Real options analysis for photovoltaic project under climate uncertainty
NASA Astrophysics Data System (ADS)
Kim, Kyeongseok; Kim, Sejong; Kim, Hyoungkwan
2016-08-01
The decision on photovoltaic project depends on the level of climate environments. Changes in temperature and insolation affect photovoltaic output. It is important for investors to consider future climate conditions for determining investments on photovoltaic projects. We propose a real options-based framework to assess economic feasibility of photovoltaic project under climate change. The framework supports investors to evaluate climate change impact on photovoltaic projects under future climate uncertainty.
Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos
2017-12-01
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh
Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less
Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; ...
2016-06-16
Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less
NASA Astrophysics Data System (ADS)
Nakagawa, Y.; Kawahara, S.; Araki, F.; Matsuoka, D.; Ishikawa, Y.; Fujita, M.; Sugimoto, S.; Okada, Y.; Kawazoe, S.; Watanabe, S.; Ishii, M.; Mizuta, R.; Murata, A.; Kawase, H.
2017-12-01
Analyses of large ensemble data are quite useful in order to produce probabilistic effect projection of climate change. Ensemble data of "+2K future climate simulations" are currently produced by Japanese national project "Social Implementation Program on Climate Change Adaptation Technology (SI-CAT)" as a part of a database for Policy Decision making for Future climate change (d4PDF; Mizuta et al. 2016) produced by Program for Risk Information on Climate Change. Those data consist of global warming simulations and regional downscaling simulations. Considering that those data volumes are too large (a few petabyte) to download to a local computer of users, a user-friendly system is required to search and download data which satisfy requests of the users. We develop "a database system for near-future climate change projections" for providing functions to find necessary data for the users under SI-CAT. The database system for near-future climate change projections mainly consists of a relational database, a data download function and user interface. The relational database using PostgreSQL is a key function among them. Temporally and spatially compressed data are registered on the relational database. As a first step, we develop the relational database for precipitation, temperature and track data of typhoon according to requests by SI-CAT members. The data download function using Open-source Project for a Network Data Access Protocol (OPeNDAP) provides a function to download temporally and spatially extracted data based on search results obtained by the relational database. We also develop the web-based user interface for using the relational database and the data download function. A prototype of the database system for near-future climate change projections are currently in operational test on our local server. The database system for near-future climate change projections will be released on Data Integration and Analysis System Program (DIAS) in fiscal year 2017. Techniques of the database system for near-future climate change projections might be quite useful for simulation and observational data in other research fields. We report current status of development and some case studies of the database system for near-future climate change projections.
Leisner, Courtney P; Wood, Joshua C; Vaillancourt, Brieanne; Tang, Ying; Douches, Dave S; Robin Buell, C; Winkler, Julie A
2018-04-01
Understanding the impacts of climate change on agriculture is essential to ensure adequate future food production. Controlled growth experiments provide an effective tool for assessing the complex effects of climate change. However, a review of the use of climate projections in 57 previously published controlled growth studies found that none considered within-season variations in projected future temperature change, and few considered regional differences in future warming. A fixed, often arbitrary, temperature perturbation typically was applied for the entire growing season. This study investigates the utility of employing more complex climate change scenarios in growth chamber experiments. A case study in potato was performed using three dynamically downscaled climate change projections for the mid-twenty-first century that differ in terms of the timing during the growing season of the largest projected temperature changes. The climate projections were used in growth chamber experiments for four elite potato cultivars commonly planted in Michigan's major potato growing region. The choice of climate projection had a significant influence on the sign and magnitude of the projected changes in aboveground biomass and total tuber count, whereas all projections suggested an increase in total tuber weight and a decrease in specific gravity, a key market quality trait for potato, by mid-century. These results demonstrate that the use of more complex climate projections that extend beyond a simple incremental change can provide additional insights into the future impacts of climate change on crop production and the accompanying uncertainty.
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
John M. Kabrick; Kenneth L. Clark; Anthony W. D' Amato; Daniel C. Dey; Laura S. Kenefic; Christel C. Kern; Benjamin O. Knapp; David A. MacLean; Patricia Raymond; Justin D. Waskiewicz
2017-01-01
Despite growing interest in management strategies for climate change adaptation, there are few methods for assessing the ability of stands to endure or adapt to projected future climates. We developed a means for assigning climate "Compatibility" and "Adaptability" scores to stands for assessing the suitability of tree species for projected climate...
NASA Astrophysics Data System (ADS)
Villoria, Nelson B.; Elliott, Joshua; Müller, Christoph; Shin, Jaewoo; Zhao, Lan; Song, Carol
2018-01-01
Access to climate and spatial datasets by non-specialists is restricted by technical barriers involving hardware, software and data formats. We discuss an open-source online tool that facilitates downloading the climate data from the global circulation models used by the Inter-Sectoral Impacts Model Intercomparison Project. The tool also offers temporal and spatial aggregation capabilities for incorporating future climate scenarios in applications where spatial aggregation is important. We hope that streamlined access to these data facilitates analysis of climate related issues while considering the uncertainties derived from future climate projections and temporal aggregation choices.
Incorporating climate change projections into riparian restoration planning and design
Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.
2015-01-01
Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.
Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.
Yigini, Yusuf; Panagos, Panos
2016-07-01
Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Impacts of boundary condition changes on regional climate projections over West Africa
NASA Astrophysics Data System (ADS)
Kim, Jee Hee; Kim, Yeonjoo; Wang, Guiling
2017-06-01
Future projections using regional climate models (RCMs) are driven with boundary conditions (BCs) typically derived from global climate models. Understanding the impact of the various BCs on regional climate projections is critical for characterizing their robustness and uncertainties. In this study, the International Center for Theoretical Physics Regional Climate Model Version 4 (RegCM4) is used to investigate the impact of different aspects of boundary conditions, including lateral BCs and sea surface temperature (SST), on projected future changes of regional climate in West Africa, and BCs from the coupled European Community-Hamburg Atmospheric Model 5/Max Planck Institute Ocean Model are used as an example. Historical, future, and several sensitivity experiments are conducted with various combinations of BCs and CO2 concentration, and differences among the experiments are compared to identify the most important drivers for RCMs. When driven by changes in all factors, the RegCM4-produced future climate changes include significantly drier conditions in Sahel and wetter conditions along the Guinean coast. Changes in CO2 concentration within the RCM domain alone or changes in wind vectors at the domain boundaries alone have minor impact on projected future climate changes. Changes in the atmospheric humidity alone at the domain boundaries lead to a wetter Sahel due to the northward migration of rain belts during summer. This impact, although significant, is offset and dominated by changes of other BC factors (primarily temperature) that cause a drying signal. Future changes of atmospheric temperature at the domain boundaries combined with SST changes over oceans are sufficient to cause a future climate that closely resembles the projection that accounts for all factors combined. Therefore, climate variability and changes simulated by RCMs depend primarily on the variability and change of temperature aspects of the RCM BCs. Moreover, it is found that the response of the RCM climate to different climate change factors is roughly linear in that the projected changes driven by combined factors are close to the sum of projected changes due to each individual factor alone at least for long-term averages. Findings from this study are important for understanding the source(s) of uncertainties in regional climate projections and for designing innovative approaches to climate downscaling and impact assessment.
Patterns of crop cover under future climates.
Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong
2017-04-01
We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.
NASA Astrophysics Data System (ADS)
McPherson, Michelle Yvonne; García-García, Almudena; José Cuesta-Valero, Francisco; Beltrami, Hugo; Hansen-Ketchum, Patti; MacDougall, Donna; Hume Ogden, Nicholas
2017-04-01
A number of studies have assessed possible climate change impacts on the Lyme disease vector, Ixodes scapularis. However, most have used surface air temperature from only one climate model simulation and/or one emission scenario, representing only one possible climate future. We quantified effects of different Representative Concentration Pathway (RCP) and climate model outputs on the projected future changes in the basic reproduction number (R0) of I. scapularis to explore uncertainties in future R0 estimates. We used surface air temperature generated by a complete set of General Circulation Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to hindcast historical and forecast future effects of climate change on the R0 of I. scapularis. As in previous studies, R0 of I. scapularis increased with a warming climate under future projected climate. Increases in the multi-model mean R0 values showed significant changes over time under all RCP scenarios, however; only the estimated R0 mean values between RCP6.0 and RCP8.5 showed statistically significant differences. Our results highlight the potential for climate change to have an effect on future Lyme disease risk in Canada even if the Paris Agreement's goal to keep global warming below 2°C is achieved, although mitigation reducing emissions from RCP8.5 levels to those of RCP6.0 or less would be expected to slow tick invasion after the 2030s. On-going planning is needed to inform and guide adaptation in light of the projected range of possible futures.
Designing ecological climate change impact assessments to reflect key climatic drivers
Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.
2017-01-01
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.
Designing ecological climate change impact assessments to reflect key climatic drivers.
Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T
2017-07-01
Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.
Choice of baseline climate data impacts projected species' responses to climate change.
Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G
2016-07-01
Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley & Sons Ltd.
Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review
Barnett, Adrian Gerard; Wang, Xiaoming; Vaneckova, Pavla; FitzGerald, Gerard; Tong, Shilu
2011-01-01
Background: Heat-related mortality is a matter of great public health concern, especially in the light of climate change. Although many studies have found associations between high temperatures and mortality, more research is needed to project the future impacts of climate change on heat-related mortality. Objectives: We conducted a systematic review of research and methods for projecting future heat-related mortality under climate change scenarios. Data sources and extraction: A literature search was conducted in August 2010, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 through July 2010. Data synthesis: Fourteen studies fulfilled the inclusion criteria. Most projections showed that climate change would result in a substantial increase in heat-related mortality. Projecting heat-related mortality requires understanding historical temperature–mortality relationships and considering the future changes in climate, population, and acclimatization. Further research is needed to provide a stronger theoretical framework for projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution, and mortality displacement. Conclusions: Scenario-based projection research will meaningfully contribute to assessing and managing the potential impacts of climate change on heat-related mortality. PMID:21816703
From climate-change spaghetti to climate-change distributions for 21st Century California
Dettinger, M.D.
2005-01-01
The uncertainties associated with climate-change projections for California are unlikely to disappear any time soon, and yet important long-term decisions will be needed to accommodate those potential changes. Projection uncertainties have typically been addressed by analysis of a few scenarios, chosen based on availability or to capture the extreme cases among available projections. However, by focusing on more common projections rather than the most extreme projections (using a new resampling method), new insights into current projections emerge: (1) uncertainties associated with future greenhouse-gas emissions are comparable with the differences among climate models, so that neither source of uncertainties should be neglected or underrepresented; (2) twenty-first century temperature projections spread more, overall, than do precipitation scenarios; (3) projections of extremely wet futures for California are true outliers among current projections; and (4) current projections that are warmest tend, overall, to yield a moderately drier California, while the cooler projections yield a somewhat wetter future. The resampling approach applied in this paper also provides a natural opportunity to objectively incorporate measures of model skill and the likelihoods of various emission scenarios into future assessments.
NASA Astrophysics Data System (ADS)
Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.
2012-04-01
Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.
Climate change, tropospheric ozone and particulate matter, and health impacts.
Ebi, Kristie L; McGregor, Glenn
2008-11-01
Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.
Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.
2016-12-01
Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.
NASA Astrophysics Data System (ADS)
Wang, G.; Ahmed, K. F.; You, L.
2015-12-01
Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.
Regional Climate Change Impact on Agricultural Land Use in West Africa
NASA Astrophysics Data System (ADS)
Ahmed, K. F.; Wang, G.; You, L.
2014-12-01
Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes in land use pattern are robust.
NASA Astrophysics Data System (ADS)
Han, B.; Flores, A. N.; Benner, S. G.
2017-12-01
In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of changes in precipitation versus temperature as a driver of scarcity, and potential shortcomings of the current water management framework in the region.
Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.
2016-01-01
Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.
Sofaer, Helen R.; Skagen, Susan K.; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon C.; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.
2016-01-01
Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change.
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.
NASA Astrophysics Data System (ADS)
Patton, S. L.; Takle, E. S.; Passe, U.; Kalvelage, K.
2013-12-01
Current simulations of building energy consumption use weather input files based on the past thirty years of climate observations. These 20th century climate conditions may be inadequate when designing buildings meant to function well into the 21st century. An alternative is using model projections of climate change to estimate future risk to the built environment. In this study, model-projected changes in climate were combined with existing typical meteorological year data to create future typical meteorological year data. These data were then formatted for use in EnergyPlus simulation software to evaluate their potential impact on commercial building energy consumption. The modeled climate data were taken from the North American Regional Climate Change Assessment Program (NARCCAP). NARCCAP uses results of global climate models to drive regional climate models, also known as dynamical downscaling. This downscaling gives higher resolution results over specific locations, and the multiple global/regional climate model combinations provide a unique opportunity to quantify the uncertainty of climate change projections and their impacts. Our results show a projected decrease in heating energy consumption and a projected increase in cooling energy consumption for nine locations across the United States for all model combinations. Warmer locations may expect a decrease in heating load of around 30% to 45% and an increase in cooling load of around 25% to 35%. Colder locations may expect a decrease in heating load of around 15% to 25% and an increase in cooling load of around 40% to 70%. The change in net energy consumption is determined by the balance between the magnitudes of heating change and cooling change. Net energy consumption is projected to increase by an average of 5% for lower-latitude locations and decrease by an average of 5% for higher-latitude locations. With these projected annual and seasonal changes presenting strong evidence for the unsuitable nature of current building practices holding up under future climate change, we recommend using our methods and results to make modifications and adaptations to existing buildings and to aid in the design of future buildings.
Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.
Mosedale, Jonathan R.; Wilson, Robert J.; Maclean, Ilya M. D.
2015-01-01
The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions. PMID:26496127
Using Paleo-climate Comparisons to Constrain Future Projections in CMIP5
NASA Technical Reports Server (NTRS)
Schmidt, G. A.; Annan, J D.; Bartlein, P. J.; Cook, B. I.; Guilyardi, E.; Hargreaves, J. C.; Harrison, S. P.; Kageyama, M.; LeGrande, A. N..; Konecky, B.;
2013-01-01
We present a description of the theoretical framework and best practice for using the paleo-climate model component of the Coupled Model Intercomparison Project (Phase 5) (CMIP5) to constrain future projections of climate using the same models. The constraints arise from measures of skill in hindcasting paleo-climate changes from the present over 3 periods: the Last Glacial Maximum (LGM) (21 thousand years before present, ka), the mid-Holocene (MH) (6 ka) and the Last Millennium (LM) (8501850 CE). The skill measures may be used to validate robust patterns of climate change across scenarios or to distinguish between models that have differing outcomes in future scenarios. We find that the multi-model ensemble of paleo-simulations is adequate for addressing at least some of these issues. For example, selected benchmarks for the LGM and MH are correlated to the rank of future projections of precipitationtemperature or sea ice extent to indicate that models that produce the best agreement with paleoclimate information give demonstrably different future results than the rest of the models. We also find that some comparisons, for instance associated with model variability, are strongly dependent on uncertain forcing timeseries, or show time dependent behaviour, making direct inferences for the future problematic. Overall, we demonstrate that there is a strong potential for the paleo-climate simulations to help inform the future projections and urge all the modeling groups to complete this subset of the CMIP5 runs.
Implication of Agricultural Land Use Change on Regional Climate Projection
NASA Astrophysics Data System (ADS)
Wang, G.; Ahmed, K. F.; You, L.
2015-12-01
Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.
NASA Astrophysics Data System (ADS)
Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei
This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.
Chang, Howard H.; Hao, Hua; Sarnat, Stefanie Ebelt
2014-01-01
The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041–2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999–2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: −7% to 24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models. PMID:24764746
Improving Climate Projections Using "Intelligent" Ensembles
NASA Technical Reports Server (NTRS)
Baker, Noel C.; Taylor, Patrick C.
2015-01-01
Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and that these metrics can be used to evaluate model quality in both current and future climate states. This information will be used to produce new consensus projections and provide communities with improved climate projections for urgent decision-making.
NASA Astrophysics Data System (ADS)
Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.
2012-12-01
Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary between crops due to plant specific sensitivities to temperature, solar radiation and the vapor pressure deficits. Shifts in the growth period to earlier in the year, shortened growth period for annual crops as well as extended fall growth can also exert important influences. Projected increases in CO2 concentrations in the late 21st century exert very significant influences on ET and yield for many crops. To characterize potential impacts and the range of uncertainty, changes in total agricultural water demands and yields were computed assuming that current crop types and acreages in 21 Central Valley regional planning areas remained constant throughout the 21st century for each of the 5 representative future climate scenarios.
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.
Changes in groundwater recharge under projected climate in the upper Colorado River basin
Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom
2016-01-01
Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.
Determing Credibility of Regional Simulations of Future Climate
NASA Astrophysics Data System (ADS)
Mearns, L. O.
2009-12-01
Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.
NASA Astrophysics Data System (ADS)
Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.
2012-01-01
Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse projections caused decreases around -20%. Changes in human ignition led to an increase of 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by -6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.
NASA Astrophysics Data System (ADS)
Matulla, Christoph; Namyslo, Joachim; Fuchs, Tobias; Türk, Konrad
2013-04-01
The European road sector is vulnerable to extreme weather phenomena, which can cause large socio-economic losses. Almost every year there occur several weather triggered events (like heavy precipitation, floods, landslides, high winds, snow and ice, heat or cold waves, etc.), that disrupt transportation, knock out power lines, cut off populated regions from the outside and so on. So, in order to avoid imbalances in the supply of vital goods to people as well as to prevent negative impacts on health and life of people travelling by car it is essential to know present and future threats to roads. Climate change might increase future threats to roads. CliPDaR focuses on parts of the European road network and contributes, based on the current body of knowledge, to the establishment of guidelines helping to decide which methods and scenarios to apply for the estimation of future climate change based challenges in the field of road maintenance. Based on regional scale climate change projections specific road-impact models are applied in order to support protection measures. In recent years, it has been recognised that it is essential to assess the uncertainty and reliability of given climate projections by using ensemble approaches and downscaling methods. A huge amount of scientific work has been done to evaluate these approaches with regard to reliability and usefulness for investigations on possible impacts of climate changes. CliPDaR is going to collect the existing approaches and methodologies in European countries, discuss their differences and - in close cooperation with the road owners - develops a common line on future applications of climate projection data to road impact models. As such, the project will focus on reviewing and assessing existing regional climate change projections regarding transnational highway transport needs. The final project report will include recommendations how the findings of CliPDaR may support the decision processes of European national road administrations regarding possible future climate change impacts. First project results are presented at the conference.
Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts
Ebi, Kristie L.; McGregor, Glenn
2008-01-01
Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695
USDA-ARS?s Scientific Manuscript database
Climate change projections for the Midwest U.S. indicate increased growing season crop water deficits in the future that will adversely impact the sustainability of agricultural production. Systems that capture water on site for later subirrigation use have potential as a climate adaptation strateg...
USDA-ARS?s Scientific Manuscript database
Understanding the frequency and occurrence of drought events in historic and projected future climate is essential for managing natural resources and setting policy. This study aims to identify future patterns of meteorological, hydrological and agricultural droughts based on projection from 12 GCM ...
Reservoir adaptive operating rules based on both of historical streamflow and future projections
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan
2017-10-01
Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.
NASA Astrophysics Data System (ADS)
Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella; Sotiropoulos, Andreas; Spanos, Ioannis; Milonas, Panayiotis; Michaelakis, Antonios
2017-04-01
Establishment and seasonal abundance of a region for Invasive Mosquito Species (IMS) are related to climatic parameters such as temperature and precipitation. In this work the current state is assessed using data from the European Climate Assessment and Dataset (ECA&D) project over Greece and Italy for the development of current spatial risk databases of IMS. Results are validated from the installation of a prototype IMS monitoring device that has been designed and developed in the framework of the LIFE CONOPS project at key points across the two countries. Since climate models suggest changes in future temperature and precipitation rates, the future potentiality of IMS establishment and spread over Greece and Italy is assessed using the climatic parameters in 2050's provided by the NASA GISS GCM ModelE under the IPCC-A1B emissions scenarios. The need for regional climate projections in a finer grid size is assessed using the Weather Research and Forecasting (WRF) model to dynamically downscale GCM simulations. The estimated changes in the future meteorological parameters are combined with the observation data in order to estimate the future levels of the climatic parameters of interest. The final product includes spatial distribution maps presenting the future suitability of a region for the establishment and seasonal abundance of the IMS over Greece and Italy. Acknowledgement: LIFE CONOPS project "Development & demonstration of management plans against - the climate change enhanced - invasive mosquitoes in S. Europe" (LIFE12 ENV/GR/000466).
Effect of Climate Change on Soil Temperature in Swedish Boreal Forests
Jungqvist, Gunnar; Oni, Stephen K.; Teutschbein, Claudia; Futter, Martyn N.
2014-01-01
Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions. PMID:24747938
Effect of climate change on soil temperature in Swedish boreal forests.
Jungqvist, Gunnar; Oni, Stephen K; Teutschbein, Claudia; Futter, Martyn N
2014-01-01
Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions.
Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J
2018-03-23
Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.
Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu
2013-01-01
Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2012-12-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b.
NASA Astrophysics Data System (ADS)
Prudhomme, C.; Haxton, T.; Crooks, S.; Jackson, C.; Barkwith, A.; Williamson, J.; Kelvin, J.; Mackay, J.; Wang, L.; Young, A.; Watts, G.
2013-03-01
The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961-1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice. Limitations associated with the dataset are provided, along with practical recommendation of use. Future Flows Hydrology is freely available for non-commercial use under certain licensing conditions. For each study site, catchment averages of daily precipitation and monthly potential evapotranspiration, used to drive the hydrological models, are made available, so that hydrological modelling uncertainty under climate change conditions can be explored further. doi:10.5285/f3723162-4fed-4d9d-92c6-dd17412fa37b
Regional and global implications of land-use change and climate change
NASA Astrophysics Data System (ADS)
Stauffer, Heidi Lada
This dissertation has two main components. The first is a longterm regional climate modeling study of the effects of different types of land use changes on Southeast Asian climate under present-day climate conditions and under future projected climate conditions at the end of the 21st Century. The focus of the second component is to estimate daily heat index for projected extreme temperatures at the end of the 21st Century and projecting the number of people affected by those heat conditions. The first component of this study uses a high-resolution regional climate model centered on the Southeast Asian region to compare two land use change scenarios under modern climate and future projected climate conditions. Results from experiments under modern climate conditions indicate that changes in regional climate including widespread surface cooling, increased precipitation, and increased latent heat flux are primarily due to deforestation. As expected from other studies, future climate projections indicate increasing surface temperature and total precipitation. However, the combination of increasing global temperatures and irrigation appears to increase latent heat flux and evapotranspiration, leading to decrease in the surface temperature nearly the same magnitude, increasing both specific humidity and relative humidity. The increasing relative humidity causes low clouds to form, and the net surface solar absorbed flux decreases in response, which further cools the surface. These results imply that deforestation and irrigation have differing complex regional climate responses and the presence of irrigation could mask future surface temperature increases, at least in the short term and reinforce the importance of incorporating land use changes, particularly irrigation, into any studies of future regional climate. The second component of this study uses global daily maximum heat indices derived from future climate future climate simulations for 2098 and projected population density to estimate how many people will be affected by rising temperatures. Our results show that over 4 billion people annually will experience prolonged periods of Danger heat index conditions, under which heat exhaustion and heat stroke are likely. In addition, a majority of people subjected to prolonged high heat stress conditions are located in tropical developing nations, such as those in south and Southeast Asia, where population density is high and large numbers of people work outdoors. Many countries in these regions lack the resources to mitigate the impact of heat stress on the large numbers of people likely to experience heat-related illness and death.
Extreme waves from tropical cyclones and climate change in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José
2017-04-01
Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.
NASA Astrophysics Data System (ADS)
Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun
2018-01-01
Climate change is expected to have severe impacts on natural systems as well as various socio-economic aspects of human life. This has urged scientific communities to improve the understanding of future climate and reduce the uncertainties associated with projections. In the present study, ten statistically downscaled CMIP5 GCMs at 1/16th deg. spatial resolution from two different downscaling procedures are utilized over the Columbia River Basin (CRB) to assess the changes in climate variables and characterize the associated uncertainties. Three climate variables, i.e. precipitation, maximum temperature, and minimum temperature, are studied for the historical period of 1970-2000 as well as future period of 2010-2099, simulated with representative concentration pathways of RCP4.5 and RCP8.5. Bayesian Model Averaging (BMA) is employed to reduce the model uncertainty and develop a probabilistic projection for each variable in each scenario. Historical comparison of long-term attributes of GCMs and observation suggests a more accurate representation for BMA than individual models. Furthermore, BMA projections are used to investigate future seasonal to annual changes of climate variables. Projections indicate significant increase in annual precipitation and temperature, with varied degree of change across different sub-basins of CRB. We then characterized uncertainty of future projections for each season over CRB. Results reveal that model uncertainty is the main source of uncertainty, among others. However, downscaling uncertainty considerably contributes to the total uncertainty of future projections, especially in summer. On the contrary, downscaling uncertainty appears to be higher than scenario uncertainty for precipitation.
NASA Astrophysics Data System (ADS)
Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.
2015-01-01
In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming may notably modulate the ISM rainfall in future climate. Both extreme wet and dry episodes are likely to intensify and regionally extend in future climate with enhanced propensity of short active and long break spells. The SM (WM) could also be more wet (dry) in future due to the increment in longer active (break) spells. However, future changes in the spatial pattern during active/break phase of SM and WM are geographically inconsistent among the models. The results point out the growing climate-related vulnerability over Indian subcontinent, and further suggest the requisite of profound adaptation measures and better policy making in future.
NASA Astrophysics Data System (ADS)
Rohat, Guillaume; Flacke, Johannes; Dao, Hy
2016-04-01
It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more vulnerable countries in the global south. We will discuss how this framework can be implemented for large urban agglomerations. To do so, we will examine: (i) by what means globally-developed SSPs can be extended into sector-specific and location-specific socio-economic development scenarios, (ii) in what manner the quantification of key socio-economic indicators (in accordance with the different SSPs), coupled with regional climate projections under different RCPs, can lead to a quantitative and reliable assessment of the evolution of future social vulnerability, and (iii) to which extent the SMA, i.e. the combination of extended SSPs, regional climate projections (under different RCPs) and various locally-developed SPAs, can answer some of the key questions regarding climate change adaptation policies, from a vulnerability perspective.
Sofaer, Helen R; Skagen, Susan K; Barsugli, Joseph J; Rashford, Benjamin S; Reese, Gordon C; Hoeting, Jennifer A; Wood, Andrew W; Noon, Barry R
2016-09-01
Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species' vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland complexes containing both small and relatively large wetland basins, which is an ongoing conservation strategy, may also act to hedge against uncertainty in the effects of climate change. © 2016 by the Ecological Society of America.
Garcia, Raquel A; Burgess, Neil D; Cabeza, Mar; Rahbek, Carsten; Araújo, Miguel B
2012-01-01
Africa is predicted to be highly vulnerable to 21st century climatic changes. Assessing the impacts of these changes on Africa's biodiversity is, however, plagued by uncertainties, and markedly different results can be obtained from alternative bioclimatic envelope models or future climate projections. Using an ensemble forecasting framework, we examine projections of future shifts in climatic suitability, and their methodological uncertainties, for over 2500 species of mammals, birds, amphibians and snakes in sub-Saharan Africa. To summarize a priori the variability in the ensemble of 17 general circulation models, we introduce a consensus methodology that combines co-varying models. Thus, we quantify and map the relative contribution to uncertainty of seven bioclimatic envelope models, three multi-model climate projections and three emissions scenarios, and explore the resulting variability in species turnover estimates. We show that bioclimatic envelope models contribute most to variability, particularly in projected novel climatic conditions over Sahelian and southern Saharan Africa. To summarize agreements among projections from the bioclimatic envelope models we compare five consensus methodologies, which generally increase or retain projection accuracy and provide consistent estimates of species turnover. Variability from emissions scenarios increases towards late-century and affects southern regions of high species turnover centred in arid Namibia. Twofold differences in median species turnover across the study area emerge among alternative climate projections and emissions scenarios. Our ensemble of projections underscores the potential bias when using a single algorithm or climate projection for Africa, and provides a cautious first approximation of the potential exposure of sub-Saharan African vertebrates to climatic changes. The future use and further development of bioclimatic envelope modelling will hinge on the interpretation of results in the light of methodological as well as biological uncertainties. Here, we provide a framework to address methodological uncertainties and contextualize results.
Fernández, Miguel; Hamilton, Healy H; Kueppers, Lara M
2015-11-01
Studies that model the effect of climate change on terrestrial ecosystems often use climate projections from downscaled global climate models (GCMs). These simulations are generally too coarse to capture patterns of fine-scale climate variation, such as the sharp coastal energy and moisture gradients associated with wind-driven upwelling of cold water. Coastal upwelling may limit future increases in coastal temperatures, compromising GCMs' ability to provide realistic scenarios of future climate in these coastal ecosystems. Taking advantage of naturally occurring variability in the high-resolution historic climatic record, we developed multiple fine-scale scenarios of California climate that maintain coherent relationships between regional climate and coastal upwelling. We compared these scenarios against coarse resolution GCM projections at a regional scale to evaluate their temporal equivalency. We used these historically based scenarios to estimate potential suitable habitat for coast redwood (Sequoia sempervirens D. Don) under 'normal' combinations of temperature and precipitation, and under anomalous combinations representative of potential future climates. We found that a scenario of warmer temperature with historically normal precipitation is equivalent to climate projected by GCMs for California by 2020-2030 and that under these conditions, climatically suitable habitat for coast redwood significantly contracts at the southern end of its current range. Our results suggest that historical climate data provide a high-resolution alternative to downscaled GCM outputs for near-term ecological forecasts. This method may be particularly useful in other regions where local climate is strongly influenced by ocean-atmosphere dynamics that are not represented by coarse-scale GCMs. © 2015 John Wiley & Sons Ltd.
Report on the projected future climate of the Walnut Gulch Watershed, AZ
USDA-ARS?s Scientific Manuscript database
This report is one of several that provides technical information on projected climate change at selected ARS experimental watersheds across the continental United States. The report is an attachment to the main report of the multi-location project titled “Estimating impacts of projected climate cha...
NASA Astrophysics Data System (ADS)
Dixon, K. W.; Lanzante, J. R.; Adams-Smith, D.
2017-12-01
Several challenges exist when seeking to use future climate model projections in a climate impacts study. A not uncommon approach is to utilize climate projection data sets derived from more than one future emissions scenario and from multiple global climate models (GCMs). The range of future climate responses represented in the set is sometimes taken to be indicative of levels of uncertainty in the projections. Yet, GCM outputs are deemed to be unsuitable for direct use in many climate impacts applications. GCM grids typically are viewed as being too coarse. Additionally, regional or local-scale biases in a GCM's simulation of the contemporary climate that may not be problematic from a global climate modeling perspective may be unacceptably large for a climate impacts application. Statistical downscaling (SD) of climate projections - a type of post-processing that uses observations to inform the refinement of GCM projections - is often used in an attempt to account for GCM biases and to provide additional spatial detail. "What downscaled climate projection is the best one to use" is a frequently asked question, but one that is not always easy to answer, as it can be dependent on stakeholder needs and expectations. Here we present results from a perfect model experimental design illustrating how SD method performance can vary not only by SD method, but how performance can also vary by location, season, climate variable of interest, amount of projected climate change, SD configuration choices, and whether one is interested in central tendencies or the tails of the distribution. Awareness of these factors can be helpful when seeking to determine the suitability of downscaled climate projections for specific climate impacts applications. It also points to the potential value of considering more than one SD data product in a study, so as to acknowledge uncertainties associated with the strengths and weaknesses of different downscaling methods.
NASA Astrophysics Data System (ADS)
Hurford, Anthony; Harou, Julien
2015-04-01
Climate change has challenged conventional methods of planning water resources infrastructure investment, relying on stationarity of time-series data. It is not clear how to best use projections of future climatic conditions. Many-objective simulation-optimisation and trade-off analysis using evolutionary algorithms has been proposed as an approach to addressing complex planning problems with multiple conflicting objectives. The search for promising assets and policies can be carried out across a range of climate projections, to identify the configurations of infrastructure investment shown by model simulation to be robust under diverse future conditions. Climate projections can be used in different ways within a simulation model to represent the range of possible future conditions and understand how optimal investments vary according to the different hydrological conditions. We compare two approaches, optimising over an ensemble of different 20-year flow and PET timeseries projections, and separately for individual future scenarios built synthetically from the original ensemble. Comparing trade-off curves and surfaces generated by the two approaches helps understand the limits and benefits of optimising under different sets of conditions. The comparison is made for the Tana Basin in Kenya, where climate change combined with multiple conflicting objectives of water management and infrastructure investment mean decision-making is particularly challenging.
Arnbjerg-Nielsen, K; Funder, S G; Madsen, H
2015-01-01
Climate analogues, also denoted Space-For-Time, may be used to identify regions where the present climatic conditions resemble conditions of a past or future state of another location or region based on robust climate variable statistics in combination with projections of how these statistics change over time. The study focuses on assessing climate analogues for Denmark based on current climate data set (E-OBS) observations as well as the ENSEMBLES database of future climates with the aim of projecting future precipitation extremes. The local present precipitation extremes are assessed by means of intensity-duration-frequency curves for urban drainage design for the relevant locations being France, the Netherlands, Belgium, Germany, the United Kingdom, and Denmark. Based on this approach projected increases of extreme precipitation by 2100 of 9 and 21% are expected for 2 and 10 year return periods, respectively. The results should be interpreted with caution as the best region to represent future conditions for Denmark is the coastal areas of Northern France, for which only little information is available with respect to present precipitation extremes.
Climate change, tropospheric ozone and particulate matter, and health impacts.
Ebi, Kristie; McGregor, Glenn
2009-01-01
We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.
Climate Change Impact Assessment of Hydro-Climate in Southern Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.
2017-12-01
Impacts of climate change on the hydroclimate of the coastal region in the south of Peninsular Malaysia in the 21st century was assessed by means of a regional climate model utilizing an ensemble of 15 different future climate realizations. Coarse resolution Global Climate Models' future projections covering four emission scenarios based on Coupled Model Intercomparison Project phase 3 (CMIP3) datasets were dynamically downscaled to 6 km resolution over the study area. The analyses were made in terms of rainfall, air temperature, evapotranporation, and soil water storage.
NASA Astrophysics Data System (ADS)
Matulla, Christoph; Hollósi, Brigitta; Andre, Konrad; Gringinger, Julia; Chimani, Barbara; Namyslo, Joachim; Fuchs, Tobias; Auerbach, Markus; Herrmann, Carina; Sladek, Brigitte; Berghold, Heimo; Gschier, Roland; Eichinger-Vill, Eva
2017-06-01
Road authorities, freight, and logistic industries face a multitude of challenges in a world changing at an ever growing pace. While globalization, changes in technology, demography, and traffic, for instance, have received much attention over the bygone decades, climate change has not been treated with equal care until recently. However, since it has been recognized that climate change jeopardizes many business areas in transport, freight, and logistics, research programs investigating future threats have been initiated. One of these programs is the Conference of European Directors of Roads' (CEDR) Transnational Research Programme (TRP), which emerged about a decade ago from a cooperation between European National Road Authorities and the EU. This paper presents findings of a CEDR project called CliPDaR, which has been designed to answer questions from road authorities concerning climate-driven future threats to transport infrastructure. Pertaining results are based on two potential future socio-economic pathways of mankind (one strongly economically oriented "A2" and one more balanced scenario "A1B"), which are used to drive global climate models (GCMs) producing global and continental scale climate change projections. In order to achieve climate change projections, which are valid on regional scales, GCM projections are downscaled by regional climate models. Results shown here originate from research questions raised by European Road Authorities. They refer to future occurrence frequencies of severely cold winter seasons in Fennoscandia, to particularly hot summer seasons in the Iberian Peninsula and to changes in extreme weather phenomena triggering landslides and rutting in Central Europe. Future occurrence frequencies of extreme winter and summer conditions are investigated by empirical orthogonal function analyses of GCM projections driven with by A2 and A1B pathways. The analysis of future weather phenomena triggering landslides and rutting events requires downscaled climate change projections. Hence, corresponding results are based on an ensemble of RCM projections, which was available for the A1B scenario. All analyzed risks to transport infrastructure are found to increase over the decades ahead with accelerating pace towards the end of this century. Mean Fennoscandian winter temperatures by the end of this century may match conditions of rather warm winter season experienced in the past and particularly warm future winter temperatures have not been observed so far. This applies in an even more pronounced manner to summer seasons in the Iberian Peninsula. Occurrence frequencies of extreme climate phenomena triggering landslides and rutting events in Central Europe are also projected to rise. Results show spatially differentiated patterns and indicate accelerated rates of increases.
Past and future changes in climate and hydrological indicators in the US Northeast
Hayhoe, K.; Wake, C.P.; Huntington, T.G.; Luo, L.; Schwartz, M.D.; Sheffield, J.; Wood, E.; Anderson, B.; Bradbury, J.; DeGaetano, A.; Troy, T.J.; Wolfe, D.
2007-01-01
To assess the influence of global climate change at the regional scale, we examine past and future changes in key climate, hydrological, and biophysical indicators across the US Northeast (NE). We first consider the extent to which simulations of twentieth century climate from nine atmosphere-ocean general circulation models (AOGCMs) are able to reproduce observed changes in these indicators. We then evaluate projected future trends in primary climate characteristics and indicators of change, including seasonal temperatures, rainfall and drought, snow cover, soil moisture, streamflow, and changes in biometeorological indicators that depend on threshold or accumulated temperatures such as growing season, frost days, and Spring Indices (SI). Changes in indicators for which temperature-related signals have already been observed (seasonal warming patterns, advances in high-spring streamflow, decreases in snow depth, extended growing seasons, earlier bloom dates) are generally reproduced by past model simulations and are projected to continue in the future. Other indicators for which trends have not yet been observed also show projected future changes consistent with a warmer climate (shrinking snow cover, more frequent droughts, and extended low-flow periods in summer). The magnitude of temperature-driven trends in the future are generally projected to be higher under the Special Report on Emission Scenarios (SRES) mid-high (A2) and higher (A1FI) emissions scenarios than under the lower (B1) scenario. These results provide confidence regarding the direction of many regional climate trends, and highlight the fundamental role of future emissions in determining the potential magnitude of changes we can expect over the coming century. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Hasan, M. Alfi; Islam, A. K. M. Saiful; Akanda, Ali Shafqat
2017-11-01
In the era of global warning, the insight of future climate and their changing extremes is critical for climate-vulnerable regions of the world. In this study, we have conducted a robust assessment of Regional Climate Model (RCM) results in a monsoon-dominated region within the new Coupled Model Intercomparison Project Phase 5 (CMIP5) and the latest Representative Concentration Pathways (RCP) scenarios. We have applied an advanced bias correction approach to five RCM simulations in order to project future climate and associated extremes over Bangladesh, a critically climate-vulnerable country with a complex monsoon system. We have also generated a new gridded product that performed better in capturing observed climatic extremes than existing products. The bias-correction approach provided a notable improvement in capturing the precipitation extremes as well as mean climate. The majority of projected multi-model RCMs indicate an increase of rainfall, where one model shows contrary results during the 2080s (2071-2100) era. The multi-model mean shows that nighttime temperatures will increase much faster than daytime temperatures and the average annual temperatures are projected to be as hot as present-day summer temperatures. The expected increase of precipitation and temperature over the hilly areas are higher compared to other parts of the country. Overall, the projected extremities of future rainfall are more variable than temperature. According to the majority of the models, the number of the heavy rainy days will increase in future years. The severity of summer-day temperatures will be alarming, especially over hilly regions, where winters are relatively warm. The projected rise of both precipitation and temperature extremes over the intense rainfall-prone northeastern region of the country creates a possibility of devastating flash floods with harmful impacts on agriculture. Moreover, the effect of bias-correction, as presented in probable changes of both bias-corrected and uncorrected extremes, can be considered in future policy making.
NASA Astrophysics Data System (ADS)
Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan
2015-05-01
Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.
Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change
NASA Astrophysics Data System (ADS)
Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.
2016-12-01
To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.
Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections
NASA Astrophysics Data System (ADS)
Aryal, Anil; Shrestha, Sangam; Babel, Mukand S.
2018-01-01
The objective of this paper is to quantify the various sources of uncertainty in the assessment of climate change impact on hydrology in the Tamakoshi River Basin, located in the north-eastern part of Nepal. Multiple climate and hydrological models were used to simulate future climate conditions and discharge in the basin. The simulated results of future climate and river discharge were analysed for the quantification of sources of uncertainty using two-way and three-way ANOVA. The results showed that temperature and precipitation in the study area are projected to change in near- (2010-2039), mid- (2040-2069) and far-future (2070-2099) periods. Maximum temperature is likely to rise by 1.75 °C under Representative Concentration Pathway (RCP) 4.5 and by 3.52 °C under RCP 8.5. Similarly, the minimum temperature is expected to rise by 2.10 °C under RCP 4.5 and by 3.73 °C under RCP 8.5 by the end of the twenty-first century. Similarly, the precipitation in the study area is expected to change by - 2.15% under RCP 4.5 and - 2.44% under RCP 8.5 scenarios. The future discharge in the study area was projected using two hydrological models, viz. Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center's Hydrologic Modelling System (HEC-HMS). The SWAT model projected discharge is expected to change by small amount, whereas HEC-HMS model projected considerably lower discharge in future compared to the baseline period. The results also show that future climate variables and river hydrology contain uncertainty due to the choice of climate models, RCP scenarios, bias correction methods and hydrological models. During wet days, more uncertainty is observed due to the use of different climate models, whereas during dry days, the use of different hydrological models has a greater effect on uncertainty. Inter-comparison of the impacts of different climate models reveals that the REMO climate model shows higher uncertainty in the prediction of precipitation and, consequently, in the prediction of future discharge and maximum probable flood.
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-12-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. PMID:24455138
Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways.
Rohat, Guillaume
2018-03-19
The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure-i.e., mainly future population patterns-, neglecting future human vulnerability. This paper first explores the research gaps-mainly linked to the paucity of available projections-that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs-namely the scenario matching approach and an approach based on experts' elicitation and correlation analyses-and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods-such as the spatial disaggregation of existing projections and the use of sectoral models-show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely on these methods to account for future human vulnerability-under varying levels of socioeconomic development-and to explore its influence on future health risks under different degrees of climate change.
Leedale, Joseph; Tompkins, Adrian M; Caminade, Cyril; Jones, Anne E; Nikulin, Grigory; Morse, Andrew P
2016-03-31
The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.
NASA Astrophysics Data System (ADS)
Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald
2015-04-01
Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but not so much at medium elevations. (ii) Considering climate change, the variability that is due to the GCM-RCM chains is much greater than the variability induced by the uncertainty in the initial climatic conditions. (iii) The uncertainties caused by the intrinsic stochasticity in the DVMs and by the random generation of the climate time-series are negligible. Overall, our results indicate that DVMs are quite sensitive to the climate data, highlighting particularly (1) the limitations of using one single multi-model average climate change scenario in climate impact studies and (2) the need to better consider the uncertainty in climate model outputs for projecting future vegetation changes.
Kolstad, Erik W; Johansson, Kjell Arne
2011-03-01
Climate change is expected to have large impacts on health at low latitudes where droughts and malnutrition, diarrhea, and malaria are projected to increase. The main objective of this study was to indicate a method to assess a range of plausible health impacts of climate change while handling uncertainties in a unambiguous manner. We illustrate this method by quantifying the impacts of projected regional warming on diarrhea in this century. We combined a range of linear regression coefficients to compute projections of future climate change-induced increases in diarrhea using the results from five empirical studies and a 19-member climate model ensemble for which future greenhouse gas emissions were prescribed. Six geographical regions were analyzed. The model ensemble projected temperature increases of up to 4°C over land in the tropics and subtropics by the end of this century. The associated mean projected increases of relative risk of diarrhea in the six study regions were 8-11% (with SDs of 3-5%) by 2010-2039 and 22-29% (SDs of 9-12%) by 2070-2099. Even our most conservative estimates indicate substantial impacts from climate change on the incidence of diarrhea. Nevertheless, our main conclusion is that large uncertainties are associated with future projections of diarrhea and climate change. We believe that these uncertainties can be attributed primarily to the sparsity of empirical climate-health data. Our results therefore highlight the need for empirical data in the cross section between climate and human health.
Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannesson, G
2010-03-17
Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that themore » average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves configuring and running a regional climate model (RCM) nested within a given GCM projection (i.e., the GCM provides bounder conditions for the RCM). On the other hand, statistical downscaling aims at establishing a statistical relationship between observed local/regional climate variables of interest and synoptic (GCM-scale) climate predictors. The resulting empirical relationship is then applied to future GCM projections. A comparison of the pros and cons of dynamical versus statistical downscaling is outside the scope of this effort, but has been extensively studied and the reader is referred to Wilby et al. (1998); Murphy (1999); Wood et al. (2004); Benestad et al. (2007); Fowler et al. (2007), and references within those. The scope of this effort is to study methodology, a statistical framework, to propagate and account for GCM uncertainty in regional statistical downscaling assessment. In particular, we will explore how to leverage an ensemble of GCM projections to quantify the impact of the GCM uncertainty in such an assessment. There are three main component to this effort: (1) gather the necessary climate-related data for a regional SDS study, including multiple GCM projections, (2) carry out SDS, and (3) assess the uncertainty. The first step is carried out using tools written in the Python programming language, while analysis tools were developed in the statistical programming language R; see Figure 1.« less
Impacts of weighting climate models for hydro-meteorological climate change studies
NASA Astrophysics Data System (ADS)
Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel
2017-06-01
Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.
Working with South Florida County Planners to Understand and Mitigate Uncertain Climate Risks
NASA Astrophysics Data System (ADS)
Knopman, D.; Groves, D. G.; Berg, N.
2017-12-01
This talk describes a novel approach for evaluating climate change vulnerabilities and adaptations in Southeast Florida to support long-term resilience planning. The work is unique in that it combines state-of-the-art hydrologic modeling with the region's long-term land use and transportation plans to better assess the future climate vulnerability and adaptations for the region. Addressing uncertainty in future projections is handled through the use of decisionmaking under deep uncertainty methods. Study findings, including analysis of key tradeoffs, were conveyed to the region's stakeholders through an innovative web-based decision support tool. This project leverages existing groundwater models spanning Miami-Dade and Broward Counties developed by the USGS, along with projections of land use and asset valuations for Miami-Dade and Broward County planning agencies. Model simulations are executed on virtual cloud-based servers for a highly scalable and parallelized platform. Groundwater elevations and the saltwater-freshwater interface and intrusion zones from the integrated modeling framework are analyzed under a wide range of long-term climate futures, including projected sea level rise and precipitation changes. The hydrologic hazards are then combined with current and future land use and asset valuation projections to estimate assets at risk across the range of futures. Lastly, an interactive decision support tool highlights the areas with critical climate vulnerabilities; distinguishes between vulnerability due to new development, increased climate hazards, or both; and provides guidance for adaptive management and development practices and decisionmaking in Southeast Florida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagener, Thorsten; Mann, Michael; Crane, Robert
2014-04-29
This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach tomore » establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.« less
NASA Astrophysics Data System (ADS)
Woo, Sumin; Singh, Gyan Prakash; Oh, Jai-Ho; Lee, Kyoung-Min
2018-05-01
Seasonal changes in precipitation characteristics over India were projected using a high-resolution (40-km) atmospheric general circulation model (AGCM) during the near- (2010-2039), mid- (2040-2069), and far- (2070-2099) futures. For the model evaluation, we simulated an Atmospheric Model Intercomparison Project-type present-day climate using AGCM with observed sea-surface temperature and sea-ice concentration. Based on this simulation, we have simulated the current climate from 1979 to 2009 and subsequently the future climate projection until 2100 using a CMCC-CM model from Coupled Model Intercomparison Project phase 5 models based on RCP4.5 and RCP8.5 scenarios. Using various observed precipitation data, the validation of the simulated precipitation indicates that the AGCM well-captured the high and low rain belts and also onset and withdrawal of monsoon in the present-day climate simulation. Future projections were performed for the above-mentioned time slices (near-, mid-, and far futures). The model projected an increase in summer precipitation from 7 to 18% under RCP4.5 and from 14 to 18% under RCP8.5 from the mid- to far futures. Projected summer precipitation from different time slices depicts an increase over northwest (NWI) and west-south peninsular India (SPI) and a reduction over northeast and north-central India. The model projected an eastward shift of monsoon trough around 2° longitude and expansion and intensification of Mascarene High and Tibetan High seems to be associated with projected precipitation. The model projected extreme precipitation events show an increase (20-50%) in rainy days over NWI and SPI. While a significant increase of about 20-50% is noticed in heavy rain events over SPI during the far future.
Gisselle Yang Xie; Deanna H. Olson; Andrew R. Blaustein
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate...
Uncertainty Quantification in Climate Modeling and Projection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Jackson, Charles; Giorgi, Filippo
The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change informationmore » for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for assessing reliability and uncertainties of climate change information. An alternative approach is to generate similar ensembles by perturbing parameters within a single-model framework. One of workshop’s objectives was to give participants a deeper understanding of these approaches within a Bayesian statistical framework. However, there remain significant challenges still to be resolved before UQ can be applied in a convincing way to climate models and their projections.« less
Regional climate projection of the Maritime Continent using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
IM, E. S.; Eltahir, E. A. B.
2014-12-01
Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes
NASA Astrophysics Data System (ADS)
MU, J.
2014-12-01
Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.
NASA Astrophysics Data System (ADS)
Yahya, Khairunnisa; Campbell, Patrick; Zhang, Yang
2017-03-01
Following a comprehensive model evaluation, this Part II paper presents projected changes in future (2046-2055) climate, air quality, and their interactions under the RCP4.5 and RCP8.5 scenarios using the Weather, Research and Forecasting model with Chemistry (WRF/Chem). In general, both WRF/Chem RCP4.5 and RCP8.5 simulations predict similar increases on average (∼2 °C) for 2-m temperature (T2) but different spatial distributions of the projected changes in T2, 2-m relative humidity, 10-m wind speed, precipitation, and planetary boundary layer height, due to differences in the spatial distributions of projected emissions, and their feedbacks into climate. Future O3 mixing ratios will decrease for most parts of the U.S. under the RCP4.5 scenario but increase for all areas under the RCP8.5 scenario due to higher projected temperature, greenhouse gas concentrations and biogenic volatile organic compounds (VOC) emissions, higher O3 values for boundary conditions, and disbenefit of NOx reduction and decreased NO titration over VOC-limited O3 chemistry regions. Future PM2.5 concentrations will decrease for both RCP4.5 and RCP8.5 scenarios with different trends in projected concentrations of individual PM species. Total cloud amounts decrease under both scenarios in the future due to decreases in PM and cloud droplet number concentration thus increased radiation. Those results illustrate the impacts of carbon policies with different degrees of emission reductions on future climate and air quality. The WRF/Chem and WRF simulations show different spatial patterns for projected changes in T2 for future decade, indicating different impacts of prognostic and prescribed gas/aerosol concentrations, respectively, on climate change.
Projected continent-wide declines of the emperor penguin under climate change
NASA Astrophysics Data System (ADS)
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal
2014-08-01
Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.
Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K
2017-05-15
Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve. Copyright © 2017 Elsevier B.V. All rights reserved.
Weighting climate model projections using observational constraints.
Gillett, Nathan P
2015-11-13
Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5. © 2015 The Authors.
Uncertainty of future projections of species distributions in mountainous regions.
Tang, Ying; Winkler, Julie A; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang
2018-01-01
Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution.
Uncertainty of future projections of species distributions in mountainous regions
Tang, Ying; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang
2018-01-01
Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution. PMID:29320501
How Might Recharge Change Under Projected Climate Change in the Western U.S.?
NASA Astrophysics Data System (ADS)
Niraula, R.; Meixner, T.; Dominguez, F.; Bhattarai, N.; Rodell, M.; Ajami, H.; Gochis, D.; Castro, C.
2017-10-01
Although groundwater is a major water resource in the western U.S., little research has been done on the impacts of climate change on groundwater storage and recharge in the West. Here we assess the impact of projected changes in climate on groundwater recharge in the near (2021-2050) and far (2071-2100) future across the western U.S. Variable Infiltration Capacity model was run with RCP 6.0 forcing from 11 global climate models and "subsurface runoff" output was considered as recharge. Recharge is expected to decrease in the West (-5.8 ± 14.3%) and Southwest (-4.0 ± 6.7%) regions in the near future and in the South region (-9.5 ± 24.3%) in the far future. The Northern Rockies region is expected to get more recharge in the near (+5.3 ± 9.2%) and far (+11.8 ± 12.3%) future. Overall, southern portions of the western U.S. are expected to get less recharge in the future and northern portions will get more. Climate change interacts with land surface properties to affect the amount of recharge that occurs in the future. Effects on recharge due to change in vegetation response from projected changes in climate and CO2 concentration, though important, are not considered in this study.
NASA Astrophysics Data System (ADS)
Achutarao, K. M.; Singh, R.
2017-12-01
There are various sources of uncertainty in model projections of future climate change. These include differences in the formulation of climate models, internal variability, and differences in scenarios. Internal variability in a climate system represents the unforced change due to the chaotic nature of the climate system and is considered irreducible (Deser et al., 2012). Internal variability becomes important at regional scales where it can dominate forced changes. Therefore it needs to be carefully assessed in future projections. In this study we segregate the role of internal variability in the future temperature and precipitation projections over the Indian region. We make use of the Coupled Model Inter-comparison Project - phase 5 (CMIP5; Taylor et al., 2012) database containing climate model simulations carried out by various modeling centers around the world. While the CMIP5 experimental protocol recommended producing numerous ensemble members, only a handful of the modeling groups provided multiple realizations. Having a small number of realizations is a limitation in producing a quantification of internal variability. We therefore exploit the Community Earth System Model Large Ensemble (CESM-LE; Kay et al., 2014) dataset which contains a 40 member ensemble of a single model- CESM1 (CAM5) to explore the role of internal variability in Future Projections. Surface air temperature and precipitation change projections over regional and sub-regional scale are analyzed under the IPCC emission scenario (RCP8.5) for different seasons and homogeneous climatic zones over India. We analyze the spread in projections due to internal variability in the CESM-LE and CMIP5 datasets over these regions.
NASA Technical Reports Server (NTRS)
Schwartz, Joel D.; Lee, Mihye; Kinney, Patrick L.; Yang, Suijia; Mills, David; Sarofim, Marcus C.; Jones, Russell; Streeter, Richard; St. Juliana, Alexis; Peers, Jennifer;
2015-01-01
Background: A warming climate will affect future temperature-attributable premature deaths. This analysis is the first to project these deaths at a near national scale for the United States using city and month-specific temperature-mortality relationships. Methods: We used Poisson regressions to model temperature-attributable premature mortality as a function of daily average temperature in 209 U.S. cities by month. We used climate data to group cities into clusters and applied an Empirical Bayes adjustment to improve model stability and calculate cluster-based month-specific temperature-mortality functions. Using data from two climate models, we calculated future daily average temperatures in each city under Representative Concentration Pathway 6.0. Holding population constant at 2010 levels, we combined the temperature data and cluster-based temperature-mortality functions to project city-specific temperature-attributable premature deaths for multiple future years which correspond to a single reporting year. Results within the reporting periods are then averaged to account for potential climate variability and reported as a change from a 1990 baseline in the future reporting years of 2030, 2050 and 2100. Results: We found temperature-mortality relationships that vary by location and time of year. In general, the largest mortality response during hotter months (April - September) was in July in cities with cooler average conditions. The largest mortality response during colder months (October-March) was at the beginning (October) and end (March) of the period. Using data from two global climate models, we projected a net increase in premature deaths, aggregated across all 209 cities, in all future periods compared to 1990. However, the magnitude and sign of the change varied by cluster and city. Conclusions: We found increasing future premature deaths across the 209 modeled U.S. cities using two climate model projections, based on constant temperature-mortality relationships from 1997 to 2006 without any future adaptation. However, results varied by location, with some locations showing net reductions in premature temperature-attributable deaths with climate change.
Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions.
Levy, Karen; Smith, Shanon M; Carlton, Elizabeth J
2018-06-01
Climate change threatens progress achieved in global reductions of infectious disease rates over recent decades. This review summarizes literature on potential impacts of climate change on waterborne diseases, organized around a framework of questions that can be addressed depending on available data. A growing body of evidence suggests that climate change may alter the incidence of waterborne diseases, and diarrheal diseases in particular. Much of the existing work examines historical relationships between weather and diarrhea incidence, with a limited number of studies projecting future disease rates. Some studies take social and ecological factors into account in considerations of historical relationships, but few have done so in projecting future conditions. The field is at a point of transition, toward incorporating social and ecological factors into understanding the relationships between climatic factors and diarrheal diseases and using this information for future projections. The integration of these components helps identify vulnerable populations and prioritize adaptation strategies.
Ensemble of regional climate model projections for Ireland
NASA Astrophysics Data System (ADS)
Nolan, Paul; McGrath, Ray
2016-04-01
The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season of over 35 days per year. Results show significant projected decreases in mean annual, spring and summer precipitation amounts by mid-century. The projected decreases are largest for summer, with "likely" reductions ranging from 0% to 20%. The frequencies of heavy precipitation events show notable increases (approximately 20%) during the winter and autumn months. The number of extended dry periods is projected to increase substantially during autumn and summer. Regional variations of projected precipitation change remain statistically elusive. The energy content of the wind is projected to significantly decrease for the future spring, summer and autumn months. Projected increases for winter were found to be statistically insignificant. The projected decreases were largest for summer, with "likely" values ranging from 3% to 15%. Results suggest that the tracks of intense storms are projected to extend further south over Ireland relative to those in the reference simulation. As extreme storm events are rare, the storm-tracking research needs to be extended. Future work will focus on analysing a larger ensemble, thus allowing a robust statistical analysis of extreme storm track projections.
NOAA's State Climate Summaries for the National Climate Assessment: A Sustained Assessment Product
NASA Astrophysics Data System (ADS)
Kunkel, K.; Champion, S.; Frankson, R.; Easterling, D. R.; Griffin, J.; Runkle, J. D.; Stevens, L. E.; Stewart, B. C.; Sun, L.; Veasey, S.
2016-12-01
A set of State Climate Summaries have been produced for all 50 U.S. states as part of the National Climate Assessment Sustained Assessment and represent a NOAA contribution to this process. Each summary includes information on observed and projected climate change conditions and impacts associated with future greenhouse gas emissions pathways. The summaries focus on the physical climate and coastal issues as a part of NOAA's mission. Core climate data and simulations used to produce these summaries have been previously published, and have been analyzed to represent a targeted synthesis of historical and plausible future climate conditions. As these are intended to be supplemental to major climate assessment development, the scope of the content remains true to a "summary" style document. Each state's Climate Summary includes its climatology and projections of future temperatures and precipitation, which are presented in order to provide a context for the assessment of future impacts. The climatological component focuses on temperature, precipitation, and noteworthy weather events specific to each state and relevant to the climate change discussion. Future climate scenarios are also briefly discussed, using well-known and consistent sets of climate model simulations based on two possible futures of greenhouse gas emissions. These future scenarios present an internally consistent climate picture for every state and are intended to inform the potential impacts of climate change. These 50 State Climate Summaries were produced by NOAA's National Centers for Environmental Information (NCEI) and the North Carolina State University Cooperative Institute for Climate and Satellites - NC (CICS-NC) with additional input provided by climate experts, including the NOAA Regional Climate Centers and State Climatologists. Each summary document also underwent a comprehensive and anonymous peer review. Each summary contains text, figures, and an interactive web presentation. A full suite of the comprehensive analyses and metadata are also available. The audience is targeted as both decision-makers and informed non-scientists. This presentation will discuss the scientific development for the project, demonstrate the suite of information, and provide examples of noteworthy figures from select states.
Steen, Valerie; Sofaer, Helen R.; Skagen, Susan K.; Ray, Andrea J.; Noon, Barry R
2017-01-01
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.
Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R
2017-11-01
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.
Linda A. Joyce; David T. Price; David P. Coulson; Daniel W. McKenney; R. Martin Siltanen; Pia Papadopol; Kevin Lawrence
2014-01-01
A set of climate change projections for the United States was developed for use in the 2010 USDA Forest Service RPA Assessment. These climate projections, along with projections for population dynamics, economic growth, and land use change in the United States, comprise the RPA scenarios and are used in the RPA Assessment to project future renewable resource conditions...
Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways
2018-01-01
The Shared Socioeconomic Pathways (SSPs) are the new set of alternative futures of societal development that inform global and regional climate change research. They have the potential to foster the integration of socioeconomic scenarios within assessments of future climate-related health impacts. To date, such assessments have primarily superimposed climate scenarios on current socioeconomic conditions only. Until now, the few assessments of future health risks that employed the SSPs have focused on future human exposure—i.e., mainly future population patterns—, neglecting future human vulnerability. This paper first explores the research gaps—mainly linked to the paucity of available projections—that explain such a lack of consideration of human vulnerability under the SSPs. It then highlights the need for projections of socioeconomic variables covering the wide range of determinants of human vulnerability, available at relevant spatial and temporal scales, and accounting for local specificities through sectoral and regional extended versions of the global SSPs. Finally, this paper presents two innovative methods of obtaining and computing such socioeconomic projections under the SSPs—namely the scenario matching approach and an approach based on experts’ elicitation and correlation analyses—and applies them to the case of Europe. They offer a variety of possibilities for practical application, producing projections at sub-national level of various drivers of human vulnerability such as demographic and social characteristics, urbanization, state of the environment, infrastructure, health status, and living arrangements. Both the innovative approaches presented in this paper and existing methods—such as the spatial disaggregation of existing projections and the use of sectoral models—show great potential to enhance the availability of relevant projections of determinants of human vulnerability. Assessments of future climate-related health impacts should thus rely on these methods to account for future human vulnerability—under varying levels of socioeconomic development—and to explore its influence on future health risks under different degrees of climate change. PMID:29562727
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Kenneth L. Cole; Kirsten Ironside; Jon Eischeid; Gregg Garfin; Phillip B. Duffy; Chris Toney
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ~11 700 years ago, the range of Joshua tree contracted, leaving only the...
Beyond scenario planning: projecting the future using models at Wind Cave National Park (USA)
NASA Astrophysics Data System (ADS)
King, D. A.; Bachelet, D. M.; Symstad, A. J.
2011-12-01
Scenario planning has been used by the National Park Service as a tool for natural resource management planning in the face of climate change. Sets of plausible but divergent future scenarios are constructed from available information and expert opinion and serve as starting point to derive climate-smart management strategies. However, qualitative hypotheses about how systems would react to a particular set of conditions assumed from coarse scale climate projections may lack the scientific rigor expected from a federal agency. In an effort to better assess the range of likely futures at Wind Cave National Park, a project was conceived to 1) generate high resolution historic and future climate time series to identify local weather patterns that may or may not persist, 2) simulate the hydrological cycle in this geologically varied landscape and its response to future climate, 3) project vegetation dynamics and ensuing changes in the biogeochemical cycles given grazing and fire disturbances under new climate conditions, and 4) synthesize and compare results with those from the scenario planning exercise. In this framework, we tested a dynamic global vegetation model against local information on vegetation cover, disturbance history and stream flow to better understand the potential resilience of these ecosystems to climate change. We discuss the tradeoffs between a coarse scale application of the model showing regional trends with limited ability to project the fine scale mosaic of vegetation at Wind Cave, and a finer scale approach that can account for local slope effects on water balance and better assess the vulnerability of landscape facets, but requires more intensive data acquisition. We elaborate on the potential for sharing information between models to mitigate the often-limited treatment of biological feedbacks in the physical representations of soil and atmospheric processes.
Future local climate unlike currently observed anywhere
NASA Astrophysics Data System (ADS)
Dahinden, Fabienne; Fischer, Erich M.; Knutti, Reto
2017-08-01
The concept of spatial climate analogs, that is identifying a place with a present-day climate similar to the projections of a place of interest, is a promising method for visualizing and communicating possible effects of climate change. We show that when accounting for seasonal cycles of both temperature and precipitation, it is impossible to find good analogs for projections at many places across the world. For substantial land fractions, primarily in the tropics and subtropics, there are no analogs anywhere with current seasonal cycles of temperature and precipitation matching their projected future conditions. This implies that these places experience the emergence of novel climates. For 1.5 °C global warming about 15% and for 2 °C warming about 21% of the global land is projected to experience novel climates, whereas for a 4 °C warming the corresponding novel climates may emerge on more than a third of the global land fraction. Similar fractions of today’s climates, mainly found in the tropics, subtropics and polar north, are anticipated to disappear in the future. Note that the exact quantification of the land fraction is sensitive to the threshold selection. Novel and disappearing climates may have serious consequences for impacts that are sensitive to the full seasonal cycle of temperature and precipitation. For individual seasons, however, spatial analogs may still be a powerful tool for climate change communication.
Eum, Hyung-Il; Gachon, Philippe; Laprise, René
2016-01-01
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eum, Hyung-Il; Gachon, Philippe; Laprise, René
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
Martinuzzi, Sebastian; Allstadt, Andrew J.; Bateman, Brooke L.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Vavrus, Stephen J.; Radeloff, Volker C.
2016-01-01
Climate change is a major challenge for managers of protected areas world-wide, and managers need information about future climate conditions within protected areas. Prior studies of climate change effects in protected areas have largely focused on average climatic conditions. However, extreme weather may have stronger effects on wildlife populations and habitats than changes in averages. Our goal was to quantify future changes in the frequency of extreme heat, drought, and false springs, during the avian breeding season, in 415 National Wildlife Refuges in the conterminous United States. We analyzed spatially detailed data on extreme weather frequencies during the historical period (1950–2005) and under different scenarios of future climate change by mid- and late-21st century. We found that all wildlife refuges will likely experience substantial changes in the frequencies of extreme weather, but the types of projected changes differed among refuges. Extreme heat is projected to increase dramatically in all wildlife refuges, whereas changes in droughts and false springs are projected to increase or decrease on a regional basis. Half of all wildlife refuges are projected to see increases in frequency (> 20% higher than the current rate) in at least two types of weather extremes by mid-century. Wildlife refuges in the Southwest and Pacific Southwest are projected to exhibit the fastest rates of change, and may deserve extra attention. Climate change adaptation strategies in protected areas, such as the U.S. wildlife refuges, may need to seriously consider future changes in extreme weather, including the considerable spatial variation of these changes.
Near term climate projections for invasive species distributions
Jarnevich, C.S.; Stohlgren, T.J.
2009-01-01
Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.
Conflict in a changing climate
NASA Astrophysics Data System (ADS)
Carleton, T.; Hsiang, S. M.; Burke, M.
2016-05-01
A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.
NASA Astrophysics Data System (ADS)
Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent
2018-07-01
In this study, we investigate changes in seasonal temperature and precipitation climatology of CORDEX Middle East and North Africa (MENA) region for three periods of 2010-2040, 2040-2070 and 2070-2100 with respect to the control period of 1970-2000 by using regional climate model simulations. Projections of future climate conditions are modeled by forcing Regional Climate Model, RegCM4.4 of the International Centre for Theoretical Physics (ICTP) with two different CMIP5 global climate models. HadGEM2-ES global climate model of the Met Office Hadley Centre and MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology were used to generate 50 km resolution data for the Coordinated Regional Climate Downscaling Experiment (CORDEX) Region 13. We test the seasonal time-scale performance of RegCM4.4 in simulating the observed climatology over domain of the MENA by using the output of two different global climate models. The projection results show relatively high increase of average temperatures from 3 °C up to 9 °C over the domain for far future (2070-2100). A strong decrease in precipitation is projected in almost all parts of the domain according to the output of the regional model forced by scenario outputs of two global models. Therefore, warmer and drier than present climate conditions are projected to occur more intensely over the CORDEX-MENA domain.
Sanderson, Michael; Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete
2017-01-01
Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on mortality were apparent. Some factors which have not been considered when estimating future mortality are summarised. Most studies have used climate data generated using scenarios with medium and high emissions of greenhouse gases. More estimates of future mortality using climate information from the mitigation scenario RCP2.6 are needed, as this scenario is the only one under which the Paris Agreement to limit global warming to 2°C or less could be realised. Many of the methods used to combine modelled data with local climate observations are simplistic. Quantile-based methods might offer an improved approach, especially for temperatures at the ends of the distributions. The modelling of adaptation to warmer temperatures in mortality models is generally arbitrary and simplistic, and more research is needed to better quantify adaptation. Only a small number of studies included possible changes in population and demographics in their estimates of future mortality, meaning many estimates of mortality could be biased low. Uncertainty originating from establishing a mortality baseline, climate projections, adaptation and population changes is important and should be considered when estimating future mortality.
Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework
NASA Astrophysics Data System (ADS)
Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid
2017-12-01
Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.
NASA Astrophysics Data System (ADS)
Lemaire, Vincent; Colette, Augustin; Menut, Laurent
2016-04-01
Because of its sensitivity to weather patterns, climate change will have an impact on air pollution so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, at present, such impact assessment lack multi-model ensemble approaches to address uncertainties because of the substantial computing cost. Therefore, as a preliminary step towards exploring large climate ensembles with air quality models, we developed an ensemble exploration technique in order to point out the climate models that should be investigated in priority. By using a training dataset from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed statistical models that could be used to estimate future air pollutant concentrations. Applying this statistical model to the whole EuroCordex ensemble of climate projection, we find a climate penalty for six subregions out of eight (Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy). On the contrary, a climate benefit for PM2.5 was identified for three regions (Eastern Europe, Mid Europe and Northern Italy). The uncertainty of this statistical model challenges limits however the confidence we can attribute to associated quantitative projections. This technique allows however selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections to propose an adequate coverage of uncertainties. We are thereby proposing a smart ensemble exploration strategy that can also be used for other impacts studies beyond air quality.
Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs
NASA Astrophysics Data System (ADS)
Reshmidevi, T. V.; Nagesh Kumar, D.; Mehrotra, R.; Sharma, A.
2018-01-01
This work evaluates the impact of climate change on the water balance of a catchment in India. Rainfall and hydro-meteorological variables for current (20C3M scenario, 1981-2000) and two future time periods: mid of the 21st century (2046-2065) and end of the century (2081-2100) are simulated using Modified Markov Model-Kernel Density Estimation (MMM-KDE) and k-nearest neighbor downscaling models. Climate projections from an ensemble of 5 GCMs (MPI-ECHAM5, BCCR-BCM2.0, CSIRO-mk3.5, IPSL-CM4, and MRI-CGCM2) are used in this study. Hydrologic simulations for the current as well as future climate scenarios are carried out using Soil and Water Assessment Tool (SWAT) integrated with ArcGIS (ArcSWAT v.2009). The results show marginal reduction in runoff ratio, annual streamflow and groundwater recharge towards the end of the century. Increased temperature and evapotranspiration project an increase in the irrigation demand towards the end of the century. Rainfall projections for the future shows marginal increase in the annual average rainfall. Short and moderate wet spells are projected to decrease, whereas short and moderate dry spells are projected to increase in the future. Projected reduction in streamflow and groundwater recharge along with the increase in irrigation demand is likely to aggravate the water stress in the region under the future scenario.
NASA Astrophysics Data System (ADS)
He, Hao; Liang, Xin-Zhong; Lei, Hang; Wuebbles, Donald J.
2016-03-01
A consistent modeling framework with nested global and regional chemical transport models (CTMs) is used to separate and quantitatively assess the relative contributions to projections of future U.S. ozone pollution from the effects of emissions changes, climate change, long-range transport (LRT) of pollutants, and differences in modeling design. After incorporating dynamic lateral boundary conditions (LBCs) from a global CTM, a regional CTM's representation of present-day U.S. ozone pollution is notably improved, especially relative to results from the regional CTM with fixed LBCs or from the global CTM alone. This nested system of global and regional CTMs projects substantial surface ozone trends for the 2050's: 6-10 ppb decreases under the 'clean' A1B scenario and ∼15 ppb increases under the 'dirty' A1Fi scenario. Among the total trends of future ozone, regional emissions changes dominate, contributing negative 25-60% in A1B and positive 30-45% in A1Fi. Comparatively, climate change contributes positive 10-30%, while LRT effects through changing chemical LBCs account for positive 15-20% in both scenarios, suggesting introducing dynamic LBCs could influence projections of the U.S. future ozone pollution with a magnitude comparable to effects of climate change alone. The contribution to future ozone projections due to differences in modeling design, including model formulations, emissions treatments, and other factors between the global and the nested regional CTMs, is regionally dependent, ranging from negative 20% to positive 25%. It is shown that the model discrepancies for present-day simulations between global and regional CTMs can propagate into future U.S. ozone projections systematically but nonlinearly, especially in California and the Southeast. Therefore in addition to representations of emissions change and climate change, accurate treatment of LBCs for the regional CTM is essential for projecting the future U.S. ozone pollution.
Uncertainty of climate change impacts on soil erosion from cropland in central Oklahoma
USDA-ARS?s Scientific Manuscript database
Impacts of climate change on soil erosion and the potential need for additional conservation actions are typically estimated by applying a hydrologic and soil erosion model under present and future climate conditions defined by an emission scenario. Projecting future climate conditions harbors sever...
The Coordinated Ocean Wave Climate Project
NASA Astrophysics Data System (ADS)
Hemer, Mark; Dobrynin, Mikhail; Erikson, Li; Lionello, Piero; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan
2016-04-01
Future 21st Century changes in wind-wave climate have broad implications for marine and coastal infrastructure and ecosystems. Atmosphere-ocean general circulation models (GCM) are now routinely used for assessing and providing future projections of climatological parameters such as temperature and precipitation, but generally these provide no information on ocean wind-waves. To fill this information gap a growing number of studies are using GCM outputs and independently producing global and regional scale wind-wave climate projections. Furthermore, additional studies are actively coupling wind-wave dependent atmosphere-ocean exchanges into GCMs, to improve physical representation and quantify the impact of waves in the coupled climate system, and can also deliver wave characteristics as another variable in the climate system. To consolidate these efforts, understand the sources of variance between projections generated by different methodologies and International groups, and ultimately provide a robust picture of the role of wind-waves in the climate system and their projected changes, we present outcomes of the JCOMM supported Coordinated Ocean Wave Climate Project (COWCLIP). The objective of COWCLIP is twofold: to make community based ensembles of wave climate projections openly accessible, to provide the necessary information to support diligent marine and coastal impacts of climate change studies; and to understand the effects and feedback influences of wind-waves in the coupled ocean-atmosphere climate system. We will present the current status of COWCLIP, providing an overview of the objectives, analysis and results of the initial phase - now complete - and the progress of ongoing phases of the project.
NASA Astrophysics Data System (ADS)
van der Schriek, Tim; Varotsos, Konstantinos V.; Giannakopoulos, Christos
2017-04-01
The Mediterranean stands out globally due to its sensitivity to (future) climate change. Projections suggest that the Balkans will experience precipitation and runoff decreases of up to 30% by 2100. However, these projections show large regional spatial variability. Mediterranean lake-wetland systems are particularly threatened by projected climate changes that compound increasingly intensive human impacts (e.g. water extraction, drainage, pollution and dam-building). Protecting the remaining systems is extremely important for supporting global biodiversity. This protection should be based on a clear understanding of individual lake-wetland hydrological responses to future climate changes, which requires fine-resolution projections and a good understanding of the impact of hydro-climate variability on individual lakes. Climate change may directly affect lake level (variability), volume and water temperatures. In turn, these variables influence lake-ecology, habitats and water quality. Land-use intensification and water abstraction multiply these climate-driven changes. To date, there are no projections of future water level and -temperature of individual Mediterranean lakes under future climate scenarios. These are, however, of crucial importance to steer preservation strategies on the relevant catchment-scale. Here we present the first projections of water level and -temperature of the Prespa Lakes covering the period 2071-2100. These lakes are of global significance for biodiversity, and of great regional socio-economic importance as a water resource and tourist attraction. Impact projections are assessed by the Regional Climate Model RCA4 of the Swedish Meteorological and Hydrological Institute (SMHI) driven by the Max Planck Institute for Meteorology global climate model MPI-ESM-LR under two RCP future emissions scenarios, the RCP4.5 and the RCP8.5, with the simulations carried out in the framework of EURO-CORDEX. Temperature, evapo(transpi)ration and precipitation over the Prespa catchment were simulated with this high horizontal resolution (12 × 12 km) regional climate model. Lake temperatures were derived from surface temperatures based on physical models, while water levels were calculated with the lake water balance model. Climate simulations indicate that annual- and wet season catchment precipitation does not significantly change by the end of the century. The median precipitation decreases, while precipitation variability increases. The percentage of annual precipitation falling in the wet season increases by 5-10%, indicating a stronger seasonality in the precipitation regime. Summer (lake) temperatures and lake surface evaporation will rise significantly under both explored climate change scenarios. Lake impact projections indicate that evaporation changes will cause the water level of Lake Megali Prespa to fall by 5m to 840-839m. The increased precipitation variability will cause large inter-annual water level fluctuations. Average water level may fall even further if: (1) drier summers lead to more water abstraction for irrigation, and (2) there is a reduction in winter snowfall/accumulation and thus less discharge. These findings are of key importance for developing sustainable lake water resource management in a region that is highly vulnerable to future climate change and already experiences significant water stress. Research paves the way for innovative management adaptation strategies focussed on decreasing water abstraction, for example through introducing smart irrigation and selecting more water efficient crops.
NASA Astrophysics Data System (ADS)
Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.
2017-04-01
This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-10-01
Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.
When, not if: the inescapability of an uncertain climate future.
Ballard, Timothy; Lewandowsky, Stephan
2015-11-28
Climate change projections necessarily involve uncertainty. Analysis of the physics and mathematics of the climate system reveals that greater uncertainty about future temperature increases is nearly always associated with greater expected damages from climate change. In contrast to those normative constraints, uncertainty is frequently cited in public discourse as a reason to delay mitigative action. This failure to understand the actual implications of uncertainty may incur notable future costs. It is therefore important to communicate uncertainty in a way that improves people's understanding of climate change risks. We examined whether responses to projections were influenced by whether the projection emphasized uncertainty in the outcome or in its time of arrival. We presented participants with statements and graphs indicating projected increases in temperature, sea levels, ocean acidification and a decrease in arctic sea ice. In the uncertain-outcome condition, statements reported the upper and lower confidence bounds of the projected outcome at a fixed time point. In the uncertain time-of-arrival condition, statements reported the upper and lower confidence bounds of the projected time of arrival for a fixed outcome. Results suggested that people perceived the threat as more serious and were more likely to encourage mitigative action in the time-uncertain condition than in the outcome-uncertain condition. This finding has implications for effectively communicating the climate change risks to policy-makers and the general public. © 2015 The Author(s).
Dependence of future mortality changes on global CO2 concentrations: A review.
Lee, Jae Young; Choi, Hayoung; Kim, Ho
2018-05-01
The heterogeneity among previous studies of future mortality projections due to climate change has often hindered comparisons and syntheses of resulting impacts. To address this challenge, the present study introduced a novel method to normalize the results from projection studies according to different baseline and projection periods and climate scenarios, thereby facilitating comparison and synthesis. This study reviewed the 15 previous studies involving projected climate change-related mortality under Representative Concentration Pathways. To synthesize their results, we first reviewed the important study design elements that affected the reported results in previous studies. Then, we normalized the reported results by CO 2 concentration in order to eliminate the effects of the baseline period, projection period, and climate scenario choices. For twenty-five locations worldwide, the normalized percentage changes in temperature-attributable mortality per 100 ppm increase in global CO 2 concentrations ranged between 41.9% and 330%, whereas those of total mortality ranged between 0.3% and 4.8%. The normalization methods presented in this work will guide future studies to provide their results in a normalized format and facilitate research synthesis to reinforce our understanding on the risk of climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Finucane, M.; Brewington, L.
2014-12-01
For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
Effects of future climate conditions on terrestrial export from coastal southern California
NASA Astrophysics Data System (ADS)
Feng, D.; Zhao, Y.; Raoufi, R.; Beighley, E.; Melack, J. M.
2015-12-01
The Santa Barbara Coastal - Long Term Ecological Research Project (SBC-LTER) is focused on investigating the relative importance of land and ocean processes in structuring giant kelp forest ecosystems. Understanding how current and future climate conditions influence terrestrial export is a central theme for the project. Here we combine the Hillslope River Routing (HRR) model and daily precipitation and temperature downscaled using statistical downscaling based on localized constructed Analogs (LOCA) to estimate recent streamflow dynamics (2000 to 2014) and future conditions (2015 to 2100). The HRR model covers the SBC-LTER watersheds from just west of the Ventura River to Point Conception; a land area of roughly 800 km2 with 179 watersheds ranging from 0.1 to 123 km2. The downscaled climate conditions have a spatial resolution of 6 km by 6 km. Here, we use the Penman-Monteith method with the Food and Agriculture Organization of the United Nations (FAO) limited climate data approximations and land surface conditions (albedo, leaf area index, land cover) measured from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites to estimate potential evapotranspiration (PET). The HRR model is calibrated for the period 2000 to 2014 using USGS and LTER streamflow. An automated calibration technique is used. For future climate scenarios, we use mean 8-day land cover conditions. Future streamflow, ET and soil moisture statistics are presented and based on downscaled P and T from ten climate model projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5).
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.
Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptionsmore » about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.« less
A top-down approach to projecting market impacts of climate change
NASA Astrophysics Data System (ADS)
Lemoine, Derek; Kapnick, Sarah
2016-01-01
To evaluate policies to reduce greenhouse-gas emissions, economic models require estimates of how future climate change will affect well-being. So far, nearly all estimates of the economic impacts of future warming have been developed by combining estimates of impacts in individual sectors of the economy. Recent work has used variation in warming over time and space to produce top-down estimates of how past climate and weather shocks have affected economic output. Here we propose a statistical framework for converting these top-down estimates of past economic costs of regional warming into projections of the economic cost of future global warming. Combining the latest physical climate models, socioeconomic projections, and economic estimates of past impacts, we find that future warming could raise the expected rate of economic growth in richer countries, reduce the expected rate of economic growth in poorer countries, and increase the variability of growth by increasing the climate's variability. This study suggests we should rethink the focus on global impacts and the use of deterministic frameworks for modelling impacts and policy.
Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James
2015-08-28
There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.
Projecting Heat-Related Mortality Impacts Under a Changing Climate in the New York City Region
Knowlton, Kim; Lynn, Barry; Goldberg, Richard A.; Rosenzweig, Cynthia; Hogrefe, Christian; Rosenthal, Joyce Klein; Kinney, Patrick L.
2007-01-01
Objectives. We sought to project future impacts of climate change on summer heat-related premature deaths in the New York City metropolitan region. Methods. Current and future climates were simulated over the northeastern United States with a global-to-regional climate modeling system. Summer heat-related premature deaths in the 1990s and 2050s were estimated by using a range of scenarios and approaches to modeling acclimatization (e.g., increased use of air conditioning, gradual physiological adaptation). Results. Projected regional increases in heat-related premature mortality by the 2050s ranged from 47% to 95%, with a mean 70% increase compared with the 1990s. Acclimatization effects reduced regional increases in summer heat-related premature mortality by about 25%. Local impacts varied considerably across the region, with urban counties showing greater numbers of deaths and smaller percentage increases than less-urbanized counties. Conclusions. Although considerable uncertainty exists in climate forecasts and future health vulnerability, the range of projections we developed suggests that by midcentury, acclimatization may not completely mitigate the effects of climate change in the New York City metropolitan region, which would result in an overall net increase in heat-related premature mortality. PMID:17901433
Kolstad, Erik W.; Johansson, Kjell Arne
2011-01-01
Background Climate change is expected to have large impacts on health at low latitudes where droughts and malnutrition, diarrhea, and malaria are projected to increase. Objectives The main objective of this study was to indicate a method to assess a range of plausible health impacts of climate change while handling uncertainties in a unambiguous manner. We illustrate this method by quantifying the impacts of projected regional warming on diarrhea in this century. Methods We combined a range of linear regression coefficients to compute projections of future climate change-induced increases in diarrhea using the results from five empirical studies and a 19-member climate model ensemble for which future greenhouse gas emissions were prescribed. Six geographical regions were analyzed. Results The model ensemble projected temperature increases of up to 4°C over land in the tropics and subtropics by the end of this century. The associated mean projected increases of relative risk of diarrhea in the six study regions were 8–11% (with SDs of 3–5%) by 2010–2039 and 22–29% (SDs of 9–12%) by 2070–2099. Conclusions Even our most conservative estimates indicate substantial impacts from climate change on the incidence of diarrhea. Nevertheless, our main conclusion is that large uncertainties are associated with future projections of diarrhea and climate change. We believe that these uncertainties can be attributed primarily to the sparsity of empirical climate–health data. Our results therefore highlight the need for empirical data in the cross section between climate and human health. PMID:20929684
eSACP - a new Nordic initiative towards developing statistical climate services
NASA Astrophysics Data System (ADS)
Thorarinsdottir, Thordis; Thejll, Peter; Drews, Martin; Guttorp, Peter; Venälainen, Ari; Uotila, Petteri; Benestad, Rasmus; Mesquita, Michel d. S.; Madsen, Henrik; Fox Maule, Cathrine
2015-04-01
The Nordic research council NordForsk has recently announced its support for a new 3-year research initiative on "statistical analysis of climate projections" (eSACP). eSACP will focus on developing e-science tools and services based on statistical analysis of climate projections for the purpose of helping decision-makers and planners in the face of expected future challenges in regional climate change. The motivation behind the project is the growing recognition in our society that forecasts of future climate change is associated with various sources of uncertainty, and that any long-term planning and decision-making dependent on a changing climate must account for this. At the same time there is an obvious gap between scientists from different fields and between practitioners in terms of understanding how climate information relates to different parts of the "uncertainty cascade". In eSACP we will develop generic e-science tools and statistical climate services to facilitate the use of climate projections by decision-makers and scientists from all fields for climate impact analyses and for the development of robust adaptation strategies, which properly (in a statistical sense) account for the inherent uncertainty. The new tool will be publically available and include functionality to utilize the extensive and dynamically growing repositories of data and use state-of-the-art statistical techniques to quantify the uncertainty and innovative approaches to visualize the results. Such a tool will not only be valuable for future assessments and underpin the development of dedicated climate services, but will also assist the scientific community in making more clearly its case on the consequences of our changing climate to policy makers and the general public. The eSACP project is led by Thordis Thorarinsdottir, Norwegian Computing Center, and also includes the Finnish Meteorological Institute, the Norwegian Meteorological Institute, the Technical University of Denmark and the Bjerknes Centre for Climate Research, Norway. This poster will present details of focus areas in the project and show some examples of the expected analysis tools.
Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.
2013-01-01
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820
Simulated impacts of climate change on phosphorus loading to Lake Michigan
Robertson, Dale M.; Saad, David A.; Christiansen, Daniel E.; Lorenz, David J
2016-01-01
Phosphorus (P) loading to the Great Lakes has caused various types of eutrophication problems. Future climatic changes may modify this loading because climatic models project changes in future meteorological conditions, especially for the key hydrologic driver — precipitation. Therefore, the goal of this study is to project how P loading may change from the range of projected climatic changes. To project the future response in P loading, the HydroSPARROW approach was developed that links results from two spatially explicit models, the SPAtially Referenced Regression on Watershed attributes (SPARROW) transport and fate watershed model and the water-quantity Precipitation Runoff Modeling System (PRMS). PRMS was used to project changes in streamflow throughout the Lake Michigan Basin using downscaled meteorological data from eight General Circulation Models (GCMs) subjected to three greenhouse gas emission scenarios. Downscaled GCMs project a + 2.1 to + 4.0 °C change in average-annual air temperature (+ 2.6 °C average) and a − 5.1% to + 16.7% change in total annual precipitation (+ 5.1% average) for this geographic area by the middle of this century (2045–2065) and larger changes by the end of the century. The climatic changes by mid-century are projected to result in a − 21.2% to + 8.9% change in total annual streamflow (− 1.8% average) and a − 29.6% to + 17.2% change in total annual P loading (− 3.1% average). Although the average projected changes in streamflow and P loading are relatively small for the entire basin, considerable variability exists spatially and among GCMs because of their variability in projected future precipitation.
Camp, Richard J.; Berkowitz, S. Paul; Brink, Kevin W.; Jacobi, James D.; Loh, Rhonda; Price, Jonathan; Fortini, Lucas B.
2018-06-05
Climate change is expected to alter the seasonal and annual patterns of rainfall and temperature in the Hawaiian Islands. Land managers and other responsible agencies will need to know how plant-species habitats will change over the next century in order to manage these resources effectively. This issue is a major concern for resource managers at Hawai‘i Volcanoes National Park (HAVO), where currently managed Special Ecological Areas (SEAs) for important plant species and communities may no longer provide suitable habitats in the future as the climate changes. Expanding invasive-species distributions also may pose a threat to areas where native plants currently predominate.The objective of this project was to combine recent climate-modeling efforts for the state of Hawai‘i with existing models of plant-species distribution in order to forecast suitable habitat ranges under future climate conditions derived from the Coupled Model Intercomparison Project, phase 3 (CMIP3) global circulation model that was dynamically downscaled for the Hawaiian Islands by using the Hawai‘i Regional Climate Model (HRCM). The HRCM uses the A1B emission scenario (a median future climate projection) from the Special Report on Emissions Scenarios (SRES). On the basis of this model, maps showing projected plant-species ranges were generated for four years as snapshots in time (2000, 2040, 2070, 2090) and for three different trajectories of climate change (gradual, linear, rapid) between the present and future.We mapped probabilistic surfaces of suitable habitat for 39 plant species (both native and alien [nonnative]) identified as being of interest to HAVO resource managers. We displayed these surfaces in terms of change relative to present conditions, whether the range of a given plant species was expected to contract, expand, or remain the same in the future. Within HAVO, approximately two-thirds (18 of 29) of the modeled native plant species were projected to contract in range, whereas one-third (11 of 29) were projected to increase. Most of the HAVO SEAs were projected to lose most of the native plant species modeled. Within HAVO, all alien plant species except Lantana camara were projected to contract in range within the park; this trend was observed in most SEAs, including those at low, middle, and high elevations. Congruence was good in the “current” (2000) distribution of plant-species richness and SEA configurations; however, the congruence between species-richness hotspots and SEAs diminished by the projected “end-of-century” (2090) distribution. Over time, the projected species-richness hotspots increasingly occurred outside of the currently configured SEA boundaries.
LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi
2015-01-01
In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.
ICLUS is a project for developing scenarios broadly consistent with global-scale, peer-reviewed storylines of population growth and economic development, which are used by climate change modelers to develop projections of future climate.
NASA Astrophysics Data System (ADS)
Choudhary, A.; Dimri, A. P.
2018-04-01
Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations showing a greater trend in far-future under RCP8.5 when compared with higher elevations.
Hazardous thunderstorm intensification over Lake Victoria
Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.
2016-01-01
Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius–Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change. PMID:27658848
Using dry and wet year hydroclimatic extremes to guide future hydrologic projections
NASA Astrophysics Data System (ADS)
Oni, Stephen; Futter, Martyn; Ledesma, Jose; Teutschbein, Claudia; Buttle, Jim; Laudon, Hjalmar
2016-07-01
There are growing numbers of studies on climate change impacts on forest hydrology, but limited attempts have been made to use current hydroclimatic variabilities to constrain projections of future climatic conditions. Here we used historical wet and dry years as a proxy for expected future extreme conditions in a boreal catchment. We showed that runoff could be underestimated by at least 35 % when dry year parameterizations were used for wet year conditions. Uncertainty analysis showed that behavioural parameter sets from wet and dry years separated mainly on precipitation-related parameters and to a lesser extent on parameters related to landscape processes, while uncertainties inherent in climate models (as opposed to differences in calibration or performance metrics) appeared to drive the overall uncertainty in runoff projections under dry and wet hydroclimatic conditions. Hydrologic model calibration for climate impact studies could be based on years that closely approximate anticipated conditions to better constrain uncertainty in projecting extreme conditions in boreal and temperate regions.
Steen, Valerie; Powell, Abby N.
2012-01-01
Wetland-dependent birds are considered to be at particularly high risk for negative climate change effects. Current and future distributions of American Bittern (Botaurus lentiginosus), American Coot (Fulica americana), Black Tern (Chlidonias niger), Pied-billed Grebe (Podilymbus podiceps) and Sora (Porzana carolina), five waterbird species common in the Prairie Pothole Region (PPR), were predicted using species distribution models (SDMs) in combination with climate data that projected a drier future for the PPR. Regional-scale SDMs were created for the U.S. PPR using breeding bird survey occurrence records for 1971-2000 and wetland and climate parameters. For each waterbird species, current distribution and four potential future distributions were predicted: all combinations of two Global Circulation Models and two emissions scenarios. Averaged for all five species, the ensemble range reduction was 64%. However, projected range losses for individual species varied widely with Sora and Black Tern projected to lose close to 100% and American Bittern 29% of their current range. Future distributions were also projected to a hypothetical landscape where wetlands were numerous and constant to highlight areas suitable as conservation reserves under a drier future climate. The ensemble model indicated that northeastern North Dakota and northern Minnesota would be the best areas for conservation reserves within the U.S. PPR under the modeled conditions.
NASA Astrophysics Data System (ADS)
Tansey, M. K.; Van Lienden, B.; Das, T.; Munevar, A.; Young, C. A.; Flores-Lopez, F.; Huntington, J. L.
2013-12-01
The Central Valley of California is one of the major agricultural areas in the United States. The Central Valley Project (CVP) is operated by the Bureau of Reclamation to serve multiple purposes including generating approximately 4.3 million gigawatt hours of hydropower and providing, on average, 5 million acre-feet of water per year to irrigate approximately 3 million acres of land in the Sacramento, San Joaquin, and Tulare Lake basins, 600,000 acre-feet per year of water for urban users, and 800,000 acre-feet of annual supplies for environmental purposes. The development of effective adaptation and mitigation strategies requires assessing multiple risks including potential climate changes as well as uncertainties in future socioeconomic conditions. In this study, a scenario-based analytical approach was employed by combining three potential 21st century socioeconomic futures with six representative climate and sea level change projections developed using a transient hybrid delta ensemble method from an archive of 112 bias corrected spatially downscaled CMIP3 global climate model simulations to form 18 future socioeconomic-climate scenarios. To better simulate the effects of climate changes on agricultural water demands, analyses of historical agricultural meteorological station records were employed to develop estimates of future changes in solar radiation and atmospheric humidity from the GCM simulated temperature and precipitation. Projected changes in atmospheric carbon dioxide were computed directly by weighting SRES emissions scenarios included in each representative climate projection. These results were used as inputs to a calibrated crop water use, growth and yield model to simulate the effects of climate changes on the evapotranspiration and yields of major crops grown in the Central Valley. Existing hydrologic, reservoir operations, water quality, hydropower, greenhouse gas (GHG) emissions and both urban and agricultural economic models were integrated into a suite of decision support tools to assess the impacts of future socioeconomic-climate uncertainties on key performance metrics for the CVP, State Water Project and other Central Valley water management systems under current regulatory requirements. Four thematic portfolios consisting of regional and local adaptation strategies including changes in reservoir operations, increased water conservation, storage and conveyance were developed and simulated to evaluate their potential effectiveness in meeting delivery reliability, water quality, environmental, hydropower, GHG, urban and agricultural economic performance criteria. The results indicate that the portfolios exhibit a considerable range of effectiveness depending on the socioeconomic-climate scenario. For most criteria, the portfolios were more sensitive to climate projections than socioeconomic assumptions. However, the results demonstrate that important tradeoffs occur between portfolios depending on the performance criteria considered.
NASA Astrophysics Data System (ADS)
Wandres, Moritz; Pattiaratchi, Charitha; Hemer, Mark A.
2017-09-01
Incident wave energy flux is responsible for sediment transport and coastal erosion in wave-dominated regions such as the southwestern Australian (SWA) coastal zone. To evaluate future wave climates under increased greenhouse gas concentration scenarios, past studies have forced global wave simulations with wind data sourced from global climate model (GCM) simulations. However, due to the generally coarse spatial resolution of global climate and wave simulations, the effects of changing offshore wave conditions and sea level rise on the nearshore wave climate are still relatively unknown. To address this gap of knowledge, we investigated the projected SWA offshore, shelf, and nearshore wave climate under two potential future greenhouse gas concentration trajectories (representative concentration pathways RCP4.5 and RCP8.5). This was achieved by downscaling an ensemble of global wave simulations, forced with winds from GCMs participating in the Coupled Model Inter-comparison Project (CMIP5), into two regional domains, using the Simulating WAves Nearshore (SWAN) wave model. The wave climate is modeled for a historical 20-year time slice (1986-2005) and a projected future 20-year time-slice (2081-2100) for both scenarios. Furthermore, we compare these scenarios to the effects of considering sea-level rise (SLR) alone (stationary wave climate), and to the effects of combined SLR and projected wind-wave change. Results indicated that the SWA shelf and nearshore wave climate is more sensitive to changes in offshore mean wave direction than offshore wave heights. Nearshore, wave energy flux was projected to increase by ∼10% in exposed areas and decrease by ∼10% in sheltered areas under both climate scenarios due to a change in wave directions, compared to an overall increase of 2-4% in offshore wave heights. With SLR, the annual mean wave energy flux was projected to increase by up to 20% in shallow water (< 30 m) as a result of decreased wave dissipation. In winter months, the longshore wave energy flux, which is responsible for littoral drift, is expected to increase by up to 39% (62%) under the RCP4.5 (RCP8.5) greenhouse gas concentration pathway with SLR. The study highlights the importance of using high-resolution wave simulations to evaluate future regional wave climates, since the coastal wave climate is more responsive to changes in wave direction and sea level than offshore wave heights.
Future Climate Change Impact Assessment of River Flows at Two Watersheds of Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Ercan, A.; Ishida, K.; Kavvas, M. L.; Chen, Z. R.; Jang, S.; Amin, M. Z. M.; Shaaban, A. J.
2016-12-01
Impacts of climate change on the river flows under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate model and a physically-based hydrology model utilizing an ensemble of 15 different future climate realizations. Coarse resolution GCMs' future projections covering a wide range of emission scenarios were dynamically downscaled to 6 km resolution over the study area. Hydrologic simulations of the two selected watersheds were carried out at hillslope-scale and at hourly increments.
Wintertime urban heat island modified by global climate change over Japan
NASA Astrophysics Data System (ADS)
Hara, M.
2015-12-01
Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.
Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.
Environmental Impact of Megacities - Results from CityZen
NASA Astrophysics Data System (ADS)
Gauss, M.
2012-04-01
Megacities have increasingly important impacts on air quality and climate change on different spatial scales, owing to their high population densities and concentrated emission sources. The EU FP7 project CityZen (Megacity - Zoom for the Environment) ended in 2011 and was, together with its sister project MEGAPOLI, part of a major research effort within FP7 on megacities in Europe and worldwide. The project mainly focused on air pollution trends in large cities and emission hotspots, climate-chemistry couplings, future projections, and emission mitigation options. Both observational and modeling tools have been extensively used. This paper reviews some of the main results from CityZen regarding present air pollution in and around megacities, future scenarios and mitigation options to reduce air pollution and/or climate change, and the main policy messages from the project. The different observed trends over European and Asian hotspots during the last 10 to 15 years are shown. Results of source attribution of pollutants, which have been measured and calculated in and around the different selected hot spots in CityZen will be discussed. Another important question to be addressed is the extent to which climate change will affect air quality and the effectiveness of air quality legislation. Although projected emission reductions are a major determinate influencing the predictions of future air pollution, model results suggest that climate change has to be taken into account when devising future air quality legislation. This paper will also summarize some important policy messages in terms of ozone, particles and the observational needs that have been put forward as conclusions from the project.
Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel
2014-01-01
Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...
Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kelly Barrett; Randy Kolka; Casey McQuiston; Brian Palik; Peter B. Reich; Clarence Turner; Mark White; Cheryl Adams; Anthony D' Amato; Suzanne Hagell; Patricia Johnson; Rosemary Johnson; Mike Larson; Stephen Matthews; Rebecca Montgomery; Steve Olson; Matthew Peters; Anantha Prasad; Jack Rajala; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel
2014-01-01
Forests in northern Minnesota will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Minnesota's Laurentian Mixed Forest Province to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and...
Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin
NASA Astrophysics Data System (ADS)
Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.
2018-02-01
The Himalayan climate system is sensitive to global warming and climate change. Regional hydrology and the downstream water flow in the rivers of Himalayan origin may change due to variations in snow and glacier melt in the region. This study examines the mid-21st century climate projections over western Himalayas from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models under Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5). All the global climate models used in the present analysis indicate that the study region would be warmer by mid-century. The temperature trends from all the models studied here are statistically significant at 95% confidence interval. Multi-model ensemble spreads show that there are large differences among the models in their projections of future climate with spread in temperature ranging from about 1.5 °C to 5 °C over various areas of western Himalayas in all the seasons. Spread in precipitation projections lies between 0.3 and 1 mm/day in all the seasons. Major shift in the timing of evaporation maxima and minima is noticed. The GFDL_ESM2G model products have been downscaled to Satluj River basin using the weather research and forecast (WRF) model and impact of climate change on streamflow has been studied. The reduction of precipitation during JJAS is expected to be > 3-6 mm/day in RCP8.5 as compared to present climate. It is expected that precipitation amount shall increase over Satluj basin in future (mid-21st century) The soil and water assessment tool (SWAT) model has been used to simulate the Satluj streamflow for the present and future climate using GFDL_ESM2G precipitation and temperature data as well as the WRF model downscaled data. The computations using the global model data show that total annual discharge from Satluj will be less in future than that in present climate, especially in peak discharge season (JJAS). The SWAT model with downscaled output indicates that during winter and spring, more discharge shall occur in future (RCP8.5) in Satluj River.
NASA Astrophysics Data System (ADS)
Burke, K. D.; Williams, J. W.; Jackson, S. T.
2016-12-01
Climate change is a multivariate process, where changes in the environmental space of a location will likely drive biotic responses of the flora and fauna that inhabit the region. In the face of a rapidly changing climate it is important to understand what the future may hold for ecosystems. One method commonly applied to understand how dissimilar future climates will be relative to the modern period is no-analog analysis. This has been done for 21st century climates relative to the modern period, but has not been extended through the paleorecord. Using HadCM3, CCSM3 TraCE-21ka, PMIP3, PlioMIP2 and EoMIP climate simulations, we assess global and regional climatic novelty by identifying the closest analogs in these periods for both future (21st century) and modern climates. This baseline offers a full range climate space with significant overlap of modern and future projected climates, and allows us to assess both emergences and disappearances of analog climate conditions throughout the past. This extended baseline includes past glacial and interglacial climates, as well as past earth warm periods. Past earth warm periods such as the middle to late Pliocene and the early Eocene may be most similar to projections of future climate, so it is important to evaluate our understanding of these global climates. Here we calculate dissimilarity to quantify novelty and no-analog conditions using the Standardized Euclidian Distance, as well as the Mahalanobis distance. Our work shows that nearest climate analogs for the modern period, as well as future climates, existed and disappeared during past warm periods. These results suggest that though climate change may be regionally novel relative to the modern period for some locations, analogs do exist through the paleorecord which in some cases reduce novelty. Nevertheless, novelty remains high in some locations suggesting that some future climates may be unprecedented.
Ying Ouyang; Prem B. Parajuli; Gary Feng; Theodor D. Leininger; Yongshan Wan; Padmanava Dash
2018-01-01
A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and...
Climate change and wetland loss impacts on a Western river's water quality
NASA Astrophysics Data System (ADS)
Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.
2014-05-01
An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss. This study assessed the potential climate-induced changes to in-stream sediment and nutrients loads in the historically snow melt-dominated Sprague River, Oregon, Western United States. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that in the Sprague River (1) mid-21st century nutrient and sediment loads could increase significantly during the high flow season under warmer-wetter climate projections, or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.
NASA Astrophysics Data System (ADS)
Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.
2013-12-01
Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.
Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete
2017-01-01
Background and objectives Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. Methods The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. Results A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on mortality were apparent. Some factors which have not been considered when estimating future mortality are summarised. Conclusions Most studies have used climate data generated using scenarios with medium and high emissions of greenhouse gases. More estimates of future mortality using climate information from the mitigation scenario RCP2.6 are needed, as this scenario is the only one under which the Paris Agreement to limit global warming to 2°C or less could be realised. Many of the methods used to combine modelled data with local climate observations are simplistic. Quantile-based methods might offer an improved approach, especially for temperatures at the ends of the distributions. The modelling of adaptation to warmer temperatures in mortality models is generally arbitrary and simplistic, and more research is needed to better quantify adaptation. Only a small number of studies included possible changes in population and demographics in their estimates of future mortality, meaning many estimates of mortality could be biased low. Uncertainty originating from establishing a mortality baseline, climate projections, adaptation and population changes is important and should be considered when estimating future mortality. PMID:28686743
Impacts of climate extremes on gross primary production under global warming
Williams, I. N.; Torn, M. S.; Riley, W. J.; ...
2014-09-24
The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less
Impacts of climate extremes on gross primary production under global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, I. N.; Torn, M. S.; Riley, W. J.
The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less
NASA Astrophysics Data System (ADS)
Senzeba, K. T.; Rajkumari, S.; Bhadra, A.; Bandyopadhyay, A.
2016-04-01
Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios for an eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of Arunachal Pradesh with an area of 52 km2 is selected for the present study with an elevation range of 3143-4946 m above mean sea level. Satellite images from October to June of the selected hydrological year 2006-2007 were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done using NDSI method. Based on long term meteorological data, temperature and precipitation data of selected hydrological year are normalized to represent present climatic condition. The projected temperature and precipitation data are downloaded from NCAR's GIS data portal for different emission scenarios (SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020, 2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired location by spatially interpolating the gridded data and then by statistical downscaling using linear regression. Snow depletion curves for all projected scenarios are generated for the study area and compared with conventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth for different future years are highest under A1B and lowest under IPCC commitment, whereas A2 and B1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for different future years follows almost the same trend as change in precipitation from present climate under all projected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth. Advancing of depletion curves for different future years are highest under A1B and lowest under IPCC commitment. A2 and B1 values are in-between A1B and IPCC commitment.
NASA Astrophysics Data System (ADS)
Gulyás, Krisztina; Berki, Imre; Veperdi, Gábor
2017-04-01
As a result of regional climate change, most European countries are experiencing an increase in mean annual temperature and CO2 concentration and a decrease in mean annual precipitation. In low-elevation areas in Southeast Europe, where precipitation is a limiting factor, the projected climate change threatens the health, production, and potential distribution of forest ecosystems. The intensive summer droughts and commonly occurring extreme weather events create negative influences that cause health declines, changes in yield potential, and tree mortality. Due to the observed damages, attention has been focused on these problems. The impacts of climatic extremes cause difficulties in forest management; these difficulties occur more frequently in Hungary, which is a region that is the most sensitive to climatic extremes. Regional climate model simulations project that the frequency of extremely high temperatures and long-term dry periods will increase; both of these factors have negative effects on future tree species distribution and production. Thus, the aim of our study is to utilize the sessile oak (Quercus petraea) as a climate indicator tree species to investigate potential future distribution and estimate changes in growth trends. For future spatial distribution, we used the Fuzzy membership distribution model in a new Decision Support System (DSS) which was developed for the Hungarian forestry and agricultural sectors. Through study techniques we can employ DSS, which contains various environmental layers (topography, vegetation, past and projected future climate, soils, and hydrology), to create probability distribution maps. The results, based on 12 regional climate model simulations (www.ensembles-eu.org), show that the area of sessile oak forests is shrinking continuously and will continue to do so to the end of the 21st century. For future production estimations, we analysed intensive long-term growth monitoring network plots that were established in 1993. We calculated production capacity on the basis of age and height; we then compared these to past climate conditions to discover connections between climate, site conditions, and production. We estimated future growth tendencies for three different time periods (2011-2040; 2041-2070; 2071-2100). Results show that the most vulnerable region is the south-western part of Hungary where the projected production capacity may decrease by 26% for the time period 2071-2100. The impacts of climate change may be milder in the north-eastern part of Hungary where a 19% decrease in the production capacity of sessile oak forests is estimated. These investigations and results are important for sustainable forest management and help define climate change adaptation strategies in forestry. Keywords: climate change impacts, distribution modelling, production capacity Acknowledgements: Research is supported by the ÚNKP-16-3-3 New National Excellence Program of the Ministry of Human Capacities and the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.
NASA Astrophysics Data System (ADS)
Doroszkiewicz, Joanna; Romanowicz, Renata
2016-04-01
Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.
NASA Astrophysics Data System (ADS)
Post, David
2010-05-01
In a water-scarce country such as Australia, detailed, accurate and reliable assessments of current and future water availability are essential in order to adequately manage the limited water resource. This presentation describes a recently completed study which provided an assessment of current water availability in Tasmania, Australia, and also determined how this water availability would be impacted by climate change and proposed catchment development by the year 2030. The Tasmania Sustainable Yields Project (http://www.csiro.au/partnerships/TasSY.html) assessed current water availability through the application of rainfall-runoff models, river models, and recharge and groundwater models. These were calibrated to streamflow records and parameterised using estimates of current groundwater and surface water extractions and use. Having derived a credible estimate of current water availability, the impacts of future climate change on water availability were determined through deriving changes in rainfall and potential evapotranspiration from 15 IPCC AR4 global climate models. These changes in rainfall were then dynamically downscaled using the CSIRO-CCAM model over the relatively small study area (50,000 square km). A future climate sequence was derived by modifying the historical 84-year climate sequence based on these changes in rainfall and potential evapotranspiration. This future climate sequence was then run through the rainfall-runoff, river, recharge and groundwater models to give an estimate of water availability under future climate. To estimate the impacts of future catchment development on water availability, the models were modified and re-run to reflect projected increases in development. Specifically, outputs from the rainfall-runoff and recharge models were reduced over areas of projected future plantation forestry. Conversely, groundwater recharge was increased over areas of new irrigated agriculture and new extractions of water for irrigation were implemented in the groundwater and river models. Results indicate that historical average water availability across the project area was 21,815 GL/year. Of this, 636 GL/year of surface water and 38 GL/year of groundwater are currently extracted for use. By 2030, rainfall is projected to decrease by an average of 3% over the project area. This decrease in rainfall and concurrent increase in potential evapotranspiration leads to a decrease in water availability of 5% by 2030. As a result of lower streamflows, under current cease-to-take rules, currently licensed extractions are projected to decrease by 3% (19 GL/year). This however is offset by an additional 120 GL/year of extractions for proposed new irrigated agriculture. These new extractions, along with the increase in commercial forest plantations lead to a reduction in total surface water of 1% in addition to the 5% reduction due to climate change. Results from this study are being used by the Tasmanian and Australian governments to guide the development of a sustainable irrigated agriculture industry in Tasmania. In part, this is necessary to offset the loss of irrigated agriculture from the southern Murray-Darling Basin where climate change induced reductions in rainfall are projected to be far worse.
Future Climate Change in the Baltic Sea Area
NASA Astrophysics Data System (ADS)
Bøssing Christensen, Ole; Kjellström, Erik; Zorita, Eduardo; Sonnenborg, Torben; Meier, Markus; Grinsted, Aslak
2015-04-01
Regional climate models have been used extensively since the first assessment of climate change in the Baltic Sea region published in 2008, not the least for studies of Europe (and including the Baltic Sea catchment area). Therefore, conclusions regarding climate model results have a better foundation than was the case for the first BACC report of 2008. This presentation will report model results regarding future climate. What is the state of understanding about future human-driven climate change? We will cover regional models, statistical downscaling, hydrological modelling, ocean modelling and sea-level change as it is projected for the Baltic Sea region. Collections of regional model simulations from the ENSEMBLES project for example, financed through the European 5th Framework Programme and the World Climate Research Programme Coordinated Regional Climate Downscaling Experiment, have made it possible to obtain an increasingly robust estimation of model uncertainty. While the first Baltic Sea assessment mainly used four simulations from the European 5th Framework Programme PRUDENCE project, an ensemble of 13 transient regional simulations with twice the horizontal resolution reaching the end of the 21st century has been available from the ENSEMBLES project; therefore it has been possible to obtain more quantitative assessments of model uncertainty. The literature about future climate change in the Baltic Sea region is largely built upon the ENSEMBLES project. Also within statistical downscaling, a considerable number of papers have been published, encompassing now the application of non-linear statistical models, projected changes in extremes and correction of climate model biases. The uncertainty of hydrological change has received increasing attention since the previous Baltic Sea assessment. Several studies on the propagation of uncertainties originating in GCMs, RCMs, and emission scenarios are presented. The number of studies on uncertainties related to downscaling and impact models is relatively small, but more are emerging. A large number of coupled climate-environmental scenario simulations for the Baltic Sea have been performed within the BONUS+ projects (ECOSUPPORT, INFLOW, AMBER and Baltic-C (2009-2011)), using various combinations of output from GCMs, RCMs, hydrological models and scenarios for load and emission of nutrients as forcing for Baltic Sea models. Such a large ensemble of scenario simulations for the Baltic Sea has never before been produced and enables for the first time an estimation of uncertainties.
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro
2017-04-01
The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.
NASA Astrophysics Data System (ADS)
Wang, J.; Yin, H.; Chung, F.
2008-12-01
While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is applied to the adjusted climate change inflow. Therefore, three CALSIM2 experiments will be implemented: (1) base run with the observed historic inflow (1921 to 2003); (2) sensitivity run with the adjusted climate change inflow through annual inflow adjustment; (3) sensitivity run with the adjusted climate change inflow through annual inflow adjustment and inflow trend adjustment. To account for the variability of various climate models in projecting future climates, the uncertainty in future emission scenarios, and the difference in different projection periods, estimated inflows from 6 climate models for 2 emission scenarios (A2 and B1) and two projection periods (2030-2059 and 2070-2099) are included in the CALSIM model experiments.
PROJECTED CLIMATE-INDUCED FAUNAL CHANGE IN THE WESTERN HEMISPHERE
Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can e...
Viticultural zoning in Portugal: current conditions and future scenarios
NASA Astrophysics Data System (ADS)
Fraga, H.; Santos, J. A.; Malheiro, A. C.; Moutinho-Pereira, J.
2012-04-01
Viticulture and wine production represent a main economic activity of the agro-production sector in Portugal, particularly over some world famous winemaking regions, such as the Port Wine / Douro Valley, Minho and Alentejo. As viticultural zoning provides valuable information regarding the suitability of a given grapevine variety to local climatic conditions, it is thus of great interest to the Portuguese winemaking sector. Furthermore, projected future climates are also likely to have important impacts on this zoning. Therefore, in the current study we aim at 1) discussing the current viticultural zoning in Portugal, and 2) assessing its future changes under anthropogenic greenhouse gas forcing (A1B SRES scenario) in the 2011-2070 time period. A set of appropriate bioclimatic indices, computed using temperatures and precipitations defined on a daily basis, is used for viticultural zoning. For the assessment of the recent-past conditions an observational gridded dataset (E-OBS) is used, while for future climate change projections, a 16-member ensemble of model experiments (ENSEMBLES project dataset), is considered. Overall, statistically significant increases (decreases) in the thermally-based (humidity-based) indices are projected to occur in the future throughout the country, particularly over its southern and innermost regions. All these changes are in agreement with the widely accepted projections for warmer and dryer Southern European climates. High impacts are found in the most important winemaking regions in Portugal, highlighting the urgent need for developing suitable adaptation and mitigation measures so as to cope with a changing climate. A reshaping of the viticultural regions is thereby expected to occur within the next decades over Portugal.
NASA Astrophysics Data System (ADS)
Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.
2018-03-01
In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Climate and Land Use Scenarios, a project which is described in the 2009 EPA Report, ``Land-Use Scenarios: National-Scale Housing- Density Scenarios Consistent with Climate Change Storylines.'' These scenarios are... economic development, which are used by climate change modelers to develop projections of future climate...
Ge, Xuezhen; He, Shanyong; Zhu, Chenyi; Wang, Tao; Xu, Zhichun; Shixiang, Zong
2018-05-23
The international invasive and quarantined defoliating insect Hyphantria cunea Drury (Lepidoptera: Arctiidae) causes huge ecological and economic losses in the world. The future climate change may alter the distribution of H. cunea and aggravate the damage. In the present study, we used CLIMEX to project the potential global distribution of H. cunea according to both historical climate data (1950-2000) and future climate warming estimates (2011-2100) to define the impact of climate change. Under the historical climate scenario, we found that H. cunea can survive on every continent, and temperature is the main factor that limits its establishment. With climate change, the suitability will increase in middle and high latitude regions, while decrease in the low latitude regions. Besides, tropic regions will be most sensitive to the climate change impacts for the pest to survive. The impacts of climate change will also increase over time, whether the positive impacts or negative impacts. The projected potential distributions provide a theoretical basis for quarantine and control strategies for the management of this pest in each country. Furthermore, these results provide substantial guidance for studies of the effects of climate change on other major forest pests. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Modeling of Regional Climate Change Effects on Ground-Level Ozone and Childhood Asthma
Sheffield, Perry E.; Knowlton, Kim; Carr, Jessie L.; Kinney, Patrick L.
2011-01-01
Background The adverse respiratory effects of ground-level ozone are well-established. Ozone is the air pollutant most consistently projected to increase under future climate change. Purpose To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. Methods This study assessed future numbers of asthma emergency department visits for children aged 0–17 years using (1) baseline New York City metropolitan area emergency department rates, (2) a dose–response relationship between ozone levels and pediatric asthma emergency department visits, and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. Results In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0–17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. Conclusions The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes – such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy. PMID:21855738
Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
Impacts of climate variability and future climate change on harmful algal blooms and human health
Stephanie K. Moore; Vera L. Trainer; Nathan J. Mantua; Micaela S. Parker; Edward A. Laws; Lorraine C. Backer; Lora E. Fleming
2008-01-01
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes...
McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin
2017-01-01
ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.
Projected climate-induced faunal change in the Western Hemisphere
Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blaustein, A.R.; Bartlein, P.J.
2009-01-01
Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today. ?? 2009 by the Ecological Society of America.
An empirical perspective for understanding climate change impacts in Switzerland
Henne, Paul; Bigalke, Moritz; Büntgen, Ulf; Colombaroli, Daniele; Conedera, Marco; Feller, Urs; Frank, David; Fuhrer, Jürg; Grosjean, Martin; Heiri, Oliver; Luterbacher, Jürg; Mestrot, Adrien; Rigling, Andreas; Rössler, Ole; Rohr, Christian; Rutishauser, This; Schwikowski, Margit; Stampfli, Andreas; Szidat, Sönke; Theurillat, Jean-Paul; Weingartner, Rolf; Wilcke, Wolfgan; Tinner, Willy
2018-01-01
Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.
Ishida, K; Gorguner, M; Ercan, A; Trinh, T; Kavvas, M L
2017-08-15
The impacts of climate change on watershed-scale precipitation through the 21st century were investigated over eight study watersheds in Northern California based on dynamically downscaled CMIP5 future climate projections from three GCMs (CCSM4, HadGEM2-ES, and MIROC5) under the RCP4.5 and RCP8.5 future climate scenarios. After evaluating the modeling capability of the WRF model, the six future climate projections were dynamically downscaled by means of the WRF model over Northern California at 9km grid resolution and hourly temporal resolution during a 94-year period (2006-2100). The biases in the model simulations were corrected, and basin-average precipitation over the eight study watersheds was calculated from the dynamically downscaled precipitation data. Based on the dynamically downscaled basin-average precipitation, trends in annual depth and annual peaks of basin-average precipitation during the 21st century were analyzed over the eight study watersheds. The analyses in this study indicate that there may be differences between trends of annual depths and annual peaks of watershed-scale precipitation during the 21st century. Furthermore, trends in watershed-scale precipitation under future climate conditions may be different for different watersheds depending on their location and topography even if they are in the same region. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, C.; Hu, B. X.; Wang, P.; Xu, K.
2017-12-01
The occurrence of climate warming is unequivocal and is expected to alter the temporal-spatial patterns of regional water resources. Based on the long-term (1960-2012) water budget data and climate projections from 28 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), this study investigated the responses of runoff (R) to future climate variability in China at both grid and catchment scales using the Budyko-based elasticity method. Results indicate a large spatial variation in precipitation (P) elasticity (from 1.2 to 3.3) and potential evaporation (PET) elasticity (from -2.3 to -0.2) across China. The P elasticity is larger in northeast and western China than in southern China, while the opposite occurs for PET elasticity. Climate projections suggest that there is large uncertainty involved among the GCM simulations, but most project a consistent change in P (or PET) over China at the mean annual scale. During the future period of 2071-2100, the mean annual P will likely increase in most parts of China particularly the western regions, while the mean annual PET will likely increase in the whole China especially the southern regions due to future increases in temperature. Moreover, larger increases are projected for higher emission scenarios. Compared with the baseline 1971-2000, the arid regions and humid regions of China will likely become wetter and drier in the period 2071-2100, respectively.
Predicting the Distribution of Commercially Important Invertebrate Stocks under Future Climate
Russell, Bayden D.; Connell, Sean D.; Mellin, Camille; Brook, Barry W.; Burnell, Owen W.; Fordham, Damien A.
2012-01-01
The future management of commercially exploited species is challenging because techniques used to predict the future distribution of stocks under climate change are currently inadequate. We projected the future distribution and abundance of two commercially harvested abalone species (blacklip abalone, Haliotis rubra and greenlip abalone, H. laevigata) inhabiting coastal South Australia, using multiple species distribution models (SDM) and for decadal time slices through to 2100. Projections are based on two contrasting global greenhouse gas emissions scenarios. The SDMs identified August (winter) Sea Surface Temperature (SST) as the best descriptor of abundance and forecast that warming of winter temperatures under both scenarios may be beneficial to both species by allowing increased abundance and expansion into previously uninhabited coasts. This range expansion is unlikely to be realised, however, as projected warming of March SST is projected to exceed temperatures which cause up to 10-fold increases in juvenile mortality. By linking fine-resolution forecasts of sea surface temperature under different climate change scenarios to SDMs and physiological experiments, we provide a practical first approximation of the potential impact of climate-induced change on two species of marine invertebrates in the same fishery. PMID:23251326
Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data
NASA Astrophysics Data System (ADS)
Parajuli, Ranjan; Nyaupane, Narayan; Kalra, Ajay
2017-12-01
Flooding is a severe and costlier natural hazard. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with a proper understanding of flooding event can mitigate the risk of such hazard. The floodplain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural areas in the desert of Nevada has experienced peak flood in the recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best-fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on an HEC-RAS model, prepared using available terrain data. Some of the climate projection shows an extreme increase in future design flood. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer, and stakeholders.
Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario
NASA Astrophysics Data System (ADS)
Niu, Xiaorui; Wang, Shuyu; Tang, Jianping; Lee, Dong-Kyou; Gao, Xuejie; Wu, Jia; Hong, Songyou; Gutowski, William J.; McGregor, John
2015-10-01
As part of the Regional Climate Model Intercomparison Project for Asia, future precipitation projection in China is constructed using five regional climate models (RCMs) driven by the same global climate model (GCM) of European Centre/Hamburg version 5. The simulations cover both the control climate (1978-2000) and future projection (2041-2070) under the Intergovernmental Panel on Climate Change emission scenario A1B. For the control climate, the RCMs have an advantage over the driving GCM in reproducing the summer mean precipitation distribution and the annual cycle. The biases in simulating summer precipitation mainly are caused by the deficiencies in reproducing the low-level circulation, such as the western Pacific subtropical high. In addition, large inter-RCM differences exist in the summer precipitation simulations. For the future climate, consistent and inconsistent changes in precipitation between the driving GCM and the nested RCMs are observed. Similar changes in summer precipitation are projected by RCMs over western China, but model behaviors are quite different over eastern China, which is dominated by the Asian monsoon system. The inter-RCM difference of rainfall changes is more pronounced in spring over eastern China. North China and the southern part of South China are very likely to experience less summer rainfall in multi-RCM mean (MRM) projection, while limited credibility in increased summer rainfall MRM projection over the lower reaches of the Yangtze River Basin. The inter-RCM variability is the main contributor to the total uncertainty for the lower reaches of the Yangtze River Basin and South China during 2041-2060, while lowest for Northeast China, being less than 40%.
McPherson, Michelle; García-García, Almudena; Cuesta-Valero, Francisco José; Hansen-Ketchum, Patti; MacDougall, Donna; Ogden, Nicholas Hume
2017-01-01
Background: A number of studies have assessed possible climate change impacts on the Lyme disease vector, Ixodes scapularis. However, most have used surface air temperature from only one climate model simulation and/or one emission scenario, representing only one possible climate future. Objectives: We quantified effects of different Representative Concentration Pathway (RCP) and climate model outputs on the projected future changes in the basic reproduction number (R0) of I. scapularis to explore uncertainties in future R0 estimates. Methods: We used surface air temperature generated by a complete set of General Circulation Models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to hindcast historical (1971–2000), and to forecast future effects of climate change on the R0 of I. scapularis for the periods 2011–2040 and 2041–2070. Results: Increases in the multimodel mean R0 values estimated for both future periods, relative to 1971–2000, were statistically significant under all RCP scenarios for all of Nova Scotia, areas of New Brunswick and Quebec, Ontario south of 47°N, and Manitoba south of 52°N. When comparing RCP scenarios, only the estimated R0 mean values between RCP6.0 and RCP8.5 showed statistically significant differences for any future time period. Conclusion: Our results highlight the potential for climate change to have an effect on future Lyme disease risk in Canada even if the Paris Agreement’s goal to keep global warming below 2°C is achieved, although mitigation reducing emissions from RCP8.5 levels to those of RCP6.0 or less would be expected to slow tick invasion after the 2030s. https://doi.org/10.1289/EHP57 PMID:28599266
Pholkern, Kewaree; Saraphirom, Phayom; Srisuk, Kriengsak
2018-08-15
The Central Huai Luang Basin is one of the important rice producing areas of Udon Thani Province in Northeastern Thailand. The basin is underlain by the rock salt layers of the Maha Sarakham Formation and is the source of saline groundwater and soil salinity. The regional and local groundwater flow systems are the major mechanisms responsible for spreading saline groundwater and saline soils in this basin. Climate change may have an impact on groundwater recharge, on water table depth and the consequences of waterlogging, and on the distribution of soil salinity in this basin. Six future climate conditions from the SEACAM and CanESM2 models were downscaled to investigate the potential impact of future climate conditions on groundwater quantity and quality in this basin. The potential impact was investigated by using a set of numerical models, namely HELP3 and SEAWAT, to estimate the groundwater recharge and flow and the salt transport of groundwater simulation, respectively. The results revealed that within next 30years (2045), the future average annual temperature is projected to increase by 3.1°C and 2.2°C under SEACAM and CanESM2 models, respectively, while the future precipitation is projected to decrease by 20.85% under SEACAM and increase by 18.35% under the CanESM2. Groundwater recharge is projected to increase under the CanESM2 model and to slightly decrease under the SEACAM model. Moreover, for all future climate conditions, the depths of the groundwater water table are projected to continuously increase. The results showed the impact of climate change on salinity distribution for both the deep and shallow groundwater systems. The salinity distribution areas are projected to increase by about 8.08% and 56.92% in the deep and shallow groundwater systems, respectively. The waterlogging areas are also projected to expand by about 63.65% from the baseline period. Copyright © 2018 Elsevier B.V. All rights reserved.
Will a warmer and wetter future cause extinction of native Hawaiian forest birds?
Liao, Wei; Elison Timm, Oliver; Zhang, Chunxi; Atkinson, Carter T; LaPointe, Dennis A; Samuel, Michael D
2015-12-01
Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria (Plasmodium relictum), an introduced mosquito-borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird-mosquito-malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project. Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline in bird abundance. Different temperature and precipitation patterns produce divergent trajectories where native birds persist with low malaria infection under a warmer and dryer projection (RCP4.5), but suffer high malaria infection and severe reductions under hot and dry (RCP8.5) or warm and wet (A1B) futures. We conclude that future global climate change will cause significant decreases in the abundance and diversity of remaining Hawaiian bird communities. Because these effects appear unlikely before mid-century, natural resource managers have time to implement conservation strategies to protect this unique avifauna from further decimation. Similar climatic drivers for avian and human malaria suggest that mitigation strategies for Hawai'i have broad application to human health. © 2015 John Wiley & Sons Ltd.
Will a warmer and wetter future cause extinction of native Hawaiian forest birds?
Liao, Wei; Timm, Oliver Elison; Zhang, Chunxi; Atkinson, Carter T.; LaPointe, Dennis; Samuel, Michael D.
2015-01-01
Isolation of the Hawaiian archipelago produced a highly endemic and unique avifauna. Avian malaria (Plasmodium relictum), an introduced mosquito-borne pathogen, is a primary cause of extinctions and declines of these endemic honeycreepers. Our research assesses how global climate change will affect future malaria risk and native bird populations. We used an epidemiological model to evaluate future bird-mosquito-malaria dynamics in response to alternative climate projections from the Coupled Model Intercomparison Project (CMIP). Climate changes during the second half of the century accelerate malaria transmission and cause a dramatic decline in bird abundance. Different temperature and precipitation patterns produce divergent trajectories where native birds persist with low malaria infection under a warmer and dryer projection (RCP4.5), but suffer high malaria infection and severe reductions under hot and dry (RCP8.5) or warm and wet (A1B) futures. We conclude that future global climate change will cause significant decreases in the abundance and diversity of remaining Hawaiian bird communities. Because these effects appear unlikely before mid-century, natural resource managers have time to implement conservation strategies to protect this unique avifauna from further decimation. Similar climatic drivers for avian and human malaria suggest that mitigation strategies for Hawai'i have broad application to human health.
Projections of suitable habitat for rare species under global warming scenarios
F. Thomas Ledig; Gerald E. Rehfeldt; Cuauhtemoc Saenz-Romero; Flores-Lopez Celestino
2010-01-01
Premise of the study: Modeling the contemporary and future climate niche for rare plants is a major hurdle in conservation, yet such projections are necessary to prevent extinctions that may result from climate change. Methods: We used recently developed spline climatic models and modifi ed Random Forests...
Climate change and watershed mercury export: a multiple projection and model analysis
Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. We apply an ensemble of watershed models to simulate and assess the responses of hydrological and total Hg (HgT) fluxes and concentrations to two climate change projections in the US Co...
Woody plants and the prediction of climate-change impacts on bird diversity.
Kissling, W D; Field, R; Korntheuer, H; Heyder, U; Böhning-Gaese, K
2010-07-12
Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant-animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic.
ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6
NASA Technical Reports Server (NTRS)
Nowicki, S.
2015-01-01
ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.
Ogden, Nicholas H; Milka, Radojević; Caminade, Cyril; Gachon, Philippe
2014-12-02
Since the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N. Ae. albopictus is a vector of a wide range of human pathogens including dengue and chikungunya viruses, which are currently emerging in the Caribbean and Central America and posing a threat to North America. The risk of Ae. albopictus expanding its geographic range in North America under current and future climate was assessed using three climatic indicators of Ae. albopictus survival: overwintering conditions (OW), OW combined with annual air temperature (OWAT), and a linear index of precipitation and air temperature suitability expressed through a sigmoidal function (SIG). The capacity of these indicators to predict Ae. albopictus occurrence was evaluated using surveillance data from the United States. Projected future climatic suitability for Ae. albopictus was obtained using output of nine Regional Climate Model experiments (RCMs). OW and OWAT showed >90% specificity and sensitivity in predicting observed Ae. albopictus occurrence and also predicted moderate to high risk of Ae. albopictus invasion in Pacific coastal areas of the Unites States and Canada under current climate. SIG also well predicted observed Ae. albopictus occurrence (ROC area under the curve was 0.92) but predicted wider current climatic suitability in the north-central and north-eastern United States and south-eastern Canada. RCM output projected modest (circa 500 km) future northward range expansion of Ae. albopictus by the 2050s when using OW and OWAT indicators, but greater (600-1000 km) range expansion, particularly in eastern and central Canada, when using the SIG indicator. Variation in future possible distributions of Ae. albopictus was greater amongst the climatic indicators used than amongst the RCM experiments. Current Ae. albopictus distributions were well predicted by simple climatic indicators and northward range expansion was predicted for the future with climate change. However, current and future predicted geographic distributions of Ae. albopictus varied amongst the climatic indicators used. Further field studies are needed to assess which climatic indicator is the most accurate in predicting regions suitable for Ae. albopictus survival in North America.
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Kug, Jong-Seong; Choi, Jun-Young; Jin, Fei-Fei; Watanabe, Masahiro
2018-01-01
Future changes in rainfall have serious impacts on human adaptation to climate change, but quantification of these changes is subject to large uncertainties in climate model projections. To narrow these uncertainties, significant efforts have been made to understand the intermodel differences in future rainfall changes. Here, we show a strong inverse relationship between present-day precipitation and its future change to possibly calibrate future precipitation change by removing the present-day bias in climate models. The results of the models with less tropical (40° S-40° N) present-day precipitation are closely linked to the dryness over the equatorial central-eastern Pacific, and project weaker regional precipitation increase due to the anthropogenic greenhouse forcing1-6 with stronger zonal Walker circulation. This induces Indo-western Pacific warming through Bjerknes feedback, which reduces relative humidity by the enhanced atmospheric boundary-layer mixing in the future projection. This increases the air-sea humidity difference to enhance tropical evaporation and the resultant precipitation. Our estimation of the sensitivity of the tropical precipitation per 1 K warming, after removing a common bias in the present-day simulation, is about 50% greater than the original future multi-model projection.
Shafer, S.L.; Atkins, J.; Bancroft, B.A.; Bartlein, P.J.; Lawler, J.J.; Smith, B.; Wilsey, C.B.
2012-01-01
The responses of species and ecosystems to future climate changes will present challenges for conservation and natural resource managers attempting to maintain both species populations and essential habitat. This report describes projected future changes in climate and vegetation for three study areas surrounding the military installations of Fort Benning, Georgia, Fort Hood, Texas, and Fort Irwin, California. Projected climate changes are described for the time period 2070–2099 (30-year mean) as compared to 1961–1990 (30-year mean) for each study area using data simulated by the coupled atmosphere-ocean general circulation models CCSM3, CGCM3.1(T47), and UKMO-HadCM3, run under the B1, A1B, and A2 future greenhouse gas emissions scenarios. These climate data are used to simulate potential changes in important components of the vegetation for each study area using LPJ, a dynamic global vegetation model, and LPJ-GUESS, a dynamic vegetation model optimized for regional studies. The simulated vegetation results are compared with observed vegetation data for the study areas. Potential effects of the simulated future climate and vegetation changes for species and habitats of management concern are discussed in each study area, with a particular focus on federally listed threatened and endangered species.
DOT National Transportation Integrated Search
2016-12-01
A reoccurring challenge with increasing fuel prices is optimization of multi- and inter-modal freight transport to move products most efficiently. Projections for the future of agriculture in the United States (U.S.) combined with regional climate mo...
Caballero, Rodrigo; Huber, Matthew
2013-08-27
Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow "Earth system" feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or "Charney" climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature.
Synergy between land use and climate change increases future fire risk in Amazon forests
NASA Astrophysics Data System (ADS)
Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem
2017-12-01
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.
A European Flagship Programme on Extreme Computing and Climate
NASA Astrophysics Data System (ADS)
Palmer, Tim
2017-04-01
In 2016, an outline proposal co-authored by a number of leading climate modelling scientists from around Europe for a (c. 1 billion euro) flagship project on exascale computing and high-resolution global climate modelling was sent to the EU via its Future and Emerging Flagship Technologies Programme. The project is formally entitled "A Flagship European Programme on Extreme Computing and Climate (EPECC)"? In this talk I will outline the reasons why I believe such a project is needed and describe the current status of the project. I will leave time for some discussion.
NASA Astrophysics Data System (ADS)
De Sales, F.; Rother, D.
2017-12-01
Current climate change assessments project an increase in temperature throughout the western U.S. over the next century, while precipitation is projected to decrease in the Southwest. These assessments are based mainly on coarse spatial resolution general circulation model (GCM) simulations, which do not include groundwater (soil and aquifer) storage projections. However, water availability is a regionally variable resource and climate change impacts on groundwater distribution will probably differ regionally across the southwestern U.S. We have implemented a coupled atmosphere-biosphere-aquifer regional modelling system (WRF/SSiB2/SIMGM) to generate recent (2005-2017) and near-future (2018-2030) high-resolution groundwater projections for Southern California. These projections are obtained by dynamic downscaling data from the Global Operation Analysis (recent) and the NCAR Community Earth System Model CMIP5 global projections (near future), which supported the Intergovernmental Panel on Climate Change 5th Assessment Report. Near-future simulations include three representative concentration pathway (RCP) scenarios namely, RCP4.5, RCP6, and RCP8.5. The model can reasonably simulate the recent changes in Southern California's groundwater as indicated by a comparison to terrestrial water storage obtained from the Gravity Recovery and Climate Experiment dataset. In particular, the 2011-2017 drought is simulated well with total groundwater storages declining throughout the period, especially along the western portion of the domain, which includes the high-populated areas of western Los Angeles, San Diego, Ventura and Orange counties. In general, the near-future simulations show a decline in groundwater storage for the region. The largest changes are observed with the RCP8.5 emission pathway, towards to southeastern tier of the study area. In addition to groundwater, this downscaling experiment also generates high-resolution precipitation and temperature estimates, which can help policy makers in the development of strategies to alleviate potential water resource deficiencies in California in the near future.
NASA Astrophysics Data System (ADS)
Kolb, C.
2017-12-01
Climate change is expected to pose a significant threat to water resources in the future. Guanacaste Province, located in northwestern Costa Rica, has a unique climate that is influenced by the Pacific Ocean and Caribbean Sea, as well as the Central Cordillera mountain range. Although the region experiences a marked rainy season between May and November, the hot, dry summers often stress water resources. Climate change projections suggest increased temperatures and reduced precipitation for the region, which will further stress water supplies. This study focuses on the effects of climate change on groundwater resources for two coastal aquifers, Potrero and Brasilito. The UZF model package coupled with the finite difference groundwater flow model MODFLOW were used to evaluate the effect of climate change on groundwater recharge and storage. A potential evapotranspiration model was used to estimate groundwater infiltration rates used in the MODFLOW model. Climate change projections for temperature, precipitation, and sea level rise were used to develop climate scenarios, which were compared to historical data. Preliminary results indicate that climate change could reduce future recharge, especially during the dry season. Additionally, the coastal aquifers are at increased risk of reduced storage and increased salinization due to the reductions in groundwater recharge and sea level rise. Climate change could also affect groundwater quality in the region, disrupting the ecosystem and impairing a primary source of drinking water.
Climate change and wetland loss impacts on a western river's water quality
NASA Astrophysics Data System (ADS)
Records, R. M.; Arabi, M.; Fassnacht, S. R.; Duffy, W. G.; Ahmadi, M.; Hegewisch, K. C.
2014-11-01
An understanding of potential stream water quality conditions under future climate is critical for the sustainability of ecosystems and the protection of human health. Changes in wetland water balance under projected climate could alter wetland extent or cause wetland loss (e.g., via increased evapotranspiration and lower growing season flows leading to reduced riparian wetland inundation) or altered land use patterns. This study assessed the potential climate-induced changes to in-stream sediment and nutrient loads in the snowmelt-dominated Sprague River, Oregon, western US. Additionally, potential water quality impacts of combined changes in wetland water balance and wetland area under future climatic conditions were evaluated. The study utilized the Soil and Water Assessment Tool (SWAT) forced with statistical downscaling of general circulation model (GCM) data from the Coupled Model Intercomparison Project 5 (CMIP5) using the Multivariate Adaptive Constructed Analogs (MACA) method. Our findings suggest that, in the Sprague River, (1) mid-21st century nutrient and sediment loads could increase significantly during the high-flow season under warmer, wetter climate projections or could change only nominally in a warmer and somewhat drier future; (2) although water quality conditions under some future climate scenarios and no wetland loss may be similar to the past, the combined impact of climate change and wetland losses on nutrient loads could be large; (3) increases in stream total phosphorus (TP) concentration with wetland loss under future climate scenarios would be greatest at high-magnitude, low-probability flows; and (4) loss of riparian wetlands in both headwaters and lowlands could increase outlet TP loads to a similar degree, but this could be due to distinctly different mechanisms in different parts of the watershed.
NASA Astrophysics Data System (ADS)
Murphy, K. W.; Ellis, A. W.; Skindlov, J. A.
2015-12-01
Water resource systems have provided vital support to transformative growth in the Southwest United States and the Phoenix, Arizona metropolitan area where the Salt River Project (SRP) currently satisfies 40% of the area's water demand from reservoir storage and groundwater. Large natural variability and expectations of climate changes have sensitized water management to risks posed by future periods of excess and drought. The conventional approach to impacts assessment has been downscaled climate model simulations translated through hydrologic models; but, scenario ranges enlarge as uncertainties propagate through sequential levels of modeling complexity. The research often does not reach the stage of specific impact assessments, rendering future projections frustratingly uncertain and unsuitable for complex decision-making. Alternatively, this study inverts the common approach by beginning with the threatened water system and proceeding backwards to the uncertain climate future. The methodology is built upon reservoir system response modeling to exhaustive time series of climate-driven net basin supply. A reservoir operations model, developed with SRP guidance, assesses cumulative response to inflow variability and change. Complete statistical analyses of long-term historical watershed climate and runoff data are employed for 10,000-year stochastic simulations, rendering the entire range of multi-year extremes with full probabilistic characterization. Sets of climate change projections are then translated by temperature sensitivity and precipitation elasticity into future inflow distributions that are comparatively assessed with the reservoir operations model. This approach provides specific risk assessments in pragmatic terms familiar to decision makers, interpretable within the context of long-range planning and revealing a clearer meaning of climate change projections for the region. As a transferable example achieving actionable findings, the approach can guide other communities confronting water resource planning challenges.
Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri
2011-01-01
1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics is feasible for different populations using a common methodological framework. Our approach was limited to single populations and have neglected population settlement in new favourable habitats or changes in inter-specific relations as a potential response to future climate change. Predictions may be enhanced by merging demographic population models and climatic envelope models. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.
Future Freshwater Stress on Small Islands: Population, Aridity and Global Warming Targets
NASA Astrophysics Data System (ADS)
Karnauskas, K. B.; Schleussner, C. F.; Donnelly, J. P.; Anchukaitis, K. J.
2017-12-01
Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Future freshwater stress, including geographic and seasonal variability, has important implications for climate change adaptation scenarios for vulnerable human populations living on islands across the world ocean. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here we apply a recently developed methodology to project future changes in aridity in combination with population projections associated with different shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5°C and 2°C above pre-industrial levels. By accounting for evaporative demand a posteriori, we reveal a robust yet spatially variable tendency towards increasing aridity for 16 million people living on islands by mid-century. Although about half of the islands are projected to experience increased rainfall—predominantly in the deep tropics—projected changes in evaporation are more uniform, shifting the global distribution of changes in island freshwater balance towards greater aridity. In many cases, the magnitude of projected drying is comparable to the amplitude of the estimated observed interannual variability, with important consequences for extreme events. While we find that future population growth will dominate changes in projected freshwater stress especially towards the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. Particularly across the Caribbean region, a substantial fraction ( 25%) of the large overall freshwater stress projected under 2°C at 2030 can be avoided by limiting global warming to 1.5°C. Our findings add to a growing body of literature on the difference in climate impacts between 1.5°C and 2°C and underscore the need for regionally specific analysis.
NASA Astrophysics Data System (ADS)
Dialesandro, J.; Elias, E.; Rango, A.; Steele, C. M.
2016-12-01
The Central Valley of California, like most dryland agricultural areas in the Southwest United States, relies heavily on winter snowpack for water resources. Projections of future climate in the Sierra Mountains of California calls for a warmer climate regime that will impact the snowpack in the Sierra Mountains and thus the water supply for downstream agriculture and municipal uses within California's Central Valley. We simulate the impacts of two future time windows (2040-2069 and 2070-2099) and two future climate scenarios (RCP 4.5 and 8.5) on King's River using the Snowmelt Runoff Model. Snow depletion curves for 2010 are generated using MODIS and SRM parameters are adjusted until measured and simulated runoff reach acceptable agreement (R2 = .81). Future projections are based upon the multimodel mean of 20 CMIP5 models for seasonal future temperature and precipitation at high and low elevation points in the watershed from the multivariate adaptive constructed analogs (MACA) downscaled dataset. Changes in monthly inflow to Pineflat Reservoir, at the pour point of King's River watersheds, show a large decline in June and July inflow for all future climate simulations. Conversely, simulated spring inflow to Pineflat Reservoir is larger in the future. Impacts are most pronounced for end of the century (2070-2099), business as usual (RCP 8.5) simulation. Results are discussed with regard to implications for reservoir storage, groundwater recharge and creative solutions to cope with anticipated changes in runoff.
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health.
Conlon, Kathryn C; Kintziger, Kristina W; Jagger, Meredith; Stefanova, Lydia; Uejio, Christopher K; Konrad, Charles
2016-08-09
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida.
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health
Conlon, Kathryn C.; Kintziger, Kristina W.; Jagger, Meredith; Stefanova, Lydia; Uejio, Christopher K.; Konrad, Charles
2016-01-01
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida. PMID:27517942
Quantifying Uncertainty in Projections of Stratospheric Ozone Over the 21st Century
NASA Technical Reports Server (NTRS)
Charlton-Perez, A. J.; Hawkins, E.; Eyring, V.; Cionni, I.; Bodeker, G. E.; Kinnison, D. E.; Akiyoshi, H.; Frith, S. M.; Garcia, R.; Gettelman, A.;
2010-01-01
Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an ensemble of opportunity of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for 10 ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21 st century, up-to and after the time when ozone concentrations 15 return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
NASA Astrophysics Data System (ADS)
Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun
2017-04-01
Uncertainty is an inevitable feature of climate change impact assessments. Understanding and quantifying different sources of uncertainty is of high importance, which can help modeling agencies improve the current models and scenarios. In this study, we have assessed the future changes in three climate variables (i.e. precipitation, maximum temperature, and minimum temperature) over 10 sub-basins across the Pacific Northwest US. To conduct the study, 10 statistically downscaled CMIP5 GCMs from two downscaling methods (i.e. BCSD and MACA) were utilized at 1/16 degree spatial resolution for the historical period of 1970-2000 and future period of 2010-2099. For the future projections, two future scenarios of RCP4.5 and RCP8.5 were used. Furthermore, Bayesian Model Averaging (BMA) was employed to develop a probabilistic future projection for each climate variable. Results indicate superiority of BMA simulations compared to individual models. Increasing temperature and precipitation are projected at annual timescale. However, the changes are not uniform among different seasons. Model uncertainty shows to be the major source of uncertainty, while downscaling uncertainty significantly contributes to the total uncertainty, especially in summer.
Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom
2017-01-01
In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Ojima, D. S.; Morisette, J. T.
2012-12-01
The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in these projects is to provide the connections between climate data and running ecological models, and prototype these for future work. NCPP will develop capacities to provide enhanced climate information at relevant spatial and temporal scales, both for historical climate and projections of future climate, and will work to link expert guidance and understanding of modeling processes and evaluation of modeling with the use of numerical climate data. Translational information thus is a suite of information that aids in translation of numerical climate information into usable knowledge for applications, e.g. ecological response models, hydrologic risk studies. This information includes technical and scientific aspects including, but not limited to: 1) results of objective, quantitative evaluation of climate models & downscaling techniques, 2) guidance on appropriate uses and interpretation, i.e., understanding the advantages and limitations of various downscaling techniques for specific user applications, 3) characterizing and interpreting uncertainty, 4) Descriptions meaningful to applications, e.g. narratives. NCPP believes that translational information is best co-developed between climate scientists and applications scientists, such as the NC-CSC pilot.
Projected future changes in vegetation in western North America in the 21st century
Xiaoyan, Jiang; Rauscher, Sara A.; Ringler, Todd D.; Lawrence, David M.; Williams, A. Park; Allen, Craig D.; Steiner, Allison L.; Cai, D. Michael; McDowell, Nate G.
2013-01-01
Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.
NASA Astrophysics Data System (ADS)
Val Martin, M.; Pierce, J. R.; Heald, C. L.; Li, F.; Lawrence, D. M.; Wiedinmyer, C.; Tilmes, S.; Vitt, F.
2016-12-01
Emissions of aerosols and gases from fires have been shown to adversely affect air quality across the world. Fire activity is strongly related to climate and anthropogenic activities. Current fire projections for the 21st century seem very uncertain, ranging from increasing to declining depending on the climate, land cover change and population growth scenarios used. Here we present an analysis of the changes in future wildfire activity and consequences on air quality, with focus on PM2.5 and surface O3 over regions vulnerable to fire. We use the global Community Earth System Model (CESM) with a process-based fire model to simulate emissions from agriculture, peatland, deforestation and landscape fires for present-day and throughout the current century. We consider two future Representative Concentration Pathways climate scenarios combined with population density changes predicted from Shared Socio-economic Pathways to project climate and demographic effects on fire activity and further consequences for future air quality.
Model structures amplify uncertainty in predicted soil carbon responses to climate change.
Shi, Zheng; Crowell, Sean; Luo, Yiqi; Moore, Berrien
2018-06-04
Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.
NASA Astrophysics Data System (ADS)
Gu, Y.; Wylie, B. K.; Phuyal, K.
2012-12-01
In previous studies, we used vegetation condition information from archival records of satellite data (i.e., 10-year time series of Normalized Difference Vegetation Index (NDVI) data), site geophysical and biophysical features (e.g., elevation, slope and aspect, and soils), and weather and climate drivers to build ecosystem performance (EP) models to dynamically monitor EP (DMEP) in the Greater Platte River Basin (GPRB). Ecosystem performance is a surrogate approach for measuring ecosystem productivity. We estimated ecosystem site potentials (i.e., long-term ecosystem productivities), weather-based expected EP (EEP), and rangeland conditions based on these EP models. Validation of the EP results using ground observations (e.g., percentage of bare soil, LANDFIRE maps, stocking rate, and crop yield data) demonstrated the reliability of these EP models. We used this DMEP method to identify grasslands that are potentially suitable for cellulosic biofuel feedstock (e.g., switchgrass) development in the GPRB. The objectives of this study are to (1) project the future grassland EP; (2) assess the changes and trends of the future EP; and (3) examine the future sustainability of the identified biofuel feedstock areas in the GPRB. We used the EP models and future climate projections to estimate future (e.g., 2050 and 2099) climate-based projections of grassland performance in the GPRB. The future climate data were derived from the National Center for Atmospheric Research (NCAR) Community Climate System Model 3.0 (CCSM3) "SRES A1B" (a "middle" emissions path) obtained from the "Bias Corrected and Downscaled WCRP CMIP3 Climate Projections" archive (http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections). Results show that, under climate scenario A1B, the potential biofuel feedstock areas in the more mesic Eastern part of the GPRB will remain productive in the future (the spatially averaged EPs for these areas are 3335 kg ha-1 year-1, 3355 kg ha-1 year-1, and 3341 kg ha-1 year-1 for the site potential, the 2050 EEP, and the 2099 EEP, respectively). Therefore, the identified potential biofuel feedstock areas will continue to be sustainable for future biofuel development. On the other hand, the identified non-biofuel grasslands in the drier Western part of the GPRB would be expected to stay unproductive, with a slight decline in the EP trend in the future (spatially averaged EPs are 1983 kg ha-1 year-1, 1977 kg ha-1 year-1, and 1964 kg ha-1 year-1 for the site potential, the 2050 EEP, and the 2099 EEP, respectively). Thus, these areas will continue to be unsuitable for biofuel feedstock development in the future. The resulting future grassland EEP maps can be used as a reference by land managers to assess the future sustainability and feasibility of the potential biofuel feedstock areas.
Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate
NASA Astrophysics Data System (ADS)
Samaras, C.; Cook, L.
2015-12-01
Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.
Reside, April E; VanDerWal, Jeremy; Kutt, Alex S
2012-01-01
Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this “realistic” dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species’ range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of vulnerable species. PMID:22837819
Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.
Steen, Valerie; Skagen, Susan K; Noon, Barry R
2014-01-01
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971-2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981-2000 and projected future distributions to climate scenarios for 2040-2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.
An enhanced archive facilitating climate impacts analysis
Maurer, E.P.; Brekke, L.; Pruitt, T.; Thrasher, B.; Long, J.; Duffy, P.; Dettinger, M.; Cayan, D.; Arnold, J.
2014-01-01
We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled data to include daily data to facilitate investigations of phenomena sensitive to daily to monthly temperature and precipitation, including extremes in these quantities. New developments include downscaled output from the new Coupled Model Intercomparison Project phase 5 (CMIP5) climate model simulations at both the monthly and daily time scales, as well as simulations of surface hydrologi- cal variables. The web interface allows the extraction of individual projections or ensemble statistics for user-defined regions, promoting the rapid assessment of model consensus and uncertainty for future projections of precipitation, temperature, and hydrology. The archive is accessible online (http://gdo-dcp.ucllnl.org/downscaled_ cmip_projections).
The impact of future climate on historic interiors.
Lankester, Paul; Brimblecombe, Peter
2012-02-15
The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.
Projected climate change for the coastal plain region of Georgia, USA
USDA-ARS?s Scientific Manuscript database
Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...
Saltré, Frédérik; Duputié, Anne; Gaucherel, Cédric; Chuine, Isabelle
2015-02-01
Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process-based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north-eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1-2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36-61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life-history are likely to increase its threat status in the near future. © 2014 John Wiley & Sons Ltd.
Climate Change Impact Study with CMIP5 and Comparison with CMIP3
NASA Astrophysics Data System (ADS)
Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.
2016-12-01
One of significant uncertainties in climate change impact study is the selection of climate model projection including the choosing of greenhouse gas emission scenarios. With the new generation of climate model projection, CMIP5, coming into use, CCTAG selected 11 climate models and two RCPs (rcp4.5 and rcp8.5) for California. Previous DWR climate change study was based on 6 CMIP3 climate models and two emission scenarios (SRES A2 and B1) which were selected by CAT. It is an unanswered question that how the selection of these climate model projections and emission scenarios affect the assessment of climate change impact on future water supply of California CVP/SWP project. This work will run the water planning model CalSim in DWR with 44 CMIP5 and 12 CMIP3 climate model projections to investigate the sensitivity of climate model impact study on future water supply in the CVP/SWP region to the section of climate model projection. It was found that in 2060 CMIP5 projects the wetting trend in Northern California while CMIP3 projects the drying trend in the entire California on the average. And CMIP5 projects about half-degree more warming than CMIP3. As a result, Sacramento River rim inflow increases by 8% for CMIP5 and reduces by 3% for CMIP3. In spite of this difference in rim inflow, north of Delta carryover storage will be reduced both under CMIP5 (14%) and under CMIP3 (23%) in 2060. And south Delta export will be reduced both for CMIP5 (8%) and for CMIP3 (15%). Thus, The CC impact uncertainty caused by the selection of climate model projection (CMIP3 vs CMIP5) is about 7% in terms of Delta export and about 9% in terms of north of Delta carryover storage. This uncertainty is more than the one caused by the selection of sea level rise in that the climate change impact uncertainty caused by the selection of sea level rise (Zero vs 1.5ft SLR) is about 5% in terms of Delta export and about 4-5% in terms of North of Delta carryover storage.
Future vegetation ecosystem response to warming climate over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Bao, Y.; Gao, Y.; Wang, Y.
2017-12-01
The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)
Assessing the effects of urbanization and climate change on groundwater management in China
NASA Astrophysics Data System (ADS)
Hua, S.; Zheng, C.
2017-12-01
Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.
NASA Astrophysics Data System (ADS)
Ssegane, H.; Negri, M. C.
2015-12-01
Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.
NASA Astrophysics Data System (ADS)
Zazulie, Natalia; Rusticucci, Matilde; Raga, Graciela B.
2017-12-01
In Part I of our study (Zazulie et al. Clim Dyn, 2017, hereafter Z17) we analyzed the ability of a subset of fifteen high-resolution global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 to reproduce the past climate of the Subtropical Central Andes (SCA) of Argentina and Chile. A subset of only five GCMs was shown to reproduce well the past climate (1980-2005), for austral summer and winter. In this study we analyze future climate projections for the twenty-first century over this complex orography region using those five GCMs. We evaluate the projections under two of the representative concentration pathways considered as future scenarios: RCP4.5 and RCP8.5. Future projections indicate warming during the twenty-first century over the SCA region, especially pronounced over the mountains. Projections of warming at high elevations in the SCA depend on altitude, and are larger than the projected global mean warming. This phenomenon is expected to strengthen by the end of the century under the high-emission scenario. Increases in winter temperatures of up to 2.5 °C, relative to 1980-2005, are projected by 2040-2065, while a 5 °C warming is expected at the highest elevations by 2075-2100. Such a large monthly-mean warming during winter would most likely result in snowpack melting by late winter-early spring, with serious implication for water availability during summer, when precipitation is a minimum over the mountains. We also explore changes in the albedo, as a contributing factor affecting the net flux of energy at the surface and found a reduction in albedo of 20-60% at high elevations, related to the elevation dependent warming. Furthermore, a decrease in winter precipitation is projected in central Chile by the end of the century, independent of the scenario considered.
Uncertainties in discharge projections in consequence of climate change
NASA Astrophysics Data System (ADS)
Liebert, J.; Düthmann, D.; Berg, P.; Feldmann, H.; Ihringer, J.; Kunstmann, H.; Merz, B.; Ott, I.; Schädler, G.; Wagner, S.
2012-04-01
The fourth assessment report of the IPCC summarizes possible effects of the global climate change. For Europe an increasing variability of temperature and precipitation is expected. While the increasing temperature is projected almost uniformly for Europe, for precipitation the models indicate partly heterogeneous tendencies. In order to maintain current safety-standards in the infrastructure of our various water management systems, the possible future floods discharges are very often a central question. In the planning and operation of water infrastructure systems uncertainties considerations have an important function. In times of climate change the analyses of measured historical gauge data (normally 30 - 80 years) are not sufficient enough, because even significant trends are only valid in the analyzed time period and extrapolations are exceedingly difficult. Therefore combined climate and hydrological modeling for scenario based projections become more and more popular. Regarding that adaptation measures in water infrastructure are in general very time-consuming and cost intensive qualified questions to the variability and uncertainty of model based results are important as well. The CEDIM-Project "Flood hazards in a changing climate" is focusing on both: future changes in flood discharge and assess the uncertainties that are involved in such model based future predictions. In detail the study bases on an ensemble of hydrological model (HM) simulations in 3 representative small to medium sized German river catchments (Ammer, Mulde and Ruhr). The meteorological Input bases on 2 high resolution (7 km) regional climate models (RCM) driven by 2 global climate models (GCM) for the near future (2021 - 2050) following the A1B emission scenario (SRES). Two of the catchments (Ruhr and Mulde) have sub-mountainous and one (Ammer) has alpine character. Besides analyzing the future changes in discharge in the catchments, the describing and potential quantification of the variability of the results, based on the different driving data, regionalization methods, spatial resolutions and model types, is one main goal of the study and should stay in the focus of the poster. The general result is a large variability in the discharge projection. The identified variabilities are in the annual regime mainly attributable to different causes in the used model chain (GCM-RCM-HM). In winter the global climate models (GCM) bring the main uncertainties in the future projection. In summer the main variability refers to the meteorological downscaling to the regional scale (RCM) in combination with the hydrological modeling (HM). But with an appropriate ensemble statistic are despite the large variabilities mean future tendencies detectable. The Ruhr catchment shows tendencies to future higher flood discharges and in the Ammer and Mulde catchments are no significant changes expected.
Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios
Mu, Jianhong E.; Sleeter, Benjamin M.; Abatzoglou, John T.; Antle, John M.
2017-01-01
We examine the impacts of climate on net returns from crop and livestock production and the resulting impact on land-use change across the contiguous USA. We first estimate an econometric model to project effects of weather fluctuations on crop and livestock net returns and then use a semi-reduced form land-use share model to study agricultural land-use changes under future climate and socio-economic scenarios. Estimation results show that crop net returns are more sensitive to thermal and less sensitive to moisture variability than livestock net returns; other agricultural land uses substitute cropland use when 30-year averaged degree-days or precipitation are not beneficial for crop production. Under future climate and socio-economic scenarios, we project that crop and livestock net returns are both increasing, but with crop net returns increasing at a higher rate; cropland increases with declines of marginal and pastureland by the end of the twenty-first century. Projections also show that impacts of future climate on agricultural land uses are substantially different and a larger variation of land-use change is evident when socio-economic scenarios are incorporated into the climate impact analysis.
NASA Astrophysics Data System (ADS)
MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.
2013-12-01
Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.
Sahlean, Tiberiu C; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R
2014-01-01
Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as "costs" to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species' dispersal abilities greatly reduced estimated area of potential future distributions.
Projected asymmetric response of Adélie penguins to Antarctic climate change
NASA Astrophysics Data System (ADS)
Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.
2016-06-01
The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.
Adapting wheat to uncertain future
NASA Astrophysics Data System (ADS)
Semenov, Mikhail; Stratonovitch, Pierre
2015-04-01
This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 RCPs, RCP4.5 and RCP8.5, were integrated with LARS-WG. Climate sensitivity indexes for temperature and precipitation were computed for all GCMs and for 21 regions in the world. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, climate sensitivity indexes could be used to select a subset of GCMs from CMIP5 with contrasting climate sensitivity. This would allow to quantify uncertainty in impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. As an example, an in silico design of wheat ideotype optimised for future climate scenarios in Europe was described. Two contrasting GCMs were selected for the analysis, "hot" HadGEM2-ES and "cool" GISS-E2-R-CC, along with 2 RCPs. Despite large uncertainty in climate projections, several wheat traits were identified as beneficial for the high-yielding wheat ideotypes that could be used as targets for wheat improvement by breeders.
Exploring the implication of climate process uncertainties within the Earth System Framework
NASA Astrophysics Data System (ADS)
Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.
2011-12-01
Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).
Projection of Summer Climate on Tokyo Metropolitan Area using Pseudo Global Warming Method
NASA Astrophysics Data System (ADS)
Adachi, S. A.; Kimura, F.; Kusaka, H.; Hara, M.
2010-12-01
Recent surface air temperature observations in most of urban areas show the remarkable increasing trend affected by the global warming and the heat island effects. There are many populous areas in Japan. In such areas, the effects of land-use change and urbanization on the local climate are not negligible (Fujibe, 2010). The heat stress for citizen there is concerned to swell moreover in the future. Therefore, spatially detailed climate projection is required for making adaptation and mitigation plans. This study focuses on the Tokyo metropolitan area (TMA) in summer and aims to estimate the local climate change over the TMA in 2070s using a regional climate model. The Regional Atmospheric Modeling System (RAMS) was used for downscaling. A single layer urban canopy model (Kusaka et al., 2001) is built into RAMS as a parameterization expressing the features of urban surface. We performed two experiments for estimating present and future climate. In the present climate simulation, the initial and boundary conditions for RAMS are provided from the JRA-25/JCDAS. On the other hand, the Pseudo Global Warming (PGW) method (Sato et al., 2007) is applied to estimate the future climate, instead of the conventional dynamical downscaling method. The PGW method is expected to reduce the model biases in the future projection estimated by Atmosphere-Ocean General Circulation Models (AOGCM). The boundary conditions used in the PGW method is given by the PGW data, which are obtained by adding the climate monthly difference between 1990s and 2070s estimated by AOGCMs to the 6-hourly reanalysis data. In addition, the uncertainty in the regional climate projection depending on the AOGCM projections is estimated from additional downscaling experiments using the different PGW data obtained from five AOGCMs. Acknowledgment: This work was supported by the Global Environment Research Fund (S-5-3) of the Ministry of the Environment, Japan. References: 1. Fujibe, F., Int. J. Climatol., doi:10.1002/joc.2142 (2010). 2. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, Bound.-Layer Meteor., 101, 329-358 (2001). 3. Sato, T., F. Kimura, and A. Kitoh, J. Hydrology, 144-154 (2007).
Adaptation to floods in future climate: a practical approach
NASA Astrophysics Data System (ADS)
Doroszkiewicz, Joanna; Romanowicz, Renata; Radon, Radoslaw; Hisdal, Hege
2016-04-01
In this study some aspects of the application of the 1D hydraulic model are discussed with a focus on its suitability for flood adaptation under future climate conditions. The Biała Tarnowska catchment is used as a case study. A 1D hydraulic model is developed for the evaluation of inundation extent and risk maps in future climatic conditions. We analyse the following flood indices: (i) extent of inundation area; (ii) depth of water on flooded land; (iii) the flood wave duration; (iv) the volume of a flood wave over the threshold value. In this study we derive a model cross-section geometry following the results of primary research based on a 500-year flood inundation extent. We compare two methods of localisation of cross-sections from the point of view of their suitability to the derivation of the most precise inundation outlines. The aim is to specify embankment heights along the river channel that would protect the river valley in the most vulnerable locations under future climatic conditions. We present an experimental design for scenario analysis studies and uncertainty reduction options for future climate projections obtained from the EUROCORDEX project. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.
Flint, Lorraine E.; Flint, Alan L.
2012-01-01
As a result of ongoing changes in climate, hydrologic and ecologic effects are being seen across the western United States. A regional study of how climate change affects water resources and habitats in the San Francisco Bay area relied on historical climate data and future projections of climate, which were downscaled to fine spatial scales for application to a regional water-balance model. Changes in climate, potential evapotranspiration, recharge, runoff, and climatic water deficit were modeled for the Bay Area. In addition, detailed studies in the Russian River Valley and Santa Cruz Mountains, which are on the northern and southern extremes of the Bay Area, respectively, were carried out in collaboration with local water agencies. Resource managers depend on science-based projections to inform planning exercises that result in competent adaptation to ongoing and future changes in water supply and environmental conditions. Results indicated large spatial variability in climate change and the hydrologic response across the region; although there is warming under all projections, potential change in precipitation by the end of the 21st century differed according to model. Hydrologic models predicted reduced early and late wet season runoff for the end of the century for both wetter and drier future climate projections, which could result in an extended dry season. In fact, summers are projected to be longer and drier in the future than in the past regardless of precipitation trends. While water supply could be subject to increased variability (that is, reduced reliability) due to greater variability in precipitation, water demand is likely to steadily increase because of increased evapotranspiration rates and climatic water deficit during the extended summers. Extended dry season conditions and the potential for drought, combined with unprecedented increases in precipitation, could serve as additional stressors on water quality and habitat. By focusing on the relationship between soil moisture storage and evapotranspiration pressures, climatic water deficit integrates the effects of increasing temperature and varying precipitation on basin conditions. At the fine-scale used for these analyses, this variable is an effective indicator of the areas in the landscape that are the most resilient or vulnerable to projected changes. These analyses have shown that regardless of the direction of precipitation change, climatic water deficit is projected to increase, which implies greater water demand to maintain current agricultural resources or land cover. Fine-scale modeling provides a spatially distributed view of locations in the landscape that could prove to be resilient to climatic changes in contrast to locations where vegetation is currently living on the edge of its present-day bioclimatic distribution and, therefore, is more likely to perish or shift to other dominant species under future warming. This type of modeling and the associated analyses provide a useful means for greater understanding of water and land resources, which can lead to better resource management and planning.
2017-11-01
magnitude, intensity, and seasonality of climate. For infrastructure projects, relevant design life often exceeds 30 years—a period of time of...uncertainty about future statistical properties of climate at time and spatial scales required for planning and design purposes. Information...about future statistical properties of climate at time and spatial scales required for planning and design , and for assessing future operational
Climate change and runoff in south-western Australia
NASA Astrophysics Data System (ADS)
Silberstein, R. P.; Aryal, S. K.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S. P.; Boniecka, L.; Hodgson, G. A.; Bari, M. A.; Viney, N. R.; McFarlane, D. J.
2012-12-01
SummaryThis paper presents the results of computer simulations of runoff from 13 major fresh and brackish river basins in south-western Australia (SWA) under climate projections obtained from 15 GCMs with three future global warming scenarios equivalent to global temperature rises of 0.7 °C, 1.0 °C and 1.3 °C by 2030. The objective was to apply an efficient methodology, consistent across a large region, to examine the implications of the best available projections in climate trends for future surface water resources. An ensemble of rainfall-runoff models was calibrated on stream flow data from 1975 to 2007 from 106 gauged catchments distributed throughout the basins of the study area. The sensitivity of runoff to projected changes in mean annual rainfall is examined using the climate 'elasticity' concept. Averaged across the study area, all 15 GCMs project declines in rainfall under all global warming scenarios with a median decline of 8% resulting in a median decline in runoff of 25%. Such uniformity in projections from GCMs is unusual. Over SWA the average annual runoff under the 5th wettest and 5th driest of the 45 projections of the 2030 climate declines by 10 and 42%, respectively. Under the 5th driest projection the runoff decline ranges from 53% in the northern region to 40% in the southern region. Strong regional variations in climate sensitivity are found with the proportional decline in runoff greatest in the northern region and the greatest volumetric declines in the wetter basins in the south. Since the mid 1970s stream flows into the major water supply reservoirs in SWA have declined by more than 50% following a 16% rainfall reduction. This has already had major implications for water resources planning and for the preservation of aquatic and riparian ecosystems in the region. Our results indicate that this reduction in runoff is likely to continue if future climate projections eventuate.
Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf
NASA Astrophysics Data System (ADS)
Guo, Lanli; Sheng, Jinyu
2017-05-01
A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.
Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.
Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750
The Interplay of Climate Change and Air Pollution on Health.
Orru, H; Ebi, K L; Forsberg, B
2017-12-01
Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.
Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues
2018-01-01
Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and anthropogenic disturbances under a changing climate. Management adaptations, including reduced harvesting levels and strategies to promote coniferous species content, may help mitigate these cumulative impacts. PMID:29414989
Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues
2018-01-01
Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and anthropogenic disturbances under a changing climate. Management adaptations, including reduced harvesting levels and strategies to promote coniferous species content, may help mitigate these cumulative impacts.
NASA Astrophysics Data System (ADS)
Doroszkiewicz, J. M.; Romanowicz, R. J.
2016-12-01
The standard procedure of climate change impact assessment on future hydrological extremes consists of a chain of consecutive actions, starting from the choice of GCM driven by an assumed CO2 scenario, through downscaling of climatic forcing to a catchment scale, estimation of hydrological extreme indices using hydrological modelling tools and subsequent derivation of flood risk maps with the help of a hydraulic model. Among many possible sources of uncertainty, the main are the uncertainties related to future climate scenarios, climate models, downscaling techniques and hydrological and hydraulic models. Unfortunately, we cannot directly assess the impact of these different sources of uncertainties on flood risk in future due to lack of observations of future climate realizations. The aim of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the processes involved, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-sections. The study shows that the application of a simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps.
NASA Astrophysics Data System (ADS)
Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.
2016-12-01
In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections.
Climate change, extreme weather events, and us health impacts: what can we say?
Mills, David M
2009-01-01
Address how climate change impacts on a group of extreme weather events could affect US public health. A literature review summarizes arguments for, and evidence of, a climate change signal in select extreme weather event categories, projections for future events, and potential trends in adaptive capacity and vulnerability in the United States. Western US wildfires already exhibit a climate change signal. The variability within hurricane and extreme precipitation/flood data complicates identifying a similar climate change signal. Health impacts of extreme events are not equally distributed and are very sensitive to a subset of exceptional extreme events. Cumulative uncertainty in forecasting climate change driven characteristics of extreme events and adaptation prevents confidently projecting the future health impacts from hurricanes, wildfires, and extreme precipitation/floods in the United States attributable to climate change.
Malaria vectors in South America: current and future scenarios.
Laporta, Gabriel Zorello; Linton, Yvonne-Marie; Wilkerson, Richard C; Bergo, Eduardo Sterlino; Nagaki, Sandra Sayuri; Sant'Ana, Denise Cristina; Sallum, Maria Anice Mureb
2015-08-19
Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46% of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and temporal expansion potential in 2070, and we conclude these species will become more important in the dynamics of malaria transmission in South America. Our data suggest that climate and landscape effects will elevate the importance of members of the Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.
Caballero, Rodrigo; Huber, Matthew
2013-01-01
Projections of future climate depend critically on refined estimates of climate sensitivity. Recent progress in temperature proxies dramatically increases the magnitude of warming reconstructed from early Paleogene greenhouse climates and demands a close examination of the forcing and feedback mechanisms that maintained this warmth and the broad dynamic range that these paleoclimate records attest to. Here, we show that several complementary resolutions to these questions are possible in the context of model simulations using modern and early Paleogene configurations. We find that (i) changes in boundary conditions representative of slow “Earth system” feedbacks play an important role in maintaining elevated early Paleogene temperatures, (ii) radiative forcing by carbon dioxide deviates significantly from pure logarithmic behavior at concentrations relevant for simulation of the early Paleogene, and (iii) fast or “Charney” climate sensitivity in this model increases sharply as the climate warms. Thus, increased forcing and increased slow and fast sensitivity can all play a substantial role in maintaining early Paleogene warmth. This poses an equifinality problem: The same climate can be maintained by a different mix of these ingredients; however, at present, the mix cannot be constrained directly from climate proxy data. The implications of strongly state-dependent fast sensitivity reach far beyond the early Paleogene. The study of past warm climates may not narrow uncertainty in future climate projections in coming centuries because fast climate sensitivity may itself be state-dependent, but proxies and models are both consistent with significant increases in fast sensitivity with increasing temperature. PMID:23918397
Analyzing Future Flooding under Climate Change Scenario using CMIP5 Streamflow Data
NASA Astrophysics Data System (ADS)
Nyaupane, Narayan; Parajuli, Ranjan; Kalra, Ajay
2017-12-01
Flooding is the most severe and costlier natural hazard in US. The effect of climate change has intensified the scenario in recent years. Flood prevention practice along with proper understanding of flooding event can mitigate the risk of such hazard. The flood plain mapping is one of the technique to quantify the severity of the flooding. Carson City, which is one of the agricultural area in the desert of Nevada has experienced peak flood in recent year. The underlying probability distribution for the area, latest Coupled Model Intercomparison Project (CMIP5) streamflow data of Carson River were analyzed for 27 different statistical distributions. The best fitted distribution underlying was used to forecast the 100yr flood (design flood). The data from 1950-2099 derived from 31 model and total 97 projections were used to predict the future streamflow. Delta change method is adopted to quantify the amount of future (2050-2099) flood. To determine the extent of flooding 3 scenarios (i) historic design flood, (ii) 500yr flood and (iii) future 100yr flood were routed on a HEC-RAS model, prepared using available terrain data. Some of the climate projection shows extreme increase in future design flood. The future design flood could be more than the historic 500yr flood. At the same time, the extent of flooding could go beyond the historic flood of 0.2% annual probability. This study suggests an approach to quantify the future flood and floodplain using climate model projections. The study would provide helpful information to the facility manager, design engineer and stake holders.
NASA Astrophysics Data System (ADS)
Hasson, Shabeh ul; Böhner, Jürgen; Chishtie, Farrukh
2018-03-01
Assessment of future water availability from the Himalayan watersheds of Indus Basin (Jhelum, Kabul and upper Indus basin—UIB) is a growing concern for safeguarding the sustainable socioeconomic wellbeing downstream. This requires, before all, robust climate change information from the present-day state-of-the-art climate models. However, the robustness of climate change projections highly depends upon the fidelity of climate modeling experiments. Hence, this study assesses the fidelity of seven dynamically refined (0.44° ) experiments, performed under the framework of the coordinated regional climate downscaling experiment for South Asia (CX-SA), and additionally, their six coarse-resolution driving datasets participating in the coupled model intercomparison project phase 5 (CMIP5). We assess fidelity in terms of reproducibility of the observed climatology of temperature and precipitation, and the seasonality of the latter for the historical period (1971-2005). Based on the model fidelity results, we further assess the robustness or uncertainty of the far future climate (2061-2095), as projected under the extreme-end warming scenario of the representative concentration pathway (RCP) 8.5. Our results show that the CX-SA and their driving CMIP5 experiments consistently feature low fidelity in terms of the chosen skill metrics, suggesting substantial cold (6-10 ° C) and wet (up to 80%) biases and underestimation of observed precipitation seasonality. Surprisingly, the CX-SA are unable to outperform their driving datasets. Further, the biases of CX-SA and of their driving CMIP5 datasets are higher in magnitude than their projected changes under RCP8.5—and hence under less extreme RCPs—by the end of 21st century, indicating uncertain future climates for the Indus Basin watersheds. Higher inter-dataset disagreements of both CMIP5 and CX-SA for their simulated historical precipitation and for its projected changes reinforce uncertain future wet/dry conditions whereas the CMIP5 projected warming is less robust owing to higher historical period uncertainty. Interestingly, a better agreement among those CX-SA experiments that have been obtained through downscaling different CMIP5 experiments with the same regional climate model (RCM) indicates the RCMs' ability of modulating the influence of lateral boundary conditions over a large domain. These findings, instead of suggesting the usual skill-based identification of 'reasonable' global or regional low fidelity experiments, rather emphasize on a paradigm shift towards improving their fidelity by exploiting the potential of meso-to-local scale climate models—preferably of those that can solely resolve global-to-local scale climatic processes—in terms of microphysics, resolution and explicitly resolved convections. Additionally, an extensive monitoring of the nival regime within the Himalayan watersheds will reduce the observational uncertainty, allowing for a more robust fidelity assessment of the climate modeling experiments.
Synergy between land use and climate change increases future fire risk in Amazon forests
Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...
2017-12-20
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less
Synergy between land use and climate change increases future fire risk in Amazon forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick; Morton, Douglas; Hartin, Corinne
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-07-01
Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.
States at Risk: America's Preparedness Report Card
NASA Astrophysics Data System (ADS)
Yu, R. M. S.; Strauss, B.; Kulp, S. A.; Bronzan, J.; Rodehorst, B.; Bhat, C.; Dix, B.; Savonis, M.; Wiles, R.
2015-12-01
Many states are already experiencing the costly impacts of extreme climate and weather events. The occurrence, frequency and intensity of these events may change under future climates. Preparing for these changes takes time, and state government agencies and communities need to recognize the risks they could potentially face and the response actions already undertaken. The States at Risk: America's Preparedness Report Card project is the first-ever study that quantifies five climate-change-driven hazards, and the relevant state government response actions in each of the 50 states. The changing characteristics of extreme heat, drought, wildfires, inland and coastal flooding were assessed for the baseline period (around year 2000) through the years 2030 and 2050 across all 50 states. Bias-corrected statistically-downscaled (BCSD) climate projections (Reclamation, 2013) and hydrology projections (Reclamation, 2014) from the Coupled Model Intercomparison Project phase 5 (CMIP5) under RCP8.5 were used. The climate change response action analysis covers five critical sectors: Transportation, Energy, Water, Human Health and Communities. It examined whether there is evidence that the state is taking action to (1) reduce current risks, (2) raise its awareness of future risks, (3) plan for adaptation to the future risks, and (4) implement specific actions to reduce future risks for each applicable hazards. Results from the two analyses were aggregated and translated into a rating system that standardizes assessments across states, which can be easily understood by both technical and non-technical audiences. The findings in this study not only serve as a screening tool for states to recognize the hazards they could potentially face as climate changes, but also serve as a roadmap for states to address the gaps in response actions, and to improve climate preparedness and resilience.
NASA Astrophysics Data System (ADS)
Stanzel, Philipp; Kling, Harald
2017-04-01
EURO-CORDEX Regional Climate Model (RCM) data are available as result of the latest initiative of the climate modelling community to provide ever improved simulations of past and future climate in Europe. The spatial resolution of the climate models increased from 25 x 25 km in the previous coordinated initiative, ENSEMBLES, to 12 x 12 km in the CORDEX EUR-11 simulations. This higher spatial resolution might yield improved representation of the historic climate, especially in complex mountainous terrain, improving applicability in impact studies. CORDEX scenario simulations are based on Representative Concentration Pathways, while ENSEMBLES applied the SRES greenhouse gas emission scenarios. The new emission scenarios might lead to different projections of future climate. In this contribution we explore these two dimensions of development from ENSEMBLES to CORDEX - representation of the past and projections for the future - in the context of a hydrological climate change impact study for the Danube River. We replicated previous hydrological simulations that used ENSEMBLES data of 21 RCM simulations under SRES A1B emission scenario as meteorological input data (Kling et al. 2012), and now applied CORDEX EUR-11 data of 16 RCM simulations under RCP4.5 and RCP8.5 emission scenarios. The climate variables precipitation and temperature were used to drive a monthly hydrological model of the upper Danube basin upstream of Vienna (100,000 km2). RCM data was bias corrected and downscaled to the scale of hydrological model units. Results with CORDEX data were compared with results with ENSEMBLES data, analysing both the driving meteorological input and the resulting discharge projections. Results with CORDEX data show no general improvement in the accuracy of representing historic climatic features, despite the increase in spatial model resolution. The tendency of ENSEMBLES scenario projections of increasing precipitation in winter and decreasing precipitation in summer is reproduced with the CORDEX RCMs, albeit with slightly higher precipitation in the CORDEX data. The distinct pattern of future change in discharge seasonality - increasing winter discharge and decreasing summer discharge - is confirmed with the new CORDEX data, with a range of projections very similar to the range projected by the ENSEMBLES RCMs. References: Kling, H., Fuchs, M., Paulin, M. 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology 424-425, 264-277.
Simulating Climate Change in Ireland
NASA Astrophysics Data System (ADS)
Nolan, P.; Lynch, P.
2012-04-01
At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.
Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century
Alessandri, Andrea; De Felice, Matteo; Zeng, Ning; Mariotti, Annarita; Pan, Yutong; Cherchi, Annalisa; Lee, June-Yi; Wang, Bin; Ha, Kyung-Ja; Ruti, Paolo; Artale, Vincenzo
2014-01-01
The warm-temperate regions of the globe characterized by dry summers and wet winters (Mediterranean climate; MED) are especially vulnerable to climate change. The potential impact on water resources, ecosystems and human livelihood requires a detailed picture of the future changes in this unique climate zone. Here we apply a probabilistic approach to quantitatively address how and why the geographic distribution of MED will change based on the latest-available climate projections for the 21st century. Our analysis provides, for the first time, a robust assessment of significant northward and eastward future expansions of MED over both the Euro-Mediterranean and western North America. Concurrently, we show a significant 21st century replacement of the equatorward MED margins by the arid climate type. Moreover, future winters will become wetter and summers drier in both the old and newly established MED zones. Should these projections be realized, living conditions in some of the most densely populated regions in the world will be seriously jeopardized. PMID:25448867
Climatic water deficit, tree species ranges, and climate change in Yosemite National Park
Lutz, James A.; Van Wagtendonk, Jan W.; Franklin, Jerry F.
2010-01-01
Aim (1) To calculate annual potential evapotranspiration (PET), actual evapotranspiration (AET) and climatic water deficit (Deficit) with high spatial resolution; (2) to describe distributions for 17 tree species over a 2300-m elevation gradient in a 3000-km2 landscape relative to AET and Deficit; (3) to examine changes in AET and Deficit between past (c. 1700), present (1971–2000) and future (2020–49) climatological means derived from proxies, observations and projections; and (4) to infer how the magnitude of changing Deficit may contribute to changes in forest structure and composition.Location Yosemite National Park, California, USA.Methods We calculated the water balance within Yosemite National Park using a modified Thornthwaite-type method and correlated AET and Deficit with tree species distribution. We used input data sets with different spatial resolutions parameterized for variation in latitude, precipitation, temperature, soil water-holding capacity, slope and aspect. We used climate proxies and climate projections to model AET and Deficit for past and future climate. We compared the modelled future water balance in Yosemite with current species water-balance ranges in North America.Results We calculated species climatic envelopes over broad ranges of environmental gradients – a range of 310 mm for soil water-holding capacity, 48.3°C for mean monthly temperature (January minima to July maxima), and 918 mm yr−1 for annual precipitation. Tree species means were differentiated by AET and Deficit, and at higher levels of Deficit, species means were increasingly differentiated. Modelled Deficit for all species increased by a mean of 5% between past (c. 1700) and present (1971–2000). Projected increases in Deficit between present and future (2020–49) were 23% across all plots.Main conclusions Modelled changes in Deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and composition may accelerate in the future, with species responding individualistically to further declines in water availability. Declining water availability may disproportionately affect Pinus monticola and Tsuga mertensiana. Fine-scale heterogeneity in soil water-holding capacity, aspect and slope implies that plant water balance may vary considerably within the grid cells of kilometre-scale climate models. Sub-grid-cell soil and topographical data can partially compensate for the lack of spatial heterogeneity in gridded climate data, potentially improving vegetation-change projections in mountainous landscapes with heterogeneous topography.
The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6
NASA Astrophysics Data System (ADS)
Gillett, Nathan P.; Shiogama, Hideo; Funke, Bernd; Hegerl, Gabriele; Knutti, Reto; Matthes, Katja; Santer, Benjamin D.; Stone, Daithi; Tebaldi, Claudia
2016-10-01
Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of future climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.
Hydrologic vulnerability of tribal reservation lands across the U.S.
NASA Astrophysics Data System (ADS)
Jones, C., Jr.; Leibowitz, S. G.; Sawicz, K. A.; Comeleo, R. L.; Stratton, L. E.
2017-12-01
We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability to climate of the United States (U.S.) with special emphasis on tribal lands. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We map climate vulnerability by integrating a retrospective analysis of historical climate and hydrology into the HL approach, comparing this baseline of variability with future projections of temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of the water surplus. Projections that are not within two standard deviations of the historical decadal average contribute to the vulnerability index for each metric. This allows stakeholders and/or water resource managers to understand the potential impacts of future conditions. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices across the U.S. including all tribal reservations. Precipitation vulnerability is not as spatially-uniform as temperature. Most areas with snow are projected to experience significant changes in future snow accumulation. The seasonality vulnerability map shows that mountainous areas in the West are most prone to changes in seasonality. This paper illustrates how the HL approach can help assess climatic and hydrologic vulnerability for disadvantaged groups across the U.S. By combining the HL concept and climate vulnerability analyses, we provide an approach that can assist tribal resource managers to perform vulnerability assessments and adaptation plans, which is a major priority for the tribes nationwide.
NASA Astrophysics Data System (ADS)
Duan, Kai; Sun, Ge; McNulty, Steven G.; Caldwell, Peter V.; Cohen, Erika C.; Sun, Shanlei; Aldridge, Heather D.; Zhou, Decheng; Zhang, Liangxia; Zhang, Yang
2017-11-01
This study examines the relative roles of climatic variables in altering annual runoff in the conterminous United States (CONUS) in the 21st century, using a monthly ecohydrological model (the Water Supply Stress Index model, WaSSI) driven with historical records and future scenarios constructed from 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. The results suggest that precipitation has been the primary control of runoff variation during the latest decades, but the role of temperature will outweigh that of precipitation in most regions if future climate change follows the projections of climate models instead of the historical tendencies. Besides these two key factors, increasing air humidity is projected to partially offset the additional evaporative demand caused by warming and consequently enhance runoff. Overall, the projections from 20 climate models suggest a high degree of consistency on the increasing trends in temperature, precipitation, and humidity, which will be the major climatic driving factors accounting for 43-50, 20-24, and 16-23 % of the runoff change, respectively. Spatially, while temperature rise is recognized as the largest contributor that suppresses runoff in most areas, precipitation is expected to be the dominant factor driving runoff to increase across the Pacific coast and the southwest. The combined effects of increasing humidity and precipitation may also surpass the detrimental effects of warming and result in a hydrologically wetter future in the east. However, severe runoff depletion is more likely to occur in the central CONUS as temperature effect prevails.
NASA Astrophysics Data System (ADS)
Mátyás, Csaba; Berki, Imre; Bidlo, Andras; Czimber, Kornel.; Gálos, Borbala; Gribovszki, Zoltan; Lakatos, Ferenc; Borovics, Attila; Csóka, György; Führer, Ernő; Illés, Gábor; Rasztovits, Ervin; Somogyi, Zoltán; Bartholy, Judit
2017-04-01
The rapid progress of site potential change, caused by the shift of climate zones is a serious problem of lowland management in Southeast Europe. In forestry, the resilience potential of main, climate-dependent tree species (e.g. spruce, beech, sessile oak) and ecosystems is limited at their lower (xeric) limits of distribution. A conventional mitigation measure for adaptive forest management is the return to nature-close management. Severe drought- and biotic impacts in forests indicate however the urgency of fundamental changes in forest policy. To provide assistance in selecting climate-tolerant provenances, species and adaptive technologies for future site conditions is therefore critical. A simplified Decision Support System has been developed for Hungary, keeping conventional elements of site potential assessment. Projections are specified for discrete site types. Processing forest inventory, landcover and geodata, the System provides GIS-supported site information and projections for individual forest compartments, options for tree species better tolerating future climate scenarios as well as their expected yield and risks. Data respectively projections are available for recent and current conditions, and for future reference periods until 2100. Also non-forest site conditions in the novel grassland (steppe) climate zone appear in projections. Experiences for proper management on these sites are however scarce.
NASA Astrophysics Data System (ADS)
Vidal, Jean-Philippe; Hingray, Benoît
2014-05-01
In order to better understand the uncertainties in the climate of the next decades, an increasingly large number of increasingly diverse climate projections is being produced by the climate research community through coordinated initiatives (e.g., CMIP5, CORDEX), but also through more specific experiments at both the global scale (perturbed parameter ensembles) and the regional-to-local scale (empirical statistical downscaling ensembles). When significant efforts are put into making such projections available online, very few works focus on how to make such an enormous amount of information actually usable by the impact and adaptation community. Climate services should therefore include guidelines and recommendations for identifying subsets of climate projections that would have (1) a size manageable by downstream modelling approaches and (2) the relevant properties for informing adaptation strategies. This works proposes a generic framework for identifying tailored subsets of climate projections that would meet both the objectives and the constraints of a specific impact / adaptation study in a typical top-down approach. This decision framework builds on two main preliminary tasks that lead to critical choices in the selection strategy: (1) understanding the requirements of the specific impact / adaptation study, and (2) characterizing the (downscaled) climate projections dataset available. An impact / adaptation study has two types of requirements. First, the study may aim at various outcomes for a given climate-related feature: the best estimate of the future, the range of possible futures, a set of representative futures, or a statistically interpretable ensemble of futures. Second, impact models may come with specific constraints on climate input variables, like spatio-temporal and between-variables coherence. Additionally, when concurrent impact models are used, the most restrictive constraints have to be considered in order to be able to assess the uncertainty associated from this modelling step. Besides, the climate projection dataset available for a given study has several characteristics that will heavily condition the type of conclusions that can be reached. Indeed, the dataset at hand may or not sample different types of uncertainty (socio-economic, structural, parametric, along with internal variability). Moreover, these types are present at different steps in the well-known cascade of uncertainty, from the emission / concentration scenarios and the global climate to the regional-to-local climate. Critical choices for the selection are therefore conditioned on all features above. The type of selection (picking out, culling, or statistical sampling) is closely related to the study objectives and the uncertainty types present in the dataset. Moreover, grounds for picking out or culling projections may stem from global, regional or feature-specific present-day performance, representativeness, or covered range. An example use of this framework is a hierarchical selection for 3 classes of impact models among 3000 transient climate projections from different runs of 4 GCMs, statistically downscaled by 3 probabilistic methods, and made available for an integrated water resource adaptation study in the Durance catchment (southern French Alps). This work is part of the GICC R2D2-20501 project (Risk, water Resources and sustainable Development of the Durance catchment in 2050) and the EU FP7 COMPLEX2 project (Knowledge Based Climate Mitigation Systems for a Low Carbon Economy).
USDA-ARS?s Scientific Manuscript database
The Central Valley of California, like most dryland agricultural areas in the Southwest United States, relies heavily on winter snowpack for water resources. Projections of future climate in the Sierra Mountains of California calls for a warmer climate regime that will impact the snowpack in the Sie...
Projected increase in El Niño-driven tropical cyclone frequency in the Pacific
NASA Astrophysics Data System (ADS)
Chand, Savin S.; Tory, Kevin J.; Ye, Hua; Walsh, Kevin J. E.
2017-02-01
The El Niño/Southern Oscillation (ENSO) drives substantial variability in tropical cyclone (TC) activity around the world. However, it remains uncertain how the projected future changes in ENSO under greenhouse warming will affect TC activity, apart from an expectation that the overall frequency of TCs is likely to decrease for most ocean basins. Here we show robust changes in ENSO-driven variability in TC occurrence by the late twenty-first century. In particular, we show that TCs become more frequent (~20-40%) during future-climate El Niño events compared with present-climate El Niño events--and less frequent during future-climate La Niña events--around a group of small island nations (for example, Fiji, Vanuatu, Marshall Islands and Hawaii) in the Pacific. We examine TCs across 20 models from the Coupled Model Intercomparison Project phase 5 database, forced under historical and greenhouse warming conditions. The 12 most realistic models identified show a strong consensus on El Niño-driven changes in future-climate large-scale environmental conditions that modulate development of TCs over the off-equatorial western Pacific and the central North Pacific regions. These results have important implications for climate change and adaptation pathways for the vulnerable Pacific island nations.
Assessing uncertainties in land cover projections.
Alexander, Peter; Prestele, Reinhard; Verburg, Peter H; Arneth, Almut; Baranzelli, Claudia; Batista E Silva, Filipe; Brown, Calum; Butler, Adam; Calvin, Katherine; Dendoncker, Nicolas; Doelman, Jonathan C; Dunford, Robert; Engström, Kerstin; Eitelberg, David; Fujimori, Shinichiro; Harrison, Paula A; Hasegawa, Tomoko; Havlik, Petr; Holzhauer, Sascha; Humpenöder, Florian; Jacobs-Crisioni, Chris; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Lavalle, Carlo; Lenton, Tim; Liu, Jiayi; Meiyappan, Prasanth; Popp, Alexander; Powell, Tom; Sands, Ronald D; Schaldach, Rüdiger; Stehfest, Elke; Steinbuks, Jevgenijs; Tabeau, Andrzej; van Meijl, Hans; Wise, Marshall A; Rounsevell, Mark D A
2017-02-01
Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover. © 2016 John Wiley & Sons Ltd.
Blodgett, David L.
2013-01-01
The increasing availability of downscaled climate projections and other data products that summarize or predict climate conditions, is making climate data use more common in research and management. Scientists and decisionmakers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of interest en masse, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, -storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate data. Data management for modeling and assessing the impacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Climate Geo Data Portal (http://cida.usgs.gov/climate/gdp/) addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.
Temperature and tree growth [editorial
Michael G. Ryan
2010-01-01
Tree growth helps US forests take up 12% of the fossil fuels emitted in the USA (Woodbury et al. 2007), so predicting tree growth for future climates matters. Predicting future climates themselves is uncertain, but climate scientists probably have the most confidence in predictions for temperature. Temperatures are projected to rise by 0.2 °C in the next two decades,...
Olson, Deanna H.; Blaustein, Andrew R.
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565
Simulated hydrologic response to climate change during the 21st century in New Hampshire
Bjerklie, David M.; Sturtevant, Luke P.
2018-01-24
The U.S. Geological Survey, in cooperation with the New Hampshire Department of Environmental Services and the Department of Health and Human Services, has developed a hydrologic model to assess the effects of short- and long-term climate change on hydrology in New Hampshire. This report documents the model and datasets developed by using the model to predict how climate change will affect the hydrologic cycle and provide data that can be used by State and local agencies to identify locations that are vulnerable to the effects of climate change in areas across New Hampshire. Future hydrologic projections were developed from the output of five general circulation models for two future climate scenarios. The scenarios are based on projected future greenhouse gas emissions and estimates of land-use and land-cover change within a projected global economic framework. An evaluation of the possible effect of projected future temperature on modeling of evapotranspiration is summarized to address concerns regarding the implications of the future climate on model parameters that are based on climate variables. The results of the model simulations are hydrologic projections indicating increasing streamflow across the State with large increases in streamflow during winter and early spring and general decreases during late spring and summer. Wide spatial variability in changes to groundwater recharge is projected, with general decreases in the Connecticut River Valley and at high elevations in the northern part of the State and general increases in coastal and lowland areas of the State. In general, total winter snowfall is projected to decrease across the State, but there is a possibility of increasing snow in some locations, particularly during November, February, and March. The simulated future changes in recharge and snowfall vary by watershed across the State. This means that each area of the State could experience very different changes, depending on topography or other factors. Therefore, planning for infrastructure and public safety needs to be flexible in order to address the range of possible outcomes indicated by the various model simulations. The absolute magnitude and timing of the daily streamflows, especially the larger floods, are not considered to be reliably simulated compared to changes in frequency and duration of daily streamflows and changes in accumulated monthly and seasonal streamflow volumes. Simulated current and future streamflow, groundwater recharge, and snowfall datasets include simulated data derived from the five general circulation models used in this study for a current reference time period and two future time periods. Average monthly streamflow time series datasets are provided for 27 streamgages in New Hampshire. Fourteen of the 27 streamgages associated with daily streamflow time series showed a good calibration. Average monthly groundwater recharge and snowfall time series for the same reference time period and two future time periods are also provided for each of the 467 hydrologic response units that compose the model.
NASA Astrophysics Data System (ADS)
Ferrarini, Alessandro; Alsafran, Mohammed H. S. A.; Dai, Junhu; Alatalo, Juha M.
2018-04-01
Empirical works to assist in choosing climatically relevant variables in the attempt to predict climate change impacts on plant species are limited. Further uncertainties arise in choice of an appropriate niche model. In this study we devised and tested a sharp methodological framework, based on stringent variable ranking and filtering and flexible model selection, to minimize uncertainty in both niche modelling and successive projection of plant species distributions. We used our approach to develop an accurate, parsimonious model of Silene acaulis (L.) presence/absence on the British Isles and to project its presence/absence under climate change. The approach suggests the importance of (a) defining a reduced set of climate variables, actually relevant to species presence/absence, from an extensive list of climate predictors, and (b) considering climate extremes instead of, or together with, climate averages in projections of plant species presence/absence under future climate scenarios. Our methodological approach reduced the number of relevant climate predictors by 95.23% (from 84 to only 4), while simultaneously achieving high cross-validated accuracy (97.84%) confirming enhanced model performance. Projections produced under different climate scenarios suggest that S. acaulis will likely face climate-driven fast decline in suitable areas on the British Isles, and that upward and northward shifts to occupy new climatically suitable areas are improbable in the future. Our results also imply that conservation measures for S. acaulis based upon assisted colonization are unlikely to succeed on the British Isles due to the absence of climatically suitable habitat, so different conservation actions (seed banks and/or botanical gardens) are needed.
NASA Astrophysics Data System (ADS)
Burakowski, E. A.; Lutz, D. A.
2014-12-01
Surface albedo provides an important climate regulating ecosystem service, particularly in the mid-latitudes where seasonal snow cover influences surface radiation budgets. In the case of substantial seasonal snow cover, the influence of albedo can equal or surpass the climatic benefits of carbon sequestration from forest growth. Climate mitigation platforms should therefore consider albedo in their framework in order to integrate these two climatic services in an economic context for the effective design and implementation of forest management projects. Over the next century, the influence of surface albedo is projected to diminish under higher emissions scenarios due to an overall decrease in snow depth and duration of snow cover in the mid-latitudes. In this study, we focus on the change in economic value of winter albedo in the northeastern United States projected through 2100 using the Special Report on Emissions Scenarios (SRES) a1 and b1 scenarios. Statistically downscaled temperature and precipitation are used as input to the Variable Infiltration Capacity (VIC) model to provide future daily snow depth fields through 2100. Using VIC projections of future snow depth, projected winter albedo fields over deforested lands were generated using an empirical logarithmic relationship between snow depth and albedo derived from a volunteer network of snow observers in New Hampshire over the period Nov 2011 through 2014. Our results show that greater reductions in snow depth and the number of winter days with snow cover in the a1 compared to the b1 scenario reduce wintertime albedo when forested lands are harvested. This result has implications on future trade-offs among albedo, carbon storage, and timber value that should be investigated in greater detail. The impacts of forest harvest on radiative forcing associated with energy redistribution (e.g., latent heat and surface roughness length) should also be considered in future work.
NASA Astrophysics Data System (ADS)
Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.
2014-07-01
Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.
NASA Astrophysics Data System (ADS)
Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.
2014-12-01
Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.
Petkova, Elisaveta P.; Vink, Jan K.; Horton, Radley M.; Gasparrini, Antonio; Bader, Daniel A.; Francis, Joe D.; Kinney, Patrick L.
2016-01-01
Background: High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. Objectives: The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. Methods: We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature–mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). Results: The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. Conclusions: These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL. 2017. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios. Environ Health Perspect 125:47–55; http://dx.doi.org/10.1289/EHP166 PMID:27337737
Petkova, Elisaveta P; Vink, Jan K; Horton, Radley M; Gasparrini, Antonio; Bader, Daniel A; Francis, Joe D; Kinney, Patrick L
2017-01-01
High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature-mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL. 2017. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios. Environ Health Perspect 125:47-55; http://dx.doi.org/10.1289/EHP166.
NASA Technical Reports Server (NTRS)
Petkova, Elisaveta P.; Vink, Jan K.; Horton, Radley M.; Gasparrini, Antonio; Bader, Daniel A.; Francis, Joe D.; Kinney, Patrick L.
2016-01-01
High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information necessary to formulate hypotheses about population sensitivity to high temperatures and future demographics. This study has derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. We adopt a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projects heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporate a range of new scenarios for population change until the end of the 21st century. We then estimate future heat-related deaths in New York City by combining the changing temperature-mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs).The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3331 in the 2080s compared to 638 heat-related deaths annually between 2000 and 2006.These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York, and highlight the importance of both demographic change and adaptation responses in modifying future risks.
Creating "Intelligent" Ensemble Averages Using a Process-Based Framework
NASA Astrophysics Data System (ADS)
Baker, Noel; Taylor, Patrick
2014-05-01
The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.
Recent projections of 21st-century climate change and watershed responses in the Sierra Nevada
Michael D. Dettinger; Daniel R. Cayan; Noah Knowles; Anthony Westerling; Mary K. Tyree
2004-01-01
In the near future, the Sierra Nevadaâs climate is projected to experience a new form of climate change due to increasing concentrations of greenhouse gases in the global atmosphere from the burning of fossil fuels and other human activities. If the changes occur, they presumably will be added to the large interannual and longer-term climate variations in the recent...
Impact of climate change on global malaria distribution.
Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J
2014-03-04
Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.
Impact of climate change on global malaria distribution
Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.
2014-01-01
Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427
Heat-related mortality in a warming climate: projections for 12 U.S. cities.
Petkova, Elisaveta P; Bader, Daniel A; Anderson, G Brooke; Horton, Radley M; Knowlton, Kim; Kinney, Patrick L
2014-10-31
Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.
Heat-Related Mortality in a Warming Climate: Projections for 12 U.S. Cities
NASA Technical Reports Server (NTRS)
Petkova, Elisaveta P.; Bader, Daniel A.; Anderson, G. Brooke; Horton, Radley M.; Knowlton, Kim; Kinney, Patrick L.
2014-01-01
Heat is among the deadliest weather-related phenomena in the United States, and the number of heat-related deaths may increase under a changing climate, particularly in urban areas. Regional adaptation planning is unfortunately often limited by the lack of quantitative information on potential future health responses. This study presents an assessment of the future impacts of climate change on heat-related mortality in 12 cities using 16 global climate models, driven by two scenarios of greenhouse gas emissions. Although the magnitude of the projected heat effects was found to differ across time, cities, climate models and greenhouse pollution emissions scenarios, climate change was projected to result in increases in heat-related fatalities over time throughout the 21st century in all of the 12 cities included in this study. The increase was more substantial under the high emission pathway, highlighting the potential benefits to public health of reducing greenhouse gas emissions. Nearly 200,000 heat-related deaths are projected to occur in the 12 cities by the end of the century due to climate warming, over 22,000 of which could be avoided if we follow a low GHG emission pathway. The presented estimates can be of value to local decision makers and stakeholders interested in developing strategies to reduce these impacts and building climate change resilience.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining
2017-11-01
Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.
Ensemble Prediction of Tropical Cyclone Genesis
2017-02-23
future changes in tropical cyclone (TC) activity around the Hawaiian Islands are investigated using the state-of-the-art climate models1–3. We find that...future warmer climate . This is in contrast to the NA, where BDI increases for all dynamic variables investigated while it shows little change for...Li, and A. Kitoh, 2013: Projected future increase in tropical cyclones near Hawaii. Nature Climate Change , 3, 749-754, doi:10.1038/nclimate1890
Historical trends and high-resolution future climate projections in northern Tuscany (Italy)
NASA Astrophysics Data System (ADS)
D'Oria, Marco; Ferraresi, Massimo; Tanda, Maria Giovanna
2017-12-01
This paper analyzes the historical precipitation and temperature trends and the future climate projections with reference to the northern part of Tuscany (Italy). The trends are identified and quantified at monthly and annual scale at gauging stations with data collected for long periods (60-90 years). An ensemble of 13 Regional Climate Models (RCMs), based on two Representative Concentration Pathways (RCP4.5 and RCP8.5), was then used to assess local scale future precipitation and temperature projections and to represent the uncertainty in the results. The historical data highlight a general decrease of the annual rainfall at a mean rate of 22 mm per decade but, in many cases, the tendencies are not statistically significant. Conversely, the annual mean temperature exhibits an upward trend, statistically significant in the majority of cases, with a warming rate of about 0.1 °C per decade. With reference to the model projections and the annual precipitation, the results are not concordant; the deviations between models in the same period are higher than the future changes at medium- (2031-2040) and long-term (2051-2060) and highlight that the model uncertainty and variability is high. According to the climate model projections, the warming of the study area is unequivocal; a mean positive increment of 0.8 °C at medium-term and 1.1 °C at long-term is expected with respect to the reference period (2003-2012) and the scenario RCP4.5; the increments grow to 0.9 °C and 1.9 °C for the RCP8.5. Finally, in order to check the observed climate change signals, the climate model projections were compared with the trends based on the historical data. A satisfactory agreement is obtained with reference to the precipitation; a systematic underestimation of the trend values with respect to the models, at medium- and long-term, is observed for the temperature data.
Diverging Responses of Tropical Andean Biomes under Future Climate Conditions
Tovar, Carolina; Arnillas, Carlos Alberto; Cuesta, Francisco; Buytaert, Wouter
2013-01-01
Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%–17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for other tropical mountains. PMID:23667651
Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections
NASA Astrophysics Data System (ADS)
Wakazuki, Y.
2015-12-01
A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.
Using Impact-Relevant Sensitivities to Efficiently Evaluate and Select Climate Change Scenarios
NASA Astrophysics Data System (ADS)
Vano, J. A.; Kim, J. B.; Rupp, D. E.; Mote, P.
2014-12-01
We outline an efficient approach to help researchers and natural resource managers more effectively use global climate model information in their long-term planning. The approach provides an estimate of the magnitude of change of a particular impact (e.g., summertime streamflow) from a large ensemble of climate change projections prior to detailed analysis. These estimates provide both qualitative information as an end unto itself (e.g., the distribution of future changes between emissions scenarios for the specific impact) and a judicious, defensible evaluation structure that can be used to qualitatively select a sub-set of climate models for further analysis. More specifically, the evaluation identifies global climate model scenarios that both (1) span the range of possible futures for the variable/s most important to the impact under investigation, and (2) come from global climate models that adequately simulate historical climate, providing plausible results for the future climate in the region of interest. To identify how an ecosystem process responds to projected future changes, we methodically sample, using a simple sensitivity analysis, how an impact variable (e.g., streamflow magnitude, vegetation carbon) responds locally to projected regional temperature and precipitation changes. We demonstrate our technique over the Pacific Northwest, focusing on two types of impacts each in three distinct geographic settings: (a) changes in streamflow magnitudes in critical seasons for water management in the Willamette, Yakima, and Upper Columbia River basins; and (b) changes in annual vegetation carbon in the Oregon and Washington Coast Ranges, Western Cascades, and Columbia Basin ecoregions.
Brown, Kerry A.; Parks, Katherine E.; Bethell, Colin A.; Johnson, Steig E.; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar’s plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future. PMID:25856241
Brown, Kerry A; Parks, Katherine E; Bethell, Colin A; Johnson, Steig E; Mulligan, Mark
2015-01-01
Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.
Ray Drapek; John B. Kim; Ronald P. Neilson
2015-01-01
Land managers need to include climate change in their decisionmaking, but the climate models that project future climates operate at spatial scales that are too coarse to be of direct use. To create a dataset more useful to managers, soil and historical climate were assembled for the United States and Canada at a 5-arcminute grid resolution. Nine CMIP3 future climate...
Assessing surface water availability considering human water use and projected climate variability
NASA Astrophysics Data System (ADS)
Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan
2017-04-01
Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.
Wan, Jizhong
2016-01-01
Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves. PMID:27326373
Vulnerability of Breeding Waterbirds to Climate Change in the Prairie Pothole Region, U.S.A
Steen, Valerie; Skagen, Susan K.; Noon, Barry R.
2014-01-01
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts. PMID:24927165
Vulnerability of breeding waterbirds to climate change in the Prairie Pothole Region, U.S.A.
Steen, Valerie; Skagen, Susan K.; Noon, Barry R.
2014-01-01
The Prairie Pothole Region (PPR) of the north-central U.S. and south-central Canada contains millions of small prairie wetlands that provide critical habitat to many migrating and breeding waterbirds. Due to their small size and the relatively dry climate of the region, these wetlands are considered at high risk for negative climate change effects as temperatures increase. To estimate the potential impacts of climate change on breeding waterbirds, we predicted current and future distributions of species common in the PPR using species distribution models (SDMs). We created regional-scale SDMs for the U.S. PPR using Breeding Bird Survey occurrence records for 1971–2011 and wetland, upland, and climate variables. For each species, we predicted current distribution based on climate records for 1981–2000 and projected future distributions to climate scenarios for 2040–2049. Species were projected to, on average, lose almost half their current habitat (-46%). However, individual species projections varied widely, from +8% (Upland Sandpiper) to -100% (Wilson's Snipe). Variable importance ranks indicated that land cover (wetland and upland) variables were generally more important than climate variables in predicting species distributions. However, climate variables were relatively more important during a drought period. Projected distributions of species responses to climate change contracted within current areas of distribution rather than shifting. Given the large variation in species-level impacts, we suggest that climate change mitigation efforts focus on species projected to be the most vulnerable by enacting targeted wetland management, easement acquisition, and restoration efforts.
Physical Processes Controlling Earth's Climate
NASA Technical Reports Server (NTRS)
Genio, Anthony Del
2013-01-01
As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.
The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results
NASA Astrophysics Data System (ADS)
Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.
2012-04-01
The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.
Projected climate impacts for the amphibians of the western hemisphere
Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.
2010-01-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
Projected climate impacts for the amphibians of the Western hemisphere.
Lawler, Joshua J; Shafer, Sarah L; Bancroft, Betsy A; Blaustein, Andrew R
2010-02-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071-2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
Projecting the future of an alpine ungulate under climate change scenarios.
White, Kevin S; Gregovich, David P; Levi, Taal
2018-03-01
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key "early warning signs" about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37-year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate-driven effects influence mountain goat populations, we developed an age-structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70-year time window (2015-2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., "thermoneutral") summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%-86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate-linked bottom-up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence. © 2017 John Wiley & Sons Ltd.
Impacts of global warming on residential heating and cooling degree-days in the United States
Petri, Yana; Caldeira, Ken
2015-01-01
Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981–2010) and future (2080–2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making. PMID:26238673
Impacts of global warming on residential heating and cooling degree-days in the United States.
Petri, Yana; Caldeira, Ken
2015-08-04
Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981-2010) and future (2080-2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making.
Assessment of the uncertainty in future projection for summer climate extremes over the East Asia
NASA Astrophysics Data System (ADS)
Park, Changyong; Min, Seung-Ki; Cha, Dong-Hyun
2017-04-01
Future projections of climate extremes in regional and local scales are essential information needed for better adapting to climate changes. However, future projections hold larger uncertainty factors arising from internal and external processes which reduce the projection confidence. Using CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model simulations, we assess uncertainties in future projections of the East Asian temperature and precipitation extremes focusing on summer. In examining future projection, summer mean and extreme projections of the East Asian temperature and precipitation would be larger as time. Moreover, uncertainty cascades represent wider scenario difference and inter-model ranges with increasing time. A positive mean-extreme relation is found in projections for both temperature and precipitation. For the assessment of uncertainty factors for these projections, dominant uncertainty factors from temperature and precipitation change as time. For uncertainty of mean and extreme temperature, contributions of internal variability and model uncertainty declines after mid-21st century while role of scenario uncertainty grows rapidly. For uncertainty of mean precipitation projections, internal variability is more important than the scenario uncertainty. Unlike mean precipitation, extreme precipitation shows that the scenario uncertainty is expected to be a dominant factor in 2090s. The model uncertainty holds as an important factor for both mean and extreme precipitation until late 21st century. The spatial changes for the uncertainty factors of mean and extreme projections generally are expressed according to temporal changes of the fraction of total variance from uncertainty factors in many grids of the East Asia. ACKNOWLEDGEMENTS The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.
Palaeoclimatic insights into future climate challenges.
Alley, Richard B
2003-09-15
Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.
Integrated Framework for an Urban Climate Adaptation Tool
NASA Astrophysics Data System (ADS)
Omitaomu, O.; Parish, E. S.; Nugent, P.; Mei, R.; Sylvester, L.; Ernst, K.; Absar, M.
2015-12-01
Cities have an opportunity to become more resilient to future climate change through investments made in urban infrastructure today. However, most cities lack access to credible high-resolution climate change projection information needed to assess and address potential vulnerabilities from future climate variability. Therefore, we present an integrated framework for developing an urban climate adaptation tool (Urban-CAT). Urban-CAT consists of four modules. Firstly, it provides climate projections at different spatial resolutions for quantifying urban landscape. Secondly, this projected data is combined with socio-economic data using leading and lagging indicators for assessing landscape vulnerability to climate extremes (e.g., urban flooding). Thirdly, a neighborhood scale modeling approach is presented for identifying candidate areas for adaptation strategies (e.g., green infrastructure as an adaptation strategy for urban flooding). Finally, all these capabilities are made available as a web-based tool to support decision-making and communication at the neighborhood and city levels. In this paper, we present some of the methods that drive each of the modules and demo some of the capabilities available to-date using the City of Knoxville in Tennessee as a case study.
Past and future climatic changes in the Mediterranean area under various global warming scenarios
NASA Astrophysics Data System (ADS)
Guiot, Joel
2016-04-01
Past climatic changes and their impacts on the natural vegetation can be used as a reference for the climatic changes projected by ensembles of climate models for the 21st century. The study of the Holocene shows that he Mediterranean has known several precipitation falls equivalent to what is projected for the end of the 21st century. These droughts were often correlated with the decline or collapse of Mediterranean civilisations, particularly in the eastern Basin. Nevertheless, while the past droughts were not characterized by particularly high temperature, future temperature increase will more or less significant according to the scenario. This will much intensify the water deficit for natural and artificial ecosystems. As a consequence, the projected climatic change can be considered as unprecedented during the last 10,000 years. We explore how they compare with the various scenarios corresponding to a 1.5°C, 2°C and 3°C global warming according to the pre-industrial mean temperature, and we will determine the degree of dissimilarity of the Mediterranean climate under these global thresholds according to the long term climate variability.
Porfirio, Luciana L.; Harris, Rebecca M. B.; Lefroy, Edward C.; Hugh, Sonia; Gould, Susan F.; Lee, Greg; Bindoff, Nathaniel L.; Mackey, Brendan
2014-01-01
Choice of variables, climate models and emissions scenarios all influence the results of species distribution models under future climatic conditions. However, an overview of applied studies suggests that the uncertainty associated with these factors is not always appropriately incorporated or even considered. We examine the effects of choice of variables, climate models and emissions scenarios can have on future species distribution models using two endangered species: one a short-lived invertebrate species (Ptunarra Brown Butterfly), and the other a long-lived paleo-endemic tree species (King Billy Pine). We show the range in projected distributions that result from different variable selection, climate models and emissions scenarios. The extent to which results are affected by these choices depends on the characteristics of the species modelled, but they all have the potential to substantially alter conclusions about the impacts of climate change. We discuss implications for conservation planning and management, and provide recommendations to conservation practitioners on variable selection and accommodating uncertainty when using future climate projections in species distribution models. PMID:25420020
The effect of future outdoor air pollution on human health and the contribution of climate change
NASA Astrophysics Data System (ADS)
Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.
2013-12-01
At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.
Vulnerability-based evaluation of water supply design under climate change
NASA Astrophysics Data System (ADS)
Umit Taner, Mehmet; Ray, Patrick; Brown, Casey
2015-04-01
Long-lived water supply infrastructures are strategic investments in the developing world, serving the purpose of balancing water deficits compounded by both population growth and socio-economic development. Robust infrastructure design under climate change is compelling, and often addressed by focusing on the outcomes of climate model projections ('scenario-led' planning), or by identifying design options that are less vulnerable to a wide range of plausible futures ('vulnerability-based' planning). Decision-Scaling framework combines these two approaches by first applying a climate stress test on the system to explore vulnerabilities across many traces of the future, and then employing climate projections to inform the decision-making process. In this work, we develop decision scaling's nascent risk management concepts further, directing actions on vulnerabilities identified during the climate stress test. In the process, we present a new way to inform climate vulnerability space using climate projections, and demonstrate the use of multiple decision criteria to guide to a final design recommendation. The concepts are demonstrated for a water supply project in the Mombasa Province of Kenya, planned to provide domestic and irrigation supply. Six storage design capacities (from 40 to 140 million cubic meters) are explored through a stress test, under a large number climate traces representing both natural climate variability and plausible climate changes. Design outcomes are simulated over a 40-year planning period with a coupled hydrologic-water resources systems model and using standard reservoir operation rules. Resulting performance is expressed in terms of water supply reliability and economic efficiency. Ensemble climate projections are used for assigning conditional likelihoods to the climate traces using a statistical distance measure. The final design recommendations are presented and discussed for the decision criteria of expected regret, satisficing, and conditional value-at-risk (CVaR).
Using Climate Science to Inform Local Planning: Challenges and Successes from the Field
NASA Astrophysics Data System (ADS)
Hayhoe, K.
2014-12-01
Much of our society, including our agriculture, our dependence on natural resources, and our infrastructure, is built on the assumption that individual weather events and average conditions may vary from year to year, but over the long term the climate of a given region can be predicted based on past climate "normals". This assumption is no longer valid; today, human-induced climate change is altering average conditions as well as the risk of many types of weather extremes. Observed trends and projected future changes in mean climate and in the frequency and severity of temperature extremes, heat waves, heavy precipitation events, coastal flooding, and storms are clearly documented in the Third U.S. National Climate Assessment, as well as by a host of other regional impact assessments. While future projections are inherently uncertain, these assessments make one fact clear: future planning for any sector or region affected by climate change that fails to take into account long-term trends will end up with the wrong answer. This concept of non-stationarity, that future climate will differ from that experienced in the past, challenges regional planners, water managers, city managers and engineers to incorporate future climate change into present-day planning. From the perspective of scientists, translating climate projections into information that can be used by stakeholders and decision-makers presents a challenge of equal magnitude. Here, I draw on my experience working with the agriculture, ecosystem, energy, health, infrastructure, insurance, and water sectors to propose a framework for, and highlight some of the main challenges inherent to, incorporating climate information into practical, on-the-ground planning at the local to regional scale. This approach, which we have developed through working with a range of cities, states, and regions including Austin, Cambridge, California, Chicago, Delaware, the Northeast, and most recently Washington DC, is based on identifying known vulnerabilities within the systems of interest, and developing appropriate information compatible with existing planning mechanisms to ensure the relevance and utility of the climate information for increasing resilience and reducing vulnerability to climate risks.
Climates of U.S. cities in the 21st century
NASA Astrophysics Data System (ADS)
Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.
2017-12-01
Urban climates are projected to warm over the 21st century due to global climate change and urban development. To assess this projected warming, Weather Research and Forecasting (WRF) model simulations are performed at 20 km resolution over the contiguous U.S. for three 10-year periods: contemporary (2000-2009), mid-century (2050-2059), and end-of-century (2090-2099). Urban land use projections are derived from the EPA's ICLUS data set, and future climate projections are based on two global climate models and two greenhouse gas emissions scenarios. The potential for design implementations such as `green' roofs and high albedo roofs to offset the projected warming is considered. Effects of urban expansion, urban densification and infrastructure adaptation on urban climate are compared over the century. Assessment considers impacts at both seasonal and diurnal scales, isolates fair weather impacts, and considers multiple climate variables: air temperature, precipitation, humidity, wind speed, and surface energy budget partitioning.
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Gordov, E. P.
2016-12-01
Recently initiated collaborative research project is presented. Its main objective is to develop high spatial and temporal resolution datasets for studying the ongoing and future climate changes in Siberia, caused by global and regional processes in the atmosphere and the ocean. This goal will be achieved by using a set of regional and global climate models for the analysis of the mechanisms of climate change and quantitative assessment of changes in key climate variables, including analysis of extreme weather and climate events and their dynamics, evaluation of the frequency, amplitude and the risks caused by the extreme events in the region. The main practical application of the project is to provide experts, stakeholders and the public with quantitative information about the future climate change in Siberia obtained on the base of a computational web- geoinformation platform. The thematic platform will be developed in order to facilitate processing and analysis of high resolution georeferenced datasets that will be delivered and made available to scientific community, policymakes and other end users as a result of the project. Software packages will be developed to implement calculation of various climatological indicators in order to characterize and diagnose climate change and its dynamics, as well as to archive results in digital form of electronic maps (GIS layers). By achieving these goals the project will provide science based tools necessary for developing mitigation measures for adapting to climate change and reducing negative impact on the population and infrastructure of the region. Financial support of the computational web- geoinformation platform prototype development by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) is acknowledged.
Ogden, Nicholas H; Radojevic, Milka; Wu, Xiaotian; Duvvuri, Venkata R; Leighton, Patrick A; Wu, Jianhong
2014-06-01
The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. We quantified potential effects of future climate change on the basic reproduction number (R0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases in general. We applied observed temperature data for North America and projected temperatures using regional climate models to drive an I. scapularis population model to hindcast recent, and project future, effects of climate warming on R0. Modeled R0 increases were compared with R0 ranges for pathogens and parasites associated with variations in key ecological and epidemiological factors (obtained by literature review) to assess their epidemiological importance. R0 for I. scapularis in North America increased during the years 1971-2010 in spatio-temporal patterns consistent with observations. Increased temperatures due to projected climate change increased R0 by factors (2-5 times in Canada and 1.5-2 times in the United States), comparable to observed ranges of R0 for pathogens and parasites due to variations in strains, geographic locations, epidemics, host and vector densities, and control efforts. Climate warming may have co-driven the emergence of Lyme disease in northeastern North America, and in the future may drive substantial disease spread into new geographic regions and increase tick-borne disease risk where climate is currently suitable. Our findings highlight the potential for climate change to have profound effects on vectors and vector-borne diseases, and the need to refocus efforts to understand these effects.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2012-02-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2011-08-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1 % on average today to over 60 % in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g., insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Climate Change and Hydrology of a Snow-fed Watershed in Western Nepal
NASA Astrophysics Data System (ADS)
Pandey, V. P.; Bharati, L.; Dhaubanjar, S.
2017-12-01
Many river basins across the globe are experiencing varying degrees of impacts from climate change. Snow-fed watersheds are expected to be affected even more. Chamelia, a tributary of Mahakali river basin, is a snow-fed river in the western Nepal with catchment area of 1,603 km2above the confluence with Mahakali River. Forest cover (40%) and rainfed agriculture (28%) covers more than two-third of the watershed. Topography varies from 505 to 7,090 m. According to the data from Department of Electricity Development (DoED) this watershed contains 14 licensed hydropower projects of varying capacities. Climate change may affect various aspects of the hydropower project, all of which are hinged around hydrology. This study simulated hydrological response of Chamelia watershed using Soil and Water Assessment Tool (SWAT) as an input for a hydro-economic model to analyze the water-energy-food nexus. The model was calibrated for the period of 2001-2007 and validated for 2008-2013 and then used to examine the streamflow response to climate change. Future climates for near-future (2020-2045), mid-future (2046-2070) and far-future (2071-2095) were considered based on CSIRO-CCAM Regional Circulation Model (RCM), derived from ACCESS1, downloaded from South Asia Cordex for RCP4.5 and RCP8.5 scenarios and then bias corrected using linear scaling method. Results, based on climate date at Station-103 showed that maximum temperature under RCP4.5 (RCP8.5) scenario for near-, mid-, and far-futures are projected to increase by 1.2°C (1.4°C), 1.5°C (2.8°C), and 2.3°C (2.6°C), respectively, from the baseline. Minimum temperature for the same scenarios and future periods, in the same order, are projected to increase by 1.1°C (1.5°C), 2.1°C (3.6°C), and 2.5°C (4.7°C), respectively, from the baseline. Precipitation in the other hand under RCP4.5 (RCP8.5) scenario for near-, mid-, and far-futures are projected to increase by 10.2% (10.4%), 7.6% (13.6%), and 3.1% (12.2%), respectively, from the baseline. As a result of the projected changes, streamflow is expected to alter at varying rates for the three future periods of time and two scenarios. The ultimate results of this nexus study are useful for water infrastructure planning to ensure long-term sustainability in the changing context.
Evaluation of Projected Agricultural Climate Risk over the Contiguous US
NASA Astrophysics Data System (ADS)
Zhu, X.; Troy, T. J.; Devineni, N.
2017-12-01
Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of our agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how does the widespread response of irrigated crops differ from rainfed and how can we best account for uncertainty in yield responses. We developed a stochastic approach to evaluate climate risk quantitatively to better understand the historical impacts of climate change and estimate the future impacts it may bring about to agricultural system. Our model consists of Bayesian regression, distribution fitting, and Monte Carlo simulation to simulate rainfed and irrigated crop yields at the US county level. The model was fit using historical data for 1970-2010 and was then applied over different climate regions in the contiguous US using the CMIP5 climate projections. The relative importance of many major growing season climate indices, such as consecutive dry days without rainfall or heavy precipitation, was evaluated to determine what climate indices play a role in affecting future crop yields. The statistical modeling framework also evaluated the impact of irrigation by using county-level irrigated and rainfed yields separately. Furthermore, the projected years with negative yield anomalies were specifically evaluated in terms of magnitude, trend and potential climate drivers. This framework provides estimates of the agricultural climate risk for the 21st century that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.
Uncertainties in observations and climate projections for the North East India
NASA Astrophysics Data System (ADS)
Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai
2018-01-01
The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.
Precipitation extremes in the Iberian Peninsula: an overview of the CLIPE project
NASA Astrophysics Data System (ADS)
Santos, João A.; Gonçalves, Paulo M.; Rodrigues, Tiago; Carvalho, Maria J.; Rocha, Alfredo
2014-05-01
The main aims of the project "Climate change of precipitation extreme episodes in the Iberian Peninsula and its forcing mechanisms - CLIPE" are 1) to diagnose the climate change signal in the precipitation extremes over the Iberian Peninsula (IP) and 2) to identify the underlying physical mechanisms. For the first purpose, a multi-model ensemble of 25 Regional Climate Model (RCM) simulations, from the ENSEMBLES project, is used. These experiments were generated by 15 RCMs, driven by five General Circulation Models (GCMs) under both historic conditions (1951-2000) and SRES A1B scenario (2001-2100). In this project, daily precipitation and mean sea level pressure, for the periods 1961-1990 (recent past) and 2021-2100 (future), are used. Using the Standardised Precipitation Index (SPI) on a daily basis, a precipitation extreme is defined by the pair of threshold values (Dmin, Imin), where Dmin is the minimum number of consecutive days with daily SPI above the Imin value. For both past and future climates, a precipitation extreme of a specific type is then characterised by two variables: the number of episodes with a specific duration in days and the number of episodes with a specific mean intensity (SPI/duration). Climate change is also assessed by changes in their Probability Density Functions (PDFs), estimated at sectors representative of different precipitation regimes. Lastly, for the second objective of this project, links between precipitation and Circulation Weather Regimes (CWRs) are explored for both past and future climates. Acknowledgments: this work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project CLIPE (PTDC/AAC-CLI/111733/2009).
Sohl, Terry L.
2014-01-01
Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be "suitable" for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges.
Sohl, Terry L.
2014-01-01
Species distribution models often use climate data to assess contemporary and/or future ranges for animal or plant species. Land use and land cover (LULC) data are important predictor variables for determining species range, yet are rarely used when modeling future distributions. In this study, maximum entropy modeling was used to construct species distribution maps for 50 North American bird species to determine relative contributions of climate and LULC for contemporary (2001) and future (2075) time periods. Species presence data were used as a dependent variable, while climate, LULC, and topographic data were used as predictor variables. Results varied by species, but in general, measures of model fit for 2001 indicated significantly poorer fit when either climate or LULC data were excluded from model simulations. Climate covariates provided a higher contribution to 2001 model results than did LULC variables, although both categories of variables strongly contributed. The area deemed to be “suitable” for 2001 species presence was strongly affected by the choice of model covariates, with significantly larger ranges predicted when LULC was excluded as a covariate. Changes in species ranges for 2075 indicate much larger overall range changes due to projected climate change than due to projected LULC change. However, the choice of study area impacted results for both current and projected model applications, with truncation of actual species ranges resulting in lower model fit scores and increased difficulty in interpreting covariate impacts on species range. Results indicate species-specific response to climate and LULC variables; however, both climate and LULC variables clearly are important for modeling both contemporary and potential future species ranges. PMID:25372571
Quantifying Future PM2.5 and Associated Health Effects Due to Changes in US Wildfires
NASA Astrophysics Data System (ADS)
Pierce, J. R.; Val Martin, M.; Ford, B.; Zelasky, S.; Heald, C. L.; Li, F.; Lawrence, D. M.; Fischer, E. V.
2017-12-01
Fine particulate matter (PM2.5) from landscape fires has been shown to adversely affect visibility, air quality and and health across the US. Fire activity is strongly related to climate and human activities. Predictions based on climate scenarios and future land cover projections that consider socioeconomic development suggest that fire activity will rise dramatically over the next decades. As PM2.5 is associated with increased mortality and morbidity rates, increases in emissions from landscape fires may alter the health burden on the US population. Here we present an analysis of the changes in future wildfire activity and consequences for PM2.5 and health over the US from 2000 to 2100. We employ the global Community Earth System Model (CESM) with the IPCC RCP projections. Within CESM, we use a process-based global fire parameterization to project future climate-driven and human-caused fire emissions. From these simulations, we determine the current and future impact on PM2.5 concentrations and visibility for different regions of the US, and we also calculate the mortality attributable to PM2.5 and wildfire-specific PM2.5 using existing concentration-response functions. Results show that although total PM2.5 concentrations in the US are projected to be similar in 2100 as in 2000, the dominant source of PM2.5 will change. Under the RCP8.5 climate projection and SSP3 population projection, non-fire emissions (mostly anthropogenic) are projected to decrease, but PM2.5 from CONUS and non-US wildfires is projected to increase from approximately 20% of all PM2.5 in 2000 to 80% of all PM2.5 in 2100. Furthermore, although the US population is expected to decline between 2000 and 2100, the mortality attributable to wildfire smoke is expected to increase from 25,000 deaths per year in 2000 to 75,000 deaths per year in 2100.
NASA Astrophysics Data System (ADS)
Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric
2016-04-01
Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.
Regional and seasonal response of a West Nile virus vector to climate change.
Morin, Cory W; Comrie, Andrew C
2013-09-24
Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions.
Climate Change and the Long-term Viability of the World's Busiest Heavy Haul Ice Road
NASA Astrophysics Data System (ADS)
Mullan, D.
2016-12-01
Climate models project that the northern high latitudes will warm at a rate in excess of the global mean. This will pose severe problems for Arctic and sub-Arctic infrastructure dependent on maintaining low temperatures for structural integrity. This is the case for the economically important Tibbitt to Contwoyto Winter Road (TCWR)—the world's busiest heavy haul ice road, spanning 400 km across mostly frozen lakes within the Northwest Territories of Canada. In this study, future climate scenarios are developed for the region using statistical downscaling methods. In addition, changes in lake ice thickness are projected based on historical relationships between measured ice thickness and air temperatures. These projections are used to infer the theoretical operational dates of the TCWR based on weight limits for trucks on the ice. Results across three climate models driven by four RCPs reveal a considerable warming trend over the coming decades. Projected changes in ice thickness reveal a trend towards thinner lake ice and a reduced time window when lake ice is at sufficient thickness to support trucks on the ice road, driven by increasing future temperatures. Given the uncertainties inherent in climate modelling and the resultant projections, caution should be exercised in interpreting the magnitude of these scenarios. More certain is the direction of change, with a clear trend towards winter warming that will reduce the operation time window of the TCWR. This illustrates the need for planners and policymakers to consider future changes in climate when planning annual haulage along the TCWR.
Climate change and the long-term viability of the World's busiest heavy haul ice road
NASA Astrophysics Data System (ADS)
Mullan, Donal; Swindles, Graeme; Patterson, Tim; Galloway, Jennifer; Macumber, Andrew; Falck, Hendrik; Crossley, Laura; Chen, Jie; Pisaric, Michael
2017-08-01
Climate models project that the northern high latitudes will warm at a rate in excess of the global mean. This will pose severe problems for Arctic and sub-Arctic infrastructure dependent on maintaining low temperatures for structural integrity. This is the case for the economically important Tibbitt to Contwoyto Winter Road (TCWR)—the world's busiest heavy haul ice road, spanning 400 km across mostly frozen lakes within the Northwest Territories of Canada. In this study, future climate scenarios are developed for the region using statistical downscaling methods. In addition, changes in lake ice thickness are projected based on historical relationships between measured ice thickness and air temperatures. These projections are used to infer the theoretical operational dates of the TCWR based on weight limits for trucks on the ice. Results across three climate models driven by four RCPs reveal a considerable warming trend over the coming decades. Projected changes in ice thickness reveal a trend towards thinner lake ice and a reduced time window when lake ice is at sufficient thickness to support trucks on the ice road, driven by increasing future temperatures. Given the uncertainties inherent in climate modelling and the resultant projections, caution should be exercised in interpreting the magnitude of these scenarios. More certain is the direction of change, with a clear trend towards winter warming that will reduce the operation time window of the TCWR. This illustrates the need for planners and policymakers to consider future changes in climate when planning annual haulage along the TCWR.
Amplified plant turnover in response to climate change forecast by Late Quaternary records
NASA Astrophysics Data System (ADS)
Nogués-Bravo, D.; Veloz, S.; Holt, B. G.; Singarayer, J.; Valdes, P.; Davis, B.; Brewer, S. C.; Williams, J. W.; Rahbek, C.
2016-12-01
Conservation decisions are informed by twenty-first-century climate impact projections that typically predict high extinction risk. Conversely, the palaeorecord shows strong sensitivity of species abundances and distributions to past climate changes, but few clear instances of extinctions attributable to rising temperatures. However, few studies have incorporated palaeoecological data into projections of future distributions. Here we project changes in abundance and conservation status under a climate warming scenario for 187 European and North American plant taxa using niche-based models calibrated against taxa-climate relationships for the past 21,000 years. We find that incorporating long-term data into niche-based models increases the magnitude of projected future changes for plant abundances and community turnover. The larger projected changes in abundances and community turnover translate into different, and often more threatened, projected IUCN conservation status for declining tree taxa, compared with traditional approaches. An average of 18.4% (North America) and 15.5% (Europe) of taxa switch IUCN categories when compared with single-time model results. When taxa categorized as `Least Concern' are excluded, the palaeo-calibrated models increase, on average, the conservation threat status of 33.2% and 56.8% of taxa. Notably, however, few models predict total disappearance of taxa, suggesting resilience for these taxa, if climate were the only extinction driver. Long-term studies linking palaeorecords and forecasting techniques have the potential to improve conservation assessments.
NASA Astrophysics Data System (ADS)
Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.
2018-03-01
We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.
Projections of future meteorological drought and wet periods in the Amazon
Duffy, Philip B.; Brando, Paulo; Asner, Gregory P.; Field, Christopher B.
2015-01-01
Future intensification of Amazon drought resulting from climate change may cause increased fire activity, tree mortality, and emissions of carbon to the atmosphere across large areas of Amazonia. To provide a basis for addressing these issues, we examine properties of recent and future meteorological droughts in the Amazon in 35 climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that the CMIP5 climate models, as a group, simulate important properties of historical meteorological droughts in the Amazon. In addition, this group of models reproduces observed relationships between Amazon precipitation and regional sea surface temperature anomalies in the tropical Pacific and the North Atlantic oceans. Assuming the Representative Concentration Pathway 8.5 scenario for future drivers of climate change, the models project increases in the frequency and geographic extent of meteorological drought in the eastern Amazon, and the opposite in the West. For the region as a whole, the CMIP5 models suggest that the area affected by mild and severe meteorological drought will nearly double and triple, respectively, by 2100. Extremes of wetness are also projected to increase after 2040. Specifically, the frequency of periods of unusual wetness and the area affected by unusual wetness are projected to increase after 2040 in the Amazon as a whole, including in locations where annual mean precipitation is projected to decrease. Our analyses suggest that continued emissions of greenhouse gases will increase the likelihood of extreme events that have been shown to alter and degrade Amazonian forests. PMID:26460046
Distribution and protection of climatic refugia in North America.
Michalak, Julia L; Lawler, Joshua J; Roberts, David R; Carroll, Carlos
2018-05-10
As evidenced by past climatic refugia, locations projected to harbor remnants of present day climates may serve as critical refugia for current biodiversity in the face of modern climate change. Here, we map potential future climatic refugia across North America, defined as locations with increasingly rare climatic conditions. We identified these locations by tracking projected changes in the size and distribution of climate analogs over time. We used biologically-derived thresholds to define analogs and tested the impacts of dispersal limitation using four distances to limit analog searches. We identified at most 12% of North America as potential climatic refugia. Refugia extent varied depending on the analog threshold, dispersal distance, and climate projection. However, in all cases refugia were concentrated at high elevations and in topographically complex regions. Refugia identified using different climate projections were largely nested, suggesting that identified refugia were relatively robust to climate projection selection. Existing conservation areas cover approximately 10% of North America and yet protected up to 25% of identified refugia, indicating that protected areas disproportionately include refugia. Refugia located at lower latitudes (≤ 40°N) and slightly lower elevations (∼2500 m) were more likely to be unprotected. Based on our results, a 23% expansion of the protected areas network would be sufficient to protect the refugia that were present under all three of the climate projections that we explored. We propose that these refugia are high conservation priorities, due to their potential to harbor rare species in the future. However, these locations are simultaneously highly vulnerable to climate change over the long-term. We found that these refugia contracted substantially between the 2050s and the 2080s, emphasizing that the pace of climate change will strongly determine the availability and effectiveness of refugia for protecting today's biodiversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H.; Bilgin, Raşit
2013-01-01
In this study, we evaluated the potential impact of climate change on the distributions of Turkey’s songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey’s songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges. PMID:23844151
Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H; Bilgin, Raşit
2013-01-01
In this study, we evaluated the potential impact of climate change on the distributions of Turkey's songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey's songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges.
Hoffmann, Holger; Rath, Thomas
2013-01-01
The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological ( = impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021–2050 compared to 1971–2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078–2087. The projected phenophases advanced by 5.5 d K−1, showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day. PMID:24116022
Hoffmann, Holger; Rath, Thomas
2013-01-01
The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and phenological ( = impact) models. As climate impact projections are susceptible to uncertainties of climate and impact models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by 2021-2050 compared to 1971-2000, whereas the joint signal of all climate and impact models did not stabilize until 2043. Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078-2087. The projected phenophases advanced by 5.5 d K(-1), showing partial compensation of delayed fulfillment of the winter chill requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was improved by considering the length of day.
The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies
USDA-ARS?s Scientific Manuscript database
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. We show that the climatic impacts on land ecosystems drives significant feedbacks inmore » energy, agriculture, land-use, and carbon cycle projections for the 21st century. We also find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Furthermore, the feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated here are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.« less
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
NASA Astrophysics Data System (ADS)
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; di Vittorio, Alan V.; Bond-Lamberty, Ben; Chini, Louise; Shi, Xiaoying; Mao, Jiafu; Collins, William D.; Edmonds, Jae; Thomson, Allison; Truesdale, John; Craig, Anthony; Branstetter, Marcia L.; Hurtt, George
2017-07-01
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical data sets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy-economic models, constrained by assumptions about future policy, land-use patterns and socio-economic development trajectories. Here we show that the climatic impacts on land ecosystems drive significant feedbacks in energy, agriculture, land use and carbon cycle projections for the twenty-first century. We find that exposure of human-appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid-range forcing scenario. The feedbacks between climate-induced biospheric change and human system forcings to the climate system--demonstrated here--are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy-economic models to ESMs used to date.
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.; ...
2017-06-12
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO 2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. We show that the climatic impacts on land ecosystems drives significant feedbacks inmore » energy, agriculture, land-use, and carbon cycle projections for the 21st century. We also find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Furthermore, the feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated here are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.« less
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia
2011-01-01
We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the important uncertainties behind the selection of climate change metrics and their performance against more complex process-based crop model simulations, revealing a danger in relying only on long-term mean quantities for crop impact assessment.
Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy
2014-01-01
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival.
NASA Astrophysics Data System (ADS)
Dixon, K. W.; Balaji, V.; Lanzante, J.; Radhakrishnan, A.; Hayhoe, K.; Stoner, A. K.; Gaitan, C. F.
2013-12-01
Statistical downscaling (SD) methods may be viewed as generating a value-added product - a refinement of global climate model (GCM) output designed to add finer scale detail and to address GCM shortcomings via a process that gleans information from a combination of observations and GCM-simulated climate change responses. Making use of observational data sets and GCM simulations representing the same historical period, cross-validation techniques allow one to assess how well an SD method meets this goal. However, lacking observations of future, the extent to which a particular SD method's skill might degrade when applied to future climate projections cannot be assessed in the same manner. Here we illustrate and describe extensions to a 'perfect model' experimental design that seeks to quantify aspects of SD method performance both for a historical period (1979-2008) and for late 21st century climate projections. Examples highlighting cases in which downscaling performance deteriorates in future climate projections will be discussed. Also, results will be presented showing how synthetic datasets having known statistical properties may be used to further isolate factors responsible for degradations in SD method skill under changing climatic conditions. We will describe a set of input files used to conduct these analyses that are being made available to researchers who wish to utilize this experimental framework to evaluate SD methods they have developed. The gridded data sets cover a region centered on the contiguous 48 United States with a grid spacing of approximately 25km, have daily time resolution (e.g., maximum and minimum near-surface temperature and precipitation), and represent a total of 120 years of model simulations. This effort is consistent with the 2013 National Climate Predictions and Projections Platform Quantitative Evaluation of Downscaling Workshop goal of supporting a community approach to promote the informed use of downscaled climate projections.
Skeffington, Micheline Sheehy
2014-01-01
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival. PMID:24752011
Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie
2015-01-01
We used a bioenergetics modeling approach to investigate potential effects of climate change on the growth of two economically important native fishes: yellow perch (Perca flavescens), a cool-water fish, and lake whitefish (Coregonus clupeaformis), a cold-water fish, in deep and oligotrophic Lakes Michigan and Huron. For assessing potential changes in fish growth, we contrasted simulated fish growth in the projected future climate regime during the period 2043-2070 under different prey availability scenarios with the simulated growth during the baseline (historical reference) period 1964-1993. Results showed that effects of climate change on the growth of these two fishes are jointly controlled by behavioral thermoregulation and prey availability. With the ability of behavioral thermoregulation, temperatures experienced by yellow perch in the projected future climate regime increased more than those experienced by lake whitefish. Thus simulated future growth decreased more for yellow perch than for lake whitefish under scenarios where prey availability remains constant into the future. Under high prey availability scenarios, simulated future growth of these two fishes both increased but yellow perch could not maintain the baseline efficiency of converting prey consumption into body weight. We contended that thermal guild should not be the only factor used to predict effects of climate change on the growth of a fish, and that ecosystem responses to climate change should be also taken into account.
Chang, Tony; Hansen, Andrew J; Piekielek, Nathan
2014-01-01
Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980-2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2-29% and 0.04-10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010-2099 time period related to consistent warming above the 1910-2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain P.albicaulis in the GYA under the more extreme future climate scenarios.
Chang, Tony; Hansen, Andrew J.; Piekielek, Nathan
2014-01-01
Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions regarding the magnitude and direction of modeled suitable habitat area, nine bias-corrected statistically down-scaled GCMs were utilized to understand the uncertainty associated with modeled projections. P.albicaulis was modeled using a Random Forests algorithm for the 1980–2010 climate period and showed strong presence/absence separations by summer maximum temperatures and springtime snowpack. Patterns of projected habitat change by the end of the century suggested a constant decrease in suitable climate area from the 2010 baseline for both Representative Concentration Pathways (RCPs) 8.5 and 4.5 climate forcing scenarios. Percent suitable climate area estimates ranged from 2–29% and 0.04–10% by 2099 for RCP 8.5 and 4.5 respectively. Habitat projections between GCMs displayed a decrease of variability over the 2010–2099 time period related to consistent warming above the 1910–2010 temperature normal after 2070 for all GCMs. A decreasing pattern of projected P.albicaulis suitable habitat area change was consistent across GCMs, despite strong differences in magnitude. Future ecological research in species distribution modeling should consider a full suite of GCM projections in the analysis to reduce extreme range contractions/expansions predictions. The results suggest that restoration strageties such as planting of seedlings and controlling competing vegetation may be necessary to maintain P.albicaulis in the GYA under the more extreme future climate scenarios. PMID:25372719
Implications of Climate Mitigation for Future Agricultural Production
NASA Technical Reports Server (NTRS)
Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin
2015-01-01
Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.
Food and water security scenarios for East Africa over next 20 years
NASA Astrophysics Data System (ADS)
Shukla, S.; Funk, C. C.; Verdin, J. P.; Peters-Lidard, C. D.
2013-12-01
Broad areas of East Africa face chronic water and agricultural insecurity. Over the last decade, the region has experienced frequent drought events leading to food security emergencies and even famine in Somalia in 2011. The impact of these drought events, associated with recent declines in rainfall during major growing seasons, has been particularly severe due to the high vulnerability of subsistence agricultural and pastoralist livelihoods, rapid population growth, and the limited availability of resources for agricultural development and climate change adaptation. The Famine Early Warning Systems Network (FEWS NET) is a United States Agency for International Development (USAID) funded activity that brings together international, regional and national partners to provide timely and rigorous early warning and food security information in Africa and other regions of the developing world. To assist USAID with planning agricultural development strategies over the next ten years in East Africa, FEWS NET is partnering with climate scientists and adaptation specialists at regional institutions to study and assess future changes in precipitation and temperature in light of global climate change, natural climate variability, and their related impacts on agricultural and water security in the region. The overarching objective of this study is to provide future scenarios of food and water security (as estimated by trends in soil moisture, evapotranspiration, and runoff) for East Africa. We do so by following two approaches: Constructed Analogs and the Composite Delta Method. In the first approach we downscaled climate projections (precipitation and temperature projections) of long-term Coupled Model Intercomparison Project Phase-5 (CMIP5) experiments over (a) historical (1850-2005) and (b) Representative Concentration Pathway (RCP) 8.5 (2006-2030) periods. Current climate is characterized by two ENSO modes, the intensity of the Pacific Decadal Oscillation, and the strength of the Indo-Pacific warming signal (IPWS). These modes are used in conjunction with CMIP5-estimates of IPWS to project 2030 climate conditions. In the second approach we use the much simpler Composite Delta Method to generate climate projections. Future climate projections are generated by simply altering the mean observed climate to match the mean climate of the climate model projections. Projections of precipitation and temperature from both approaches were then used to drive NASA's FEWS NET Land Data Assimilation System (FLDAS) to simulate the hydrologic variables most relevant to agriculture and water security: runoff, soil moisture and evapotranspiration. These outputs inform 2030 food and water security scenarios for East Africa. Finally we also investigate the impact of precipitation versus temperature changes on agriculture and water security in East Africa. We do so by keeping either one of those forcings constant while using the actual projections of the other variable to generate projections of hydrologic variables as described above.
Impact of climate change on water resources status: A case study for Crete Island, Greece
NASA Astrophysics Data System (ADS)
Koutroulis, Aristeidis G.; Tsanis, Ioannis K.; Daliakopoulos, Ioannis N.; Jacob, Daniela
2013-02-01
SummaryAn assessment of the impact of global climate change on the water resources status of the island of Crete, for a range of 24 different scenarios of projected hydro-climatological regime is presented. Three "state of the art" Global Climate Models (GCMs) and an ensemble of Regional Climate Models (RCMs) under emission scenarios B1, A2 and A1B provide future precipitation (P) and temperature (T) estimates that are bias adjusted against observations. The ensemble of RCMs for the A1B scenario project a higher P reduction compared to GCMs projections under A2 and B1 scenarios. Among GCMs model results, the ECHAM model projects a higher P reduction compared to IPSL and CNCM. Water availability for the whole island at basin scale until 2100 is estimated using the SAC-SMA rainfall-runoff model And a set of demand and infrastructure scenarios are adopted to simulate potential water use. While predicted reduction of water availability under the B1 emission scenario can be handled with water demand stabilized at present values and full implementation of planned infrastructure, other scenarios require additional measures and a robust signal of water insufficiency is projected. Despite inherent uncertainties, the quantitative impact of the projected changes on water availability indicates that climate change plays an important role to water use and management in controlling future water status in a Mediterranean island like Crete. The results of the study reinforce the necessity to improve and update local water management planning and adaptation strategies in order to attain future water security.
NASA Astrophysics Data System (ADS)
Oyler, J.; Anderson, R.; Running, S. W.
2010-12-01
In topographically complex landscapes, there is often a mismatch in scale between global climate model projections and more local climate-forcing factors and related ecological/hydrological processes. To overcome this limitation, the objective of this study was to downscale climate projections to the rugged Crown of the Continent Ecosystem (CCE) within the U.S. Northern Rockies and assess future impacts on water balances, vegetation dynamics, and carbon fluxes. A 40-year (1970-2009) spatial historical climate dataset (800m resolution, daily timestep) was generated for the CCE and modified for terrain influences. Regional climate projections were downscaled by applying them to the fine-scale historical dataset using a modified delta downscaling method and stochastic weather generator. The downscaled projections were used to drive the Biome-BGC ecosystem model. Overall CCE impacts included decreases in April 1 snow water equivalent, less days with snow on the ground, increased vegetation water stress, and increased growing degree days. The relaxing of temperature constraints increased annual net primary productivity (NPP) throughout most of the CCE landscape. However, an increase in water stress seems to have limited the growth in NPP and, in some areas, NPP actually decreased. Thus, CCE vegetation productivity trends under increasing temperatures will likely be determined by local changes in hydrologic function. Given the greater uncertainty in precipitation projections, future work should concentrate on determining thresholds in water constraints that greatly modify the magnitude and direction of carbon accumulation within the CCE under a warming climate.
NASA Astrophysics Data System (ADS)
Frieler, K.; Huber, V.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.
2012-12-01
The Inter-sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. Over 25 climate impact modelling teams from around the world, working within the agriculture, water, biomes, infrastructure and health sectors, are collaborating to find answers to the question "What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference?". The analysis is based on common, bias-corrected climate projections, and socio-economic pathways. The first, fast-tracked phase of the ISI-MIP has a focus on global impact models. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. Novel metrics, developed to emphasize societal impacts, will be used to identify regional 'hot-spots' of climate change impacts, as well as to quantify the cross-sectoral impact of the increasing frequency of extreme events in future climates. We present here first results from the Fast-Track phase of the project covering impact simulations in the biomes, agriculture and water sectors, in which the societal impacts of climate change are quantified for different levels of global warming. We also discuss the design of the scenario set-up and impact indicators chosen to suit the unique cross-sectoral, multi-model nature of the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werth, D.; Chen, K. F.
2013-08-22
The ability of water managers to maintain adequate supplies in coming decades depends, in part, on future weather conditions, as climate change has the potential to alter river flows from their current values, possibly rendering them unable to meet demand. Reliable climate projections are therefore critical to predicting the future water supply for the United States. These projections cannot be provided solely by global climate models (GCMs), however, as their resolution is too coarse to resolve the small-scale climate changes that can affect hydrology, and hence water supply, at regional to local scales. A process is needed to ‘downscale’ themore » GCM results to the smaller scales and feed this into a surface hydrology model to help determine the ability of rivers to provide adequate flow to meet future needs. We apply a statistical downscaling to GCM projections of precipitation and temperature through the use of a scaling method. This technique involves the correction of the cumulative distribution functions (CDFs) of the GCM-derived temperature and precipitation results for the 20{sup th} century, and the application of the same correction to 21{sup st} century GCM projections. This is done for three meteorological stations located within the Coosa River basin in northern Georgia, and is used to calculate future river flow statistics for the upper Coosa River. Results are compared to the historical Coosa River flow upstream from Georgia Power Company’s Hammond coal-fired power plant and to flows calculated with the original, unscaled GCM results to determine the impact of potential changes in meteorology on future flows.« less
The future of the North American carbon cycle - projections and associated climate change
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; Chatterjee, A.; Cooley, S. R.; Dunne, J. P.; Hoffman, F. M.; Luo, Y.; Moore, D. J.; Ohrel, S. B.; Poulter, B.; Ricciuto, D. M.; Tzortziou, M.; Walker, A. P.; Mayes, M. A.
2016-12-01
Approximately half of anthropogenic emissions from the burning of fossil fuels is taken up annually by carbon sinks on the land and in the oceans. However, there are key uncertainties in how carbon uptake by terrestrial, ocean, and freshwater systems will respond to, and interact with, climate into the future. Here, we outline the current state of understanding on the future carbon budget of these major reservoirs within North America and the globe. We examine the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. Progress has been made at identifying vulnerabilities in carbon pools, including high-latitude permafrost, peatlands, freshwater and coastal wetlands, and ecosystems subject to disturbance events, such as insects, fire and drought. However, many of these processes/pools are not well represented in current models, and model intercomparison studies have shown a range in carbon cycle response to factors such as climate and CO2 fertilization. Furthermore, as model complexity increases, understanding the drivers of model spread becomes increasingly more difficult. As a result, uncertainties in future carbon cycle projections are large. It is also uncertain how management decisions and policies will impact future carbon stocks and flows. In order to guide policy, a better understanding of the risk and magnitude of North American carbon cycle changes is needed. This requires that future carbon cycle projections be conditioned on current observations and be reported with sufficient confidence and fully specified uncertainties.
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Stroeve, Julienne; Weimerskirch, Henri
2009-02-10
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962-2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from approximately 6,000 to approximately 400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth.
Projected increases in the annual flood pulse of the Western Amazon
NASA Astrophysics Data System (ADS)
Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William
2016-01-01
The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.
Demographic models and IPCC climate projections predict the decline of an emperor penguin population
Jenouvrier, Stéphanie; Caswell, Hal; Barbraud, Christophe; Holland, Marika; Strœve, Julienne; Weimerskirch, Henri
2009-01-01
Studies have reported important effects of recent climate change on Antarctic species, but there has been to our knowledge no attempt to explicitly link those results to forecasted population responses to climate change. Antarctic sea ice extent (SIE) is projected to shrink as concentrations of atmospheric greenhouse gases (GHGs) increase, and emperor penguins (Aptenodytes forsteri) are extremely sensitive to these changes because they use sea ice as a breeding, foraging and molting habitat. We project emperor penguin population responses to future sea ice changes, using a stochastic population model that combines a unique long-term demographic dataset (1962–2005) from a colony in Terre Adélie, Antarctica and projections of SIE from General Circulation Models (GCM) of Earth's climate included in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment report. We show that the increased frequency of warm events associated with projected decreases in SIE will reduce the population viability. The probability of quasi-extinction (a decline of 95% or more) is at least 36% by 2100. The median population size is projected to decline from ≈6,000 to ≈400 breeding pairs over this period. To avoid extinction, emperor penguins will have to adapt, migrate or change the timing of their growth stages. However, given the future projected increases in GHGs and its effect on Antarctic climate, evolution or migration seem unlikely for such long lived species at the remote southern end of the Earth. PMID:19171908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim
Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less
NASA Astrophysics Data System (ADS)
Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; Mei, Rui; Kabela, Erik D.; Gangrade, Sudershan; Naz, Bibi S.; Preston, Benjamin L.; Singh, Nagendra; Anantharaj, Valentine G.
2017-05-01
Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) River Basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms, were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserve more in-depth examination.
Rastogi, Deeksha; Kao, Shih-Chieh; Ashfaq, Moetasim; ...
2017-04-13
Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically occur under a series of adverse atmospheric conditions, has been an important design criterion for critical infrastructures such as dams and nuclear power plants. To understand how PMP may respond to projected future climate forcings, we used a physics-based numerical weather simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and Forecasting (WRF) model experiments driven by both reanalysis and global climate model projections, with a total of 120 storms,more » were conducted. The depth-area-duration relationship was derived for each set of WRF simulations and compared with the conventional PMP estimates. Here, our results showed that PMP driven by projected future climate forcings is higher than 1981-2010 baseline values by around 20% in the 2021-2050 near-future and 44% in the 2071-2100 far-future periods. The additional sensitivity simulations of background air temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming could be one important factor controlling the increase in PMP. In light of the projected increase in precipitation extremes under a warming environment, the reasonableness and role of PMP deserves more in-depth examination.« less
Wang, Ruoyu; Kalin, Latif
2018-02-01
This study investigated potential changes in flow, total suspended solid (TSS) and nutrient (nitrogen and phosphorous) loadings under future climate change, land use/cover (LULC) change and combined change scenarios in the Wolf Bay watershed, southern Alabama, USA. Four Global Circulation Models (GCMs) under three Special Report Emission Scenarios (SRES) of greenhouse gas were used to assess the future climate change (2016-2040). Three projected LULC maps (2030) were employed to reflect different extents of urbanization in future. The individual, combined and synergistic impacts of LULC and climate change on water quantity/quality were analyzed by the Soil and Water Assessment Tool (SWAT). Under the "climate change only" scenario, monthly distribution and projected variation of TSS are expected to follow a pattern similar to streamflow. Nutrients are influenced both by flow and management practices. The variation of Total Nitrogen (TN) and Total Phosphorous (TP) generally follow the flow trend as well. No evident difference in the N:P ratio was projected. Under the "LULC change only" scenario, TN was projected to decrease, mainly due to the shrinkage of croplands. TP will increase in fall and winter. The N:P ratio shows a strong decreasing potential. Under the "combined change" scenario, LULC and climate change effect were considered simultaneously. Results indicate that if future loadings are expected to increase/decrease under any individual scenario, then the combined change will intensify that trend. Conversely, if their effects are in opposite directions, an offsetting effect occurs. Science-based management practices are needed to reduce nutrient loadings to the Bay. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Khan, M.; Abdul-Aziz, O. I.
2016-12-01
Changes in climatic regimes and basin characteristics such as imperviousness, roughness and land use types would lead to potential changes in stormwater budget. In this study we quantified reference sensitivities of stormwater runoff to the potential climatic and land use/cover changes by developing a large-scale, mechanistic rainfall-runoff model for the Tampa Bay Basin of Florida using the US EPA Storm Water Management Model (SWMM 5.1). Key processes of urban hydrology, its dynamic interactions with groundwater and sea level, hydro-climatic variables and land use/cover characteristics were incorporated within the model. The model was calibrated and validated with historical streamflow data. We then computed the historical (1970-2000) and potential 2050s stormwater budgets for the Tampa Bay Basin. Climatic scenario projected by the global climate models (GCMs) and the regional climate models (RCMs), along with sea level and land use/cover projections, were utilized to anticipate the future stormwater budget. The comparative assessment of current and future stormwater scenario will aid a proactive management of stormwater runoff under a changing climate in the Tampa Bay Basin and similar urban basins around the world.
Normand, Signe; Randin, Christophe; Ohlemüller, Ralf; Bay, Christian; Høye, Toke T.; Kjær, Erik D.; Körner, Christian; Lischke, Heike; Maiorano, Luigi; Paulsen, Jens; Pearman, Peter B.; Psomas, Achilleas; Treier, Urs A.; Zimmermann, Niklaus E.; Svenning, Jens-Christian
2013-01-01
Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates. PMID:23836785
Normand, Signe; Randin, Christophe; Ohlemüller, Ralf; Bay, Christian; Høye, Toke T; Kjær, Erik D; Körner, Christian; Lischke, Heike; Maiorano, Luigi; Paulsen, Jens; Pearman, Peter B; Psomas, Achilleas; Treier, Urs A; Zimmermann, Niklaus E; Svenning, Jens-Christian
2013-08-19
Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.
Littell, Jeremy S.; Mauger, Guillaume S.; Salathe, Eric P.; Hamlet, Alan F.; Lee, Se-Yeun; Stumbaugh, Matt R.; Elsner, Marketa; Norheim, Robert; Lutz, Eric R.; Mantua, Nathan J.
2014-01-01
The purpose of this project was to (1) provide an internally-consistent set of downscaled projections across the Western U.S., (2) include information about projection uncertainty, and (3) assess projected changes of hydrologic extremes. These objectives were designed to address decision support needs for climate adaptation and resource management actions. Specifically, understanding of uncertainty in climate projections – in particular for extreme events – is currently a key scientific and management barrier to adaptation planning and vulnerability assessment. The new dataset fills in the Northwest domain to cover a key gap in the previous dataset, adds additional projections (both from other global climate models and a comparison with dynamical downscaling) and includes an assessment of changes to flow and soil moisture extremes. This new information can be used to assess variations in impacts across the landscape, uncertainty in projections, and how these differ as a function of region, variable, and time period. In this project, existing University of Washington Climate Impacts Group (UW CIG) products were extended to develop a comprehensive data archive that accounts (in a reigorous and physically based way) for climate model uncertainty in future climate and hydrologic scenarios. These products can be used to determine likely impacts on vegetation and aquatic habitat in the Pacific Northwest (PNW) region, including WA, OR, ID, northwest MT to the continental divide, northern CA, NV, UT, and the Columbia Basin portion of western WY New data series and summaries produced for this project include: 1) extreme statistics for surface hydrology (e.g. frequency of soil moisture and summer water deficit) and streamflow (e.g. the 100-year flood, extreme 7-day low flows with a 10-year recurrence interval); 2) snowpack vulnerability as indicated by the ratio of April 1 snow water to cool-season precipitation; and, 3) uncertainty analyses for multiple climate scenarios.
NASA Astrophysics Data System (ADS)
Huziy, O.; Sushama, L.; Khaliq, M.; Lehner, B.; Laprise, R.; Roy, R.
2011-12-01
According to the Intergovernmental Panel on Climate Change (IPCC, 2007), an intensification of the global hydrological cycle and increase in precipitation for some regions around the world, including the northern mid- to high-latitudes, is expected in future climate. This will have an impact on mean and extreme flow characteristics, which need to be assessed for better development of adaptation strategies. Analysis of the mean and extreme streamflow characteristics for Quebec (North-eastern Canada) basins in current climate and their projected changes in future climate are assessed using a 10 member ensemble of current (1970 - 1999) and future (2041 - 2070) Canadian RCM (CRCM4) simulations. Validation of streamflow characteristics, performed by comparing modeled values with those observed, available from the Centre d'expertise hydrique du Quebec (CEHQ) shows that the model captures reasonably well the high flows. Results suggest increase in mean and 10 year return levels of 1 day high flows, which appear significant for most of the northern basins.
Warm climates of the past—a lesson for the future?
Lunt, D. J.; Elderfield, H.; Pancost, R.; Ridgwell, A.; Foster, G. L.; Haywood, A.; Kiehl, J.; Sagoo, N.; Shields, C.; Stone, E. J.; Valdes, P.
2013-01-01
This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10–11 October 2011. The Discussion Meeting, entitled ‘Warm climates of the past: a lesson for the future?’, brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change. PMID:24043873
Warm climates of the past--a lesson for the future?
Lunt, D J; Elderfield, H; Pancost, R; Ridgwell, A; Foster, G L; Haywood, A; Kiehl, J; Sagoo, N; Shields, C; Stone, E J; Valdes, P
2013-10-28
This Discussion Meeting Issue of the Philosophical Transactions A had its genesis in a Discussion Meeting of the Royal Society which took place on 10-11 October 2011. The Discussion Meeting, entitled 'Warm climates of the past: a lesson for the future?', brought together 16 eminent international speakers from the field of palaeoclimate, and was attended by over 280 scientists and members of the public. Many of the speakers have contributed to the papers compiled in this Discussion Meeting Issue. The papers summarize the talks at the meeting, and present further or related work. This Discussion Meeting Issue asks to what extent information gleaned from the study of past climates can aid our understanding of future climate change. Climate change is currently an issue at the forefront of environmental science, and also has important sociological and political implications. Most future predictions are carried out by complex numerical models; however, these models cannot be rigorously tested for scenarios outside of the modern, without making use of past climate data. Furthermore, past climate data can inform our understanding of how the Earth system operates, and can provide important contextual information related to environmental change. All past time periods can be useful in this context; here, we focus on past climates that were warmer than the modern climate, as these are likely to be the most similar to the future. This introductory paper is not meant as a comprehensive overview of all work in this field. Instead, it gives an introduction to the important issues therein, using the papers in this Discussion Meeting Issue, and other works from all the Discussion Meeting speakers, as exemplars of the various ways in which past climates can inform projections of future climate. Furthermore, we present new work that uses a palaeo constraint to quantitatively inform projections of future equilibrium ice sheet change.
Climate risks on potato yield in Europe
NASA Astrophysics Data System (ADS)
Sun, Xun; Lall, Upmanu
2016-04-01
The yield of potatoes is affected by water and temperature during the growing season. We study the impact of a suite of climate variables on potato yield at country level. More than ten climate variables related to the growth of potato are considered, including the seasonal rainfall and temperature, but also extreme conditions at different averaging periods from daily to monthly. A Bayesian hierarchical model is developed to jointly consider the risk of heat stress, cold stress, wet and drought. Future climate risks are investigated through the projection of future climate data. This study contributes to assess the risks of present and future climate risks on potatoes yield, especially the risks of extreme events, which could be used to guide better sourcing strategy and ensure food security in the future.
Ceccarelli, Soledad; Rabinovich, Jorge E
2015-11-01
We analyzed the possible effects of global climate change on the potential geographic distribution in Venezuela of five species of triatomines (Eratyrus mucronatus (Stal, 1859), Panstrongylus geniculatus (Latreille, 1811), Rhodnius prolixus (Stål, 1859), Rhodnius robustus (Larrousse, 1927), and Triatoma maculata (Erichson, 1848)), vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. To obtain the future potential geographic distributions, expressed as climatic niche suitability, we modeled the presences of these species using two IPCC (Intergovernmental Panel on Climate Change) future emission scenarios of global climate change (A1B and B1), the Global Climate model CSIRO Mark 3.0, and three periods of future projections (years 2020, 2060, and 2080). After estimating with the MaxEnt software the future climatic niche suitability for each species, scenario, and period of future projections, we estimated a series of indexes of Venezuela's vulnerability at the county, state, and country level, measured as the number of people exposed due to the changes in the geographical distribution of the five triatomine species analyzed. Despite that this is not a measure of the risk of Chagas disease transmission, we conclude that possible future effects of global climate change on the Venezuelan population vulnerability show a slightly decreasing trend, even taking into account future population growth; we can expect fewer locations in Venezuela where an average Venezuelan citizen would be exposed to triatomines in the next 50-70 yr. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
How Might Recharge Change Under Projected Climate Change in Western US?
NASA Astrophysics Data System (ADS)
Niraula, R.; Meixner, T.; Rodell, M.; Ajami, H.; Gochis, D. J.; Castro, C. L.
2015-12-01
Although ground water is a major source of water in the western US, little research has been done on the impacts of climate change on western groundwater storage and recharge. Here we assess the impact of projected changes in precipitation and temperature on groundwater recharge across the western US by dividing the domain into five major regions (viz. Northern Rockies and Plains, South, Southwest, Northwest and West). Hydrologic outputs from the Variable Infiltration Capacity (VIC) model based on Bias-Correction and Spatial Disaggregation (BCSD) Coupled Model Inter-comparison Project Phase 5 (CMIP5) climate projections from 11 Global Circulation Models (GCMs) for Representative Concentration pathway 6.0 (RCP 6.0) scenarios were selected for projecting changes in recharge. Projections are made for near future (2020-2050) and far future (2070-2100) relative to the historical period (1970-2000). Averaged over the domain, half of the GCMs caused VIC to increase recharge across the region while the remaining half resulted in decreased recharge for both the near (-10.1% to 5.8%) and far (-9.7% to 17%) future. A majority (9 out of 11 GCMs) of the VIC simulations projected increased recharge in the Northern Rockies and Plains for both the near and far future. A majority of the simulations agreed on reduced recharge in other regions for the near future. For the far future, a majority of the simulations agreed on decreased recharge in the South (9 out of 11 GCMs) and Southwest (7 out of 11 GCMs) regions. The change is projected to be largest for the South region which could see recharged reduced by as much as 50%. Changes in recharge in the Northwest region are predicted to be small (within 10% of historical recharge). Despite the large variability in projected recharge across the GCMs, recharge projections from this study will help water managers with long term water management planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covey, Curt; Hoffman, Forrest
2008-10-02
This project will quantify selected components of climate forcing due to changes in the terrestrial biosphere over the period 1948-2004, as simulated by the climate / carboncycle models participating in C-LAMP (the Carbon-Land Model Intercomparison Project; see http://www.climatemodeling.org/c-lamp). Unlike other C-LAMP projects that attempt to close the carbon budget, this project will focus on the contributions of individual biomes in terms of the resulting climate forcing. Bala et al. (2007) used a similar (though more comprehensive) model-based technique to assess and compare different components of biospheric climate forcing, but their focus was on potential future deforestation rather than the historicalmore » period.« less
Global Warming Impacts on Heating and Cooling Degree-Days in the United States
NASA Astrophysics Data System (ADS)
Petri, Y.; Caldeira, K.
2014-12-01
Anthropogenic climate change is expected to significantly alter residential air conditioning and space heating requirements, which account for 41% of U.S. household energy expenditures. The degree-day method can be used for reliable estimation of weather related building energy consumption and costs, as well as outdoor climatic thermal comfort. Here, we use U.S. Climate Normals developed by NOAA based on weather station observations along with Climate Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble simulations. We add the projected change in heating and cooling degree-days based on the climate models to the estimates based on the NOAA U.S. Climate Normals to project future heating and cooling degree-days. We find locations with the lowest and highest combined index of cooling (CDDs) and heating degree-days (HDDs) for the historical period (1981 - 2010) and future period (2080 - 2099) under the Representation Concentration Pathway 8.5 (RCP8.5) climate change scenario. Our results indicate that in both time frames and among the lower 48 states, coastal areas in the West and South California will have the smallest degree-day sum (CDD + HDD), and hence from a climatic perspective become the best candidates for residential real estate. The Rocky Mountains region in Wyoming, in addition to northern Minnesota and North Dakota, will have the greatest CDD + HDD. While global warming is projected to reduce the median heating and cooling demand (- 5%) at the end of the century, CDD + HDD will decrease in the North, with an opposite effect in the South. This work could be helpful in deciding where to live in the United States based on present and future thermal comfort, and could also provide a basis for estimates of changes in heating and cooling energy demand.
Future southcentral US wildfire probability due to climate change
Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.
2018-01-01
Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.
NASA Astrophysics Data System (ADS)
Nijssen, B.; Chiao, T. H.; Lettenmaier, D. P.; Vano, J. A.
2016-12-01
Hydrologic models with varying complexities and structures are commonly used to evaluate the impact of climate change on future hydrology. While the uncertainties in future climate projections are well documented, uncertainties in streamflow projections associated with hydrologic model structure and parameter estimation have received less attention. In this study, we implemented and calibrated three hydrologic models (the Distributed Hydrology Soil Vegetation Model (DHSVM), the Precipitation-Runoff Modeling System (PRMS), and the Variable Infiltration Capacity model (VIC)) for the Bull Run watershed in northern Oregon using consistent data sources and best practice calibration protocols. The project was part of a Piloting Utility Modeling Applications (PUMA) project with the Portland Water Bureau (PWB) under the umbrella of the Water Utility Climate Alliance (WUCA). Ultimately PWB would use the model evaluation to select a model to perform in-house climate change analysis for Bull Run Watershed. This presentation focuses on the experimental design of the comparison project, project findings and the collaboration between the team at the University of Washington and at PWB. After calibration, the three models showed similar capability to reproduce seasonal and inter-annual variations in streamflow, but differed in their ability to capture extreme events. Furthermore, the annual and seasonal hydrologic sensitivities to changes in climate forcings differed among models, potentially attributable to different model representations of snow and vegetation processes.
NASA Astrophysics Data System (ADS)
Amin, Asad; Nasim, Wajid; Mubeen, Muhammad; Sarwar, Saleem; Urich, Peter; Ahmad, Ashfaq; Wajid, Aftab; Khaliq, Tasneem; Rasul, Fahd; Hammad, Hafiz Mohkum; Rehmani, Muhammad Ishaq Asif; Mubarak, Hussani; Mirza, Nosheen; Wahid, Abdul; Ahamd, Shakeel; Fahad, Shah; Ullah, Abid; Khan, Mohammad Nauman; Ameen, Asif; Amanullah; Shahzad, Babar; Saud, Shah; Alharby, Hesham; Ata-Ul-Karim, Syed Tahir; Adnan, Muhammad; Islam, Faisal; Ali, Qazi Shoaib
2018-01-01
Unbalanced climate during the last decades has created spatially alarming and destructive situations in the world. Anomalies in temperature and precipitation enhance the risks for crop production in large agricultural region (especially the Southern Punjab) of Pakistan. Detailed analysis of historic weather data (1980-2011) record helped in creating baseline data to compare with model projection (SimCLIM) for regional level. Ensemble of 40 GCMs used for climatic projections with greenhouse gas (GHG) representative concentration pathways (RCP-4.5, 6.0, 8.5) was selected on the baseline comparison and used for 2025 and 2050 climate projection. Precipitation projected by ensemble and regional weather observatory at baseline showed highly unpredictable nature while both temperature extremes showed 95 % confidence level on a monthly projection. Percentage change in precipitation projected by model with RCP-4.5, RCP-6.0, and RCP-8.5 showed uncertainty 3.3 to 5.6 %, 2.9 to 5.2 %, and 3.6 to 7.9 % for 2025 and 2050, respectively. Percentage change of minimum temperature from base temperature showed that 5.1, 4.7, and 5.8 % for 2025 and 9.0, 8.1, and 12.0 % increase for projection year 2050 with RCP-4.5, 6.0, and 8.5 and maximum temperature 2.7, 2.5, and 3.0 % for 2025 and 4.7, 4.4, and 6.4 % for 2050 will be increased with RCP-4.5, 6.0, and 8.5, respectively. Uneven increase in precipitation and asymmetric increase in temperature extremes in future would also increase the risk associated with management of climatic uncertainties. Future climate projection will enable us for better risk management decisions.
Integrated Modeling Approach for the Development of Climate-Informed, Actionable Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judi, David R.; Rakowski, Cynthia L.; Waichler, Scott R.
Flooding is a prevalent natural disaster with both short and long-term social, economic, and infrastructure impacts. Changes in intensity and frequency of precipitation (including rain, snow, and rain on snow) events create challenges for the planning and management of resilient infrastructure and communities. While there is general acknowledgement that new infrastructure design should account for future climate change, no clear methods or actionable information is available to community planners and designers to ensure resilient design considering an uncertain climate future. This research used climate projections to drive high-resolution hydrology and flood models to evaluate social, economic, and infrastructure resilience formore » the Snohomish Watershed, WA, U.S.A. The proposed model chain has been calibrated and validated. Based on the established model chain, the peaks of precipitation and streamflows were found to shift from spring and summer to earlier winter season. The nonstationarity of peak discharges was discovered with more frequent and severe flood risks projected. The peak discharges were also projected to decrease for a certain period in the near future, which might be due to the reduced rain-on-snow events. This research was expected to provide a clear method for the incorporation of climate science in flood resilience analysis and to also provide actionable information relative to the frequency and intensity of future precipitation events.« less
Li, Yixue; Li, Guoxing; Zeng, Qiang; Liang, Fengchao; Pan, Xiaochuan
2018-02-01
Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio
2014-04-01
Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.
Adaptation of water resource systems to an uncertain future
NASA Astrophysics Data System (ADS)
Walsh, C. L.; Blenkinsop, S.; Fowler, H. J.; Burton, A.; Dawson, R. J.; Glenis, V.; Manning, L. J.; Kilsby, C. G.
2015-09-01
Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days, and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth the median number of drought order occurrences may increase five-fold. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30 % reduction in overall demand by 2050 has a greater impact on reducing the frequency of drought orders than any of the individual or combinations of supply options; hence a portfolio of measures are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Qian; Sun, Ning; Yearsley, John
We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lowermore » reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change.« less
Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe
Guis, Helene; Caminade, Cyril; Calvete, Carlos; Morse, Andrew P.; Tran, Annelise; Baylis, Matthew
2012-01-01
Vector-borne diseases are among those most sensitive to climate because the ecology of vectors and the development rate of pathogens within them are highly dependent on environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of ruminants in Europe, is often cited as an illustration of climate's impact on disease emergence, although no study has yet tested this association. Here, we develop a framework to quantitatively evaluate the effects of climate on BT's emergence in Europe by integrating high-resolution climate observations and model simulations within a mechanistic model of BT transmission risk. We demonstrate that a climate-driven model explains, in both space and time, many aspects of BT's recent emergence and spread, including the 2006 BT outbreak in northwest Europe which occurred in the year of highest projected risk since at least 1960. Furthermore, the model provides mechanistic insight into BT's emergence, suggesting that the drivers of emergence across Europe differ between the South and the North. Driven by simulated future climate from an ensemble of 11 regional climate models, the model projects increase in the future risk of BT emergence across most of Europe with uncertainty in rate but not in trend. The framework described here is adaptable and applicable to other diseases, where the link between climate and disease transmission risk can be quantified, permitting the evaluation of scale and uncertainty in climate change's impact on the future of such diseases. PMID:21697167
NASA Astrophysics Data System (ADS)
Masud, M. B.; Khaliq, M. N.; Wheater, H. S.
2017-09-01
The effects of climate change on April-October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981-2000 period and those driven by four Atmosphere-Ocean General Circulation Models (AOGCMs) for the current 1971-2000 and future 2041-2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981-2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM-AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban drainage infrastructure and development of strategic climate change adaptation measures.
NASA Astrophysics Data System (ADS)
Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel
2014-05-01
Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate impact analyses and build an important basis of the future adaptation strategies in forestry, agriculture and water management. Funding: The research is supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0013 and TÁMOP-4.1.1.C-12/1/KONV-2012-0012 (ZENFE) joint EU-national research projects. Keywords: climate indices, climate change impacts, forestry, regional climate modelling
Strategies for reforestation under uncertain future climates: guidelines for Alberta, Canada.
Gray, Laura K; Hamann, Andreas
2011-01-01
Commercial forestry programs normally use locally collected seed for reforestation under the assumption that tree populations are optimally adapted to local environments. However, in western Canada this assumption is no longer valid because of climate trends that have occurred over the last several decades. The objective of this study is to show how we can arrive at reforestation recommendations with alternative species and genotypes that are viable under a majority of climate change scenarios. In a case study for commercially important tree species of Alberta, we use an ecosystem-based bioclimate envelope modeling approach for western North America to project habitat for locally adapted populations of tree species using multi-model climate projections for the 2020s, 2050s and 2080s. We find that genotypes of species that are adapted to drier climatic conditions will be the preferred planting stock over much of the boreal forest that is commercially managed. Interestingly, no alternative species that are currently not present in Alberta can be recommended with any confidence. Finally, we observe large uncertainties in projections of suitable habitat that make reforestation planning beyond the 2050s difficult for most species. More than 50,000 hectares of forests are commercially planted every year in Alberta. Choosing alternative planting stock, suitable for expected future climates, could therefore offer an effective climate change adaptation strategy at little additional cost. Habitat projections for locally adapted tree populations under observed climate change conform well to projections for the 2020s, which suggests that it is a safe strategy to change current reforestation practices and adapt to new climatic realities through assisted migration prescriptions.
Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.
2013-01-01
High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.
NASA Astrophysics Data System (ADS)
Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.
2012-12-01
Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately. These results will strengthen our understanding of the impacts of climate change today, and in future years considering different plausible scenarios.
NASA Astrophysics Data System (ADS)
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
2018-01-01
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
2018-01-15
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less
NASA Astrophysics Data System (ADS)
Fujisawa, Mariko; Kanamaru, Hideki
2016-04-01
Agriculture is vulnerable to environmental changes, and climate change has been recognized as one of the most devastating factors. In many developing countries, however, few studies have focused on nation-wide assessment of crop yield and crop suitability in the future, and hence there is a large pressure on science to provide policy makers with solid predictions for major crops in the countries in support of climate risk management policies and programmes. FAO has developed the tool MOSAICC (Modelling System for Agricultural Impacts of Climate Change) where statistical climate downscaling is combined with crop yield projections under climate change scenarios. Three steps are required to get the results: 1. The historical meteorological data such as temperature and precipitation for about 30 years were collected, and future climates were statistically downscaled to the local scale, 2. The historical crop yield data were collected and regression functions were made to estimate the yield by using observed climatic data and water balance during the growing period for each crop, and 3. The yield changes in the future were estimated by using the future climate data, produced by the first step, as an input to the yield regression functions. The yield was first simulated at sub-national scale and aggregated to national scale, which is intended to provide national policies with adaptation options. The methodology considers future changes in characteristics of extreme weather events as the climate projections are on daily scale while crop simulations are on 10-daily scale. Yields were simulated with two greenhouse gas concentration pathways (RCPs) for three GCMs per crop to account for uncertainties in projections. The crop assessment constitutes a larger multi-disciplinary assessment of climate change impacts on agriculture and vulnerability of livelihoods in terms of food security (e.g. water resources, agriculture market, household-level food security from socio-economic perspective). In our presentation we will show the cases of Peru and the Philippines, and discuss the implications for agriculture policies and risk management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi
As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less
Land-use change may exacerbate climate change impacts on water resources in the Ganges basin
NASA Astrophysics Data System (ADS)
Tsarouchi, Gina; Buytaert, Wouter
2018-02-01
Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Formayer, Herbert; Förster, Kristian; Marke, Thomas; Meißl, Gertraud; Schermer, Markus; Stotten, Friederike; Themessl, Matthias
2016-04-01
Future land use in Alpine catchments is controlled by the evolution of socio-economy and climate. Estimates of their coupled development should hence fulfill the principles of plausibility (be convincing) and consistency (be unambiguous). In the project STELLA, coupled future climate and land use scenarios are used as input in a hydrological modelling exercise with the physically-based, distributed water balance model WaSiM. The aim of the project is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The so-called „storylines" of future coupled climate and forest/land use management, policy, social cooperation, tourism and economy have jointly been developed in an inter- and transdisciplinary assessment with local actors. The climate background is given by simulations for the A1B (temperature conditions like today in Merano/Italy, 46.7°N) and RCP 8.5 (temperature conditions like today in Bologna/Italy, 44.5°N) emission scenarios. These two climate scenarios were combined with three potential socio-economic developments („local"/„glocal"/ „superglobal"), each in a positive and in a negative specification. From these twelve storylines of coupled climate/land use future, a set of four storylines was selected to be used in transient hydrological modelling experiments. Historical simulations of the water balance for the test site reveal the pattern of land use being the most prominent factor for the spatial distribution of its components. A new prototype for a snow-canopy interaction simulation module provides explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands in the catchment. This new canopy module will be used to model the coupled climate/land use future storylines for the Brixental. The aim is to quantify the effects of climate change and land use on the water balance and streamflow, both separately and in their respective combination.
Past and future trends of hydroclimatic intensity over the Indian monsoon region
NASA Astrophysics Data System (ADS)
Mohan, T. S.; Rajeevan, M.
2017-01-01
The hydroclimatic intensity index (HY-INT) is a single index that quantitatively combines measures of precipitation intensity and dry spell length, thus providing an integrated response of the hydrological cycle to global warming. The HY-INT index is a product of the precipitation intensity (PINT, intensity during wet days) and dry spell length (DSL). Using the observed gridded rainfall data sets of 1951-2010 period, the changes in HY-INT, PINT, and DSL over the Indian monsoon region have been examined in addition to changes in maximum consecutive dry days (MCD). We have also considered 10 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models for examining the changes in these indices during the present-day and future climate change scenarios. For climate change projections, the Representative Concentration Pathway (RCP) 4.5 scenario was considered. The analysis of observational data during the period 1951-2010 suggested an increase in DSL and MCD over most of central India. Further, statistically significant (95% level) increase in HY-INT is also noted during the period of 1951-2010, which is mainly caused due to significant increase in precipitation intensity. The CMIP5 model projections of future climate also suggest a statistically significant increase in HY-INT over the Indian region. Out of the 10 models considered, seven models suggest a consistent increase in HY-INT during the period of 2010-2100 under the RCP4.5 scenario. However, the projected increase in HY-INT is mainly due to increase in the precipitation intensity, while dry spell length (DSL) showed little changes in the future climate.
Making climate change tangible for strategic adaptation planning: The Climate Corridor Approach
NASA Astrophysics Data System (ADS)
Orlowsky, Boris; Calanca, Pierluigi; Ali, Irshad; Ali, Jawad; Elguera Hilares, Agustin; Huggel, Christian; Khan, Inamullah; Neukom, Raphael; Nizami, Arjumand; Qazi, Muhammad Abbas; Robledo, Carmenza; Rohrer, Mario; Salzmann, Nadine; Schmidt, Kaspar
2017-04-01
Climate change is a global phenomenon and difficult to grasp. Although its importance is generally acknowledged, impacts of (future) climate change on human activities are in many cases not taken into account explicitly, in particular when planning development projects. This is due to technical and conceptual challenges, missing financial and human resources and competing priorities. Neglecting climate change can become problematic, if a proposed activity requires specific climatological conditions under which it becomes feasible, a simple example being crop cultivation that needs certain temperature an d precipitation ranges. Comparing such ``climate corridors'' to future climate projections provides an intuitive and low-cost yet quantitative means for assessing needs for, and viability of, adaptation activities under climate change - a "poor man's approach" to climate suitability analysis. A chief advantage of this approach is its modest demand on data. Three case studies from Pakistan, Peru and Tajikistan show that climate corridor analysis can deliver robust results and can be used to efficiently communicate risks and challenges of climate change to partners and stakeholders in the developing countries.
Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099
Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F
2016-05-04
The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by the atmosphere with the multitude of factors affecting the growth of algae and corresponding water clarity.
Thorne, James; Boynton, Ryan; Flint, Lorraine; Flint, Alan; N'goc Le, Thuy
2012-01-01
This paper outlines the production of 270-meter grid-scale maps for 14 climate and derivative hydrologic variables for a region that encompasses the State of California and all the streams that flow into it. The paper describes the Basin Characterization Model (BCM), a map-based, mechanistic model used to process the hydrological variables. Three historic and three future time periods of 30 years (1911–1940, 1941–1970, 1971–2000, 2010–2039, 2040–2069, and 2070–2099) were developed that summarize 180 years of monthly historic and future climate values. These comprise a standardized set of fine-scale climate data that were shared with 14 research groups, including the U.S. National Park Service and several University of California groups as part of this project. We present three analyses done with the outputs from the Basin Characterization Model: trends in hydrologic variables over baseline, the most recent 30-year period; a calibration and validation effort that uses measured discharge values from 139 streamgages and compares those to Basin Characterization Model-derived projections of discharge for the same basins; and an assessment of the trends of specific hydrological variables that links historical trend to projected future change under four future climate projections. Overall, increases in potential evapotranspiration dominate other influences in future hydrologic cycles. Increased potential evapotranspiration drives decreasing runoff even under forecasts with increased precipitation, and drives increased climatic water deficit, which may lead to conversion of dominant vegetation types across large parts of the study region as well as have implications for rain-fed agriculture. The potential evapotranspiration is driven by air temperatures, and the Basin Characterization Model permits it to be integrated with a water balance model that can be derived for landscapes and summarized by watershed. These results show the utility of using a process-based model with modules representing different hydrological pathways that can be inter-linked.
NASA Astrophysics Data System (ADS)
Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.
2013-12-01
Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience strong upslope shifting of open grassland, chaparral and hardwood types, which may be initiated by increased fire frequencies, particularly where fires have not recently burned within normal fire recurrence interval departures (FRID). An evaluation of four fire management strategies (business as usual; resist change; foster orderly change; protect vital resources) across four combinations of future climate and fire frequency found that no single management strategy was uniformly successful in protecting critical resources across the range of future conditions examined. This limitation is somewhat driven by current management constraints on the amount of management available to resource managers, which suggests management will need to use a triage approach to application of proactive fire management strategies, wherein MOC landscape projections can be used in decision support.
NASA Astrophysics Data System (ADS)
Boé, Julien; Terray, Laurent
2014-05-01
Ensemble approaches for climate change projections have become ubiquitous. Because of large model-to-model variations and, generally, lack of rationale for the choice of a particular climate model against others, it is widely accepted that future climate change and its impacts should not be estimated based on a single climate model. Generally, as a default approach, the multi-model ensemble mean (MMEM) is considered to provide the best estimate of climate change signals. The MMEM approach is based on the implicit hypothesis that all the models provide equally credible projections of future climate change. This hypothesis is unlikely to be true and ideally one would want to give more weight to more realistic models. A major issue with this alternative approach lies in the assessment of the relative credibility of future climate projections from different climate models, as they can only be evaluated against present-day observations: which present-day metric(s) should be used to decide which models are "good" and which models are "bad" in the future climate? Once a supposedly informative metric has been found, other issues arise. What is the best statistical method to combine multiple models results taking into account their relative credibility measured by a given metric? How to be sure in the end that the metric-based estimate of future climate change is not in fact less realistic than the MMEM? It is impossible to provide strict answers to those questions in the climate change context. Yet, in this presentation, we propose a methodological approach based on a perfect model framework that could bring some useful elements of answer to the questions previously mentioned. The basic idea is to take a random climate model in the ensemble and treat it as if it were the truth (results of this model, in both past and future climate, are called "synthetic observations"). Then, all the other members from the multi-model ensemble are used to derive thanks to a metric-based approach a posterior estimate of climate change, based on the synthetic observation of the metric. Finally, it is possible to compare the posterior estimate to the synthetic observation of future climate change to evaluate the skill of the method. The main objective of this presentation is to describe and apply this perfect model framework to test different methodological issues associated with non-uniform model weighting and similar metric-based approaches. The methodology presented is general, but will be applied to the specific case of summer temperature change in France, for which previous works have suggested potentially useful metrics associated with soil-atmosphere and cloud-temperature interactions. The relative performances of different simple statistical approaches to combine multiple model results based on metrics will be tested. The impact of ensemble size, observational errors, internal variability, and model similarity will be characterized. The potential improvements associated with metric-based approaches compared to the MMEM is terms of errors and uncertainties will be quantified.
NASA Astrophysics Data System (ADS)
Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.
2017-12-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quali...
Future socio-economic impacts and vulnerabilities
Balgis Osman-Elasha; Neil Adger; Maria Brockhaus; Carol J. Pierce Colfer; Brent Sohngen; Tallaat Dafalla; Linda A. Joyce; Nkem Johnson; Carmenza Robledo
2009-01-01
The projected impacts of climate change are significant, and despite the uncertainties associated with current climate and ecosystem model projections, the associated changes in the provision of forest ecosystem services are expected to be substantial in many parts of the world. These impacts will present significant social and economic challenges for affected...
NASA Astrophysics Data System (ADS)
Hänsler, Andreas; Weber, Torsten; Eggert, Bastian; Saeed, Fahad; Jacob, Daniela
2014-05-01
Within the CORDEX initiative a multi-model suite of regionalized climate change information will be made available for several regions of the world. The German Climate Service Center (CSC) is taking part in this initiative by applying the regional climate model REMO to downscale global climate projections of different coupled general circulation models (GCMs) for several CORDEX domains. Also for the MENA-CORDEX domain, a set of regional climate change projections has been established at the CSC by downscaling CMIP5 projections of the Max-Planck-Institute Earth System Model (MPI-ESM) for the scenarios RCP4.5 and RCP8.5 with the regional model REMO for the time period from 1950 to 2100 to a horizontal resolution of 0.44 degree. In this study we investigate projected changes in future climate conditions over the domain towards the end of the 21st century. Focus in the analysis is given to projected changes in the temperature and rainfall characteristics and their differences for the two scenarios will be highlighted.
Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; ...
2016-02-11
Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less
Harp, D. R.; Atchley, A. L.; Painter, S. L.; ...
2015-06-29
The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. As a result, by comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.« less
NASA Astrophysics Data System (ADS)
Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.
2015-06-01
The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.
NASA Astrophysics Data System (ADS)
Xing, Wanqiu; Wang, Weiguang; Zou, Shan; Deng, Chao
2018-03-01
This study established a climate elasticity method based on Budyko hypothesis and enhanced it by selecting the most effective Budyko-type formula to strengthen the runoff change prediction reliability. The spatiotemporal variations in hydrologic variables (i.e., runoff, precipitation and potential evaporation) during historical period were revealed first and the climate elasticities of runoff were investigated. The proposed climate elasticity method was also applied to project the spatiotemporal variations in future runoff and its key influencing factors in 35 watersheds across China. Wherein, the future climate series were retrieved by consulting the historical series, informed by four global climate models (GCMs) under representative concentration pathways from phase five of the Coupled Model Intercomparison Project. Wang-Tang equation was selected as the optimal Budyko-type equation for its best ability in reproducing the runoff change (with a coefficient of determination and mean absolute error of 0.998 and 1.36 mm, respectively). Observed runoff presents significant decreasing trends in the northern and increasing trends in the southern regions of China, and generally its change is identified to be more sensitive to climatic variables in Hai River Basin and lower Yellow River Basin. Compared to the runoff during the reference period, positive change rates in the north and negative change rates in the south of China in the mid-21st century can be practically generalized from the majority of GCMs projections. This maybe resulted from the increasing precipitation, especially in parts of northern basins. Meanwhile, GCMs project a consistently upward trend in potential evaporation although significant decreasing trends occur in the majority of catchments for the historical period. The results indicate that climate change will possibly bring some changes to the water resources over China in the mid-21st century and some countermeasures of water resources planning and management should be taken.
Projecting coral reef futures under global warming and ocean acidification.
Pandolfi, John M; Connolly, Sean R; Marshall, Dustin J; Cohen, Anne L
2011-07-22
Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.
NASA Astrophysics Data System (ADS)
He, H.; Liang, X.-Z.; Lei, H.; Wuebbles, D. J.
2014-10-01
A regional chemical transport model (CTM) is used to quantify the relative contributions of future US ozone pollution from regional emissions, climate change, long-range transport (LRT) of pollutants, and model deficiency. After incorporating dynamic lateral boundary conditions (LBCs) from a global CTM, the representation of present-day US ozone pollution is notably improved. This nested system projects substantial surface ozone trends for 2050's: 6-10 ppbv decreases under the "clean" A1B scenario and ~15 ppbv increases under the "dirty" A1Fi scenario. Among the total trends, regional emissions changes dominate, contributing negative 20-50% in A1B and positive 20-40% in A1Fi, while LRT effects through chemical LBCs and climate changes account for respectively 15-50% and 10-30% in both scenarios. The projection uncertainty due to model biases is region dependent, ranging from -10 to 50%. It is shown that model biases of present-day simulations can propagate into future projections systematically but nonlinearly, and the accurate specification of LBCs is essential for US ozone projections.
Updated Intensity - Duration - Frequency Curves Under Different Future Climate Scenarios
NASA Astrophysics Data System (ADS)
Ragno, E.; AghaKouchak, A.
2016-12-01
Current infrastructure design procedures rely on the use of Intensity - Duration - Frequency (IDF) curves retrieved under the assumption of temporal stationarity, meaning that occurrences of extreme events are expected to be time invariant. However, numerous studies have observed more severe extreme events over time. Hence, the stationarity assumption for extreme analysis may not be appropriate in a warming climate. This issue raises concerns regarding the safety and resilience of the existing and future infrastructures. Here we employ historical and projected (RCP 8.5) CMIP5 runs to investigate IDF curves of 14 urban areas across the United States. We first statistically assess changes in precipitation extremes using an energy-based test for equal distributions. Then, through a Bayesian inference approach for stationary and non-stationary extreme value analysis, we provide updated IDF curves based on climatic model projections. This presentation summarizes the projected changes in statistics of extremes. We show that, based on CMIP5 simulations, extreme precipitation events in some urban areas can be 20% more severe in the future, even when projected annual mean precipitation is expected to remain similar to the ground-based climatology.
NASA Astrophysics Data System (ADS)
McKenney, D.; Pedlar, J.
2011-12-01
Climate is one of the major influences on forests and much effort has gone into projecting the impacts of rapid climate change on forest distribution and productivity. Such efforts are premised on the notion that the current generation of Global Climate Models (GCMs) provide reasonably accurate representations of future climate. But what is the appropriate level of faith to put in these projections when making relatively fine-scale resource management decisions such as the movement of plant genetic material? In this talk we review recent outcomes of climate envelope models for North American tree species that suggest optimal climate regimes could move on average ~700km within the next 100 years. Newer generation GCMs seem to confirm these results but much uncertainty remains for practical decision-making. Despite these uncertainties, assisted migration has been suggested as a climate change adaptation tool wherein populations of trees are moved up to a few hundred kilometers north (or a few hundred meters upslope) to keep pace with the anticipated changes in optimal climate regimes. A continent-wide web based tool (SEEDWHERE) is presented, which assists in identifying appropriate translocation distances for assisted migration initiatives. We finish with some suggestions for future work on the topic of forest regeneration decisions under an evolving and uncertain future climate.
NASA Astrophysics Data System (ADS)
Donnelly, M. A. P.; Marcantonio, M.; Melton, F. S.; Barker, C. M.
2016-12-01
The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.
NASA Technical Reports Server (NTRS)
Donnelly, Marisa Anne Pella; Marcantonio, Matteo; Melton, Forrest S.; Barker, Christopher M.
2016-01-01
The ongoing spread of the mosquitoes, Aedes aegypti and Aedes albopictus, in the continental United States leaves new areas at risk for local transmission of dengue, chikungunya, and Zika viruses. All three viruses have caused major disease outbreaks in the Americas with infected travelers returning regularly to the U.S. The expanding range of these mosquitoes raises questions about whether recent spread has been enabled by climate change or other anthropogenic influences. In this analysis, we used downscaled climate scenarios from the NASA Earth Exchange Global Daily Downscaled Projections (NEX GDDP) dataset to model Ae. aegypti and Ae. albopictus population growth rates across the United States. We used a stage-structured matrix population model to understand past and present climatic suitability for these vectors, and to project future suitability under CMIP5 climate change scenarios. Our results indicate that much of the southern U.S. is suitable for both Ae. aegypti and Ae. albopictus year-round. In addition, a large proportion of the U.S. is seasonally suitable for mosquito population growth, creating the potential for periodic incursions into new areas. Changes in climatic suitability in recent decades for Ae. aegypti and Ae. albopictus have occurred already in many regions of the U.S., and model projections of future climate suggest that climate change will continue to reshape the range of Ae. aegypti and Ae. albopictus in the U.S., and potentially the risk of the viruses they transmit.
Predicting future uncertainty constraints on global warming projections
Shiogama, H.; Stone, D.; Emori, S.; ...
2016-01-11
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less
Predicting future uncertainty constraints on global warming projections
Shiogama, H.; Stone, D.; Emori, S.; Takahashi, K.; Mori, S.; Maeda, A.; Ishizaki, Y.; Allen, M. R.
2016-01-01
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by “current knowledge” of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudo observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2 °C (3 °C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change. PMID:26750491
Predicting future uncertainty constraints on global warming projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiogama, H.; Stone, D.; Emori, S.
Projections of global mean temperature changes (ΔT) in the future are associated with intrinsic uncertainties. Much climate policy discourse has been guided by "current knowledge" of the ΔTs uncertainty, ignoring the likely future reductions of the uncertainty, because a mechanism for predicting these reductions is lacking. By using simulations of Global Climate Models from the Coupled Model Intercomparison Project Phase 5 ensemble as pseudo past and future observations, we estimate how fast and in what way the uncertainties of ΔT can decline when the current observation network of surface air temperature is maintained. At least in the world of pseudomore » observations under the Representative Concentration Pathways (RCPs), we can drastically reduce more than 50% of the ΔTs uncertainty in the 2040 s by 2029, and more than 60% of the ΔTs uncertainty in the 2090 s by 2049. Under the highest forcing scenario of RCPs, we can predict the true timing of passing the 2°C (3°C) warming threshold 20 (30) years in advance with errors less than 10 years. These results demonstrate potential for sequential decision-making strategies to take advantage of future progress in understanding of anthropogenic climate change.« less
Future Evolution of Marine Heat Waves in the Mediterranean: Coupled Regional Climate Projections
NASA Astrophysics Data System (ADS)
Darmaraki, Sofia; Somot, Samuel; Sevault, Florence; Nabat, Pierre; Cavicchia, Leone; Djurdjevic, Vladimir; Cabos, William; Sein, Dmitry
2017-04-01
FUTURE EVOLUTION OF MARINE HEAT WAVES IN THE MEDITERRANEAN : COUPLED REGIONAL CLIMATE PROJECTIONS The Mediterranean area is identified as a « Hot Spot » region, vulnerable to future climate change with potentially strong impacts over the sea. By 2100, climate models predict increased warming over the sea surface, with possible implications on the Mediterranean thermohaline and surface circulation,associated also with severe impacts on the ecosystems (e.g. fish habitat loss, species extinction and migration, invasive species). However, a robust assesment of the future evolution of the extreme marine temperatures remains still an open issue of primary importance, under the anthropogenic pressure. In this context, we study here the probability and characteristics of marine heat wave (MHW) occurrence in the Mediterranean Sea in future climate projections. To this end, we use an ensemble of fully coupled regional climate system models (RCSM) from the Med- CORDEX initiative. This multi-model approach includes a high-resolution representation of the atmospheric, land and ocean component, with a free air-sea interface.Specifically, dedicated simulations for the 20th and the 21st century are carried out with respect to the different IPCC-AR5 socioeconomic scenarios (1950-2100, RCP8.5, RCP4.5, RCP2.6). Model evaluation for the historical period is performed using satellite and in situ data. Then, the variety of factors that can cause the MHW (e.g. direct radiative forcing, ocean advection, stratification change) are examined to disentangle the dominant driving force. Finally, the spatial variability and temporal evolution of MHW are analyzed on an annual basis, along with additional integrated indicators, useful for marine ecosystems.
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E.; Figuera, Andreína; Rabinovich, Jorge E.
2015-01-01
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. PMID:25688019
Modeling impacts of climate change on freshwater availability in Africa
NASA Astrophysics Data System (ADS)
Faramarzi, Monireh; Abbaspour, Karim C.; Ashraf Vaghefi, Saeid; Farzaneh, Mohammad Reza; Zehnder, Alexander J. B.; Srinivasan, Raghavan; Yang, Hong
2013-02-01
SummaryThis study analyzes the impact of climate change on freshwater availability in Africa at the subbasin level for the period of 2020-2040. Future climate projections from five global circulation models (GCMs) under the four IPCC emission scenarios were fed into an existing SWAT hydrological model to project the impact on different components of water resources across the African continent. The GCMs have been downscaled based on observed data of Climate Research Unit to represent local climate conditions at 0.5° grid spatial resolution. The results show that for Africa as a whole, the mean total quantity of water resources is likely to increase. For individual subbasins and countries, variations are substantial. Although uncertainties are high in the simulated results, we found that in many regions/countries, most of the climate scenarios projected the same direction of changes in water resources, suggesting a relatively high confidence in the projections. The assessment of the number of dry days and the frequency of their occurrences suggests an increase in the drought events and their duration in the future. Overall, the dry regions have higher uncertainties than the wet regions in the projected impacts on water resources. This poses additional challenge to the agriculture in dry regions where water shortage is already severe while irrigation is expected to become more important to stabilize and increase food production.
NASA Astrophysics Data System (ADS)
Lang, C.; Fettweis, X.; Erpicum, M.
2015-05-01
We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.
He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron
2012-01-01
Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.
Developing a phenological model for grapevine to assess future frost risk in Luxembourg
NASA Astrophysics Data System (ADS)
Caffarra, A.; Molitor, D.; Pertot, I.; Sinigoy, P.; Junk, J.
2012-04-01
Late frost damage represents a significant hazard to grape production in cool climate viticulture regions such as Luxembourg. The main aim of our study is to analyze the frequency of these events for the Luxembourg's winegrowing region in the future. Spring frost injuries on grape may occur when young green parts are exposed to air temperature below 0°C. The potential risk is determined by: (i) minimum air temperature conditions and the (ii) the timing of bud burst. Therefore, we developed and validated a model for budburst of the grapevine (*Vitis vinifera)* cultivar Rivaner, the most grown local variety, based on multi-annual data from 7 different sites across Europe and the US. An advantage of this approach is, that it could be applied to a wide range of climate conditions. Higher spring temperatures were projected for the future and could lead to earlier dates of budburst as well as earlier dates of last frost events in the season. However, so far it is unknown if this will increase or decrease the risk of severe late frost damages for Luxembourg's winegrowing region. To address this question results of 10 regional climate change projections from the FP6 ENSEMBLES project (spatial resolution = 25km; A1B emission scenario) were combined with the new bud burst model. The use of a multi model ensemble of climate change projections allows for a better quantification of the uncertainties. A bias corrections scheme, based on local observations, was applied to the model output. Projected daily minimum air temperatures, up to 2098, were compared to the projected date of bud burst in order to quantify the future frost risk for Luxembourg.
Comparative study on Climate Change Policies in the EU and China
NASA Astrophysics Data System (ADS)
Bray, M.; Han, D.
2012-04-01
Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.
NASA Astrophysics Data System (ADS)
Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.
2014-12-01
China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national agriculture adaptation strategy decisions.
Application of Multi-Model CMIP5 Analysis in Future Drought Adaptation Strategies
NASA Astrophysics Data System (ADS)
Casey, M.; Luo, L.; Lang, Y.
2014-12-01
Drought influences the efficacy of numerous natural and artificial systems including species diversity, agriculture, and infrastructure. Global climate change raises concerns that extend well beyond atmospheric and hydrological disciplines - as climate changes with time, the need for system adaptation becomes apparent. Drought, as a natural phenomenon, is typically defined relative to the climate in which it occurs. Typically a 30-year reference time frame (RTF) is used to determine the severity of a drought event. This study investigates the projected future droughts over North America with different RTFs. Confidence in future hydroclimate projection is characterized by the agreement of long term (2005-2100) multi-model precipitation (P) and temperature (T) projections within the Coupled model Intercomparison Project Phase 5 (CMIP5). Drought severity and the propensity of extreme conditions are measured by the multi-scalar, probabilistic, RTF-based Standard Precipitation Index (SPI) and Standard Precipitation Evapotranspiration Index (SPEI). SPI considers only P while SPEI incorporates Evapotranspiration (E) via T; comparing the two reveals the role of temperature change in future hydroclimate change. Future hydroclimate conditions, hydroclimate extremity, and CMIP5 model agreement are assessed for each Representative Concentration Pathway (RCP 2.6, 4.5, 6.0, 8.5) in regions throughout North America for the entire year and for the boreal seasons. In addition, multiple time scales of SPI and SPEI are calculated to characterize drought at time scales ranging from short to long term. The study explores a simple, standardized method for considering adaptation in future drought assessment, which provides a novel perspective to incorporate adaptation with climate change. The result of the analysis is a multi-dimension, probabilistic summary of the hydrological (P, E) environment a natural or artificial system must adapt to over time. Studies similar to this with specified criteria (SPI/SPEI value, time scale, RCP, etc.) can provide professionals in a variety of disciplines with necessary climatic insight to develop adaptation strategies.
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
Incorporating climate science in applications of the US endangered species act for aquatic species.
McClure, Michelle M; Alexander, Michael; Borggaard, Diane; Boughton, David; Crozier, Lisa; Griffis, Roger; Jorgensen, Jeffrey C; Lindley, Steven T; Nye, Janet; Rowland, Melanie J; Seney, Erin E; Snover, Amy; Toole, Christopher; VAN Houtan, Kyle
2013-12-01
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas. © 2013 Society for Conservation Biology No claim to original US government works.
Hurteau, Matthew D
2017-01-01
Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.
2017-01-01
Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010–2019), mid (2050–2059), and late (2090–2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8–48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink. PMID:28046079
Climate refugia for salmon in a changing world
Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in salmonid distributions under future climates range from modest t...
Future Projections of Heating and Cooling Degree Days in a Changing Climate of Turkey
NASA Astrophysics Data System (ADS)
An, Nazan; Turp, M. Tufan; Kurnaz, M. Levent
2017-04-01
The use of the degree days method is the most practical way to forsee the future changes in energy demand due to climate change-induced heating and cooling. Since the temperatures in Turkey vary considerably on a regional basis, the periods 2016-2035 and 2046-2065 have been respectively examined with reference to the period of 1981-2000, taking the mean temperature values into consideration in order to make the most accurate estimation. The future projections were applied based on the RCP8.5 (BAU-business as usual case) emission scenario using regional climate model called RegCM. According to the result of the study, it is projected that the numbers of heating degree days (HDDs) will decrease in the whole country, whereas the frequency of cooling degree days(CDDs) will increase in general. This decrease in HDDs and the increase in CDDs will be higher in the period of 2046-2065 than in the period of 2016-2035. These findings are also consistent with the expectation of temperature increases over these regions for the future period, obtained from the studies of climate modeling for the Mediterranean Basin and Turkey as well. Acknowledgement: This research has been supported by Bogazici University Research Fund Grant Number 12220.
Modeling erosion under future climates with the WEPP model
Timothy Bayley; William Elliot; Mark A. Nearing; D. Phillp Guertin; Thomas Johnson; David Goodrich; Dennis Flanagan
2010-01-01
The Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT) was developed to be an easy-to-use, web-based erosion model that allows users to adjust climate inputs for user-specified climate scenarios. WEPPCAT allows the user to modify monthly mean climate parameters, including maximum and minimum temperatures, number of wet days, precipitation, and...
Unlocking the climate riddle in forested ecosystems
Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking
2012-01-01
Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...
Soil erosion from winter wheat cropland under climate change in central Oklahoma
USDA-ARS?s Scientific Manuscript database
Effects of climate change on sediment yield from a winter wheat field were investigated to determine what conservation practices would be required under climate change to maintain future sediment yield at no more than today’s rates. GCM climate projections for climate change scenario RCP8.5 in West-...
Kao, Yu-Chun; Madenjian, Charles P.; Bunnell, David B.; Lofgren, Brent M.; Perroud, Marjorie
2015-01-01
We used bioenergetics models to investigate temperature effects induced by climate change on the growth and consumption by Chinook salmon Oncorhynchus tshawytscha, lake trout Salvelinus namaycush, and steelhead O. mykiss in Lakes Michigan and Huron. We updated biological inputs to account for recent changes in the food webs and used temperature inputs in response to regional climate observed in the baseline period (1964–1993) and projected in the future period (2043–2070).Bioenergetics simulations were run across multiple age-classes and across all four seasons in different scenarios of prey availability. Due to the increased capacity of prey consumption, future growth and consumption by these salmonines were projected to increase substantially when prey availability was not limited. When prey consumption remained constant, future growth of these salmonines was projected to decrease in most cases but increase in some cases where the increase in metabolic cost can be compensated by the decrease in waste (egestion and excretion) loss. Consumption by these salmonines was projected to increase the most during spring and fall when prey energy densities are relatively high. Such seasonality benefits their future growth through increasing annual gross energy intake. Our results indicated that lake trout and steelhead would be better adapted to the warming climate than Chinook salmon. To maintain baseline growth into the future, an increase of 10 % in baseline prey consumption was required for Chinook salmon but considerably smaller increases, or no increases, in prey consumption were needed by lake trout and steelhead.
Towards bridging the gap between climate change projections and maize producers in South Africa
NASA Astrophysics Data System (ADS)
Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus
2018-05-01
Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.
Future respiratory hospital admissions from wildfire smoke under climate change in the Western US
NASA Astrophysics Data System (ADS)
Coco Liu, Jia; Mickley, Loretta J.; Sulprizio, Melissa P.; Yue, Xu; Peng, Roger D.; Dominici, Francesca; Bell, Michelle L.
2016-12-01
Background. Wildfires are anticipated to be more frequent and intense under climate change. As a result, wildfires may emit more air pollutants that can harm health in communities in the future. The health impacts of wildfire smoke under climate change are largely unknown. Methods. We linked projections of future levels of fine particulate matter (PM2.5) specifically from wildfire smoke under the A1B climate change scenario using the GEOS-Chem model for 2046-2051, present-day estimates of hospital admission impacts from wildfire smoke, and future population projections to estimate the change in respiratory hospital admissions for persons ≥65 years by county (n = 561) from wildfire PM2.5 under climate change in the Western US. Results. The increase in intense wildfire smoke days from climate change would result in an estimated 178 (95% confidence interval: 6.2, 361) additional respiratory hospital admissions in the Western US, accounting for estimated future increase in the elderly population. Climate change is estimated to impose an additional 4990 high-pollution smoke days. Central Colorado, Washington and southern California are estimated to experience the highest percentage increase in respiratory admissions from wildfire smoke under climate change. Conclusion. Although the increase in number of respiratory admissions from wildfire smoke seems modest, these results provide important scientific evidence of an often-ignored aspect of wildfire impact, and information on their anticipated spatial distribution. Wildfires can cause serious social burdens such as property damage and suppression cost, but can also raise health problems. The results provide information that can be incorporated into development of environmental and health policies in response to climate change. Climate change adaptation policies could incorporate scientific evidence on health risks from natural disasters such as wildfires.
Modeling the effects of land use and climate change on riverine smallmouth bass
Peterson, J.T.; Kwak, T.J.
1999-01-01
Anthropogenic changes in temperature and stream flow, associated with watershed land use and climate change, are critical influences on the distribution and abundance of riverine fishes. To project the effects of changing land use and climate, we modeled a smallmouth bass (Micropterus dolomieu) population in a midwestern USA, large river- floodplain ecosystem under historical (1915-1925), present (1977-1990), and future (2060, influenced by climate change) temperature and flow regimes. The age-structured model included parameters for temperature and river discharge during critical seasonal periods, fish population dynamics, and fishing harvest. Model relationships were developed from empirical field data collected over a 13-yr period. Sensitivity analyses indicated that discharge during the spawning/rearing period had a greater effect on adult density and fishing yield than did spawning/rearing temperature or winter discharge. Simulations for 100 years projected a 139% greater mean fish density under a historical flow regime (64.9 fish/ha) than that estimated for the present (27.1 fish/ha) with a sustainable fishing harvest under both flow regimes. Simulations under future climate-change-induced temperature and flow regimes with present land use projected a 69% decrease in mean fish density (8.5 fish/ha) from present and an unstable population that went extinct during 56% of the simulations. However, when simulated under a future climate-altered temperature and flow regime with historical land use, the population increased by 66% (45.0 fish/ha) from present and sustained a harvest. Our findings suggest that land-use changes may be a greater detriment to riverine fishes than projected climate change and that the combined effects of both factors may lead to local species extinction. However, the negative effects of increased temperature and precipitation associated with future global warming could be mitigated by river channel, floodplain, and watershed restoration.
NASA Astrophysics Data System (ADS)
Rajaud, A.; De Noblet-Ducoudré, N.
2015-12-01
More and more reforestation projects are undertaken at local to continental scales to fight desertification, to address development challenges, and to improve local living conditions in tropical semi-arid regions. These regions are very sensitive to climatic changes and the potential for maintaining tree-covers will be altered in the next decades. Therefore, reforestation planning needs predicting the future "climatic tree-cover potential": the optimum tree-fraction sustainable in future climatic states. Global circulation models projections provide possible future climatologies for the 21st century. These can be used at the global scale to force a land-surface model, which in turn simulates the vegetation development under these conditions. The tree cover leading to an optimum development may then be identified. We propose here to run a state-of-the-art model and to assess the span and the relevance of the answers that can be obtained for reforestation planning. The ORCHIDEE vegetation model is chosen here to allow a multi-criteria evaluation of the optimum cover, as it returns surface climate state variables as well as vegetation functioning and biomass products. It is forced with global climate data (WFDEI and CRU) for the 20th century and models projections (CMIP5 outputs) for the 21st century. At the grid-cell resolution of the forcing climate data, tree-covers ranging from 0 to 100% are successively prescribed. A set of indicators is then derived from the model outputs, meant for modulating reforestation strategies according to the regional priorities (e.g. maximize the biomass production or decrease the surface air temperature). The choice of indicators and the relevance of the final answers provided will be collectively assessed by the climate scientists and reforestation project management experts from the KINOME social enterprise (http://en.kinome.fr). Such feedback will point towards the model most urging needs for improvement.
NASA Astrophysics Data System (ADS)
Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.
2016-12-01
Biogeochemical cycling of water, carbon, and nitrogen in alpine tundra ecosystems are closely related to the water and nutrient supply and ecosystem function of watersheds. While studies on the response of alpine tundra to climate change have largely focused on ecosystem structure, research on response of ecosystem function and element cycling are less well established. Using downscaled future climate scenarios under Representative Concentration Pathways (RCP) and revised algorithm of the ecosystem model, PnET-BGC, we investigated water, carbon, and nitrogen cycling of an alpine tundra ecosystem under different projections of future climate change at Saddle site of Niwot Ridge, Colorado. Simulations from this study suggest that future water supply from the alpine tundra was well predicted by the Budyko curve, which contrasts with findings from several previous studies. Although foliar display is projected to decrease due to summer water stress, an extend growing season and increasing atmospheric CO2 concentrations reverse its effects on carbon fixation by allowing longer period of photosynthesis and greater photosynthetic rate per leaf area. As a result of the increasing carbon sequestration, large increases in carbon storage are projected in living and dead biomass. Decomposition of soil organic carbon and mineralization of soil organic nitrogen increase with temperature and soil moisture, but also related to the period of snow cover which likely enhances microbial activity and associated soil decomposition and N immobilization. Future increase in winter precipitation leads to increasing snow water content which increases spring soil moisture and decomposition. Shorter future snow cover period and decreased summer soil moisture caused lower decomposition in both seasons, therefore negligible long-term pattern is projected. Future net N mineralization generally followed the pattern of organic carbon decomposition, but slightly increased because of decreasing winter immobilization due to projected shorter snow cover period. Nitrogen uptake is projected to be higher under radiative forcing scenarios of higher primary production and greater net N mineralization.
Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada
NASA Astrophysics Data System (ADS)
Eum, Hyung-Il; Dibike, Yonas; Prowse, Terry
2017-01-01
The hydrologic response of the Athabasca River Basin (ARB) in Alberta to projected changes in the future climate is investigated using the Variable Infiltration Capacity (VIC) process-based and distributed hydrologic model. The model forcings are derived from a selected set of GCMs from the latest Coupled Model Intercomparison Project (CMIP5) statistically downscaled to a higher resolution (10 km) over Canada. Twelve hydrologic indicators that represent the magnitude and timing of the hydrologic regimes are evaluated for three 30-year time periods centered at the 1990s, 2050s and 2080s to identify significant alterations of hydrologic regimes between the reference and the two future periods using a t-test at 5% significance level. Hydrologic alteration factors (HAF) are also evaluated for each hydrologic indicator using the range of variability approach (RVA) to investigate projected changes in the distribution of these indicators. The results show increases in spring and winter flows for the two future periods at all hydrometric stations within the basin, resulting in an extended period of spring freshet. A higher rate of increase is projected for the stations located at the upper reach of the river because of the combined effects of increased precipitation and earlier snowmelt resulting from a warming climate. By contrast, summer flows are projected to decrease by up to 21% on average in the 2080s over most of the mainstem stations because of earlier snowmelt, increased evapotranspiration and no significant increase in summer precipitation. A water-management rule that optimizes impacts of water withdrawal from the lower reach of the Athabasca River under the current condition is also applied to the future scenarios to assess its relative performance under the projected climate conditions. The results indicate possible improvement in the water resources system performance in terms of increased reliability and resilience and reduced vulnerability during the two future periods as compared with those in the reference period mainly because of the projected increases in spring and winter flows, which has the potential to offset an expected future water deficit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banner, Jay L.; Jackson, Charles S.; Yang, Zong-Liang
2010-09-01
Texas comprises the eastern portion of the Southwest region, where the convergence of climatological and geopolitical forces has the potential to put extreme stress on water resources. Geologic records indicate that Texas experienced large climate changes on millennial time scales in the past, and over the last thousand years, tree-ring records indicate that there were significant periods of drought in Texas. These droughts were of longer duration than the 1950s 'drought of record' that is commonly used in planning, and they occurred independently of human-induced global climate change. Although there has been a negligible net temperature increase in Texas overmore » the past century, temperatures have increased more significantly over the past three decades. Under essentially all climate model projections, Texas is susceptible to significant climate change in the future. Most projections for the 21st century show that with increasing atmospheric greenhouse gas concentrations, there will be an increase in temperatures across Texas and a shift to a more arid average climate. Studies agree that Texas will likely become significantly warmer and drier, yet the magnitude, timing, and regional distribution of these changes are uncertain. There is a large uncertainty in the projected changes in precipitation for Texas for the 21st century. In contrast, the more robust projected increase in temperature with its effect on evaporation, which is a dominant component in the region's hydrologic cycle, is consistent with model projections of frequent and extended droughts throughout the state. For these reasons, we recommend that Texas invest resources to investigate and anticipate the impacts of climate change on Texas water resources, with the goal of providing data to inform resource planning. This investment should support development of (1) research programs that provide policy-relevant science; (2) education programs to engage future researchers and policy-makers; and (3) connections between policy-makers, scientists, water resource managers, and other stakeholders. It is proposed that these goals may be achieved through the establishment of a Texas Climate Consortium, consisting of representatives from academia, industry, government agencies, water authorities, and other stakeholders. The mission of this consortium would be to develop the capacity to provide decision makers with the information needed to develop adaptation strategies in the face of future climate change and uncertainty.« less
Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C
2015-08-01
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by lessening the impact of future land-use activities on biodiversity within hotspots. © 2015 Society for Conservation Biology.
Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.
Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang
2016-04-21
The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.
Niches, models, and climate change: Assessing the assumptions and uncertainties
Wiens, John A.; Stralberg, Diana; Jongsomjit, Dennis; Howell, Christine A.; Snyder, Mark A.
2009-01-01
As the rate and magnitude of climate change accelerate, understanding the consequences becomes increasingly important. Species distribution models (SDMs) based on current ecological niche constraints are used to project future species distributions. These models contain assumptions that add to the uncertainty in model projections stemming from the structure of the models, the algorithms used to translate niche associations into distributional probabilities, the quality and quantity of data, and mismatches between the scales of modeling and data. We illustrate the application of SDMs using two climate models and two distributional algorithms, together with information on distributional shifts in vegetation types, to project fine-scale future distributions of 60 California landbird species. Most species are projected to decrease in distribution by 2070. Changes in total species richness vary over the state, with large losses of species in some “hotspots” of vulnerability. Differences in distributional shifts among species will change species co-occurrences, creating spatial variation in similarities between current and future assemblages. We use these analyses to consider how assumptions can be addressed and uncertainties reduced. SDMs can provide a useful way to incorporate future conditions into conservation and management practices and decisions, but the uncertainties of model projections must be balanced with the risks of taking the wrong actions or the costs of inaction. Doing this will require that the sources and magnitudes of uncertainty are documented, and that conservationists and resource managers be willing to act despite the uncertainties. The alternative, of ignoring the future, is not an option. PMID:19822750
Projected changes in daily fire spread across Canada over the next century
NASA Astrophysics Data System (ADS)
Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.
2017-02-01
In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.
Greater future global warming inferred from Earth’s recent energy budget
NASA Astrophysics Data System (ADS)
Brown, Patrick T.; Caldeira, Ken
2017-12-01
Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.
Greater future global warming inferred from Earth's recent energy budget.
Brown, Patrick T; Caldeira, Ken
2017-12-06
Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.
Biospheric feedback effects in a synchronously coupled model of human and Earth systems
NASA Astrophysics Data System (ADS)
Thornton, P. E.; Calvin, K. V.; Jones, A. D.; Di Vittorio, A. V.; Bond-Lamberty, B. P.; Chini, L. P.; Shi, X.; Mao, J.; Collins, W. D.; Edmonds, J.; Hurtt, G. C.
2017-12-01
Fossil fuel combustion and land-use change are the two largest contributors to industrial-era increases in atmospheric CO2 concentration. Projections of these are thus fundamental inputs for coupled Earth system models (ESMs) used to estimate the physical and biological consequences of future climate system forcing. While historical datasets are available to inform past and current climate analyses, assessments of future climate change have relied on projections of energy and land use from energy economic models, constrained by assumptions about future policy, land-use patterns, and socio-economic development trajectories. In this work we show that the climatic impacts on land ecosystems drives significant feedbacks in energy, agriculture, land-use, and carbon cycle projections for the 21st century. We find that exposure of human appropriated land ecosystem productivity to biospheric change results in reductions of land area used for crops; increases in managed forest area and carbon stocks; decreases in global crop prices; and reduction in fossil fuel emissions for a low-mid range forcing scenario. Land ecosystem response to increased carbon dioxide concentration, increased anthropogenic nitrogen deposition, and changes in temperature and precipitation all play a role. The feedbacks between climate-induced biospheric change and human system forcings to the climate system demonstrated in this work are handled inconsistently, or excluded altogether, in the one-way asynchronous coupling of energy economic models to ESMs used to date.
Next-generation invaders? Hotspots for naturalised sleeper weeds in Australia under future climates.
Duursma, Daisy Englert; Gallagher, Rachael V; Roger, Erin; Hughes, Lesley; Downey, Paul O; Leishman, Michelle R
2013-01-01
Naturalised, but not yet invasive plants, pose a nascent threat to biodiversity. As climate regimes continue to change, it is likely that a new suite of invaders will emerge from the established pool of naturalised plants. Pre-emptive management of locations that may be most suitable for a large number of potentially invasive plants will help to target monitoring, and is vital for effective control. We used species distribution models (SDM) and invasion-hotspot analysis to determine where in Australia suitable habitat may occur for 292 naturalised plants. SDMs were built in MaxEnt using both climate and soil variables for current baseline conditions. Modelled relationships were projected onto two Representative Concentration Pathways for future climates (RCP 4.5 and 8.5), based on seven global climate models, for two time periods (2035, 2065). Model outputs for each of the 292 species were then aggregated into single 'hotspot' maps at two scales: continental, and for each of Australia's 37 ecoregions. Across Australia, areas in the south-east and south-west corners of the continent were identified as potential hotspots for naturalised plants under current and future climates. These regions provided suitable habitat for 288 and 239 species respectively under baseline climates. The areal extent of the continental hotspot was projected to decrease by 8.8% under climates for 2035, and by a further 5.2% by 2065. A similar pattern of hotspot contraction under future climates was seen for the majority of ecoregions examined. However, two ecoregions - Tasmanian temperate forests and Australian Alps montane grasslands - showed increases in the areal extent of hotspots of >45% under climate scenarios for 2065. The alpine ecoregion also had an increase in the number of naturalised plant species with abiotically suitable habitat under future climate scenarios, indicating that this area may be particularly vulnerable to future incursions by naturalised plants.
Next-Generation Invaders? Hotspots for Naturalised Sleeper Weeds in Australia under Future Climates
Roger, Erin; Hughes, Lesley; Downey, Paul O.; Leishman, Michelle R.
2013-01-01
Naturalised, but not yet invasive plants, pose a nascent threat to biodiversity. As climate regimes continue to change, it is likely that a new suite of invaders will emerge from the established pool of naturalised plants. Pre-emptive management of locations that may be most suitable for a large number of potentially invasive plants will help to target monitoring, and is vital for effective control. We used species distribution models (SDM) and invasion-hotspot analysis to determine where in Australia suitable habitat may occur for 292 naturalised plants. SDMs were built in MaxEnt using both climate and soil variables for current baseline conditions. Modelled relationships were projected onto two Representative Concentration Pathways for future climates (RCP 4.5 and 8.5), based on seven global climate models, for two time periods (2035, 2065). Model outputs for each of the 292 species were then aggregated into single ‘hotspot’ maps at two scales: continental, and for each of Australia’s 37 ecoregions. Across Australia, areas in the south-east and south-west corners of the continent were identified as potential hotspots for naturalised plants under current and future climates. These regions provided suitable habitat for 288 and 239 species respectively under baseline climates. The areal extent of the continental hotspot was projected to decrease by 8.8% under climates for 2035, and by a further 5.2% by 2065. A similar pattern of hotspot contraction under future climates was seen for the majority of ecoregions examined. However, two ecoregions - Tasmanian temperate forests and Australian Alps montane grasslands - showed increases in the areal extent of hotspots of >45% under climate scenarios for 2065. The alpine ecoregion also had an increase in the number of naturalised plant species with abiotically suitable habitat under future climate scenarios, indicating that this area may be particularly vulnerable to future incursions by naturalised plants. PMID:24386353
Effective Climate Refugia for Cold-water Fishes
NASA Astrophysics Data System (ADS)
Ebersole, J. L.; Morelli, T. L.; Torgersen, C.; Isaak, D.; Keenan, D.; Labiosa, R.; Fullerton, A.; Massie, J.
2015-12-01
Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in mid-latitude salmonid distributions under future climates range from modest to severe, depending on modeling approaches, assumptions, and spatial context of analyses. Given these projected losses, increased emphasis on management for ecosystem resilience to help buffer cold-water fish populations and their habitats against climate change is emerging. Using terms such as "climate-proofing", "climate-ready", and "climate refugia", such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, such approaches will need to address critical uncertainties in both the physical basis for projected landscape changes in water temperature and streamflow, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on projected streamflows, air temperatures, and associated water temperature changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local hydrological responses and thermal dynamics. Yet important questions remain. Drawing on case studies throughout the Pacific Northwest, we illustrate some key uncertainties in the responses of salmonids and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. Key uncertainties include biotic interactions, organismal adaptive capacity, local climate decoupling due to groundwater-surface water interactions, the influence of human engineering responses, and synergies between climatic and other stressors. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.
Climate Change Resilience Planning at the Department of Energy's Savannah River Site
NASA Astrophysics Data System (ADS)
Werth, D. W.; Johnson, A.
2015-12-01
The Savannah River National Laboratory (SRNL) is developing a site sustainability plan for the Department of Energy's Savannah River Site (SRS) in South Carolina in accordance with Executive Order 13693, which charges each DOE agency with "identifying and addressing projected impacts of climate change" and "calculating the potential cost and risk to mission associated with agency operations". The plan will comprise i) projections of climate change, ii) surveys of site managers to estimate the effects of climate change on site operations, and iii) a determination of adaptive actions. Climate change projections for SRS are obtained from multiple sources, including an online repository of downscaled global climate model (GCM) simulations of future climate and downscaled GCM simulations produced at SRNL. Taken together, we have projected data for temperature, precipitation, humidity, and wind - all variables with a strong influence on site operations. SRNL is working to engage site facility managers and facilitate a "bottom up" approach to climate change resilience planning, where the needs and priorities of stakeholders are addressed throughout the process. We make use of the Vulnerability Assessment Scoring Tool, an Excel-based program designed to accept as input various climate scenarios ('exposure'), the susceptibility of assets to climate change ('sensitivity'), and the ability of these assets to cope with climate change ('adaptive capacity'). These are combined to produce a series of scores that highlight vulnerabilities. Working with site managers, we have selected the most important assets, estimated their expected response to climate change, and prepared a report highlighting the most endangered facilities. Primary risks include increased energy consumption, decreased water availability, increased forest fire danger, natural resource degradation, and compromised outdoor worker safety in a warmer and more humid climate. Results of this study will aid in driving future management decisions and promoting sustainable practices at SRS.
NASA Astrophysics Data System (ADS)
Khan, M.; Abdul-Aziz, O. I.
2017-12-01
Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.
Riordan, Erin Coulter; Rundel, Philip W
2014-01-01
Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning.
Tang, Ying; Winkler, Julie; Zhong, Shiyuan; Bian, Xindi; Doubler, Dana; Yu, Lejiang; Walters, Claudia
2017-07-10
The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereas current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. The choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.
Projected increases in the annual flood pulse of the western Amazon
NASA Astrophysics Data System (ADS)
Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William
2016-04-01
The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.
Response of Groundwater Recharge to Potential Future Climate Change in the Grand River Watershed
NASA Astrophysics Data System (ADS)
Jyrkama, M. I.; Sykes, J. F.
2004-05-01
The Grand River watershed is situated in south-western Ontario, draining an area of nearly 7000 square kilometres into Lake Erie. Approximately eighty percent of the population in the watershed derive their drinking water from groundwater sources. Quantifying the recharge input to the groundwater system and the impact of climate variability due to climate change is, therefore, essential for ensuring the quantity and sustainability of the watershed's drinking water resources in the future. The primary goal of this study is to investigate the impact of potential future climate changes on groundwater recharge in the Grand River watershed. The physically based hydrologic model HELP3 is used in conjunction with GIS to simulate the past conditions and future changes in evapotranspiration, potential surface runoff, and groundwater recharge rates as a result of projected changes in the regions climate. The climate change projections are based on the general predictions reported by the Intergovernmental Panel on Climate Change (IPCC) in 2001. Forty years of daily historical weather data are used as the reference condition. The impact of climate change on the hydrologic cycle over a forty year study period is modelled by perturbing the HELP3 model input parameters using predicted future changes in precipitation, temperature, and solar radiation. The changes in land use and vegetation cover over time were not considered in the study. The results of the study indicate that the overall simulated rate of groundwater recharge is predicted to increase in the watershed as a result of the projected future climate change. Warmer winter temperatures will reduce the extent and duration of ground frost and shift the springmelt from spring toward winter months, allowing more water to infiltrate into the ground. This results in decreased surface runoff, higher infiltration, and subsequently increased groundwater recharge. The predicted higher intensity and frequency of future precipitation will not only contribute significantly to increased surface runoff, but also results in higher evapotranspiration and groundwater recharge rates due to increased amounts of available water. Changes in the incoming solar radiation have a minimal impact on the simulated hydrologic processes. The overall simulated average annual recharge in the watershed is predicted to increase by approximately 100 mm/year over the next forty years from 189 mm/year to 289 mm/year.
Linking climate change projections for an Alaskan watershed to future coho salmon production.
Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M
2014-06-01
Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Influence of climate change on flood magnitude and seasonality in the Arga River catchment in Spain
NASA Astrophysics Data System (ADS)
Garijo, Carlos; Mediero, Luis
2018-04-01
Climate change projections suggest that extremes, such as floods, will modify their behaviour in the future. Detailed catchment-scale studies are needed to implement the European Union Floods Directive and give recommendations for flood management and design of hydraulic infrastructure. In this study, a methodology to quantify changes in future flood magnitude and seasonality due to climate change at a catchment scale is proposed. Projections of 24 global climate models are used, with 10 being downscaled by the Spanish Meteorological Agency (Agencia Estatal de Meteorología, AEMET) and 14 from the EURO-CORDEX project, under two representative concentration pathways (RCPs) 4.5 and 8.5, from the Fifth Assessment Report provided by the Intergovernmental Panel on Climate Change. Downscaled climate models provided by the AEMET were corrected in terms of bias. The HBV rainfall-runoff model was selected to simulate the catchment hydrological behaviour. Simulations were analysed through both annual maximum and peaks-over-threshold (POT) series. The results show a decrease in the magnitude of extreme floods for the climate model projections downscaled by the AEMET. However, results for the climate model projections downscaled by EURO-CORDEX show differing trends, depending on the RCP. A small decrease in the flood magnitude was noticed for the RCP 4.5, while an increase was found for the RCP 8.5. Regarding the monthly seasonality analysis performed by using the POT series, a delay in the flood timing from late-autumn to late-winter is identified supporting the findings of recent studies performed with observed data in recent decades.
NASA Astrophysics Data System (ADS)
Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.
2014-12-01
Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.
Nukazawa, Kei; Arai, Ryosuke; Kazama, So; Takemon, Yasuhiro
2018-06-14
Climate change places considerable stress on riverine ecosystems by altering flow regimes and increasing water temperature. This study evaluated how water temperature increases under climate change scenarios will affect stream invertebrates in pristine headwater streams. The studied headwater-stream sites were distributed within a temperate catchment of Japan and had similar hydraulic-geographical conditions, but were subject to varying temperature conditions due to altitudinal differences (100 to 850 m). We adopted eight general circulation models (GCMs) to project air temperature under conservative (RCP2.6), intermediate (RCP4.5), and extreme climate scenarios (RCP8.5) during the near (2031-2050) and far (2081-2100) future. Using the water temperature of headwater streams computed by a distributed hydrological-thermal model as a predictor variable, we projected the population density of stream invertebrates in the future scenarios based on generalized linear models. The mean decrease in the temporally averaged population density of Plecoptera was 61.3% among the GCMs, even under RCP2.6 in the near future, whereas density deteriorated even further (90.7%) under RCP8.5 in the far future. Trichoptera density was also projected to greatly deteriorate under RCP8.5 in the far future. We defined taxa that exhibited temperature-sensitive declines under climate change as cold stenotherms and found that most Plecoptera taxa were cold stenotherms in comparison to other orders. Specifically, the taxonomic families that only distribute in Palearctic realm (e.g., Megarcys ochracea and Scopura longa) were selectively assigned, suggesting that Plecoptera family with its restricted distribution in the Palearctic might be a sensitive indicator of climate change. Plecoptera and Trichoptera populations in the headwaters are expected/anticipated to decrease over the considerable geographical range of the catchment, even under the RCP2.6 in the near future. Given headwater invertebrates play important roles in streams, such as contributing to watershed productivity, our results provide useful information for managing streams at the catchment-level. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Lai R.; Qian, Yun
This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statisticallymore » insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.« less
Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S
2017-01-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf
Lam, Vicky W. Y.; Reygondeau, Gabriel; Teh, Lydia C. L.; Al-Abdulrazzak, Dalal; Khalfallah, Myriam; Pauly, Daniel; Palomares, Maria L. Deng; Zeller, Dirk; Cheung, William W. L.
2018-01-01
Climate change–reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions–is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a ‘business-as-usual’ climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region’s diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region. PMID:29718919
Impacts of past and future climate change on wind energy resources in the United States
NASA Astrophysics Data System (ADS)
McCaa, J. R.; Wood, A.; Eichelberger, S.; Westrick, K.
2009-12-01
The links between climate change and trends in wind energy resources have important potential implications for the wind energy industry, and have received significant attention in recent studies. We have conducted two studies that provide insights into the potential for climate change to affect future wind power production. In one experiment, we projected changes in power capacity for a hypothetical wind farm located near Kennewick, Washington, due to greenhouse gas-induced climate change, estimated using a set of regional climate model simulations. Our results show that the annual wind farm power capacity is projected to decrease 1.3% by 2050. In a wider study focusing on wind speed instead of power, we analyzed projected changes in wind speed from 14 different climate simulations that were performed in support of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). Our results show that the predicted ensemble mean changes in annual mean wind speeds are expected to be modest. However, seasonal changes and changes predicted by individual models are large enough to affect the profitability of existing and future wind projects. The majority of the model simulations reveal that near-surface wind speed values are expected to shift poleward in response to the IPCC A2 emission scenario, particularly during the winter season. In the United States, most models agree that the mean annual wind speed values will increase in a region extending from the Great Lakes southward across the Midwest and into Texas. Decreased values, though, are predicted across most of the western United States. However, these predicted changes have a strong seasonal dependence, with wind speed increases over most of the United States during the winter and decreases over the northern United States during the summer.
NASA Astrophysics Data System (ADS)
Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.
2014-12-01
Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.
Robinson, Marci; Dowsett, Harry
2010-01-01
U.S. Geological Survey (USGS) researchers are at the forefront of paleoclimate research, the study of past climates. With their unique skills and perspective, only geologists have the tools necessary to delve into the distant past (long before instrumental records were collected) in order to better understand global environmental conditions that were very different from today's conditions. Paleoclimatologists are geologists who study past climates to answer questions about what the Earth was like in the past and to enable projections, plans, and preparations for the future. The Intergovernmental Panel on Climate Change (IPCC) has projected a future warmer climate that has the potential to affect every person on Earth. Extreme weather events, rising sea level, and migrating ecosystems and resources could result in worldwide socio-economic stresses if not met with prudent and proactive action plans based on quality scientific research. Still, the most dangerous aspect of our changing climate is the uncertainty in the exact nature and rate of projected climate change. To reduce the uncertainties, USGS paleoclimatologists are studying a possible analog to a future warmer climate. The middle part of the Piacenzian Stage of the Pliocene Epoch, about 3.3 to 3.0 million years ago, is the most recent period in Earth's history in which global warmth reached and remained at temperatures similar to those projected for the end of this century, about 2 degrees C to 3 degrees C warmer on average than today over the entire globe. This past warmer time interval preceded the ice ages but was recent enough, geologically, to be very similar to today in terms of ocean circulation and the position of the continents. Also, the populations of plants and animals were much like those of today, and so geologists can use their fossils to estimate past environmental conditions such as temperature and sea level.
Risk-based water resources planning: Incorporating probabilistic nonstationary climate uncertainties
NASA Astrophysics Data System (ADS)
Borgomeo, Edoardo; Hall, Jim W.; Fung, Fai; Watts, Glenn; Colquhoun, Keith; Lambert, Chris
2014-08-01
We present a risk-based approach for incorporating nonstationary probabilistic climate projections into long-term water resources planning. The proposed methodology uses nonstationary synthetic time series of future climates obtained via a stochastic weather generator based on the UK Climate Projections (UKCP09) to construct a probability distribution of the frequency of water shortages in the future. The UKCP09 projections extend well beyond the range of current hydrological variability, providing the basis for testing the robustness of water resources management plans to future climate-related uncertainties. The nonstationary nature of the projections combined with the stochastic simulation approach allows for extensive sampling of climatic variability conditioned on climate model outputs. The probability of exceeding planned frequencies of water shortages of varying severity (defined as Levels of Service for the water supply utility company) is used as a risk metric for water resources planning. Different sources of uncertainty, including demand-side uncertainties, are considered simultaneously and their impact on the risk metric is evaluated. Supply-side and demand-side management strategies can be compared based on how cost-effective they are at reducing risks to acceptable levels. A case study based on a water supply system in London (UK) is presented to illustrate the methodology. Results indicate an increase in the probability of exceeding the planned Levels of Service across the planning horizon. Under a 1% per annum population growth scenario, the probability of exceeding the planned Levels of Service is as high as 0.5 by 2040. The case study also illustrates how a combination of supply and demand management options may be required to reduce the risk of water shortages.
Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf.
Wabnitz, Colette C C; Lam, Vicky W Y; Reygondeau, Gabriel; Teh, Lydia C L; Al-Abdulrazzak, Dalal; Khalfallah, Myriam; Pauly, Daniel; Palomares, Maria L Deng; Zeller, Dirk; Cheung, William W L
2018-01-01
Climate change-reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions-is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a 'business-as-usual' climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region's diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region.
J.M. Bowker; Ashley E. Askew
2013-01-01
We develop projections of participation and use for 17 nature-based outdoor recreation activities through 2060 for the Northern United States. Similar to the 2010 Resources Planning Act (RPA) assessment, this report develops recreation projections under futures wherein population growth, socioeconomic conditions, land use changes, and climate are allowed to change over...
Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.
Shrestha, Narayan Kumar; Du, Xinzhong; Wang, Junye
2017-12-01
Proper management of blue and green water resources is important for the sustainability of ecosystems and for the socio-economic development of river basins such as the Athabasca River Basin (ARB) in Canada. For this reason, quantifying climate change impacts on these water resources at a finer temporal and spatial scale is often necessary. In this study, we used a Soil and Water Assessment Tool (SWAT) to assess climate change impacts on fresh water resources, focusing explicitly on the impacts to both blue and green water. We used future climate data generated by the Canadian Center for Climate Modelling and Analysis Regional Climate Model (CanRCM4) with a spatial resolution of 0.22°×0.22° (~25km) for two emission scenarios (RCP 4.5 and 8.5). Results projected the climate of the ARB to be wetter by 21-34% and warmer by 2-5.4°C on an annual time scale. Consequently, the annual average blue and green water flow was projected to increase by 16-54% and 11-34%, respectively, depending on the region, future period, and emission scenario. Furthermore, the annual average green water storage at the boreal region was expected to increase by 30%, while the storage was projected to remain fairly stable or decrease in other regions, especially during the summer season. On average, the fresh water resources in the ARB are likely to increase in the future. However, evidence of temporal and spatial heterogeneity could pose many future challenges to water resource planners and managers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pasten Zapata, Ernesto; Moggridge, Helen; Jones, Julie; Widmann, Martin
2017-04-01
Run-of-the-River (ROR) hydropower schemes are expected to be importantly affected by climate change as they rely in the availability of river flow to generate energy. As temperature and precipitation are expected to vary in the future, the hydrological cycle will also undergo changes. Therefore, climate models based on complex physical atmospheric interactions have been developed to simulate future climate scenarios considering the atmosphere's greenhouse gas concentrations. These scenarios are classified according to the Representative Concentration Pathways (RCP) that are generated according to the concentration of greenhouse gases. This study evaluates possible scenarios for selected ROR hydropower schemes within the UK, considering three different RCPs: 2.6, 4.5 and 8.5 W/m2 for 2100 relative to pre-industrial values. The study sites cover different climate, land cover, topographic and hydropower scheme characteristics representative of the UK's heterogeneity. Precipitation and temperature outputs from state-of-the-art Regional Climate Models (RCMs) from the Euro-CORDEX project are used as input for a HEC-HMS hydrological model to simulate the future river flow available. Both uncorrected and bias-corrected RCM simulations are analyzed. The results of this project provide an insight of the possible effects of climate change towards the generation of power from the ROR hydropower schemes according to the different RCP scenarios and contrasts the results obtained from uncorrected and bias-corrected RCMs. This analysis can aid on the adaptation to climate change as well as the planning of future ROR schemes in the region.
Impacts of climate change on water quantity and quality in Rhineland-Palatinate/Germany
NASA Astrophysics Data System (ADS)
Casper, M. C.; Grigoryan, G. V.
2009-04-01
The Ministry of the Environment of Rhineland-Palatinate, Germany, launched an interdisciplinary research project dealing with "climate and land use change in Rhineland-Palatinate" (KlimLandRP). The aim of KlimLandRP is to specify adaptation strategies and to find current research gaps. The University of Trier/Germany undertakes the task of quantifying the impact of climate change on hydrological cycle and on water quality. In the first phase of the project (2008/2009) the models STOFFBILANZ and WaSiM-ETH are applied. WETTREG projections (2050/2100) and newly high resolution CCLM (2015-2024) projections for Rhineland-Palatinate are used to indicate the spectrum of climate change. Possible land use scenarios for agricultural regions are furthermore adopted. Using STOFFBILANZ it is possible to get approximate spatial information about present and future distribution of water, nitrate and phosphor balance in Rhineland-Palatinate and to identify sensitive regions. Based on achieved results, regions which are vulnerable to water economy are identified and adaptations proposed. With the application of WaSiM-ETH the impact of climate change on water balance of forest sites is quantified. The relation between climate parameters and tree growth indices is applied in forest management planning, particularly for forest site mapping. In the future, also the rainfall-runoff model LARSIM will be applied to quantify the impacts of climate change on the hydrological cycle of mesoscale catchment basins.
Responses of runoff to historical and future climate variability over China
NASA Astrophysics Data System (ADS)
Wu, Chuanhao; Hu, Bill X.; Huang, Guoru; Wang, Peng; Xu, Kai
2018-03-01
China has suffered some of the effects of global warming, and one of the potential implications of climate warming is the alteration of the temporal-spatial patterns of water resources. Based on the long-term (1960-2008) water budget data and climate projections from 28 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), this study investigated the responses of runoff (R) to historical and future climate variability in China at both grid and catchment scales using the Budyko-based elasticity method. Results show that there is a large spatial variation in precipitation (P) elasticity (from 1.1 to 3.2) and potential evaporation (PET) elasticity (from -2.2 to -0.1) across China. The P elasticity is larger in north-eastern and western China than in southern China, while the opposite occurs for PET elasticity. The catchment properties' elasticity of R appears to have a strong non-linear relationship with the mean annual aridity index and tends to be more significant in more arid regions. For the period 1960-2008, the climate contribution to R ranges from -2.4 to 3.6 % yr-1 across China, with the negative contribution in north-eastern China and the positive contribution in western China and some parts of the south-west. The results of climate projections indicate that although there is large uncertainty involved in the 28 GCMs, most project a consistent change in P (or PET) in China at the annual scale. For the period 2071-2100, the mean annual P is projected to increase in most parts of China, especially the western regions, while the mean annual PET is projected to increase in all of China, particularly the southern regions. Furthermore, greater increases are projected for higher emission scenarios. Overall, due to climate change, the arid regions and humid regions of China are projected to become wetter and drier in the period 2071-2100, respectively (relative to the baseline 1971-2000).
Effective climate refugia for salmon in a changing world
Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in salmonid distributions under future climates range from modest t...
NASA Astrophysics Data System (ADS)
Terando, A. J.; Lascurain, A.; Aldridge, H. D.; Davis, C.
2016-12-01
Climate Voyager provides an innovative way to visualize both large-scale and local climate change projections using a three-map layout and time series plot. This product includes a suite of tools designed to assist with climate risk and opportunity assessments, including changes in average seasonal conditions and the capability to evaluate a variety of different decision-relevant thresholds (e.g. changes in extreme temperature occurrence). Each tool summarizes output from 20 downscaled global climate models and contains a historical average for comparison with the spread of projected future outcomes. The Climate Voyager website is interactive, allowing users to explore both regional and location-specific guidance for two Representative Concentration Pathways (RCPs) and four future 20-year time periods. By presenting climate model projections and measures of uncertainty of specific parameters beyond just annual temperatures and precipitation, Climate Voyager can help a wide variety of decision makers plan for climate changes that may affect them. We present a case study in which a new module was developed within Climate Voyager for use by Tribes and native communities in the eastern U.S. to help make informed resource decisions. In this first attempt, Ramps (Allium tricoccum), a plant species of great cultural significance, was incorporated through consultation with the tribal organization. We will also discuss the process of engagement employed with end-users and the potential to make the Climate Voyager interface an iterative, co-produced process to enhance the usability of climate model information for adaptation planning.
Pourmokhtarian, Afshin; Driscoll, Charles T.; Campbell, John L.; Hayhoe, Katharine; Stoner, Anne M. K.; Adams, Mary Beth; Burns, Douglas; Fernandez, Ivan; Mitchell, Myron J.; Shanley, James B.
2017-01-01
A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere–ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO2effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change.
Pourmokhtarian, Afshin; Driscoll, Charles T; Campbell, John L; Hayhoe, Katharine; Stoner, Anne M K; Adams, Mary Beth; Burns, Douglas; Fernandez, Ivan; Mitchell, Myron J; Shanley, James B
2017-02-01
A cross-site analysis was conducted on seven diverse, forested watersheds in the northeastern United States to evaluate hydrological responses (evapotranspiration, soil moisture, seasonal and annual streamflow, and water stress) to projections of future climate. We used output from four atmosphere-ocean general circulation models (AOGCMs; CCSM4, HadGEM2-CC, MIROC5, and MRI-CGCM3) included in Phase 5 of the Coupled Model Intercomparison Project, coupled with two Representative Concentration Pathways (RCP 8.5 and 4.5). The coarse resolution AOGCMs outputs were statistically downscaled using an asynchronous regional regression model to provide finer resolution future climate projections as inputs to the deterministic dynamic ecosystem model PnET-BGC. Simulation results indicated that projected warmer temperatures and longer growing seasons in the northeastern United States are anticipated to increase evapotranspiration across all sites, although invoking CO 2 effects on vegetation (growth enhancement and increases in water use efficiency (WUE)) diminish this response. The model showed enhanced evapotranspiration resulted in drier growing season conditions across all sites and all scenarios in the future. Spruce-fir conifer forests have a lower optimum temperature for photosynthesis, making them more susceptible to temperature stress than more tolerant hardwood species, potentially giving hardwoods a competitive advantage in the future. However, some hardwood forests are projected to experience seasonal water stress, despite anticipated increases in precipitation, due to the higher temperatures, earlier loss of snow packs, longer growing seasons, and associated water deficits. Considering future CO 2 effects on WUE in the model alleviated water stress across all sites. Modeled streamflow responses were highly variable, with some sites showing significant increases in annual water yield, while others showed decreases. This variability in streamflow responses poses a challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lereboullet, A.-L.; Beltrando, G.; Bardsley, D. K.
2012-04-01
The wine industry is very sensitive to extreme weather events, especially to temperatures above 35°C and drought. In a context of global climate change, Mediterranean climate regions are predicted to experience higher variability in rainfall and temperatures and an increased occurrence of extreme weather events. Some viticultural systems could be particularly at risk in those regions, considering their marginal position in the growth climatic range of Vitis vinifera, the long commercial lifespan of a vineyard, the high added-value of wine and the volatile nature of global markets. The wine industry, like other agricultural systems, is inserted in complex networks of climatic and non-climatic (other physical, economical, social and legislative) components, with constant feedbacks. We use a socio-ecosystem approach to analyse the adaptation of two Mediterranean viticultural systems to recent and future increase of extreme weather events. The present analysis focuses on two wine regions with a hot-summer Mediterranean climate (CSb type in the Köppen classification): Côtes-du-Roussillon in southern France and McLaren Vale in southern Australia. Using climate data from two synoptic weather stations, Perpignan (France) and Adelaide (Australia), with time series running from 1955 to 2010, we highlight changes in rainfall patterns and an increase in the number of days with Tx >35°c since the last three decades in both regions. Climate models (DRIAS project data for France and CSIRO Mk3.5 for Australia) project similar trends in the future. To date, very few projects have focused on an international comparison of the adaptive capacity of viticultural systems to climate change with a holistic approach. Here, the analysis of climate data was complemented by twenty in-depth semi-structured interviews with key actors of the two regional wine industries, in order to analyse adaptation strategies put in place regarding recent climate evolution. This mixed-methods approach allows for a comprehensive assessment of adaptation capacity of the two viticultural systems to future climate change. The strategies of grape growers and wine producers focus on maintaining optimal yields and a constant wine style adapted to markets in a variable and uncertain climate. Their implementation and efficiency depend strongly on non-climatic factors. Thus, adaptation capacity to recent and future climate change depends strongly on adaptation to other non-climatic changes.
Chase, Katherine J.; Haj, Adel E.; Regan, R. Steven; Viger, Roland J.
2016-01-01
Study regionEastern and central Montana.Study focusFish in Northern Great Plains streams tolerate extreme conditions including heat, cold, floods, and drought; however changes in streamflow associated with long-term climate change may render some prairie streams uninhabitable for current fish species. To better understand future hydrology of these prairie streams, the Precipitation-Runoff Modeling System model and output from the RegCM3 Regional Climate model were used to simulate streamflow for seven watersheds in eastern and central Montana, for a baseline period (water years 1982–1999) and three future periods: water years 2021–2038 (2030 period), 2046–2063 (2055 period), and 2071–2088 (2080 period).New hydrological insights for the regionProjected changes in mean annual and mean monthly streamflow vary by the RegCM3 model selected, by watershed, and by future period. Mean annual streamflows for all future periods are projected to increase (11–21%) for two of the four central Montana watersheds: Middle Musselshell River and Cottonwood Creek. Mean annual streamflows for all future periods are projected to decrease (changes of −24 to −75%) for Redwater River watershed in eastern Montana. Mean annual streamflows are projected to increase slightly (2–15%) for the 2030 period and decrease (changes of −16 to −44%) for the 2080 period for the four remaining watersheds.
Sen, Sandeep; Gode, Ameya; Ramanujam, Srirama; Ravikanth, G; Aravind, N A
2016-11-01
The center of diversity of Piper nigrum L. (Black Pepper), one of the highly valued spice crops is reported to be from India. Black pepper is naturally distributed in India in the Western Ghats biodiversity hotspot and is the only known existing source of its wild germplasm in the world. We used ecological niche models to predict the potential distribution of wild P. nigrum in the present and two future climate change scenarios viz (A1B) and (A2A) for the year 2080. Three topographic and nine uncorrelated bioclim variables were used to develop the niche models. The environmental variables influencing the distribution of wild P. nigrum across different climate change scenarios were identified. We also assessed the direction and magnitude of the niche centroid shift and the change in niche breadth to estimate the impact of projected climate change on the distribution of P. nigrum. The study shows a niche centroid shift in the future climate scenarios. Both the projected future climate scenarios predicted a reduction in the habitat of P. nigrum in Southern Western Ghats, which harbors many wild accessions of P. nigrum. Our results highlight the impact of future climate change on P. nigrum and provide useful information for designing sound germplasm conservation strategies for P. nigrum.
NASA Astrophysics Data System (ADS)
Oglesby, R. J.; Rowe, C. M.; Munoz-Arriola, F.
2013-12-01
Mesoamerica is a region that is potentially at severe risk due to future climate change. This is especially true for the water resources required for agriculture, human consumption, and hydroelectric power generation. Yet global climate models cannot properly resolve surface climate in the region, due to it's complex topography and nearness to oceans. Precipitation in particular is poorly handled. Further, Mesoamerica is hardly the only region worldwide for which these issues exist. To address this deficiency, a series of high-resolution (4-12 km) dynamical downscaling simulations of future climate change between now and 2060 have been made for Mesoamerica and the Caribbean. We used the Weather Research and Forecasting (WRF) regional climate model to downscale results from the NCAR CCSM4 CMIP5 RCP8.5 global simulation. The entire region is covered at 12 km horizontal spatial resolution, with as much as possible (especially in mountainous regions) at 4 km. We compare a control period (2006-2010) with 50 years into the future (2056-2060). Basic results for surface climate will be presented, as well as a developing strategy for explicitly employing these results in projecting the implications for water resources in the region. Connections will also be made to other regions around the globe that could benefit from this type of integrated modeling and analysis.
Mountain Glaciers and Ice Caps
Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.
2011-01-01
Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.
NASA Astrophysics Data System (ADS)
Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.
2015-06-01
Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, change vegetation dynamics and influence the availability of water at the catchment scale. This study combines a nonlinear model for estimating changes in leaf area index (LAI) due to climatic fluctuations with the variable infiltration capacity (VIC) hydrological model to improve catchment streamflow prediction under a changing climate. The combined model was applied to 13 gauged sub-catchments with different land cover types (crop, pasture and tree) in the Goulburn-Broken catchment, Australia, for the "Millennium Drought" (1997-2009) relative to the period 1983-1995, and for two future periods (2021-2050 and 2071-2100) and two emission scenarios (Representative Concentration Pathway (RCP) 4.5 and RCP8.5) which were compared with the baseline historical period of 1981-2010. This region was projected to be warmer and mostly drier in the future as predicted by 38 Coupled Model Intercomparison Project Phase 5 (CMIP5) runs from 15 global climate models (GCMs) and for two emission scenarios. The results showed that during the Millennium Drought there was about a 29.7-66.3 % reduction in mean annual runoff due to reduced precipitation and increased temperature. When drought-induced changes in LAI were included, smaller reductions in mean annual runoff of between 29.3 and 61.4 % were predicted. The proportional increase in runoff due to modeling LAI was 1.3-10.2 % relative to not including LAI. For projected climate change under the RCP4.5 emission scenario, ignoring the LAI response to changing climate could lead to a further reduction in mean annual runoff of between 2.3 and 27.7 % in the near-term (2021-2050) and 2.3 to 23.1 % later in the century (2071-2100) relative to modeling the dynamic response of LAI to precipitation and temperature changes. Similar results (near-term 2.5-25.9 % and end of century 2.6-24.2 %) were found for climate change under the RCP8.5 emission scenario. Incorporating climate-induced changes in LAI in the VIC model reduced the projected declines in streamflow and confirms the importance of including the effects of changes in LAI in future projections of streamflow.
2011-12-01
Climate change is already beginning to affect New York State, and these impacts are projected to grow. At the same time, the state has the ability to develop adaptation strategies to prepare for and respond to climate risks now and in the future. The ClimAID assessment provides information on climate change impacts and adaptation for eight sectors in New York State: water resources, coastal zones, ecosystems, agriculture, energy, transportation,telecommunications, and public health. Observed climate trends and future climate projections were developed for seven regions across the state. Within each of the sectors, climate risks, vulnerabilities, and adaptation strategies are identified. Integrating themes across all of the sectors are equity and environmental justice and economics.Case studies are used to examine specific vulnerabilities and potential adaptation strategies in each of the eight sectors. These case studies also illustrate the linkages among climate vulnerabilities, risks, and adaptation, and demonstrate specific monitoring needs. Stakeholder participation was critical to the ClimAID assessment process to ensure relevance to decision makers across the state.
Northward shift of the agricultural climate zone under 21st-century global climate change.
King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian
2018-05-21
As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.
Large rainfall changes consistently projected over substantial areas of tropical land
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.
2016-02-01
Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.
NASA Astrophysics Data System (ADS)
Faqih, A.
2017-03-01
Providing information regarding future climate scenarios is very important in climate change study. The climate scenario can be used as basic information to support adaptation and mitigation studies. In order to deliver future climate scenarios over specific region, baseline and projection data from the outputs of global climate models (GCM) is needed. However, due to its coarse resolution, the data have to be downscaled and bias corrected in order to get scenario data with better spatial resolution that match the characteristics of the observed data. Generating this downscaled data is mostly difficult for scientist who do not have specific background, experience and skill in dealing with the complex data from the GCM outputs. In this regards, it is necessary to develop a tool that can be used to simplify the downscaling processes in order to help scientist, especially in Indonesia, for generating future climate scenario data that can be used for their climate change-related studies. In this paper, we introduce a tool called as “Statistical Bias Correction for Climate Scenarios (SiBiaS)”. The tool is specially designed to facilitate the use of CMIP5 GCM data outputs and process their statistical bias corrections relative to the reference data from observations. It is prepared for supporting capacity building in climate modeling in Indonesia as part of the Indonesia 3rd National Communication (TNC) project activities.
What’s Needed from Climate Modeling to Advance Actionable Science for Water Utilities?
NASA Astrophysics Data System (ADS)
Barsugli, J. J.; Anderson, C. J.; Smith, J. B.; Vogel, J. M.
2009-12-01
“…perfect information on climate change is neither available today nor likely to be available in the future, but … over time, as the threats climate change poses to our systems grow more real, predicting those effects with greater certainty is non-discretionary. We’re not yet at a level at which climate change projections can drive climate change adaptation.” (Testimony of WUCA Staff Chair David Behar to the House Committee on Science and Technology, May 5, 2009) To respond to this challenge, the Water Utility Climate Alliance (WUCA) has sponsored a white paper titled “Options for Improving Climate Modeling to Assist Water Utility Planning for Climate Change. ” This report concerns how investments in the science of climate change, and in particular climate modeling and downscaling, can best be directed to help make climate projections more actionable. The meaning of “model improvement” can be very different depending on whether one is talking to a climate model developer or to a water manager trying to incorporate climate projections in to planning. We first surveyed the WUCA members on present and potential uses of climate model projections and on climate inputs to their various system models. Based on those surveys and on subsequent discussions, we identified four dimensions along which improvement in modeling would make the science more “actionable”: improved model agreement on change in key parameters; narrowing the range of model projections; providing projections at spatial and temporal scales that match water utilities system models; providing projections that water utility planning horizons. With these goals in mind we developed four options for improving global-scale climate modeling and three options for improving downscaling that will be discussed. However, there does not seem to be a single investment - the proverbial “magic bullet” -- which will substantially reduce the range of model projections at the scales at which utility planning is conducted. In the near term we feel strongly that water utilities and climate scientists should work together to leverage the upcoming Coupled Model Intercomparison Project, Phase 5 (CMIP5; a coordinated set climate model experiments that will be used to support the upcoming IPCC Fifth Assessment) to better benefit water utilities. In the longer term, even with model and downscaling improvements, it is very likely that substantial uncertainty about future climate change at the desired spatial and temporal scales will remain. Nonetheless, there is no doubt the climate is changing, and the challenge is to work with what we have, or what we can reasonably expect to have in the coming years to make the best decisions we can.
Understanding global climate change scenarios through bioclimate stratification
NASA Astrophysics Data System (ADS)
Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.
2017-08-01
Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.
Strategies for Reforestation under Uncertain Future Climates: Guidelines for Alberta, Canada
Gray, Laura K.; Hamann, Andreas
2011-01-01
Background Commercial forestry programs normally use locally collected seed for reforestation under the assumption that tree populations are optimally adapted to local environments. However, in western Canada this assumption is no longer valid because of climate trends that have occurred over the last several decades. The objective of this study is to show how we can arrive at reforestation recommendations with alternative species and genotypes that are viable under a majority of climate change scenarios. Methodology/Principal Findings In a case study for commercially important tree species of Alberta, we use an ecosystem-based bioclimate envelope modeling approach for western North America to project habitat for locally adapted populations of tree species using multi-model climate projections for the 2020s, 2050s and 2080s. We find that genotypes of species that are adapted to drier climatic conditions will be the preferred planting stock over much of the boreal forest that is commercially managed. Interestingly, no alternative species that are currently not present in Alberta can be recommended with any confidence. Finally, we observe large uncertainties in projections of suitable habitat that make reforestation planning beyond the 2050s difficult for most species. Conclusion/Significance More than 50,000 hectares of forests are commercially planted every year in Alberta. Choosing alternative planting stock, suitable for expected future climates, could therefore offer an effective climate change adaptation strategy at little additional cost. Habitat projections for locally adapted tree populations under observed climate change conform well to projections for the 2020s, which suggests that it is a safe strategy to change current reforestation practices and adapt to new climatic realities through assisted migration prescriptions. PMID:21853061
Batllori, Enric; Parisien, Marc-André; Parks, Sean A; Moritz, Max A; Miller, Carol
2017-08-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.
2013-07-01
Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.
NASA Astrophysics Data System (ADS)
Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.
2017-12-01
Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.
The interplay of climate and land use change affects the distribution of EU bumblebees.
Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas
2018-01-01
Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.