussell, Geoffrey C

    2008-09-01

    Predator effects on prey dynamics are conventionally studied by measuring changes in prey abundance attributed to consumption by predators. We revisit four classic examples of predator-prey systems often cited in textbooks and incorporate subsequent studies of nonconsumptive effects of predators (NCE), defined as changes in prey traits (e.g., behavior, growth, development) measured on an ecological time scale. Our review revealed that NCE were integral to explaining lynx-hare population dynamics in boreal forests, cascading effects of top predators in Wisconsin lakes, and cascading effects of killer whales and sea otters on kelp forests in nearshore marine habitats. The relative roles of consumption and NCE of wolves on moose and consequent indirect effects on plant communities of Isle Royale depended on climate oscillations. Nonconsumptive effects have not been explicitly tested to explain the link between planktonic alewives and the size structure of the zooplankton, nor have they been invoked to attribute keystone predator status in intertidal communities or elsewhere. We argue that both consumption and intimidation contribute to the total effects of keystone predators, and that characteristics of keystone consumers may differ from those of predators having predominantly NCE. Nonconsumptive effects are often considered as an afterthought to explain observations inconsistent with consumption-based theory. Consequently, NCE with the same sign as consumptive effects may be overlooked, even though they can affect the magnitude, rate, or scale of a prey response to predation and can have important management or conservation implications. Nonconsumptive effects may underlie other classic paradigms in ecology, such as delayed density dependence and predator-mediated prey coexistence. Revisiting classic studies enriches our understanding of predator-prey dynamics and provides compelling rationale for ramping up efforts to consider how NCE affect traditional predator-prey models based on consumption, and to compare the relative magnitude of consumptive and NCE of predators.

  8. Predator-Prey Dynamics Driven by Feedback between Functionally Diverse Trophic Levels

    PubMed Central

    Wirtz, Kai; Gaedke, Ursula

    2011-01-01

    Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits—prey edibility and predator food-selectivity—and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity. PMID:22096560

  9. Severity of killer whale behavioral responses to ship noise: a dose-response study.

    PubMed

    Williams, Rob; Erbe, Christine; Ashe, Erin; Beerman, Amber; Smith, Jodi

    2014-02-15

    Critical habitats of at-risk populations of northeast Pacific "resident" killer whales can be heavily trafficked by large ships, with transits occurring on average once every hour in busy shipping lanes. We modeled behavioral responses of killer whales to ship transits during 35 "natural experiments" as a dose-response function of estimated received noise levels in both broadband and audiogram-weighted terms. Interpreting effects is contingent on a subjective and seemingly arbitrary decision about severity threshold indicating a response. Subtle responses were observed around broadband received levels of 130 dB re 1 μPa (rms); more severe responses are hypothesized to occur at received levels beyond 150 dB re 1 μPa, where our study lacked data. Avoidance responses are expected to carry minor energetic costs in terms of increased energy expenditure, but future research must assess the potential for reduced prey acquisition, and potential population consequences, under these noise levels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Scaling up our understanding of non-consumptive effects in insect systems

    DOE PAGES

    Hermann, Sara L.; Landis, Douglas A.

    2017-04-06

    Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less

  11. Scaling up our understanding of non-consumptive effects in insect systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, Sara L.; Landis, Douglas A.

    Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less

  12. A theory of vibrational prey localization in two dimensions: the sand scorpion

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2000-03-01

    Sand scorpions, and many other arachnids, find their prey at night by localizing the source of mechanical waves produced by prey movements. Substrate vibrations propagating through sand evoke stimulus-locked action potentials from slit sensilla on the scorpion's eight `feet' (tarsi). We present a neuronal model to account for stimulus angle determination in a two-dimensional plane using a population of second-order neurons, each receiving excitatory input from one tarsus and inhibition from a triad opposite to it. This input opens a time window whose width determines the firing probability of each of the second-order neurons. The population then `votes' for the direction. Stochastic resonance is realized through tuning the balance between excitation and inhibition. The agreement with behavioral experiments on sand scorpions is excellent.

  13. Sustainability of virulence in a phage-bacterial ecosystem.

    PubMed

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2010-03-01

    Virulent phages and their bacterial hosts represent an unusual sort of predator-prey system where each time a prey is eaten, hundreds of new predators are born. It is puzzling how, despite the apparent effectiveness of the phage predators, they manage to avoid driving their bacterial prey to extinction. Here we consider a phage-bacterial ecosystem on a two-dimensional (2-d) surface and show that homogeneous space in itself enhances coexistence. We analyze different behavioral mechanisms that can facilitate coexistence in a spatial environment. For example, we find that when the latent times of the phage are allowed to evolve, selection favors "mediocre killers," since voracious phage rapidly deplete local resources and go extinct. Our model system thus emphasizes the differences between short-term proliferation and long-term ecosystem sustainability.

  14. Assessing and mitigating dock shading impacts on the behavior of juvenile pacific salmon (Oncorhynchus spp.) : can artificial light mitigate the effects?

    DOT National Transportation Integrated Search

    2010-06-01

    The shadows from large over-water structures built on nearshore habitats in the Puget Sound can reduce prey abundance and disrupt juvenile Pacific salmon (Oncorhynchus spp.) migratory behavior with potential consequences on survival rates. As part of...

  15. Larval long-toed salamanders incur nonconsumptive effects in the presence of nonnative trout

    USGS Publications Warehouse

    Kenison, Erin K.; Litt, Andrea R.; Pilliod, David S.; McMahon, Thomas E.

    2016-01-01

    Predators can influence prey directly through consumption or indirectly through nonconsumptive effects (NCEs) by altering prey behavior, morphology, and life history. We investigated whether predator-avoidance behaviors by larval long-toed salamanders (Ambystoma macrodactylum) in lakes with nonnative trout result in NCEs on morphology and development. Field studies in lakes with and without trout were corroborated by experimental enclosures, where prey were exposed only to visual and chemical cues of predators. We found that salamanders in lakes with trout were consistently smaller than in lakes without trout: 38% lower weight, 24% shorter body length, and 29% shorter tail length. Similarly, salamanders in protective enclosures grew 2.9 times slower when exposed to visual and olfactory trout cues than when no trout cues were present. Salamanders in trout-free lakes and enclosures were 22.7 times and 1.48 times, respectively, more likely to metamorphose during the summer season than those exposed to trout in lakes and/or their cues. Observed changes in larval growth rate and development likely resulted from a facultative response to predator-avoidance behavior and demonstrate NCEs occurred even when predation risk was only perceived. Reduced body size and growth, as well as delayed metamorphosis, could have ecological consequences for salamander populations existing with fish if those effects carry-over into lower recruitment, survival, and fecundity.

  16. Satellite tagging, remote sensing, and autonomous vehicles reveal interactions between physiology and environment in a North Pacific top marine predator species

    NASA Astrophysics Data System (ADS)

    Pelland, N.; Sterling, J.; Springer, A.; Iverson, S.; Johnson, D.; Lea, M. A.; Bond, N. A.; Ream, R.; Lee, C.; Eriksen, C.

    2016-02-01

    Behavioral responses by top marine predators to oceanographic features such as eddies, river plumes, storms, and coastal topography suggest that biophysical interactions in these zones affect predators' prey, foraging behaviors, and potentially fitness. However, examining these pathways is challenged by the obstacles inherent in obtaining simultaneous observations of surface and subsurface environmental fields and predator behavior. This work describes recent publications and ongoing studies of northern fur seal (NFS) foraging ecology during their 8-month migration. Satellite-tracked movement and dive behavior in the North Pacific ocean was compared to remotely sensed data, atmospheric reanalysis, autonomous in situ ocean sampling, and animal borne temperature and salinity data. Integration of these data demonstrates how reproductive fitness, physiology, and environment shape NFS migratory patterns. Seal mass correlates with dive ability and thus larger males exploit prey aggregating at the base of the winter mixed-layer depth in the Bering Sea and interior northern North Pacific Ocean. Smaller adult females migrate to the Gulf of Alaska and California Current ecosystems - where surface wind speeds decline, mixed-layer depths shoal, and coastal production is fueled by upwelling, coastal capes, and eddies - and less commonly to the Transitional Zone Chlorophyll Front, where fronts and eddies may concentrate prey. Surface wind speed and direction influence movement behavior of all age and size classes, though to a greater degree in the smaller pups and adult females than adult males. For naïve and physiologically less-capable pups, the timing and strength of autumn winds during migratory dispersal may play a role in shaping migratory routes and the environmental conditions faced by pups along these routes. In combination with other factors such as pup condition, this may play a role in interannual variations in overwinter survivorship.

  17. Simple models for studying complex spatiotemporal patterns of animal behavior

    NASA Astrophysics Data System (ADS)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  18. Linking animal-borne video to accelerometers reveals prey capture variability.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori

    2013-02-05

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78-89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83-0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging.

  19. Chemosensory responses to sugar and fat by the omnivorous lizard Gallotia caesaris: with behavioral evidence suggesting a role for gustation.

    PubMed

    Cooper, W E; Pérez-Mellado, V

    2001-07-01

    Many lizards can identify food using only chemical cues, as indicated by tongue-flicking for chemical sampling and biting, but the effectiveness of the chemical components of food are unknown, as is the relationship between response strength and concentration. We investigated responses by the omnivorous lizard Gallotia caesaris to representatives of two major categories of organic food chemicals, lipids and carbohydrates. The stimuli, pork fat and sucrose solutions of varying concentration, were presented to lizards on cotton swabs and their lingual and biting behaviors were observed during 60-s tests. In the first experiment, fat elicited more tongue-flicks and bites than saturated sucrose or water (odorless control), biting being limited to the fat condition. Lizards licked at high rates, but exclusively in response to sucrose. A lick was a lingual protrusion in which the dorsal surface of the tongue contacted the swab, in contrast to the anteroventral contact made during tongue-flicks. In a second experiment, the number of licks, but not the number of tongue-flicks, increased with the concentration of sucrose. The results indicate that lipids contribute to prey chemical discrimination and are adequate to release some attacks, but are not as effective as releasers of attack as mixtures of prey chemicals obtained from prey surfaces. The findings with respect to licking are novel, and suggest that licking may be a response to gustatory stimulation by sugar, in contrast to previously observed prey chemical discriminations shown to require vomerolfaction.

  20. A global optimization algorithm inspired in the behavior of selfish herds.

    PubMed

    Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián

    2017-10-01

    In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Stress and aversive learning in a wild vertebrate: the role of corticosterone in mediating escape from a novel stressor.

    PubMed

    Thaker, Maria; Vanak, Abi T; Lima, Steven L; Hews, Diana K

    2010-01-01

    Elevated plasma corticosterone during stressful events is linked to rapid changes in behavior in vertebrates and can mediate learning and memory consolidation. We tested the importance of acute corticosterone elevation in aversive learning of a novel stressor by wild male eastern fence lizards (Sceloporus undulatus). We found that inhibiting corticosterone elevation (using metyrapone, a corticosterone synthesis blocker) during an encounter with a novel attacker impaired immediate escape responses and limited learning and recall during future encounters. In the wild and in outdoor enclosures, lizards whose acute corticosterone response was blocked by an earlier metyrapone injection did not alter their escape behavior during repeated encounters with the attacker. Control-injected (unblocked) lizards, however, progressively increased flight initiation distance and decreased hiding duration during subsequent encounters. Aversive responses were also initially higher for control lizards exposed to a higher intensity first attack. Further, we demonstrate a role of corticosterone elevation in recollection, since unblocked lizards had heightened antipredator responses 24-28 h later. Exogenously restoring corticosterone levels in metyrapone-injected lizards maintained aversive behaviors and learning at control (unblocked) levels. We suggest that the corticosterone mediation of antipredator behaviors and aversive learning is a critical and general mechanism for the behavioral flexibility of vertebrate prey.

  2. Perspective: the evolution of warning coloration is not paradoxical.

    PubMed

    Marples, Nicola M; Kelly, David J; Thomas, Robert J

    2005-05-01

    Animals that are brightly colored have intrigued scientists since the time of Darwin, because it seems surprising that prey should have evolved to be clearly visible to predators. Often this self-advertisement is explained by the prey being unprofitable in some way, with the conspicuous warning coloration helping to protect the prey because it signals to potential predators that the prey is unprofitable. However, such signals only work in this way once predators have learned to associate the conspicuous color with the unprofitability of the prey. The evolution of warning coloration is still widely considered to be a paradox, because it has traditionally been assumed that the very first brightly colored individuals would be at an immediate selective disadvantage because of their greater conspicuousness to predators that are naive to the meaning of the signal. As a result, it has been difficult to understand how a novel conspicuous color morph could ever avoid extinction for long enough for predators to become educated about the signal. Thus, the traditional view that the evolution of warning coloration is difficult to explain rests entirely on assumptions about the foraging behavior of predators. However, we review recent evidence from a range of studies of predator foraging decisions, which refute these established assumptions. These studies show that: (1) Many predators are so conservative in their food preferences that even very conspicuous novel prey morphs are not necessarily at a selective disadvantage. (2) The survival and spread of novel color morphs can be simulated in field and aviary experiments using real predators (birds) foraging on successive generations of artificial prey populations. This work demonstrates that the foraging preferences of predators can regularly (though not always) result in the increase to fixation of a novel morph appearing in a population of familiar-colored prey. Such fixation events occur even if both novel and familiar prey are fully palatable and despite the novel food being much more conspicuous than the familiar prey. These studies therefore provide strong empirical evidence that conspicuous coloration can evolve readily, and repeatedly, as a result of the conservative foraging decisions of predators.

  3. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.

    PubMed

    He, Xiao; Zheng, Sining

    2017-07-01

    In any reaction-diffusion system of predator-prey models, the population densities of species are determined by the interactions between them, together with the influences from the spatial environments surrounding them. Generally, the prey species would die out when their birth rate is too low, the habitat size is too small, the predator grows too fast, or the predation pressure is too high. To save the endangered prey species, some human interference is useful, such as creating a protection zone where the prey could cross the boundary freely but the predator is prohibited from entering. This paper studies the existence of positive steady states to a predator-prey model with reaction-diffusion terms, Beddington-DeAngelis type functional response and non-flux boundary conditions. It is shown that there is a threshold value [Formula: see text] which characterizes the refuge ability of prey such that the positivity of prey population can be ensured if either the prey's birth rate satisfies [Formula: see text] (no matter how large the predator's growth rate is) or the predator's growth rate satisfies [Formula: see text], while a protection zone [Formula: see text] is necessary for such positive solutions if [Formula: see text] with [Formula: see text] properly large. The more interesting finding is that there is another threshold value [Formula: see text], such that the positive solutions do exist for all [Formula: see text]. Letting [Formula: see text], we get the third threshold value [Formula: see text] such that if [Formula: see text], prey species could survive no matter how large the predator's growth rate is. In addition, we get the fourth threshold value [Formula: see text] for negative [Formula: see text] such that the system admits positive steady states if and only if [Formula: see text]. All these results match well with the mechanistic derivation for the B-D type functional response recently given by Geritz and Gyllenberg (J Theoret Biol 314:106-108, 2012). Finally, we obtain the uniqueness of positive steady states for [Formula: see text] properly large, as well as the asymptotic behavior of the unique positive steady state as [Formula: see text].

  4. Jellyfish support high energy intake of leatherback sea turtles (Dermochelys coriacea): video evidence from animal-borne cameras.

    PubMed

    Heaslip, Susan G; Iverson, Sara J; Bowen, W Don; James, Michael C

    2012-01-01

    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08-3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83-100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ • d(-1) but were as high as 167,797 kJ • d(-1) corresponding to turtles consuming an average of 330 kg wet mass • d(-1) (up to 840 kg • d(-1)) or approximately 261 (up to 664) jellyfish • d(-1). Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass • d(-1) equating to an average energy intake of 3-7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration.

  5. Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras

    PubMed Central

    Heaslip, Susan G.; Iverson, Sara J.; Bowen, W. Don; James, Michael C.

    2012-01-01

    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ•d−1 but were as high as 167,797 kJ•d−1 corresponding to turtles consuming an average of 330 kg wet mass•d−1 (up to 840 kg•d−1) or approximately 261 (up to 664) jellyfish•d-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass•d−1 equating to an average energy intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration. PMID:22438906

  6. Hydrodynamic modelling of aquatic suction performance and intra-oral pressures: limitations for comparative studies

    PubMed Central

    Van Wassenbergh, Sam; Aerts, Peter; Herrel, Anthony

    2006-01-01

    The magnitude of sub-ambient pressure inside the bucco-pharyngeal cavity of aquatic animals is generally considered a valuable metric of suction feeding performance. However, these pressures do not provide a direct indication of the effect of the suction act on the movement of the prey item. Especially when comparing suction performance of animals with differences in the shape of the expanding bucco-pharyngeal cavity, the link between speed of expansion, water velocity, force exerted on the prey and intra-oral pressure remains obscure. By using mathematical models of the heads of catfishes, a morphologically diverse group of aquatic suction feeders, these relationships were tested. The kinematics of these models were fine-tuned to transport a given prey towards the mouth in the same way. Next, the calculated pressures inside these models were compared. The results show that no simple relationship exists between the amount of generated sub-ambient pressure and the force exerted on the prey during suction feeding, unless animals of the same species are compared. Therefore, for evaluating suction performance in aquatic animals in future studies, the focus should be on the flow velocities in front of the mouth, for which a direct relationship exists with the hydrodynamic force exerted on prey. PMID:16849247

  7. Predators Are Attracted to the Olfactory Signals of Prey

    PubMed Central

    Hughes, Nelika K.; Price, Catherine J.; Banks, Peter B.

    2010-01-01

    Background Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking. Methodology/Principal Findings To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals. Conclusions/Significance This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not. PMID:20927352

  8. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape

    PubMed Central

    2017-01-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the “edge of chaos” while creating a wide distribution of opportunities for speciation during epochs of disruptive selection—a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies. PMID:28678792

  9. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    USGS Publications Warehouse

    Thieltges, David W.; Amundsen, Per-Arne; Hechinger, Ryan F.; Johnson, Pieter T.J.; Lafferty, Levin D.; Mouritsen, Kim N.; Preston, Daniel L.; Reise, Karsten; Zander, C. Dieter; Poulin, Robert

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free-living parasite life-cycle stages (4–30%). Parasite life-cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.

  10. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates.

    PubMed

    Iebba, Valerio; Totino, Valentina; Santangelo, Floriana; Gagliardi, Antonella; Ciotoli, Luana; Virga, Alessandra; Ambrosi, Cecilia; Pompili, Monica; De Biase, Riccardo V; Selan, Laura; Artini, Marco; Pantanella, Fabrizio; Mura, Francesco; Passariello, Claudio; Nicoletti, Mauro; Nencioni, Lucia; Trancassini, Maria; Quattrucci, Serena; Schippa, Serena

    2014-01-01

    Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) "static" biofilms; (3) field emission scanning electron microscope (FESEM); (4) "flow" biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new "epibiotic" foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while "static" and "flow" S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a "living antibiotic" in CF, even if further studies are required to simulate its in vivo predatory behavior.

  11. Testing the odontocete acoustic prey debilitation hypothesis: no stunning results.

    PubMed

    Benoit-Bird, Kelly J; Au, Whitlow W L; Kastelein, Ronald

    2006-08-01

    The hypothesis that sounds produced by odontocetes can debilitate fish was examined. The effects of simulated odontocete pulsed signals on three species of fish commonly preyed on by odontocetes were examined, exposing three individuals of each species as well as groups of four fish to a high-frequency click of a bottlenose dolphin [peak frequency (PF) 120 kHz, 213-dB peak-to-peak exposure level (EL)], a midfrequency click modeled after a killer whale's signal (PF 55 kHz, 208-dB EL), and a low-frequency click (PF 18 kHz, 193-dB EL). Fish were held in a 50-cm diameter net enclosure immediately in front of a transducer where their swimming behavior, orientation, and balance were observed with two video cameras. Clicks were presented at constant rates and in graded sweeps simulating a foraging dolphin's "terminal buzz." No measurable change in behavior was observed in any of the fish for any signal type or pulse modulation rate, despite the fact that clicks were at or near the maximum source levels recorded for odontocetes. Based on the results, the hypothesis that acoustic signals of odontocetes alone can disorient or "stun" prey cannot be supported.

  12. The Effects of Ocean Acidification on Predator-Prey Interactions between Mya arenaria and Callinectes sapidus

    NASA Astrophysics Data System (ADS)

    Longmire, K.; Glaspie, C.; Seitz, R.

    2016-02-01

    The study examined the implications of ocean acidification for Mya arenaria and the predator-prey dynamics between M. arenaria and Callinectes sapidus. Clams were subjected to either ambient conditions or acidified conditions and grown over four weeks. Mortality, shell lengths, and biomass (ash-free dry weights) were recorded for clams destructively sampled each week. Clams were subjected to behavioral experiments to determine their response to an approaching physical disturbance. Crabs were exposed to acidified or ambient conditions for 48 hours, and placed in 48 hour mesocosm trials with clams. Shell lengths, mortality and biomass between the ambient and acidified clams were not significantly different between acidified and ambient treatments. Shell ash weights were lower for acidified clams, evidence of shell dissolution. In the behavioral experiment, ocean acidification reduced the ability of clams to respond to a predator stimulus. Lastly, in predator-prey mesocosm trials, in ambient conditions, crabs ate all or none of the available clams, whereas acidified crabs ate all available clams in many trials and ate at least one acidified clam per trial. The early effects of ocean acidification on M. arenaria will manifest in trophic interactions with other species, rather than impacting M. arenaria alone.

  13. Functional response and capture timing in an individual-based model: predation by northern squawfish (Ptychocheilus oregonensis) on juvenile salmonids in the Columbia River

    USGS Publications Warehouse

    Petersen, James H.; DeAngelis, Donald L.

    1992-01-01

    The behavior of individual northern squawfish (Ptychocheilus oregonensis) preying on juvenile salmonids was modeled to address questions about capture rate and the timing of prey captures (random versus contagious). Prey density, predator weight, prey weight, temperature, and diel feeding pattern were first incorporated into predation equations analogous to Holling Type 2 and Type 3 functional response models. Type 2 and Type 3 equations fit field data from the Columbia River equally well, and both models predicted predation rates on five of seven independent dates. Selecting a functional response type may be complicated by variable predation rates, analytical methods, and assumptions of the model equations. Using the Type 2 functional response, random versus contagious timing of prey capture was tested using two related models. ln the simpler model, salmon captures were assumed to be controlled by a Poisson renewal process; in the second model, several salmon captures were assumed to occur during brief "feeding bouts", modeled with a compound Poisson process. Salmon captures by individual northern squawfish were clustered through time, rather than random, based on comparison of model simulations and field data. The contagious-feeding result suggests that salmonids may be encountered as patches or schools in the river.

  14. Diet overlap between harbour porpoise and bottlenose dolphin: An argument in favour of interference competition for food?

    NASA Astrophysics Data System (ADS)

    Spitz, Jérôme; Rousseau, Yann; Ridoux, Vincent

    2006-10-01

    In aquatic ecosystems, competitive interactions are occasionally described. Violent attacks on harbour porpoises by bottlenose dolphins were reported and it was proposed that this behavior could result from competitive interactions for food. This hypothesis implies that the two predators should share all or part of they prey range. In this work, we describe the diets of each predator in the Bay of Biscay and adjacent areas from stomach content analysis of stranded animals. The diet of the harbour porpoise was mostly composed of small schooling fish living close to the seafloor (98 percent by mass). The diet of the bottlenose dolphin was characterised by the presence of large specimens of demersal fish (91 percent by mass) and cephalopods. Several prey species are common in the two diets and even the length distributions of some of them, such as sardine or scads, are very similar. However, global indices such as the Mantel test or the Pianka's index indicate no or weak overlap. The dietary results suggest that the two predators show partial dietary overlap over several major dimensions of the foraging niche: prey profile, foraging habitats, prey species and size range. We suggest interference competition is plausible at the scale of a prey school that would be exploited jointly by groups of the two predators.

  15. Molecular Gut Content Profiling to Investigate the In Situ Grazing and Selectivity of Dolioletta gegenbauri in Summer Continental Shelf Intrusion Waters of the South Atlantic Bight, USA

    NASA Astrophysics Data System (ADS)

    Walters, T. L.; Frazier, L.; Gibson, D. M.; Paffenhofer, G. A.; Frischer, M. E.

    2016-02-01

    Gelatinous metazooplankton play a crucial role in marine planktonic food webs and it has been suggested that they may become increasingly important in the Future Ocean. However, largely due to methodological challenges and reliance on laboratory cultivation approaches, the in situ diet of zooplankton with complex life histories and diverse prey choices remains poorly investigated. This is particularly true for the gelatinous zooplankton including the pelagic tunicate, Dolioletta gegenbauri that form large blooms in productive subtropical continental shelf environments. To investigate the diet of D. gegenbauri we developed a molecular gut profiling approach based on the use of a Peptide Nucleic Acid (PNA) PCR blocker. Using a doliolid-specific PNA blocker, it was possible to enrich the amplification of prey and parasite DNA from whole animal DNA extracts of doliolids. Gut contents from the water column, wild and captive-fed doliolids were profiled after PNA-PCR by denaturing HPLC (dHPLC), clone library and next generation sequencing (NGS) approaches. Studies were conducted during 5 summer cruises in the mid-shelf of the South Atlantic Bight. Comparison of gut profiles to available prey in the water column revealed evidence of prey selection towards larger prey species, including diatoms, dinoflagelletes and also metazoan prey that were likely captured as larvae and eggs. Wild-caught doliolids contained significantly more metazoan sequences than did the captive-fed doliolids. Ingestion of metazoan prey suggests that metazoans may contribute both the nutrition of doliolids and the potential role of doliolids as trophic cascade agents in continental shelf pelagic food webs.

  16. Ecosystem variability in the offshore northeastern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Blanchard, Arny L.; Day, Robert H.; Gall, Adrian E.; Aerts, Lisanne A. M.; Delarue, Julien; Dobbins, Elizabeth L.; Hopcroft, Russell R.; Questel, Jennifer M.; Weingartner, Thomas J.; Wisdom, Sheyna S.

    2017-12-01

    Understanding influences of cumulative effects from multiple stressors in marine ecosystems requires an understanding of the sources for and scales of variability. A multidisciplinary ecosystem study in the offshore northeastern Chukchi Sea during 2008-2013 investigated the variability of the study area's two adjacent sub-ecosystems: a pelagic system influenced by interannual and/or seasonal temporal variation at large, oceanographic (regional) scales, and a benthic-associated system more influenced by small-scale spatial variations. Variability in zooplankton communities reflected interannual oceanographic differences in waters advected northward from the Bering Sea, whereas variation in benthic communities was associated with seafloor and bottom-water characteristics. Variations in the planktivorous seabird community were correlated with prey distributions, whereas interaction effects in ANOVA for walruses were related to declines of sea-ice. Long-term shifts in seabird distributions were also related to changes in sea-ice distributions that led to more open water. Although characteristics of the lower trophic-level animals within sub-ecosystems result from oceanographic variations and interactions with seafloor topography, distributions of apex predators were related to sea-ice as a feeding platform (walruses) or to its absence (i.e., open water) for feeding (seabirds). The stability of prey resources appears to be a key factor in mediating predator interactions with other ocean characteristics. Seabirds reliant on highly-variable zooplankton prey show long-term changes as open water increases, whereas walruses taking benthic prey in biomass hotspots respond to sea-ice changes in the short-term. A better understanding of how variability scales up from prey to predators and how prey resource stability (including how critical prey respond to environmental changes over space and time) might be altered by climate and anthropogenic stressors is essential to predicting the future state of both the Chukchi and other arctic systems.

  17. Enhanced leaf nitrogen status stabilizes omnivore population density.

    PubMed

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2017-01-01

    Plant traits can mediate the strength of interactions between omnivorous predators and their prey through density effects and changes in the omnivores' trophic behavior. In this study, we explored the established assumption that enhanced nutrient status in host plants strengthens the buffering effect of plant feeding for omnivorous predators, i.e., prevents rapid negative population growth during prey density decline and thereby increases and stabilizes omnivore population density. We analyzed 13 years of field data on population densities of a heteropteran omnivore on Salix cinerea stands, arranged along a measured leaf nitrogen gradient and found a 195 % increase in omnivore population density and a 63 % decrease in population variability with an increase in leaf nitrogen status from 26 to 40 mgN × g -1 . We recreated the leaf nitrogen gradient in a greenhouse experiment and found, as expected, that increasing leaf nitrogen status enhanced omnivore performance but reduced per capita prey consumption. Feeding on high nitrogen status host plants can potentially decouple omnivore-prey population dynamics and allow omnivores to persist and function effectively at low prey densities to provide "background level" control of insect herbivores. This long-term effect is expected to outweigh the short-term effect on per capita prey consumption-resulting in a net increase in population predation rates with increasing leaf nitrogen status. Conservation biological control of insect pests that makes use of omnivore background control could, as a result, be manipulated via management of crop nitrogen status.

  18. Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects

    NASA Astrophysics Data System (ADS)

    Nie, Linfei; Peng, Jigen; Teng, Zhidong; Hu, Lin

    2009-02-01

    According to biological and chemical control strategy for pest, we investigate the dynamic behavior of a Lotka-Volterra predator-prey state-dependent impulsive system by releasing natural enemies and spraying pesticide at different thresholds. By using Poincaré map and the properties of the Lambert W function, we prove that the sufficient conditions for the existence and stability of semi-trivial solution and positive periodic solution. Numerical simulations are carried out to illustrate the feasibility of our main results.

  19. Visual control of prey-capture flight in dragonflies.

    PubMed

    Olberg, Robert M

    2012-04-01

    Interacting with a moving object poses a computational problem for an animal's nervous system. This problem has been elegantly solved by the dragonfly, a formidable visual predator on flying insects. The dragonfly computes an interception flight trajectory and steers to maintain it during its prey-pursuit flight. This review summarizes current knowledge about pursuit behavior and neurons thought to control interception in the dragonfly. When understood, this system has the potential for explaining how a small group of neurons can control complex interactions with moving objects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mechanosensory based orienting behaviors in fluvial and lacustrine populations of mottled sculpin (Cottus bairdi)

    Treesearch

    Sheryl Coombs; Gary D. Grossman

    2006-01-01

    We compared prey-orienting and rheotactic behaviors in a fluvial (Coweeta Creek) and lacustrine (Lake Michigan) population of mottled sculpin. Blinded sculpin from both populations exhibited unconditioned, mechanosensory based rheotaxis to low velocity flows. Whereas Lake Michigan sculpin generally showed increasing levels of positive rheotaxis to increasing velocities...

  1. Extreme value statistics and finite-size scaling at the ecological extinction/laminar-turbulence transition

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Goldenfeld, Nigel

    Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.

  2. Sustainability of Virulence in a Phage-Bacterial Ecosystem ▿ †

    PubMed Central

    Heilmann, Silja; Sneppen, Kim; Krishna, Sandeep

    2010-01-01

    Virulent phages and their bacterial hosts represent an unusual sort of predator-prey system where each time a prey is eaten, hundreds of new predators are born. It is puzzling how, despite the apparent effectiveness of the phage predators, they manage to avoid driving their bacterial prey to extinction. Here we consider a phage-bacterial ecosystem on a two-dimensional (2-d) surface and show that homogeneous space in itself enhances coexistence. We analyze different behavioral mechanisms that can facilitate coexistence in a spatial environment. For example, we find that when the latent times of the phage are allowed to evolve, selection favors “mediocre killers,” since voracious phage rapidly deplete local resources and go extinct. Our model system thus emphasizes the differences between short-term proliferation and long-term ecosystem sustainability. PMID:20071588

  3. Differential predation by northern squawfish Ptychocheilus oregonensis on live and dead juvenile salmonids in the Bonneville Dam tailrace (Columbia River)

    USGS Publications Warehouse

    Petersen, James H.; Gadomski, Dena M.; Poe, Thomas P.

    1994-01-01

    Juvenile salmonids (Oncorhynchus spp.) that have been killed or injured during dam passage may be highly vulnerable or preferred prey of predators that aggregate below dams. Salmonid loss due to predation will be overestimated using gut content analysis if some prey were dead or moribund when consumed. To examine this issue, field experiments were conducted in the Bonneville Dam tailrace (Columbia River) to compare rates of capture of live and dead juvenile salmonids by northern squawfish (Ptychocheilus oregonensis). Known numbers of coded-wire-tagged live and dead chinook salmon (O. tshawytscha) were released into the tailrace on six nights. Northern squawfish were collected after each release and their gut contents were examined for tags. When 50% of salmon released were dead, northern squawfish consumed 62% dead salmon. When 10% of salmon released were dead, comparable with dam passage mortality, 22% of the tags found in northern squawfish digestive tracts were from dead salmon. These results indicate that predator feeding behavior and prey condition are important considerations when estimating the impact of predation on a prey population.

  4. Effects of multiple levels of social organization on survival and abundance.

    PubMed

    Ward, Eric J; Semmens, Brice X; Holmes, Elizabeth E; Balcomb Iii, Ken C

    2011-04-01

    Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group-level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age-specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities. Conservation Biology ©2010 Society for Conservation Biology. No claim to original US government works.

  5. Antipredator responses by native mosquitofish to non-native cichlids: An examination of the role of prey naiveté

    USGS Publications Warehouse

    Rehage, Jennifer S.; Dunlop, Katherine L.; Loftus, William F.

    2009-01-01

    The strong impact of non-native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non-native predators found in the Everglades, the African jewelfish,Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer-established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free-ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish-savvy and jewelfish-naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non-native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.

  6. Following a Foraging Fish-Finder: Diel Habitat Use of Blainville's Beaked Whales Revealed by Echolocation

    PubMed Central

    Arranz, Patricia; de Soto, Natacha Aguilar; Madsen, Peter T.; Brito, Alberto; Bordes, Fernando; Johnson, Mark P.

    2011-01-01

    Simultaneous high resolution sampling of predator behavior and habitat characteristics is often difficult to achieve despite its importance in understanding the foraging decisions and habitat use of predators. Here we tap into the biosonar system of Blainville's beaked whales, Mesoplodon densirostris, using sound and orientation recording tags to uncover prey-finding cues available to echolocating predators in the deep-sea. Echolocation sounds indicate where whales search and encounter prey, as well as the altitude of whales above the sea-floor and the density of organisms around them, providing a link between foraging activity and the bio-physical environment. Tagged whales (n = 9) hunted exclusively at depth, investing most of their search time either in the lower part of the deep scattering layer (DSL) or near the sea-floor with little diel change. At least 43% (420/974) of recorded prey-capture attempts were performed within the benthic boundary layer despite a wide range of dive depths, and many dives included both meso- and bentho-pelagic foraging. Blainville's beaked whales only initiate searching when already deep in the descent and encounter prey suitable for capture within 2 min of the start of echolocation, suggesting that these whales are accessing prey in reliable vertical strata. Moreover, these prey resources are sufficiently dense to feed the animals in what is effectively four hours of hunting per day enabling a strategy in which long dives to exploit numerous deep-prey with low nutritional value require protracted recovery periods (average 1.5 h) between dives. This apparent searching efficiency maybe aided by inhabiting steep undersea slopes with access to both the DSL and the sea-floor over small spatial scales. Aggregations of prey in these biotopes are located using biosonar-derived landmarks and represent stable and abundant resources for Blainville's beaked whales in the otherwise food-limited deep-ocean. PMID:22163295

  7. Comparative morphology of the postpharyngeal gland in the Philanthinae (Hymenoptera, Crabronidae) and the evolution of an antimicrobial brood protection mechanism.

    PubMed

    Weiss, Katharina; Strohm, Erhard; Kaltenpoth, Martin; Herzner, Gudrun

    2015-12-21

    Hymenoptera that mass-provision their offspring have evolved elaborate antimicrobial strategies to ward off fungal infestation of the highly nutritive larval food. Females of the Afro-European Philanthus triangulum and the South American Trachypus elongatus (Crabronidae, Philanthinae) embalm their prey, paralyzed bees, with a secretion from a complex postpharyngeal gland (PPG). This coating consists of mainly unsaturated hydrocarbons and reduces water accumulation on the prey's surface, thus rendering it unfavorable for fungal growth. Here we (1) investigated whether a North American Philanthus species also employs prey embalming and (2) assessed the occurrence and morphology of a PPG among females of the subfamily Philanthinae in order to elucidate the evolution of prey embalming as an antimicrobial strategy. We provide clear evidence that females of the North American Philanthus gibbosus possess large PPGs and embalm their prey. The comparative analyses of 26 species from six genera of the Philanthinae, using histological methods and 3D-reconstructions, revealed pronounced differences in gland morphology within the subfamily. A formal statistical analysis based on defined characters of the glands confirmed that while all members of the derived tribe Philanthini have large and complex PPGs, species of the two more basal tribes, Cercerini and Aphilanthopsini, possess simple and comparatively small glands. According to an ancestral state reconstruction, the complex PPG most likely evolved in the last common ancestor of the Philanthini, thus representing an autapomorphy of this tribe. Prey embalming, as described for P. triangulum and T. elongatus, and now also for P. gibbosus, most probably requires a complex PPG. Hence, the morphology and size of the PPG may allow for inferences about the origin and distribution of the prey embalming behavior within the Philanthinae. Based on our results, we suggest that prey embalming has evolved as an antimicrobial strategy in and is restricted to the tribe Philanthini, which seems to face exceptional threats with regard to fungal infestations of their larval provisions.

  8. Behavioral responses to mammalian blood odor and a blood odor component in four species of large carnivores.

    PubMed

    Nilsson, Sara; Sjöberg, Johanna; Amundin, Mats; Hartmann, Constanze; Buettner, Andrea; Laska, Matthias

    2014-01-01

    Only little is known about whether single volatile compounds are as efficient in eliciting behavioral responses in animals as the whole complex mixture of a behaviorally relevant odor. Recent studies analysing the composition of volatiles in mammalian blood, an important prey-associated odor stimulus for predators, found the odorant trans-4,5-epoxy-(E)-2-decenal to evoke a typical "metallic, blood-like" odor quality in humans. We therefore assessed the behavior of captive Asian wild dogs (Cuon alpinus), African wild dogs (Lycaon pictus), South American bush dogs (Speothos venaticus), and Siberian tigers (Panthera tigris altaica) when presented with wooden logs that were impregnated either with mammalian blood or with the blood odor component trans-4,5-epoxy-(E)-2-decenal, and compared it to their behavior towards a fruity odor (iso-pentyl acetate) and a near-odorless solvent (diethyl phthalate) as control. We found that all four species displayed significantly more interactions with the odorized wooden logs such as sniffing, licking, biting, pawing, and toying, when they were impregnated with the two prey-associated odors compared to the two non-prey-associated odors. Most importantly, no significant differences were found in the number of interactions with the wooden logs impregnated with mammalian blood and the blood odor component in any of the four species. Only one of the four species, the South American bush dogs, displayed a significant decrease in the number of interactions with the odorized logs across the five sessions performed per odor stimulus. Taken together, the results demonstrate that a single blood odor component can be as efficient in eliciting behavioral responses in large carnivores as the odor of real blood, suggesting that trans-4,5-epoxy-(E)-2-decenal may be perceived by predators as a "character impact compound" of mammalian blood odor. Further, the results suggest that odorized wooden logs are a suitable manner of environmental enrichment for captive carnivores.

  9. Morning ambush attacks by black-footed ferrets on emerging prairie dogs

    USGS Publications Warehouse

    Eads, D.A.; Biggins, D.E.; Jachowski, D.S.; Livieri, T.M.; Millspaugh, J.J.; Forsberg, M.

    2010-01-01

    Black-footed ferrets (Mustela nigripes) often hunt at night, attacking normally diurnal prairie dogs (Cynomys spp.) in underground burrow systems. While monitoring black-footed ferrets in South Dakota during morning daylight hours, we observed an adult female ferret ambush a black-tailed prairie dog (C. ludovicianus) emerging from a burrow. On a neighboring colony, we observed a second adult female ferret engaging in similar ambush behaviors on 12 occasions, although prey was not visible. We retrospectively assessed radio-telemetry data on white-tailed prairie dogs (C. leucurus) and a male and a female ferret to evaluate ferret activity in relation to timing of prairie dog emergence. Activity of radio-collared ferrets was high during the hourly period when prairie dogs first emerged and the following 2 hr, relative to later daylight hours. Such behavior is consistent with behaviors observed in South Dakota. Nighttime movements by ferrets might involve hunting but also reconnaissance of prey preparatory to morning ambush attacks.

  10. Potential direct and indirect effects of climate change on a shallow natural lake fish assemblage

    USGS Publications Warehouse

    Breeggemann, Jason J.; Kaemingk, Mark A.; DeBates, T.J.; Paukert, Craig P.; Krause, J.; Letvin, Alexander P.; Stevens, Tanner M.; Willis, David W.; Chipps, Steven R.

    2015-01-01

    Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (−3 to −45% change) compared to largemouth bass that experienced subtle changes (4 to −6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.

  11. Linking mesopelagic prey abundance and distribution to the foraging behavior of a deep-diving predator, the northern elephant seal

    NASA Astrophysics Data System (ADS)

    Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi

    2017-06-01

    The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.

  12. Microstructure and Cross-Sectional Shape of Limb Bones in Great Horned Owls and Red-Tailed Hawks: How Do These Features Relate to Differences in Flight and Hunting Behavior?

    PubMed Central

    Marelli, Crystal A.; Simons, Erin L. R.

    2014-01-01

    The Red-tailed Hawk and Great Horned Owl are two species of raptor that are similar in body size, diet, and habitat. Both species use their hindlimbs during hunting, but differ in foot morphology, how they approach and immobilize prey, and the average size of prey captured. They also differ in primary flight style: the Red-tailed Hawk uses static soaring and the Great Horned Owl uses flap-gliding. The objectives of this study were to characterize the microstructure and cross-sectional shape of limb bones of these species and examine the relationship with flight and hunting behaviors. The mid-shaft of six limb bones from six individuals of each species was sampled. The degree of bone laminarity (proportion of circular primary vascular canals) and cross-sectional geometric parameters were calculated. In both species, the humerus and femur exhibited features that suggest high resistance to torsional loading, whereas the tibiotarsus and phalanges had a shape more likely to resist compression and bending in a specific plane. The femur of the Red-tailed Hawk exhibited higher laminarity and larger polar moment of area than that of the Great Horned Owl. The tibiotarsus was more elliptical than that of the Great Horned Owl. The hawk approaches prey from a more horizontal axis, takes prey of greater mass, and is more likely to pursue prey on the ground, which could potentially be causing more torsional loads on the femur and bending loads on the tibiotarsus. In addition, differences in polar moment of area of the phalanges between the species could relate to differences in foot morphology or digit length. The humerus and ulna of the flap-gliding Great Horned Owl are more elliptical than the static soaring Red-tailed Hawk, a shape that may better resist the bending loads associated with a larger amount of flapping. PMID:25162595

  13. Microstructure and cross-sectional shape of limb bones in Great Horned Owls and Red-tailed Hawks: how do these features relate to differences in flight and hunting behavior?

    PubMed

    Marelli, Crystal A; Simons, Erin L R

    2014-01-01

    The Red-tailed Hawk and Great Horned Owl are two species of raptor that are similar in body size, diet, and habitat. Both species use their hindlimbs during hunting, but differ in foot morphology, how they approach and immobilize prey, and the average size of prey captured. They also differ in primary flight style: the Red-tailed Hawk uses static soaring and the Great Horned Owl uses flap-gliding. The objectives of this study were to characterize the microstructure and cross-sectional shape of limb bones of these species and examine the relationship with flight and hunting behaviors. The mid-shaft of six limb bones from six individuals of each species was sampled. The degree of bone laminarity (proportion of circular primary vascular canals) and cross-sectional geometric parameters were calculated. In both species, the humerus and femur exhibited features that suggest high resistance to torsional loading, whereas the tibiotarsus and phalanges had a shape more likely to resist compression and bending in a specific plane. The femur of the Red-tailed Hawk exhibited higher laminarity and larger polar moment of area than that of the Great Horned Owl. The tibiotarsus was more elliptical than that of the Great Horned Owl. The hawk approaches prey from a more horizontal axis, takes prey of greater mass, and is more likely to pursue prey on the ground, which could potentially be causing more torsional loads on the femur and bending loads on the tibiotarsus. In addition, differences in polar moment of area of the phalanges between the species could relate to differences in foot morphology or digit length. The humerus and ulna of the flap-gliding Great Horned Owl are more elliptical than the static soaring Red-tailed Hawk, a shape that may better resist the bending loads associated with a larger amount of flapping.

  14. Predation upon Hatchling Dinosaurs by a New Snake from the Late Cretaceous of India

    PubMed Central

    Wilson, Jeffrey A.; Mohabey, Dhananjay M.; Peters, Shanan E.; Head, Jason J.

    2010-01-01

    Derived large-mouthed snakes (macrostomatans) possess numerous specializations in their skull and lower jaws that allow them to consume large vertebrate prey. In contrast, basal snakes lack these adaptations and feed primarily on small prey items. The sequence of osteological and behavioral modifications involved in the evolution of the macrostomatan condition has remained an open question because of disagreement about the origin and interrelationships of snakes, the paucity of well-preserved early snake fossils on many continental landmasses, and the lack of information about the feeding ecology of early snakes. We report on a partial skeleton of a new 3.5-m-long snake, Sanajeh indicus gen. et sp. nov., recovered from Upper Cretaceous rocks of western India. S. indicus was fossilized in association with a sauropod dinosaur egg clutch, coiled around an egg and adjacent to the remains of a ca. 0.5-m-long hatchling. Multiple snake-egg associations at the site strongly suggest that S. indicus frequented nesting grounds and preyed on hatchling sauropods. We interpret this pattern as “ethofossil” preservation of feeding behavior. S. indicus lacks specializations of modern egg-eaters and of macrostomatans, and skull and vertebral synapomorphies place it in an intermediate position in snake phylogeny. Sanajeh and its large-bodied madtsoiid sister taxa Yurlunggur camfieldensis and Wonambi naracoortensis from the Neogene of Australia show specializations for intraoral prey transport but lack the adaptations for wide gape that characterize living macrostomatan snakes. The Dholi Dungri fossils are the second definitive association between sauropod eggs and embryonic or hatchling remains. New fossils from western India provide direct evidence of feeding ecology in a Mesozoic snake and demonstrate predation risks for hatchling sauropod dinosaurs. Our results suggest that large body size and jaw mobility afforded some non-macrostomatan snakes a greater diversity of prey items than previously suspected on the basis of extant basal snakes. PMID:20209142

  15. Insect prey characteristics affecting regional variation in chimpanzee tool use.

    PubMed

    Sanz, Crickette M; Deblauwe, Isra; Tagg, Nikki; Morgan, David B

    2014-06-01

    It is an ongoing interdisciplinary pursuit to identify the factors shaping the emergence and maintenance of tool technology. Field studies of several primate taxa have shown that tool using behaviors vary within and between populations. While similarity in tools over spatial and temporal scales may be the product of socially learned skills, it may also reflect adoption of convergent strategies that are tailored to specific prey features. Much has been claimed about regional variation in chimpanzee tool use, with little attention to the ecological circumstances that may have shaped such differences. This study examines chimpanzee tool use in termite gathering to evaluate the extent to which the behavior of insect prey may dictate chimpanzee technology. More specifically, we conducted a systematic comparison of chimpanzee tool use and termite prey between the Goualougo Triangle in the Republic of Congo and the La Belgique research site in southeast Cameroon. Apes at both of these sites are known to use tool sets to gather several species of termites. We collected insect specimens and measured the characteristics of their nests. Associated chimpanzee tool assemblages were documented at both sites and video recordings were conducted in the Goualougo Triangle. Although Macrotermitinae assemblages were identical, we found differences in the tools used to gather these termites. Based on measurements of the chimpanzee tools and termite nests at each site, we concluded that some characteristics of chimpanzee tools were directly related to termite nest structure. While there is a certain degree of uniformity within approaches to particular tool tasks across the species range, some aspects of regional variation in hominoid technology are likely adaptations to subtle environmental differences between populations or groups. Such microecological differences between sites do not negate the possibility of cultural transmission, as social learning may be required to transmit specific behaviors among individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hydrodynamic Mediation of Killifish Predation on Infaunal Polychaetes

    NASA Astrophysics Data System (ADS)

    Hentschel, B. T.; Hayman, N. T.; Anderson, T. W.

    2016-02-01

    To explore predator-prey interactions between California killifish (Fundulus parvipinnis) and spionid polychaetes (Polydora cornuta and Streblospio benedicti) in tidal creeks, we conducted a laboratory flume experiment to quantify whether killifish prey-patch selectivity varies with flow speed. The flume included a 300-cm2 area of defaunated sediment within which we centrally positioned 24 P. cornuta, 24 S. benedicti, or no worms as a prey-free control. We videotaped groups of three killifish for 50 min at one of six unidirectional flow speeds (3, 6, 9, 12, 15, or 18 cm/s measured 1.5 cm above bottom) and recorded their bite rate anywhere in the sediment area vs. bites directed at the central prey patch (98 cm2). Each flow speed and prey treatment was replicated by four independent flume runs (i.e., 72 total flume runs). The percentage of bites directed at the central patch varied significantly with flow speed and worm presence. With defaunated sediment only, 33% of bites were directed at the central patch at all flow speeds, consistent with a null model of non-selective foraging. When either worm species inhabited the central patch, 65% of bites were directed at the central patch at 3 and 6 cm/s, and patch selectivity declined linearly as flow increased. Despite differences in morphology and behavior, the two prey species elicited similar foraging activity by killifish. We pooled the P. cornuta and S. benedicti treatments to determine the flow speed at which prey-patch selectivity by killifish became statistically indistinguishable from non-selective biting in the absence of prey. At flow speeds of 3, 6, and 9 cm/s, the percentage of bites located in the 98-cm2 patch was significantly greater when live worms were present compared to the prey-free controls. At 12, 15, and 18 cm/s, there was not a significant difference between the control patches and those containing live worms, indicating 12 cm/s is a flow threshold above which killifish cannot selectively forage on dense patches of infauna.

  17. Prey Capture, Ingestion, and Digestion Dynamics of Octopus vulgaris Paralarvae Fed Live Zooplankton

    PubMed Central

    Nande, Manuel; Presa, Pablo; Roura, Álvaro; Andrews, Paul L. R.; Pérez, Montse

    2017-01-01

    Octopus vulgaris is a species of great interest in research areas such as neurobiology, ethology, and ecology but also a candidate species for aquaculture as a food resource and for alleviating the fishing pressure on its wild populations. This study aimed to characterize the predatory behavior of O. vulgaris paralarvae and to quantify their digestive activity. Those processes were affordable using the video-recording analysis of 3 days post-hatching (dph), mantle-transparent paralarvae feeding on 18 types of live zooplanktonic prey. We show for the first time in a live cephalopod that octopus paralarvae attack, immobilize, drill, and ingest live cladocerans and copepods with 100% efficiency, which decreases dramatically to 60% on decapod prey (Pisidia longicornis). The majority (85%) of successful attacks targeted the prey cephalothorax while unsuccessful attacks either targeted the dorsal cephalothorax or involved prey defensive strategies (e.g., juvenile crab megalopae) or prey protected by thick carapaces (e.g., gammaridae amphipods). After immobilization, the beak, the buccal mass and the radula were involved in exoskeleton penetration and content ingestion. Ingestion time of prey content was rapid for copepods and cladocerans (73.13 ± 23.34 s) but much slower for decapod zoeae and euphausiids (152.49 ± 29.40 s). Total contact time with prey was always <5 min. Contrary to the conventional view of crop filling dynamics observed in adult O. vulgaris, food accumulated first in the stomach of paralarvae and the crop filled after the stomach volume plateaued. Peristaltic crop contractions (~18/min) moved food into the stomach (contractions ~30/min) from where it passed to the caecum. Pigmented food particles were seen to enter the digestive gland, 312 ± 32 s after the crop reached its maximum volume. Digestive tract contents passed into the terminal intestine by peristalsis (contraction frequency ~50/min) and defaecation was accompanied by an increased frequency of mantle contractions. Current results provide novel insights into both, O. vulgaris paralarvae—live prey capture strategies and the physiological mechanisms following ingestion, providing key information required to develop an effective rearing protocol for O. vulgaris paralarvae. PMID:28860996

  18. Linking animal-borne video to accelerometers reveals prey capture variability

    PubMed Central

    Watanabe, Yuuki Y.; Takahashi, Akinori

    2013-01-01

    Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor prey captures by a predator by deploying a video camera (lasting for 85 min) and two accelerometers (on the head and back, lasting for 50 h) on free-swimming Adélie penguins. The movies showed that penguins moved the heads rapidly to capture krill in midwater and fish (Pagothenia borchgrevinki) underneath the sea ice. Captures were remarkably fast (two krill per second in swarms) and efficient (244 krill or 33 P. borchgrevinki in 78–89 min). Prey captures were detected by the signal of head acceleration relative to body acceleration with high sensitivity and specificity (0.83–0.90), as shown by receiver-operating characteristic analysis. Extension of signal analysis to the entire behavioral records showed that krill captures were spatially and temporally more variable than P. borchgrevinki captures. Notably, the frequency distribution of krill capture rate closely followed a power-law model, indicating that the foraging success of penguins depends on a small number of very successful dives. The three steps illustrated here (i.e., video observations, linking video to behavioral signals, and extension of signal analysis) are unique approaches to understanding the spatial and temporal variability of ecologically important events such as foraging. PMID:23341596

  19. Diel diet of fantail darter in a tributary to Lake Ontario, New York, USA

    USGS Publications Warehouse

    Chalupnicki, Marc A.; Johnson, James H.

    2016-01-01

    The foraging behavior of benthic fishes in streams is seldom examined but is vital to the health of the aquatic community. We examined the feeding ecology of the fantail darter (Etheostoma flaballere) in Trout Brook, a tributary of the Salmon River in central New York, USA. Of the six time periods examined, fantail darters fed most intensely from 1600–2000 h, with ephemeropterans the major prey consumed during all time periods except for 2000 where chironomid larvae were consumed the most. Fantail darter diet composition was similar across all time periods except during the night which appeared to be uniquely different. According to the prey selection analysis, fantail darters appear to prefer dipterans and ephemeropterans but also demonstrated an opportunistic behavior feeding on what was available in the brook.

  20. Physical evidence of predatory behavior in Tyrannosaurus rex.

    PubMed

    DePalma, Robert A; Burnham, David A; Martin, Larry D; Rothschild, Bruce M; Larson, Peter L

    2013-07-30

    Feeding strategies of the large theropod, Tyrannosaurus rex, either as a predator or a scavenger, have been a topic of debate previously compromised by lack of definitive physical evidence. Tooth drag and bone puncture marks have been documented on suggested prey items, but are often difficult to attribute to a specific theropod. Further, postmortem damage cannot be distinguished from intravital occurrences, unless evidence of healing is present. Here we report definitive evidence of predation by T. rex: a tooth crown embedded in a hadrosaurid caudal centrum, surrounded by healed bone growth. This indicates that the prey escaped and lived for some time after the injury, providing direct evidence of predatory behavior by T. rex. The two traumatically fused hadrosaur vertebrae partially enclosing a T. rex tooth were discovered in the Hell Creek Formation of South Dakota.

  1. Physical evidence of predatory behavior in Tyrannosaurus rex

    NASA Astrophysics Data System (ADS)

    DePalma, Robert A., II; Burnham, David A.; Martin, Larry D.; Rothschild, Bruce M.; Larson, Peter L.

    2013-07-01

    Feeding strategies of the large theropod, Tyrannosaurus rex, either as a predator or a scavenger, have been a topic of debate previously compromised by lack of definitive physical evidence. Tooth drag and bone puncture marks have been documented on suggested prey items, but are often difficult to attribute to a specific theropod. Further, postmortem damage cannot be distinguished from intravital occurrences, unless evidence of healing is present. Here we report definitive evidence of predation by T. rex: a tooth crown embedded in a hadrosaurid caudal centrum, surrounded by healed bone growth. This indicates that the prey escaped and lived for some time after the injury, providing direct evidence of predatory behavior by T. rex. The two traumatically fused hadrosaur vertebrae partially enclosing a T. rex tooth were discovered in the Hell Creek Formation of South Dakota.

  2. Physical evidence of predatory behavior in Tyrannosaurus rex

    PubMed Central

    DePalma, Robert A.; Burnham, David A.; Martin, Larry D.; Rothschild, Bruce M.; Larson, Peter L.

    2013-01-01

    Feeding strategies of the large theropod, Tyrannosaurus rex, either as a predator or a scavenger, have been a topic of debate previously compromised by lack of definitive physical evidence. Tooth drag and bone puncture marks have been documented on suggested prey items, but are often difficult to attribute to a specific theropod. Further, postmortem damage cannot be distinguished from intravital occurrences, unless evidence of healing is present. Here we report definitive evidence of predation by T. rex: a tooth crown embedded in a hadrosaurid caudal centrum, surrounded by healed bone growth. This indicates that the prey escaped and lived for some time after the injury, providing direct evidence of predatory behavior by T. rex. The two traumatically fused hadrosaur vertebrae partially enclosing a T. rex tooth were discovered in the Hell Creek Formation of South Dakota. PMID:23858435

  3. Collection of mammal manure and other Debris by nesting Burrowing Owls

    USGS Publications Warehouse

    Smith, M.D.; Conway, C.J.

    2011-01-01

    Burrowing Owls (Athene cunicularia) routinely collect and scatter dry manure of mammals around their nesting burrows. Recent studies have suggested this behavior attracts insect prey to the nesting burrow. However, some Burrowing Owls do not use manure, but instead, collect and scatter other materials (e.g., grass, moss, paper, plastic) around their nesting burrow in a similar fashion. Use of these materials seemingly contradicts the prey-attraction hypothesis. Using observational and experimental methods, we tested whether Burrowing Owls preferred manure to other materials commonly found at nesting burrows in eastern Washington. We found a wide variety of materials at nests, but grass and manure were the most common materials. The amount of manure present at nests was negatively correlated with the amount of other materials, and with the distance to the nearest source of manure. Burrowing Owls showed no preference between horse manure and grass divots at experimental supply stations that we placed near nesting burrows. They did prefer these two materials to carpet pieces and aluminum foil (both materials that are often found at Burrowing Owl nests). Our results did not support the premise that Burrowing Owls specifically seek out manure when lining their nesting burrows. The unusual behavior of collecting and scattering mammal manure and other debris at Burrowing Owl nests may serve functions other than (or in addition to) prey attraction and alternative hypotheses need further testing before the function of this behavior is certain. ?? 2011 The Raptor Research Foundation, Inc.

  4. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    PubMed

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.

  5. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    PubMed Central

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632

  6. Population variance in prey, diets and their macronutrient composition in an endangered marine predator, the Franciscana dolphin

    NASA Astrophysics Data System (ADS)

    Denuncio, Pablo; Paso Viola, Maria N.; Machovsky-Capuska, Gabriel E.; Raubenheimer, David; Blasina, Gabriela; Machado, Rodrigo; Polizzi, Paula; Gerpe, Marcela; Cappozzo, Humberto L.; Rodriguez, Diego H.

    2017-11-01

    Disentangling the intricacies governing dietary breadth in wild predators is important for understanding their role in structuring ecological communities and provides critical information for the management and conservation of ecologically threatened species. Here we combined dietary analysis, nutritional composition analysis of prey, literature data and nutritional geometry (right-angled mixture triangle models -RMT-) to examine the diet of the most threatened small cetacean in the western South Atlantic Ocean, the Franciscana dolphin (Pontoporia blainvillei). We applied a recently developed extension of niche theory based on the RMT to help understand the dietary strategies of this species. Our results showed that across their range the Franciscanas consumed prey with variable protein-to-lipid energy ratios (LMM, p < 0.001). In an intensive study of one area, FMA IV, we found that dolphins sub-populations, which recent genetic evidence suggest should be differentiated into three management units, have diets with different protein energy and water mass compositions, but similar protein-to-lipid energy ratios. Furthermore, dolphins from the three areas mixed different combinations of prey in their diets to achieve the observed macronutrient ratios. These results suggest that the different habitats that each sub-population occupies (estuarine, north marine area and south marine) might be associated with different prey composition niches, but similar realized nutritional niches. Future priorities are to better comprehend possible geographical and long-term seasonal effects on prey consumption and dietary breadth of the different Franciscana populations to identify potential impacts (environmental and human-related), enhance the current management strategies to protect this endangered marine predator.

  7. Fussy Feeders: Phyllosoma Larvae of the Western Rocklobster (Panulirus cygnus) Demonstrate Prey Preference

    PubMed Central

    Saunders, Megan I.; Thompson, Peter A.; Jeffs, Andrew G.; Säwström, Christin; Sachlikidis, Nikolas; Beckley, Lynnath E.; Waite, Anya M.

    2012-01-01

    The Western Rocklobster (Panulirus cygnus) is the most valuable single species fishery in Australia and the largest single country spiny lobster fishery in the world. In recent years a well-known relationship between oceanographic conditions and lobster recruitment has become uncoupled, with significantly lower recruitment than expected, generating interest in the factors influencing survival and development of the planktonic larval stages. The nutritional requirements and wild prey of the planktotrophic larval stage (phyllosoma) of P. cygnus were previously unknown, hampering both management and aquaculture efforts for this species. Ship-board feeding trials of wild-caught mid-late stage P. cygnus phyllosoma in the eastern Indian Ocean, off the coast of Western Australia, were conducted in July 2010 and August-September 2011. In a series of experiments, phyllosoma were fed single and mixed species diets of relatively abundant potential prey items (chaetognaths, salps, and krill). Chaetognaths were consumed in 2–8 times higher numbers than the other prey, and the rate of consumption of chaetognaths increased with increasing concentration of prey. The highly variable lipid content of the phyllosoma, and the fatty acid profiles of the phyllosoma and chaetognaths, indicated they were from an oligotrophic oceanic food chain where food resources for macrozooplankton were likely to be constrained. Phyllosoma fed chaetognaths over 6 days showed significant changes in some fatty acids and tended to accumulate lipid, indicating an improvement in overall nutritional condition. The discovery of a preferred prey for P. cygnus will provide a basis for future oceanographic, management and aquaculture research for this economically and ecologically valuable species. PMID:22586479

  8. Taphonomic and zooarchaeological implications of spotted hyena (crocuta crocuta) bone accumulations in kenya: A modern behavioral ecological approach

    USGS Publications Warehouse

    Lansing, S.W.; Cooper, S.M.; Boydston, E.E.; Holekamp, K.E.

    2009-01-01

    The significant impact of extant carnivores, particularly spotted hyenas, on the depo-sitional history and physical characteristics of archaeofaunal and paleontological assemblages is well recognized. We focus on the behavioral ecology of extant spotted hyenas (Crocuta crocuta) in relation to bone accumulations produced by one East African clan at communal dens. Limbs and skulls of prey animals more frequently appear at dens than do other carcass portions. These items reflect the relative abundance of prey species near dens; carnivore remains are poorly represented. Comparative analysis reveals that bones are deposited far more slowly (<7 carcass portions per month) and accumulations tend to be smaller at Crocuta dens than at dens of either brown (Para-hyaena brunnea) or striped (Hyaena hyaena) hyenas. We propose that extant Crocuta bone accumu-lation rates and sizes are likely affected by prey species abundance, clan size, social interactions within the clan, and the type and availability of den sites. We also suggest that the potential for intraspecific behavioral variability in bone accumulation patterns is important when comparisons are made among spotted hyena populations and across hyena species. For example, accumulation patterns may be dramatically influenced by the temporal span, potentially ranging from days to hundreds or thousands of years, in which bones are collected, depending on the species-specific history of occupation at a given site. Understanding the behavioral and ecological variability likely to influence bone accumulation patterns at dens used by different hyaenids will allow taphonomists and zooarchaeologists to refine their knowledge of mechanisms underlying site formation pro-cesses and potential causes of variability in deeper-time den assemblages. ?? 2009 The Paleontological Society.

  9. Microhabitat Selection by Marine Mesoconsumers in a Thermally Heterogeneous Habitat: Behavioral Thermoregulation or Avoiding Predation Risk?

    PubMed Central

    Vaudo, Jeremy J.; Heithaus, Michael R.

    2013-01-01

    Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers – juvenile giant shovelnose rays (Glaucostegus typus), reticulate whiprays (Himantura uarnak), and pink whiprays (H. fai) – in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season) suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics. PMID:23593501

  10. Experimental Test of Preferences for an Invasive Prey by an Endangered Predator: Implications for Conservation.

    PubMed

    Wilcox, Rebecca C; Fletcher, Robert J

    2016-01-01

    Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world's most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite's (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.

  11. A Day in the Life of Fish Larvae: Modeling Foraging and Growth Using Quirks

    PubMed Central

    Huebert, Klaus B.; Peck, Myron A.

    2014-01-01

    This article introduces “Quirks,” a generic, individual-based model synthesizing over 40 years of empirical and theoretical insights into the foraging behavior and growth physiology of marine fish larvae. In Quirks, different types of larvae are defined by a short list of their biological traits, and all foraging and growth processes (including the effects of key environmental factors) are modeled following one unified set of mechanistic rules. This approach facilitates ecologically meaningful comparisons between different species and environments. We applied Quirks to model young exogenously feeding larvae of four species: 5.5-mm European anchovy (Engraulis encrasicolus), 7-mm Atlantic cod (Gadus morhua), 13-mm Atlantic herring (Clupea harengus), and 7-mm European sprat (Sprattus sprattus). Modeled growth estimates explained the majority of variability among 53 published empirical growth estimates, and displayed very little bias: 0.65%±1.2% d−1 (mean ± standard error). Prey organisms of ∼67% the maximum ingestible prey length were optimal for all larval types, in terms of the expected ingestion per encounter. Nevertheless, the foraging rate integrated over all favorable prey sizes was highest when smaller organisms made up >95% of the prey biomass under the assumption of constant normalized size spectrum slopes. The overall effect of turbulence was consistently negative, because its detrimental influence on prey pursuit success exceeded its beneficial influence on prey encounter rate. Model sensitivity to endogenous traits and exogenous environmental factors was measured and is discussed in depth. Quirks is free software and open source code is provided. PMID:24901937

  12. The influence of alewife year-class strength on prey selection and abundance of age-1 Chinook salmon in Lake Michigan

    USGS Publications Warehouse

    Warner, D.M.; Kiley, C.S.; Claramunt, R.M.; Clapp, D.F.

    2008-01-01

    We used growth and diet data from a fishery-independent survey of Chinook salmon Oncorhynchus tshawytscha, acoustic estimates of prey density and biomass, and statistical catch-at-age modeling to study the influence of the year-class strength of alewife Alosa pseudoharengus on the prey selection and abundance of age-1 Chinook salmon in Lake Michigan during the years 1992-1996 and 2001-2005. Alewives age 2 or younger were a large part of age-1 Chinook salmon diets but were not selectively fed upon by age-1 Chinook salmon in most years. Feeding by age-1 Chinook salmon on alewives age 2 or younger became selective as the biomass of alewives in that young age bracket increased, and age-1 Chinook salmon also fed selectively on young bloaters Coregonus hoyi when bloater density was high. Selection of older alewives decreased at high densities of alewives age 2 or younger and, in some cases, high densities of bloater. The weight and condition of age-1 Chinook salmon were not related to age-1 Chinook salmon abundance or prey abundance, but the abundance of age-1 Chinook salmon in year t was positively related to the density of age-0 alewives in year t - 1. Our results suggest that alewife year-class strength exerts a positive bottom-up influence on age-1 Chinook salmon abundance, prey switching behavior by young Chinook salmon contributing to the stability of the predator-prey relationship between Chinook salmon and alewives. ?? Copyright by the American Fisheries Society 2008.

  13. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California.

    PubMed

    Newsome, Seth D; Collins, Paul W; Rick, Torben C; Guthrie, Daniel A; Erlandson, Jon M; Fogel, Marilyn L

    2010-05-18

    Studies of current interactions among species, their prey, and environmental factors are essential for mitigating immediate threats to population viability, but the true range of behavioral and ecological flexibility can be determined only through research on deeper timescales. Ecological data spanning centuries to millennia provide important contextual information for long-term management strategies, especially for species that now are living in relict populations. Here we use a variety of methods to reconstruct bald eagle diets and local abundance of their potential prey on the Channel Islands from the late Pleistocene to the time when the last breeding pairs disappeared from the islands in the mid-20th century. Faunal and isotopic analysis of bald eagles shows that seabirds were important prey for immature/adult eagles for millennia before the eagles' local extirpation. In historic times (A.D. 1850-1950), however, isotopic and faunal data show that breeding bald eagles provisioned their chicks with introduced ungulates (e.g., sheep), which were locally present in high densities. Today, bald eagles are the focus of an extensive conservation program designed to restore a stable breeding population to the Channel Islands, but native and nonnative prey sources that were important for bald eagles in the past are either diminished (e.g., seabirds) or have been eradicated (e.g., introduced ungulates). In the absence of sufficient resources, a growing bald eagle population on the Channel Islands could expand its prey base to include carrion from local pinniped colonies, exert predation pressure on a recovering seabird population, and possibly prey on endangered island foxes.

  14. Enhanced susceptibility to predation in corals of compromised condition

    PubMed Central

    Cameron, Caitlin M.; Miller, Margaret W.

    2015-01-01

    The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance. PMID:26734500

  15. Time-lapse video sysem used to study nesting gyrfalcons

    USGS Publications Warehouse

    Booms, Travis; Fuller, Mark R.

    2003-01-01

    We used solar-powered time-lapse video photography to document nesting Gyrfalcon (Falco rusticolus) food habits in central West Greenland from May to July in 2000 and 2001. We collected 2677.25 h of videotape from three nests, representing 94, 87, and 49% of the nestling period at each nest. The video recorded 921 deliveries of 832 prey items. We placed 95% of the items into prey categories. The image quality was good but did not reveal enough detail to identify most passerines to species. We found no evidence that Gyrfalcons were negatively affected by the video system after the initial camera set-up. The video system experienced some mechanical problems but proved reliable. The system likely can be used to effectively document the food habits and nesting behavior of other birds, especially those delivering large prey to a nest or other frequently used site.

  16. Predator-prey interactions between the corallivorous snail Coralliophila abbreviata and the carnivorous deltoid rock snail Thais deltoidea.

    PubMed

    Sharp, William C; Delgado, Gabriel A

    2015-10-01

    Coral reefs in the Florida Keys have become highly degraded in recent decades, prompting efforts to reestablish populations of vital reef-accreting corals to restore reef structure and ecological function. However, predation on these corals by the corallivorous gastropod Coralliophila abbreviata has been a substantial and chronic impediment to these restoration efforts. We conducted laboratory experiments to determine whether Thais deltoidea, a carnivorous gastropod that commonly occurs with C. abbreviata, is a predator of C. abbreviata. We demonstrated that T. deltoidea readily preys upon C. abbreviata and preferentially targets smaller individuals, a foraging behavior that may optimize the energy gained due to reduced handling and consumption times. If this trophic relationship proves ecologically relevant, understanding the predator-prey dynamics between these species could ultimately aid in the development of a comprehensive coral reef restoration strategy for Florida.

  17. Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator

    PubMed Central

    Couturier, Christine S.; Stecyk, Jonathan A. W.; Rummer, Jodie L.; Munday, Philip L.; Nilsson, Göran E.

    2013-01-01

    Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 μatm by year 2100, with extremes above 2000 μatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 μatm) on resting (Ṁ O2rest) and maximum (Ṁ O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and P. amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28 – 39 % increase in Ṁ O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining Ṁ O2rest. By contrast, the same treatment had no significant effects on Ṁ O2rest or Ṁ O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 μatm CO2 resulted in Ṁ O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the ṀO2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2. PMID:23916817

  18. Interactions of multiple predators with different foraging modes in an aquatic food web.

    PubMed

    Carey, Michael P; Wahl, David H

    2010-02-01

    Top predators can have different foraging modes that may alter their interactions and effects on food webs. Interactions between predators may be non-additive resulting from facilitation or interference, whereas their combined effects on a shared prey may result in emergent effects that are risk enhanced or risk reduced. To test the importance of multiple predators with different foraging modes, we examined the interaction between a cruising predator (largemouth bass, Micropterus salmoides) and an ambush predator (muskellunge, Esox masquinongy) foraging on a shared prey (bluegill sunfish, Lepomis macrochirus) with strong anti-predator defense behaviors. Additive and substitution designs were used to compare individual to combined predator treatments in experimental ponds. The multiple predator interaction facilitated growth of the cruising predator in the combined predator treatments, whereas predator species had substitutable effects on the growth of the ambush predator. The combined predator treatments created an emergent effect on the prey; however, the direction was dependent on the experimental design. The additive design found a risk-reducing effect, whereas the substitution design found a risk-enhancing effect for prey fish. Indirect effects from the predators weakly extended to lower trophic levels (i.e., zooplankton community). Our results highlight the need to consider differences in foraging mode of top predators, interactions between predators, and emergent effects on prey to understand food webs.

  19. Partitioning mechanisms of predator interference in different habitats.

    PubMed

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  20. Calcium Carbonate Dissolution Above the Lysocline: Implications of Copepod Grazing on Coccolithophores

    NASA Astrophysics Data System (ADS)

    White, M. M.; Waller, J. D.; Lubelczyk, L.; Drapeau, D.; Bowler, B.; Wyeth, A.; Fields, D.; Balch, W. M.

    2016-02-01

    Copepod-coccolithophore predator-prey interactions are of great importance because they facilitate the export of particulate inorganic and organic carbon (PIC and POC) from the surface ocean. Coccolith dissolution in acidic copepod guts has been proposed as a possible explanation for the paradox of PIC dissolution above the lysocline, but warrants further investigation. Using a new application of the 14C-microdiffusion technique, we investigated the dissolution of coccoliths in copepod guts. We considered both an estuarine predator-prey model (Acartia tonsa and Pleurochrysis carterae) and an open ocean predator-prey model (Calanus finmarchicus and Emiliania huxleyi). Additionally, we considered the impacts of pCO2 on this process to advance our understanding of the effects of ocean acidification on trophic interactions. In the estuarine predator-prey model, fecal pellets produced immediately after previously-starved copepods grazed on P. carterae had PIC/POC ratios 27-40 % lower than that of the algae, indicating PIC dissolution within the copepod gut, with no impact of pCO2 on this dissolution. Subsequent fecal pellets showed increasing PIC/POC, suggesting that calcite dissolution decreases as the gut fills. The open ocean predator-prey model showed equivocal results, indicating high variability among individual grazing behavior, and therefore no consistent impact of copepod grazing on coccolith dissolution above the lysocline in the open ocean. We will further discuss the effects of fecal pellet PIC/POC ratios on sinking rate.

  1. Noise-induced shifts in the population model with a weak Allee effect

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev

    2018-02-01

    We consider the Truscott-Brindley system of interacting phyto- and zooplankton populations with a weak Allee effect. We add a random noise to the parameter of the prey carrying capacity, and study how the noise affects the dynamic behavior of this nonlinear prey-predator model. Phenomena of the stochastic excitement and noise-induced shifts in zones of the Andronov-Hopf bifurcation and Canard explosion are analyzed on the base of the direct numerical simulation and stochastic sensitivity functions technique. A relationship of these phenomena with transitions between order and chaos is discussed.

  2. Risky behaviors: effects of Toxorhynchites splendens (Diptera: Culicidae) predator on the behavior of three mosquito species.

    PubMed

    Zuharah, Wan Fatma; Fadzly, Nik; Yusof, Nur Aishah; Dieng, Hamady

    2015-01-01

    Viable biocontrol agents for mosquito control are quite rare, therefore improving the efficacy of existing biological agents is an important study. We need to have a better understanding of the predation-risk behavioral responses toward prey. This research examined prey choices by Toxorhynchites splendens by monitoring the behavioral responses of Aedes aegypti, Aedes albopictus, and Anopheles sinensis larvae when exposed to the predator. The results show that Tx. splendens prefers to consume Ae. aegypti larvae. The larvae exhibited different behavioral responses when Tx. splendens was present which suggest vulnerability in the presence of predators. "Thrashing" and "browsing" activities were greater in Ae. aegypti larvae. Such active and risky movements could cause vulnerability for the Ae. aegypti larvae due to increasing of water disturbance. In contrast, Ae. albopictus and An. sinensis larvae exhibited passive, low-risk behaviors, spending most of the time on the "wall" position near the edges of the container. We postulated that Ae. aegypti has less ability to perceive cues from predation and could not successfully alter its behavior to reduce risk of predation risk compared with Ae. albopictus and An. sinensis. Our results suggest that Tx. splendens is a suitable biocontrol agent in controlling dengue hemorrhagic vector, Ae. aegypti. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  3. Critical neuropsychobiological analysis of panic attack- and anticipatory anxiety-like behaviors in rodents confronted with snakes in polygonal arenas and complex labyrinths: a comparison to the elevated plus- and T-maze behavioral tests.

    PubMed

    Coimbra, Norberto C; Paschoalin-Maurin, Tatiana; Bassi, Gabriel S; Kanashiro, Alexandre; Biagioni, Audrey F; Felippotti, Tatiana T; Elias-Filho, Daoud H; Mendes-Gomes, Joyce; Cysne-Coimbra, Jade P; Almada, Rafael C; Lobão-Soares, Bruno

    2017-01-01

    To compare prey and snake paradigms performed in complex environments to the elevated plus-maze (EPM) and T-maze (ETM) tests for the study of panic attack- and anticipatory anxiety-like behaviors in rodents. PubMed was reviewed in search of articles focusing on the plus maze test, EPM, and ETM, as well as on defensive behaviors displayed by threatened rodents. In addition, the authors' research with polygonal arenas and complex labyrinth (designed by the first author for confrontation between snakes and small rodents) was examined. The EPM and ETM tests evoke anxiety/fear-related defensive responses that are pharmacologically validated, whereas the confrontation between rodents and snakes in polygonal arenas with or without shelters or in the complex labyrinth offers ethological conditions for studying more complex defensive behaviors and the effects of anxiolytic and panicolytic drugs. Prey vs. predator paradigms also allow discrimination between non-oriented and oriented escape behavior. Both EPM and ETM simple labyrinths are excellent apparatuses for the study of anxiety- and instinctive fear-related responses, respectively. The confrontation between rodents and snakes in polygonal arenas, however, offers a more ethological environment for addressing both unconditioned and conditioned fear-induced behaviors and the effects of anxiolytic and panicolytic drugs.

  4. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates

    PubMed Central

    Iebba, Valerio; Totino, Valentina; Santangelo, Floriana; Gagliardi, Antonella; Ciotoli, Luana; Virga, Alessandra; Ambrosi, Cecilia; Pompili, Monica; De Biase, Riccardo V.; Selan, Laura; Artini, Marco; Pantanella, Fabrizio; Mura, Francesco; Passariello, Claudio; Nicoletti, Mauro; Nencioni, Lucia; Trancassini, Maria; Quattrucci, Serena; Schippa, Serena

    2014-01-01

    Bdellovibrio bacteriovorus is a predator bacterial species found in the environment and within the human gut, able to attack Gram-negative prey. Cystic fibrosis (CF) is a genetic disease which usually presents lung colonization by Pseudomonas aeruginosa or Staphylococcus aureus biofilms. Here, we investigated the predatory behavior of B. bacteriovorus against these two pathogenic species with: (1) broth culture; (2) “static” biofilms; (3) field emission scanning electron microscope (FESEM); (4) “flow” biofilms; (5) zymographic technique. We had the first evidence of B. bacteriovorus survival with a Gram-positive prey, revealing a direct cell-to-cell contact with S. aureus and a new “epibiotic” foraging strategy imaged with FESEM. Mean attaching time of HD100 to S. aureus cells was 185 s, while “static” and “flow” S. aureus biofilms were reduced by 74 (at 24 h) and 46% (at 20 h), respectively. Furthermore, zymograms showed a differential bacteriolytic activity exerted by the B. bacteriovorus lysates on P. aeruginosa and S. aureus. The dual foraging system against Gram-negative (periplasmic) and Gram-positive (epibiotic) prey could suggest the use of B. bacteriovorus as a “living antibiotic” in CF, even if further studies are required to simulate its in vivo predatory behavior. PMID:24926292

  5. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction.

    PubMed

    Creel, Scott; Winnie, John A; Christianson, David

    2009-07-28

    Predators affect prey demography through direct predation and through the costs of antipredator behavioral responses, or risk effects. Experiments have shown that risk effects can comprise a substantial proportion of a predator's total effect on prey dynamics, but we know little about their strength in wild populations, or the physiological mechanisms that mediate them. When wolves are present, elk alter their grouping patterns, vigilance, foraging behavior, habitat selection, and diet. These responses are associated with decreased progesterone levels, decreased calf production, and reduced population size [Creel S, Christianson D, Liley S, Winnie JA (2007) Science 315:960]. Two general mechanisms for the effect of predation risk on reproduction have been proposed: the predation stress hypothesis and the predator-sensitive-food hypothesis. Here, we used enzyme immunoassay to measure fecal glucocorticoid metabolite concentrations for 1,205 samples collected from 4 elk populations over 4 winters to test the hypothesis that the effect of predation risk on elk reproduction is mediated by chronic stress. Across populations and years, fecal glucocorticoid concentrations were not related to predator-prey ratios, progesterone concentrations or calf-cow ratios. Overall, the effect of wolf presence on elk reproduction is better explained by changes in foraging patterns that carry nutritional costs than by changes in glucocorticoid concentrations.

  6. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction

    PubMed Central

    Creel, Scott; Winnie, John A.; Christianson, David

    2009-01-01

    Predators affect prey demography through direct predation and through the costs of antipredator behavioral responses, or risk effects. Experiments have shown that risk effects can comprise a substantial proportion of a predator's total effect on prey dynamics, but we know little about their strength in wild populations, or the physiological mechanisms that mediate them. When wolves are present, elk alter their grouping patterns, vigilance, foraging behavior, habitat selection, and diet. These responses are associated with decreased progesterone levels, decreased calf production, and reduced population size [Creel S, Christianson D, Liley S, Winnie JA (2007) Science 315:960]. Two general mechanisms for the effect of predation risk on reproduction have been proposed: the predation stress hypothesis and the predator-sensitive-food hypothesis. Here, we used enzyme immunoassay to measure fecal glucocorticoid metabolite concentrations for 1,205 samples collected from 4 elk populations over 4 winters to test the hypothesis that the effect of predation risk on elk reproduction is mediated by chronic stress. Across populations and years, fecal glucocorticoid concentrations were not related to predator-prey ratios, progesterone concentrations or calf-cow ratios. Overall, the effect of wolf presence on elk reproduction is better explained by changes in foraging patterns that carry nutritional costs than by changes in glucocorticoid concentrations. PMID:19617549

  7. A Sociologist Views the Revolutions of Social Change

    ERIC Educational Resources Information Center

    George, Zelma Watson

    1970-01-01

    Society must find ways to nurture and bring to full maturity a new image of man, not as the prey of past causes or future fates, but as man, free to be responsibile for his past and future, free to participate in forging his own destiny and shaping the course of history, free to formulate fresh lifestyles and models of society. (Author)

  8. Predation on Northern krill (Meganyctiphanes norvegica Sars).

    PubMed

    Simard, Yvan; Harvey, Michel

    2010-01-01

    We consider predation as a function of prey concentration with a focus on how this interaction is influenced by biological-physical interactions, and wider oceanographic processes. In particular, we examine how the anti-predation behaviour of Northern krill interacts with ocean-circulation process to influence its vulnerability to predation. We describe how three-dimensional (3D) circulation interacts with in situ light levels to modulate predator-prey interactions from small to large scales, and illustrate how the stability of the predator-prey system is sometimes perturbed as a consequence. Northern krill predators include a wide range of species from the pelagic and benthic strata, as well as birds. Many exhibit adaptations in their feeding strategy to take advantage of the dynamic physical-biological processes that determine the distribution, concentration and vulnerability of Northern krill. Among them, baleen whales appear to have developed particularly efficient predation strategies. A literature search indicates that Northern krill are a major contributor to ecosystem function throughout its distributional range, and a key species with respect to the flow of energy to upper trophic levels. A list of future research needed to fill gaps in our understanding of Northern krill predator-prey interaction is provided. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Gyrfalcon diet in central west Greenland during the nesting period

    USGS Publications Warehouse

    Booms, T.L.; Fuller, M.R.

    2003-01-01

    We studied food habits of Gyrfalcons (Falco rusticolus) nesting in central west Greenland in 2000 and 2001 using three sources of data: time-lapse video (3 nests), prey remains (22 nests), and regurgitated pellets (19 nests). These sources provided different information describing the diet during the nesting period. Gyrfalcons relied heavily on Rock Ptarmigan (Lagopus mutus) and arctic hares (Lepus arcticus). Combined, these species contributed 79-91% of the total diet, depending on the data used. Passerines were the third most important group. Prey less common in the diet included waterfowl, arctic fox pups (Alopex lagopus), shorebirds, gulls, alcids, and falcons. All Rock Ptarmigan were adults, and all but one arctic hare were young of the year. Most passerines were fledglings. We observed two diet shifts, first from a preponderance of ptarmigan to hares in mid-June, and second to passerines in late June. The video-monitored Gyrfalcons consumed 94-110 kg of food per nest during the nestling period, higher than previously estimated. Using a combination of video, prey remains, and pellets was important to accurately document Gyrfalcon diet, and we strongly recommend using time-lapse video in future diet studies to identify biases in prey remains and pellet data.

  10. Gyrfalcon diet in central west Greenland during the nestling period

    USGS Publications Warehouse

    Booms, Travis; Fuller, Mark R.

    2003-01-01

    We studied food habits of Gyrfalcons (Falco rusticolus) nesting in central west Greenland in 2000 and 2001 using three sources of data: time-lapse video (3 nests), prey remains (22 nests), and regurgitated pellets (19 nests). These sources provided different information describing the diet during the nesting period. Gyrfalcons relied heavily on Rock Ptarmigan (Lagopus mutus) and arctic hares (Lepus arcticus). Combined, these species contributed 79-91% of the total diet, depending on the data used. Passerines were the third most important group. Prey less common in the diet included waterfowl, arctic fox pups (Alopex lagopus), shorebirds, gulls, alcids, and falcons. All Rock Ptarmigan were adults, and all but one arctic hare were young of the year. Most passerines were fledglings. We observed two diet shifts, first from a preponderance of ptarmigan to hares in mid-June, and second to passerines in late June. The video-monitored Gyrfalcons consumed 94-110 kg of food per nest during the nestling period, higher than previously estimated. Using a combination of video, prey remains, and pellets was important to accurately document Gyrfalcon diet, and we strongly recommend using time-lapse video in future diet studies to identify biases in prey remains and pellet data.

  11. Foraging behavior by Daphnia in stoichiometric gradients of food quality.

    PubMed

    Schatz, Greg S; McCauley, Edward

    2007-10-01

    Mismatches in the elemental composition of herbivores and their resources can impact herbivore growth and reproduction. In aquatic systems, the ratio of elements, such as C, P, and N, is used to characterize the food quality of algal prey. For example, large increases in the C:P ratio of edible algae can decrease rates of growth and reproduction in Daphnia. Current theory emphasizes that Daphnia utilize only assimilation and respiration processes to maintain an optimal elemental composition, yet studies of terrestrial herbivores implicate behavioral processes in coping with local variation in food quality. We tested the ability of juvenile and adult Daphnia to locate regions of high-quality food within a spatial gradient of algal prey differing in C:P ratio, while holding food density constant over space. Both juveniles and adults demonstrated similar behavior by quickly locating (i.e., <10 min) the region of high food quality. Foraging paths were centred on regions of high food quality and these differed significantly from paths of individuals exposed to a homogeneous environment of both food density and food quality. Ingestion rate experiments on algal prey of differing stoichiometric ratio show that individuals can adjust their intake rate over fast behavioral time-scales, and we use these data to examine how individuals choose foraging locations when presented with a spatial gradient that trades off food quality and food quantity. Daphnia reared under low food quality conditions chose to forage in regions of high food quality even though they could attain the same C ingestion rate elsewhere along a spatial gradient. We argue that these aspects of foraging behavior by Daphnia have important implications for how these herbivores manage their elemental composition and our understanding of the dynamics of these herbivore-plant systems in lakes and ponds where spatial variation in food quality is present.

  12. Drivers of Bushmeat Hunting and Perceptions of Zoonoses in Nigerian Hunting Communities

    PubMed Central

    Friant, Sagan; Paige, Sarah B.; Goldberg, Tony L.

    2015-01-01

    Bushmeat hunting threatens biodiversity and increases the risk of zoonotic pathogen transmission. Nevertheless, limited information exists on patterns of contact with wildlife in communities that practice bushmeat hunting, especially with respect to social drivers of hunting behavior. We used interview responses from hunters and non-hunters in rural hunting communities in Nigeria to: 1) quantify contact rates with wildlife, 2) identify specific hunting behaviors that increase frequency of contact, 3) identify socioeconomic factors that predispose individuals to hunt, and 4) measure perceptions of risk. Participants engaged in a variety of behaviors that increased contact with wild animals, including: butchering to sell (37%), being injured (14%), using body parts for traditional medicine (19%), collecting carcasses found in forests and/or farms (18%), and keeping as pets (16%). Hunters came into contact with wildlife significantly more than non-hunters, even through non-hunting exposure pathways. Participants reported hunting rodents (95%), ungulates (93%), carnivores (93%), primates (87%), and bats (42%), among other prey. Reported hunting frequencies within taxonomic groups of prey were different for different hunting behaviors. Young age, lower education level, larger household size, having a father who hunts, and cultural group were all associated with becoming a hunter. Fifty-five percent of respondents were aware that they could contract diseases from wild animals, but only 26% of these individuals reported taking protective measures. Overall, hunters in this setting frequently contact a diversity of prey in risky ways, and the decision to become a hunter stems from family tradition, modified by economic necessity. Conservation and public health interventions in such settings may be most efficient when they capitalize on local knowledge and target root socio-economic and cultural drivers that lead to hunting behavior. Importantly, interventions that target consumption alone will not be sufficient; other drivers and modes of interaction with wildlife must also be considered. PMID:26001078

  13. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation

    USGS Publications Warehouse

    Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  14. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation.

    PubMed

    Herring, Garth; Eagles-Smith, Collin A; Gawlik, Dale E; Beerens, James M; Ackerman, Joshua T

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  15. Physiological Condition of Juvenile Wading Birds in Relation to Multiple Landscape Stressors in the Florida Everglades: Effects of Hydrology, Prey Availability, and Mercury Bioaccumulation

    PubMed Central

    Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks. PMID:25184221

  16. Stochastic prey arrivals and crab spider giving-up times: simulations of spider performance using two simple "rules of thumb".

    PubMed

    Kareiva, Peter; Morse, Douglass H; Eccleston, Jill

    1989-03-01

    We compared the patch-choice performances of an ambush predator, the crab spider Misumena vatia (Thomisidae) hunting on common milkweed Asclepias syriaca (Asclepiadaceae) umbles, with two stochastic rule-of-thumb simulation models: one that employed a threshold giving-up time and one that assumed a fixed probability of moving. Adult female Misumena were placed on milkweed plants with three umbels, each with markedly different numbers of flower-seeking prey. Using a variety of visitation regimes derived from observed visitation patterns of insect prey, we found that decreases in among-umbel variance in visitation rates or increases in overall mean visitation rates reduced the "clarity of the optimum" (the difference in the yield obtained as foraging behavior changes), both locally and globally. Yield profiles from both models were extremely flat or jagged over a wide range of prey visitation regimes; thus, differences between optimal and "next-best" strategies differed only modestly over large parts of the "foraging landscape". Although optimal yields from fixed probability simulations were one-third to one-half those obtained from threshold simulations, spiders appear to depart umbels in accordance with the fixed probability rule.

  17. Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Teng, Zhidong; Chen, Lansun

    2006-08-01

    According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator-prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.

  18. Foraging behavior of bark-foraging birds in the Sierra Nevada

    Treesearch

    Michael L. Morrison; Kimberly A. With; Irene C. Timossi; William M. Block; Kathleen A. Milne

    1987-01-01

    Data on foraging behavior are often used for examining use of habitat and describing community structure among co-occurring species of birds using the same resource base (e.g., Johnson 1966, Eckhardt 1979, Rusterholz 1981). Differences in tree species, foliage morphology, and bark structure may influence the types of prey taken and the species of bird using the...

  19. Relationship of songbird nest concealment to nest fate and flushing behavior of adults

    Treesearch

    Dirk E. Burhans; Frank R. III Thompson

    2001-01-01

    Advoiding predation is an important consideration for any potential prey animal. Failure to escape from a predator results in loss of fitness, so there is strong selection for choices and behaviors that result in successful escape (Lima and Dill 1990). In their cost-benefit approach to flight from predators, Ydenberg and Dill (1986) stressed that flight should be...

  20. The hunting behavior of eastern screech-owls (Otus asio)

    Treesearch

    Carlo M. Abbruzzese; Gary Ritchison

    1997-01-01

    We studied the nocturnal hunting behavior of eight radio-tagged Eastern Screech-owls (Otus asio; five females and three males) during the period from November 1994 through March 1995. Screech-owls selected low perches when hunting (x = 1.66 m), presumably to obtain a clear view of the ground and an unobstructed flight path to prey. Low perches may...

  1. To drink or grasp? How bullet ants ( Paraponera clavata) differentiate between sugars and proteins in liquids

    NASA Astrophysics Data System (ADS)

    Jandt, Jennifer; Larson, Hannah K.; Tellez, Peter; McGlynn, Terrence P.

    2013-12-01

    Flexibility in behavior can increase the likelihood that a forager may respond optimally in a fluctuating environment. Nevertheless, physiological or neuronal constraints may result in suboptimal responses to stimuli. We observed foraging workers of the giant tropical ant (also referred to as the "bullet ant"), Paraponera clavata, as they reacted to liquid solutions with varying concentrations of sugar and protein. We show that when protein/sucrose concentration is high, many bullet ants will often try to grasp at the droplet, rather than gather it by drinking. Because P. clavata actively hunt for prey, fixed action patterns and rapid responses to protein may be adaptively important, regardless of the medium in which it is presented. We conclude that, in P. clavata, food-handling decisions are made in response to the nutrient content of the food rather than the texture of the food. Further, we suggest that colonies that maintain a mixture of individuals with consistent fixed or flexible behavioral responses to food-handling decisions may be better adapted to fluctuating environmental conditions, and we propose future studies that could address this.

  2. Ocean acidification affects prey detection by a predatory reef fish.

    PubMed

    Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I

    2011-01-01

    Changes in olfactory-mediated behaviour caused by elevated CO(2) levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO(2) will impact the other key part of the predator-prey interaction--the predators. We investigated the effects of elevated CO(2) and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO(2) levels or one of two elevated CO(2) levels (∼600 µatm or ∼950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO(2) and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO(2) treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO(2) treatment and feeding activity was lower for fish in the mid CO(2) treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO(2) treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO(2) acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

  3. Can We Predict Foraging Success in a Marine Predator from Dive Patterns Only? Validation with Prey Capture Attempt Data

    PubMed Central

    Viviant, Morgane; Monestiez, Pascal; Guinet, Christophe

    2014-01-01

    Predicting how climatic variations will affect marine predator populations relies on our ability to assess foraging success, but evaluating foraging success in a marine predator at sea is particularly difficult. Dive metrics are commonly available for marine mammals, diving birds and some species of fish. Bottom duration or dive duration are usually used as proxies for foraging success. However, few studies have tried to validate these assumptions and identify the set of behavioral variables that best predict foraging success at a given time scale. The objective of this study was to assess if foraging success in Antarctic fur seals could be accurately predicted from dive parameters only, at different temporal scales. For this study, 11 individuals were equipped with either Hall sensors or accelerometers to record dive profiles and detect mouth-opening events, which were considered prey capture attempts. The number of prey capture attempts was best predicted by descent and ascent rates at the dive scale; bottom duration and descent rates at 30-min, 1-h, and 2-h scales; and ascent rates and maximum dive depths at the all-night scale. Model performances increased with temporal scales, but rank and sign of the factors varied according to the time scale considered, suggesting that behavioral adjustment in response to prey distribution could occur at certain scales only. The models predicted the foraging intensity of new individuals with good accuracy despite high inter-individual differences. Dive metrics that predict foraging success depend on the species and the scale considered, as verified by the literature and this study. The methodology used in our study is easy to implement, enables an assessment of model performance, and could be applied to any other marine predator. PMID:24603534

  4. Using Satellite Tracking and Isotopic Information to Characterize the Impact of South American Sea Lions on Salmonid Aquaculture in Southern Chile.

    PubMed

    Sepúlveda, Maritza; Newsome, Seth D; Pavez, Guido; Oliva, Doris; Costa, Daniel P; Hückstädt, Luis A

    2015-01-01

    Apex marine predators alter their foraging behavior in response to spatial and/or seasonal changes in natural prey distribution and abundance. However, few studies have identified the impacts of aquaculture that represents a spatially and temporally predictable and abundant resource on their foraging behavior. Using satellite telemetry and stable isotope analysis we examined the degree of spatial overlap between the South American sea lion (SASL) and salmon farms, and quantify the amount of native prey versus farmed salmonids in SASL diets. We instrumented eight SASL individuals with SRDL-GPS tags. Vibrissae, hair and skin samples were collected for δ13C and δ15N analyses from five of the tagged individuals and from four males captured in a haul-out located adjacent to salmon farms. Tracking results showed that almost all the foraging areas of SASL are within close proximity to salmon farms. The most important prey for the individuals analyzed was farmed salmonids, with an estimated median (±SD) contribution of 19.7 ± 13.5‰ and 15.3 ± 9.6‰ for hair and skin, respectively. Using vibrissae as a temporal record of diet for each individual, we observed a remarkable switch in diet composition in two SASL, from farmed salmonids to pelagic fishes, which coincided with the decrease of salmon production due to the infectious salmon anemia virus that affected salmon farms in Chile at the end of 2008. Our study demonstrates the usefulness of integrating stable isotope derived dietary data with movement patterns to characterize the impacts of a non-native prey on the foraging ecology of an apex marine predator, providing important applied implications in situations where interactions between aquaculture and wildlife are common.

  5. Using Satellite Tracking and Isotopic Information to Characterize the Impact of South American Sea Lions on Salmonid Aquaculture in Southern Chile

    PubMed Central

    Sepúlveda, Maritza; Newsome, Seth D.; Pavez, Guido; Oliva, Doris; Costa, Daniel P.; Hückstädt, Luis A.

    2015-01-01

    Apex marine predators alter their foraging behavior in response to spatial and/or seasonal changes in natural prey distribution and abundance. However, few studies have identified the impacts of aquaculture that represents a spatially and temporally predictable and abundant resource on their foraging behavior. Using satellite telemetry and stable isotope analysis we examined the degree of spatial overlap between the South American sea lion (SASL) and salmon farms, and quantify the amount of native prey versus farmed salmonids in SASL diets. We instrumented eight SASL individuals with SRDL-GPS tags. Vibrissae, hair and skin samples were collected for δ13C and δ15N analyses from five of the tagged individuals and from four males captured in a haul-out located adjacent to salmon farms. Tracking results showed that almost all the foraging areas of SASL are within close proximity to salmon farms. The most important prey for the individuals analyzed was farmed salmonids, with an estimated median (±SD) contribution of 19.7 ± 13.5‰ and 15.3 ± 9.6‰ for hair and skin, respectively. Using vibrissae as a temporal record of diet for each individual, we observed a remarkable switch in diet composition in two SASL, from farmed salmonids to pelagic fishes, which coincided with the decrease of salmon production due to the infectious salmon anemia virus that affected salmon farms in Chile at the end of 2008. Our study demonstrates the usefulness of integrating stable isotope derived dietary data with movement patterns to characterize the impacts of a non-native prey on the foraging ecology of an apex marine predator, providing important applied implications in situations where interactions between aquaculture and wildlife are common. PMID:26309046

  6. Mapping Fearscapes of a Mammalian Herbivore using Terrestrial LiDAR and UAV Imagery

    NASA Astrophysics Data System (ADS)

    Olsoy, P.; Nobler, J. D.; Forbey, J.; Rachlow, J. L.; Burgess, M. A.; Glenn, N. F.; Shipley, L. A.

    2013-12-01

    Concealment allows prey animals to remain hidden from a predator and can influence both real and perceived risks of predation. The heterogeneous nature of vegetative structure can create a variable landscape of concealment - a 'fearscape' - that may influence habitat quality and use by prey. Traditional measurements of concealment rely on a limited number of distances, heights, and vantage points, resulting in small snapshots of concealment available to a prey animal. Our objective was to demonstrate the benefits of emerging remote sensing techniques to map fearscapes for pygmy rabbits (Brachylagus idahoensis) in sagebrush steppe habitat across a continuous range of scales. Specifically, we used vegetation height rasters derived from terrestrial laser scanning (TLS) to create viewsheds from multiple vantage points, representing predator visibility. The sum of all the viewsheds modeled horizontal concealment of prey at both the shrub and patch scales. We also used a small, unmanned aerial vehicle (UAV) to determine vertical concealment at a habitat scale. Terrestrial laser scanning provided similar estimates of horizontal concealment at the shrub scale when compared to photographic methods (R2 = 0.85). Both TLS and UAV provide the potential to quantify concealment of prey from multiple distances, heights, or vantage points, allowing the creation of a manipulable fearscape map that can be correlated with habitat use by prey animals. The predictive power of such a map also could identify shrubs or patches for fine scale nutritional and concealment analysis for future investigation and conservation efforts. Fearscape map at the mound-scale. Viewsheds were calculated from 100 equally spaced observer points located 4 m from the closest on-mound sagebrush of interest. Red areas offer low concealment, while green areas provide high concealment.

  7. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.

    PubMed

    Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J

    Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.

  8. Effect of small-scale turbulence on feeding rates of larval cod and haddock in stratified water on Georges Bank

    NASA Astrophysics Data System (ADS)

    Gregory Lough, R.; Mountain, David G.

    A set of vertically stratified MOCNESS tows made on the southern flank of Georges Bank in spring 1981 and 1983 was analyzed to examine the relationship between larval cod and haddock feeding success and turbulent dissipation in a stratified water column. Observed feeding ratios (mean no. prey larval gut -1) for three size classes of larvae were compared with estimated ingestion rates using the Rothschild and Osborn ( Journal of Plankton Research, 10, 1988, 465-474) predator-prey encounter rate model. Simulation of contact rates requires parameter estimates of larval fish and their prey cruising speeds, density of prey, and turbulent velocity of the water column. Turbulent dissipation was estimated from a formulation by James ( Estuarine and Coastal Marine Science, 5, 1977, 339-353) incorporating both a wind a tidal component. Larval ingestion rates were based on swallowing probabilities derived from calm-water laboratory observations. Model-predicted turbulence profiles generally showed that dissipation rates were low to moderate (10 -11-10 -7 W kg -1). Turbulence was minimal at or below the pycnocline (≈ 25 m) with higher values(1-2 orders of magnitude) near the surface due to wind mixing and at depth due to shear in the tidal current near bottom. In a stratified water column during the day, first-feeding larvae (5-6 mm) were located mostly within or above the pycnocline coincident with their copepod prey (nauplii and copepodites). The 7-8 mm larvae were most abundant within the pycnocline, whereas the 9-10 mm larvae were found within and below the pycnocline. Feeding ratios were relatively low in early morning following darkness when the wind speed was low, but increased by a factor of 2-13 by noon and evening when the wind speed doubled. Comparison of depth-specific feeding ratios with estimated ingestion rates, derived from turbulence-affected contact rates, generally were reasonable after allowing for an average gut evacuation time (4 h), and in many cases the observed and estimated values had similar profiles. However, differences in vertical profiles may be attributed to differential digestion time, pursuit behavior affected by high turbulence, vertical migration of the larger larvae, an optimum light level for feeding, smaller-scale prey patchiness, and the gross estimates of turbulence. Response-surface estimation of averaged feeding ratios as a function of averaged prey density (0-50 m) with a minimum water-column turbulence value predicted that 5-6 mm larvae have a maximum feeding response at the highest prey densities (> 30 prey 1 -1) and lower turbulence estimates (<10 -10 W kg -1). The 7-8 mm and 9-10 mm larvae also have a maximum feeding response at high prey densities and low turbulence, but it extends to lower prey densities (> 10 prey 1 -1) as turbulence increases to intermidiate levels, clearly showing an interaction effect. In general, maximum feeding ratios occur at low to intermediate levels of turbulence where average prey density is greater than 10-20 prey 1 -1.

  9. Niche overlap, threshold food densities, and limits to prey depletion for a diving duck assemblage in an estuarine bay

    USGS Publications Warehouse

    Lovvorn, James R.; De La Cruz, Susan; Takekawa, John Y.; Shaskey, Laura E.; Richman, Samantha E.

    2013-01-01

    Planning for marine conservation often requires estimates of the amount of habitat needed to support assemblages of interacting species. During winter in subtidal San Pablo Bay, California, the 3 main diving duck species are lesser scaup Aythya affinis (LESC), greater scaup A. marila (GRSC), and surf scoter Melanitta perspicillata (SUSC), which all feed almost entirely on the bivalve Corbula amurensis. Decreased body mass and fat, increased foraging effort, and major departures of these birds appeared to result from food limitation. Broad overlap in prey size, water depth, and location suggested that the 3 species responded similarly to availability of the same prey. However, an energetics model that accounts for differing body size, locomotor mode, and dive behavior indicated that each species will become limited at different stages of prey depletion in the order SUSC, then GRSC, then LESC. Depending on year, 35 to 66% of the energy in Corbula standing stocks was below estimated threshold densities for profitable foraging. Ectothermic predators, especially flounders and sturgeons, could reduce excess carrying capacity for different duck species by 4 to 10%. A substantial quantity of prey above profitability thresholds was not exploited before most ducks left San Pablo Bay. Such pre-depletion departure has been attributed in other taxa to foraging aggression. However, in these diving ducks that showed no overt aggression, this pattern may result from high costs of locating all adequate prey patches, resulting reliance on existing flocks to find food, and propensity to stay near dense flocks to avoid avian predation. For interacting species assemblages, modeling profitability thresholds can indicate the species most vulnerable to food declines. However, estimates of total habitat needed require better understanding of factors affecting the amount of prey above thresholds that is not depleted before the predators move elsewhere.

  10. Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    PubMed Central

    O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-01-01

    Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching. PMID:20877645

  11. Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.

    PubMed

    O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-09-22

    Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.

  12. A trait-based approach reveals the feeding selectivity of a small endangered Mediterranean fish.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolf; Rieradevall, Maria; Prat, Narcís

    2016-05-01

    Functional traits are growing in popularity in modern ecology, but feeding studies remain primarily rooted in a taxonomic-based perspective. However, consumers do not have any reason to select their prey using a taxonomic criterion, and prey assemblages are variable in space and time, which makes taxon-based studies assemblage-specific. To illustrate the benefits of the trait-based approach to assessing food choice, we studied the feeding ecology of the endangered freshwater fish Barbus meridionalis. We hypothesized that B. meridionalis is a selective predator which food choice depends on several prey morphological and behavioral traits, and thus, its top-down pressure may lead to changes in the functional composition of in-stream macroinvertebrate communities. Feeding selectivity was inferred by comparing taxonomic and functional composition (13 traits) between ingested and free-living potential prey using the Jacob's electivity index. Our results showed that the fish diet was influenced by 10 of the 13 traits tested. Barbus meridionalis preferred prey with a potential size of 5-10 mm, with a medium-high drift tendency, and that drift during daylight. Potential prey with no body flexibility, conical shape, concealment traits (presence of nets and/or cases, or patterned coloration), and high aggregation tendency had a low predation risk. Similarly, surface swimmers and interstitial taxa were low vulnerable to predation. Feeding selectivity altered the functional composition of the macroinvertebrate communities. Fish absence favored taxa with weak aggregation tendency, weak flexibility, and a relatively large size (10-20 mm of potential size). Besides, predatory invertebrates may increase in fish absence. In conclusion, our study shows that the incorporation of the trait-based approach in diet studies is a promising avenue to improve our mechanistic understanding of predator-prey interactions and to help predict the ecological outcomes of predator invasions and extinctions.

  13. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    PubMed

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators may decelerate, rather than accelerate, the speed of N cycling by suppressing N turnover by prey. © 2018 by the Ecological Society of America.

  14. Parasites of Trinidadian guppies: evidence for sex- and age-specific trait-mediated indirect effects of predators.

    PubMed

    Stephenson, Jessica F; van Oosterhout, Cock; Mohammed, Ryan S; Cable, Joanne

    2015-02-01

    Predation pressure can alter the morphology, physiology, life history, and behavior of prey; each of these in turn can change how surviving prey interact with parasites. These trait-mediated indirect effects may change in direction or intensity during growth or, in sexually dimorphic species, between the sexes. The Trinidadian guppy, Poecilia reticulata presents a unique opportunity to examine these interactions; its behavioral ecology has been intensively studied in wild populations with well-characterized predator faunas. Predation pressure is known to have driven the evolution of many guppy traits; for example, in high-predation sites, females (but not males) tend to shoal, and this anti-predator behavior facilitates parasite transmission. To test for evidence of predator-driven differences in infection in natural populations, we collected 4715 guppies from 62 sites across Trinidad between 2003 and 2009 and screened them for ectosymbionts, including Gyrodactylus. A novel model-averaging analysis revealed that females were more likely to be infected with Gyrodactylus parasites than males, but only in populations with both high predation pressure and high infection prevalence. We propose that the difference in shoaling tendency between the sexes could explain the observed difference in infection prevalence between males and females in high-predation sites. The infection rate of juveniles did not vary with predation regime, probably because juveniles face constant predation pressure from conspecific adults and therefore tend to shoal in both high- and low-predation sites. This represents the first evidence for age- and sex-specific trait-mediated indirect effects of predators on the probability of infection in their prey.

  15. Morphology and Efficiency of a Specialized Foraging Behavior, Sediment Sifting, in Neotropical Cichlid Fishes

    PubMed Central

    Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L.; Winemiller, Kirk O.

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny. PMID:24603485

  16. Prey risk allocation in a grazing ecosystem.

    PubMed

    Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred

    2006-02-01

    Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.

  17. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior

    USGS Publications Warehouse

    Darrah, Abigail J.; Greeney, Harold F.; van Riper, Charles

    2017-01-01

    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  18. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    PubMed

    López-Fernández, Hernán; Arbour, Jessica; Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L; Winemiller, Kirk O

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  19. Biases in determining the diet of jumbo squid Dosidicus gigas (D' Orbigny 1835) (Cephalopoda: Ommastrephidae) off southern-central Chile (34°S-40°S)

    NASA Astrophysics Data System (ADS)

    Ibáñez, Christian M.; Arancibia, Hugo; Cubillos, Luis A.

    2008-12-01

    The diet of jumbo squid ( Dosidicus gigas) off southern-central Chile is described to examine potential biases in the determination of their main prey. Specimens were collected from catches using different fishing gear (jigging, trawl and purse-seine), from July 2003 to January 2004, and from December 2005 to October 2006. The stomach contents were analyzed in terms of frequency of occurrence, number, and weight of prey items and the diet composition was analyzed using Detrended Correspondence Analysis. In the industrial purse-seine fleet for jack mackerel ( Trachurus murphyi), the dominant prey of D. gigas was T. murphyi. In the industrial mid-trawl fishery for Patagonian grenadier ( Macruronus magellanicus), the dominant species in the diet of D. gigas was M. magellanicus. Similarly, Chilean hake ( Merluccius gayi) was the main prey in the diet of D. gigas obtained in the industrial trawl fishery for Chilean hake; and, in both artisanal fisheries (purse-seine for small pelagics and jigging), small pelagic fish and D. gigas were the main prey in the stomach contents of D. gigas. Cannibalism in D. gigas varied between different fleets and probably is related to stress behavior during fishing. The Detrended Correspondence Analysis ordination showed that the main prey in the diet of D. gigas is associated with the target species of the respective fishery. Consequently, biases are associated with fishing gear, leading to an overestimate in the occurrence of the target species in the diet. We recommend analyzing samples from jigging taken at the same time and place where the trawl and purse-seine fleets are operating to avoid this problem, and the application of new tools like stable isotope, heavy metal, and fatty acid signature analyses.

  20. Using vertebrate prey capture locations to identify cover type selection patterns of nocturnally foraging Burrowing Owls.

    PubMed

    Marsh, Alan; Bayne, Erin M; Wellicome, Troy I

    2014-07-01

    Studies of habitat selection often measure an animal's use of space via radiotelemetry or GPS-based technologies. Such data tend to be analyzed using a resource selection function, despite the fact that the actual resources acquired are typically not recorded. Without explicit proof of resource use, conclusions from RSF models are based on assumptions regarding an animal's behavior and the resources gained. Conservation initiatives are often based on space-use models, and could be detrimental to the target species if these assumptions are incorrect. We used GPS dataloggers and digital video recorders to determine precise locations where nocturnally foraging Burrowing Owls acquired food resources (vertebrate prey). We compared land cover type selection patterns using a presence-only resource selection function (RSF) to a model that incorporated prey capture locations (CRSF). We also compared net prey returns in each cover type to better measure reward relative to foraging effort. The RSF method did not reflect prey capture patterns and cover-type rankings from this model were quite different from models that used only locations where prey was known to have been obtained. Burrowing Owls successfully foraged across all cover types; however, return vs. effort models indicate that different cover types were of higher quality than those identified using resource selection functions. Conclusions about the type of resources acquired should not be made from RSF-style models without evidence that the actual resource of interest was acquired. Conservation efforts based on RSF models alone may be ineffective or detrimental to the target species if the limiting resource and where it is acquired are not properly identified.

  1. Flexible foraging movements of leatherback turtles across the North Atlantic Ocean.

    PubMed

    Hays, Graeme C; Hobson, Victoria J; Metcalfe, Julian D; Righton, David; Sims, David W

    2006-10-01

    Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.

  2. Deciphering Scavenging Propensity Among Arthropod Predators.

    USDA-ARS?s Scientific Manuscript database

    Scavenging is a well documented feeding behavior among many arthrop predators. However, quantifying scavenging feeding activity is not well understood because many predators are small elusive. This makes directly observing predation events in nature almost impossible. If predators prefer dead prey ...

  3. Energyscapes and prey fields shape a North Atlantic seabird wintering hotspot under climate change

    PubMed Central

    Fort, J.; Mathewson, P. D.; Speirs, D. C.; Perret, S.; Porter, W. P.; Wilson, R. J.

    2018-01-01

    There is an urgent need for a better understanding of animal migratory ecology under the influence of climate change. Most current analyses require long-term monitoring of populations on the move, and shorter-term approaches are needed. Here, we analysed the ecological drivers of seabird migration within the framework of the energyscape concept, which we defined as the variations in the energy requirements of an organism across geographical space as a function of environmental conditions. We compared the winter location of seabirds with their modelled energy requirements and prey fields throughout the North Atlantic. Across six winters, we tracked the migration of 94 little auks (Alle alle), a key sentinel Arctic species, between their East Greenland breeding site and wintering areas off Newfoundland. Winter energyscapes were modelled with Niche Mapper™, a mechanistic tool which takes into account local climate and bird ecophysiology. Subsequently, we used a resource selection function to explain seabird distributions through modelled energyscapes and winter surface distribution of one of their main prey, Calanus finmarchicus. Finally, future energyscapes were calculated according to IPCC climate change scenarios. We found that little auks targeted areas with high prey densities and moderately elevated energyscapes. Predicted energyscapes for 2050 and 2095 showed a decrease in winter energy requirements under the high emission scenario, which may be beneficial if prey availability is maintained. Overall, our study demonstrates the great potential of the energyscape concept for the study of animal spatial ecology, in particular in the context of global change. PMID:29410875

  4. Status and trends in the fish community of Lake Superior, 2012

    USGS Publications Warehouse

    Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Vinson, Mark

    2012-01-01

    Due to ship mechanical failures, nearshore sampling was delayed from mid-May to mid-June to mid-June to late August. The shift to summer sampling when the lake was stratified may have affected our estimates, thus our estimates of status and trends for the nearshore fish community in 2012 are tentative, pending results of future surveys. However, the results of the 2012 survey are comparable with those during 2009 and 2010 when lake-wide fish biomass declined to < 1.40 kg/ha. Declines in prey fish biomass since the late 1990s can be attributed to a combination of increased predation by recovered lake trout populations and infrequent and weak recruitment by the principal prey fishes, cisco and bloater. In turn declines in lake trout biomass since the mid-2000s are likely linked to declines in prey fish biomass. If lean and siscowet lake trout populations in nearshore waters continue to remain at current levels, predation mortality will likely maintain the relatively low prey fish biomass observed in recent years. Alternatively, if lake trout populations show a substantial decline in abundance in upcoming years, prey fish populations may rebound in a fashion reminiscent to what occurred in the late 1970s to mid-1980s. However, this scenario depends on substantial increases in harvest of lake trout, which seems unlikely given that levels of lake trout harvest have been flat or declining in many regions of Lake Superior since 2000.

  5. Bioenergetics, Trophic Ecology, and Niche Separation of Tunas.

    PubMed

    Olson, R J; Young, J W; Ménard, F; Potier, M; Allain, V; Goñi, N; Logan, J M; Galván-Magaña, F

    Tunas are highly specialized predators that have evolved numerous adaptations for a lifestyle that requires large amounts of energy consumption. Here we review our understanding of the bioenergetics and feeding dynamics of tunas on a global scale, with an emphasis on yellowfin, bigeye, skipjack, albacore, and Atlantic bluefin tunas. Food consumption balances bioenergetics expenditures for respiration, growth (including gonad production), specific dynamic action, egestion, and excretion. Tunas feed across the micronekton and some large zooplankton. Some tunas appear to time their life history to take advantage of ephemeral aggregations of crustacean, fish, and molluscan prey. Ontogenetic and spatial diet differences are substantial, and significant interdecadal changes in prey composition have been observed. Diet shifts from larger to smaller prey taxa highlight ecosystem-wide changes in prey availability and diversity and provide implications for changing bioenergetics requirements into the future. Where tunas overlap, we show evidence of niche separation between them; resources are divided largely by differences in diet percentages and size ranges of prey taxa. The lack of long-term data limits the ability to predict impacts of climate change on tuna feeding behaviour. We note the need for systematic collection of feeding data as part of routine monitoring of these species, and we highlight the advantages of using biochemical techniques for broad-scale analyses of trophic relations. We support the continued development of ecosystem models, which all too often lack the regional-specific trophic data needed to adequately investigate climate and fishing impacts. © 2016 Elsevier Ltd. All rights reserved.

  6. Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.

    PubMed

    Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie

    2015-06-30

    In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision" than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation.

  7. Magnitude and Dynamics of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs, Annual Report of Research, 1989-1990.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, J.H.

    1990-07-01

    Three aspects of predation upon juvenile salmonids in the Columbia River are addressed in this report: (1) Indexing predator consumption. During 1989--1990, two indices of northern squawfish consumption upon juvenile salmonids were developed for use throughout the Columbia River Basin. The direct Consumption Index (CI) is based upon the concept of meal turnover time and takes into account number of salmonids, temperature, total gut content weight and predator weight. A Bioenergetics Index (BI) for consumption indexing was also developed to complement the direct CI. In the BI, growth, consumption, excretion/evacuation and respiration processes are modeled to predict the consumption requiredmore » to produce an observed growth increment. (2) Studies on predator-smolt dynamics. Northern squawfish consumption data were collected in the McNary Dam tailrace during nine days in July 1988 to improve our understanding of the predator-smolt functional response. (3) Selective predation by northern squawfish. Laboratory and field protocols were developed to evaluate northern squawfish selection and prey vulnerability. Results from laboratory studies suggest that northern squawfish prefer dead over live prey and that descaled prey may be more vulnerable to predation than non-descaled prey. Stressed and unstressed prey were consumed in equal proportions when predation occurred for 6 or 24 h. Physiological and behavioral effects of stress on juvenile salmon are presented. 100 refs., 13 figs., 12 tabs.« less

  8. Diets and foraging behavior of northern Spotted Owls in Oregon

    USGS Publications Warehouse

    Forsman, E.D.; Anthony, R.G.; Meslow, E.C.; Zabel, C.J.

    2004-01-01

    We describe local, regional, and annual variation in diets of northern Spotted Owls (Strix occidentalis caurina) in Oregon based on 24 497 prey collected at 1118 owl territories in 1970-2003. The sample included 91.5% mammals, 4.3% birds, 4.1% insects, and 0.1% other prey. The diet included ???131 species, including 49 mammals, 41 birds, 3 reptiles, 1 frog, 1 crayfish, 1 scorpion, 2 snails, and 33 species of insects. On average, 91.9 ?? 0.3% (SE) of prey in the diet were nocturnal animals, 3.3 ?? 0.2% were diurnal, and 4.8 ?? 0.2% were active both day and night. Of the prey captured, 50.5 ?? 0.8% were arboreal, 18.7 ?? 0.7% were scansorial, 4.8 ?? 0.2% were aerial, and 26.0 = 0.7% were terrestrial. Mean mass of prey was 116.6 ?? 6.5 g. Diets varied among owl territories, geographic regions, and years; but were generally dominated by four to six species of nocturnal mammals, including northern flying squirrels (Glaucomys sabrinus), woodrats (Neotoma fuscipes and N. cinerea), red tree voles (Arborimus longicaudus), western red-backed voles (Clethrionomys californicus), deer mice (Peromyscus maniculatus), or gophers (Thomomys spp.). Estimates of dietary evenness were low, indicating diets dominated by a few species of mammals. Forest management practices that produce healthy populations of arboreal and scansorial mammals such as flying squirrels, woodrats, and red tree voles should benefit northern Spotted Owls in Oregon and Washington. ?? 2004 The Raptor Research Foundation, Inc.

  9. The effects of early experience on subsequent feeding responses in the Tegu, Tupinambis teguixin (Squamata : Teiidae).

    PubMed

    Punzo, F

    2003-01-01

    The purpose of this study was to assess the effects of early feeding experiences on subsequent responses to prey in the tegu, Tupinambis teguixin. Five-day old lizards were exposed to the odors of various prey and control substances on cotton-tipped applicators with the tongue-flick attack score (TFAS) chosen as the dependent variable. Each lizard was exposed to four stimuli: two controls (deionised water and cologne), and extracts from a mouse Mus musculus, and a lizard Ameiva ameiva, in a repeated measures, randomized block design, receiving one stimulus training session / day over a 40-day period. Tongue-flicks directed toward the applicator were counted over a 1 min period as well as the amount of time that elapsed from the first tongue flick to any bite that may have occurred. Live neonatal mice (but not A. ameiva), offered on a weekly basis, were used as a food source for tegus over a 10-month period. After 10 months, tegus were exposed to applicators containing control odors as well as those containing extracts from mice and lizards (A. ameiva). Mouse extracts elicited significantly higher TFAS as compared to those elicited by A. ameiva or control odors, suggesting that prey odors encountered in the environment shortly after hatching can influence prey preferences by these lizards later in life. These results also indicate that tegu lizards can learn to use specific odor cues associated with naturally occurring prey as releasers for subsequent hunting behaviors.

  10. The interaction of spatial scale and predator-prey functional response

    USGS Publications Warehouse

    Blaine, T.W.; DeAngelis, D.L.

    1997-01-01

    Predator-prey models with a prey-dependent functional response have the property that the prey equilibrium value is determined only by predator characteristics. However, in observed natural systems (for instance, snail-periphyton interactions in streams) the equilibrium periphyton biomass has been shown experimentally to be influenced by both snail numbers and levels of available limiting nutrient in the water. Hypothesizing that the observed patchiness in periphyton in streams may be part of the explanation for the departure of behavior of the equilibrium biomasses from predictions of the prey-dependent response of the snail-periphyton system, we developed and analyzed a spatially-explicit model of periphyton in which snails were modeled as individuals in their movement and feeding, and periphyton was modeled as patches or spatial cells. Three different assumptions on snail movement were used: (1) random movement between spatial cells, (2) tracking by snails of local abundances of periphyton, and (3) delayed departure of snails from cells to reduce costs associated with movement. Of these assumptions, only the third strategy, based on an herbivore strategy of staying in one patch until local periphyton biomass concentration falls below a certain threshold amount, produced results in which both periphyton and snail biomass increased with nutrient input. Thus, if data are averaged spatially over the whole system, we expect that a ratio-dependent functional response may be observed if the herbivore behaves according to the third assumption. Both random movement and delayed cell departure had the result that spatial heterogeneity of periphyton increased with nutrient input.

  11. Anatomy and Disorders of the Oral Cavity of Ornamental Fish.

    PubMed

    Roberts-Sweeney, Helen E

    2016-09-01

    Ornamental fish represent the largest and most diverse group of exotic animals kept as pets. The specific oral anatomy of each family or selected species has evolved to suit the natural environment, feeding behaviors, food or prey type, and location of the food/prey in the water column. The anatomy can change over the life of the animal, from fry to adult. The oral cavity of fish is susceptible to many problems including infectious and parasitic diseases, trauma, and neoplasia. Diagnosis may involve wet mount preparations of exfoliative cytology from the lesion, histopathology, and bacterial or fungal culture. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Interactions Among Behavioral Responses of Baleen Whales to Acoustic Stimuli, Oceanographic Features, and Prey Availability

    DTIC Science & Technology

    2012-09-30

    Halpin. 2009. Evidence of resource partitioning between humpback and minke whales around the western Antarctic Peninsula. Marine Mammal Science. 25...scale foraging ecology of Humpback whales (Megaptera novaengliae). Marine Ecology Progress Series 395: 75-89. Watkins, J.L., and A.S. Brierley...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Interactions Among Behavioral Responses of Baleen Whales

  13. Biologically-Inspired Deceptive Behavior for a Robot

    DTIC Science & Technology

    2012-01-01

    by sending false signals either intentionally or unintentionally, are essential for animals’ survival. For example, camouflage and mimicry are well...detection by both predators and their prey. While camouflage or mimicry are examples of unknowingly deceiving, a deceptive behavior can include...face this situation, where it is important to discourage an adversary from discovering a protected site, so the application of these bio -inspired

  14. Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis.

    PubMed

    Frank, Erik Thomas; Schmitt, Thomas; Hovestadt, Thomas; Mitesser, Oliver; Stiegler, Jonas; Linsenmair, Karl Eduard

    2017-04-01

    Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis , consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals.

  15. Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis

    PubMed Central

    Frank, Erik Thomas; Schmitt, Thomas; Hovestadt, Thomas; Mitesser, Oliver; Stiegler, Jonas; Linsenmair, Karl Eduard

    2017-01-01

    Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals. PMID:28439543

  16. Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales

    PubMed Central

    Breed, Greg A.; Matthews, Cory J. D.; Marcoux, Marianne; Higdon, Jeff W.; LeBlanc, Bernard; Petersen, Stephen D.; Orr, Jack; Reinhart, Natalie R.; Ferguson, Steven H.

    2017-01-01

    Although predators influence behavior of prey, analyses of electronic tracking data in marine environments rarely consider how predators affect the behavior of tracked animals. We collected an unprecedented dataset by synchronously tracking predator (killer whales, N = 1; representing a family group) and prey (narwhal, N = 7) via satellite telemetry in Admiralty Inlet, a large fjord in the Eastern Canadian Arctic. Analyzing the movement data with a switching-state space model and a series of mixed effects models, we show that the presence of killer whales strongly alters the behavior and distribution of narwhal. When killer whales were present (within about 100 km), narwhal moved closer to shore, where they were presumably less vulnerable. Under predation threat, narwhal movement patterns were more likely to be transiting, whereas in the absence of threat, more likely resident. Effects extended beyond discrete predatory events and persisted steadily for 10 d, the duration that killer whales remained in Admiralty Inlet. Our findings have two key consequences. First, given current reductions in sea ice and increases in Arctic killer whale sightings, killer whales have the potential to reshape Arctic marine mammal distributions and behavior. Second and of more general importance, predators have the potential to strongly affect movement behavior of tracked marine animals. Understanding predator effects may be as or more important than relating movement behavior to resource distribution or bottom-up drivers traditionally included in analyses of marine animal tracking data. PMID:28223481

  17. Sustained disruption of narwhal habitat use and behavior in the presence of Arctic killer whales.

    PubMed

    Breed, Greg A; Matthews, Cory J D; Marcoux, Marianne; Higdon, Jeff W; LeBlanc, Bernard; Petersen, Stephen D; Orr, Jack; Reinhart, Natalie R; Ferguson, Steven H

    2017-03-07

    Although predators influence behavior of prey, analyses of electronic tracking data in marine environments rarely consider how predators affect the behavior of tracked animals. We collected an unprecedented dataset by synchronously tracking predator (killer whales, [Formula: see text] = 1; representing a family group) and prey (narwhal, [Formula: see text] = 7) via satellite telemetry in Admiralty Inlet, a large fjord in the Eastern Canadian Arctic. Analyzing the movement data with a switching-state space model and a series of mixed effects models, we show that the presence of killer whales strongly alters the behavior and distribution of narwhal. When killer whales were present (within about 100 km), narwhal moved closer to shore, where they were presumably less vulnerable. Under predation threat, narwhal movement patterns were more likely to be transiting, whereas in the absence of threat, more likely resident. Effects extended beyond discrete predatory events and persisted steadily for 10 d, the duration that killer whales remained in Admiralty Inlet. Our findings have two key consequences. First, given current reductions in sea ice and increases in Arctic killer whale sightings, killer whales have the potential to reshape Arctic marine mammal distributions and behavior. Second and of more general importance, predators have the potential to strongly affect movement behavior of tracked marine animals. Understanding predator effects may be as or more important than relating movement behavior to resource distribution or bottom-up drivers traditionally included in analyses of marine animal tracking data.

  18. Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the north Pacific Ocean

    USGS Publications Warehouse

    Atcheson, Margaret E.; Myers, Katherine W.; Beauchamp, David A.; Mantua, Nathan J.

    2012-01-01

    Energetic responses of steelhead Oncorhynchus mykiss to climate-driven changes in marine conditions are expected to affect the species’ ocean distribution, feeding, growth, and survival. With a unique 18-year data series (1991–2008) for steelhead sampled in the open ocean, we simulated interannual variation in prey consumption and growth efficiency of steelhead using a bioenergetics model to evaluate the temperature-dependent growth response of steelhead to past climate events and to estimate growth potential of steelhead under future climate scenarios. Our results showed that annual ocean growth of steelhead is highly variable depending on prey quality, consumption rates, total consumption, and thermal experience. At optimal growing temperatures, steelhead can compensate for a low-energy diet by increasing consumption rates and consuming more prey, if available. Our findings suggest that steelhead have a narrow temperature window in which to achieve optimal growth, which is strongly influenced by climate-driven changes in ocean temperature.

  19. Contribution to the meaning and understanding of anticipatory systems

    NASA Astrophysics Data System (ADS)

    Kljajić, Miroljub

    2001-06-01

    The present article discusses the cybernetic method in the modelling and understanding of complex systems from the epistemological, semantic as well as psychological point of view. Biological and organisational systems are the most important among complex systems. According to Rosen [1] anticipatory systems is another name for complex systems because, in a way, they function to anticipate the future state in order to preserve its structure and functioning. This paper demonstrates a strong analogy between Rosen's modified definition of anticipatory systems [2] and decision-making through simulation in organisational systems. The possible meaning of several models modified in the anticipatory mode will also be discussed as for example: a) The modified Verhaulst Model and its anticipatory modification in the case of the description of human behavior, b) The Prey-Predator Model, and c) The Evans Market Model under different conditions of the demand and supply function.

  20. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

Top