Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?
Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver
2013-01-01
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290
PREDICTING CLIMATE-INDUCED RANGE SHIFTS: MODEL DIFFERENCES AND MODEL RELIABILITY
Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common ...
The shaping of genetic variation in edge-of-range populations under past and future climate change
Razgour, Orly; Juste, Javier; Ibáñez, Carlos; Kiefer, Andreas; Rebelo, Hugo; Puechmaille, Sébastien J; Arlettaz, Raphael; Burke, Terry; Dawson, Deborah A; Beaumont, Mark; Jones, Gareth; Wiens, John
2013-01-01
With rates of climate change exceeding the rate at which many species are able to shift their range or adapt, it is important to understand how future changes are likely to affect biodiversity at all levels of organisation. Understanding past responses and extent of niche conservatism in climatic tolerance can help predict future consequences. We use an integrated approach to determine the genetic consequences of past and future climate changes on a bat species, Plecotus austriacus. Glacial refugia predicted by palaeo-modelling match those identified from analyses of extant genetic diversity and model-based inference of demographic history. Former refugial populations currently contain disproportionately high genetic diversity, but niche conservatism, shifts in suitable areas and barriers to migration mean that these hotspots of genetic diversity are under threat from future climate change. Evidence of population decline despite recent northward migration highlights the need to conserve leading-edge populations for spearheading future range shifts. PMID:23890483
Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.
2013-01-01
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820
Predicting climate-induced range shifts: model differences and model reliability.
Joshua J. Lawler; Denis White; Ronald P. Neilson; Andrew R. Blaustein
2006-01-01
Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common data set, we investigated the potential implications of alternative modeling approaches for...
Interactions of changing climate and shifts in forest composition on stand carbon balance
Chiang Jyh-Min; Louis Iverson; Anantha Prasad; Kim Brown
2006-01-01
Given that climate influences forest biogeographic distribution, many researchers have created models predicting shifts in tree species range with future climate change scenarios. The objective of this study is to investigate the forest carbon consequences of shifts in stand species composition with current and future climate scenarios using such a model.
Sultaire, Sean M.; Pauli, Jonathan N.; Martin, Karl J.; Meyer, Michael W.; Notaro, Michael; Zuckerberg, Benjamin
2016-01-01
The effects of climate change on biodiversity have emerged as a dominant theme in conservation biology, possibly eclipsing concern over habitat loss in recent years. The extent to which this shifting focus has tracked the most eminent threats to biodiversity is not well documented. We investigated the mechanisms driving shifts in the southern range boundary of a forest and snow cover specialist, the snowshoe hare, to explore how its range boundary has responded to shifting rates of climate and land cover change over time. We found that although both forest and snow cover contributed to the historical range boundary, the current duration of snow cover best explains the most recent northward shift, while forest cover has declined in relative importance. In this respect, the southern range boundary of snowshoe hares has mirrored the focus of conservation research; first habitat loss and fragmentation was the stronger environmental constraint, but climate change has now become the main threat. Projections of future range shifts show that climate change, and associated snow cover loss, will continue to be the major driver of this species' range loss into the future. PMID:27030410
Crickenberger, Sam; Wethey, David S
2018-05-10
Range shifts due to annual variation in temperature are more tractable than range shifts linked to decadal to century long temperature changes due to climate change, providing natural experiments to determine the mechanisms responsible for driving long-term distributional shifts. In this study we couple physiologically grounded mechanistic models with biogeographic surveys in 2 years with high levels of annual temperature variation to disentangle the drivers of a historical range shift driven by climate change. The distribution of the barnacle Semibalanus balanoides has shifted 350 km poleward in the past half century along the east coast of the United States. Recruits were present throughout the historical range following the 2015 reproductive season, when temperatures were similar to those in the past century, and absent following the 2016 reproductive season when temperatures were warmer than they have been since 1870, the earliest date for temperature records. Our dispersal dependent mechanistic models of reproductive success were highly accurate and predicted patterns of reproduction success documented in field surveys throughout the historical range in 2015 and 2016. Our mechanistic models of reproductive success not only predicted recruitment dynamics near the range edge but also predicted interior range fragmentation in a number of years between 1870 and 2016. All recruits monitored within the historical range following the 2015 colonization died before 2016 suggesting juvenile survival was likely the primary driver of the historical range retraction. However, if 2016 is indicative of future temperatures mechanisms of range limitation will shift and reproductive failure will lead to further range retraction in the future. Mechanistic models are necessary for accurately predicting the effects of climate change on ranges of species. © 2018 John Wiley & Sons Ltd.
Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J
2018-01-01
Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.
Projected impacts of climate change on habitat availability for an endangered parakeet.
Hermes, Claudia; Keller, Klaus; Nicholas, Robert E; Segelbacher, Gernot; Schaefer, H Martin
2018-01-01
In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes.
Projected impacts of climate change on habitat availability for an endangered parakeet
Keller, Klaus; Nicholas, Robert E.; Segelbacher, Gernot; Schaefer, H. Martin
2018-01-01
In tropical montane cloud forests, climate change can cause upslope shifts in the distribution ranges of species, leading to reductions in distributional range. Endemic species with small ranges are particularly vulnerable to such decreases in range size, as the population size may be reduced significantly. To ensure the survival of cloud forest species in the long term, it is crucial to quantify potential future shifts in their distribution ranges and the related changes in habitat availability in order to assure the long-term effectiveness of conservation measures. In this study, we assessed the influence of climate change on the availability of forested habitat for the endemic El Oro parakeet. We investigated the future range shift by modelling the climatic niche of the El Oro parakeets and projecting it to four different climate change scenarios. Depending on the intensity of climate change, the El Oro parakeets shift their range between 500 and 1700 m uphill by the year 2100. On average, the shift is accompanied by a reduction in range size to 15% and a reduction in forested habitat to only 10% of the original extent. Additionally, the connectivity between populations in different areas is decreasing in higher altitudes. To prevent a population decline due to habitat loss following an upslope range shift, it will be necessary to restore habitat across a large elevational span in order to allow for movement of El Oro parakeets into higher altitudes. PMID:29364949
Langer, Martin R.; Weinmann, Anna E.; Lötters, Stefan; Bernhard, Joan M.; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change. PMID:23405081
Langer, Martin R; Weinmann, Anna E; Lötters, Stefan; Bernhard, Joan M; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.
Amorim, Francisco; Carvalho, Sílvia B; Honrado, João; Rebelo, Hugo
2014-01-01
Here we develop a framework to design multi-species monitoring networks using species distribution models and conservation planning tools to optimize the location of monitoring stations to detect potential range shifts driven by climate change. For this study, we focused on seven bat species in Northern Portugal (Western Europe). Maximum entropy modelling was used to predict the likely occurrence of those species under present and future climatic conditions. By comparing present and future predicted distributions, we identified areas where each species is likely to gain, lose or maintain suitable climatic space. We then used a decision support tool (the Marxan software) to design three optimized monitoring networks considering: a) changes in species likely occurrence, b) species conservation status, and c) level of volunteer commitment. For present climatic conditions, species distribution models revealed that areas suitable for most species occur in the north-eastern part of the region. However, areas predicted to become climatically suitable in the future shifted towards west. The three simulated monitoring networks, adaptable for an unpredictable volunteer commitment, included 28, 54 and 110 sampling locations respectively, distributed across the study area and covering the potential full range of conditions where species range shifts may occur. Our results show that our framework outperforms the traditional approach that only considers current species ranges, in allocating monitoring stations distributed across different categories of predicted shifts in species distributions. This study presents a straightforward framework to design monitoring schemes aimed specifically at testing hypotheses about where and when species ranges may shift with climatic changes, while also ensuring surveillance of general population trends.
Range-expanding pests and pathogens in a warming world.
Bebber, Daniel Patrick
2015-01-01
Crop pests and pathogens (CPPs) present a growing threat to food security and ecosystem management. The interactions between plants and their natural enemies are influenced by environmental conditions and thus global warming and climate change could affect CPP ranges and impact. Observations of changing CPP distributions over the twentieth century suggest that growing agricultural production and trade have been most important in disseminating CPPs, but there is some evidence for a latitudinal bias in range shifts that indicates a global warming signal. Species distribution models using climatic variables as drivers suggest that ranges will shift latitudinally in the future. The rapid spread of the Colorado potato beetle across Eurasia illustrates the importance of evolutionary adaptation, host distribution, and migration patterns in affecting the predictions of climate-based species distribution models. Understanding species range shifts in the framework of ecological niche theory may help to direct future research needs.
Evolutionary consequences of climate-induced range shifts in insects.
Sánchez-Guillén, Rosa A; Córdoba-Aguilar, Alex; Hansson, Bengt; Ott, Jürgen; Wellenreuther, Maren
2016-11-01
Range shifts can rapidly create new areas of geographic overlap between formerly allopatric taxa and evidence is accumulating that this can affect species persistence. We review the emerging literature on the short- and long-term consequences of these geographic range shifts. Specifically, we focus on the evolutionary consequences of novel species interactions in newly created sympatric areas by describing the potential (i) short-term processes acting on reproductive barriers between species and (ii) long-term consequences of range shifts on the stability of hybrid zones, introgression and ultimately speciation and extinction rates. Subsequently, we (iii) review the empirical literature on insects to evaluate which processes have been studied, and (iv) outline some areas that deserve increased attention in the future, namely the genomics of hybridisation and introgression, our ability to forecast range shifts and the impending threat from insect vectors and pests on biodiversity, human health and crop production. Our review shows that species interactions in de novo sympatric areas can be manifold, sometimes increasing and sometimes decreasing species diversity. A key issue that emerges is that climate-induced hybridisations in insects are much more widespread than anticipated and that rising temperatures and increased anthropogenic disturbances are accelerating the process of species mixing. The existing evidence only shows the tip of the iceberg and we are likely to see many more cases of species mixing following range shifts in the near future. © 2015 Cambridge Philosophical Society.
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Kenneth L. Cole; Kirsten Ironside; Jon Eischeid; Gregg Garfin; Phillip B. Duffy; Chris Toney
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ~11 700 years ago, the range of Joshua tree contracted, leaving only the...
NASA Astrophysics Data System (ADS)
Wason, J. W., III; Dovciak, M.; Bevilacqua, E.
2015-12-01
Climate change in the northeastern United States is expected to shift climatic (temperature) envelopes for spruce-fir forests upslope and northward decreasing their area in the region by 2100. Coarse scale landscape models however, may not incorporate heterogeneity in climatic conditions in mountains that can create climatic refugia for species in high-elevation spruce-fir forests. To determine spatial and temporal trends in climate of mountain spruce-fir forests we measured microclimate at 98 forest plots in 2012 and 2013 on 12 mountains in New York, Vermont, New Hampshire, and Maine. By linking regional climate trends with our spatial climate data we calculated elevational shifts in temperature envelopes during the last 50 years. Additionally we linked our spatial dataset to a range of future climate conditions for 2100 based on Representative Concentration Pathways (1 to 5°C warming). We hypothesized that climates have already changed to an extent that spruce-fir forests should begin to respond and that future climate conditions may shift suitable habitat for spruce-fir forests beyond their current range. We found that regional climate change over the last 50 years has resulted in warming of 0.66 and 1.62°C for average annual daily maximum (Tmax) and minimum (Tmin) temperatures in the region. When linked to our spatial microclimate model, this warming results in a 100 (Tmax) and 312m (Tmin) upslope shift in temperature envelopes. Future climate projections suggest that by 2100 Tmax may shift upslope between 152 and 758m for the 1 and 5°C scenarios respectively, while Tmin may shift upslope between 192 and 962m. Spruce-fir forests typically occupy an elevation range of ~500m suggesting that the climate experienced in these forests 50 years ago may not be found within their elevation range by 2100. These results are discussed in the context of responses of tree populations and growth rates observed along the elevation gradients of northeastern United States.
Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T
2016-07-01
As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.
Gisselle Yang Xie; Deanna H. Olson; Andrew R. Blaustein
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate...
A New Tool for Exploring Climate Change Induced Range Shifts of Conifer Species in China
Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong
2014-01-01
It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management. PMID:25268604
A new tool for exploring climate change induced range shifts of conifer species in China.
Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong
2014-01-01
It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management.
Conservation Status of North American Birds in the Face of Future Climate Change.
Langham, Gary M; Schuetz, Justin G; Distler, Trisha; Soykan, Candan U; Wilsey, Chad
2015-01-01
Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will greatly aid conservation planning. Using the North American Breeding Bird Survey and Audubon Christmas Bird Count, two of the most comprehensive continental datasets of vertebrates in the world, and correlative distribution modeling, we assessed geographic range shifts for 588 North American bird species during both the breeding and non-breeding seasons under a range of future emission scenarios (SRES A2, A1B, B2) through the end of the century. Here we show that 314 species (53%) are projected to lose more than half of their current geographic range across three scenarios of climate change through the end of the century. For 126 species, loss occurs without concomitant range expansion; whereas for 188 species, loss is coupled with potential to colonize new replacement range. We found no strong associations between projected climate sensitivities and existing conservation prioritizations. Moreover, species responses were not clearly associated with habitat affinities, migration strategies, or climate change scenarios. Our results demonstrate the need to include climate sensitivity into current conservation planning and to develop adaptive management strategies that accommodate shrinking and shifting geographic ranges. The persistence of many North American birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate adaptation.
Conservation Status of North American Birds in the Face of Future Climate Change
Langham, Gary M.; Schuetz, Justin G.; Distler, Trisha; Soykan, Candan U.; Wilsey, Chad
2015-01-01
Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will greatly aid conservation planning. Using the North American Breeding Bird Survey and Audubon Christmas Bird Count, two of the most comprehensive continental datasets of vertebrates in the world, and correlative distribution modeling, we assessed geographic range shifts for 588 North American bird species during both the breeding and non-breeding seasons under a range of future emission scenarios (SRES A2, A1B, B2) through the end of the century. Here we show that 314 species (53%) are projected to lose more than half of their current geographic range across three scenarios of climate change through the end of the century. For 126 species, loss occurs without concomitant range expansion; whereas for 188 species, loss is coupled with potential to colonize new replacement range. We found no strong associations between projected climate sensitivities and existing conservation prioritizations. Moreover, species responses were not clearly associated with habitat affinities, migration strategies, or climate change scenarios. Our results demonstrate the need to include climate sensitivity into current conservation planning and to develop adaptive management strategies that accommodate shrinking and shifting geographic ranges. The persistence of many North American birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate adaptation. PMID:26333202
Species' Traits as Predictors of Range Shifts Under Contemporary Climate Change: A Meta-analysis
NASA Astrophysics Data System (ADS)
MacLean, S. A.; Beissinger, S. R.
2016-12-01
A growing body of literature seeks to explain variation in range shifts using species' ecological and life history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. If trait-based arguments, hold, then traits would provide valuable evidence-based tools for conservation and management that could increase the accuracy of future range projections, vulnerability assessments, and predictions of novel community assemblages. However, empirical support is limited in extent and consensus, and trait-based relationships remain largely unvalidated. We conducted a comprehensive literature review of species' traits as predictors of range shifts, collecting results from over 11,000 species' responses across multiple taxa from studies that directly compared 20th century and contemporary distributions for multispecies assemblages. We then performed a meta-analysis to calculate the mean study-level effects of body size, fecundity, diet breadth, habitat breadth, and historic range limit, while directly controlling for ecological and methodological heterogeneity across studies that could bias reported effect sizes. We show that ecological and life history traits have had limited success in accounting for variation among species in range shifts over the past century. Of the five traits analyzed, only habitat breadth and historic range limit consistently supported range shift predictions across multiple studies. Fecundity, body size, and diet breadth showed no clear relationship with range shifts, and some traits identified in our literature review (e.g. migratory ecology) have consistently contradicted range shift predictions. Current understanding of species' traits as predictors of range shifts is limited, and standardized study is needed before traits can be reliably incorporated into projections of climate change impacts.
McCauley, Lisa A.; Ribic, Christine; Pomara, Lars Y.; Zuckerberg, Benjamin
2017-01-01
ContextTemperate grasslands and their dependent species are exposed to high variability in weather and climate due to the lack of natural buffers such as forests. Grassland birds are particularly vulnerable to this variability, yet have failed to shift poleward in response to recent climate change like other bird species in North America. However, there have been few studies examining the effect of weather on grassland bird demography and consequent influence of climate change on population persistence and distributional shifts.ObjectivesThe goal of this study was to estimate the vulnerability of Henslow’s Sparrow (Ammodramus henslowii), an obligate grassland bird that has been declining throughout much of its range, to past and future climatic variability.MethodsWe conducted a demographic meta-analysis from published studies and quantified the relationship between nest success rates and variability in breeding season climate. We projected the climate-demography relationships spatially, throughout the breeding range, and temporally, from 1981 to 2050. These projections were used to evaluate population dynamics by implementing a spatially explicit population model.ResultsWe uncovered a climate-demography linkage for Henslow’s Sparrow with summer precipitation, and to a lesser degree, temperature positively affecting nest success. We found that future climatic conditions—primarily changes in precipitation—will likely contribute to reduced population persistence and a southwestward range contraction.ConclusionsFuture distributional shifts in response to climate change may not always be poleward and assessing projected changes in precipitation is critical for grassland bird conservation and climate change adaptation.
Inoue, Kentaro; Berg, David J
2017-01-01
In the face of global climate change, organisms may respond to temperature increases by shifting their ranges poleward or to higher altitudes. However, the direction of range shifts in riverine systems is less clear. Because rivers are dendritic networks, there is only one dispersal route from any given location to another. Thus, range shifts are only possible if branches are connected by suitable habitat, and stream-dwelling organisms can disperse through these branches. We used Cumberlandia monodonta (Bivalvia: Unionoida: Margaritiferidae) as a model species to investigate the effects of climate change on population connectivity because a majority of contemporary populations are panmictic. We combined ecological niche models (ENMs) with population genetic simulations to investigate the effects of climate change on population connectivity and genetic diversity of C. monodonta. The ENMs were constructed using bioclimatic and landscape data to project shifts in suitable habitat under future climate scenarios. We then used forward-time simulations to project potential changes in genetic diversity and population connectivity based on these range shifts. ENM results under current conditions indicated long stretches of highly suitable habitat in rivers where C. monodonta persists; populations in the upper Mississippi River remain connected by suitable habitat that does not impede gene flow. Future climate scenarios projected northward and headwater-ward range contraction and drastic declines in habitat suitability for most extant populations throughout the Mississippi River Basin. Simulations indicated that climate change would greatly reduce genetic diversity and connectivity across populations. Results suggest that a single, large population of C. monodonta will become further fragmented into smaller populations, each of which will be isolated and begin to differentiate genetically. Because C. monodonta is a widely distributed species and purely aquatic, our results suggest that persistence and connectivity of stream-dwelling organisms will be significantly altered in response to future climate change. © 2016 John Wiley & Sons Ltd.
Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie
2016-01-01
Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443
Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie
2016-09-27
Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.
NASA Astrophysics Data System (ADS)
Liang, Y.; Duveneck, M.; Gustafson, E. J.; Serra-Diaz, J. M.; Thompson, J. R.
2017-12-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically-based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually < 20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species` recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.
Liang, Yu; Duveneck, Matthew J; Gustafson, Eric J; Serra-Diaz, Josep M; Thompson, Jonathan R
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high-emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high-emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts. © 2017 John Wiley & Sons Ltd.
Demographic compensation and tipping points in climate-induced range shifts.
Doak, Daniel F; Morris, William F
2010-10-21
To persist, species are expected to shift their geographical ranges polewards or to higher elevations as the Earth's climate warms. However, although many species' ranges have shifted in historical times, many others have not, or have shifted only at the high-latitude or high-elevation limits, leading to range expansions rather than contractions. Given these idiosyncratic responses to climate warming, and their varied implications for species' vulnerability to climate change, a critical task is to understand why some species have not shifted their ranges, particularly at the equatorial or low-elevation limits, and whether such resilience will last as warming continues. Here we show that compensatory changes in demographic rates are buffering southern populations of two North American tundra plants against the negative effects of a warming climate, slowing their northward range shifts, but that this buffering is unlikely to continue indefinitely. Southern populations of both species showed lower survival and recruitment but higher growth of individual plants, possibly owing to longer, warmer growing seasons. Because of these and other compensatory changes, the population growth rates of southern populations are not at present lower than those of northern ones. However, continued warming may yet prove detrimental, as most demographic rates that improved in moderately warmer years declined in the warmest years, with the potential to drive future population declines. Our results emphasize the need for long-term, range-wide measurement of all population processes to detect demographic compensation and to identify nonlinear responses that may lead to sudden range shifts as climatic tipping points are exceeded.
Potential of satellite-derived ecosystem functional attributes to anticipate species range shifts
NASA Astrophysics Data System (ADS)
Alcaraz-Segura, Domingo; Lomba, Angela; Sousa-Silva, Rita; Nieto-Lugilde, Diego; Alves, Paulo; Georges, Damien; Vicente, Joana R.; Honrado, João P.
2017-05-01
In a world facing rapid environmental changes, anticipating their impacts on biodiversity is of utmost relevance. Remotely-sensed Ecosystem Functional Attributes (EFAs) are promising predictors for Species Distribution Models (SDMs) by offering an early and integrative response of vegetation performance to environmental drivers. Species of high conservation concern would benefit the most from a better ability to anticipate changes in habitat suitability. Here we illustrate how yearly projections from SDMs based on EFAs could reveal short-term changes in potential habitat suitability, anticipating mid-term shifts predicted by climate-change-scenario models. We fitted two sets of SDMs for 41 plant species of conservation concern in the Iberian Peninsula: one calibrated with climate variables for baseline conditions and projected under two climate-change-scenarios (future conditions); and the other calibrated with EFAs for 2001 and projected annually from 2001 to 2013. Range shifts predicted by climate-based models for future conditions were compared to the 2001-2013 trends from EFAs-based models. Projections of EFAs-based models estimated changes (mostly contractions) in habitat suitability that anticipated, for the majority (up to 64%) of species, the mid-term shifts projected by traditional climate-change-scenario forecasting, and showed greater agreement with the business-as-usual scenario than with the sustainable-development one. This study shows how satellite-derived EFAs can be used as meaningful essential biodiversity variables in SDMs to provide early-warnings of range shifts and predictions of short-term fluctuations in suitable conditions for multiple species.
Carmona-Castro, O; Moo-Llanes, D A; Ramsey, J M
2018-03-01
Climate change can influence the geographical range of the ecological niche of pathogens by altering biotic interactions with vectors and reservoirs. The distributions of 20 epidemiologically important triatomine species in North America were modelled, comparing the genetic algorithm for rule-set prediction (GARP) and maximum entropy (MaxEnt), with or without topographical variables. Potential shifts in transmission niche for Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) (Chagas, 1909) were analysed for 2050 and 2070 in Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. There were no significant quantitative range differences between the GARP and MaxEnt models, but GARP models best represented known distributions for most species [partial-receiver operating characteristic (ROC) > 1]; elevation was an important variable contributing to the ecological niche model (ENM). There was little difference between niche breadth projections for RCP 4.5 and RCP 8.5; the majority of species shifted significantly in both periods. Those species with the greatest current distribution range are expected to have the greatest shifts. Positional changes in the centroid, although reduced for most species, were associated with latitude. A significant increase or decrease in mean niche elevation is expected principally for Neotropical 1 species. The impact of climate change will be specific to each species, its biogeographical region and its latitude. North American triatomines with the greatest current distribution ranges (Nearctic 2 and Nearctic/Neotropical) will have the greatest future distribution shifts. Significant shifts (increases or decreases) in mean elevation over time are projected principally for the Neotropical species with the broadest current distributions. Changes in the vector exposure threat to the human population were significant for both future periods, with a 1.48% increase for urban populations and a 1.76% increase for rural populations in 2050. © 2017 The Royal Entomological Society.
Climate-Induced Range Shifts and Possible Hybridisation Consequences in Insects
Sánchez-Guillén, Rosa Ana; Muñoz, Jesús; Rodríguez-Tapia, Gerardo; Feria Arroyo, T. Patricia; Córdoba-Aguilar, Alex
2013-01-01
Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful. PMID:24260411
Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp.
Buonomo, Roberto; Chefaoui, Rosa M; Lacida, Ricardo Bermejo; Engelen, Aschwin H; Serrão, Ester A; Airoldi, Laura
2018-07-01
Climate change is inducing shifts in species ranges across the globe. These can affect the genetic pools of species, including loss of genetic variability and evolutionary potential. In particular, geographically enclosed ecosystems, like the Mediterranean Sea, have a higher risk of suffering species loss and genetic erosion due to barriers to further range shifts and to dispersal. In this study, we address these questions for three habitat-forming seaweed species, Cystoseira tamariscifolia, C. amentacea and C. compressa, throughout their entire ranges in the Atlantic and Mediterranean regions. We aim to 1) describe their population genetic structure and diversity, 2) model the present and predict the future distribution and 3) assess the consequences of predicted future range shifts for their population genetic structure, according to two contrasting future climate change scenarios. A net loss of suitable areas was predicted in both climatic scenarios across the range of distribution of the three species. This loss was particularly severe for C. amentacea in the Mediterranean Sea (less 90% in the most extreme climatic scenario), suggesting that the species could become potentially at extinction risk. For all species, genetic data showed very differentiated populations, indicating low inter-population connectivity, and high and distinct genetic diversity in areas that were predicted to become lost, causing erosion of unique evolutionary lineages. Our results indicated that the Mediterranean Sea is the most threatened region, where future suitable Cystoseira habitats will become more limited. This is likely to have wider ecosystem impacts as there is a lack of species with the same ecological niche and functional role in the Mediterranean. The projected accelerated loss of already fragmented and disturbed populations and the long-term genetic effects highlight the urge for local scale management strategies that sustain the capacity of these habitat-forming species to persist despite climatic impacts while waiting for global emission reductions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa
2016-08-15
Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunckel, Kathleen Lois
Introduced invasive pests and climate change are perhaps the most important and persistent catalyst for changes in forest composition. Infestation and outbreak of the hemlock woolly adelgid (HWA, Adelges tsugae) along the eastern coast of the USA, has led to widespread loss of hemlock (Tsuga canadensis (L.) Carr.), and a shift in tree species composition towards hardwood stands. Maine's forest dominated landscape and position at the leading edge of the HWA invasion provides an excellent opportunity to inform sustainable forest management (SFM) practices by using spatially explicit models to predict current tree species distribution, future range shifts, and solicit broad based feedback from Maine residents about forest management goals and preferences. This paper describes an interdisciplinary study of the ecological and social implications of changes in mixed northern hardwood forests due to disturbance. A two stage mapping approach was used where presence/absence of eastern hemlock is predicted with an overall accuracy of 85% and the continuous distribution (% basal area) was predicted with an accuracy of 83%. Given the importance of climate variables in predicting eastern hemlock, forecasts of future range shifts are possible using data generated through climate scenarios. The NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset was used to model future shifts in the geographic range of eastern hemlock throughout the state of Maine. The results clearly describe a significant shift in eastern hemlock range with gains in total geographic area that is suitable habitat. Sustaining forest systems across the landscape requires not only ecological knowledge, but also the integration of multiple socio-economic criteria as well, including data obtained through broad-based public participation approaches. Here, 3000 Maine residents were surveyed and asked how they: (1) value local forests; (2) view forest management goals and threats to forest ecosystems; and (3) evaluate alternative treatment options for the control of invasive species - in this case, HWA. Results suggest that despite Maine's historic dependence on forest products, resident values regarding forests are complex and display agreement with both psycho-spiritual and anthropocentric motivations.
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-12-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. PMID:24455138
Effects of climate change and shifts in forest composition on forest net primary production
Jyh-Min Chiang; Louts [Louis] R. Iverson; Anantha Prasad; Kim J. Brown
2008-01-01
Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (...
Lagerholm, Vendela K; Sandoval-Castellanos, Edson; Vaniscotte, Amélie; Potapova, Olga R; Tomek, Teresa; Bochenski, Zbigniew M; Shepherd, Paul; Barton, Nick; Van Dyck, Marie-Claire; Miller, Rebecca; Höglund, Jacob; Yoccoz, Nigel G; Dalén, Love; Stewart, John R
2017-04-01
Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common cold-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long-term climate warming. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum. © 2016 John Wiley & Sons Ltd.
Constrained range expansion and climate change assessments
Yohay Carmel; Curtis H. Flather
2006-01-01
Modeling the future distribution of keystone species has proved to be an important approach to assessing the potential ecological consequences of climate change (Loehle and LeBlanc 1996; Hansen et al. 2001). Predictions of range shifts are typically based on empirical models derived from simple correlative relationships between climatic characteristics of occupied and...
Climate-driven range shifts of the king penguin in a fragmented ecosystem
NASA Astrophysics Data System (ADS)
Cristofari, Robin; Liu, Xiaoming; Bonadonna, Francesco; Cherel, Yves; Pistorius, Pierre; Le Maho, Yvon; Raybaud, Virginie; Stenseth, Nils Christian; Le Bohec, Céline; Trucchi, Emiliano
2018-03-01
Range shift is the primary short-term species response to rapid climate change, but it is often hampered by natural or anthropogenic habitat fragmentation. Different critical areas of a species' niche may be exposed to heterogeneous environmental changes and modelling species response under such complex spatial and ecological scenarios presents well-known challenges. Here, we use a biophysical ecological niche model validated through population genomics and palaeodemography to reconstruct past range shifts and identify future vulnerable areas and potential refugia of the king penguin in the Southern Ocean. Integrating genomic and demographic data at the whole-species level with specific biophysical constraints, we present a refined framework for predicting the effect of climate change on species relying on spatially and ecologically distinct areas to complete their life cycle (for example, migratory animals, marine pelagic organisms and central-place foragers) and, in general, on species living in fragmented ecosystems.
Assis, Jorge; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, Ester Álvares
2016-02-01
Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L. hyperborea. Because no genetic baseline is currently available for this species, our results may represent a first step in informing conservation and mitigation strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Present and Future of Dengue Fever in Nepal: Mapping Climatic Suitability by Ecological Niche Model
Cao, Chunxiang; Xu, Min; Pandit, Shreejana
2018-01-01
Both the number of cases of dengue fever and the areas of outbreaks within Nepal have increased significantly in recent years. Further expansion and range shift is expected in the future due to global climate change and other associated factors. However, due to limited spatially-explicit research in Nepal, there is poor understanding about the present spatial distribution patterns of dengue risk areas and the potential range shift due to future climate change. In this context, it is crucial to assess and map dengue fever risk areas in Nepal. Here, we used reported dengue cases and a set of bioclimatic variables on the MaxEnt ecological niche modeling approach to model the climatic niche and map present and future (2050s and 2070s) climatically suitable areas under different representative concentration pathways (RCP2.6, RCP6.0 and RCP8.5). Simulation-based estimates suggest that climatically suitable areas for dengue fever are presently distributed throughout the lowland Tarai from east to west and in river valleys at lower elevations. Under the different climate change scenarios, these areas will be slightly shifted towards higher elevation with varied magnitude and spatial patterns. Population exposed to climatically suitable areas of dengue fever in Nepal is anticipated to further increase in both 2050s and 2070s on all the assumed emission scenarios. These findings could be instrumental to plan and execute the strategic interventions for controlling dengue fever in Nepal. PMID:29360797
Assis, J; Serrão, E A; Claro, B; Perrin, C; Pearson, G A
2014-06-01
The climate-driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long-term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool. © 2014 John Wiley & Sons Ltd.
Hamilton, Christopher M.; Bateman, Brooke L.; Gorzo, Jessica M.; Reid, Brendan; Thogmartin, Wayne E.; Peery, M. Zachariah; Heglund, Patricia J.; Radeloff, Volker C.; Pidgeon, Anna M.
2018-01-01
Climate change is accompanied by shifts in species distributions, as portions of current ranges become less suitable. Maintaining or improving landscape connectivity to facilitate species movements is a primary approach to mitigate the effects of climate change on biodiversity. However, it is not clear how ongoing changes in land use and climate may affect the existing connectivity of landscapes. We evaluated shifts in habitat suitability and connectivity for the imperiled Blanding's turtle (Emydoidea blandingii) in Wisconsin using species distribution modeling in combination with different future scenarios of both land use change and climate change for the 2050s. We found that climate change had significant effects on both habitat suitability and connectivity, however, there was little difference in the magnitude of effects among different economic scenarios. Under both our low- and high-CO2 emissions scenarios, suitable habitat for the Blanding's turtle shifted northward. In the high-emissions scenario, almost no suitable habitat remained for Blanding's turtle in Wisconsin by the 2050s and there was up to a 100,000-fold increase in landscape resistance to turtle movement, suggesting the landscape essentially becomes impassable. Habitat loss and landscape resistance were exponentially greater in southern versus northern Wisconsin, indicating a strong trailing edge effect. Thus, populations at the southern edge of the range are likely to “fall behind” shifts in suitable habitat faster than northern populations. Given its limited dispersal capability, loss of suitable habitat may occur at a rate far faster than the Blanding's turtle can adjust to changing conditions via shifts in range.
Future of endemic flora of biodiversity hotspots in India.
Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi
2014-01-01
India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models.
Future of Endemic Flora of Biodiversity Hotspots in India
Chitale, Vishwas Sudhir; Behera, Mukund Dev; Roy, Partha Sarthi
2014-01-01
India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models. PMID:25501852
Climate refugia for salmon in a changing world
Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in salmonid distributions under future climates range from modest t...
Effective climate refugia for salmon in a changing world
Climate change threatens to create fundamental shifts in in the distributions and abundances of endothermic organisms such as cold-water salmon and trout species (salmonids). Recently published projected declines in salmonid distributions under future climates range from modest t...
Temperature tracking by North Sea benthic invertebrates in response to climate change.
Hiddink, Jan G; Burrows, Michael T; García Molinos, Jorge
2015-01-01
Climate change is a major threat to biodiversity and distributions shifts are one of the most significant threats to global warming, but the extent to which these shifts keep pace with a changing climate is yet uncertain. Understanding the factors governing range shifts is crucial for conservation management to anticipate patterns of biodiversity distribution under future anthropogenic climate change. Soft-sediment invertebrates are a key faunal group because of their role in marine biogeochemistry and as a food source for commercial fish species. However, little information exists on their response to climate change. Here, we evaluate changes in the distribution of 65 North Sea benthic invertebrate species between 1986 and 2000 by examining their geographic, bathymetric and thermal niche shifts and test whether species are tracking their thermal niche as defined by minimum, mean or maximum sea bottom (SBT) and surface (SST) temperatures. Temperatures increased in the whole North Sea with many benthic invertebrates showing north-westerly range shifts (leading/trailing edges as well as distribution centroids) and deepening. Nevertheless, distribution shifts for most species (3.8-7.3 km yr(-1) interquantile range) lagged behind shifts in both SBT and SST (mean 8.1 km yr(-1)), resulting in many species experiencing increasing temperatures. The velocity of climate change (VoCC) of mean SST accurately predicted both the direction and magnitude of distribution centroid shifts, while maximum SST did the same for contraction of the trailing edge. The VoCC of SBT was not a good predictor of range shifts. No good predictor of expansions of the leading edge was found. Our results show that invertebrates need to shift at different rates and directions to track the climate velocities of different temperature measures, and are therefore lagging behind most temperature measures. If these species cannot withstand a change in thermal habitat, this could ultimately lead to a drop in benthic biodiversity. © 2014 John Wiley & Sons Ltd.
Fourcade, Yoan; Ranius, Thomas; Öckinger, Erik
2017-10-01
Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. Second, we used a 13-year monitoring dataset including the majority of all habitat patches at the species northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonization-extinction dynamics. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species larval development. In contrast, colonization and extinction dynamics were better explained by patch area, between-patch connectivity and host plant density. This suggests that the response of the species to future climate change may be limited by future land use and how its host plants respond to climate change. It is, thus, probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land use, appears essential to provide predictions useful for actions mitigating the negative effects of climate change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
You, Jianling; Qin, Xiaoping; Ranjitkar, Sailesh; Lougheed, Stephen C; Wang, Mingcheng; Zhou, Wen; Ouyang, Dongxin; Zhou, Yin; Xu, Jianchu; Zhang, Wenju; Wang, Yuguo; Yang, Ji; Song, Zhiping
2018-04-12
Climate change profoundly influences species distributions. These effects are evident in poleward latitudinal range shifts for many taxa, and upward altitudinal range shifts for alpine species, that resulted from increased annual global temperatures since the Last Glacial Maximum (LGM, ca. 22,000 BP). For the latter, the ultimate consequence of upward shifts may be extinction as species in the highest alpine ecosystems can migrate no further, a phenomenon often characterized as "nowhere to go". To predict responses to climate change of the alpine plants on the Qinghai-Tibetan Plateau (QTP), we used ecological niche modelling (ENM) to estimate the range shifts of 14 Rhodiola species, beginning with the Last Interglacial (ca. 120,000-140,000 BP) through to 2050. Distributions of Rhodiola species appear to be shaped by temperature-related variables. The southeastern QTP, and especially the Hengduan Mountains, were the origin and center of distribution for Rhodiola, and also served as refugia during the LGM. Under future climate scenario in 2050, Rhodiola species might have to migrate upward and northward, but many species would expand their ranges contra the prediction of the "nowhere to go" hypothesis, caused by the appearance of additional potential habitat concomitant with the reduction of permafrost with climate warming.
Lambert, Emily; Pierce, Graham J; Hall, Karen; Brereton, Tom; Dunn, Timothy E; Wall, Dave; Jepson, Paul D; Deaville, Rob; MacLeod, Colin D
2014-06-01
There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio-climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs "hindcasting" of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species-specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white-beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time-scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies. © 2014 John Wiley & Sons Ltd.
Innovations in projecting emissions for air quality modeling ...
Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo
Leach, Katie; Kelly, Ruth; Cameron, Alison; Montgomery, W Ian; Reid, Neil
2015-01-01
Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species' bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed 'modellable' within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov's Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.
NASA Astrophysics Data System (ADS)
Rogers, B. M.; Jantz, P.; Goetz, S. J.
2015-12-01
Models of vegetation distributions are used for a wide variety of purposes, from global assessments of biome shifts and biogeochemical feedbacks to local management planning. Dynamic vegetation models, mostly mechanistic in origin, are valuable for regional to global studies but remain limited for more local-scale applications, especially those that require species-specific responses to climate change. Species distribution models (SDMs) are broadly used for such applications, but these too have several outstanding limitations, one of the most prominent being a lack of dispersal and migration. Several hybrid models have recently been developed, but these generally require detailed parameterization of species-level attributes that may not be known. Here we present an approach to couple migration potential with SDM output for a large number of species in order to more realistically project future range shifts. We focus on 40 tree species in the eastern US of potential management concern, either because of their canopy dominance, ecosystem functions, or potential for utilizing future climates. Future climates were taken from a CMIP5 model ensemble average using RCP 4.5 and 8.5 scenarios. We used Random Forests to characterize current and future environmental suitability, and modeled migration as a negative exponential kernel that is affected by forest fragmentation and the density of current seed sources. We present results in a vulnerability framework relevant for a number of ongoing management activities in the region. We find an overarching pattern of northward and eastward range shifts, with high-elevation and northern species being the most adversely impacted. Because of limitations to migration, many newly suitable areas could not be utilized without active intervention. Only a few areas exhibited consistently favorable conditions that could be utilized by the relevant species, including the central Appalachian foothills and the Florida panhandle. We suggest that a continued effort to include migration potential into vegetation models can lead to more realistic results and management-relevant products.
Leach, Katie; Kelly, Ruth; Cameron, Alison; Montgomery, W. Ian; Reid, Neil
2015-01-01
Climate change during the past five decades has impacted significantly on natural ecosystems, and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical, and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed ‘modellable’ within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares, and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions. PMID:25874407
Probing New Long-Range Interactions by Isotope Shift Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less
Probing New Long-Range Interactions by Isotope Shift Spectroscopy.
Berengut, Julian C; Budker, Dmitry; Delaunay, Cédric; Flambaum, Victor V; Frugiuele, Claudia; Fuchs, Elina; Grojean, Christophe; Harnik, Roni; Ozeri, Roee; Perez, Gilad; Soreq, Yotam
2018-03-02
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca^{+} data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve the relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.
Probing New Long-Range Interactions by Isotope Shift Spectroscopy
Berengut, Julian C.; Budker, Dmitry; Delaunay, Cédric; ...
2018-02-26
We explore a method to probe new long- and intermediate-range interactions using precision atomic isotope shift spectroscopy. We develop a formalism to interpret linear King plots as bounds on new physics with minimal theory inputs. We focus only on bounding the new physics contributions that can be calculated independently of the standard model nuclear effects. We apply our method to existing Ca + data and project its sensitivity to conjectured new bosons with spin-independent couplings to the electron and the neutron using narrow transitions in other atoms and ions, specifically, Sr and Yb. Future measurements are expected to improve themore » relative precision by 5 orders of magnitude, and they can potentially lead to an unprecedented sensitivity for bosons within the 0.3 to 10 MeV mass range.« less
Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S
2018-09-01
Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.
Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.
Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of 129 Xe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Keunhong; Slack, Clancy C.; Vassiliou, Christophoros C.
2015-09-17
Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here in this paper, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca 2+, Cu 2+, Ce 3+, Zn 2+, Cd 2+, Ni 2+, Co 2+, Cr 2+, Fe 3+, and Hg 2+ are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding withmore » a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of 129Xe. Lastly, these sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.« less
Popescu, Viorel D.; Rozylowicz, Laurenţiu; Cogălniceanu, Dan; Niculae, Iulian Mihăiţă; Cucu, Adina Livia
2013-01-01
Rapid climate change represents one of the top threats to biodiversity, causing declines and extinctions of many species. Range shifts are a key response, but in many cases are incompatible with the current extent of protected areas. In this study we used ensemble species distribution models to identify range changes for 21 reptile and 16 amphibian species in Romania for the 2020s and 2050s time horizons under three emission scenarios (A1B = integrated world, rapid economic growth, A2A = divided world, rapid economic growth [realistic scenario], B2A = regional development, environmentally-friendly scenario) and no- and limited-dispersal assumptions. We then used irreplaceability analysis to test the efficacy of the Natura 2000 network to meet conservation targets. Under all scenarios and time horizons, 90% of the species suffered range contractions (greatest loses under scenarios B2A for 2020s, and A1B for 2050s), and four reptile species expanded their ranges. Two reptile and two amphibian species are predicted to completely lose climate space by 2050s. Currently, 35 species do not meet conservation targets (>40% representation in protected areas), but the target is predicted to be met for 4 - 14 species under future climate conditions, with higher representation under the limited-dispersal scenario. The Alpine and Steppic-Black Sea biogeographic regions have the highest irreplaceability value, and act as climate refugia for many reptiles and amphibians. The Natura 2000 network performs better for achieving herpetofauna conservation goals in the future, owing to the interaction between drastic range contractions, and range shifts towards existing protected areas. Thus, conservation actions for herpetofauna in Romania need to focus on: (1) building institutional capacity of protected areas in the Alpine and Steppic-Black Sea biogeographic regions, and (2) facilitating natural range shifts by improving the conservation status of herpetofauna outside protected areas, specifically in traditionally-managed landscapes and abandoned cropland. PMID:24324547
Popescu, Viorel D; Rozylowicz, Laurenţiu; Cogălniceanu, Dan; Niculae, Iulian Mihăiţă; Cucu, Adina Livia
2013-01-01
Rapid climate change represents one of the top threats to biodiversity, causing declines and extinctions of many species. Range shifts are a key response, but in many cases are incompatible with the current extent of protected areas. In this study we used ensemble species distribution models to identify range changes for 21 reptile and 16 amphibian species in Romania for the 2020s and 2050s time horizons under three emission scenarios (A1B = integrated world, rapid economic growth, A2A = divided world, rapid economic growth [realistic scenario], B2A = regional development, environmentally-friendly scenario) and no- and limited-dispersal assumptions. We then used irreplaceability analysis to test the efficacy of the Natura 2000 network to meet conservation targets. Under all scenarios and time horizons, 90% of the species suffered range contractions (greatest loses under scenarios B2A for 2020s, and A1B for 2050s), and four reptile species expanded their ranges. Two reptile and two amphibian species are predicted to completely lose climate space by 2050s. Currently, 35 species do not meet conservation targets (>40% representation in protected areas), but the target is predicted to be met for 4 - 14 species under future climate conditions, with higher representation under the limited-dispersal scenario. The Alpine and Steppic-Black Sea biogeographic regions have the highest irreplaceability value, and act as climate refugia for many reptiles and amphibians. The Natura 2000 network performs better for achieving herpetofauna conservation goals in the future, owing to the interaction between drastic range contractions, and range shifts towards existing protected areas. Thus, conservation actions for herpetofauna in Romania need to focus on: (1) building institutional capacity of protected areas in the Alpine and Steppic-Black Sea biogeographic regions, and (2) facilitating natural range shifts by improving the conservation status of herpetofauna outside protected areas, specifically in traditionally-managed landscapes and abandoned cropland.
Past and ongoing shifts in Joshua tree distribution support future modeled range contraction
Cole, Kenneth L.; Ironside, Kirsten; Eischeid, Jon K.; Garfin, Gregg; Duffy, Phil; Toney, Chris
2011-01-01
The future distribution of the Joshua tree (Yucca brevifolia) is projected by combining a geostatistical analysis of 20th-century climates over its current range, future modeled climates, and paleoecological data showing its response to a past similar climate change. As climate rapidly warmed ;11 700 years ago, the range of Joshua tree contracted, leaving only the populations near what had been its northernmost limit. Its ability to spread northward into new suitable habitats after this time may have been inhibited by the somewhat earlier extinction of megafaunal dispersers, especially the Shasta ground sloth. We applied a model of climate suitability for Joshua tree, developed from its 20th-century range and climates, to future climates modeled through a set of six individual general circulation models (GCM) and one suite of 22 models for the late 21st century. All distribution data, observed climate data, and future GCM results were scaled to spatial grids of ;1 km and ;4 km in order to facilitate application within this topographically complex region. All of the models project the future elimination of Joshua tree throughout most of the southern portions of its current range. Although estimates of future monthly precipitation differ between the models, these changes are outweighed by large increases in temperature common to all the models. Only a few populations within the current range are predicted to be sustainable. Several models project significant potential future expansion into new areas beyond the current range, but the species' Historical and current rates of dispersal would seem to prevent natural expansion into these new areas. Several areas are predicted to be potential sites for relocation/ assisted migration. This project demonstrates how information from paleoecology and modern ecology can be integrated in order to understand ongoing processes and future distributions.
Strategic Planning Is an Oxymoron
ERIC Educational Resources Information Center
Bassett, Patrick F.
2012-01-01
The thinking on "strategic thinking" has evolved significantly over the years. In the previous century, the independent school strategy was to focus on long-range planning, blithely projecting 10 years into the future. For decades this worked well enough, but in the late 20th century, independent schools shifted to "strategic planning," with its…
Barbet-Massin, Morgane; Walther, Bruno A.; Thuiller, Wilfried; Rahbek, Carsten; Jiguet, Frédéric
2009-01-01
We modelled the present and future sub-Saharan winter distributions of 64 trans-Saharan migrant passerines to predict the potential impacts of climate change. These predictions used the recent ensemble modelling developments and the latest IPCC climatic simulations to account for possible methodological uncertainties. Results suggest that 37 species would face a range reduction by 2100 (16 of these by more than 50%); however, the median range size variation is −13 per cent (from −97 to +980%) under a full dispersal hypothesis. Range centroids were predicted to shift by 500±373 km. Predicted changes in range size and location were spatially structured, with species that winter in southern and eastern Africa facing larger range contractions and shifts. Predicted changes in regional species richness for these long-distance migrants are increases just south of the Sahara and on the Arabian Peninsula and major decreases in southern and eastern Africa. PMID:19324660
Changes in forest productivity across Alaska consistent with biome shift.
Beck, Pieter S A; Juday, Glenn P; Alix, Claire; Barber, Valerie A; Winslow, Stephen E; Sousa, Emily E; Heiser, Patricia; Herriges, James D; Goetz, Scott J
2011-04-01
Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st century. This shift would manifest itself first at the biome's margins, with evergreen forest expanding into current tundra while being replaced by grasslands or temperate forest at the biome's southern edge. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal-tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. © 2011 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Tomczik, D. W.; Norris, R. D.; Gaskell, D. E.
2014-12-01
A partial analog for future global change is the Paleocene-Eocene Thermal Maximum—a transient episode of warming, acidification, and biogeographic change at ~55.5 Ma. The PETM is known to have triggered extinction in some deep sea biotas, extensive biogeographic range shifts, and the common occurrence of 'excursion biotas'—non-analog occurrences of species that are typically rare in the open ocean before or after the PETM. Here we report on the impact of the PETM on fish production and biodiversity. Our data include the mass accumulation rate of fish teeth and denticles as well as an analysis of tooth morphotypes for three PETM sites: ODP 1220 and 1209 in the Pacific, and ODP 1260 in the equatorial Atlantic. Tooth morphotypes hardly change through the PETM and consist of abundant midwater species (angler fish and flashlight fish) in addition to sharks and epipelagic fish. There is no evidence for a non-analog 'excursion biota' during the PETM, suggesting that fish experienced fewer geographic range shifts than the calcareous and organic-walled plankton where excursion biotas are commonplace. Fish mass accumulation rates are also relatively stable before and after the PETM although all sites show a transient rise in fish production at the onset of the PETM or within the later part of the "PETM Core". These results broadly match published estimates of PETM export production from biogenic barium fluxes. Our findings run counter to "Future Earth" models that use climate forecasts for the next century to predict the impact of global change on fish stocks. These models suggest that future warming and ocean stratification will decrease most tropical and subtropical ocean fish production, accentuate fish production in the boundary currents and generally shift production toward higher latitudes. A resolution of "Future Earth" models and PETM data may reflect the different timescales of observation and stages of ecological response to severe global change.
Red fluorescent proteins: advanced imaging applications and future design.
Shcherbakova, Daria M; Subach, Oksana M; Verkhusha, Vladislav V
2012-10-22
In the past few years a large series of the advanced red-shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far-red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photoswitchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genomic signals of selection predict climate-driven population declines in a migratory bird.
Bay, Rachael A; Harrigan, Ryan J; Underwood, Vinh Le; Gibbs, H Lisle; Smith, Thomas B; Ruegg, Kristen
2018-01-05
The ongoing loss of biodiversity caused by rapid climatic shifts requires accurate models for predicting species' responses. Despite evidence that evolutionary adaptation could mitigate climate change impacts, evolution is rarely integrated into predictive models. Integrating population genomics and environmental data, we identified genomic variation associated with climate across the breeding range of the migratory songbird, yellow warbler ( Setophaga petechia ). Populations requiring the greatest shifts in allele frequencies to keep pace with future climate change have experienced the largest population declines, suggesting that failure to adapt may have already negatively affected populations. Broadly, our study suggests that the integration of genomic adaptation can increase the accuracy of future species distribution models and ultimately guide more effective mitigation efforts. Copyright © 2018, American Association for the Advancement of Science.
Scalone, Romain; Lemke, Andreas; Štefanić, Edita; Kolseth, Anna-Karin; Rašić, Sanda; Andersson, Lars
2016-01-01
The invasive weed Ambrosia artemisiifolia (common ragweed) constitutes a great threat to public health and agriculture in large areas of the globe. Climate change, characterized by higher temperatures and prolonged vegetation periods, could increase the risk of establishment in northern Europe in the future. However, as the species is a short-day plant that requires long nights to induce bloom formation, it might still fail to produce mature seeds before the onset of winter in areas at northern latitudes characterized by short summer nights. To survey the genetic variation in flowering time and study the effect of latitudinal origin on this trait, a reciprocal common garden experiment, including eleven populations of A. artemisiifolia from Europe and North America, was conducted. The experiment was conducted both outside the range limit of the species, in Sweden and within its invaded range, in Croatia. Our main hypothesis was that the photoperiodic-thermal requirements of A. artemisiifolia constitute a barrier for reproduction at northern latitudes and, thus, halts the northern range shift despite expected climate change. Results revealed the presence of a north-south gradient in flowering time at both garden sites, indicating that certain European populations are pre-adapted to photoperiodic and thermal conditions at latitudes up to, at least, 60° N. This was confirmed by phenological recordings performed in a region close to the northern range limit, the north of Germany. Thus, we conclude that there exists a high risk for establishment and spread of A. artemisiifolia in FennoScandinavia in the near future. The range shift might occur independently of climate change, but would be accelerated by it.
Angert, Amy L; Sheth, Seema N; Paul, John R
2011-11-01
Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos
2017-12-01
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.
Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632
Cole, K.L.
2010-01-01
Temperatures in southwestern North America are projected to increase 3.5-4 ??C over the next 60-90 years. This will precipitate ecological shifts as the ranges of species change in response to new climates. During this shift, rapid-colonizing species should increase, whereas slow-colonizing species will at first decrease, but eventually become reestablished in their new range. This successional process has been estimated to require from 100 to over 300 years in small areas, under a stable climate, with a nearby seed source. How much longer will it require on a continental scale, under a changing climate, without a nearby seed source? I considered this question through an examination of the response of fossil plant assemblages from the Grand Canyon, Arizona, to the most recent rapid warming of similar magnitude that occurred at the start of the Holocene, 11,700 years ago. At that time, temperatures in southwestern North America increased about 4 ??C over less than a century. Grand Canyon plant species responded at different rates to this warming climate. Early-successional species rapidly increased, whereas late-successional species decreased. This shift persisted throughout the next 2700 years. I found two earlier, less-extreme species shifts following rapid warming events around 14,700 and 16,800 years ago. Late-successional species predominated only after 4000 years or more of relatively stable temperature. These results suggest the potential magnitude, duration, and nature of future ecological changes and have implications for conservation plans, especially those incorporating equilibrium assumptions or reconstituting past conditions. When these concepts are extended to include the most rapid early-successional colonizers, they imply that the recent increases in invasive exotics may be only the most noticeable part of a new resurgence of early-successional vegetation. Additionally, my results challenge the reliability of models of future vegetation and carbon balance that project conditions on the basis of assumptions of equilibrium within only a century. ?? 2009 Society for Conservation Biology.
Continental-scale assessment of risk to the Australian odonata from climate change.
Bush, Alex A; Nipperess, David A; Duursma, Daisy E; Theischinger, Gunther; Turak, Eren; Hughes, Lesley
2014-01-01
Climate change is expected to have substantial impacts on the composition of freshwater communities, and many species are threatened by the loss of climatically suitable habitat. In this study we identify Australian Odonata (dragonflies and damselflies) vulnerable to the effects of climate change on the basis of exposure, sensitivity and pressure to disperse in the future. We used an ensemble of species distribution models to predict the distribution of 270 (85%) species of Australian Odonata, continent-wide at the subcatchment scale, and for both current and future climates using two emissions scenarios each for 2055 and 2085. Exposure was scored according to the departure of temperature, precipitation and hydrology from current conditions. Sensitivity accounted for change in the area and suitability of projected climatic habitat, and pressure to disperse combined measurements of average habitat shifts and the loss experienced with lower dispersal rates. Streams and rivers important to future conservation efforts were identified based on the sensitivity-weighted sum of habitat suitability for the most vulnerable species. The overall extent of suitable habitat declined for 56-69% of the species modelled by 2085 depending on emissions scenario. The proportion of species at risk across all components (exposure, sensitivity, pressure to disperse) varied between 7 and 17% from 2055 to 2085 and a further 3-17% of species were also projected to be at high risk due to declines that did not require range shifts. If dispersal to Tasmania was limited, many south-eastern species are at significantly increased risk. Conservation efforts will need to focus on creating and preserving freshwater refugia as part of a broader conservation strategy that improves connectivity and promotes adaptive range shifts. The significant predicted shifts in suitable habitat could potentially exceed the dispersal capacity of Odonata and highlights the challenge faced by other freshwater species.
Hadley circulation strength and width in a wide range of simulated climates
NASA Astrophysics Data System (ADS)
D'Agostino, R.; Adam, O.; Lionello, P.; Schneider, T.
2016-12-01
Understanding how the Hadley circulation (HC) responds to global warming is crucial because it determines climatic features such as the seasonal migration of the ITCZ, the extent of subtropical arid regions and the strength of the monsoons. Here we analyse changes in the HC strength and width in the set of PMIP3 and CMIP5 simulations, spanning a wide range of climate conditions from Last Glacial Maximum to future RCP projections. The large climate change signal emerging from comparing paleoclimate simulations to future scenarios offers the possibility to analyse the corresponding HC change and to investigate its response to large variations of the factors controlling it. The results confirm that the HC generally expands and weakens as the global mean temperature increases, consistent with results from other studies. Furthermore, we find an asymmetric HC response between the northern and southern hemisphere in the rate at which the HC edges shift poleward with global warming. The mid-latitude static stability and meridional temperature gradients affect the HC edges to different degrees in the two hemispheres. In the southern hemisphere the increase in the mid-latitude static stability is associated with a poleward shift of the southern HC edge, while in the northern hemisphere, the reduction in the meridional temperature gradient plays the dominant role in the poleward shift of the northern HC edge. The two hemispheres also exhibit very different changes of HC strength. The HC weakening with global warming occurs primarily in the northern hemisphere, while there is no change, or even a slighter weakening in the southern hemisphere. The HC changes also have pronounced seasonal signatures. The maximum poleward shift of the northern HC edge occurs one month later (from August to September) in future global warming scenarios than when comparing pre-industrial simulations with the Last Glacial Maximum.
Continental-Scale Assessment of Risk to the Australian Odonata from Climate Change
Bush, Alex A.; Nipperess, David A.; Duursma, Daisy E.; Theischinger, Gunther; Turak, Eren; Hughes, Lesley
2014-01-01
Climate change is expected to have substantial impacts on the composition of freshwater communities, and many species are threatened by the loss of climatically suitable habitat. In this study we identify Australian Odonata (dragonflies and damselflies) vulnerable to the effects of climate change on the basis of exposure, sensitivity and pressure to disperse in the future. We used an ensemble of species distribution models to predict the distribution of 270 (85%) species of Australian Odonata, continent-wide at the subcatchment scale, and for both current and future climates using two emissions scenarios each for 2055 and 2085. Exposure was scored according to the departure of temperature, precipitation and hydrology from current conditions. Sensitivity accounted for change in the area and suitability of projected climatic habitat, and pressure to disperse combined measurements of average habitat shifts and the loss experienced with lower dispersal rates. Streams and rivers important to future conservation efforts were identified based on the sensitivity-weighted sum of habitat suitability for the most vulnerable species. The overall extent of suitable habitat declined for 56–69% of the species modelled by 2085 depending on emissions scenario. The proportion of species at risk across all components (exposure, sensitivity, pressure to disperse) varied between 7 and 17% from 2055 to 2085 and a further 3–17% of species were also projected to be at high risk due to declines that did not require range shifts. If dispersal to Tasmania was limited, many south-eastern species are at significantly increased risk. Conservation efforts will need to focus on creating and preserving freshwater refugia as part of a broader conservation strategy that improves connectivity and promotes adaptive range shifts. The significant predicted shifts in suitable habitat could potentially exceed the dispersal capacity of Odonata and highlights the challenge faced by other freshwater species. PMID:24551197
Global Tree Range Shifts Under Forecasts from Two Alternative GCMs Using Two Future Scenarios
NASA Astrophysics Data System (ADS)
Hargrove, W. W.; Kumar, J.; Potter, K. M.; Hoffman, F. M.
2013-12-01
Global shifts in the environmentally suitable ranges of 215 tree species were predicted under forecasts from two GCMs (the Parallel Climate Model (PCM), and the Hadley Model), each under two IPCC future climatic scenarios (A1 and B1), each at two future dates (2050 and 2100). The analysis considers all global land surface at a resolution of 4 km2. A statistical multivariate clustering procedure was used to quantitatively delineate 30 thousand environmentally homogeneous ecoregions across present and 8 potential future global locations at once, using global maps of 17 environmental characteristics describing temperature, precipitation, soils, topography and solar insolation. Presence of each tree species on Forest Inventory Analysis (FIA) plots and in Global Biodiversity Information Facility (GBIF) samples was used to select a subset of suitable ecoregions from the full set of 30 thousand. Once identified, this suitable subset of ecoregions was compared to the known current range of the tree species under present conditions. Predicted present ranges correspond well with current understanding for all but a few of the 215 tree species. The subset of suitable ecoregions for each tree species can then be tracked into the future to determine whether the suitable home range for this species remains the same, moves, grows, shrinks, or disappears under each model/scenario combination. Occurrence and growth performance measurements for various tree species across the U.S. are limited to FIA plots. We present a new, general-purpose empirical imputation method which associates sparse measurements of dependent variables with particular multivariate clustered combinations of the independent variables, and then estimates values for unmeasured clusters, based on directional proximity in multidimensional data space, at both the cluster and map-cell levels of resolution. Using Associative Clustering, we scaled up the FIA point measurements into contonuous maps that show the expected growth and suitability for individual tree species across the continental US. Maps were generated for each tree species showing the Minimum Required Movement (MRM) straight-line distance from each currently suitable location to the geographically nearest "lifeboat" location having suitable conditions in the future. Locations that are the closest "lifeboats" for many MRM propagules originating from wide surrounding areas may constitute high-priority preservation targets as a refugium against climatic change.
USDA-ARS?s Scientific Manuscript database
In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses t...
Climate change and watershed mercury export in a Coastal Plain watershed
Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley
2016-01-01
Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.
Seed bank and big sagebrush plant community composition in a range margin for big sagebrush
Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.
2016-01-01
The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.
Life stage, not climate change, explains observed tree range shifts.
Máliš, František; Kopecký, Martin; Petřík, Petr; Vladovič, Jozef; Merganič, Ján; Vida, Tomáš
2016-05-01
Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages. © 2016 John Wiley & Sons Ltd.
Life-stage, not climate change, explains observed tree range shifts
Máliš, František; Kopecký, Martin; Petřík, Petr; Vladovič, Jozef; Merganič, Ján; Vida, Tomáš
2017-01-01
Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life-stages reflect distributional shifts triggered by climate change. However, the distribution of tree life-stages could differ within the lifespan of trees, therefore we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed i) temporal shifts between the surveys and ii) distributional differences between tree life-stages within both surveys. Despite climate warming, tree species distribution of any life-stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species-specific and an order of magnitude lower than differences among tree life-stages within the surveys. Our results show that the observed range shifts among tree life-stages are more consistent with ontogenetic differences in the species’ environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life-stages. Future research has to take ontogenetic differences among life-stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life-stages. PMID:26725258
Interactive computer aided shift scheduling.
Gaertner, J
2001-12-01
This paper starts with a discussion of computer aided shift scheduling. After a brief review of earlier approaches, two conceptualizations of this field are introduced: First, shift scheduling as a field that ranges from extremely stable rosters at one pole to rather market-like approaches on the other pole. Unfortunately, already small alterations of a scheduling problem (e.g., the number of groups, the number of shifts) may call for rather different approaches and tools. Second, their environment shapes scheduling problems and scheduling has to be done within idiosyncratic organizational settings. This calls for the amalgamation of scheduling with other tasks (e.g., accounting) and for reflections whether better solutions might become possible by changes in the problem definition (e.g., other service levels, organizational changes). Therefore shift scheduling should be understood as a highly connected problem. Building upon these two conceptualizations, a few examples of software that ease scheduling in some areas of this field are given and future research questions are outlined.
Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system
NASA Astrophysics Data System (ADS)
Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál
2018-01-01
In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.
Very large phase shift of microwave signals in a 6 nm Hf x Zr1-x O2 ferroelectric at ±3 V
NASA Astrophysics Data System (ADS)
Dragoman, Mircea; Modreanu, Mircea; Povey, Ian M.; Iordanescu, Sergiu; Aldrigo, Martino; Romanitan, Cosmin; Vasilache, Dan; Dinescu, Adrian; Dragoman, Daniela
2017-09-01
In this letter, we report for the first time very large phase shifts of microwaves in the 1-10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf x Zr1-x O2 ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO2 could play an important role in the future development of wireless communication systems for very low power applications.
Nicastro, Katy R; Zardi, Gerardo I; Teixeira, Sara; Neiva, João; Serrão, Ester A; Pearson, Gareth A
2013-01-23
Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species.We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic clade (southern clade).
Weather effects on avian breeding performance and implications of climate change.
Skagen, Susan K; Adams, Amy A Yackel
2012-06-01
The influence of recent climate change on the world's biota has manifested broadly, resulting in latitudinal range shifts, advancing dates of arrival of migrants and onset of breeding, and altered community relationships. Climate change elevates conservation concerns worldwide because it will likely exacerbate a broad range of identified threats to animal populations. In the past few decades, grassland birds have declined faster than other North American avifauna, largely due to habitat threats such as the intensification of agriculture. We examine the effects of local climatic variations on the breeding performance of a bird endemic to the shortgrass prairie, the Lark Bunting (Calamospiza melanocorys) and discuss the implications of our findings relative to future climate predictions. Clutch size, nest survival, and productivity all positively covaried with seasonal precipitation; yet relatively intense daily precipitation events temporarily depressed daily survival of nests. Nest survival was positively related to average temperatures during the breeding season. Declining summer precipitation may reduce the likelihood that Lark Buntings can maintain stable breeding populations in eastern Colorado although average temperature increases of up to 3 degrees C (within the range of this study) may ameliorate declines in survival expected with drier conditions. Historic climate variability in the Great Plains selects for a degree of vagility and opportunism rather than strong site fidelity and specific adaptation to local environments. These traits may lead to northerly shifts in distribution if climatic and habitat conditions become less favorable in the drying southern regions of the Great Plains. Distributional shifts in Lark Buntings could be constrained by future changes in land use, agricultural practices, or vegetative communities that result in further loss of shortgrass prairie habitats.
Weather effects on avian breeding performance and implications of climate change
Skagen, Susan K.; Yackel Adams, Amy A.
2012-01-01
The influence of recent climate change on the world’s biota has manifested broadly, resulting in latitudinal range shifts, advancing dates of arrival of migrants and onset of breeding, and altered community relationships. Climate change elevates conservation concerns worldwide because it will likely exacerbate a broad range of identified threats to animal populations. In the past few decades, grassland birds have declined faster than other North American avifauna, largely due to habitat threats such as the intensification of agriculture. We examine the effects of local climatic variations on the breeding performance of a bird endemic to the shortgrass prairie, the Lark Bunting (Calamospiza melanocorys) and discuss the implications of our findings relative to future climate predictions. Clutch size, nest survival, and productivity all positively covaried with seasonal precipitation, yet relatively intense daily precipitation events temporarily depressed daily survival of nests. Nest survival was positively related to average temperatures during the breeding season. Declining summer precipitation may reduce the likelihood that Lark Buntings can maintain stable breeding populations in eastern Colorado although average temperature increases of up to 38C (within the range of this study) may ameliorate declines in survival expected with drier conditions. Historic climate variability in the Great Plains selects for a degree of vagility and opportunism rather than strong site fidelity and specific adaptation to local environments. These traits may lead to northerly shifts in distribution if climatic and habitat conditions become less favorable in the drying southern regions of the Great Plains. Distributional shifts in Lark Buntings could be constrained by future changes in land use, agricultural practices, or vegetative communities that result in further loss of shortgrass prairie habitats.
Estimating indices of range shifts in birds using dynamic models when detection is imperfect
Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.
2016-01-01
There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.
Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.
Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A
2016-03-15
Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.
Chris Swanston; Maria Janowiak; Louis Iverson; Linda Parker; David Mladenoff; Leslie Brandt; Patricia Butler; Matt St. Pierre; Anantha Prasad; Stephen Matthews; Matthew Peters; Dale Higgins; Avery Dorland
2011-01-01
The forests of northern Wisconsin will likely experience dramatic changes over the next 100 years as a result of climate change. This assessment evaluates key forest ecosystem vulnerabilities to climate change across northern Wisconsin under a range of future climate scenarios. Warmer temperatures and shifting precipitation patterns are expected to influence ecosystem...
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.
A global view of shifting cultivation: Recent, current, and future extent
Mertz, Ole; Frolking, Steve; Egelund Christensen, Andreas; Hurni, Kaspar; Sedano, Fernando; Parsons Chini, Louise; Sahajpal, Ritvik; Hansen, Matthew; Hurtt, George
2017-01-01
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing–based land cover and land use classifications, as these are unable to adequately capture such landscapes’ dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation at a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation—the majority in the Americas (41%) and Africa (37%)—this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation. PMID:28886132
A global view of shifting cultivation: Recent, current, and future extent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinimann, Andreas; Mertz, Ole; Frolking, Steve
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation.« less
A global view of shifting cultivation: Recent, current, and future extent
Heinimann, Andreas; Mertz, Ole; Frolking, Steve; ...
2017-09-08
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation.« less
Formoso, Anahí E; Martin, Gabriel M; Teta, Pablo; Carbajo, Aníbal E; Sauthier, Daniel E Udrizar; Pardiñas, Ulyses F J
2015-01-01
The Patagonian opossum (Lestodelphys halli), the southernmost living marsupial, inhabits dry and open environments, mainly in the Patagonian steppe (between ~32 °S and ~49 °S). Its rich fossil record shows its occurrence further north in Central Argentina during the Quaternary. The paleoenvironmental meaning of the past distribution of L. halli has been mostly addressed in a subjective framework without an explicit connection with the climatic "space" currently occupied by this animal. Here, we assessed the potential distribution of this species and the changes occurred in its geographic range during late Pleistocene-Holocene times and linked the results obtained with conservation issues. To this end, we generated three potential distribution models with fossil records and three with current ones, using MaxEnt software. These models showed a decrease in the suitable habitat conditions for the species, highlighting a range shift from Central-Eastern to South-Western Argentina. Our results support that the presence of L. halli in the Pampean region during the Pleistocene-Holocene can be related to precipitation and temperature variables and that its current presence in Patagonia is more related to temperature and dominant soils. The models obtained suggest that the species has been experiencing a reduction in its geographic range since the middle Holocene, a process that is in accordance with a general increase in moisture and temperature in Central Argentina. Considering the findings of our work and the future scenario of global warming projected for Patagonia, we might expect a harsh impact on the distribution range of this opossum in the near future.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.
Stadnik, Yevgeny V
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy
NASA Astrophysics Data System (ADS)
Stadnik, Yevgeny V.
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya
2017-10-01
Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping-stone protection for species that must shift their distribution because of climate change. © 2017 John Wiley & Sons Ltd.
Impacts of climate extremes on gross primary production under global warming
Williams, I. N.; Torn, M. S.; Riley, W. J.; ...
2014-09-24
The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less
Impacts of climate extremes on gross primary production under global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, I. N.; Torn, M. S.; Riley, W. J.
The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less
NASA Astrophysics Data System (ADS)
Kvale, Karin F.; Meissner, Katrin J.
2017-10-01
Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.
NASA Astrophysics Data System (ADS)
Gonzalez, P.; Eigenbrod, F.; Early, R.; Wang, F.; Notaro, M.; Williams, J. W.
2016-12-01
U.S. national parks conserve globally unique biodiversity. Yet, historical impacts of climate change and future vulnerabilities threaten species and ecosystems across this system of protected areas. Spatial analyses of historical climate and downscaled future climate projections show climate trends across the system. Spatial analyses of vegetation and wildfire (using a dynamic global vegetation model), habitat fragmentation (using remote sensing-derived land cover), and invasive species introduction and establishment show patterns of future vulnerability across the 50 U.S. states and 412 U.S. national parks. Results reveal high historical and projected temperature increases and precipitation changes, projected increases of wildfire across western U.S. national parks, high vulnerability to biome shifts and habitat fragmentation of up to one-third of National Park System area, and high vulnerability to invasive species of one-ninth of National Park System area. Ecosystems in the Sierra Nevada, Cascade Range, desert Southwest, and Laurentian Great Lakes are highly vulnerable to upslope and poleward shifts of the North America sequence of biomes: temperate shrubland - temperate broadleaf forest - temperate mixed forest - temperate conifer forest - subalpine and boreal forest - alpine and tundra. These areas include Grand Canyon, Mount Rainier, and Yosemite National Parks. The southwestern U.S., including Grand Canyon and Sequoia National Parks, is vulnerable to increases in wildfire. The eastern and midwestern U.S., including Great Smokey Mountains and Voyageurs National Parks, are highly vulnerable to invasive species. These results identify vulnerable areas and potential refugia to help prioritize areas for future natural resource management actions and biodiversity conservation in U.S. national parks.
How Does a Divided Population Respond to Change?
Qubbaj, Murad R.; Muneepeerakul, Rachata; Aggarwal, Rimjhim M.; Anderies, John M.
2015-01-01
Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics is used to investigate the complex transient dynamics of the population response. Though simple, our modeling approach exhibits a surprisingly rich and diverse array of dynamics. Our results highlight the critical roles played by diversity in strategies and the magnitude of the shift. Importantly, it allows for a variety of strategies to arise organically as an integral part of the transient dynamics—as opposed to an independent process—of population response to a regime shift, providing a link between the population's past and future diversity patterns. Several combinations of different populations' strategy distributions and shifts were systematically investigated. Such rich dynamics highlight the challenges of anticipating the response of a divided population to a change. The findings in this paper can potentially improve our understanding of a wide range of socio-ecological and technological transitions. PMID:26161859
How Does a Divided Population Respond to Change?
Qubbaj, Murad R; Muneepeerakul, Rachata; Aggarwal, Rimjhim M; Anderies, John M
2015-01-01
Most studies on the response of socioeconomic systems to a sudden shift focus on long-term equilibria or end points. Such narrow focus forgoes many valuable insights. Here we examine the transient dynamics of regime shift on a divided population, exemplified by societies divided ideologically, politically, economically, or technologically. Replicator dynamics is used to investigate the complex transient dynamics of the population response. Though simple, our modeling approach exhibits a surprisingly rich and diverse array of dynamics. Our results highlight the critical roles played by diversity in strategies and the magnitude of the shift. Importantly, it allows for a variety of strategies to arise organically as an integral part of the transient dynamics--as opposed to an independent process--of population response to a regime shift, providing a link between the population's past and future diversity patterns. Several combinations of different populations' strategy distributions and shifts were systematically investigated. Such rich dynamics highlight the challenges of anticipating the response of a divided population to a change. The findings in this paper can potentially improve our understanding of a wide range of socio-ecological and technological transitions.
Moo-Llanes, David; Ibarra-Cerdeña, Carlos N.; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M.
2013-01-01
Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases. PMID:24069478
Moo-Llanes, David; Ibarra-Cerdeña, Carlos N; Rebollar-Téllez, Eduardo A; Ibáñez-Bernal, Sergio; González, Camila; Ramsey, Janine M
2013-01-01
Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector's ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys' ENM and human exposure to vectors of Leishmaniases.
Saltré, Frédérik; Duputié, Anne; Gaucherel, Cédric; Chuine, Isabelle
2015-02-01
Recent efforts to incorporate migration processes into species distribution models (SDMs) are allowing assessments of whether species are likely to be able to track their future climate optimum and the possible causes of failing to do so. Here, we projected the range shift of European beech over the 21st century using a process-based SDM coupled to a phenomenological migration model accounting for population dynamics, according to two climate change scenarios and one land use change scenario. Our model predicts that the climatically suitable habitat for European beech will shift north-eastward and upward mainly because (i) higher temperature and precipitation, at the northern range margins, will increase survival and fruit maturation success, while (ii) lower precipitations and higher winter temperature, at the southern range margins, will increase drought mortality and prevent bud dormancy breaking. Beech colonization rate of newly climatically suitable habitats in 2100 is projected to be very low (1-2% of the newly suitable habitats colonised). Unexpectedly, the projected realized contraction rate was higher than the projected potential contraction rate. As a result, the realized distribution of beech is projected to strongly contract by 2100 (by 36-61%) mainly due to a substantial increase in climate variability after 2050, which generates local extinctions, even at the core of the distribution, the frequency of which prevents beech recolonization during more favourable years. Although European beech will be able to persist in some parts of the trailing edge of its distribution, the combined effects of climate and land use changes, limited migration ability, and a slow life-history are likely to increase its threat status in the near future. © 2014 John Wiley & Sons Ltd.
Mechanistic species distribution modeling reveals a niche shift during invasion.
Chapman, Daniel S; Scalone, Romain; Štefanić, Edita; Bullock, James M
2017-06-01
Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual populations. Ignoring such effects could substantially underestimate the extent and impact of invasions. © 2017 by the Ecological Society of America.
Forecasted range shifts of arid-land fishes in response to climate change
Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.; Olden, Julian D.; Strecker, Angela L.
2017-01-01
Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change.
Projected climate-induced faunal change in the Western Hemisphere
Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blaustein, A.R.; Bartlein, P.J.
2009-01-01
Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today. ?? 2009 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Glynn, D. S.; McCarthy, M. D.; McMahon, K.; Guilderson, T. P.
2016-02-01
The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on this planet, and currently expanding in a warming global climate. To understand current and future dynamics in productivity, biogeochemical cycling, and carbon sequestration, we must develop a more complete understanding of the dynamics in this important ecosystem in the past. Low sedimentation rates and high bioturbation make ocean-open sediment cores difficult to interpret at sufficiently high resolution. In contrast, deep-sea corals act as `living sediment traps' and incorporate the signal of sinking organic matter directly into the chronological growth bands of their proteinaceous skeletons. We reconstructed a 5,000 year, high resolution (decadal-scale) record of past changes in stable bulk nitrogen (δ15N) and carbon isotopes (δ13C) from multiple deep-sea corals around the Hawaiian archipelago. Previous studies have indicated a substantial decrease in both δ15N and δ13C (1 to 1.5‰) since the onset of the Industrial Revolution ( 1850s) to 1,000 year lows of 8‰ and -17‰ respectively (Sherwood et al. 2014, McMahon et al. 2015). Our new data now reveals that shifts of this magnitude are not unprecedented in the Mid- to Late Holocene. Our extended record indicates that over multi-millennial time scales there is a large range of natural variability, with δ15N values ranging from 8‰ to 12‰ and δ13C values ranging from -17‰ to -15‰. We propose that these signals reflect primarily shifts in phytoplankton species composition (as indicated by previous compound-specific work with amino acids). Comparisons with climate records suggest that these shifts may be directly linked to past changes in temperature (ocean stratification) and dust inputs. This study represents the first high-resolution record of nutrient and ecosystem dynamics in the NPSG over the past five millennia, and offers a historical baseline to better analyze the effects of current and future anthropogenic climate forcing.
The distribution shifts of Pinus armandii and its response to temperature and precipitation in China
Zheng, Xiaofeng; Gao, Pengxiang
2017-01-01
Background The changing climate, particularly in regard to temperature and precipitation, is already affecting tree species’ distributions. Pinus armandii, which dominates on the Yungui Plateau and in the Qinba Mountains in China, is of economic, cultural and ecological value. We wish to test the correlations between the distribution shift of P. armandii and changing climate, and figure out how it tracks future climate change. Methods We sampled the surface soil at sites throughout the distribution of P. armandii to compare the relative abundance of pollen to the current percent cover of plant species. This was used to determine possible changes in the distribution P. armandii. Given the hilly terrain, elevation was considered together with temperature and precipitation as variables correlated with distribution shifts of P. armandii. Results We show that P. armandii is undergoing change in its geographic range, including retraction, a shift to more northern areas and from the upper high part of the mountains to a lower-altitude part in hilly areas. Temperature was the strongest correlate of this distribution shift. Elevation and precipitation were also both significantly correlated with distribution change of P. armandii, but to a lesser degree than temperature. Conclusion The geographic range of P. armandii has been gradually decreasing under the influence of climate change. This provides evidence of the effect of climate change on trees at the species level and suggests that at least some species will have a limited ability to track the changing climate. PMID:28929025
Formoso, Anahí E.; Martin, Gabriel M.; Teta, Pablo; Carbajo, Aníbal E.; Sauthier, Daniel E. Udrizar; Pardiñas, Ulyses F. J.
2015-01-01
The Patagonian opossum (Lestodelphys halli), the southernmost living marsupial, inhabits dry and open environments, mainly in the Patagonian steppe (between ~32°S and ~49°S). Its rich fossil record shows its occurrence further north in Central Argentina during the Quaternary. The paleoenvironmental meaning of the past distribution of L. halli has been mostly addressed in a subjective framework without an explicit connection with the climatic “space” currently occupied by this animal. Here, we assessed the potential distribution of this species and the changes occurred in its geographic range during late Pleistocene-Holocene times and linked the results obtained with conservation issues. To this end, we generated three potential distribution models with fossil records and three with current ones, using MaxEnt software. These models showed a decrease in the suitable habitat conditions for the species, highlighting a range shift from Central-Eastern to South-Western Argentina. Our results support that the presence of L. halli in the Pampean region during the Pleistocene-Holocene can be related to precipitation and temperature variables and that its current presence in Patagonia is more related to temperature and dominant soils. The models obtained suggest that the species has been experiencing a reduction in its geographic range since the middle Holocene, a process that is in accordance with a general increase in moisture and temperature in Central Argentina. Considering the findings of our work and the future scenario of global warming projected for Patagonia, we might expect a harsh impact on the distribution range of this opossum in the near future. PMID:26203650
Zanolla, Marianela; Altamirano, María; Carmona, Raquel; De la Rosa, Julio; Souza-Egipsy, Virginia; Sherwood, Alison; Tsiamis, Konstantinos; Barbosa, Ana Márcia; Muñoz, Antonio Román; Andreakis, Nikos
2018-02-01
The mitochondrial genetic diversity, distribution and invasive potential of multiple cryptic operational taxonomic units (OTUs) of the red invasive seaweed Asparagopsis were assessed by studying introduced Mediterranean and Hawaiian populations. Invasive behavior of each Asparagopsis OTU was inferred from phylogeographic reconstructions, past historical demographic dynamics, recent range expansion assessments and future distributional predictions obtained from demographic models. Genealogical networks resolved Asparagopsis gametophytes and tetrasporophytes into four A. taxiformis and one A. armata cryptic OTUs. Falkenbergia isolates of A. taxiformis L3 were recovered for the first time in the western Mediterranean Sea and represent a new introduction for this area. Neutrality statistics supported past range expansion for A. taxiformis L1 and L2 in Hawaii. On the other hand, extreme geographic expansion and an increase in effective population size were found only for A. taxiformis L2 in the western Mediterranean Sea. Distribution models predicted shifts of the climatically suitable areas and population expansion for A. armata L1 and A. taxiformis L1 and L2. Our integrated study confirms a high invasive risk for A. taxiformis L1 and L2 in temperate and tropical areas. Despite the differences in predictions among modelling approaches, a number of regions were identified as zones with high invasion risk for A. taxiformis L2. Since range shifts are likely climate-driven phenomena, future invasive behavior cannot be excluded for the rest of the lineages. © 2017 Phycological Society of America.
Baltensperger, A. P.; Huettmann, F.
2015-01-01
Climate change is acting to reallocate biomes, shift the distribution of species, and alter community assemblages in Alaska. Predictions regarding how these changes will affect the biodiversity and interspecific relationships of small mammals are necessary to pro-actively inform conservation planning. We used a set of online occurrence records and machine learning methods to create bioclimatic envelope models for 17 species of small mammals (rodents and shrews) across Alaska. Models formed the basis for sets of species-specific distribution maps for 2010 and were projected forward using the IPCC (Intergovernmental Panel on Climate Change) A2 scenario to predict distributions of the same species for 2100. We found that distributions of cold-climate, northern, and interior small mammal species experienced large decreases in area while shifting northward, upward in elevation, and inland across the state. In contrast, many southern and continental species expanded throughout Alaska, and also moved down-slope and toward the coast. Statewide community assemblages remained constant for 15 of the 17 species, but distributional shifts resulted in novel species assemblages in several regions. Overall biodiversity patterns were similar for both time frames, but followed general species distribution movement trends. Biodiversity losses occurred in the Yukon-Kuskokwim Delta and Seward Peninsula while the Beaufort Coastal Plain and western Brooks Range experienced modest gains in species richness as distributions shifted to form novel assemblages. Quantitative species distribution and biodiversity change projections should help land managers to develop adaptive strategies for conserving dispersal corridors, small mammal biodiversity, and ecosystem functionality into the future. PMID:26207828
Escobar, Luis E.; Qiao, Huijie; Phelps, Nicholas B. D.; Wagner, Carli K.; Larkin, Daniel J.
2016-01-01
Nitellopsis obtusa (starry stonewort) is a dioecious green alga native to Europe and Asia that has emerged as an aquatic invasive species in North America. Nitellopsis obtusa is rare across large portions of its native range, but has spread rapidly in northern-tier lakes in the United States, where it can interfere with recreation and may displace native species. Little is known about the invasion ecology of N. obtusa, making it difficult to forecast future expansion. Using ecological niche modeling we investigated environmental variables associated with invasion risk. We used species records, climate data, and remotely sensed environmental variables to characterize the species’ multidimensional distribution. We found that N. obtusa is exploiting novel ecological niche space in its introduced range, which may help explain its invasiveness. While the fundamental niche of N. obtusa may be stable, there appears to have been a shift in its realized niche associated with invasion in North America. Large portions of the United States are predicted to constitute highly suitable habitat for N. obtusa. Our results can inform early detection and rapid response efforts targeting N. obtusa and provide testable estimates of the physiological tolerances of this species as a baseline for future empirical research. PMID:27363541
Projected asymmetric response of Adélie penguins to Antarctic climate change
NASA Astrophysics Data System (ADS)
Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.
2016-06-01
The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.
Climate change alters the optimal wind-dependent flight routes of an avian migrant
Yamaguchi, Noriyuki M.; Higuchi, Hiroyoshi
2017-01-01
Migratory birds can be adversely affected by climate change as they encounter its geographically uneven impacts in various stages of their life cycle. While a wealth of research is devoted to the impacts of climate change on distribution range and phenology of migratory birds, the indirect effects of climate change on optimal migratory routes and flyways, through changes in air movements, are poorly understood. Here, we predict the influence of climate change on the migratory route of a long-distant migrant using an ensemble of correlative modelling approaches, and present and future atmospheric data obtained from a regional climate model. We show that changes in wind conditions by mid-century will result in a slight shift and reduction in the suitable areas for migration of the study species, the Oriental honey-buzzard, over a critical section of its autumn journey, followed by a complete loss of this section of the traditional route by late century. Our results highlight the need for investigating the consequences of climate change-induced disturbance in wind support for long-distance migratory birds, particularly species that depend on the wind to cross ecological barriers, and those that will be exposed to longer journeys due to future range shifts. PMID:28469028
Climate change alters the optimal wind-dependent flight routes of an avian migrant.
Nourani, Elham; Yamaguchi, Noriyuki M; Higuchi, Hiroyoshi
2017-05-17
Migratory birds can be adversely affected by climate change as they encounter its geographically uneven impacts in various stages of their life cycle. While a wealth of research is devoted to the impacts of climate change on distribution range and phenology of migratory birds, the indirect effects of climate change on optimal migratory routes and flyways, through changes in air movements, are poorly understood. Here, we predict the influence of climate change on the migratory route of a long-distant migrant using an ensemble of correlative modelling approaches, and present and future atmospheric data obtained from a regional climate model. We show that changes in wind conditions by mid-century will result in a slight shift and reduction in the suitable areas for migration of the study species, the Oriental honey-buzzard, over a critical section of its autumn journey, followed by a complete loss of this section of the traditional route by late century. Our results highlight the need for investigating the consequences of climate change-induced disturbance in wind support for long-distance migratory birds, particularly species that depend on the wind to cross ecological barriers, and those that will be exposed to longer journeys due to future range shifts. © 2017 The Author(s).
Local adaptation and the evolution of species' ranges under climate change.
Atkins, K E; Travis, J M J
2010-10-07
The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention. 2010 Elsevier Ltd. All rights reserved.
Varela, Sara; Larkin, Daniel J.; Phelps, Nicholas B. D.
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species’ suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain. PMID:28704433
Romero-Alvarez, Daniel; Escobar, Luis E; Varela, Sara; Larkin, Daniel J; Phelps, Nicholas B D
2017-01-01
Starry stonewort (Nitellopsis obtusa) is an alga that has emerged as an aquatic invasive species of concern in the United States. Where established, starry stonewort can interfere with recreational uses of water bodies and potentially have ecological impacts. Incipient invasion of starry stonewort in Minnesota provides an opportunity to predict future expansion in order to target early detection and strategic management. We used ecological niche models to identify suitable areas for starry stonewort in Minnesota based on global occurrence records and present-day and future climate conditions. We assessed sensitivity of forecasts to different parameters, using four emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5) from five future climate models (i.e., CCSM, GISS, IPSL, MIROC, and MRI). From our niche model analyses, we found that (i) occurrences from the entire range, instead of occurrences restricted to the invaded range, provide more informed models; (ii) default settings in Maxent did not provide the best model; (iii) the model calibration area and its background samples impact model performance; (iv) model projections to future climate conditions should be restricted to analogous environments; and (v) forecasts in future climate conditions should include different future climate models and model calibration areas to better capture uncertainty in forecasts. Under present climate, the most suitable areas for starry stonewort are predicted to be found in central and southeastern Minnesota. In the future, suitable areas for starry stonewort are predicted to shift in geographic range under some future climate models and to shrink under others, with most permutations indicating a net decrease of the species' suitable range. Our suitability maps can serve to design short-term plans for surveillance and education, while future climate models suggest a plausible reduction of starry stonewort spread in the long-term if the trends in climate warming remain.
NASA Astrophysics Data System (ADS)
George, J.; MacDonald, G. M.
2017-12-01
As the effects of climate change become more apparent, increased importance must be placed on species' response to changing environments for ecosystem management and threat mitigation. While many studies have focused on the response of ecosystem types, few venture to the species level, as true limiting factors of species can be difficult to discern. Paleoproxies provide a valuable resource for predicting responses to future change through observation of similar responses in the past. This study uses plant paleorecords of Sequoia sempervirens to more closely examine the relationship of local climate change and species response in the Los Angeles Basin during the Late Pleistocene. The modern distribution of S. sempervirens has a southern extent, today, reaching the south end of Monterey County, California. Fossilized material from the La Brea Tar Pits extends that range to the farthest known point south, 200 miles from the southernmost modern stands, and has previously not been dated. A coupled analysis of 8 S. sempervirens specimens preserved in asphalt using Accelerator Mass Spectrometry (AMS) dates paired with δC13 values will help to illuminate patterns of changing climate on a local scale, as well as provide valuable data on primary environmental factors in plant community change. Understanding the intricacies of species' range shifts and factors behind local extirpation on a local scale is necessary to interpret species response in the past as well as predicting response in the future.
Yandow, Leah H; Chalfoun, Anna D; Doak, Daniel F
2015-01-01
Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions.
Yandow, Leah H.; Chalfoun, Anna D.; Doak, Daniel F.
2015-01-01
Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions. PMID:26244851
Yandow, Leah H.; Chalfoun, Anna D.; Doak, Daniel F.
2015-01-01
Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions.
Projecting shifts in thermal habitat for 686 species on the North American continental shelf
Selden, Rebecca L.; Latour, Robert J.; Frölicher, Thomas L.; Seagraves, Richard J.; Pinsky, Malin L.
2018-01-01
Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts. PMID:29768423
Projecting shifts in thermal habitat for 686 species on the North American continental shelf.
Morley, James W; Selden, Rebecca L; Latour, Robert J; Frölicher, Thomas L; Seagraves, Richard J; Pinsky, Malin L
2018-01-01
Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts.
NASA Astrophysics Data System (ADS)
Wright, Z.
2015-12-01
The Sur Ridge, located ~30 km off the Big Sur coast of central California, represents a unique system within the highly productive California Current ecosystem. Its unique high nutrient, but low chlorophyll characteristics are not fully understood. Time series of bulk stable carbon (δ13C) and stable nitrogen (δ15N) isotopes can help us better understand past changes in nutrient dynamics and phytoplankton community baselines for this region in order to better predict future changes. Deep-sea proteinaceous corals are particularly powerful paleoarchives of past ocean conditions. These organisms serve as "living sediment traps," incorporating the stable isotope values of exported particulate organic material (POM) from the surface into their growth layers. The longevity of bamboo corals (Isidella, up to 400 years) makes them excellent resources for creating high resolution, centennial time series of δ13C and δ15N dynamics. Bamboo corals used in this study were harvested during summer of 2014 from 1220 to 1300 m depths. Two corals were milled in sub-millimeter intervals to generate a 200 year time series at approximately three year temporal resolution. Over the past 200 years, deep-sea coral δ13C values ranged from -15.7 to -19.0‰ and δ15N values ranged from 14.4 to 15.9‰, consistent with earlier data from the CA margin. The δ13C records were characterized by long periods of remarkable stability, contrasted with several large shifts (~1900 and ~1960) in δ13C of approximately 1‰. We hypothesize that these shifts likely reflect changes in plankton composition or production associated with regional climate shifts. The δ15N data were more dynamic, including several large shifts (1940 - 1960), as well as periods of apparent decadal scale oscillation (1825 - 1925 and 1965 - present). These shifts may reflect changes in the source or utilization of nitrogen at the base of the food web. Together, these data give us a first look at baseline stability of biogeochemical systems in this unique region, and will be crucial in connecting potential future system changes in climate and upwelling to possible shifts in nutrient dynamics and phytoplankton species composition.
Reynolds, Lindsay; Shafroth, Patrick B.
2017-01-01
Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.
Olson, Deanna H.; Blaustein, Andrew R.
2016-01-01
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565
Present and Future Supply of Registered Nurses.
ERIC Educational Resources Information Center
Altman, Stuart H.
During the 1960's, nursing education shifted dramatically away from hospital-operated diploma schools toward associate degree and baccalaureate programs. This report examines the nature of this shift in training and its anticipated impact on future supply. Other important factors affecting the future supply of nurses are analyzed, including the…
Norman, Janette A.; Christidis, Les
2016-01-01
Bioclimatic models are widely used to investigate the impacts of climate change on species distributions. Range shifts are expected to occur as species track their current climate niche yet the potential for exploitation of new ecological opportunities that may arise as ecosystems and communities remodel is rarely considered. Here we show that grasswrens of the Amytornis textilis-modestus complex responded to new ecological opportunities in Australia’s arid biome through shifts in habitat preference following the development of chenopod shrublands during the late Plio-Pleistocene. We find evidence of spatially explicit responses to climatically driven landscape changes including changes in niche width and patterns of population growth. Conservation of structural and functional aspects of the ancestral niche appear to have facilitated recent habitat shifts, while demographic responses to late Pleistocene climate change provide evidence for the greater resilience of populations inhabiting the recently evolved chenopod shrubland communities. Similar responses could occur under future climate change in species exposed to novel ecological conditions, or those already occupying spatially heterogeneous landscapes. Mechanistic models that consider structural and functional aspects of the niche along with regional hydro-dynamics may be better predictors of future climate responses in Australia’s arid biome than bioclimatic models alone. PMID:26787111
Security Shift in Future Network Architectures
2010-11-01
RTO-MP-IST-091 2 - 1 Security Shift in Future Network Architectures Tim Hartog, M.Sc Information Security Dept. TNO Information and...current practice military communication infrastructures are deployed as stand-alone networked information systems. Network -Enabled Capabilities (NEC) and...information architects and security specialists about the separation of network and information security, the consequences of this shift and our view
Anthropogenic range contractions bias species climate change forecasts
NASA Astrophysics Data System (ADS)
Faurby, Søren; Araújo, Miguel B.
2018-03-01
Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.
Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming
Gibson-Reinemer, Daniel K.; Rahel, Frank J.
2015-01-01
Climate in part determines species’ distributions, and species’ distributions are shifting in response to climate change. Strong correlations between the magnitude of temperature changes and the extent of range shifts point to warming temperatures as the single most influential factor causing shifts in species’ distributions species. However, other abiotic and biotic factors may alter or even reverse these patterns. The importance of temperature relative to these other factors can be evaluated by examining range shifts of the same species in different geographic areas. When the same species experience warming in different geographic areas, the extent to which they show range shifts that are similar in direction and magnitude is a measure of temperature’s importance. We analyzed published studies to identify species that have documented range shifts in separate areas. For 273 species of plants, birds, mammals, and marine invertebrates with range shifts measured in multiple geographic areas, 42-50% show inconsistency in the direction of their range shifts, despite experiencing similar warming trends. Inconsistency of within-species range shifts highlights how biotic interactions and local, non-thermal abiotic conditions may often supersede the direct physiological effects of temperature. Assemblages show consistent responses to climate change, but this predictability does not appear to extend to species considered individually. PMID:26162013
The European mountain cryosphere: a review of its current state, trends, and future challenges
NASA Astrophysics Data System (ADS)
Beniston, Martin; Farinotti, Daniel; Stoffel, Markus; Andreassen, Liss M.; Coppola, Erika; Eckert, Nicolas; Fantini, Adriano; Giacona, Florie; Hauck, Christian; Huss, Matthias; Huwald, Hendrik; Lehning, Michael; López-Moreno, Juan-Ignacio; Magnusson, Jan; Marty, Christoph; Morán-Tejéda, Enrique; Morin, Samuel; Naaim, Mohamed; Provenzale, Antonello; Rabatel, Antoine; Six, Delphine; Stötter, Johann; Strasser, Ulrich; Terzago, Silvia; Vincent, Christian
2018-03-01
The mountain cryosphere of mainland Europe is recognized to have important impacts on a range of environmental processes. In this paper, we provide an overview on the current knowledge on snow, glacier, and permafrost processes, as well as their past, current, and future evolution. We additionally provide an assessment of current cryosphere research in Europe and point to the different domains requiring further research. Emphasis is given to our understanding of climate-cryosphere interactions, cryosphere controls on physical and biological mountain systems, and related impacts. By the end of the century, Europe's mountain cryosphere will have changed to an extent that will impact the landscape, the hydrological regimes, the water resources, and the infrastructure. The impacts will not remain confined to the mountain area but also affect the downstream lowlands, entailing a wide range of socioeconomical consequences. European mountains will have a completely different visual appearance, in which low- and mid-range-altitude glaciers will have disappeared and even large valley glaciers will have experienced significant retreat and mass loss. Due to increased air temperatures and related shifts from solid to liquid precipitation, seasonal snow lines will be found at much higher altitudes, and the snow season will be much shorter than today. These changes in snow and ice melt will cause a shift in the timing of discharge maxima, as well as a transition of runoff regimes from glacial to nival and from nival to pluvial. This will entail significant impacts on the seasonality of high-altitude water availability, with consequences for water storage and management in reservoirs for drinking water, irrigation, and hydropower production. Whereas an upward shift of the tree line and expansion of vegetation can be expected into current periglacial areas, the disappearance of permafrost at lower altitudes and its warming at higher elevations will likely result in mass movements and process chains beyond historical experience. Future cryospheric research has the responsibility not only to foster awareness of these expected changes and to develop targeted strategies to precisely quantify their magnitude and rate of occurrence but also to help in the development of approaches to adapt to these changes and to mitigate their consequences. Major joint efforts are required in the domain of cryospheric monitoring, which will require coordination in terms of data availability and quality. In particular, we recognize the quantification of high-altitude precipitation as a key source of uncertainty in projections of future changes. Improvements in numerical modeling and a better understanding of process chains affecting high-altitude mass movements are the two further fields that - in our view - future cryospheric research should focus on.
Cassandra Johnson Gaither; Nina S. Roberts; Kristin L. Hanula
2015-01-01
In response to changing demographics and cultural shifts in the U.S. population, the Forest Service, U.S. Department of Agriculture has initiated a range of âculturally transformingâ management practices and priorities aimed at better reflecting both the current and future U.S. population (USDA 2011). This makeover also calls attention to the various publics served by...
Modeling marine protected areas for threatened eiders in a climatically changing Bering Sea.
Lovvorn, James R; Grebmeier, Jacqueline M; Cooper, Lee W; Bump, Joseph K; Richman, Samantha E
2009-09-01
Delineating protected areas for sensitive species is a growing challenge as changing climate alters the geographic pattern of habitats as well as human responses to those shifts. When human impacts are expected within projected ranges of threatened species, there is often demand to demarcate the minimum habitat required to ensure the species' persistence. Because diminished or wide-ranging populations may not occupy all viable (and needed) habitat at once, one must identify thresholds of resources that will support the species even in unoccupied areas. Long-term data on the shifting mosaic of critical resources may indicate ranges of future variability. We addressed these issues for the Spectacled Eider (Somateria fischeri), a federally threatened species that winters in pack ice of the Bering Sea. Changing climate has decreased ice cover and severely reduced the eiders' benthic prey and has increased prospects for expansion of bottom trawling that may further affect prey communities. To assess long-term changes in habitats that will support eiders, we linked data on benthic prey, sea ice, and weather from 1970 to 2001 with a spatially explicit simulation model of eider energy balance that integrated field, laboratory, and remote-sensing studies. Areas estimated to have prey densities adequate for eiders in 1970-1974 did not include most areas that were viable 20 years later (1993-1994). Unless the entire area with adequate prey in 1993-1994 had been protected, the much reduced viable area in 1999-2001 might well have been excluded. During long non-foraging periods (as at night), eiders can save much energy by resting on ice vs. floating on water; thus, loss of ice cover in the future might substantially decrease the area in which prey densities are adequate to offset the eiders' energy needs. For wide-ranging benthivores such as eiders, our results emphasize that fixed protected areas based on current conditions can be too small or inflexible to subsume long-term shifts in habitat conditions. Better knowledge of patterns of natural disturbance experienced by prey communities, and appropriate allocation of human disturbance over seasons or years, may yield alternative strategies to large-scale closures that may be politically and economically problematic.
Vuorinen, Ilppo; Hänninen, Jari; Rajasilta, Marjut; Laine, Päivi; Eklund, Jan; Montesino-Pouzols, Federico; Corona, Francesco; Junker, Karin; Meier, H.E.Markus; Dippner, Joachim W.
2015-01-01
Substantial ecological changes occurred in the 1970s in the Northern Baltic during a temporary period of low salinity (S). This period was preceded by an episodic increase in the rainfall over the Baltic Sea watershed area. Several climate models, both global and regional, project an increase in the runoff of the Northern latitudes due to proceeding climate change. The aim of this study is to model, firstly, the effects on Baltic Sea salinity of increased runoff due to projected global change and, secondly, the effects of salinity change on the distribution of marine species. The results suggest a critical shift in the S range 5–7, which is a threshold for both freshwater and marine species distributions and diversity. We discuss several topics emphasizing future monitoring, modelling, and fisheries research. Environmental monitoring and modelling are investigated because the developing alternative ecosystems do not necessarily show the same relations to environment quality factors as the retiring ones. An important corollary is that the observed and modelled S changes considered together with species’ ranges indicate what may appear under a future climate. Consequences could include a shift in distribution areas of marine benthic foundation species and some 40–50 other species, affiliated to these. This change would extend over hundreds of kilometres, in the Baltic Sea and the adjacent North Sea areas. Potential cascading effects, in coastal ecology, fish ecology and fisheries would be extensive, and point out the necessity to develop further the “ecosystem approach in the environmental monitoring”. PMID:25737660
Ofori, Benjamin Y; Stow, Adam J; Baumgartner, John B; Beaumont, Linda J
2017-01-01
The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming "unlimited" or "no" dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham's skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020-2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23-63% at 1 km and 26-64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species' range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change.
Projected climate impacts for the amphibians of the western hemisphere
Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.
2010-01-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
Projected climate impacts for the amphibians of the Western hemisphere.
Lawler, Joshua J; Shafer, Sarah L; Bancroft, Betsy A; Blaustein, Andrew R
2010-02-01
Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071-2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing conservation efforts.
Predicting the Impact of Climate Change on Threatened Species in UK Waters
Jones, Miranda C.; Dye, Stephen R.; Fernandes, Jose A.; Frölicher, Thomas L.; Pinnegar, John K.; Warren, Rachel; Cheung, William W. L.
2013-01-01
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina). PMID:23349829
Predicting the impact of climate change on threatened species in UK waters.
Jones, Miranda C; Dye, Stephen R; Fernandes, Jose A; Frölicher, Thomas L; Pinnegar, John K; Warren, Rachel; Cheung, William W L
2013-01-01
Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina).
Assessing the ability of plants to respond to climatic change through distribution shifts
Mark W. Schwartz
1996-01-01
Predictions of future global warming suggest northward shifts of up to 800 km in the equilibrium distributions of plant species. Historical data estimating the maximum rate of tree distribution shifts (migration) suggest that most species will not keep pace with future rates of human-induced climatic change. Previous plant migrations have occurred at rates typically...
Declining Prevalence of Disease Vectors Under Climate Change
NASA Astrophysics Data System (ADS)
Escobar, Luis E.; Romero-Alvarez, Daniel; Leon, Renato; Lepe-Lopez, Manuel A.; Craft, Meggan E.; Borbor-Cordova, Mercy J.; Svenning, Jens-Christian
2016-12-01
More than half of the world population is at risk of vector-borne diseases including dengue fever, chikungunya, zika, yellow fever, leishmaniasis, chagas disease, and malaria, with highest incidences in tropical regions. In Ecuador, vector-borne diseases are present from coastal and Amazonian regions to the Andes Mountains; however, a detailed characterization of the distribution of their vectors has never been carried out. We estimate the distribution of 14 vectors of the above vector-borne diseases under present-day and future climates. Our results consistently suggest that climate warming is likely threatening some vector species with extinction, locally or completely. These results suggest that climate change could reduce the burden of specific vector species. Other vector species are likely to shift and constrain their geographic range to the highlands in Ecuador potentially affecting novel areas and populations. These forecasts show the need for development of early prevention strategies for vector species currently absent in areas projected as suitable under future climate conditions. Informed interventions could reduce the risk of human exposure to vector species with distributional shifts, in response to current and future climate changes. Based on the mixed effects of future climate on human exposure to disease vectors, we argue that research on vector-borne diseases should be cross-scale and include climatic, demographic, and landscape factors, as well as forces facilitating disease transmission at fine scales.
Climate warming affects biological invasions by shifting interactions of plants and herbivores.
Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing
2013-08-01
Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change. © 2013 John Wiley & Sons Ltd.
Range contraction and increasing isolation of a polar bear subpopulation in an era of sea-ice loss.
Laidre, Kristin L; Born, Erik W; Atkinson, Stephen N; Wiig, Øystein; Andersen, Liselotte W; Lunn, Nicholas J; Dyck, Markus; Regehr, Eric V; McGovern, Richard; Heagerty, Patrick
2018-02-01
Climate change is expected to result in range shifts and habitat fragmentation for many species. In the Arctic, loss of sea ice will reduce barriers to dispersal or eliminate movement corridors, resulting in increased connectivity or geographic isolation with sweeping implications for conservation. We used satellite telemetry, data from individually marked animals (research and harvest), and microsatellite genetic data to examine changes in geographic range, emigration, and interpopulation connectivity of the Baffin Bay (BB) polar bear ( Ursus maritimus ) subpopulation over a 25-year period of sea-ice loss. Satellite telemetry collected from n = 43 (1991-1995) and 38 (2009-2015) adult females revealed a significant contraction in subpopulation range size (95% bivariate normal kernel range) in most months and seasons, with the most marked reduction being a 70% decline in summer from 716,000 km 2 (SE 58,000) to 211,000 km 2 (SE 23,000) ( p < .001). Between the 1990s and 2000s, there was a significant shift northward during the on-ice seasons (2.6 ° shift in winter median latitude, 1.1 ° shift in spring median latitude) and a significant range contraction in the ice-free summers. Bears in the 2000s were less likely to leave BB, with significant reductions in the numbers of bears moving into Davis Strait (DS) in winter and Lancaster Sound (LS) in summer. Harvest recoveries suggested both short and long-term fidelity to BB remained high over both periods (83-99% of marked bears remained in BB). Genetic analyses using eight polymorphic microsatellites confirmed a previously documented differentiation between BB, DS, and LS; yet weakly differentiated BB from Kane Basin (KB) for the first time. Our results provide the first multiple lines of evidence for an increasingly geographically and functionally isolated subpopulation of polar bears in the context of long-term sea-ice loss. This may be indicative of future patterns for other polar bear subpopulations under climate change.
Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.
Colwell, Robert K; Brehm, Gunnar; Cardelús, Catherine L; Gilman, Alex C; Longino, John T
2008-10-10
Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.
Kubo, Tatsuhiko; Maruyama, Takashi; Shirane, Kiyoyumi; Otomo, Hajime; Matsumoto, Tetsuro; Oyama, Ichiro
2008-03-01
In 1999, the Japanese Law on Equal Employment Opportunity and Conditions was amended and the previous prohibition of the assignment of female workers to night work was abolished. Subsequently, the number of female shift workers has been increasing in Japan, necessitating greater attention to the health care of this population. The aim of the current study is to evaluate the relationship between anxiety expressed about starting three-shift work and background characteristics among female workers who were being assigned to three-shift work for the first time. The subjects were 38 middle-aged female workers (age range: 44 to 59 years) who were working at a chemical plant. The women completed a self-administered questionnaire before starting three-shift work. Levels of anxiety about starting three-shift work were assessed by the question 'Do you feel anxious about starting three-shift work?' The available responses were: 'Very agree', 'Considerably agree', 'Rather agree', 'Slightly agree' and 'Not agree at all', and 63% of the subjects gave one of the first two answers, which were defined as indicating anxiety. We also acquired information regarding lifestyle and occupation for each subject, including the following factors: frequency of breakfast consumption, subjective sleep insufficiency, previous experience of similar work before beginning shift work, previous experience of two-shift work, and responsibility for household duties. In the study, we found a marginally statistically significant trend association between frequent breakfast consumption and anxiety about starting three-shift work (P(trend) = 0.09). Anxiety was also high among subjects with sleep disorders, especially those suffering from subjective sleep insufficiency (P = 0.08). Due to the small study population, these results should be interpreted with caution and confirmed by future studies.
Tropical fishes dominate temperate reef fish communities within western Japan.
Nakamura, Yohei; Feary, David A; Kanda, Masaru; Yamaoka, Kosaku
2013-01-01
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.
Tropical Fishes Dominate Temperate Reef Fish Communities within Western Japan
Nakamura, Yohei; Feary, David A.; Kanda, Masaru; Yamaoka, Kosaku
2013-01-01
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources. PMID:24312528
Morin, Xavier; Thuiller, Wilfried
2009-05-01
Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.
Sittaro, Fabian; Paquette, Alain; Messier, Christian; Nock, Charles A
2017-08-01
Rising global temperatures are suggested to be drivers of shifts in tree species ranges. The resulting changes in community composition may negatively impact forest ecosystem function. However, long-term shifts in tree species ranges remain poorly documented. We test for shifts in the northern range limits of 16 temperate tree species in Quebec, Canada, using forest inventory data spanning three decades, 15° of longitude and 7° of latitude. Range shifts were correlated with climate warming and dispersal traits to understand potential mechanisms underlying changes. Shifts were calculated as the change in the 95th percentile of latitudinal occurrence between two inventory periods (1970-1978, 2000-2012) and for two life stages: saplings and adults. We also examined sapling and adult range offsets within each inventory, and changes in the offset through time. Tree species ranges shifted predominantly northward, although species responses varied. As expected shifts were greater for tree saplings, 0.34 km yr -1 , than for adults, 0.13 km yr -1 . Range limits were generally further north for adults compared to saplings, but the difference diminished through time, consistent with patterns observed for range shifts within each life stage. This suggests caution should be exercised when interpreting geographic range offsets between life stages as evidence of range shifts in the absence of temporal data. Species latitudinal velocities were on average <50% of the velocity required to equal the spatial velocity of climate change and were mostly unrelated to dispersal traits. Finally, our results add to the body of evidence suggesting tree species are mostly limited in their capacity to track climate warming, supporting concerns that warming will negatively impact the functioning of forest ecosystems. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Anderegg, L. D. L.; Hillerislambers, J.
2016-12-01
Accurate prediction of climatically-driven range shifts requires knowledge of the dominant forces constraining species ranges, because climatically controlled range boundaries will likely behave differently from biotically controlled range boundaries in a changing climate. Yet the roles of climatic constraints (due to species physiological tolerance) versus biotic constraints (caused by species interactions) on geographic ranges are largely unknown, infusing large uncertainty into projections of future range shifts. Plant species ranges across strong climatic gradients such as elevation gradients are often assumed to represent a tradeoff between climatic constraints on the harsh side of the range and biotic constraints (often competitive constraints) on the climatically benign side. To test this assumption, we collected tree cores from across the elevational range of the three dominant tree species inhabiting each of three climatically disparate mountain slopes and assessed climatic versus competitive constraints on growth at each species' range margins. Across all species and mountains, we found evidence for a tradeoff between climatic and competitve growth constraints. We also found that some individual species did show an apparent trade-off between a climatic constraint at one range margin and a competitive constraint at the other. However, even these simple elevation gradients resulted in complex interactions between temperature, moisture, and competitive constraints such that a climate-competition tradeoff did not explain range constraints for many species. Our results suggest that tree species can be constrained by a simple trade-off between climate and competition, but that the intricacies of real world climate gradients complicate the application of this theory even in apparently harsh environments, such as near high elevation tree line.
Assis, J.; Berecibar, E.; Claro, B.; Alberto, F.; Reed, D.; Raimondi, P.; Serrão, E. A.
2017-01-01
Global climate change is likely to constrain low latitude range edges across many taxa and habitats. Such is the case for NE Atlantic marine macroalgal forests, important ecosystems whose main structuring species is the annual kelp Saccorhiza polyschides. We coupled ecological niche modelling with simulations of potential dispersal and delayed development stages to infer the major forces shaping range edges and to predict their dynamics. Models indicated that the southern limit is set by high winter temperatures above the physiological tolerance of overwintering microscopic stages and reduced upwelling during recruitment. The best range predictions were achieved assuming low spatial dispersal (5 km) and delayed stages up to two years (temporal dispersal). Reconstructing distributions through time indicated losses of ~30% from 1986 to 2014, restricting S. polyschides to upwelling regions at the southern edge. Future predictions further restrict populations to a unique refugium in northwestern Iberia. Losses were dependent on the emissions scenario, with the most drastic one shifting ~38% of the current distribution by 2100. Such distributional changes might not be rescued by dispersal in space or time (as shown for the recent past) and are expected to drive major biodiversity loss and changes in ecosystem functioning. PMID:28276501
Su, Junhu; Aryal, Achyut; Nan, Zhibiao; Ji, Weihong
2015-01-01
Disturbances, both human-induced and natural, may re-shape ecosystems by influencing their composition, structure, and functional processes. Plateau zokor (Eospalax baileyi) is a typical subterranean rodent endemic to Qinghai-Tibetan Plateau (QTP), which are considered ecosystem engineers influencing the alpine ecosystem function. It is also regarded as a pest aggravating the degradation of overgrazed grassland and subject to regular control in QTP since 1950s. Climate change has been predicted in this region but little research exists exploring its impact on such subterranean rodent populations. Using plateau zokor as a model, through maximum entropy niche-based modeling (Maxent) and sustainable habitat models, we investigate zokor habitat dynamics driven by the future climate scenarios. Our models project that zokor suitable habitat will increase by 6.25% in 2050 in QTP. The predication indicated more threats in terms of grassland degradation as zokor suitable habitat will increase in 2050. Distribution of zokors will shift much more in their southern range with lower elevation compare to northern range with higher elevation. The estimated distance of shift ranges from 1 km to 94 km from current distribution. Grassland management should take into account such predictions in order to design mitigation measures to prevent further grassland degradation in QTP under climate change scenarios. PMID:26406891
Socolar, Jacob B; Epanchin, Peter N; Beissinger, Steven R; Tingley, Morgan W
2017-12-05
Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenological and range shifts each present simultaneous opportunities for temperature and resource tracking, although the possible role for phenological shifts in thermal niche tracking has been widely overlooked. Using a canonical dataset of Californian bird surveys and a detectability-based approach for quantifying phenological signal, we show that Californian bird communities advanced their breeding phenology by 5-12 d over the last century. This phenological shift might track shifting resource peaks, but it also reduces average temperatures during nesting by over 1 °C, approximately the same magnitude that average temperatures have warmed over the same period. We further show that early-summer temperature anomalies are correlated with nest success in a continental-scale database of bird nests, suggesting avian thermal niches might be broadly limited by temperatures during nesting. These findings outline an adaptation surface where geographic range and breeding phenology respond jointly to constraints imposed by temperature and resource phenology. By stabilizing temperatures during nesting, phenological shifts might mitigate the need for range shifts. Global change ecology will benefit from further exploring phenological adjustment as a potential mechanism for thermal niche tracking and vice versa.
Fourth-order self-energy contribution to the Lamb shift
NASA Astrophysics Data System (ADS)
Mallampalli, S.; Sapirstein, J.
1998-03-01
Two-loop self-energy contributions to the fourth-order Lamb shift of ground-state hydrogenic ions are treated to all orders in Zα by using exact Dirac-Coulomb propagators. A rearrangement of the calculation into four ultraviolet finite parts, the M, P, F, and perturbed orbital (PO) terms, is made. Reference-state singularities present in the M and P terms are shown to cancel. The most computationally intensive part of the calculation, the M term, is evaluated for hydrogenlike uranium and bismuth, the F term is evaluated for a range of Z values, but the P term is left for a future calculation. For hydrogenlike uranium, previous calculations of the PO term give -0.971 eV: the contributions from the M and F terms calculated here sum to -0.325 eV.
Pike, David A
2013-10-01
Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies. © 2013 John Wiley & Sons Ltd.
Jorge, Fátima; Perera, Ana; Poulin, Robert; Roca, Vicente; Carretero, Miguel A
2018-01-01
Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host-parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host-specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global-fit method of which individual host-parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host-parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions. © 2017 John Wiley & Sons Ltd.
The Frequency of Fitness Peak Shifts Is Increased at Expanding Range Margins Due to Mutation Surfing
Burton, Olivia J.; Travis, Justin M. J.
2008-01-01
Dynamic species' ranges, those that are either invasive or shifting in response to environmental change, are the focus of much recent interest in ecology, evolution, and genetics. Understanding how range expansions can shape evolutionary trajectories requires the consideration of nonneutral variability and genetic architecture, yet the majority of empirical and theoretical work to date has explored patterns of neutral variability. Here we use forward computer simulations of population growth, dispersal, and mutation to explore how range-shifting dynamics can influence evolution on rugged fitness landscapes. We employ a two-locus model, incorporating sign epistasis, and find that there is an increased likelihood of fitness peak shifts during a period of range expansion. Maladapted valley genotypes can accumulate at an expanding range front through a phenomenon called mutation surfing, which increases the likelihood that a mutation leading to a higher peak will occur. Our results indicate that most peak shifts occur close to the expanding front. We also demonstrate that periods of range shifting are especially important for peak shifting in species with narrow geographic distributions. Our results imply that trajectories on rugged fitness landscapes can be modified substantially when ranges are dynamic. PMID:18505864
Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.
2015-01-01
Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing regeneration probability at the trailing edge underscores the Schlaepfer et al. Future regeneration potential of big sagebrush potential futility of efforts to preserve and/or restore big sagebrush in these areas. Conversely, increasing regeneration probability at the leading edge suggest a growing potential for conflicts in management goals between maintaining existing grasslands by preventing sagebrush expansion versus accepting a shift in plant community composition to sagebrush dominance.
Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z
2010-04-23
Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.
Unbounded boundaries and shifting baselines: Estuaries and coastal seas in a rapidly changing world
NASA Astrophysics Data System (ADS)
Little, S.; Spencer, K. L.; Schuttelaars, H. M.; Millward, G. E.; Elliott, M.
2017-11-01
This Special Issue of Estuarine, Coastal and Shelf Science presents contributions from ECSA 55; an international symposium organised by the Estuarine and Coastal Sciences Association (ECSA) and Elsevier on the broad theme of estuaries and coastal seas in times of intense change. The objectives of the SI are to synthesise, hypothesise and illustrate the impacts of global change on estuaries and coastal seas through learning lessons from the past, discussing the current and forecasting for the future. It is highlighted here that establishing impacts and assigning cause to the many pressures of global change is and will continue to be a formidable challenge in estuaries and coastal seas, due in part to: (1) their complexity and unbounded nature; (2) difficulties distinguishing between human-induced changes and natural variations and; (3) multiple pressures and effects. The contributing authors have explored a number of these issues over a range of disciplines. The complexity and connectivity of estuaries and coastal seas have been investigated through studies of physicochemical and ecological components, whilst the human imprint on the environment has been identified through a series of predictive, contemporary, historical and palaeo approaches. The impact of human activities has been shown to occur over a range of spatial and temporal scales, requiring the development of integrated management approaches. These 30 articles provide an important contribution to our understanding and assessment of the impacts of global change. The authors highlight methods for essential management/mitigation of the consequences of global change and provide a set of directions, ideas and observations for future work. These include the need to consider: (1) the cumulative, synergistic and antagonistic effects of multiple pressures; (2) the importance of unbounded boundaries and connectivity across the aquatic continuum; (3) the value of combining cross-disciplinary palaeo, contemporary and future modelling studies and; (4) the importance of shifting baselines on ecosystem functioning and the future provision of ecosystem services.
Radinger, Johannes; Hölker, Franz; Horký, Pavel; Slavík, Ondřej; Dendoncker, Nicolas; Wolter, Christian
2016-04-01
River ecosystems are threatened by future changes in land use and climatic conditions. However, little is known of the influence of interactions of these two dominant global drivers of change on ecosystems. Does the interaction amplify (synergistic interaction) or buffer (antagonistic interaction) the impacts and does their interaction effect differ in magnitude, direction and spatial extent compared to single independent pressures. In this study, we model the impact of single and interacting effects of land use and climate change on the spatial distribution of 33 fish species in the Elbe River. The varying effects were modeled using step-wise boosted regression trees based on 250 m raster grid cells. Species-specific models were built for both 'moderate' and 'extreme' future land use and climate change scenarios to assess synergistic, additive and antagonistic interaction effects on species losses, species gains and diversity indices and to quantify their spatial distribution within the Elbe River network. Our results revealed species richness is predicted to increase by 0.7-2.9 species by 2050 across the entire river network. Changes in species richness are likely to be spatially variable with significant changes predicted for 56-85% of the river network. Antagonistic interactions would dominate species losses and gains in up to 75% of the river network. In contrast, synergistic and additive effects would occur in only 20% and 16% of the river network, respectively. The magnitude of the interaction was negatively correlated with the magnitudes of the single independent effects of land use and climate change. Evidence is provided to show that future land use and climate change effects are highly interactive resulting in species range shifts that would be spatially variable in size and characteristic. These findings emphasize the importance of adaptive river management and the design of spatially connected conservation areas to compensate for these high species turnovers and range shifts. © 2015 John Wiley & Sons Ltd.
Directionality of recent bird distribution shifts and climate change in Great Britain.
Gillings, Simon; Balmer, Dawn E; Fuller, Robert J
2015-06-01
There is good evidence that species' distributions are shifting poleward in response to climate change and wide interest in the magnitude of such responses for scientific and conservation purposes. It has been suggested from the directions of climatic changes that species' distribution shifts may not be simply poleward, but this has been rarely tested with observed data. Here, we apply a novel approach to measuring range shifts on axes ranging through 360°, to recent data on the distributions of 122 species of British breeding birds during 1988-1991 and 2008-2011. Although previously documented poleward range shifts have continued, with an average 13.5 km shift northward, our analysis indicates this is an underestimate because it ignores common and larger shifts that occurred along axes oriented to the north-west and north-east. Trailing edges contracted from a broad range of southerly directions. Importantly, these results are derived from systematically collected data so confounding observer-effort biases can be discounted. Analyses of climate for the same period show that whilst temperature trends should drive species along a north-north-westerly trajectory, directional responses to precipitation will depend on both the time of year that is important for determining a species' distribution, and the location of the range margin. Directions of species' range centroid shift were not correlated with spatial trends in any single climate variable. We conclude that range shifts of British birds are multidirectional, individualistic and probably determined by species-specific interactions of multiple climate factors. Climate change is predicted to lead to changes in community composition through variation in the rates that species' ranges shift; our results suggest communities could change further owing to constituent species shifting along different trajectories. We recommend more studies consider directionality in climate and range dynamics to produce more appropriate measures of observed and expected responses to climate change. © 2014 John Wiley & Sons Ltd.
2012-02-21
Roger Launius, senior curator, Smithsonian Institution National Air and Space Museum, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
Bobby Braun, professor, Georgia Institute of Technology, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Plant-pollinator interactions under climate change: The use of spatial and temporal transplants.
Morton, Eva M; Rafferty, Nicole E
2017-06-01
Climate change is affecting both the timing of life history events and the spatial distributions of many species, including plants and pollinators. Shifts in phenology and range affect not only individual plant and pollinator species but also interactions among them, with possible negative consequences for both parties due to unfavorable abiotic conditions or mismatches caused by differences in shift magnitude or direction. Ultimately, population extinctions and reductions in pollination services could occur as a result of these climate change-induced shifts, or plants and pollinators could be buffered by plastic or genetic responses or novel interactions. Either scenario will likely involve altered selection pressures, making an understanding of plasticity and local adaptation in space and time especially important. In this review, we discuss two methods for studying plant-pollinator interactions under climate change: spatial and temporal transplants, both of which offer insight into whether plants and pollinators will be able to adapt to novel conditions. We discuss the advantages and limitations of each method and the future possibilities for this area of study. We advocate for consideration of how joint shifts in both dimensions might affect plant-pollinator interactions and point to key insights that can be gained with experimental transplants.
2018-01-01
Like many other high elevation alpine tree species, Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may be particularly vulnerable to climate change. To evaluate its potential vulnerability to shifts in climate, we defined the suitable climate space for each of four genetic lineages of bristlecone pine and for other subalpine tree species in close proximity to bristlecone pine forests. Measuring changes in the suitable climate space for lineage groups is an important step beyond models that assume species are genetically homogenous. The suitable climate space for bristlecone pine in the year 2090 is projected to decline by 74% and the proportional distribution of suitable climate space for genetic lineages shifts toward those associated with warmer and wetter conditions. The 2090 climate space for bristlecone pine exhibits a bimodal distribution along an elevation gradient, presumably due to the persistence of the climate space in the Southern Rocky Mountains and exclusion at mid-elevations by conditions that favor the climate space of other species. These shifts have implications for changes in fire regimes, vulnerability to pest and pathogens, and altered carbon dynamics across the southern Rockies, which may reduce the likelihood of bristlecone pine trees achieving exceptional longevity in the future. The persistence and expansion of climate space for southern bristlecone pine genetic lineage groups in 2090 suggests that these sources may be the least vulnerable in the future. While these lineages may be more likely to persist and therefore present opportunities for proactive management (e.g., assisted migration) to maintain subalpine forest ecosystem services in a warmer world, our findings also imply heighted conservation concern for vulnerable northern lineages facing range contractions. PMID:29554097
Hotter nests produce hatchling lizards with lower thermal tolerance.
Dayananda, Buddhi; Murray, Brad R; Webb, Jonathan K
2017-06-15
In many regions, the frequency and duration of summer heatwaves is predicted to increase in future. Hotter summers could result in higher temperatures inside lizard nests, potentially exposing embryos to thermally stressful conditions during development. Potentially, developmentally plastic shifts in thermal tolerance could allow lizards to adapt to climate warming. To determine how higher nest temperatures affect the thermal tolerance of hatchling geckos, we incubated eggs of the rock-dwelling velvet gecko, Amalosia lesueurii , at two fluctuating temperature regimes to mimic current nest temperatures (mean 23.2°C, range 10-33°C, 'cold') and future nest temperatures (mean 27.0°C, range 14-37°C, 'hot'). Hatchlings from the hot incubation group hatched 27 days earlier and had a lower critical thermal maximum (CT max 38.7°C) and a higher critical thermal minimum (CT min 6.2°C) than hatchlings from cold incubation group (40.2 and 5.7°C, respectively). In the field, hatchlings typically settle under rocks near communal nests. During the hatching period, rock temperatures ranged from 13 to 59°C, and regularly exceeded the CT max of both hot- and cold-incubated hatchlings. Because rock temperatures were so high, the heat tolerance of lizards had little effect on their ability to exploit rocks as retreat sites. Instead, the timing of hatching dictated whether lizards could exploit rocks as retreat sites; that is, cold-incubated lizards that hatched later encountered less thermally stressful environments than earlier hatching hot-incubated lizards. In conclusion, we found no evidence that CT max can shift upwards in response to higher incubation temperatures, suggesting that hotter summers may increase the vulnerability of lizards to climate warming. © 2017. Published by The Company of Biologists Ltd.
Erb, Liesl P; Ray, Chris; Guralnick, Robert
2011-09-01
Alpine species are among those most threatened by climatic shifts due to their physiological and geographic constraints. The American pika (Ochotona princeps), a small mammal found in mountainous, rocky habitats throughout much of western North America, has experienced recent population extirpations in the Great Basin linked to climatic drivers. It remains unclear whether these patterns of climate-related loss extend to other portions of the species' range. We investigated the distribution of the American pika and the climatic processes shaping this distribution within the Southern Rocky Mountain region. Results from a survey of 69 sites historically occupied by pikas indicate that only four populations have been extirpated within this region over the past few decades. Despite relatively few extirpations, low annual precipitation is implicated as a limiting factor for pika persistence in the Southern Rockies. Extirpations occurred only at sites that were consistently dry over the last century. While there was no climate change signal in our results, these data provide valuable insight into the potential future effects of climate change on O. princeps throughout its range.
Responses of large mammals to climate change.
Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan
2014-01-01
Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.
Responses of large mammals to climate change
Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan
2014-01-01
Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293
The impact of shifting vantage perspective when recalling and imagining positive events.
Vella, Nicholas C; Moulds, Michelle L
2014-01-01
The vantage perspective from which memories are recalled influences their emotional impact. To date, however, the impact of vantage perspective on the emotions elicited by positive memories and images of positive future events has been minimally explored. We experimentally manipulated the vantage perspective from which a sample of undergraduate students (n =80) recalled positive memories and imagined positive future events. Participants who naturally recalled their positive memories from a field perspective reported decreased vividness and positive affect (i.e., happiness, optimism, hopefulness) when they were instructed to shift to an observer perspective. The same pattern of emotionality ratings was observed when participants' vantage perspective of imagined future events was manipulated. In contrast, shifting participants from observer to field perspective recall of positive memories did not result in changes in ratings of memory-related emotion, although we found an unexpected trend towards reduced vividness. For positive future events, shifting from an observer to a field perspective resulted in decreased vividness but did not lead to any changes in positive emotion. Our findings confirm that vantage perspective plays a key role in determining the emotional impact of positive memories, and demonstrate that this relationship is also evident for images of future positive events.
Shifting foundations and metrics for golden-cheeked warbler recovery
Hatfield, Jeff S.; Weckerly, Floyd W.; Duarte, Adam
2012-01-01
Using the golden-cheeked warbler (Setophaga chrysoparia) as a case study, this paper discusses what lessons can be learned from the process of the emergency listing and subsequent development of the recovery plan. Are the metrics for recovery in the current warbler plan appropriate, including population size and distribution (recovery units), migration corridors, and wintering habitat? In other words, what happened, what can we learn, and what should happen (in general) in the future for development of such plans? We discuss the number of recovery units required for species persistence and estimate the number of male warblers in protected areas across the breeding range of the species, using newly published density estimates. We also discuss future monitoring strategies to estimate warbler population trends and dispersal rates.
NASA Astrophysics Data System (ADS)
Roy, T.; Lombard, F.; Bopp, L.; Gehlen, M.
2014-06-01
Planktonic foraminifera are a major contributor to the deep carbonate-flux and the planktonic biomass of the global ocean. Their microfossil deposits form one of the richest databases for reconstructing paleoenvironments, particularly through changes in their taxonomic and shell composition. Using an empirically-based foraminifer model that incorporates three known major physiological drivers of foraminifer biogeography - temperature, food and light - we investigate (i) the global redistribution of planktonic foraminifera under anthropogenic climate change, and (ii) the alteration of the carbonate chemistry of foraminifer habitat with ocean acidification. The present-day and future (2090-2100) 3-D distributions of foraminifera are simulated using temperature, plankton biomass, and light from an Earth system model forced with historical and a future (IPCC A2) high CO2 emission scenario. The broadscale patterns of present day foraminifer biogeography are well reproduced. Foraminifer abundance and diversity are projected to decrease in the tropics and subpolar regions and increase in the subtropics and around the poles. In the tropics, the geographical shifts are driven by temperature, while the vertical shifts are driven by both temperature and food availability. In the high-latitudes, vertical shifts are driven by food availability, while geographical shifts are driven by both food availability and temperature. Changes in the marine carbon cycle would be expected in response to (i) the large-scale rearrangements in foraminifer abundance, and (ii) the reduction of the carbonate concentration in the habitat range of planktonic foraminifers: from 10-30 μmol kg-1 in the polar/subpolar regions to 30-70 μmol kg-1 in the subtropical/tropical regions. High-latitude species are most vulnerable to anthropogenic change: their abundance and available habitat decrease and up to 10% of their habitat drops below the calcite saturation horizon.
Gornish, Elise S; Miller, Thomas E
2015-01-01
Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment.
Navigating Into the Future or Driven by the Past.
Seligman, Martin E P; Railton, Peter; Baumeister, Roy F; Sripada, Chandra
2013-03-01
Prospection (Gilbert & Wilson, 2007), the representation of possible futures, is a ubiquitous feature of the human mind. Much psychological theory and practice, in contrast, has understood human action as determined by the past and viewed any such teleology (selection of action in light of goals) as a violation of natural law because the future cannot act on the present. Prospection involves no backward causation; rather, it is guidance not by the future itself but by present, evaluative representations of possible future states. These representations can be understood minimally as "If X, then Y" conditionals, and the process of prospection can be understood as the generation and evaluation of these conditionals. We review the history of the attempt to cast teleology out of science, culminating in the failures of behaviorism and psychoanalysis to account adequately for action without teleology. A wide range of evidence suggests that prospection is a central organizing feature of perception, cognition, affect, memory, motivation, and action. The authors speculate that prospection casts new light on why subjectivity is part of consciousness, what is "free" and "willing" in "free will," and on mental disorders and their treatment. Viewing behavior as driven by the past was a powerful framework that helped create scientific psychology, but accumulating evidence in a wide range of areas of research suggests a shift in framework, in which navigation into the future is seen as a core organizing principle of animal and human behavior. © The Author(s) 2013.
More losers than winners in a century of future Southern Ocean seafloor warming
NASA Astrophysics Data System (ADS)
Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.
2017-10-01
The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.
2012-02-21
John Logsdon, professor emeritus of Political Science and International Affairs, Elliott School of International Affairs, George Washington University, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming
Azad, Sarita; Rajeevan, M.
2016-01-01
EI Nino-Southern Oscillation (ENSO) and Indian monsoon rainfall are known to have an inverse relationship, which we have observed in the rainfall spectrum exhibiting a spectral dip in 3–5 y period band. It is well documented that El Nino events are known to be associated with deficit rainfall. Our analysis reveals that this spectral dip (3–5 y) is likely to shift to shorter periods (2.5–3 y) in future, suggesting a possible shift in the relationship between ENSO and monsoon rainfall. Spectral analysis of future climate projections by 20 Coupled Model Intercomparison project 5 (CMIP5) models are employed in order to corroborate our findings. Change in spectral dip speculates early occurrence of drought events in future due to multiple factors of global warming. PMID:26837459
Yando, Erik S.; Osland, Michael J.; Hester, Mark H.
2018-01-01
Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.
Yando, E S; Osland, M J; Hester, M W
2018-05-01
Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.
Night shift work and breast cancer risk: what do the meta-analyses tell us?
Pahwa, Manisha; Labrèche, France; Demers, Paul A
2018-05-22
Objectives This paper aims to compare results, assess the quality, and discuss the implications of recently published meta-analyses of night shift work and breast cancer risk. Methods A comprehensive search was conducted for meta-analyses published from 2007-2017 that included at least one pooled effect size (ES) for breast cancer associated with any night shift work exposure metric and were accompanied by a systematic literature review. Pooled ES from each meta-analysis were ascertained with a focus on ever/never exposure associations. Assessments of heterogeneity and publication bias were also extracted. The AMSTAR 2 checklist was used to evaluate quality. Results Seven meta-analyses, published from 2013-2016, collectively included 30 cohort and case-control studies spanning 1996-2016. Five meta-analyses reported pooled ES for ever/never night shift work exposure; these ranged from 0.99 [95% confidence interval (CI) 0.95-1.03, N=10 cohort studies) to 1.40 (95% CI 1.13-1.73, N=9 high quality studies). Estimates for duration, frequency, and cumulative night shift work exposure were scant and mostly not statistically significant. Meta-analyses of cohort, Asian, and more fully-adjusted studies generally resulted in lower pooled ES than case-control, European, American, or minimally-adjusted studies. Most reported statistically significant between-study heterogeneity. Publication bias was not evident in any of the meta-analyses. Only one meta-analysis was strong in critical quality domains. Conclusions Fairly consistent elevated pooled ES were found for ever/never night shift work and breast cancer risk, but results for other shift work exposure metrics were inconclusive. Future evaluations of shift work should incorporate high quality meta-analyses that better appraise individual study quality.
Hendi, Arun S
2017-06-01
Several recent articles have reported conflicting conclusions about educational differences in life expectancy, and this is partly due to the use of unreliable data subject to a numerator-denominator bias previously reported as ranging from 20 % to 40 %. This article presents estimates of life expectancy and lifespan variation by education in the United States using more reliable data from the National Health Interview Survey. Contrary to prior conclusions in the literature, I find that life expectancy increased or stagnated since 1990 among all education-race-sex groups except for non-Hispanic white women with less than a high school education; there has been a robust increase in life expectancy among white high school graduates and a smaller increase among black female high school graduates; lifespan variation did not increase appreciably among high school graduates; and lifespan variation plays a very limited role in explaining educational gradients in mortality. I also discuss the key role that educational expansion may play in driving future changes in mortality gradients. Because of shifting education distributions, within an education-specific synthetic cohort, older age groups are less negatively selected than younger age groups. We could thus expect a greater concentration of mortality at younger ages among people with a high school education or less, which would be reflected in increasing lifespan variability for this group. Future studies of educational gradients in mortality should use more reliable data and should be mindful of the effects of shifting education distributions.
Stow, Adam J.; Baumgartner, John B.; Beaumont, Linda J.
2017-01-01
The ability of species to track their climate niche is dependent on their dispersal potential and the connectivity of the landscape matrix linking current and future suitable habitat. However, studies modeling climate-driven range shifts rarely address the movement of species across landscapes realistically, often assuming “unlimited” or “no” dispersal. Here, we incorporate dispersal rate and landscape connectivity with a species distribution model (Maxent) to assess the extent to which the Cunningham’s skink (Egernia cunninghami) may be capable of tracking spatial shifts in suitable habitat as climate changes. Our model was projected onto four contrasting, but equally plausible, scenarios describing futures that are (relative to now) hot/wet, warm/dry, hot/with similar precipitation and warm/wet, at six time horizons with decadal intervals (2020–2070) and at two spatial resolutions: 1 km and 250 m. The size of suitable habitat was projected to decline 23–63% at 1 km and 26–64% at 250 m, by 2070. Combining Maxent output with the dispersal rate of the species and connectivity of the intervening landscape matrix showed that most current populations in regions projected to become unsuitable in the medium to long term, will be unable to shift the distance necessary to reach suitable habitat. In particular, numerous populations currently inhabiting the trailing edge of the species’ range are highly unlikely to be able to disperse fast enough to track climate change. Unless these populations are capable of adaptation they are likely to be extirpated. We note, however, that the core of the species distribution remains suitable across the broad spectrum of climate scenarios considered. Our findings highlight challenges faced by philopatric species and the importance of adaptation for the persistence of peripheral populations under climate change. PMID:28873398
Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils.
De Frenne, Pieter; Coomes, David A; De Schrijver, An; Staelens, Jeroen; Alexander, Jake M; Bernhardt-Römermann, Markus; Brunet, Jörg; Chabrerie, Olivier; Chiarucci, Alessandro; den Ouden, Jan; Eckstein, R Lutz; Graae, Bente J; Gruwez, Robert; Hédl, Radim; Hermy, Martin; Kolb, Annette; Mårell, Anders; Mullender, Samantha M; Olsen, Siri L; Orczewska, Anna; Peterken, George; Petřík, Petr; Plue, Jan; Simonson, William D; Tomescu, Cezar V; Vangansbeke, Pieter; Verstraeten, Gorik; Vesterdal, Lars; Wulf, Monika; Verheyen, Kris
2014-04-01
Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal environments can establish in nonlocal sites. We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. We found significantly positive effects of the difference between the temperature of the sites of seed and soil collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently 'colder' soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant performance. Our results suggest that abiotic and biotic soil characteristics can shape climate change-driven plant movements by affecting growth of nonlocal migrants, a mechanism which should be integrated into predictions of future range shifts. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
How will biotic interactions influence climate change-induced range shifts?
HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J
2013-09-01
Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.
Angle-resolved diffraction grating biosensor based on porous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Changwu; Li, Peng; Jia, Zhenhong, E-mail: jzhh@xju.edu.cn
2016-03-07
In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensormore » was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Hayato, E-mail: ohashi@cc.utsunomiya-u.ac.jp; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei
2014-01-21
We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasingmore » ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.« less
Fortini, Lucas B.; Vorsino, Adam E.; Amidon, Fred A.; Paxton, Eben H.; Jacobi, James D.
2015-01-01
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.
Fortini, Lucas B; Vorsino, Adam E; Amidon, Fred A; Paxton, Eben H; Jacobi, James D
2015-01-01
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.
Fortini, Lucas B.; Vorsino, Adam E.; Amidon, Fred A.; Paxton, Eben H.; Jacobi, James D.
2015-01-01
Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria’s life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations. PMID:26509270
The Human is the Loop: New Directions for Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endert, Alexander; Hossain, Shahriar H.; Ramakrishnan, Naren
2014-01-28
Visual analytics is the science of marrying interactive visualizations and analytic algorithms to support exploratory knowledge discovery in large datasets. We argue for a shift from a ‘human in the loop’ philosophy for visual analytics to a ‘human is the loop’ viewpoint, where the focus is on recognizing analysts’ work processes, and seamlessly fitting analytics into that existing interactive process. We survey a range of projects that provide visual analytic support contextually in the sensemaking loop, and outline a research agenda along with future challenges.
SU-F-J-206: Systematic Evaluation of the Minimum Detectable Shift Using a Range- Finding Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platt, M; Platt, M; Lamba, M
2016-06-15
Purpose: The robotic table used for patient alignment in proton therapy is calibrated only at commissioning under well-defined conditions and table shifts may vary over time and with differing conditions. The purpose of this study is to systematically investigate minimum detectable shifts using a time-of-flight (TOF) range-finding camera for table position feedback. Methods: A TOF camera was used to acquire one hundred 424 × 512 range images from a flat surface before and after known shifts. Range was assigned by averaging central regions of the image across multiple images. Depth resolution was determined by evaluating the difference between the actualmore » shift of the surface and the measured shift. Depth resolution was evaluated for number of images averaged, area of sensor over which depth was averaged, distance from camera to surface, central versus peripheral image regions, and angle of surface relative to camera. Results: For one to one thousand images with a shift of one millimeter the range in error was 0.852 ± 0.27 mm to 0.004 ± 0.01 mm (95% C.I.). For varying regions of the camera sensor the range in error was 0.02 ± 0.05 mm to 0.47 ± 0.04 mm. The following results are for 10 image averages. For areas ranging from one pixel to 9 × 9 pixels the range in error was 0.15 ± 0.09 to 0.29 ± 0.15 mm (1σ). For distances ranging from two to four meters the range in error was 0.15 ± 0.09 to 0.28 ± 0.15 mm. For an angle of incidence between thirty degrees and ninety degrees the average range in error was 0.11 ± 0.08 to 0.17 ± 0.09 mm. Conclusion: It is feasible to use a TOF camera for measuring shifts in flat surfaces under clinically relevant conditions with submillimeter precision.« less
Insects Overshoot the Expected Upslope Shift Caused by Climate Warming
Bässler, Claus; Hothorn, Torsten; Brandl, Roland; Müller, Jörg
2013-01-01
Along elevational gradients, climate warming may lead to an upslope shift of the lower and upper range margin of organisms. A recent meta-analysis concluded that these shifts are species specific and considerably differ among taxonomic lineages. We used the opportunity to compare upper range margins of five lineages (plants, beetles, flies, hymenoptera, and birds) between 1902–1904 and 2006–2007 within one region (Bavarian Forest, Central Europe). Based on the increase in the regional mean annual temperature during this period and the regional lapse rate, the upslope shift is expected to be between 51 and 201 m. Averaged across species within lineages, the range margin of all animal lineages shifted upslope, but that of plants did not. For animals, the observed shifts were probably due to shifts in temperature and not to changes in habitat conditions. The range margin of plants is therefore apparently not constrained by temperature, a result contrasting recent findings. The mean shift of birds (165 m) was within the predicted range and consistent with a recent global meta-analysis. However, the upslope shift of the three insect lineages (>260 m) exceeded the expected shift even after considering several sources of uncertainty, which indicated a non-linear response to temperature. Our analysis demonstrated broad differences among lineages in their response to climate change even within one region. Furthermore, on the considered scale, the response of ectothermic animals was not consistent with expectations based on shifts in the mean annual temperature. Irrespective of the reasons for the overshooting of the response of the insects, these shifts lead to reorganizations in the composition of assemblages with consequences for ecosystem processes. PMID:23762439
Insects overshoot the expected upslope shift caused by climate warming.
Bässler, Claus; Hothorn, Torsten; Brandl, Roland; Müller, Jörg
2013-01-01
Along elevational gradients, climate warming may lead to an upslope shift of the lower and upper range margin of organisms. A recent meta-analysis concluded that these shifts are species specific and considerably differ among taxonomic lineages. We used the opportunity to compare upper range margins of five lineages (plants, beetles, flies, hymenoptera, and birds) between 1902-1904 and 2006-2007 within one region (Bavarian Forest, Central Europe). Based on the increase in the regional mean annual temperature during this period and the regional lapse rate, the upslope shift is expected to be between 51 and 201 m. Averaged across species within lineages, the range margin of all animal lineages shifted upslope, but that of plants did not. For animals, the observed shifts were probably due to shifts in temperature and not to changes in habitat conditions. The range margin of plants is therefore apparently not constrained by temperature, a result contrasting recent findings. The mean shift of birds (165 m) was within the predicted range and consistent with a recent global meta-analysis. However, the upslope shift of the three insect lineages (>260 m) exceeded the expected shift even after considering several sources of uncertainty, which indicated a non-linear response to temperature. Our analysis demonstrated broad differences among lineages in their response to climate change even within one region. Furthermore, on the considered scale, the response of ectothermic animals was not consistent with expectations based on shifts in the mean annual temperature. Irrespective of the reasons for the overshooting of the response of the insects, these shifts lead to reorganizations in the composition of assemblages with consequences for ecosystem processes.
Wen, Zhixin; Wu, Yi; Ge, Deyan; Cheng, Jilong; Chang, Yongbin; Yang, Zhisong; Xia, Lin; Yang, Qisen
2017-04-20
Understanding whether species' elevational range is shifting in response to directional changes in climate and whether there is a predictable pattern in that response is one of the major challenges in ecology. However, so far very little is known about the distributional responses of subtropical species to climate change, especially for small mammals. In this study, we examined the elevational range shifts at three range points (upper and lower range limits and abundance-weighted range centre) of rodents over a 30-year period (1986 to 2014-2015), in a subtropical forest of Southwest China. We also examined the influences of four ecological traits (body mass, habitat breadth, diet and daily activity pattern) on the upslope shifts in species' abundance-weighted range centres. Despite the warming trend between 1986 and 2015, the 11 rodent species in analysis displayed heterogeneous dynamics at each of the three range points. Species which have larger body sizes and narrower habitat breadths, show both diurnal and nocturnal activities and more specialized dietary requirements, are more likely to exhibit upslope shifts in abundance-weighted range centres. Species' distributional responses can be heterogeneous even though there are directional changes in climate. Our study indicates that climate-induced alleviation of competition and lag in response may potentially drive species' range shift, which may not conform to the expectation from climate change. Difference in traits can lead to different range dynamics. Our study also illustrates the merit of multi-faceted assessment in studying elevational range shifts.
Examining Exposure Assessment in Shift Work Research: A Study on Depression Among Nurses.
Hall, Amy L; Franche, Renée-Louise; Koehoorn, Mieke
2018-02-13
Coarse exposure assessment and assignment is a common issue facing epidemiological studies of shift work. Such measures ignore a number of exposure characteristics that may impact on health, increasing the likelihood of biased effect estimates and masked exposure-response relationships. To demonstrate the impacts of exposure assessment precision in shift work research, this study investigated relationships between work schedule and depression in a large survey of Canadian nurses. The Canadian 2005 National Survey of the Work and Health of Nurses provided the analytic sample (n = 11450). Relationships between work schedule and depression were assessed using logistic regression models with high, moderate, and low-precision exposure groupings. The high-precision grouping described shift timing and rotation frequency, the moderate-precision grouping described shift timing, and the low-precision grouping described the presence/absence of shift work. Final model estimates were adjusted for the potential confounding effects of demographic and work variables, and bootstrap weights were used to generate sampling variances that accounted for the survey sample design. The high-precision exposure grouping model showed the strongest relationships between work schedule and depression, with increased odds ratios [ORs] for rapidly rotating (OR = 1.51, 95% confidence interval [CI] = 0.91-2.51) and undefined rotating (OR = 1.67, 95% CI = 0.92-3.02) shift workers, and a decreased OR for depression in slow rotating (OR = 0.79, 95% CI = 0.57-1.08) shift workers. For the low- and moderate-precision exposure grouping models, weak relationships were observed for all work schedule categories (OR range 0.95 to 0.99). Findings from this study support the need to consider and collect the data required for precise and conceptually driven exposure assessment and assignment in future studies of shift work and health. Further research into the effects of shift rotation frequency on depression is also recommended. © The Author(s) 2018. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Remote Sensing of Climate-Driven Range Shifts of Vegetation across North American Mountain Ranges
NASA Astrophysics Data System (ADS)
Kendrick, J. A.; Sax, D. F.; Kellner, J. R.
2015-12-01
Global climate change is driving shifts in local environmental conditions, and many organisms are projected to become poorly adapted to their current ranges. Some species may respond by gradually shifting their range limits to track environmental change. This adaptation strategy is expected to be most feasible in regions with sharp climatic gradients, such as mountain ranges. However, the extent to which this process is taking place is poorly understood, and some evidence suggests that shifts upwards in elevation might be more difficult than expected. Direct empirical evidence of range shifts in response to recent climate change could inform models and conservation strategies. Here we used Monte Carlo spectral unmixing of Landsat surface reflectance data to characterize changes in vegetation cover across major North American mountain ranges over the past 30 years. This approach allows us to observe changes in photosynthetic and nonphotosynthetic vegetation as well as absolute change in vegetation cover. We found evidence of a gradual increase in total vegetation cover at increasing elevations, but this pattern varied in its strength both within and among mountain ranges. We also observed more dramatic changes in vegetation type which differed strongly between regions with different climates. Our analysis shows that upslope range shift is a possible climate response in many cases, but that this process does not occur uniformly.
Plant–pollinator interactions under climate change: The use of spatial and temporal transplants1
Morton, Eva M.; Rafferty, Nicole E.
2017-01-01
Climate change is affecting both the timing of life history events and the spatial distributions of many species, including plants and pollinators. Shifts in phenology and range affect not only individual plant and pollinator species but also interactions among them, with possible negative consequences for both parties due to unfavorable abiotic conditions or mismatches caused by differences in shift magnitude or direction. Ultimately, population extinctions and reductions in pollination services could occur as a result of these climate change–induced shifts, or plants and pollinators could be buffered by plastic or genetic responses or novel interactions. Either scenario will likely involve altered selection pressures, making an understanding of plasticity and local adaptation in space and time especially important. In this review, we discuss two methods for studying plant–pollinator interactions under climate change: spatial and temporal transplants, both of which offer insight into whether plants and pollinators will be able to adapt to novel conditions. We discuss the advantages and limitations of each method and the future possibilities for this area of study. We advocate for consideration of how joint shifts in both dimensions might affect plant–pollinator interactions and point to key insights that can be gained with experimental transplants. PMID:28690930
The past, present and future distribution of a deep-sea shrimp in the Southern Ocean
Costello, Mark J.
2016-01-01
Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future. PMID:26925334
The past, present and future distribution of a deep-sea shrimp in the Southern Ocean.
Basher, Zeenatul; Costello, Mark J
2016-01-01
Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.
Expansion Under Climate Change: The Genetic Consequences.
Garnier, Jimmy; Lewis, Mark A
2016-11-01
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.
NASA Astrophysics Data System (ADS)
McDonald, Betsy
Utilities across the United States are piloting residential demand response programs to help manage peak electric demand. Using publicly available program evaluations, this thesis analyzes nine such programs to uncover and synthesize the range of program offerings, goals, enrollment strategies, and customer experiences. This review reveals that program participation, components, and results differ based on a variety of factors, including geographic characteristics, program goals, and implementation strategies. The diversity of program designs and evaluation findings suggests an underlying tension between the need to generate cost-effective program impacts and the desire to increase accessibility so that program benefits are not exclusive to certain segments of the population. For more significant and impactful engagement, program goals may need to shift. State level policy support could help shift program goals toward increasing program accessibility. Future research should explore creative strategies that target existing barriers and allow for more inclusive deployment.
In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories
Maia, Paulo; Rocha, Miguel
2015-01-01
SUMMARY Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed. PMID:26609052
Integrated decision-making about housing, energy and wellbeing: a qualitative system dynamics model.
Macmillan, Alexandra; Davies, Michael; Shrubsole, Clive; Luxford, Naomi; May, Neil; Chiu, Lai Fong; Trutnevyte, Evelina; Bobrova, Yekatherina; Chalabi, Zaid
2016-03-08
The UK government has an ambitious goal to reduce carbon emissions from the housing stock through energy efficiency improvements. This single policy goal is a strong driver for change in the housing system, but comes with positive and negative "unintended consequences" across a broad range of outcomes for health, equity and environmental sustainability. The resulting policies are also already experiencing under-performance through a failure to consider housing as a complex system. This research aimed to move from considering disparate objectives of housing policies in isolation to mapping the links between environmental, economic, social and health outcomes as a complex system. We aimed to support a broad range of housing policy stakeholders to improve their understanding of housing as a complex system through a collaborative learning process. We used participatory system dynamics modelling to develop a qualitative causal theory linking housing, energy and wellbeing. Qualitative interviews were followed by two interactive workshops to develop the model, involving representatives from national and local government, housing industries, non-government organisations, communities and academia. More than 50 stakeholders from 37 organisations participated. The process resulted in a shared understanding of wellbeing as it relates to housing; an agreed set of criteria against which to assess to future policy options; and a comprehensive set of causal loop diagrams describing the housing, energy and wellbeing system. The causal loop diagrams cover seven interconnected themes: community connection and quality of neighbourhoods; energy efficiency and climate change; fuel poverty and indoor temperature; household crowding; housing affordability; land ownership, value and development patterns; and ventilation and indoor air pollution. The collaborative learning process and the model have been useful for shifting the thinking of a wide range of housing stakeholders towards a more integrated approach to housing. The qualitative model has begun to improve the assessment of future policy options across a broad range of outcomes. Future work is needed to validate the model and increase its utility through computer simulation incorporating best quality data and evidence. Combining system dynamics modelling with other methods for weighing up policy options, as well as methods to support shifts in the conceptual frameworks underpinning policy, will be necessary to achieve shared housing goals across physical, mental, environmental, economic and social wellbeing.
Raghavan, Govind; Kishan, Amar U; Cao, Minsong; Chen, Allen M
2016-11-01
Prior studies have relied on CT to assess alterations in anatomy among patients undergoing radiation for head and neck cancer. We sought to determine the feasibility of using MRI-based image-guided radiotherapy to quantify these changes and to ascertain their potential dosimetric implications. 6 patients with head and neck cancer were treated with intensity-modulated radiotherapy (IMRT) on a novel tri- 60 Co teletherapy system equipped with a 0.35-T MRI (VR, ViewRay Incorporated, Oakwood Village, OH) to 66-70 Gy in 33 fractions (fx). Pre-treatment MRIs on Fx 1, 5, 10, 15, 20, 25, 30 and 33 were imported into a contouring interface, where the primary gross tumour volume (GTV) and parotid glands were delineated. The centre of mass (COM) shifts for these structures were assessed relative to Day 1. Dosimetric data were co-registered with the MRIs, and doses to the GTV and parotid glands were assessed. Primary GTVs decreased significantly over the course of IMRT (median % volume loss, 38.7%; range, 29.5-72.0%; p < 0.05) at a median rate of 1.2%/fx (range, 0.92-2.2%/fx). Both the ipsilateral and contralateral parotid glands experienced significant volume loss (p < 0.05, for all) and shifted medially during IMRT. Weight loss correlated significantly with parotid gland volume loss and medial COM shift (p < 0.05). Integrated on-board MRI can be used to accurately contour and analyze primary GTVs and parotid glands over the course of IMRT. COM shifts and significant volume reductions were observed, confirming the results of prior CT-based exercises. Advances in knowledge: The superior resolution of on-board MRI may facilitate online adaptive replanning in the future.
Tree-species range shifts in a changing climate: detecting, modeling, assisting
Louis R. Iverson; Donald McKenzie
2013-01-01
In these times of rapidly changing climate, the science of detecting and modeling shifts in the ranges of tree species is advancing of necessity. We briefly review the current state of the science on several fronts. First, we review current and historical evidence for shifting ranges and migration. Next, we review two broad categories of methods, focused on the spatial...
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Multiscale regime shifts and planetary boundaries.
Hughes, Terry P; Carpenter, Stephen; Rockström, Johan; Scheffer, Marten; Walker, Brian
2013-07-01
Life on Earth has repeatedly displayed abrupt and massive changes in the past, and there is no reason to expect that comparable planetary-scale regime shifts will not continue in the future. Different lines of evidence indicate that regime shifts occur when the climate or biosphere transgresses a tipping point. Whether human activities will trigger such a global event in the near future is uncertain, due to critical knowledge gaps. In particular, we lack understanding of how regime shifts propagate across scales, and whether local or regional tipping points can lead to global transitions. The ongoing disruption of ecosystems and climate, combined with unprecedented breakdown of isolation by human migration and trade, highlights the need to operate within safe planetary boundaries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Keliang; Yao, Linjun; Meng, Jiasong; Tao, Jun
2018-09-01
Paeonia (Paeoniaceae), an economically important plant genus, includes many popular ornamentals and medicinal plant species used in traditional Chinese medicine. Little is known about the properties of the habitat distribution and the important eco-environmental factors shaping the suitability. Based on high-resolution environmental data for current and future climate scenarios, we modeled the present and future suitable habitat for P. delavayi and P. rockii by Maxent, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. The results showed that the moderate and high suitable areas for P. delavayi and P. rockii encompassed ca. 4.46×10 5 km 2 and 1.89×10 5 km 2 , respectively. Temperature seasonality and isothermality were identified as the most critical factors shaping P. delavayi distribution, and UVB-4 and annual precipitation were identified as the most critical for shaping P. rockii distribution. Under the scenario with a low concentration of greenhouse gas emissions (RCP2.6), the range of both species increased as global warming intensified; however, under the scenario with higher concentrations of emissions (RCP8.5), the suitable habitat range of P. delavayi decreased while P. rockii increased. Overall, our prediction showed that a shift in distribution of suitable habitat to higher elevations would gradually become more significant. The information gained from this study should provide a useful reference for implementing long-term conservation and management strategies for these species. Copyright © 2018. Published by Elsevier B.V.
Can future land use change be usefully predicted?
NASA Astrophysics Data System (ADS)
Ramankutty, N.; Coomes, O.
2011-12-01
There has been increasing recognition over the last decade that land use and land cover change is an important driver of global environmental change. Consequently, there have been growing efforts to understanding processes of land change from local-to-global scales, and to develop models to predict future changes in the land. However, we believe that such efforts are hampered by limited attention being paid to the critical points of land change. Here, we present a framework for understanding land use change by distinguishing within-regime land-use dynamics from land-use regime shifts. Illustrative historical examples reveal the significance of land-use regime shifts. We further argue that the land-use literature predominantly demonstrates a good understanding (with predictive power) of within-regime dynamics, while understanding of land-use regime shifts is limited to ex post facto explanations with limited predictive capability. The focus of land use change science needs to be redirected toward studying land-use regime shifts if we are to have any hope of making useful future projections. We present a preliminary framework for understanding land-use regime-shifts, using two case studies in Latin America as examples. We finally discuss the implications of our proposal for land change science.
Are fish outside their usual ranges early indicators of climate-driven range shifts?
Fogarty, Hannah E; Burrows, Michael T; Pecl, Gretta T; Robinson, Lucy M; Poloczanska, Elvira S
2017-05-01
Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether 'first sightings' of marine species outside their normal ranges could provide an early warning of impending climate-driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50-year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate 'source' regions (areas lacking connections to warmer areas), 'corridor' regions (areas where moving isotherms converge), and 'sink' regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species' thermal affiliations. We found that first sightings are more likely to occur in climate sink and 'divergent' regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer-term climatic processes, and therefore have potential use to indicate likely climate-driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range-shifting species before they potentially colonize. © 2017 John Wiley & Sons Ltd.
2012-02-21
Dr. Caroline Wagner, associate professor, Ambassador Milton A. and Roslyn Z. Wolf Chair in International Affairs, and Director, Battelle Center for Science and Technology Policy, The Ohio State University moderates the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Subtidal Benthic Invertebrates Shifting Northward Along the U.S. Atlantic Coast
Numerous marine and terrestrial species have shifted their ranges poleward in response to warming from global climate change. However, few studies have examined range shifts of subtidal benthic communities in estuarine and nearshore waters. This study examined 20 years (1990–2010...
Competition and facilitation may lead to asymmetric range shift dynamics with climate change.
Ettinger, Ailene; HilleRisLambers, Janneke
2017-09-01
Forecasts of widespread range shifts with climate change stem from assumptions that climate drives species' distributions. However, local adaptation and biotic interactions also influence range limits and thus may impact range shifts. Despite the potential importance of these factors, few studies have directly tested their effects on performance at range limits. We address how population-level variation and biotic interactions may affect range shifts by transplanting seeds and seedlings of western North American conifers of different origin populations into different competitive neighborhoods within and beyond their elevational ranges and monitoring their performance. We find evidence that competition with neighboring trees limits performance within current ranges, but that interactions between adults and juveniles switch from competitive to facilitative at upper range limits. Local adaptation had weaker effects on performance that did not predictably vary with range position or seed origin. Our findings suggest that competitive interactions may slow species turnover within forests at lower range limits, whereas facilitative interactions may accelerate the pace of tree expansions upward near timberline. © 2017 John Wiley & Sons Ltd.
Information technology in the future of health care.
Hatcher, Myron; Heetebry, Irene
2004-12-01
Technology advances have changed the face of health care. This paradigm shift blurred the boundaries between public health, acute care, and prevention. Technology's role in the diagnosis, treatment assignment, follow-ups, and prevention will be reviewed and future impact projected. The understanding of shift in our expectation for each aspect of health care is critical so that levels of success are understood. Technology advances in health care delivery will be discussed. Specific applications are presented and explained and future trends discussed. Four applications are defined, and related to categories of technologies and their attributes.
Homodyne Phase-Shift-Keying Systems: Past Challenges and Future Opportunities
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.; Kalogerakis, Georgios; Shaw, Wei-Tao
2006-12-01
Homodyne phase-shift-keying systems can achieve the best receiver sensitivity and the longest transmission distance among all optical communication systems. This paper reviews recent research efforts in the field and examines future possibilities that might lead toward potential practical use of these systems. Additionally, phase estimation techniques based on feed-forward phase recovery and digital delay-lock loop approaches are examined, simulated, and compared.
Is Polar Amplification Deeper and Stronger than Dynamicists Assume?
NASA Astrophysics Data System (ADS)
Scheff, J.; Maroon, E.
2017-12-01
In the CMIP multi-model mean under strong future warming, Arctic amplification is confined to the lower troposphere, so that the meridional gradient of warming reverses around 500 mb and the upper troposphere is characterized by strong "tropical amplification" in which warming weakens with increasing latitude. This model-derived pattern of warming maxima in the upper-level tropics and lower-level Arctic has become a canonical assumption driving theories of the large-scale circulation response to climate change. Yet, several lines of evidence and reasoning suggest that Arctic amplification may in fact extend through the entire depth of the troposphere, and/or may be stronger than commonly modeled. These include satellite Microwave Sounding Unit (MSU) temperature trends as a function of latitude and vertical level, the recent discovery that the extratropical negative cloud phase feedback in models is largely spurious, and the very strong polar amplification observed in past warm and lukewarm climates. Such a warming pattern, with deep, dominant Arctic amplification, would have very different implications for the circulation than a canonical CMIP-like warming: instead of slightly shifting poleward and strengthening, eddies, jets and cells might shift equatorward and considerably weaken. Indeed, surface winds have been mysteriously weakening ("stilling") at almost all stations over the last half-century or so, there has been no poleward shift in northern hemisphere circulation metrics, and past warm climates' subtropics were apparently quite wet (and their global ocean circulations were weak.) To explore these possibilities more deeply, we examine the y-z structure of warming and circulation changes across a much broader range of models, scenarios and time periods than the CMIP future mean, and use an MSU simulator to compare them to the satellite warming record. Specifically, we examine whether the use of historical (rather than future) forcing, AMIP (rather than CMIP) configuration, individual GCMs, and/or individual ensemble members can better reproduce the structure of the MSU and surface-wind observations. Figure 1 already shows that tropical amplification is absent in the CESM1 historical ensemble (1979-2012). The results of these analyses will guide our future modeling work on these topics.
Impacts of climate change on the future of biodiversity.
Bellard, Céline; Bertelsmeier, Cleo; Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck
2012-04-01
Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth. © 2012 Blackwell Publishing Ltd/CNRS.
Impacts of climate change on the future of biodiversity
Leadley, Paul; Thuiller, Wilfried; Courchamp, Franck
2013-01-01
Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g., phenology), space (e.g., range) and self (e.g., physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesize their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth. PMID:22257223
Kriticos, Darren J; Brunel, Sarah
2016-01-01
Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world's worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management.
Brunel, Sarah
2016-01-01
Understanding and managing the biological invasion threats posed by aquatic plants under current and future climates is a growing challenge for biosecurity and land management agencies worldwide. Eichhornia crassipes is one of the world’s worst aquatic weeds. Presently, it threatens aquatic ecosystems, and hinders the management and delivery of freshwater services in both developed and developing parts of the world. A niche model was fitted using CLIMEX, to estimate the potential distribution of E. crassipes under historical and future climate scenarios. Under two future greenhouse gas emission scenarios for 2080 simulated with three Global Climate Models, the area with a favourable temperature regime appears set to shift polewards. The greatest potential for future range expansion lies in Europe. Elsewhere in the northern hemisphere temperature gradients are too steep for significant geographical range expansion under the climate scenarios explored here. In the Southern Hemisphere, the southern range boundary for E. crassipes is set to expand southwards in Argentina, Australia and New Zealand; under current climate conditions it is already able to invade the southern limits of Africa. The opportunity exists to prevent its spread into the islands of Tasmania in Australia and the South Island of New Zealand, both of which depend upon hydroelectric facilities that would be threatened by the presence of E. crassipes. In Europe, efforts to slow or stop the spread of E. crassipes will face the challenge of limited internal biosecurity capacity. The modelling technique demonstrated here is the first application of niche modelling for an aquatic weed under historical and projected future climates. It provides biosecurity agencies with a spatial tool to foresee and manage the emerging invasion threats in a manner that can be included in the international standard for pest risk assessments. It should also support more detailed local and regional management. PMID:27513336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saotome, N; Furukawa, T; Mizushima, K
2016-06-15
Purpose: To investigate the time structure of the range, we have verified the rang shift due to the betatron tune shift with several synchrotron parameters. Methods: A cylindrical plastic scintillator block and a CCD camera were installed on the black box. Using image processing, the range was determined the 80 percent of distal dose of the depth light distribution. The root mean square error of the range measurement using the scintillator and CCD system is about 0.2 mm. Range measurement was performed at interval of 170 msec. The chromaticity of the synchrotron was changed in the range of plus ormore » minus 1% from reference chromaticity in this study. All of the particle inside the synchrotron ring were extracted with the output beam intensity 1.8×10{sup 8} and 5.0×10{sub 7} particle per sec. Results: The time strictures of the range were changed by changing of the chromaticity. The reproducibility of the measurement was sufficient to observe the time structures of the range. The range shift was depending on the number of the residual particle inside the synchrotron ring. Conclusion: In slow beam extraction for scanned carbon-ion therapy, the range shift is undesirable because it causes the dose uncertainty in the target. We introduced the time-resolved range measurement using scintillator and CCD system. The scintillator and CCD system have enabled to verify the range shift with sufficient spatial resolution and reproducibility.« less
Faster poleward range shifts in moths with more variable colour patterns
Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus
2016-01-01
Range shifts have been documented in many organisms, and climate change has been implicated as a contributing driver of latitudinal and altitudinal range modifications. However, little is known about what species trait(s) allow for faster environmental tracking and improved capacity for distribution expansions. We used data for 416 species of moths, and show that range limits in Sweden have shifted to the north by on average 52.4 km per decade between 1973 and 2014. When also including non-expanding species, average expansion rate was 23.2 km per decade. The rate of boundary shifts increased with increasing levels of inter-individual variation in colour patterns and decreased with increasing latitude. The association with colour patterns indicate that variation in this functionally important trait enables species to cope with novel and changing conditions. Northern range limits also increased with average abundance and decreased with increasing year-to-year abundance fluctuations, implicating production of dispersers as a driver of range dynamics. Studies of terrestrial animals show that rates of poleward shifts differ between taxonomic groups, increase over time, and depend on study duration and latitude. Knowledge of how distribution shifts change with time, location, and species characteristics may improve projections of responses to climate change and aid the protection of biodiversity. PMID:27808116
Faster poleward range shifts in moths with more variable colour patterns
NASA Astrophysics Data System (ADS)
Forsman, Anders; Betzholtz, Per-Eric; Franzén, Markus
2016-11-01
Range shifts have been documented in many organisms, and climate change has been implicated as a contributing driver of latitudinal and altitudinal range modifications. However, little is known about what species trait(s) allow for faster environmental tracking and improved capacity for distribution expansions. We used data for 416 species of moths, and show that range limits in Sweden have shifted to the north by on average 52.4 km per decade between 1973 and 2014. When also including non-expanding species, average expansion rate was 23.2 km per decade. The rate of boundary shifts increased with increasing levels of inter-individual variation in colour patterns and decreased with increasing latitude. The association with colour patterns indicate that variation in this functionally important trait enables species to cope with novel and changing conditions. Northern range limits also increased with average abundance and decreased with increasing year-to-year abundance fluctuations, implicating production of dispersers as a driver of range dynamics. Studies of terrestrial animals show that rates of poleward shifts differ between taxonomic groups, increase over time, and depend on study duration and latitude. Knowledge of how distribution shifts change with time, location, and species characteristics may improve projections of responses to climate change and aid the protection of biodiversity.
Modelling marine protected areas: insights and hurdles
Fulton, Elizabeth A.; Bax, Nicholas J.; Bustamante, Rodrigo H.; Dambacher, Jeffrey M.; Dichmont, Catherine; Dunstan, Piers K.; Hayes, Keith R.; Hobday, Alistair J.; Pitcher, Roland; Plagányi, Éva E.; Punt, André E.; Savina-Rolland, Marie; Smith, Anthony D. M.; Smith, David C.
2015-01-01
Models provide useful insights into conservation and resource management issues and solutions. Their use to date has highlighted conditions under which no-take marine protected areas (MPAs) may help us to achieve the goals of ecosystem-based management by reducing pressures, and where they might fail to achieve desired goals. For example, static reserve designs are unlikely to achieve desired objectives when applied to mobile species or when compromised by climate-related ecosystem restructuring and range shifts. Modelling tools allow planners to explore a range of options, such as basing MPAs on the presence of dynamic oceanic features, and to evaluate the potential future impacts of alternative interventions compared with ‘no-action’ counterfactuals, under a range of environmental and development scenarios. The modelling environment allows the analyst to test if indicators and management strategies are robust to uncertainties in how the ecosystem (and the broader human–ecosystem combination) operates, including the direct and indirect ecological effects of protection. Moreover, modelling results can be presented at multiple spatial and temporal scales, and relative to ecological, economic and social objectives. This helps to reveal potential ‘surprises', such as regime shifts, trophic cascades and bottlenecks in human responses. Using illustrative examples, this paper briefly covers the history of the use of simulation models for evaluating MPA options, and discusses their utility and limitations for informing protected area management in the marine realm. PMID:26460131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yang; Lu, Jian; Leung, Lai-Yung R.
This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture inmore » the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.« less
Assessment of the USCENTCOM Medical Distribution Structure
Welser, William; Yoho, Keenan D.; Robbins, Marc; Peltz, Eric; Van Roo, Ben D.; Resnick, Adam C.; Harper, Ronald E.
2012-01-01
Abstract This study examined whether there might be a medical supply and distribution structure for U.S. Central Command (USCENTCOM) that would maintain or improve performance while reducing costs. The authors evaluated the likely performance and cost implications of the range of possibilities, considering both the medical and nonmedical logistics structures, for providing medical supplies to support medical activities in USCENTCOM. They found that three options would preserve or improve performance while either lowering or not increasing costs. Additionally, they considered how the value of these solutions would likely change with future shifts in USCENTCOM operations. PMID:28083245
Role of the Freight Sector in Future Climate Change Mitigation Scenarios
Muratori, Matteo; Smith, Steven J.; Kyle, Page; ...
2017-02-27
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less
Role of the Freight Sector in Future Climate Change Mitigation Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratori, Matteo; Smith, Steven J.; Kyle, Page
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that applymore » a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. Finally, by contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.« less
Role of the Freight Sector in Future Climate Change Mitigation Scenarios.
Muratori, Matteo; Smith, Steven J; Kyle, Page; Link, Robert; Mignone, Bryan K; Kheshgi, Haroon S
2017-03-21
The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO 2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21 st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.
Altizer, Sonia. M.; Becker, Daniel J.; Epstein, Jonathan H.; Forbes, Kristian M.; Gillespie, Thomas R.; Hall, Richard J.; Hawley, Dana; Hernandez, Sonia M.; Martin, Lynn B.; Plowright, Raina K.; Satterfield, Dara A.; Streicker, Daniel G.
2018-01-01
Human-provided resource subsidies for wildlife are diverse, common, and have profound consequences for wildlife–pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical, and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) inter-specific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modeling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human–wildlife conflicts over shared food resources, and reduce cross-species transmission risks, including to humans. PMID:29531154
Paradigm Shifts in Ophthalmic Diagnostics*
Sebag, J.; Sadun, Alfredo A.; Pierce, Eric A.
2016-01-01
Purpose Future advances in ophthalmology will see a paradigm shift in diagnostics from a focus on dysfunction and disease to better measures of psychophysical function and health. Practical methods to define genotypes will be increasingly important and non-invasive nanotechnologies are needed to detect molecular changes that predate histopathology. Methods This is not a review nor meant to be comprehensive. Specific topics have been selected to illustrate the principles of important paradigm shifts that will influence the future of ophthalmic diagnostics. It is our impression that future evaluation of vision will go beyond visual acuity to assess ocular health in terms of psychophysical function. The definition of disease will incorporate genotype into what has historically been a phenotype-centric discipline. Non-invasive nanotechnologies will enable a paradigm shift from disease detection on a cellular level to a sub-cellular molecular level. Results Vision can be evaluated beyond visual acuity by measuring contrast sensitivity, color vision, and macular function, as these provide better insights into the impact of aging and disease. Distortions can be quantified and the psychophysical basis of vision can be better evaluated than in the past by designing tests that assess particular macular cell function(s). Advances in our understanding of the genetic basis of eye diseases will enable better characterization of ocular health and disease. Non-invasive nanotechnologies can assess molecular changes in the lens, vitreous, and macula that predate visible pathology. Oxygen metabolism and circulatory physiology are measurable indices of ocular health that can detect variations of physiology and early disease. Conclusions This overview of paradigm shifts in ophthalmology suggests that the future will see significant improvements in ophthalmic diagnostics. The selected topics illustrate the principles of these paradigm shifts and should serve as a guide to further research and development. Indeed, successful implementation of these paradigm shifts in ophthalmology may provide useful guidance for similar developments in all of healthcare. PMID:28008209
Appelqvist, Christin; Al-Hamdani, Zyad K.; Jonsson, Per R.; Havenhand, Jon N.
2015-01-01
The shipworm, Teredo navalis, is absent from most of the Baltic Sea. In the last 20 years, increased frequency of T. navalis has been reported along the southern Baltic Sea coasts of Denmark, Germany, and Sweden, indicating possible range-extensions into previously unoccupied areas. We evaluated the effects of historical and projected near-future changes in salinity, temperature, and oxygen on the risk of spread of T. navalis in the Baltic. Specifically, we developed a simple, GIS-based, mechanistic climate envelope model to predict the spatial distribution of favourable conditions for adult reproduction and larval metamorphosis of T. navalis, based on published environmental tolerances to these factors. In addition, we used a high-resolution three-dimensional hydrographic model to simulate the probability of spread of T. navalis larvae within the study area. Climate envelope modeling showed that projected near-future climate change is not likely to change the overall distribution of T. navalis in the region, but will prolong the breeding season and increase the risk of shipworm establishment at the margins of the current range. Dispersal simulations indicated that the majority of larvae were philopatric, but those that spread over a wider area typically spread to areas unfavourable for their survival. Overall, therefore, we found no substantive evidence for climate-change related shifts in the distribution of T. navalis in the Baltic Sea, and no evidence for increased risk of spread in the near-future. PMID:25768305
Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators
Sinnett, Sarah E.; Brenman, Jay E.
2014-01-01
AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089
Zhao, Wanqing; Zhao, Qing
2017-01-01
The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is a serious invasive species that significantly damages plants of approximately 60 families around the world. It is originally from North America and has also been introduced to other continents. Our goals were to create a current and future potential global distribution map for this pest under climate change with MaxEnt software. We tested the hypothesis of niche conservatism for P. solenopsis by comparing its native niche in North America to its invasive niches on other continents using Principal components analyses (PCA) in R. The potentially suitable habitat for P. solenopsis in its native and non-native ranges is presented in the present paper. The results suggested that the mean temperature of the wettest quarter and the mean temperature of the driest quarter are the most important environmental variables determining the potential distribution of P. solenopsis. We found strong evidence for niche shifts in the realized climatic niche of this pest in South America and Australia due to niche unfilling; however, a niche shift in the realized climatic niche of this pest in Eurasian owing to niche expansion. PMID:28700721
Study of chemical shift in Kα, Kβ1,3 and Kβ// X-ray emission lines of 37Rb compounds with WDXRF
NASA Astrophysics Data System (ADS)
Kainth, Harpreet Singh; Singh, Ranjit; Singh, Tejbir; Mehta, D.; Shahi, J. S.; Kumar, Sanjeev
2018-05-01
The positive and negative chemical shifts in Kα, Kβ1,3 and Kβ// X-ray emission lines of rubidium compounds were measured with high resolution WDXRF spectrometer. The measured energy shifts in Kα emission lines ranges from -2.95 eV to -3.64 eV, Kβ1,3 emission lines ranges from 1.16 eV to 1.32 eV and Kβ// emission lines ranges from 1.31 eV to 4.36 eV respectively. In the present work, it has been found that chemical shift in Kβ// X-ray emission lines were found to be larger than Kα and Kβ1,3 X-ray emission lines. To find the cause of chemical shift, various factors like effective charge, line intensity ratio, bond length and electro-negativity were calculated and correlated with the chemical shift.
Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.
Luo, Zhenhua; Jiang, Zhigang; Tang, Songhua
2015-01-01
Climate change has significant impacts on species' distributions and diversity patterns. Understanding range shifts and changes in richness gradients under climate change is crucial for conservation. The Tibetan Plateau, home to wild yak, chiru, and kiang, contains a biome with many endemic ungulates. It is highly sensitive to climate change and a region that merits particular attention with regard to the impacts of global climate change on its biomes. Maximum entropy approaches were used to estimate current and future potential distributions, in response to climate change, for 22 ungulate species. We used three general circulation (MK3, HADCM3, MIROC3_2-MED) and three emissions scenarios (Bl, A1B, A2) to derive estimated future measurements of 14 environmental variables over three time periods (2020, 2050, 2080), and then modeled species distributions using these predicted environmental measurements for each time period under two dispersal hypotheses (full and zero, respectively). This resulted in a total of 6160 prediction models. We found that these ungulates, on average, may lose 30-50% of their distributional areas, depending on the dispersal scenarios. In addition, 55-68% of the ungulate species were predicted to become locally endangered under the different dispersal assumptions, 23-32% to become locally critically endangered, and 4-7 endemic species to become globally endangered. Furthermore, ungulate species ranges may experience average poleward shifts of ~300 km. We also predict west-to-east reductions in species richness: southeastern mountainous areas currently have the highest species richness, but are predicted to face the greatest diversity losses, whereas the northern areas are predicted to see increasing numbers of ungulate species in the 21st century. Our study indicates much more severe range reductions of ungulates on the Tibetan Plateau than those anticipated elsewhere in the world, and species richness patterns will change dramatically with climate change. For conservation, we suggest (1) securing existing protected areas, and (2) establishing new nature reserves to counterbalance climate change impacts.
Biological responses to environmental heterogeneity under future ocean conditions.
Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew
2016-08-01
Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming. © 2016 John Wiley & Sons Ltd.
York, Emily M; Butler, Christopher J; Lord, Wayne D
2014-01-01
Climate change is implicated in the alteration of the ranges of species worldwide. Such shifts in species distributions may introduce parasites/pathogens, hosts, and vectors associated with disease to new areas. The parasite Angiostrongylus ( = Parastrongylus) cantonensis is an invasive species that causes eosinophilic meningitis in humans and neurological abnormalities in domestic/wild animals. Although native to southeastern Asia, A. cantonensis has now been reported from more than 30 countries worldwide. Given the health risks, it is important to describe areas with potentially favorable climate for the establishment of A. cantonensis, as well as areas where this pathogen might become established in the future. We used the program Maxent to develop an ecological niche model for A. cantonensis based on 86 localities obtained from published literature. We then modeled areas of potential A. cantonensis distribution as well as areas projected to have suitable climatic conditions under four Representative Concentration Pathways (RCP) scenarios by the 2050s and the 2070s. The best model contained three bioclimatic variables: mean diurnal temperature range, minimum temperature of coldest month and precipitation of warmest quarter. Potentially suitable habitat for A. cantonensis was located worldwide in tropical and subtropical regions. Under all climate change RCP scenarios, the center of the projected distribution shifted away from the equator at a rate of 68-152 km per decade. However, the extent of areas with highly suitable habitat (>50%) declined by 10.66-15.66% by the 2050s and 13.11-16.11% by the 2070s. These results conflict with previous studies, which have generally found that the prevalence of tropical pathogens will increase during the 21st century. Moreover, it is likely that A. cantonensis will continue to expand its current range in the near future due to introductions and host expansion, whereas climate change will reduce the total geographic area of most suitable climatic conditions during the coming decades.
Constraints to species' elevational range shifts as climate changes.
Forero-Medina, German; Joppa, Lucas; Pimm, Stuart L
2011-02-01
Predicting whether the ranges of tropical species will shift to higher elevations in response to climate change requires models that incorporate data on topography and land use. We incorporated temperature gradients and land-cover data from the current ranges of species in a model of range shifts in response to climate change. We tested four possible scenarios of amphibian movement on a tropical mountain: movement upslope through and to land cover suitable for the species; movement upslope to land-cover types that will not sustain survival and reproduction; movement upslope to areas that previously were outside the species' range; and movement upslope to cooler areas within the current range. Areas in the final scenario will become isolated as climate continues to change. In our scenarios more than 30% of the range of 21 of 46 amphibian species in the tropical Sierra Nevada de Santa Marta is likely to become isolated as climate changes. More than 30% of the range of 13 amphibian species would shift to areas that currently are unlikely to sustain survival and reproduction. Combined, over 70% of the current range of seven species would become thermally isolated or shift to areas that currently are unlikely to support survival and reproduction. The constraints on species' movements to higher elevations in response to climate change can increase considerably the number of species threatened by climate change in tropical mountains. ©2010 Society for Conservation Biology.
I = 2 ππ scattering phase shift from the HAL QCD method with the LapH smearing
NASA Astrophysics Data System (ADS)
Kawai, Daisuke; Aoki, Sinya; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji
2018-04-01
Physical observables, such as the scattering phase shifts and binding energy, calculated from the non-local HAL QCD potential do not depend on the sink operators used to define the potential. In practical applications, the derivative expansion of the non-local potential is employed, so that physical observables may receive some scheme dependence at a given order of the expansion. In this paper, we compare the I=2ππ scattering phase shifts obtained in the point-sink scheme (the standard scheme in the HAL QCD method) and the smeared-sink scheme (the LapH smearing newly introduced in the HAL QCD method). Although potentials in different schemes have different forms as expected, we find that, for reasonably small smearing size, the resultant scattering phase shifts agree with each other if the next-to-leading-order (NLO) term is taken into account. We also find that the HAL QCD potential in the point-sink scheme has a negligible NLO term for a wide range of energies, which implies good convergence of the derivative expansion, while the potential in the smeared-sink scheme has a non-negligible NLO contribution. The implications of this observation for future studies of resonance channels (such as the I=0 and 1ππ scatterings) with smeared all-to-all propagators are briefly discussed.
Kistner, Erica Jean
2017-12-08
The invasive brown marmorated stink bug, Halyomorpha halys (Stål; Hemiptera: Pentatomidae), has recently emerged as a harmful pest of horticultural crops in North America and Europe. Native to East Asia, this highly polyphagous insect is spreading rapidly worldwide. Climate change will add further complications to managing this species in terms of both geographic distribution and population growth. This study used CLIMEX to compare potential H. halys distribution under recent and future climate models using one emission scenario (A2) with two different global circulation models, CSIRO Mk3.0 and MIROC-H. Simulated changes in seasonal phenology and voltinism were examined. Under the possible future climate scenarios, suitable range in Europe expands northward. In North America, the suitable H. halys range shifts northward into Canada and contracts from its southern temperature range limits in the United States due to increased heat stress. Prolonged periods of warm temperatures resulted in longer H. halys growing seasons. However, future climate scenarios indicated that rising summer temperatures decrease H. halys growth potential compared to recent climatic conditions, which in turn, may reduce mid-summer crop damage. Climate change may increase the number of H. halys generations produced annually, thereby enabling the invasive insect to become multivoltine in the northern latitudes of North America and Europe where it is currently reported to be univoltine. These results indicate prime horticultural production areas in Europe, the northeastern United States, and southeastern Canada are at greatest risk from H. halys under both current and possible future climates. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
LaBeau, Meredith B.; Mayer, Alex S.; Griffis, Veronica; Watkins, David Jr.; Robertson, Dale M.; Gyawali, Rabi
2015-01-01
In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Schnorbus, M.; Werner, A. T.; Berland, A. J.
2010-12-01
The British Columbia Hydro Electric Corporation (BC Hydro) has a mandate to provide clean, renewable and reliable sources of hydro-electric power into the future, hence managing those resources in the context of climate change will be an important component of reservoir operational planning in British Columbia. The Pacific Climate Impacts Consortium (www.PacificClimate.org) has implemented the Variable Infiltration Capacity hydrologic model parameterized at 1/16th degree (~32 km2) to provide BC Hydro with future projections of changes to streamflow and snowpack to the 2050s. The headwaters of the Peace, Columbia, and Campbell River basins were selected for study; the Upper Peace River basin (101,000 km2) is a snowmelt-dominated watershed, and the Upper Columbia River Basin (104,000 km2) has a mixed snowmelt-glacier melt runoff regime, with glacier runoff contributing up to 15 to 20% of late summer discharge. The Upper Campbell River watershed (1,200 km2) has a mixed rainfall and snowmelt (hybrid) hydrologic regime. The model has been calibrated using historical streamflow observations and validated against these observations, as well as automated snow pillow measurements. Future streamflow changes are estimated based on eight Global Climate Models (GCMs) from the CMIP3 suite, downscaled using the Bias Correction Spatial Downscaling (BCSD) technique, run under three emissions scenarios (A2, A1B and B1; A1B is specifically reported on herein). Climate impacts by the 2050s in the three watersheds illustrate an increase in annual average temperature and precipitation ranging between +2.2°C to +2.8°C and +2% to +10% depending on basin, and an annual change in streamflow of -1% to +12% for the three watersheds. Changes are more profound on the seasonal time-scale and differ across basins. Summer streamflow in the Upper Campbell River watershed is projected to decline by -60%, where as the Upper Peace and Columbia systems are projected to decline by -25% and -22%, respectively. Streamflow is projected to increase during winter months for all basins, ranging from increases of +54% (Upper Campbell), +77% (Upper Peace) to +94% (Upper Columbia). These changes in streamflow illustrate a shift towards more rainfall dominated systems with lower snowpacks during the winter months, particularly in the Campbell system (shifting from 23% to 13% snow dominated by the 2050s), which is located at a relatively low elevation and proximal to the Pacific Ocean. Shifts in the distribution of water resources, and in particular snowpack reserves, may require BC Hydro to reconsider their operational planning framework for impacted systems.
Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine.
Tredwell, Gregory D; Bundy, Jacob G; De Iorio, Maria; Ebbels, Timothy M D
2016-01-01
Despite the use of buffering agents the 1 H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples. To investigate the acid, base and metal ion dependent 1 H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture. Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl 2 , MgCl 2 , NaCl or KCl, and their 1 H NMR spectra were acquired. Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na + , K + , Ca 2+ and Mg 2+ , were also measured. These data will be a valuable resource for 1 H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1 H NMR spectra.
Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics
Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer
2012-01-01
Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature. PMID:23285098
Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans.
Langbehn, Tom J; Varpe, Øystein
2017-12-01
Light is a central driver of biological processes and systems. Receding sea ice changes the lightscape of high-latitude oceans and more light will penetrate into the sea. This affects bottom-up control through primary productivity and top-down control through vision-based foraging. We model effects of sea-ice shading on visual search to develop a mechanistic understanding of how climate-driven sea-ice retreat affects predator-prey interactions. We adapt a prey encounter model for ice-covered waters, where prey-detection performance of planktivorous fish depends on the light cycle. We use hindcast sea-ice concentrations (past 35 years) and compare with a future no-ice scenario to project visual range along two south-north transects with different sea-ice distributions and seasonality, one through the Bering Sea and one through the Barents Sea. The transect approach captures the transition from sub-Arctic to Arctic ecosystems and allows for comparison of latitudinal differences between longitudes. We find that past sea-ice retreat has increased visual search at a rate of 2.7% to 4.2% per decade from the long-term mean; and for high latitudes, we predict a 16-fold increase in clearance rate. Top-down control is therefore predicted to intensify. Ecological and evolutionary consequences for polar marine communities and energy flows would follow, possibly also as tipping points and regime shifts. We expect species distributions to track the receding ice-edge, and in particular expect species with large migratory capacity to make foraging forays into high-latitude oceans. However, the extreme seasonality in photoperiod of high-latitude oceans may counteract such shifts and rather act as a zoogeographical filter limiting poleward range expansion. The provided mechanistic insights are relevant for pelagic ecosystems globally, including lakes where shifted distributions are seldom possible but where predator-prey consequences would be much related. As part of the discussion on photoperiodic implications for high-latitude range shifts, we provide a short review of studies linking physical drivers to latitudinal extent. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Levy, Frank; Murnane, Richard J
2006-01-01
While struggling with the current pressures of educational reform, some educators will ask whether their efforts make economic sense. Questioning the future makeup of the nation's workforce, many wonder how the educational system should be tempered to better prepare today's youth. This chapter answers educators' and parents' questions around the effect of fluctuations in the American economy on the future of education. The authors offer reassurance that good jobs will always be available, but warn that those jobs will require a new level of skills: expert thinking and complex communication. Schools need to go beyond their current curriculum and prepare students to use reading, math, and communication skills to build a deeper and more thoughtful understanding of subject matter. To explain the implications of the nation's changing economy on jobs, technology, and therefore education, the authors address a range of vital questions. Citing occupational distribution data, the chapter explores the supply and range of jobs in the future, as well as why changes in the U.S. job distribution have taken place. As much of the explanation for the shift in job distribution over the past several decades is due to the computerization of the workforce, the authors discuss how computers will affect the future composition of the workforce. The chapter also addresses the consequences of educational improvement on earnings distribution. The authors conclude that beyond workforce preparedness, students need to learn how to be contributing members of a democracy.
Trajectories of water table recovery following the re-vegetation of bare peat
NASA Astrophysics Data System (ADS)
Shuttleworth, Emma; Evans, Martin; Allott, Tim; Maskill, Rachael; Pilkington, Michael; Walker, Jonathan
2016-04-01
The hydrological status of blanket peat influences a wide range of peatland functions, such as runoff generation, water quality, vegetation distribution, and rates of carbon sequestration. The UK supports 15% of the world's blanket peat cover, but much of this vital resource is significantly degraded, impacted by industrial pollution, overgrazing, wildfire, and climatic shifts. These pressures have produced a unique landscape characterised by severe gully erosion and extensive areas of bare peat. This in turn has led water tables to become substantially drawn down, impacting peatland function and limiting the resilience of these landscapes to future changes in climate. The restoration of eroding UK peatlands is a major conservation concern, and landscape-scale interventions through the re-vegetation of bare peat is becoming increasingly extensive in areas of upland Britain. Water table is the primary physical parameter considered in the monitoring of many peatland restoration projects, and there is a wealth of data on individual monitoring programmes which indicates that re-vegetation significantly raises water tables. This paper draws on data from multiple restoration projects carried out by the Moors for the Future Partnership in the Southern Pennines, UK, covering a range of stages in the erosion-restoration continuum, to assess the trajectories of water table recovery following re-vegetation. This will allow us to generate projections of future water table recovery, which will be of benefit to land managers and conservation organisations to inform future restoration initiatives.
Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys
NASA Astrophysics Data System (ADS)
Ding, Zhejie; Seo, Hee-Jong; Vlah, Zvonimir; Feng, Yu; Schmittfull, Marcel; Beutler, Florian
2018-05-01
Future Baryon Acoustic Oscillation surveys aim at observing galaxy clustering over a wide range of redshift and galaxy populations at great precision, reaching tenths of a percent, in order to detect any deviation of dark energy from the ΛCDM model. We utilize a set of paired quasi-N-body FastPM simulations that were designed to mitigate the sample variance effect on the BAO feature and evaluated the BAO systematics as precisely as ˜0.01%. We report anisotropic BAO scale shifts before and after density field reconstruction in the presence of redshift-space distortions over a wide range of redshift, galaxy/halo biases, and shot noise levels. We test different reconstruction schemes and different smoothing filter scales, and introduce physically-motivated BAO fitting models. For the first time, we derive a Galilean-invariant infrared resummed model for halos in real and redshift space. We test these models from the perspective of robust BAO measurements and non-BAO information such as growth rate and nonlinear bias. We find that pre-reconstruction BAO scale has moderate fitting-model dependence at the level of 0.1% - 0.2% for matter while the dependence is substantially reduced to less than 0.07% for halos. We find that post-reconstruction BAO shifts are generally reduced to below 0.1% in the presence of galaxy/halo bias and show much smaller fitting model dependence. Different reconstruction conventions can potentially make a much larger difference on the line-of-sight BAO scale, upto 0.3%. Meanwhile, the precision (error) of the BAO measurements is quite consistent regardless of the choice of the fitting model or reconstruction convention.
Modeling nonbreeding distributions of shorebirds and waterfowl in response to climate change
Reese, Gordon; Skagen, Susan K.
2017-01-01
To identify areas on the landscape that may contribute to a robust network of conservation areas, we modeled the probabilities of occurrence of several en route migratory shorebirds and wintering waterfowl in the southern Great Plains of North America, including responses to changing climate. We predominantly used data from the eBird citizen-science project to model probabilities of occurrence relative to land-use patterns, spatial distribution of wetlands, and climate. We projected models to potential future climate conditions using five representative general circulation models of the Coupled Model Intercomparison Project 5 (CMIP5). We used Random Forests to model probabilities of occurrence and compared the time periods 1981–2010 (hindcast) and 2041–2070 (forecast) in “model space.” Projected changes in shorebird probabilities of occurrence varied with species-specific general distribution pattern, migration distance, and spatial extent. Species using the western and northern portion of the study area exhibited the greatest likelihoods of decline, whereas species with more easterly occurrences, mostly long-distance migrants, had the greatest projected increases in probability of occurrence. At an ecoregional extent, differences in probabilities of shorebird occurrence ranged from −0.015 to 0.045 when averaged across climate models, with the largest increases occurring early in migration. Spatial shifts are predicted for several shorebird species. Probabilities of occurrence of wintering Mallards and Northern Pintail are predicted to increase by 0.046 and 0.061, respectively, with northward shifts projected for both species. When incorporated into partner land management decision tools, results at ecoregional extents can be used to identify wetland complexes with the greatest potential to support birds in the nonbreeding season under a wide range of future climate scenarios.
Pollinator-driven ecological speciation in plants: new evidence and future perspectives
Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.
2014-01-01
Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation. PMID:24418954
The interplay of climate and land use change affects the distribution of EU bumblebees.
Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas
2018-01-01
Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
How range shifts induced by climate change affect neutral evolution
McInerny, G.J.; Turner, J.R.G.; Wong, H.Y.; Travis, J.M.J.; Benton, T.G.
2009-01-01
We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects (‘mutation surfing’), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations ‘wipe out’). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting. PMID:19324824
How range shifts induced by climate change affect neutral evolution.
McInerny, G J; Turner, J R G; Wong, H Y; Travis, J M J; Benton, T G
2009-04-22
We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects ('mutation surfing'), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations 'wipe out'). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting.
Burden sharing or burden shifting Armaments cooperation within NATO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.W.
1993-01-01
This study has explored the nature of decision-making under conditions of conflicting political and economic imperatives. The participants want the cooperative program to succeed. They also want to bear the least burden necessary for success by shifting it to others. The concepts of burden sharing and burden shifting have been explored in the context of armaments cooperation through analysis of six armaments cooperation cases. The cases ranged from the NATO Sea Sparrow Missile System to the 155MM Autonomous Precision Guided Missile. Ideal models of burden sharing and burden shifting were developed to aid the analysis. The resultant theoretical framework ofmore » armaments cooperation within the NATO alliance has been used to explain success or lack of success in cooperative programs. Each case study addressed the categories of: Political Environment, Program Inception, Management Structure, and Results. Comparative analysis between programs was facilitated by using similar criteria for success or failure throughout. Each of the hypotheses making up the ideal models for burden sharing and burden shifting were examined considering the individual cases. An assessment of validity was made. Comparative analysis of selected case pairs facilitated isolation of factors that may have contributed to different results. These assessments were combined and formed the basis for the final conclusions on each hypothesis and their respective importance. This study adds to the theoretical understanding of alliance politics by examining in depth these concepts. It also supports future efforts to understand alliance politics by providing a framework for examining and testing deductively derived propositions against experience.« less
NASA Astrophysics Data System (ADS)
Deb, Jiban Chandra; Phinn, Stuart; Butt, Nathalie; McAlpine, Clive A.
2017-09-01
Modelling the future suitable climate space for tree species has become a widely used tool for forest management planning under global climate change. Teak ( Tectona grandis) is one of the most valuable tropical hardwood species in the international timber market, and natural teak forests are distributed from India through Myanmar, Laos and Thailand. The extents of teak forests are shrinking due to deforestation and the local impacts of global climate change. However, the direct impacts of climate changes on the continental-scale distributions of native and non-native teak have not been examined. In this study, we developed a species distribution model for teak across its entire native distribution in tropical Asia, and its non-native distribution in Bangladesh. We used presence-only records of trees and twelve environmental variables that were most representative for current teak distributions in South and Southeast Asia. MaxEnt (maximum entropy) models were used to model the distributions of teak under current and future climate scenarios. We found that land use/land cover change and elevation were the two most important variables explaining the current and future distributions of native and non-native teak in tropical Asia. Changes in annual precipitation, precipitation seasonality and annual mean actual evapotranspiration may result in shifts in the distributions of teak across tropical Asia. We discuss the implications for the conservation of critical teak habitats, forest management planning, and risks of biological invasion that may occur due to its cultivation in non-native ranges.
Moran, Emily V; Ormond, Rhys A
2015-01-01
Climate change is expected to favor shifts in plant distributions; some such shifts are already being observed along elevation gradients. However, the rate of such shifts may be limited by their ability to reach newly suitable areas and by competition from resident species. The degree of local adaptation and genetic variation may also play a role in the interaction between migrants and residents by affecting relative fitness. We used a simulation model to explore the interacting effects of dispersal, fecundity, disturbance, and genetic variation on range-edge dynamics between a pair of demographically similar tree species. Ideal climate for an individual is determined by genotype. The simulated landscape undergoes an 80-year period of climate change in which climate bands shift upslope; subsequently, climate is held constant for 300 years. The presence of a high-elevation competitor caused a significant lag in the range shift of the low-elevation species relative to competition-free scenarios. Increases in fecundity and dispersal distance both helped to speed up the replacement of the high-elevation species by the low-elevation species at their range boundary. While some disturbance scenarios facilitated this transition, frequent canopy disturbance inhibited colonization by removing reproductive adults and led to range contractions in both species. Differences between dispersal scenarios were more pronounced when disturbance was frequent (15 vs. 25 year return interval) and dispersal was limited. When the high-elevation species lacked genetic variation, its range was more-easily invaded by the low-elevation species, while a similar lack of variation in the low-elevation species inhibited colonization-but only when this lack of variation decreased the fitness of the affected species near the range boundary. Our model results support the importance of measuring and including dispersal/fecundity, disturbance type and frequency, and genetic variation when assessing the potential for range shifts and species vulnerability to climate change.
2015-01-01
Climate change is expected to favor shifts in plant distributions; some such shifts are already being observed along elevation gradients. However, the rate of such shifts may be limited by their ability to reach newly suitable areas and by competition from resident species. The degree of local adaptation and genetic variation may also play a role in the interaction between migrants and residents by affecting relative fitness. We used a simulation model to explore the interacting effects of dispersal, fecundity, disturbance, and genetic variation on range-edge dynamics between a pair of demographically similar tree species. Ideal climate for an individual is determined by genotype. The simulated landscape undergoes an 80-year period of climate change in which climate bands shift upslope; subsequently, climate is held constant for 300 years. The presence of a high-elevation competitor caused a significant lag in the range shift of the low-elevation species relative to competition-free scenarios. Increases in fecundity and dispersal distance both helped to speed up the replacement of the high-elevation species by the low-elevation species at their range boundary. While some disturbance scenarios facilitated this transition, frequent canopy disturbance inhibited colonization by removing reproductive adults and led to range contractions in both species. Differences between dispersal scenarios were more pronounced when disturbance was frequent (15 vs. 25 year return interval) and dispersal was limited. When the high-elevation species lacked genetic variation, its range was more-easily invaded by the low-elevation species, while a similar lack of variation in the low-elevation species inhibited colonization—but only when this lack of variation decreased the fitness of the affected species near the range boundary. Our model results support the importance of measuring and including dispersal/fecundity, disturbance type and frequency, and genetic variation when assessing the potential for range shifts and species vulnerability to climate change. PMID:26560869
A test for a shift in the boundary of the geographical range of a species.
Solow, Andrew; Beet, Andrew; Roll, Uri; Stone, Lewi
2014-02-01
One predicted impact of climate change is a poleward shift in the boundaries of species ranges. Existing methods for identifying such a boundary shift based on changes in the observed pattern of occupancy within a grid of cells are sensitive to changes in the overall rate of sightings and their latitudinal distribution that are unconnected to a boundary shift. A formal test for a boundary shift is described that allows for such changes. The test is applied to detect northward shifts in the northern boundary of the Essex skipper (Thymelicus lineola) butterfly and the European goldfinch (Carduelis carduelis) in Great Britain. A shift is detected in the latter case but not in the former. Results from a simulation study are presented showing that the test performs well.
Climate warming increases biological control agent impact on a non-target species
Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing
2015-01-01
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303
Climate warming increases biological control agent impact on a non-target species.
Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing
2015-01-01
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë
2015-01-01
The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens. © 2014 John Wiley & Sons Ltd.
Hong, Mei
2016-01-01
We have determined refined multidimensional chemical shift ranges for intra-residue correlations (13C–13C, 15N–13C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 13C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ~94 % of the 13C NMR data and almost all 15N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the 13C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command-line Python script (PLUQin), which should be useful in protein structure determination. The refined chemical shift distributions are utilized in a simple quality test (SQAT) that should be applied to new protein NMR data before deposition in a databank, and they could benefit many other chemical-shift based tools. PMID:26787537
Vocal-fold collision mass as a differentiator between registers in the low-pitch range.
Vilkman, E; Alku, P; Laukkanen, A M
1995-03-01
Register shift between the chest and falsetto register is generally studied in the higher-than-speaking pitch range. However, a similar difference can also be produced at speaking pitch level. The shift from breathy "falsetto" phonation to normal chest voice phonation was studied in normal female (pitch range 170-180 Hz) and male (pitch range 94-110 Hz) subjects. The phonations gliding from falsetto to normal chest voice were analyzed using iterative adaptive inverse filtering and electroglottography. Both trained and untrained, as well as female and male subjects, were able to produce an abrupt register shift from soft falsetto to soft chest register phonation. The differences between male and female speakers in the glottal flow waveforms were smaller than expected. The register shift is interpreted in terms of a "critical mass" concept of chest register phonation.
NASA Astrophysics Data System (ADS)
Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.
2017-10-01
In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.
Toscano, Benjamin J; Hin, Vincent; Rudolf, Volker H W
2017-11-01
Predators often exert strong top-down regulation of prey, but in many systems, juvenile predators must compete with their future prey for a shared resource. In such life-history intraguild predation (LHIGP) systems, prey can therefore also regulate the recruitment and thus population dynamics of their predator via competition. Theory predicts that such stage-structured systems exhibit a wide range of dynamics, including alternative stable states. Here we show that cannibalism is an exceedingly common interaction within natural LHIGP systems that determines what coexistence states are possible. Using a modeling approach that simulates a range of ontogenetic diet shift scenarios along a productivity gradient, we demonstrate that only if the predator is competitively dominant can cannibalism promote coexistence by allowing prey to persist. If the prey is competitively dominant, cannibalism instead results in competitive exclusion of the predator and the loss of potential alternative stable states. Further, predator exclusion occurs at low cannibalistic preference relative to empirical estimates and is consistent across LHIGP systems in which the predator undergoes a complete diet shift or diet broadening over ontogeny. Given that prey is frequently competitively dominant in natural systems, our results demonstrate that even weak cannibalism can inhibit predator persistence, prompting exploration of mechanisms that reconcile theory with the common occurrence of such interactions in nature.
Morris, J. P.; Thatje, S.; Cottin, D.; Oliphant, A.; Brown, A.; Shillito, B.; Ravaux, J.; Hauton, C.
2015-01-01
Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms’ thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shifts PMID:26716003
Failure to migrate: lack of tree range expansion in response to climate change
Kai Zhu; Christopher W. Woodall; James S. Clark
2012-01-01
Tree species are expected to track warming climate by shifting their ranges to higher latitudes or elevations, but current evidence of latitudinal range shifts for suites of species is largely indirect. In response to global warming, offspring of trees are predicted to have ranges extend beyond adults at leading edges and the opposite relationship at trailing edges....
Frequent long-distance plant colonization in the changing Arctic.
Alsos, Inger Greve; Eidesen, Pernille Bronken; Ehrich, Dorothee; Skrede, Inger; Westergaard, Kristine; Jacobsen, Gro Hilde; Landvik, Jon Y; Taberlet, Pierre; Brochmann, Christian
2007-06-15
The ability of species to track their ecological niche after climate change is a major source of uncertainty in predicting their future distribution. By analyzing DNA fingerprinting (amplified fragment-length polymorphism) of nine plant species, we show that long-distance colonization of a remote arctic archipelago, Svalbard, has occurred repeatedly and from several source regions. Propagules are likely carried by wind and drifting sea ice. The genetic effect of restricted colonization was strongly correlated with the temperature requirements of the species, indicating that establishment limits distribution more than dispersal. Thus, it may be appropriate to assume unlimited dispersal when predicting long-term range shifts in the Arctic.
Sub-specialization in plastic surgery in Sub-saharan Africa: capacities, gaps and opportunities
Ibrahim, Abdulrasheed
2014-01-01
The skill set of a plastic surgeon, which addresses a broad range of soft tissue conditions that are prevalent in sub-Saharan Africa, remains relevant in the unmet need for surgical care. Recently, there has being a major paradigm shift from discipline-based to disease-based care, resulting in an emerging component of patient-centered care; adequate access to subspecialty care in plastic and reconstructive surgery. Given the need for an evolution in sub-specialization, this article focuses on the benefits and future role of differentiation of plastic surgeons into sub-specialty training pathways in sub-Saharan Africa. PMID:25584125
Transfer Orbit Plasma Interaction Experiment (TROPIX)
NASA Astrophysics Data System (ADS)
Hickman, Mark
Viewgraphs on the Transfer Orbit Plasma Interaction Experiment (TROPIX) are presented. Objectives of this research are (1) to map the charged particles in Earth's magnetosphere from LEO to GEO at high inclinations; (2) to measure plasma current collection and resulting shifts in vehicle electrical potential from LEO to GEO across range of orbital inclinations; (3) to study spacecraft interaction with plasma environment using solar electric propulsion (SEP) thrusters as plasma contactors; (4) to measure array degradation over mission duration; (5) to evaluate the potential of various microelectronics, spacecraft components, and instruments for future space missions; and (6) to demonstrate SEP technology applied to a flight vehicle. An overview of TROPIX is presented.
Transient Fe Emission features in AGN: A new diagnostic of Accreting Systems
NASA Astrophysics Data System (ADS)
Turner, T. J.; Reeves, J. R.; George, I. M.; Kraemer, S. B.
2004-08-01
Chandra and XMM data have revealed narrow and highly redshifted Fe K emission lines in a handful of AGN. Rapid flux variability and energy shifts of the lines have lead to speculations for their origin ranging from hotspots on the accretion disk to emission from decelerating ejected blobs of gas traveling close to the escape velocity. Whichever scenario proves true, these lines are invaluable in tracing gas close to the black hole, and arguably less subject to the ambiguities which have plagued interpretation of broad `disk lines'. I review observations of such lines to date and discuss progress possible with current and future instrumentation.
Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L
2014-01-01
The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size. PMID:24713824
Habel, J C; Mulwa, R K; Gassert, F; Rödder, D; Ulrich, W; Borghesio, L; Husemann, M; Lens, L
2014-09-01
The Eastern Afromontane cloud forests occur as geographically distinct mountain exclaves. The conditions of these forests range from large to small and from fairly intact to strongly degraded. For this study, we sampled individuals of the forest bird species, the Montane White-eye Zosterops poliogaster from 16 sites and four mountain archipelagos. We analysed 12 polymorphic microsatellites and three phenotypic traits, and calculated Species Distribution Models (SDMs) to project past distributions and predict potential future range shifts under a scenario of climate warming. We found well-supported genetic and morphologic clusters corresponding to the mountain ranges where populations were sampled, with 43% of all alleles being restricted to single mountains. Our data suggest that large-scale and long-term geographic isolation on mountain islands caused genetically and morphologically distinct population clusters in Z. poliogaster. However, major genetic and biometric splits were not correlated to the geographic distances among populations. This heterogeneous pattern can be explained by past climatic shifts, as highlighted by our SDM projections. Anthropogenically fragmented populations showed lower genetic diversity and a lower mean body mass, possibly in response to suboptimal habitat conditions. On the basis of these findings and the results from our SDM analysis we predict further loss of genotypic and phenotypic uniqueness in the wake of climate change, due to the contraction of the species' climatic niche and subsequent decline in population size.
Zhang, Jingshu; Everson, Mark P; Wallington, Timothy J; Field, Frank R; Roth, Richard; Kirchain, Randolph E
2016-07-19
Platinum-group metals (PGMs) are technological and economic enablers of many industrial processes. This important role, coupled with their limited geographic availability, has led to PGMs being labeled as "critical materials". Studies of future PGM flows have focused on trends within material flows or macroeconomic indicators. We complement the previous work by introducing a novel technoeconomic model of substitution among PGMs within the automotive sector (the largest user of PGMs) reflecting the rational response of firms to changing prices. The results from the model support previous conclusions that PGM use is likely to grow, in some cases strongly, by 2030 (approximately 45% for Pd and 5% for Pt), driven by the increasing sales of automobiles. The model also indicates that PGM-demand growth will be significantly influenced by the future Pt-to-Pd price ratio, with swings of Pt and Pd demand of as much as 25% if the future price ratio shifts higher or lower even if it stays within the historic range. Fortunately, automotive catalysts are one of the more effectively recycled metals. As such, with proper policy support, recycling can serve to meet some of this growing demand.
Rounaghi, Iman; Hosseinian Yousefkhani, Seyyed Saeed
2018-01-01
Genus Pseudotrapelus has a wide distribution in North Africa and in the Middle East. In the present study, we modeled the habitat suitability of two Omani species of the genus (Pseudotrapelus dhofarensis and Pseudotrapelus jensvindumi) to evaluate the potential effects of climate change on their distribution. Mean diurnal range and precipitation of wettest quarter are the most highly contributed variables for P. jensvindumi and P. dhofarensis, respectively. The potential distribution for P. dhofarensis in the current time covers the southern coastal regions of Oman, Yemen, the Horn of Africa, and Socotra Island, but the suitable regions were reduced in the future prediction and limited to Yemen, Socotra Island, and Oman. There have not been any records of the species outside of Oman. Analysis of habitat suitability for P. jensvindumi indicated that the species is restricted to the Al Hajar Mountain of Oman and the southeast coastal region of Iran, but there are no records of the species from Iran. Because mean diurnal range will not be influenced by climate change in future, the potential distribution of the species is not expected to be changed in 2050. All predicted models were performed with the highest AUC (more than 0.97) using the Maxent method. Investigation to find unknown populations of these two species in Iran, Yemen, and Socotra Island is essential for developing conservation programs in the future.
Raghavan, Govind; Kishan, Amar U; Cao, Minsong
2016-01-01
Objective: Prior studies have relied on CT to assess alterations in anatomy among patients undergoing radiation for head and neck cancer. We sought to determine the feasibility of using MRI-based image-guided radiotherapy to quantify these changes and to ascertain their potential dosimetric implications. Methods: 6 patients with head and neck cancer were treated with intensity-modulated radiotherapy (IMRT) on a novel tri-60Co teletherapy system equipped with a 0.35-T MRI (VR, ViewRay Incorporated, Oakwood Village, OH) to 66–70 Gy in 33 fractions (fx). Pre-treatment MRIs on Fx 1, 5, 10, 15, 20, 25, 30 and 33 were imported into a contouring interface, where the primary gross tumour volume (GTV) and parotid glands were delineated. The centre of mass (COM) shifts for these structures were assessed relative to Day 1. Dosimetric data were co-registered with the MRIs, and doses to the GTV and parotid glands were assessed. Results: Primary GTVs decreased significantly over the course of IMRT (median % volume loss, 38.7%; range, 29.5–72.0%; p < 0.05) at a median rate of 1.2%/fx (range, 0.92–2.2%/fx). Both the ipsilateral and contralateral parotid glands experienced significant volume loss (p < 0.05, for all) and shifted medially during IMRT. Weight loss correlated significantly with parotid gland volume loss and medial COM shift (p < 0.05). Conclusion: Integrated on-board MRI can be used to accurately contour and analyze primary GTVs and parotid glands over the course of IMRT. COM shifts and significant volume reductions were observed, confirming the results of prior CT-based exercises. Advances in knowledge: The superior resolution of on-board MRI may facilitate online adaptive replanning in the future. PMID:27653787
Goldenberg, Shifra Z; Douglas-Hamilton, Iain; Wittemyer, George
2018-05-30
Repeated use of the same areas may benefit animals as they exploit familiar sites, leading to consistent home ranges over time that can span generations. Changing risk landscapes may reduce benefits associated with home range fidelity, however, and philopatric animals may alter movement in response to new pressures. Despite the importance of range changes to ecological and evolutionary processes, little tracking data have been collected over the long-term nor has range change been recorded in response to human pressures across generations. Here, we investigate the relationships between ecological, demographic and human variables and elephant ranging behaviour across generations using 16 years of tracking data from nine distinct female social groups in a population of elephants in northern Kenya that was heavily affected by ivory poaching during the latter half of the study. Nearly all groups-including those that did not experience loss of mature adults-exhibited a shift north over time, apparently in response to increased poaching in the southern extent of the study area. However, loss of mature adults appeared to be the primary indicator of range shifts and expansions, as generational turnover was a significant predictor of range size increases and range centroid shifts. Range expansions and northward shifts were associated with higher primary productivity and lower poached carcass densities, while westward shifts exhibited a trend to areas with higher values of primary productivity and higher poached carcass densities relative to former ranges. Together these results suggest a trade-off between resource access, mobility and safety. We discuss the relevance of these results to elephant conservation efforts and directions meriting further exploration in this disrupted society of a keystone species. © 2018 The Author(s).
Realized niche shift during a global biological invasion
Tingley, Reid; Vallinoto, Marcelo; Sequeira, Fernando; Kearney, Michael R.
2014-01-01
Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species’ realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change. PMID:24982155
Brown, Kristen E; Hottle, Troy Alan; Bandyopadhyay, Rubenka; Babaee, Samaneh; Dodder, Rebecca Susanne; Kaplan, Pervin Ozge; Lenox, Carol; Loughlin, Dan
2018-06-21
The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply Scenario Planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. EPA MARKAL model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to present, even without additional policies. Emission caps, such as the Cross State Air Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.
Successful range-expanding plants experience less above-ground and below-ground enemy impact.
Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H
2008-12-18
Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.
The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance
Connell, Sean D.; Kroeker, Kristy J.; Fabricius, Katharina E.; Kline, David I.; Russell, Bayden D.
2013-01-01
Predictions concerning the consequences of the oceanic uptake of increasing atmospheric carbon dioxide (CO2) have been primarily occupied with the effects of ocean acidification on calcifying organisms, particularly those critical to the formation of habitats (e.g. coral reefs) or their maintenance (e.g. grazing echinoderms). This focus overlooks direct and indirect effects of CO2 on non-calcareous taxa that play critical roles in ecosystem shifts (e.g. competitors). We present the model that future atmospheric [CO2] may act as a resource for mat-forming algae, a diverse and widespread group known to reduce the resilience of kelp forests and coral reefs. We test this hypothesis by combining laboratory and field CO2 experiments and data from ‘natural’ volcanic CO2 vents. We show that mats have enhanced productivity in experiments and more expansive covers in situ under projected near-future CO2 conditions both in temperate and tropical conditions. The benefits of CO2 are likely to vary among species of producers, potentially leading to shifts in species dominance in a high CO2 world. We explore how ocean acidification combines with other environmental changes across a number of scales, and raise awareness of CO2 as a resource whose change in availability could have wide-ranging community consequences beyond its direct effects. PMID:23980244
SU-F-J-197: A Novel Intra-Beam Range Detection and Adaptation Strategy for Particle Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M; Jiang, S; Shao, Y
2016-06-15
Purpose: In-vivo range detection/verification is crucial in particle therapy for effective and safe delivery. The state-of-art techniques are not sufficient for in-vivo on-line range verification due to conflicts among patient dose, signal statistics and imaging time. We propose a novel intra-beam range detection and adaptation strategy for particle therapy. Methods: This strategy uses the planned mid-range spots as probing beams without adding extra radiation to patients. Such choice of probing beams ensures the Bragg peaks to remain inside the tumor even with significant range variation from the plan. It offers sufficient signal statistics for in-beam positron emission tomography (PET) duemore » to high positron activity of therapeutic dose. The probing beam signal can be acquired and reconstructed using in-beam PET that allows for delineation of the Bragg peaks and detection of range shift with ease of detection enabled by single-layered spots. If the detected range shift is within a pre-defined tolerance, the remaining spots will be delivered as the original plan. Otherwise, a fast re-optimization using range-shifted beamlets and accounting for the probing beam dose is applied to consider the tradeoffs posed by the online anatomy. Simulated planning and delivery studies were used to demonstrate the effectiveness of the proposed techniques. Results: Simulations with online range variations due to shifts of various foreign objects into the beam path showed successful delineation of the Bragg peaks as a result of delivering probing beams. Without on-line delivery adaptation, dose distribution was significantly distorted. In contrast, delivery adaptation incorporating detected range shift recovered well the planned dose. Conclusion: The proposed intra-beam range detection and adaptation utilizing the planned mid-range spots as probing beams, which illuminate the beam range with strong and accurate PET signals, is a safe, practical, yet effective approach to address range uncertainty issues in particle therapy.« less
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-02-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.
Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.
Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten
2016-11-01
Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.
Potential impacts of global warming on water resources in southern California.
Beuhler, M
2003-01-01
Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.
NASA Astrophysics Data System (ADS)
Lapola, David M.; Oyama, Marcos D.; Nobre, Carlos A.
2009-09-01
Tropical South America vegetation cover projections for the end of the century differ considerably depending on climate scenario and also on how physiological processes are considered in vegetation models. In this paper we use a potential vegetation model (CPTEC-PVM2) to analyze biome distribution in tropical South America under a range of climate projections and a range of estimates about the effects of increased atmospheric CO2. We show that if the CO2 "fertilization effect" indeed takes place and is maintained in the long term in tropical forests, then it will avoid biome shifts in Amazonia in most of the climate scenarios, even if the effect of CO2 fertilization is halved. However, if CO2 fertilization does not play any important role on tropical forests in the future or if dry season is longer than 4 months (projected by 2/14 GCMs), then there is replacement of large portions of Amazonia by tropical savanna.
Elmhagen, Bodil; Kindberg, Jonas; Hellström, Peter; Angerbjörn, Anders
2015-01-01
It has been hypothesized that climate warming will allow southern species to advance north and invade northern ecosystems. We review the changes in the Swedish mammal and bird community in boreal forest and alpine tundra since the nineteenth century, as well as suggested drivers of change. Observed changes include (1) range expansion and increased abundance in southern birds, ungulates, and carnivores; (2) range contraction and decline in northern birds and carnivores; and (3) abundance decline or periodically disrupted dynamics in cyclic populations of small and medium-sized mammals and birds. The first warm spell, 1930-1960, stands out as a period of substantial faunal change. However, in addition to climate warming, suggested drivers of change include land use and other anthropogenic factors. We hypothesize all these drivers interacted, primarily favoring southern generalists. Future research should aim to distinguish between effects of climate and land-use change in boreal and tundra ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavinich, W.A.; Yoon, K.K.; Hour, K.Y.
1999-10-01
The present reference toughness method for predicting the change in fracture toughness can provide over estimates of these values because of uncertainties in initial RT{sub NDT} and shift correlations. It would be preferable to directly measure fracture toughness. However, until recently, no standard method was available to characterize fracture toughness in the transition range. ASTM E08 has developed a draft standard that shows promise for providing lower bound transition range fracture toughness using the master curve approach. This method has been successfully implemented using 1T compact fracture specimens. Combustion Engineering reactor vessel surveillance programs do not have compact fracture specimens.more » Therefore, the CE Owners Group developed a program to validate the master curve method for Charpy-sized and reconstituted Charpy-sized specimens for future application on irradiated specimens. This method was validated for Linde 1092 welds using unirradiated Charpy-sized and reconstituted Charpy-sized specimens by comparison of results with those from compact fracture specimens.« less
Xu, Lu; Wang, Hao; La, Qiong; Lu, Fan; Sun, Kun; Fang, Yang; Yang, Mei; Zhong, Yang; Wu, Qianhong; Chen, Jiakuan; Birks, H John B; Zhang, Wenju
2014-01-01
Microrefugia at high altitudes or high latitudes are thought to play an important role in the post-glacial colonization of species. However, how populations in such microrefugia have responded to climate changes in alternating cold glacial and warm interglacial stages remain unclear. Here we present evidence to indicate the Rongbuk Valley of the Mt. Qomolangma (Mt. Everest) area, the highest region on earth, had microrefugia for Hippophae tibetana and discuss how this low shrub was adapted to the extreme climate fluctuations of the last 25,000 years by shifts. By integrating geological, glaciological, meteorological, and genetic information, we found that the Rongbuk Valley was not only a glacial microrefugium but also an interglacial microrefugium for H. tibetana: the former was located on the riverbank below 4800 m above sea level (asl) or lower area and the latter at ∼ 5000 m asl. Our results show that after the Last Glacial Maximum (LGM), H. tibetana in the valley has undergone upward and downward migrations around ∼ 5000 m driven by climate fluctuations and the population in the glacial microrefugium has suffered extinction or extreme contraction. Moreover, with the rise of temperature in the last four decades, the upper limit of H. tibetana has shifted at least 30 m upward. Combining population history and recent range shift of this species is important in predicting the fate of this endemic species to future climate changes.
Lu, Fan; Sun, Kun; Fang, Yang; Yang, Mei; Zhong, Yang; Wu, Qianhong; Chen, Jiakuan; Birks, H. John B.; Zhang, Wenju
2014-01-01
Microrefugia at high altitudes or high latitudes are thought to play an important role in the post-glacial colonization of species. However, how populations in such microrefugia have responded to climate changes in alternating cold glacial and warm interglacial stages remain unclear. Here we present evidence to indicate the Rongbuk Valley of the Mt. Qomolangma (Mt. Everest) area, the highest region on earth, had microrefugia for Hippophae tibetana and discuss how this low shrub was adapted to the extreme climate fluctuations of the last 25,000 years by shifts. By integrating geological, glaciological, meteorological, and genetic information, we found that the Rongbuk Valley was not only a glacial microrefugium but also an interglacial microrefugium for H. tibetana: the former was located on the riverbank below 4800 m above sea level (asl) or lower area and the latter at ∼5000 m asl. Our results show that after the Last Glacial Maximum (LGM), H. tibetana in the valley has undergone upward and downward migrations around ∼5000 m driven by climate fluctuations and the population in the glacial microrefugium has suffered extinction or extreme contraction. Moreover, with the rise of temperature in the last four decades, the upper limit of H. tibetana has shifted at least 30 m upward. Combining population history and recent range shift of this species is important in predicting the fate of this endemic species to future climate changes. PMID:24841004
White, Sonia L J; Szűcs, Dénes
2012-01-04
The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.
2012-01-01
Background The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice. PMID:22217191
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong
Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less
Shabani, Farzin; Kumar, Lalit; Nojoumian, Amir Hadi; Esmaeili, Atefeh; Toghyani, Mehdi
2016-03-15
Micronutrient deficiency develops when nutrient intake does not match nutritional requirements for maintaining healthy tissue and organ functions which may have long-ranging effects on health, learning ability and productivity. Inadequacy of iron, zinc and vitamin A are the most important micronutrient deficiencies. Consumption of a 100 g portion of date flesh from date palm (Phoenix dactylifera L.) has been reported to meet approximately half the daily dietary recommended intake of these micronutrients. This study investigated the potential distribution of P. dactylifera under future climates to address its potential long-term use as a food commodity to tackle micronutrient deficiencies in some developing countries. Modelling outputs indicated large shifts in areas conducive to date palm cultivation, based on global-scale alteration over the next 60 years. Most of the regions suffering from micronutrient deficiencies were projected to become highly conducive for date palm cultivation. These results could inform strategic planning by government and agricultural organizations by identifying areas to cultivate this nutritionally important crop in the future to support the alleviation of micronutrient deficiencies. © 2015 Society of Chemical Industry.
Liu, Changzheng; Oak Ridge National Lab.; Lin, Zhenhong; ...
2016-12-08
Plug-in electric vehicles (PEVs) are widely regarded as an important component of the technology portfolio designed to accomplish policy goals in sustainability and energy security. However, the market acceptance of PEVs in the future remains largely uncertain from today's perspective. By integrating a consumer choice model based on nested multinomial logit and Monte Carlo simulation, this study analyzes the uncertainty of PEV market penetration using Monte Carlo simulation. Results suggest that the future market for PEVs is highly uncertain and there is a substantial risk of low penetration in the early and midterm market. Top factors contributing to market sharemore » variability are price sensitivities, energy cost, range limitation, and charging availability. The results also illustrate the potential effect of public policies in promoting PEVs through investment in battery technology and infrastructure deployment. Here, continued improvement of battery technologies and deployment of charging infrastructure alone do not necessarily reduce the spread of market share distributions, but may shift distributions toward right, i.e., increase the probability of having great market success.« less
Future forestland area: impacts from population growth and other factors that affect land values.
Ralph J. Alig; Andrew J. Plantinga
2004-01-01
Shifting patterns of land use in the United States are associated with many of today's environmental concerns. Land-use shifts occur because of relative changes in land rents, which are determined in part by financial returns in commodity markets. In recent decades, more than 3 million ac shifted annually in or out of US forest use. Cross amounts of land-use...
Moving target parameter estimation of SAR after two looks cancellation
NASA Astrophysics Data System (ADS)
Gan, Rongbing; Wang, Jianguo; Gao, Xiang
2005-11-01
Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.
The EMBLA 2000 Mission in Hessdalen
NASA Astrophysics Data System (ADS)
Teodorani, M.; Montebugnoli, S.; Monari, J.
2000-11-01
In August 2000 a team of italian physical scientists, working in collaboration with norwegian colleagues from Østfold College, carried out an instrumental expedition in Hessdalen (Norway), which was just the first of a series of future scientific missions planned by the joint italian-norwegian EMBLA Project. The mission was aimed at studying unexplained anomalous atmospheric luminous phenomena occurring in the Hessdalen valley since about 20 years, and it was firstly devoted to the monitor of the radio spectrum in the UHF, VLF and ELF wavelength ranges, secondly to the study of the typology of luminous phenomena. This paper presents an ample introduction describing the analysis of the data acquired in the period 1998-2000 by means of the norwegian automatic videocamera of the Hessdalen Interactive Observatory: the hourly and monthly statistics of the luminous phenomenon and its spatial distribution over the celestial sphere are shown. The paper is then focussed into the results which were obtained with the employed radio spectrum analyzers of the EMBLA team, in particular the discovery of highly anomalous periodic signals of unknown origin which were caracterized by a spike-like and a Doppler-like morphology and which were mostly detected in the VLF radio range. It is shown that the Doppler shift, supposed to be due to a `particle-like' emitting source, ranges in a very short time from 10.000 up-to 100.000 km/sec with a frequency shift which is both red-wards and blue-wards, by changing periodically. Subsequently the physical interpretation is presented and discussed: (a) the occurrence of spike-like signals may be due to the pulsation of a radio-emitting source or alternatively to the rotation of a spheroidal source with a radio-emitting spot on its surface; (b) the very high measured velocities involved in the Doppler-like signals, together with the periodic inversion of the Doppler shift, are hypothesized to be due to a physical mechanism involving the magnetically collimated acceleration of high-energy particles modulated by the rotation of a self-contained `plasma spheroid' whose magnetic axis is misaligned in comparison with its rotation axis. Moreover, a detailed description of the luminous phenomena which were sighted during the many planned skywatching sessions, is presented, together with photo-analysis and point-spread functions of enhanced frames. Finally, a detailed plan for future optical observations and analysis is shown in the appendix, in which photometric and spectroscopic techniques by means of portable scout instrumentation are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.
2013-03-01
Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, butmore » it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.« less
Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.
Sunday, Jennifer M; Pecl, Gretta T; Frusher, Stewart; Hobday, Alistair J; Hill, Nicole; Holbrook, Neil J; Edgar, Graham J; Stuart-Smith, Rick; Barrett, Neville; Wernberg, Thomas; Watson, Reg A; Smale, Dan A; Fulton, Elizabeth A; Slawinski, Dirk; Feng, Ming; Radford, Ben T; Thompson, Peter A; Bates, Amanda E
2015-09-01
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances. © 2015 John Wiley & Sons Ltd/CNRS.
Importance of vegetation distribution for future carbon balance
NASA Astrophysics Data System (ADS)
Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.
2015-12-01
Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
Arctic climatechange and its impacts on the ecology of the North Atlantic.
Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole
2008-11-01
Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends in sea ice, freshwater export, and surface ocean salinity continue. It is more difficult to predict ecological responses to abrupt climate change in the more distant future as tipping points in the Earth's climate system are exceeded.
Klukowski, Piotr; Schubert, Mario
2018-06-15
A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Kretschmer, K.; Kucera, M.; Schulz, M.
2016-02-01
Plankton phenology is a key aspect of ecosystem dynamics. Up to now, it is not known how sensitive this parameter is to environmental perturbations and what magnitude of change is conceivable under extreme climate change scenarios. For example, one could argue that the phenology of the dominant Arctic planktonic foraminifera species Neogloboquadrina pachyderma will only shift slightly recording the more or less delayed onset of spring ocean warming. This assumption can be tested by examining the likely phenology of this species in the fossil record. Although phenology is difficult to derive directly from proxies, it can be estimated for past periods by models. Here we use an ecosystem modeling approach to investigate seasonal variations of N. pachyderma since the Last Glacial Maximum (LGM) in the North Atlantic. The model implies that the phenology of N. pachyderma during the LGM and the ensuing Heinrich Event 1 shifted by several months from the modern situation with a maximum seasonal production occurring later in the year (i.e. boreal summer). In comparison with the fossil records our model performs well in reproducing the observed abundance patterns and range shifts in the studied species during the last glacial period. Hence, the predicted large (and partly no-analog) shifts in the phenology of N. pachyderma are a plausible scenario. For instance, its maximum growth during Heinrich Event 1 in a region northeast of Newfoundland occurred during a part of the season where this species never peaks anywhere in the North Atlantic at present. Understanding the drivers of this change and knowing the potential adaptive space of phenology shifts are essential in predictions of plankton response to future global change scenarios.
Rossi, Sergio; Anfodillo, Tommaso; Cufar, Katarina; Cuny, Henri E; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gricar, Jozica; Gruber, Andreas; King, Gregory M; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B K
2013-12-01
Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.
Jezkova, Tereza; Jaeger, Jef R.; Oláh-Hemmings, Viktória; Jones, K. Bruce; Lara-Resendiz, Rafael A.; Mulcahy, Daniel G.; Riddle, Brett R.
2015-01-01
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard (Phrynosoma platyrhinos), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change. PMID:27231410
Jezkova, Tereza; Jaeger, Jef R; Oláh-Hemmings, Viktória; Jones, K Bruce; Lara-Resendiz, Rafael A; Mulcahy, Daniel G; Riddle, Brett R
2016-05-01
During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions - niches - to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard ( Phrynosoma platyrhinos ), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.
Ftouni, Suzanne; Sletten, Tracey L.; Nicholas, Christian L.; Kennaway, David J.; Lockley, Steven W.; Rajaratnam, Shantha M.W.
2015-01-01
Study Objectives: The study examined the relationship between the circadian rhythm of 6-sulphatoxymelatonin (aMT6s) and ocular measures of sleepiness and neurobehavioral performance in shift workers undergoing a simulated night shift. Methods: Twenty-two shift workers (mean age 33.4, SD 11.8 years) were tested at approximately the beginning (20:00) and the end (05:55) of a simulated night shift in the laboratory. At the time point corresponding to the end of the simulated shift, 14 participants were classified as being within range of 6-sulphatoxymelatonin (aMT6s) acrophase— defined as 3 hours before or after aMT6s peak—and 8 were classified as outside aMT6s acrophase range. Participants completed the Karolinska Sleepiness Scale (KSS) and the auditory psychomotor vigilance task (aPVT). Waking electroencephalography (EEG) was recorded and infrared reflectance oculography was used to collect ocular measures of sleepiness: positive and negative amplitude/velocity ratio (PosAVR, NegAVR), mean blink total duration (BTD), the percentage of eye closure (%TEC), and a composite score of sleepiness levels (Johns Drowsiness Scale; JDS). Results: Participants who were tested within aMT6s acrophase range displayed higher levels of sleepiness on ocular measures (%TEC, BTD, PosAVR, JDS), objective sleepiness (EEG delta power frequency band), subjective ratings of sleepiness, and neurobehavioral performance, compared to those who were outside aMT6s acrophase range. Conclusions: The study demonstrated that objective ocular measures of sleepiness are sensitive to circadian rhythm misalignment in shift workers. Citation: Ftouni S, Sletten TL, Nicholas CL, Kennaway DJ, Lockley SW, Rajaratnam SM. Ocular measures of sleepiness are increased in night shift workers undergoing a simulated night shift near the peak time of the 6-sulfatoxymelatonin rhythm. J Clin Sleep Med 2015;11(10):1131–1141. PMID:26094925
A global perspective on Glacial- to Interglacial variability change
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Münch, Thomas; Ho, Sze Ling; Laepple, Thomas
2017-04-01
Changes in climate variability are more important for society than changes in the mean state alone. While we will be facing a large-scale shift of the mean climate in the future, its implications for climate variability are not well constrained. Here we quantify changes in temperature variability as climate shifted from the Last Glacial cold to the Holocene warm period. Greenland ice core oxygen isotope records provide evidence of this climatic shift, and are used as reference datasets in many palaeoclimate studies worldwide. A striking feature in these records is pronounced millennial variability in the Glacial, and a distinct reduction in variance in the Holocene. We present quantitative estimates of the change in variability on 500- to 1500-year timescales based on a global compilation of high-resolution proxy records for temperature which span both the Glacial and the Holocene. The estimates are derived based on power spectral analysis, and corrected using estimates of the proxy signal-to-noise ratios. We show that, on a global scale, variability at the Glacial maximum is five times higher than during the Holocene, with a possible range of 3-10 times. The spatial pattern of the variability change is latitude-dependent. While the tropics show no changes in variability, mid-latitude changes are higher. A slight overall reduction in variability in the centennial to millennial range is found in Antarctica. The variability decrease in the Greenland ice core oxygen isotope records is larger than in any other proxy dataset. These results therefore contradict the view of a globally quiescent Holocene following the instable Glacial, and imply that, in terms of centennial to millennial temperature variability, the two states may be more similar than previously thought.
Storch, Daniela; Menzel, Lena; Frickenhaus, Stephan; Pörtner, Hans-O
2014-10-01
Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean. © 2014 John Wiley & Sons Ltd.
Neiva, João; Assis, Jorge; Coelho, Nelson C; Fernandes, Francisco; Pearson, Gareth A; Serrão, Ester A
2015-01-01
The global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs) and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low) European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed.
20th century Betula pubescens subsp. czerepanovii tree- and forest lines in Norway.
Bryn, Anders; Potthoff, Kerstin
2017-01-01
Georeferenced tree- and forest line data has a wide range of applications and are increasingly used for e.g. monitoring of climate change impacts and range shift modelling. As part of a research project, registrations of previously re-mapped tree- and forest lines have been georeferenced. The data described in this paper contains 100 re-mapped registrations of Betula pubescens subsp. czerepanovii throughout Norway. All of the re-mapped tree- and forest line localities are georeferenced, elevation and aspect are given, elevational and spatial uncertainty are provided, and the re-mapping methods are explained. The published data weremapped for the first time between 1819 and 1963. The same sites were re-mapped between 1928 and 1996, but have until now been missing spatial coordinates. The entries contain 40 x 2 tree lines and 60 x 2 forest lines, most likely presenting the regionally highest registered tree- and forest lines at the given time. The entire material is stored and available for download through the GBIF server. Previously, the entries have been published in journals or reports, partly in Norwegian or German only. Without the provision of the spatial coordinates, the specific locations have been unknown. The material is now available for modelling and monitoring of tree- and forest line range shifts: The recordings are useful for interpretation of climate change impacts on tree- and forest lines, and the locations of re-mapped tree- and forest lines can be implemented in future monitoring projects. Since the recordings most likely provide the highest registered Betula pubescens subsp. czerepanovii locations within their specific regions, they are probably representing the contemporary physiognomic range limits.
Northward shift of the agricultural climate zone under 21st-century global climate change.
King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian
2018-05-21
As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.
Raddatz, Stefanie; Guy-Haim, Tamar; Rilov, Gil; Wahl, Martin
2017-02-01
Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO 2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future. © 2016 Phycological Society of America.
Middleton, Beth A.; McKee, Karen
2004-01-01
Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.
NASA Technical Reports Server (NTRS)
vonGierke, Henning E.; Parker, Donald E.
1993-01-01
Human graviceptors, located in the trunk by Mittelstaedt probably transduce acceleration by abdominal viscera motion. As demonstrated previously in biodynamic vibration and impact tolerance research the thoraco-abdominal viscera exhibit a resonance at 4 to 6 Hz. Behavioral observations and mechanical models of otolith graviceptor response indicate a phase shift increasing with frequency between 0.01 and O.5 Hz. Consequently the potential exists for intermodality sensory conflict between vestibular and visceral graviceptor signals at least at the mechanical receptor level. The frequency range of this potential conflict corresponds with the primary frequency range for motion sickness incidence in transportation, in subjects rotated about Earth-horizontal axes (barbecue spit stimulation) and in periodic parabolic flight microgravity research and also for erroneous perception of vertical oscillations in helicopters. We discuss the implications of this hypothesis for previous self motion perception research and suggestions for various future studies.
Rapid range shifts of species associated with high levels of climate warming.
Chen, I-Ching; Hill, Jane K; Ohlemüller, Ralf; Roy, David B; Thomas, Chris D
2011-08-19
The distributions of many terrestrial organisms are currently shifting in latitude or elevation in response to changing climate. Using a meta-analysis, we estimated that the distributions of species have recently shifted to higher elevations at a median rate of 11.0 meters per decade, and to higher latitudes at a median rate of 16.9 kilometers per decade. These rates are approximately two and three times faster than previously reported. The distances moved by species are greatest in studies showing the highest levels of warming, with average latitudinal shifts being generally sufficient to track temperature changes. However, individual species vary greatly in their rates of change, suggesting that the range shift of each species depends on multiple internal species traits and external drivers of change. Rapid average shifts derive from a wide diversity of responses by individual species.
THE EPA'S ROLE IN PROTECTING THE ENVIRONMENT - PAST, PRESENT AND FUTURE
Some say environmentalism started with Rachel Carson's book entitled Silent Spring. This best seller in addition to decades of the effects of pollution on people's lives surely contributed to help shift public opinion regarding the environment. This "shift" culminated with the bi...
Richeson, Jennifer A.
2017-01-01
The United States is undergoing a demographic shift in which White Americans are predicted to comprise less than 50% of the US population by mid-century. The present research examines how exposure to information about this racial shift affects perceptions of the extent to which different racial groups face discrimination. In four experiments, making the growing national racial diversity salient led White Americans to predict that Whites will face increasing discrimination in the future, compared with control information. Conversely, regardless of experimental condition, Whites estimated that discrimination against various racial minority groups will decline. Explorations of several psychological mechanisms potentially underlying the effect of the racial shift information on perceived anti-White discrimination suggested a mediating role of concerns about American culture fundamentally changing. Taken together, these findings suggest that reports about the changing national demographics enhance concerns among Whites that they will be the victims of racial discrimination in the future. PMID:28953971
Craig, Maureen A; Richeson, Jennifer A
2017-01-01
The United States is undergoing a demographic shift in which White Americans are predicted to comprise less than 50% of the US population by mid-century. The present research examines how exposure to information about this racial shift affects perceptions of the extent to which different racial groups face discrimination. In four experiments, making the growing national racial diversity salient led White Americans to predict that Whites will face increasing discrimination in the future, compared with control information. Conversely, regardless of experimental condition, Whites estimated that discrimination against various racial minority groups will decline. Explorations of several psychological mechanisms potentially underlying the effect of the racial shift information on perceived anti-White discrimination suggested a mediating role of concerns about American culture fundamentally changing. Taken together, these findings suggest that reports about the changing national demographics enhance concerns among Whites that they will be the victims of racial discrimination in the future.
Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming
2011-01-01
Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes. PMID:21479188
NASA Astrophysics Data System (ADS)
Zakharov, A. F.; Jovanović, P.; Borka, D.; Borka Jovanović, V.
2018-04-01
Recently, the LIGO-Virgo collaboration discovered gravitational waves and in their first publication on the subject the authors also presented a graviton mass constraint as mg < 1.2 × 10‑22 eV [1] (see also more details in a complimentary paper [2]). In our previous papers we considered constraints on Yukawa gravity parameters [3] and on graviton mass from analysis of the trajectory of S2 star near the Galactic Center [4]. In the paper we analyze a potential to reduce upper bounds for graviton mass with future observational data on trajectories of bright stars near the Galactic Center. Since gravitational potentials are different for these two cases, expressions for relativistic advance for general relativity and Yukawa potential are different functions on eccentricity and semimajor axis, it gives an opportunity to improve current estimates of graviton mass with future observational facilities. In our considerations of an improvement potential for a graviton mass estimate we adopt a conservative strategy and assume that trajectories of bright stars and their apocenter advance will be described with general relativity expressions and it gives opportunities to improve graviton mass constraints. In contrast with our previous studies, where we present current constraints on parameters of Yukawa gravity [5] and graviton mass [6] from observations of S2 star, in the paper we express expectations to improve current constraints for graviton mass, assuming the GR predictions about apocenter shifts will be confirmed with future observations. We concluded that if future observations of bright star orbits during around fifty years will confirm GR predictions about apocenter shifts of bright star orbits it give an opportunity to constrain a graviton mass at a level around 5 × 10‑23 eV or slightly better than current estimates obtained with LIGO observations.
Hanski, Ilkka; Wirta, Helena; Nyman, Toshka; Rahagalala, Pierre
2008-01-01
The endemic dung beetle subtribe Helictopleurina has 65 species mostly in wet forests in eastern Madagascar. There are no extant native ungulates in Madagascar, but three Helictopleurus species have shifted to the introduced cattle dung in open habitats in the past 1500 years. Helictopleurus neoamplicollis and Helictopleurus marsyas exhibit very limited cytochrome oxidase subunit 1 haplotype diversity and a single haplotype is present across Madagascar, suggesting that these species shifted to cattle dung in a small region followed by rapid range expansion. In contrast, patterns of molecular diversity in Helictopleurus quadripunctatus indicate a gradual diet shift across most of southern Madagascar, consistent with somewhat broader diet in this species. The three cattle dung-using Helictopleurus species have significantly greater geographical ranges than the forest-dwelling species, apparently because the shift to the currently very abundant new resource relaxed interspecific competition that hinders range expansion in the forest species. Ecology Letters (2008) 11: 1208–1215 PMID:18778273
Forests and future water stress in the Southeast
Stephanie Worley Firley
2009-01-01
How will future water supplies be impacted by a changing climate, an increasing population, and shifting land uses and land cover? Will there be enough water to sustain humans and ecosystems alike? And what can be done to help forests adapt to limited water supplies in the future?
Considerations in projecting energy-related emissions multiple decades into the future
Use of fossil fuels for energy is the primary source of anthropogenic emissions of many air pollutants. Thus, the evolution of the energy system into the future can influence future emissions, driving those emissions up or down as a function of shifts in energy demand and fuel us...
Asensio, Norberto; Schaffner, Colleen M; Aureli, Filippo
2012-04-01
Core areas are highly used parts of the home range on which the survival of solitary or group-living animals depends. We investigated the home range and core area size and area fidelity of a spider monkey community in a tropical dry forest over a 4-year period. Home ranges overlapped extensively across years, subgroup sizes, and seasons. In contrast, spider monkeys used core areas that varied in size and location across the study years, subgroup sizes, and seasons. These shifts in core areas suggest that the understanding of core areas, and thus the spatial requirements, of a species in a particular habitat may be limited if based on short-term studies. In this respect, our findings emphasize the importance of long-term studies of the spatial ecology of any species in a particular habitat. Our study also shows that the yearly home range basically includes all the core areas from different years, seasons, and subgroup sizes (i.e., the super-core area). This is conceptually important for territorial species, such as spider monkeys, which defend a stable home range as it contains not only the current, but also the future core areas.
Pressure Effects on the Temperature Sensitivity of Fiber Bragg Gratings
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou
2012-01-01
A 3-dimensional physical model was developed to relate the wavelength shifts resulting from temperature changes of fiber Bragg gratings (FBGs) to the thermal expansion coefficients, Young s moduli of optical fibers, and thicknesses of coating polymers. Using this model the Bragg wavelength shifts were calculated and compared with the measured wavelength shifts of FBGs with various coating thickness for a finite temperature range. There was a discrepancy between the calculated and measured wavelength shifts. This was attributed to the refractive index change of the fiber core by the thermally induced radial pressure. To further investigate the pressure effects, a small diametric load was applied to a FBG and Bragg wavelength shifts were measured over a temperature range of 4.2 to 300K.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-01-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change. PMID:23467649
Shift work at a modern offshore drilling rig.
Rodrigues, V F; Fischer, F M; Brito, M J
2001-12-01
The oil and gas exploration and production offshore units are classified as hazardous installations. Work in these facilities is complex, confined and associated with a wide range of risks. The continuous operation is secured by various shift work patterns. The objective of this study was to evaluate how offshore drilling workers perceived shift work at high seas and its impacts on their life and working conditions. The main features of the studied offshore shift work schedules are: long time on board (14 to 28 days), extended shifts (12 hours or more per day), slow rotation (7 to 14 days in the same shift), long sequence of days on the night shift (7 to 14 days in a row) and the extra-long extended journey (18 hours) on shift change and landing days. Interviews revealed a wide range of stressors caused by the offshore shift work, as well as difficulties to conciliate work with family life. It was observed that changes of the family model, leading to role conflicts and social isolation, work in a hazardous environment, perceiving poor sleep when working at night shifts and the imbalance between the expected and actual rewards are the major stressors for the offshore drilling workers.
Spatially heterogeneous impact of climate change on small mammals of montane California
Rowe, Kevin C.; Rowe, Karen M. C.; Tingley, Morgan W.; Koo, Michelle S.; Patton, James L.; Conroy, Chris J.; Perrine, John D.; Beissinger, Steven R.; Moritz, Craig
2015-01-01
Resurveys of historical collecting localities have revealed range shifts, primarily leading edge expansions, which have been attributed to global warming. However, there have been few spatially replicated community-scale resurveys testing whether species' responses are spatially consistent. Here we repeated early twentieth century surveys of small mammals along elevational gradients in northern, central and southern regions of montane California. Of the 34 species we analysed, 25 shifted their ranges upslope or downslope in at least one region. However, two-thirds of ranges in the three regions remained stable at one or both elevational limits and none of the 22 species found in all three regions shifted both their upper and lower limits in the same direction in all regions. When shifts occurred, high-elevation species typically contracted their lower limits upslope, whereas low-elevation species had heterogeneous responses. For high-elevation species, site-specific change in temperature better predicted the direction of shifts than change in precipitation, whereas the direction of shifts by low-elevation species was unpredictable by temperature or precipitation. While our results support previous findings of primarily upslope shifts in montane species, they also highlight the degree to which the responses of individual species vary across geographically replicated landscapes. PMID:25621330
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation.
Ritschl, Ludwig; Kuntz, Jan; Fleischmann, Christof; Kachelrieß, Marc
2016-05-01
In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.
The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan, E-mail: j.kuntz@dkfz.de
Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled datamore » set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation range adding full 3D functionality to a C-arm device retaining both handling comfort and the usability of 2D imaging. This method has a clear potential for clinical use especially to meet the increasing demand for an intraoperative 3D imaging.« less
PREDICTING CLIMATE-INDUCED RANGE SHIFTS FOR MAMMALS: HOW GOOD ARE THE MODELS?
In order to manage wildlife and conserve biodiversity, it is critical that we understand the potential impacts of climate change on species distributions. Several different approaches to predicting climate-induced geographic range shifts have been proposed to address this proble...
Illinois Shifting Gears Policy Evaluation
ERIC Educational Resources Information Center
Weitzel, Peter C.
2009-01-01
Illinois Shifting Gears is a multilevel initiative that has simultaneously created bridge programs in the field and altered state policy to facilitate the creation of more programs in the future. These efforts have informed each other, giving policymakers the opportunity to interact with practitioners, troubleshoot bridge programs, and make…
THE EPA'S ROLE IN PROTECTING THE ENVIRONMENT -- PAST, PRESENT AND FUTURE
Some say environmentalism started with Rachel Carson's book Silent Spring. This best seller in addition to decades of the effects of pollution on people's lives surely contributed to help shift public opinion regarding the environment. This "shift" culminated with the birth of a ...
Cigar-shaped quarkonia under strong magnetic field
NASA Astrophysics Data System (ADS)
Suzuki, Kei; Yoshida, Tetsuya
2016-03-01
Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.
Interdisciplinary training to build an informatics workforce for precision medicine
Williams, Marc S.; Ritchie, Marylyn D.; Payne, Philip R.O.
2015-01-01
The proposed Precision Medicine Initiative has the potential to transform medical care in the future through a shift from interventions based on evidence from population studies and empiric response to ones that account for a range of individual factors that more reliably predict response and outcomes for the patient. Many things are needed to realize this vision, but one of the most critical is an informatics workforce that has broad interdisciplinary training in basic science, applied research and clinical implementation. Current approaches to informatics training do not support this requirement. We present a collaborative model of training that has the potential to produce a workforce prepared for the challenges of implementing precision medicine. PMID:27054076
Cognitive Systems Engineering: The Next 30 Years
NASA Technical Reports Server (NTRS)
Feary, Michael
2012-01-01
This presentation is part of panel discussion on Cognitive Systems Engineering. The purpose of this panel is to discuss the challenges and future directions of Cognitive Systems Engineering for the next 30 years. I intended to present the work we have been doing with the Aviation Safety program and Space Human Factors Engineering project on Work Domain Analysis and some areas of Research Focus. Specifically, I intend to focus on the shift on the need to understand and model attention in mixed-initiative systems, the need for methods which can generate results to be used in trade-off decisions, and the need to account for a range of human behavior in the design.
Modeling behavioral thermoregulation in a climate change sentinel.
Moyer-Horner, Lucas; Mathewson, Paul D; Jones, Gavin M; Kearney, Michael R; Porter, Warren P
2015-12-01
When possible, many species will shift in elevation or latitude in response to rising temperatures. However, before such shifts occur, individuals will first tolerate environmental change and then modify their behavior to maintain heat balance. Behavioral thermoregulation allows animals a range of climatic tolerances and makes predicting geographic responses under future warming scenarios challenging. Because behavioral modification may reduce an individual's fecundity by, for example, limiting foraging time and thus caloric intake, we must consider the range of behavioral options available for thermoregulation to accurately predict climate change impacts on individual species. To date, few studies have identified mechanistic links between an organism's daily activities and the need to thermoregulate. We used a biophysical model, Niche Mapper, to mechanistically model microclimate conditions and thermoregulatory behavior for a temperature-sensitive mammal, the American pika (Ochotona princeps). Niche Mapper accurately simulated microclimate conditions, as well as empirical metabolic chamber data for a range of fur properties, animal sizes, and environmental parameters. Niche Mapper predicted pikas would be behaviorally constrained because of the need to thermoregulate during the hottest times of the day. We also showed that pikas at low elevations could receive energetic benefits by being smaller in size and maintaining summer pelage during longer stretches of the active season under a future warming scenario. We observed pika behavior for 288 h in Glacier National Park, Montana, and thermally characterized their rocky, montane environment. We found that pikas were most active when temperatures were cooler, and at sites characterized by high elevations and north-facing slopes. Pikas became significantly less active across a suite of behaviors in the field when temperatures surpassed 20°C, which supported a metabolic threshold predicted by Niche Mapper. In general, mechanistic predictions and empirical observations were congruent. This research is unique in providing both an empirical and mechanistic description of the effects of temperature on a mammalian sentinel of climate change, the American pika. Our results suggest that previously underinvestigated characteristics, specifically fur properties and body size, may play critical roles in pika populations' response to climate change. We also demonstrate the potential importance of considering behavioral thermoregulation and microclimate variability when predicting animal responses to climate change.
NASA Astrophysics Data System (ADS)
Elias, E.; Lopez-Brody, N.; Dialesandro, J.; Steele, C. M.; Rango, A.
2015-12-01
The impacts of projected temperature increases in agricultural ecosystems are complex, varyingby region, cropping system, crop growth stage and humidity. We analyze the impacts of mid-century temperature increases on crops grown in five southwestern states: Arizona, California,New Mexico, Nevada and Utah. Here we present a spatial impact assessment of commonsouthwestern specialty (grapes, almonds and tomatoes) and field (alfalfa, cotton and corn)crops. This analysis includes three main components: development of empirical temperaturethresholds for each crop, classification of predicted future climate conditions according to thesethresholds, and mapping the probable impacts of these climatic changes on each crop. We use30m spatial resolution 2012 crop distribution and seasonal minimum and maximumtemperature normals (1970 to 2000) to define the current thermal envelopes for each crop.These represent the temperature range for each season where 95% of each crop is presentlygrown. Seasonal period change analysis of mid-century temperatures changes downscaled from20 CMIP5 models (RCP8.5) estimate future temperatures. Change detection maps representareas predicted to become more or less suitable, or remain unchanged. Based upon mid-centurytemperature changes, total regional suitable area declined for all crops except cotton, whichincreased by 20%. For each crop there are locations which change to and from optimal thermalenvelope conditions. More than 80% of the acres currently growing tomatoes and almonds willshift outside the present 95% thermal range. Fewer acres currently growing alfalfa (14%) andcotton (20%) will shift outside the present 95% thermal range by midcentury. Crops outsidepresent thermal envelopes by midcentury may adapt, possibly aided by adaptation technologiessuch as misters or shade structures, to the new temperature regime or growers may elect togrow alternate crops better suited to future thermal envelopes.
Péron, Guillaume; Altwegg, Res; Jamie, Gabriel A; Spottiswoode, Claire N
2016-09-01
As populations shift their ranges in response to global change, local species assemblages can change, setting the stage for new ecological interactions, community equilibria and evolutionary responses. Here, we focus on the range dynamics of four avian brood parasite species and their hosts in southern Africa, in a context of bush encroachment (increase in woody vegetation density in places previously occupied by savanna-grassland mosaics) favouring some species at the expense of others. We first tested whether hosts and parasites constrained each other's ability to expand or maintain their ranges. Secondly, we investigated whether range shifts represented an opportunity for new host-parasite and parasite-parasite interactions. We used multispecies dynamic occupancy models with interactions, fitted to citizen science data, to estimate the contribution of interspecific interactions to range shifts and to quantify the change in species co-occurrence probability over a 25-year period. Parasites were able to track their hosts' range shifts. We detected no deleterious effect of the parasites' presence on either the local population viability of host species or the hosts' ability to colonize newly suitable areas. In the recently diversified indigobird radiation (Vidua spp.), following bush encroachment, the new assemblages presented more potential opportunities for speciation via host switch, but also more potential for hybridization between extant lineages, also via host switch. Multispecies dynamic occupancy models with interactions brought new insights into the feedbacks between range shifts, biotic interactions and local demography: brood parasitism had little detected impact on extinction or colonization processes, but inversely the latter processes affected biotic interactions via the modification of co-occurrence patterns. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Cheng, Rui; Xia, Li; Sima, Chaotan; Ran, Yanli; Rohollahnejad, Jalal; Zhou, Jiaao; Wen, Yongqiang; Yu, Can
2016-02-08
Ultrashort fiber Bragg gratings (US-FBGs) have significant potential as weak grating sensors for distributed sensing, but the exploitation have been limited by their inherent broad spectra that are undesirable for most traditional wavelength measurements. To address this, we have recently introduced a new interrogation concept using shifted optical Gaussian filters (SOGF) which is well suitable for US-FBG measurements. Here, we apply it to demonstrate, for the first time, an US-FBG-based self-referencing distributed optical sensing technique, with the advantages of adjustable sensitivity and range, high-speed and wide-range (potentially >14000 με) intensity-based detection, and resistance to disturbance by nonuniform parameter distribution. The entire system is essentially based on a microwave network, which incorporates the SOGF with a fiber delay-line between the two arms. Differential detections of the cascaded US-FBGs are performed individually in the network time-domain response which can be obtained by analyzing its complex frequency response. Experimental results are presented and discussed using eight cascaded US-FBGs. A comprehensive numerical analysis is also conducted to assess the system performance, which shows that the use of US-FBGs instead of conventional weak FBGs could significantly improve the power budget and capacity of the distributed sensing system while maintaining the crosstalk level and intensity decay rate, providing a promising route for future sensing applications.
Unregistered health care staff's perceptions of 12 hour shifts: an interview study.
Thomson, Louise; Schneider, Justine; Hare Duke, Laurie
2017-10-01
The purpose of the study was to explore unregistered health care staff's perceptions of 12 hour shifts on work performance and patient care. Many unregistered health care staff work 12 hour shifts, but it is unclear whether these are compatible with good quality care or work performance. Twenty five health care assistants from a range of care settings with experience of working 12 hour shifts took part in interviews or focus groups. A wide range of views emerged on the perceived impact of 12 hour shifts in different settings. Negative outcomes were perceived to occur when 12 hour shifts were combined with short-staffing, consecutive long shifts, high work demands, insufficient breaks and working with unfamiliar colleagues. Positive outcomes were perceived to be more likely in a context of control over shift patterns, sufficient staffing levels, and a supportive team climate. The perceived relationship between 12 hour shifts and patient care and work performance varies by patient context and wider workplace factors, but largely focuses on the ability to deliver relational aspects of care. Nursing managers need to consider the role of other workplace factors, such as shift patterns and breaks, when implementing 12 hour shifts with unregistered health care staff. © 2017 John Wiley & Sons Ltd.
Rodríguez Pérez, Héctor; Borrel, Guillaume; Leroy, Céline; Carrias, Jean-François; Corbara, Bruno; Srivastava, Diane S; Céréghino, Régis
2018-05-01
Future climate scenarios forecast a 10-50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12-22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.
Beyond climate envelopes: effects of weather on regional population trends in butterflies.
WallisDeVries, Michiel F; Baxter, Wendy; Van Vliet, Arnold J H
2011-10-01
Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change.
NASA Astrophysics Data System (ADS)
Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.
2012-12-01
Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary between crops due to plant specific sensitivities to temperature, solar radiation and the vapor pressure deficits. Shifts in the growth period to earlier in the year, shortened growth period for annual crops as well as extended fall growth can also exert important influences. Projected increases in CO2 concentrations in the late 21st century exert very significant influences on ET and yield for many crops. To characterize potential impacts and the range of uncertainty, changes in total agricultural water demands and yields were computed assuming that current crop types and acreages in 21 Central Valley regional planning areas remained constant throughout the 21st century for each of the 5 representative future climate scenarios.
Future distribution of tundra refugia in northern Alaska
Hope, Andrew G.; Waltari, Eric; Payer, David C.; Cook, Joseph A.; Talbot, Sandra L.
2013-01-01
Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.
Towards Improving the Integration of Undergraduate Biology and Mathematics Education
Bergevin, Christopher
2010-01-01
Arguments have recently asserted the need for change in undergraduate biology education, particularly with regard to the role of mathematics. The crux of these protests is that rapidly developing technology is expanding the types of measurements and subsequent data available to biologists. Thus future generations of biologists will require a set of quantitative and analytic skills that will allow them to handle these types of data in order to tackle relevant questions of interest. In this spirit, we describe here strategies (or lessons learned) for undergraduate educators with regard to better preparing undergraduate biology majors for the new types of challenges that lay ahead. The topics covered here span a broad range, from classroom approaches to the administrative level (e.g., fostering inter-departmental communication, student advising) and beyond. A key theme here is the need for an attitude shift with regard to mathematics education by both students and faculty alike. Such a shift will facilitate the development and implementation of new teaching strategies with regard to improving integration of mathematics and biology pedagogy. PMID:23653694
Phylogenetic approaches reveal biodiversity threats under climate change
NASA Astrophysics Data System (ADS)
González-Orozco, Carlos E.; Pollock, Laura J.; Thornhill, Andrew H.; Mishler, Brent D.; Knerr, Nunzio; Laffan, Shawn W.; Miller, Joseph T.; Rosauer, Dan F.; Faith, Daniel P.; Nipperess, David A.; Kujala, Heini; Linke, Simon; Butt, Nathalie; Külheim, Carsten; Crisp, Michael D.; Gruber, Bernd
2016-12-01
Predicting the consequences of climate change for biodiversity is critical to conservation efforts. Extensive range losses have been predicted for thousands of individual species, but less is known about how climate change might impact whole clades and landscape-scale patterns of biodiversity. Here, we show that climate change scenarios imply significant changes in phylogenetic diversity and phylogenetic endemism at a continental scale in Australia using the hyper-diverse clade of eucalypts. We predict that within the next 60 years the vast majority of species distributions (91%) across Australia will shrink in size (on average by 51%) and shift south on the basis of projected suitable climatic space. Geographic areas currently with high phylogenetic diversity and endemism are predicted to change substantially in future climate scenarios. Approximately 90% of the current areas with concentrations of palaeo-endemism (that is, places with old evolutionary diversity) are predicted to disappear or shift their location. These findings show that climate change threatens whole clades of the phylogenetic tree, and that the outlined approach can be used to forecast areas of biodiversity losses and continental-scale impacts of climate change.
NASA Astrophysics Data System (ADS)
Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir
2010-03-01
In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.
Achieving optimum diffraction based overlay performance
NASA Astrophysics Data System (ADS)
Leray, Philippe; Laidler, David; Cheng, Shaunee; Coogans, Martyn; Fuchs, Andreas; Ponomarenko, Mariya; van der Schaar, Maurits; Vanoppen, Peter
2010-03-01
Diffraction Based Overlay (DBO) metrology has been shown to have significantly reduced Total Measurement Uncertainty (TMU) compared to Image Based Overlay (IBO), primarily due to having no measurable Tool Induced Shift (TIS). However, the advantages of having no measurable TIS can be outweighed by increased susceptibility to WIS (Wafer Induced Shift) caused by target damage, process non-uniformities and variations. The path to optimum DBO performance lies in having well characterized metrology targets, which are insensitive to process non-uniformities and variations, in combination with optimized recipes which take advantage of advanced DBO designs. In this work we examine the impact of different degrees of process non-uniformity and target damage on DBO measurement gratings and study their impact on overlay measurement accuracy and precision. Multiple wavelength and dual polarization scatterometry are used to characterize the DBO design performance over the range of process variation. In conclusion, we describe the robustness of DBO metrology to target damage and show how to exploit the measurement capability of a multiple wavelength, dual polarization scatterometry tool to ensure the required measurement accuracy for current and future technology nodes.
Productivity, Social Networks and Net Communities in the Workplace
ERIC Educational Resources Information Center
Asunda, Paul
2010-01-01
The 21st century workplace is being shaped by ever-changing technological innovations, shifting demographic patterns, globalization and power shifts, in addition to different economic players such as policymakers, employers, education and training institutions that shape the quality of the future workforce. In today's work environment,…
Deindustrialization and the Shift to Services.
ERIC Educational Resources Information Center
Kutscher, Ronald E.; Personick, Valerie A.
1986-01-01
Bureau of Labor Statistics data show the industrial sector as a whole in healthy shape, but a few manufacturing industries in deep trouble. These industries include tobacco manufacturers, iron and steel foundries, leather products, and steel manufacturers. Also examines shifts in employment and output, job quality, and outlook for the future. (CT)
Shaping Graduate Education's Future: Improving the Doctoral Experience.
ERIC Educational Resources Information Center
Beeler, Karl J.
A discussion of graduate higher education suggests that shifts in demography of graduate school students and changes in traditional doctoral programs will lead to increased participation in doctoral study by the nation's best and brightest students. Declines in doctoral program participation due to demographic shifts, decreasing financial support,…
'Benefits cycle' replacing premium cycle as consumerism takes hold.
2002-05-01
The traditional premium cycle of ups and downs in rates is giving way to a new phenomenon--driven by the advent of consumerism in health care--termed the "benefits cycle" by one consultant. Rather than shifts in rates, he argues, the future will see shifts in benefits packages.
The Competitive Status of the U.S. Electronics Industry.
ERIC Educational Resources Information Center
National Academy of Engineering, Washington, DC. Committee on Technology and International Economic and Trade Issues.
This eight-chapter report is one of seven industry-specific studies conducted to identify global shifts of industrial technological capacity on a sector-by-sector basis, to relate those shifts in international competitive industrial advantage to technological and other factors, and to assess future prospects for further technological change and…
Capacity Building for School Development: Current Problems and Future Challenges
ERIC Educational Resources Information Center
Ho, Dora; Lee, Moosung
2016-01-01
This article offers a theoretical discussion on the current problems and future challenges of school capacity building in early childhood education (ECE), aiming to highlight some key areas for future research. In recent years, there has been a notable policy shift from monitoring quality through inspection to improving quality through school…
Sixteen Trends...Their Profound Impact on Our Future
ERIC Educational Resources Information Center
Marx, Gary
2011-01-01
Seismic Shifts. Future Forces. Call them whatever you'd like. The Sixteen Trends revealed in this benchmark book will have a profound impact on our future. Noted futurist, educator, communicator, executive and leadership counsel, author, and international speaker Gary Marx makes the case for those trends and speculates on their implications for…
Using large-scale diagnostic quantities to investigate change in East Coast Lows
NASA Astrophysics Data System (ADS)
Ji, Fei; Evans, Jason P.; Argueso, Daniel; Fita, Lluis; Di Luca, Alejandro
2015-11-01
East Coast Lows (ECLs) are intense low-pressure systems that affect the eastern seaboard of Australia. They have attracted research interest for both their destructive nature and water supplying capability. Estimating the changes in ECLs in the future has a major impact on emergency response as well as water management strategies for the coastal communities on the east coast of Australia. In this study, ECLs were identified using two large-scale diagnostic quantities: isentropic potential vorticity (IPV) and geostrophic vorticity (GV), which were calculated from outputs of historical and future regional climate simulations from the NSW/ACT regional climate modelling (NARCliM) project. The diagnostic results for the historical period were evaluated against a subjective ECL event database. Future simulations using a high emission scenario were examined to estimate changes in frequency, duration, and intensity of ECLs. The use of a relatively high resolution regional climate model makes this the first study to examine future changes in ECLs while resolving the full range of ECL sizes which can be as small as 100-200 km in diameter. The results indicate that it is likely that there will be fewer ECLs, with weaker intensity in the future. There could also be a seasonal shift in ECLs from cool months to warm months. These changes have the potential to significantly impact the water security on the east coast of Australia.
Huang, Qiongyu; Sauer, John R.; Swatantran, Anu; Dubayah, Ralph
2016-01-01
Drastic shifts in species distributions are a cause of concern for ecologists. Such shifts pose great threat to biodiversity especially under unprecedented anthropogenic and natural disturbances. Many studies have documented recent shifts in species distributions. However, most of these studies are limited to regional scales, and do not consider the abundance structure within species ranges. Developing methods to detect systematic changes in species distributions over their full ranges is critical for understanding the impact of changing environments and for successful conservation planning. Here, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. Yearly abundance-weighted range centroids are estimated. As case studies, we derive annual centroids for the Carolina wren and house finch in their ranges in the U.S. We further evaluate the first-difference correlation between species’ centroid movement and changes in winter severity, total population abundance. We also examined associations of change in centroids from sub-ranges. Change in full-range centroid movements of Carolina wren significantly correlate with snow cover days (r = −0.58). For both species, the full-range centroid shifts also have strong correlation with total abundance (r = 0.65, and 0.51 respectively). The movements of the full-range centroids of the two species are correlated strongly (up to r = 0.76) with that of the sub-ranges with more drastic population changes. Our study demonstrates the usefulness of centroids for analyzing distribution changes in a two-dimensional spatial context. Particularly it highlights applications that associate the centroid with factors such as environmental stressors, population characteristics, and progression of invasive species. Routine monitoring of changes in centroid will provide useful insights into long-term avian responses to environmental changes.
Normand, Signe; Randin, Christophe; Ohlemüller, Ralf; Bay, Christian; Høye, Toke T.; Kjær, Erik D.; Körner, Christian; Lischke, Heike; Maiorano, Luigi; Paulsen, Jens; Pearman, Peter B.; Psomas, Achilleas; Treier, Urs A.; Zimmermann, Niklaus E.; Svenning, Jens-Christian
2013-01-01
Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates. PMID:23836785
Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.
Freeman, Lauren A
2015-01-01
Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.
Normand, Signe; Randin, Christophe; Ohlemüller, Ralf; Bay, Christian; Høye, Toke T; Kjær, Erik D; Körner, Christian; Lischke, Heike; Maiorano, Luigi; Paulsen, Jens; Pearman, Peter B; Psomas, Achilleas; Treier, Urs A; Zimmermann, Niklaus E; Svenning, Jens-Christian
2013-08-19
Warming-induced expansion of trees and shrubs into tundra vegetation will strongly impact Arctic ecosystems. Today, a small subset of the boreal woody flora found during certain Plio-Pleistocene warm periods inhabits Greenland. Whether the twenty-first century warming will induce a re-colonization of a rich woody flora depends on the roles of climate and migration limitations in shaping species ranges. Using potential treeline and climatic niche modelling, we project shifts in areas climatically suitable for tree growth and 56 Greenlandic, North American and European tree and shrub species from the Last Glacial Maximum through the present and into the future. In combination with observed tree plantings, our modelling highlights that a majority of the non-native species find climatically suitable conditions in certain parts of Greenland today, even in areas harbouring no native trees. Analyses of analogous climates indicate that these conditions are widespread outside Greenland, thus increasing the likelihood of woody invasions. Nonetheless, we find a substantial migration lag for Greenland's current and future woody flora. In conclusion, the projected climatic scope for future expansions is strongly limited by dispersal, soil development and other disequilibrium dynamics, with plantings and unintentional seed dispersal by humans having potentially large impacts on spread rates.
Is Echinometra viridis facilitating a phase shift on an Acropora cervicornis patch reef in Belize?
NASA Astrophysics Data System (ADS)
Stefanic, C. M.; Greer, L.; Norvell, D.; Benson, W.; Curran, H.
2012-12-01
Coral reef health is in rapid decline across the Caribbean due to a number of anthropogenic and natural disturbances. A phase shift from coral- to macroalgae-dominant reefs is pervasive and has been well documented. Acropora cervicornis (Staghorn Coral) has been particularly affected by this shift due to mass mortality of this species since the 1980s. In recent years few Caribbean A. cervicornis refugia have been documented. This study characterizes the relationship between coral and grazing urchins on a rare patch reef system dominated by A. cervicornis off the coast of Belize. To assess relative abundance of live A. cervicornis and the urchin Echinometra viridis, photographs and urchin abundance data were collected from 132 meter square quadrats along five transects across the reef. Photographs were digitized and manually segmented using Adobe Illustrator, and percent live coral cover and branch tip densities were calculated using Matlab. Mean percent live coral cover across all transects was 24.4 % with a high of 65% live coral per meter square. Average urchin density was 18.5 per quadrat, with an average density per transect ranging from 22.1 to 0.5 per quadrat. Up to over 400 live A. cervicornis branch tips per quadrat were observed. Data show a positive correlation between E. viridis abundance and live A. cervicornis, suggesting that these urchins are facilitating recovery or persistence of this endangered coral species. These results suggest the relationship between E. viridis and A. cervicornis could be a key element in a future reversal of the coral to macroalgae phase shift on some Caribbean coral reefs.
NASA Astrophysics Data System (ADS)
Vessella, Federico; Simeone, Marco Cosimo; Schirone, Bartolomeo
2015-07-01
Ecological Niche Modelling (ENM) is widely used to depict species potential occurrence according to environmental variables under different climatic scenarios. We tested the ENM approach to infer past range dynamics of cork oak, a keystone species of the Mediterranean Biome, from 130 ka to the present time. Hindcasting implications would deal with a better species risk assessment and conservation management for the future. We modelled present and past occurrence of cork oak using seven ENM algorithms, starting from 63,733 spatially unique presence points at 30 arc-second resolution. Fourteen environmental variables were used and four time slices were considered (Last Interglacial, Last Glacial Maximum, mid-Holocene and present time). A threshold-independent evaluation of the goodness-of-fit of the models was evaluated by means of ROC curve and fossil or historical evidences were used to validate the results. Four weighted average maps depicted the dynamics of area suitability for cork oak in the last 130 ka. The derived species autoecology allowed its long-term occurrence in the Mediterranean without striking range reduction or shifting. Fossil and historical post-processing validation support the modelled past spatial extension and a neglected species presence at Levantine until the recent time. Despite the severe climatic oscillation since the Last Glacial Maximum, cork oak potential distribution area experienced limited range changes, confirming its strong link with the Mediterranean Basin. The ecological amplitude of Quercus suber could be therefore adopted as a reference to trace the Mediterranean bioclimate area. A better knowledge of the past events of Mediterranean vegetation, a wider range of study species and environmental determinants are essential to inform us about its current state, its sensitivity to human impact and the potential responses to future changes.
NASA Astrophysics Data System (ADS)
Krishnamurthy, V. V.; Russell, David J.; Hadden, Chad E.; Martin, Gary E.
2000-09-01
The development of a series of new, accordion-optimized long-range heteronuclear shift correlation techniques has been reported. A further derivative of the constant time variable delay introduced in the IMPEACH-MBC experiment, a STAR (Selectively Tailored Accordion F1 Refocusing) operator is described in the present report. Incorporation of the STAR operator with the capability of user-selected homonuclear modulation scaling as in the CIGAR-HMBC experiment, into a long-range heteronuclear shift correlation pulse sequence, 2J,3J-HMBC, affords for the first time in a proton-detected experiment the means of unequivocally differentiating two-bond (2JCH) from three-bond (3JCH) long-range correlations to protonated carbons.
Altizer, Sonia; Becker, Daniel J; Epstein, Jonathan H; Forbes, Kristian M; Gillespie, Thomas R; Hall, Richard J; Hawley, Dana M; Hernandez, Sonia M; Martin, Lynn B; Plowright, Raina K; Satterfield, Dara A; Streicker, Daniel G
2018-05-05
Human-provided resource subsidies for wildlife are diverse, common and have profound consequences for wildlife-pathogen interactions, as demonstrated by papers in this themed issue spanning empirical, theoretical and management perspectives from a range of study systems. Contributions cut across scales of organization, from the within-host dynamics of immune function, to population-level impacts on parasite transmission, to landscape- and regional-scale patterns of infection. In this concluding paper, we identify common threads and key findings from author contributions, including the consequences of resource subsidies for (i) host immunity; (ii) animal aggregation and contact rates; (iii) host movement and landscape-level infection patterns; and (iv) interspecific contacts and cross-species transmission. Exciting avenues for future work include studies that integrate mechanistic modelling and empirical approaches to better explore cross-scale processes, and experimental manipulations of food resources to quantify host and pathogen responses. Work is also needed to examine evolutionary responses to provisioning, and ask how diet-altered changes to the host microbiome influence infection processes. Given the massive public health and conservation implications of anthropogenic resource shifts, we end by underscoring the need for practical recommendations to manage supplemental feeding practices, limit human-wildlife conflicts over shared food resources and reduce cross-species transmission risks, including to humans.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Verbeeck, Hans; Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Kearsley, Elizabeth; Cizungu, Landry; Boeckx, Pascal
2017-04-01
Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Central Africa, focussing on shifts in carbon allocation, forest structure, nutrient cycling and functional composition. The Ecuadorian transect has 16 plots (40 by 40 m) and ranges from 400 to 3000 m.a.s.l., and the Rwandan transect has 20 plots (40 by 40 m) from 1500 to 3000 m.a.s.l. All plots were inventoried and canopy, litter and soil were extensively sampled. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed altitudinal adaption mechanisms are. This could provide us with vital information of the ecological responses of both biomes to future global change scenarios. Additionally, comparison of nutrient shifts and trait-based functional composition allows us to compare the biogeochemical cycles of African and South-American tropical forests.
Flousek, Jiří; Telenský, Tomáš; Hanzelka, Jan; Reif, Jiří
2015-01-01
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.
Liebl, Andrea L.; Martin, Lynn B.
2012-01-01
Global anthropogenic changes are occurring at an unprecedented rate; one change, human-facilitated introduction of species outside their native range, has had significant ecological and economic impacts. Surprisingly, what traits facilitate range expansions post-introduction is relatively unknown. This information could help predict future expansions of introduced species as well as native species shifting their ranges as climate conditions change. Here, we asked whether specific behavioural and physiological traits were important in the ongoing expansion of house sparrows (Passer domesticus) across Kenya. We predicted that birds at the site of initial introduction (Mombasa, introduced approx. 1950) would behave and regulate corticosterone, a stress hormone, differently than birds at the range edge (Kakamega, approx. 885 km from Mombasa; colonized within the last 5 years). Specifically, we predicted greater exploratory behaviour and stronger corticosterone response to stressors in birds at the range edge, which may facilitate the identification, resolution and memory of stressors. Indeed, we found that distance from Mombasa (a proxy for population age) was a strong predictor of both exploratory behaviour and corticosterone release in response to restraint (but only while birds were breeding). These results suggest that certain behavioural and neuroendocrine traits may influence the ability of species to colonize novel habitats. PMID:22951742
Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy
2014-01-01
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival.
Skeffington, Micheline Sheehy
2014-01-01
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities' long-term survival. PMID:24752011
Collective behaviour, uncertainty and environmental change.
Bentley, R Alexander; O'Brien, Michael J
2015-11-28
A central aspect of cultural evolutionary theory concerns how human groups respond to environmental change. Although we are painting with a broad brush, it is fair to say that prior to the twenty-first century, adaptation often happened gradually over multiple human generations, through a combination of individual and social learning, cumulative cultural evolution and demographic shifts. The result was a generally resilient and sustainable population. In the twenty-first century, however, considerable change happens within small portions of a human generation, on a vastly larger range of geographical and population scales and involving a greater degree of horizontal learning. As a way of gauging the complexity of societal response to environmental change in a globalized future, we discuss several theoretical tools for understanding how human groups adapt to uncertainty. We use our analysis to estimate the limits of predictability of future societal change, in the belief that knowing when to hedge bets is better than relying on a false sense of predictability. © 2015 The Author(s).
Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.
Siepielski, Adam M; Beaulieu, Jeremy M
2017-04-01
Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Coupling of pollination services and coffee suitability under climate change.
Imbach, Pablo; Fung, Emily; Hannah, Lee; Navarro-Racines, Carlos E; Roubik, David W; Ricketts, Taylor H; Harvey, Celia A; Donatti, Camila I; Läderach, Peter; Locatelli, Bruno; Roehrdanz, Patrick R
2017-09-26
Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Y; Macq, B; Bondar, L
Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees,more » and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for complex error scenarios. Yafei Xing and Luiza Bondar are funded by BEWARE grants from the Walloon Region. The work presents simulations results for a prompt gamma camera prototype developed by IBA.« less
Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J
2018-01-01
Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.
Toward a loss of functional diversity in stream fish assemblages under climate change.
Buisson, Laëtitia; Grenouillet, Gaël; Villéger, Sébastien; Canal, Julie; Laffaille, Pascal
2013-02-01
The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures. © 2012 Blackwell Publishing Ltd.
Perry, Chris T; Murphy, Gary N; Kench, Paul S; Edinger, Evan N; Smithers, Scott G; Steneck, Robert S; Mumby, Peter J
2014-12-07
Coral cover has declined rapidly on Caribbean reefs since the early 1980s, reducing carbonate production and reef growth. Using a cross-regional dataset, we show that widespread reductions in bioerosion rates-a key carbonate cycling process-have accompanied carbonate production declines. Bioerosion by parrotfish, urchins, endolithic sponges and microendoliths collectively averages 2 G (where G = kg CaCO3 m(-2) yr(-1)) (range 0.96-3.67 G). This rate is at least 75% lower than that reported from Caribbean reefs prior to their shift towards their present degraded state. Despite chronic overfishing, parrotfish are the dominant bioeroders, but erosion rates are reduced from averages of approximately 4 to 1.6 G. Urchin erosion rates have declined further and are functionally irrelevant to bioerosion on most reefs. These changes demonstrate a fundamental shift in Caribbean reef carbonate budget dynamics. To-date, reduced bioerosion rates have partially offset carbonate production declines, limiting the extent to which more widespread transitions to negative budget states have occurred. However, given the poor prognosis for coral recovery in the Caribbean and reported shifts to coral community states dominated by slower calcifying taxa, a continued transition from production to bioerosion-controlled budget states, which will increasingly threaten reef growth, is predicted. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.
2002-10-01
A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.
Set Shifting Among Adolescents with Anorexia Nervosa
Fitzpatrick, Kathleen Kara; Darcy, Alison; Colborn, Danielle; Gudorf, Caroline; Lock, James
2012-01-01
Objective Set shifting difficulties are documented for adults with anorexia nervosa (AN). However, AN typically onsets in adolescents and it is unclear if set-shifting difficulties are a result of chronic AN or present earlier in its course. This study examined whether adolescents with short duration AN demonstrated set shifting difficulties compared to healthy controls (HC). Method Data on set shifting collected from the Delis-Kaplan Executive Functioning System (DKEFS) and Wisconsin Card Sort Task (WCST) as well as eating psychopathology were collected from 32 adolescent inpatients with AN and compared to those from 22 HCs. Results There were no differences in set-shifting in adolescents with AN compared to HCs on most measures. Conclusion The findings suggest that set-shifting difficulties in AN may be a consequence of AN. Future studies should explore set-shifting difficulties in a larger sample of adolescents with the AN to determine if there is sub-set of adolescents with these difficulties and determine any relationship of set-shifting to the development of a chronic from of AN. PMID:22692985
Tang, Cindy Q.; Dong, Yi-Fei; Herrando-Moraira, Sonia; Matsui, Tetsuya; Ohashi, Haruka; He, Long-Yuan; Nakao, Katsuhiro; Tanaka, Nobuyuki; Tomita, Mizuki; Li, Xiao-Shuang; Yan, Hai-Zhong; Peng, Ming-Chun; Hu, Jun; Yang, Ruo-Han; Li, Wang-Jun; Yan, Kai; Hou, Xiuli; Zhang, Zhi-Ying; López-Pujol, Jordi
2017-01-01
This study, using species distribution modeling (involving a new approach that allows for uncertainty), predicts the distribution of climatically suitable areas prevailing during the mid-Holocene, the Last Glacial Maximum (LGM), and at present, and estimates the potential formation of new habitats in 2070 of the endangered and rare Tertiary relict tree Davidia involucrata Baill. The results regarding the mid-Holocene and the LGM demonstrate that south-central and southwestern China have been long-term stable refugia, and that the current distribution is limited to the prehistoric refugia. Given future distribution under six possible climate scenarios, only some parts of the current range of D. involucrata in the mid-high mountains of south-central and southwestern China would be maintained, while some shift west into higher mountains would occur. Our results show that the predicted suitable area offering high probability (0.5‒1) accounts for an average of only 29.2% among the models predicted for the future (2070), making D. involucrata highly vulnerable. We assess and propose priority protected areas in light of climate change. The information provided will also be relevant in planning conservation of other paleoendemic species having ecological traits and distribution ranges comparable to those of D. involucrata. PMID:28272437
Integrating Solar into Florida's Power System: Potential Roles for Flexibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Elaine T; Stoll, Brady; Novacheck, Joshua E
Although Florida has very little photovoltaic (PV) generation to date, it is reasonable to expect significant deployment in the 2020s under a variety of future policy and cost scenarios. To understand these potential futures, we model Florida Reliability Coordinating Council operations in 2026 over a wide range of PV penetrations with various combinations of battery storage capacity, demand response, and increased operational flexibility. By calculating the value of PV under a wide range of conditions, we find that at least 5%, and more likely 10-24%, PV penetration is cost competitive in Florida within the next decade with baseline flexibility andmore » all but the most pessimistic of assumptions. For high PV penetrations, we demonstrate Florida's electrical net-load variability (duck curve) challenges, the associated reduction of PV's value to the system, and the ability of flexibility options-in particular energy-shifting resources-to preserve value and increase the economic carrying capacity of PV. A high level of demand response boosts the economic carrying capacity of PV by up to 0.5-2 percentage points, which is comparable to the impact of deploying 1 GW of battery storage. Adding 4 GW of battery storage expands the economic carrying capacity of PV by up to 6 percentage points.« less
Atlas : A library for numerical weather prediction and climate modelling
NASA Astrophysics Data System (ADS)
Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.
2017-11-01
The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.
A Wide Dynamic Range Tapped Linear Array Image Sensor
NASA Astrophysics Data System (ADS)
Washkurak, William D.; Chamberlain, Savvas G.; Prince, N. Daryl
1988-08-01
Detectors for acousto-optic signal processing applications require fast transient response as well as wide dynamic range. There are two major choices of detectors: conductive or integration mode. Conductive mode detectors have an initial transient period before they reach then' i equilibrium state. The duration of 1 his period is dependent on light level as well as detector capacitance. At low light levels a conductive mode detector is very slow; response time is typically on the order of milliseconds. Generally. to obtain fast transient response an integrating mode detector is preferred. With integrating mode detectors. the dynamic range is determined by the charge storage capability of the tran-sport shift registers and the noise level of the image sensor. The conventional net hod used to improve dynamic range is to increase the shift register charge storage capability. To achieve a dynamic range of fifty thousand assuming two hundred noise equivalent electrons, a charge storage capability of ten million electrons would be required. In order to accommodate this amount of charge. unrealistic shift registers widths would be required. Therefore, with an integrating mode detector it is difficult to achieve a dynamic range of over four orders of magnitude of input light intensity. Another alternative is to solve the problem at the photodetector aml not the shift, register. DALSA's wide dynamic range detector utilizes an optimized, ion implant doped, profiled MOSFET photodetector specifically designed for wide dynamic range. When this new detector operates at high speed and at low light levels the photons are collected and stored in an integrating fashion. However. at bright light levels where transient periods are short, the detector switches into a conductive mode. The light intensity is logarithmically compressed into small charge packets, easily carried by the CCD shift register. As a result of the logarithmic conversion, dynamic ranges of over six orders of magnitide are obtained. To achieve the short integration times necessary in acousto-optic applications. t he wide dynamic range detector has been implemented into a tapped array architecture with eight outputs and 256 photoelements. Operation of each 01)1,1)111 at 16 MHz yields detector integration times of 2 micro-seconds. Buried channel two phase CCD shift register technology is utilized to minimize image sensor noise improve video output rates and increase ease of operation.
Recruitment limitation of long-lived conifers: implications for climate change responses.
Kroiss, Steve J; Hillerslambers, Janneke
2015-05-01
Seed availability and suitable microsites for germination are likely to severely constrain the responses of plant species to climate change, especially at and beyond range edges. For example, range shifts may be slow if seed availability is low at range edges due to low parent-tree abundance or reduced fecundity. Even when seeds are available, climatic and biotic factors may further limit the availability of suitable microsites for recruitment. Unfortunately, the importance of seed and microsite limitation during range shifts remains unknown, since few studies have examined both factors simultaneously, particularly across species' ranges. To address this issue, we assessed seed availability and the factors influencing germination for six conifer species across a large environmental gradient encompassing their elevational ranges. Specifically, we assessed (1) how parent-tree abundance influences annual seed availability; (2) how seed limitation varies across species' ranges; (3) how climatic and biotic factors affect germination; and (4) how seed and suitable microsite availability covary annually within and among species. We found that seed availability declined toward species' upper range edges for most species, primarily due to low parent-tree abundance rather than declining fecundity. Range expansions are thus likely to be lagged with respect to climate change, as long generation times preclude rapid increases in tree density. Negative impacts of canopy cover on germination rates suggest range shifts will further be slowed by competition with existing vegetation. Moreover, years of high seed production were generally correlated among species, but not correlated with the availability of suitable microsites, implying that seedling competition and the interaction between seed and microsite limitation will further constrain recruitment. However, the nature of microsite limitation varied strongly between treeline and low-elevation species due to differing responses to snowpack duration and. competition, suggesting that treeline species may be quicker to shift their ranges in response to warming than low-elevation species. In all, our results demonstrate that seed and microsite limitation will likely result in lagged responses to climate change but with differences among species leading to complex range shift dynamics.
Health consequences of shift work and insufficient sleep.
Kecklund, Göran; Axelsson, John
2016-11-01
This review summarises the literature on shift work and its relation to insufficient sleep, chronic diseases, and accidents. It is based on 38 meta-analyses and 24 systematic reviews, with additional narrative reviews and articles used for outlining possible mechanisms by which shift work may cause accidents and adverse health. Evidence shows that the effect of shift work on sleep mainly concerns acute sleep loss in connection with night shifts and early morning shifts. A link also exists between shift work and accidents, type 2 diabetes (relative risk range 1.09-1.40), weight gain, coronary heart disease (relative risk 1.23), stroke (relative risk 1.05), and cancer (relative risk range 1.01-1.32), although the original studies showed mixed results. The relations of shift work to cardiometabolic diseases and accidents mimic those with insufficient sleep. Laboratory studies indicate that cardiometabolic stress and cognitive impairments are increased by shift work, as well as by sleep loss. Given that the health and safety consequences of shift work and insufficient sleep are very similar, they are likely to share common mechanisms. However, additional research is needed to determine whether insufficient sleep is a causal pathway for the adverse health effects associated with shift work. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The role of belowground plant-microbe interactions in climate change induced range shifts
NASA Astrophysics Data System (ADS)
Ramirez, Kelly; Snoek, Basten; van der Putten, Wim
2017-04-01
With climate change, plants have been able to shift their ranges into novel environments were conditions have been made suitable due to warming temperature and changes in precipitation. Much belowground range expansion research has focused on either positive plant-soil interactions, such as AMF symbiosis, or on negative plant-soil interactions, such as pathogens. Less focus has been given to the core microbiome of plant hosts. Many unknowns remain in how the soil microbiome may contribute to plant adaptation to climate change, and how this may feedback to plant-soil interactions and ecosystem functions. Using high-throughput Illumina sequencing we assessed soil and root microbial communities under native and range expanding plant species spanning a north-south latitudinal transect in central Europe. As expected, the soil and root microbiomes are both strongly influenced by the plant species under which they grow. Specifically, about 10% of the microbiome could be related to the host plant species. Interestingly, we found that microbiomes associated with range shifting species are less variable than those associated with native species. Further, the enrichment of microbes in roots (from the soil) is stronger with range expanding species than with native plant species. Our research indicates that the soil and root microbiomes can provide insight into plant range shifts and may be important for plant establishment. Our results are also important at a continental and global level, as ecosystems and plant communities worldwide are effected by climate change induced range-expansions.
Processing Time Shifts Affects the Execution of Motor Responses
ERIC Educational Resources Information Center
Sell, Andrea J.; Kaschak, Michael P.
2011-01-01
We explore whether time shifts in text comprehension are represented spatially. Participants read sentences involving past or future events and made sensibility judgment responses in one of two ways: (1) moving toward or away from their body and (2) pressing the toward or away buttons without moving. Previous work suggests that spatial…
Jobs in the Future. ERIC Digest No. 95.
ERIC Educational Resources Information Center
Imel, Susan
The most significant factors affecting the labor market during the 1980s were the United States' loss of competitiveness in the world marketplace, continued shifts in production from goods to services, changes in the skill requirements of many jobs, and demographic shifts in the population. During the next decade, incompatibility between the type…
Strategies for Multicultural Management: Communication and a Common Set of Values
ERIC Educational Resources Information Center
Castaneda, Mario E.; Bateh, Justin
2013-01-01
In the last 30 years, there has been a shift towards using multicultural strategies. The constant shifts taking place in multi-ethnic, multicultural, and multinational workforces indicate that both administrators of these organizations and higher education practices must evolve to adapt to needs for changing skill sets. In the future,…
Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future unc...
Schools for the Future: Subtle Shift or Seismic Change?
ERIC Educational Resources Information Center
Sutherland, Rosamund; Sutherland, Joanna; Fellner, Chris; Siccolo, Matt; Clark, Lindsey
2014-01-01
This paper centres around a discussion of the design and rebuild of a secondary school in Birmingham (England) as part of the Building Schools of the Future (BSF) Programme. The BSF Programme was influenced by a vision of future schooling in which learning environments are transformed by the integration of ICT into teaching and learning practices.…
Bridging the Gap: Ideas for water sustainability in the western United States
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; Passell, H. D.; Roach, J. D.
2012-12-01
Incremental improvements in water sustainability in the western U.S. may not be able to close the growing gap between increasing freshwater demand, climate driven variability in freshwater supply, and growing environmental consciousness. Incremental improvements include municipal conservation, improvements to irrigation technologies, desalination, water leasing, and others. These measures, as manifest today in the western U.S., are successful in themselves but limited in their ability to solve long term water scarcity issues. Examples are plainly evident and range from the steady and long term decline of important aquifers and their projected inability to provide water for future agricultural irrigation, projected declines in states' abilities to meet legal water delivery obligations between states, projected shortages of water for energy production, and others. In many cases, measures that can close the water scarcity gap have been identified, but often these solutions simply shift the gap from water to some other sector, e.g., economics. Saline, brackish or produced water purification, for example, could help solve western water shortages in some areas, but will be extremely expensive, and so shift the gap from water to economics. Transfers of water out of agriculture could help close the water scarcity gap in other areas; however, loss of agriculture will shift the gap to regional food security. All these gaps, whether in water, economics, food security, or other sectors, will have a negative impact on the western states. Narrowing these future gaps requires both technical and policy solutions as well as tools to understand the tradeoffs. Here we discuss several examples from across the western U.S. that span differing scales and decision spaces. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
Cryptic biodiversity loss linked to global climate change
NASA Astrophysics Data System (ADS)
Bálint, M.; Domisch, S.; Engelhardt, C. H. M.; Haase, P.; Lehrian, S.; Sauer, J.; Theissinger, K.; Pauls, S. U.; Nowak, C.
2011-09-01
Global climate change (GCC) significantly affects distributional patterns of organisms, and considerable impacts on biodiversity are predicted for the next decades. Inferred effects include large-scale range shifts towards higher altitudes and latitudes, facilitation of biological invasions and species extinctions. Alterations of biotic patterns caused by GCC have usually been predicted on the scale of taxonomically recognized morphospecies. However, the effects of climate change at the most fundamental level of biodiversity--intraspecific genetic diversity--remain elusive. Here we show that the use of morphospecies-based assessments of GCC effects will result in underestimations of the true scale of biodiversity loss. Species distribution modelling and assessments of mitochondrial DNA variability in nine montane aquatic insect species in Europe indicate that future range contractions will be accompanied by severe losses of cryptic evolutionary lineages and genetic diversity within these lineages. These losses greatly exceed those at the scale of morphospecies. We also document that the extent of range reduction may be a useful proxy when predicting losses of genetic diversity. Our results demonstrate that intraspecific patterns of genetic diversity should be considered when estimating the effects of climate change on biodiversity.
Roy-Dufresne, Emilie; Logan, Travis; Simon, Julie A; Chmura, Gail L; Millien, Virginie
2013-01-01
The white-footed mouse (Peromyscus leucopus) is an important reservoir host for Borrelia burgdorferi, the pathogen responsible for Lyme disease, and its distribution is expanding northward. We used an Ecological Niche Factor Analysis to identify the climatic factors associated with the distribution shift of the white-footed mouse over the last 30 years at the northern edge of its range, and modeled its current and potential future (2050) distributions using the platform BIOMOD. A mild and shorter winter is favouring the northern expansion of the white-footed mouse in Québec. With more favorable winter conditions projected by 2050, the distribution range of the white-footed mouse is expected to expand further northward by 3° latitude. We also show that today in southern Québec, the occurrence of B. burgdorferi is associated with high probability of presence of the white-footed mouse. Changes in the distribution of the white-footed mouse will likely alter the geographical range of B. burgdorferi and impact the public health in northern regions that have yet to be exposed to Lyme disease.
The impacts of climate change on the wintering distribution of an endangered migratory bird.
Hu, Junhua; Hu, Huijian; Jiang, Zhigang
2010-10-01
There is now ample evidence of the effects of anthropogenic climate change on the distribution and abundance of species. The black-faced spoonbill (Platalea minor) is an endangered migratory species and endemic to East Asia. Using a maximum entropy approach, we predicted the potential wintering distribution for spoonbills and modeled the effects of future climate change. Elevation, human influence index and precipitation during the coldest quarter contributed most to model development. Five regions, including western Taiwan, scattered locations from eastern coastal to central mainland China, coastal areas surrounding the South China Sea, northeastern coastal areas of Vietnam and sites along the coast of Japan, were found to have a high probability of presence and showed good agreement with historical records. Assuming no limits to the spread of this species, the wintering range is predicted to increase somewhat under a changing climate. However, three currently highly suitable regions (northeastern Vietnam, Taiwan and coastal areas surrounding the South China Sea) may face strong reductions in range by 2080. We also found that the center of the predicted range of spoonbills will undergo a latitudinal shift northwards by as much as 240, 450, and 600 km by 2020, 2050 and 2080, respectively. Our findings suggest that species distribution modeling can inform the current and future management of the black-faced spoonbill throughout Asia. It is clear that a strong international strategy is needed to conserve spoonbill populations under a changing climate.
PSK Shift Timing Information Detection Using Image Processing and a Matched Filter
2009-09-01
phase shifts are enhanced. Develop, design, and test the resulting phase shift identification scheme. xx Develop, design, and test an optional...and the resulting phase shift identification algorithm is investigated for SNR levels in the range -2dB to 12 dB. Detection performances are derived...test the resulting phase shift identification scheme. Develop, design, and test an optional analysis window overlapping technique to improve phase
2012-02-21
Sen. John Glenn delivers the closing remarks for NASA's Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
NASA Chief Technologist Mason Peck talks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
NASA Deputy Administrator Lori Garver speaks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Shifts in fisheries management: adapting to regime shifts
King, Jacquelynne R.; McFarlane, Gordon A.; Punt, André E.
2015-01-01
For many years, fisheries management was based on optimizing yield and maintaining a target biomass, with little regard given to low-frequency environmental forcing. However, this policy was often unsuccessful. In the last two to three decades, fisheries science and management have undergone a shift towards balancing sustainable yield with conservation, with the goal of including ecosystem considerations in decision-making frameworks. Scientific understanding of low-frequency climate–ocean variability, which is manifested as ecosystem regime shifts and states, has led to attempts to incorporate these shifts and states into fisheries assessment and management. To date, operationalizing these attempts to provide tactical advice has met with limited success. We review efforts to incorporate regime shifts and states into the assessment and management of fisheries resources, propose directions for future investigation and outline a potential framework to include regime shifts and changes in ecosystem states into fisheries management.
Meltwater Contributions to Irrigation in High Mountain Asia Under a Changing Climate
NASA Astrophysics Data System (ADS)
Grogan, D. S.; Wisser, D.; Proussevitch, A. A.; Lammers, R. B.; Frolking, S. E.
2016-12-01
Snow melt and glacier melt are known to contribute significantly to river flows in High Mountain Asia. This region is also an important agricultural producer, and relies heavily on irrigation. In this study we use a hydrologic model coupled with a glacier model to quantify the historical contribution of snow melt and glacier melt to irrigation water use in High Mountain Asia, with detailed basin-level budgets of meltwater use, re-use, and contributions to crop evapotranspiration. We find that it is important to quantify not only how much meltwater is extracted from rivers and reservoirs for irrigation, but also to track this water through irrigation return flows and downstream re-use. We also project future basin-level meltwater use for irrigation, making use of a suite of climate model projections and associated glacier model projections. We assess the relative importance of snow melt and glacier melt to irrigation supplies across seasons, and for future projections we compare temporal shifts in meltwater hydrographs to potential shifts in crop planting dates due to increasing temperatures and shifts in monsoon onset. Results show that, historically (c. 2000), meltwater for irrigation is most important in the Indus and Ganges basins, which use 90 km3yr-1 and 20 km3yr-1 meltwater, respectively. In both basins, snow melt contributions to annual irrigation use are larger than glacier melt contributions, but the relative importance of these two meltwater sources shifts through the growing season. Uncertainties in future precipitation projections lead to large differences in the direction of change of future meltwater use for irrigation: depending upon the climate model and pathway used, we find that meltwater availability may decrease or increase in 2070-2099 compared to historical results.
The pace of past climate change vs. potential bird distributions and land use in the United States
Bateman, Brooke L.; Pidgeon, Anna M.; Radeloff, Volker C.; VanDerWal, Jeremy; Thogmartin, Wayne E.; Vavrus, Stephen J.; Heglund, Patricia J.
2016-01-01
Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species’ suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr−1, about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr−1). The direction of shifts was not uniform. The majority of species’ distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing.
The pace of past climate change vs. potential bird distributions and land use in the United States.
Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; VanDerWal, Jeremy; Thogmartin, Wayne E; Vavrus, Stephen J; Heglund, Patricia J
2016-03-01
Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species' suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr(-1) , about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr(-1) ). The direction of shifts was not uniform. The majority of species' distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing. © 2015 John Wiley & Sons Ltd.
Importance of vegetation dynamics for future terrestrial carbon cycling
NASA Astrophysics Data System (ADS)
Ahlström, Anders; Xia, Jianyang; Arneth, Almut; Luo, Yiqi; Smith, Benjamin
2015-05-01
Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
Projections of Atmospheric Nutrient Deposition to the Chesapeake Bay Watershed
Atmospheric deposition remains one of the largest loadings of nutrients to the Chesapeake Bay watershed. The interplay between future land use, climate, and emission changes, however, will cause shifts in the future nutrient deposition regime (e.g., oxidized vs. reduced nitrogen...
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.
2013-12-01
Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.
Narrative inquiry: a relational research methodology for medical education.
Clandinin, D Jean; Cave, Marie T; Berendonk, Charlotte
2017-01-01
Narrative research, an inclusive term for a range of methodologies, has rapidly become part of medical education scholarship. In this paper we identify narrative inquiry as a particular theoretical and methodological framework within narrative research and outline its characteristics. We briefly summarise how narrative research has been used in studying medical learners' identity making in medical education. We then turn to the uses of narrative inquiry in studying medical learners' professional identity making. With the turn to narrative inquiry, the shift is to thinking with stories instead of about stories. We highlight four challenges in engaging in narrative inquiry in medical education and point toward promising future research and practice possibilities. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Hyperbolic geometry of cosmological attractors
NASA Astrophysics Data System (ADS)
Carrasco, John Joseph M.; Kallosh, Renata; Linde, Andrei; Roest, Diederik
2015-08-01
Cosmological α attractors give a natural explanation for the spectral index ns of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r , consistent with all observations, to be measured more precisely in future B-mode experiments. We highlight the crucial role of the hyperbolic geometry of the Poincaré disk or half plane in the supergravity construction. These geometries are isometric under Möbius transformations, which include the shift symmetry of the inflaton field. We introduce a new Kähler potential frame that explicitly preserves this symmetry, enabling the inflaton to be light. Moreover, we include higher-order curvature deformations, which can stabilize a direction orthogonal to the inflationary trajectory. We illustrate this new framework by stabilizing the single superfield α attractors.
Elevational range shifts in four mountain ungulate species from the Swiss Alps
Ulf Büntgen; Lucie Greuter; Kurt Bollmann; Hannes Jenny; Andrew Liebhold; J. Diego Galván; Nils C. Stenseth; Carrie Andrew; Atle Mysterud
2017-01-01
Warming-induced range shifts along elevational and latitudinal gradients have been observed in several species from various taxa. The mobility and behavioral plasticity of large endothermic mammals, however, complicate the detection of climatic effects on their spatial distributions. Here, we analyzed 230,565 hunting locations of the four most abundant ungulate species...
Climate Velocity Can Inform Conservation in a Warming World.
Brito-Morales, Isaac; García Molinos, Jorge; Schoeman, David S; Burrows, Michael T; Poloczanska, Elvira S; Brown, Christopher J; Ferrier, Simon; Harwood, Tom D; Klein, Carissa J; McDonald-Madden, Eve; Moore, Pippa J; Pandolfi, John M; Watson, James E M; Wenger, Amelia S; Richardson, Anthony J
2018-06-01
Climate change is shifting the ranges of species. Simple predictive metrics of range shifts such as climate velocity, that do not require extensive knowledge or data on individual species, could help to guide conservation. We review research on climate velocity, describing the theory underpinning the concept and its assumptions. We highlight how climate velocity has already been applied in conservation-related research, including climate residence time, climate refugia, endemism, historic and projected range shifts, exposure to climate change, and climate connectivity. Finally, we discuss ways to enhance the use of climate velocity in conservation through tailoring it to be more biologically meaningful, informing design of protected areas, conserving ocean biodiversity in 3D, and informing conservation actions. Copyright © 2018 Elsevier Ltd. All rights reserved.
2012-02-21
Jordan Hansell, chairman and CEO, NetJets Inc. talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, moderates the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Existence of a Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals
Brennan, Michael C.; Zinna, Jessica; Kuno, Masaru
2017-05-31
The existence of a size-dependent Stokes shift is observed in CsPbBr 3 perovskite nanocrystals for the first time. Stokes shifts range from ~100 to 30 meV for particles with edge lengths between ~4 and 12 nm, respectively.
Existence of a Size-Dependent Stokes Shift in CsPbBr 3 Perovskite Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Michael C.; Zinna, Jessica; Kuno, Masaru
The existence of a size-dependent Stokes shift is observed in CsPbBr 3 perovskite nanocrystals for the first time. Stokes shifts range from ~100 to 30 meV for particles with edge lengths between ~4 and 12 nm, respectively.
NASA Astrophysics Data System (ADS)
Hassanzadeh, Elmira; Elshorbagy, Amin; Nazemi, Ali; Wheater, Howard
2014-05-01
The trans-boundary Saskatchewan River Basin supports livelihoods and the economy of the province of Saskatchewan, Canada. Water users include irrigated agriculture, hydropower, potash mining, urban centers, and ecosystem services. Water availability in Saskatchewan is highly dependent on the flows from the upstream province of Alberta. These flows mostly originate from the Rocky Mountains headwaters and are highly regulated, due to intensive water use and redistribution before they get to the Alberta/Saskatchewan border. Warming climate and increasing water demands in Alberta have changed the incoming flow characteristics from Alberta to Saskatchewan. It is critical to assess the performance and the viability of Saskatchewan's water resources system under uncertain future inter-provincial inflows. For this purpose, a possible range of future changes in the inflows from Alberta to Saskatchewan is considered in this study. The considered changes include various combinations of shifts in the timing of the annual peak and volumetric change in the annual flow volumes. These shifts are implemented using a copula-based stochastic simulation method to generate multiple realizations of weekly flow series at two key locations of inflow to Saskatchewan's water resources system, in a way that the spatial dependencies between weekly inflows are maintained. Each flow series is of 31-years length and constitutes a possible long term water availability scenario. The stochastically generated flows are introduced as an alternative to the historical inflows for water resources planning and management purposes in Saskatchewan. Both historical and reconstructed inflows are fed into a Sustainability-oriented Water Allocation, Management, and Planning (SWAMP) model to analyze the effects of inflow changes on Saskatchewan's water resources system. The SWAMP model was developed using the System Dynamics approach and entails irrigation/soil moisture, non-irrigation uses and economic evaluation sub-models, with the capacity to investigate alternative environmental flow requirements. The long term changes in the performance of the Saskatchewan's water resources system with respect to the considered shifts in the inflow regime are quantified using different assessment indices. Indices, such as vulnerability and reliability, are visualized in 2D maps in which the axes are describing the shifts in streamflow characteristics. Results indicate that the economy and environment in Saskatchewan are sensitive to the shifts in Alberta's streamflow regime. Most importantly, hydropower production, lake levels, and the apportionment to the downstream province of Manitoba are among the most sensitive components of the water resource system.
Losing ground: past history and future fate of Arctic small mammals in a changing climate.
Prost, Stefan; Guralnick, Robert P; Waltari, Eric; Fedorov, Vadim B; Kuzmina, Elena; Smirnov, Nickolay; van Kolfschoten, Thijs; Hofreiter, Michael; Vrieling, Klaas
2013-06-01
According to the IPCC, the global average temperature is likely to increase by 1.4-5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so-far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial-interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow-skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model-testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow-skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the whole Arctic food web and ecosystem. © 2013 Blackwell Publishing Ltd.
Emergence of long distance bird migrations: a new model integrating global climate changes
NASA Astrophysics Data System (ADS)
Louchart, Antoine
2008-12-01
During modern birds history, climatic and environmental conditions have evolved on wide scales. In a continuously changing world, landbirds annual migrations emerged and developed. However, models accounting for the origins of these avian migrations were formulated with static ecogeographic perspectives. Here I reviewed Cenozoic paleoclimatic and paleontological data relative to the palearctic paleotropical long distance (LD) migration system. This led to propose a new model for the origin of LD migrations, the ‘shifting home’ model (SHM). It is based on a dynamic perspective of climate evolution and may apply to the origins of most modern migrations. Non-migrant tropical African bird taxa were present at European latitudes during most of the Cenozoic. Their distribution limits shifted progressively toward modern tropical latitudes during periods of global cooling and increasing seasonality. In parallel, decreasing winter temperatures in the western Palearctic drove shifts of population winter ranges toward the equator. I propose that this induced the emergence of most short distance migrations, and in turn LD migrations. This model reconciliates ecologically tropical ancestry of most LD migrants with predominant winter range shifts, in accordance with requirements for heritable homing. In addition, it is more parsimonious than other non-exclusive models. Greater intrinsic plasticity of winter ranges implied by the SHM is supported by recently observed impacts of the present global warming on migrating birds. This may induce particular threats to some LD migrants. The ancestral, breeding homes of LD migrants were not ‘northern’ or ‘southern’ but shifted across high and middle latitudes while migrations emerged through winter range shifts themselves.
Range dynamics of mountain plants decrease with elevation.
Rumpf, Sabine B; Hülber, Karl; Klonner, Günther; Moser, Dietmar; Schütz, Martin; Wessely, Johannes; Willner, Wolfgang; Zimmermann, Niklaus E; Dullinger, Stefan
2018-02-20
Many studies report that mountain plant species are shifting upward in elevation. However, the majority of these reports focus on shifts of upper limits. Here, we expand the focus and simultaneously analyze changes of both range limits, optima, and abundances of 183 mountain plant species. We therefore resurveyed 1,576 vegetation plots first recorded before 1970 in the European Alps. We found that both range limits and optima shifted upward in elevation, but the most pronounced trend was a mean increase in species abundance. Despite huge species-specific variation, range dynamics showed a consistent trend along the elevational gradient: Both range limits and optima shifted upslope faster the lower they were situated historically, and species' abundance increased more for species from lower elevations. Traits affecting the species' dispersal and persistence capacity were not related to their range dynamics. Using indicator values to stratify species by their thermal and nutrient demands revealed that elevational ranges of thermophilic species tended to expand, while those of cold-adapted species tended to contract. Abundance increases were strongest for nutriphilous species. These results suggest that recent climate warming interacted with airborne nitrogen deposition in driving the observed dynamics. So far, the majority of species appear as "winners" of recent changes, yet "losers" are overrepresented among high-elevation, cold-adapted species with low nutrient demands. In the decades to come, high-alpine species may hence face the double pressure of climatic changes and novel, superior competitors that move up faster than they themselves can escape to even higher elevations.
The Global Imperatives for an Education Paradigm Shift.
ERIC Educational Resources Information Center
Bright, Larry K.; And Others
The future role of education is covered in a discussion concerning the shifting of the dominant social paradigm of the United States. It is noted that the paradigm is changing from one that requires social institutions to seek and develop human resources to maintain a position of competitive dominance, to an emerging view of world interdependence.…
Mark W. Schwartz; Louis R. Iverson; Anantha M. Prasad
2001-01-01
We investigated the effect of habitat loss on the ability of trees to shift in distribution across a landscape dominated by agriculture. The potential distribution shifts of four tree species (Diospyros virginiana, Oxydendron arboreum, Pinus virginiana, Quercus falcata var. falcata) whose northern distribution limits fall in the...
ERIC Educational Resources Information Center
McManigell Grijalva, Regina A.
2018-01-01
Universities today are well-aware of the rapidly shifting demographics of their future student populations. According to American Council on Education researchers (Espinosa et al., Race, class, and college access: Achieving diversity in a shifting legal landscape. American Council on Education, 2015), many institutions are creating initiatives to…
Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser
2018-01-01
Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...
Barbara J. Bentz; Jacob P. Duncan; James A. Powell
2016-01-01
Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...
ERIC Educational Resources Information Center
Rege Colet, Nicole Mary
2017-01-01
This article reviews changes in pedagogical approaches in higher education at the turn of the twentieth and twenty-first century from a creative perspective, by looking back from the future on the shifts that occurred in conceptions and approaches relating to teaching and learning. Reflecting on moves from one-dimensional thinking to…
Long-term shifts in the phenology of rare and endemic Rocky Mountain plants
Munson, Seth M.; Sher, Anna A
2015-01-01
CONCLUSIONS: These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions.
2012-02-21
The Ohio State University President E. Gordon Gee speaks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-20
Metro High School Student Anthony Springer talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-20
Dayton Regional STEM student Cheyenne Benson talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
NASA Public Affairs Officer Lauren Worley kicks off the second day of the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Population genetic signatures of a climate change driven marine range extension.
Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Semmens, Jayson M; Souza, Carla A; Strugnell, Jan M
2018-06-22
Shifts in species distribution, or 'range shifts', are one of the most commonly documented responses to ocean warming, with important consequences for the function and structure of ecosystems, and for socio-economic activities. Understanding the genetic signatures of range shifts can help build our knowledge of the capacity of species to establish and persist in colonised areas. Here, seven microsatellite loci were used to examine the population connectivity, genetic structure and diversity of Octopus tetricus, which has extended its distribution several hundred kilometres polewards associated with the southwards extension of the warm East Australian Current along south-eastern Australia. The historical distribution and the range extension zones had significant genetic differences but levels of genetic diversity were comparable. The population in the range extension zone was sub-structured, contained relatively high levels of self-recruitment and was sourced by migrants from along the entire geographic distribution. Genetic bottlenecks and changes in population size were detected throughout the range extension axis. Persistent gene flow from throughout the historical zone and moderate genetic diversity may buffer the genetic bottlenecks and favour the range extension of O. tetricus. These characteristics may aid adaptation, establishment, and long-term persistence of the population in the range extension zone.
Evidence of tree species' range shifts in a complex landscape.
Monleon, Vicente J; Lintz, Heather E
2015-01-01
Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse region. Across 46 species, the mean annual temperature of the range of seedlings was 0.120°C colder than that of the range of trees (95% confidence interval from 0.096 to 0.144°C). The extremes of the seedling distributions also shifted towards colder temperature than those of mature trees, but the change was less pronounced. Although the mean elevation and mean latitude of the range of seedlings was higher than and north of those of the range of mature trees, elevational and latitudinal shifts run in opposite directions for the majority of the species, reflecting the lack of a direct biological relationship between species' distributions and those variables. The broad scale, environmental diversity and variety of disturbance regimes and land uses of the study area, the large number and exhaustive sampling of tree species, and the direct causal relationship between the temperature response and a warming climate, provide strong evidence to attribute the observed shifts to climate change.
Multiple-frequency continuous wave ultrasonic system for accurate distance measurement
NASA Astrophysics Data System (ADS)
Huang, C. F.; Young, M. S.; Li, Y. C.
1999-02-01
A highly accurate multiple-frequency continuous wave ultrasonic range-measuring system for use in air is described. The proposed system uses a method heretofore applied to radio frequency distance measurement but not to air-based ultrasonic systems. The method presented here is based upon the comparative phase shifts generated by three continuous ultrasonic waves of different but closely spaced frequencies. In the test embodiment to confirm concept feasibility, two low cost 40 kHz ultrasonic transducers are set face to face and used to transmit and receive ultrasound. Individual frequencies are transmitted serially, each generating its own phase shift. For any given frequency, the transmitter/receiver distance modulates the phase shift between the transmitted and received signals. Comparison of the phase shifts allows a highly accurate evaluation of target distance. A single-chip microcomputer-based multiple-frequency continuous wave generator and phase detector was designed to record and compute the phase shift information and the resulting distance, which is then sent to either a LCD or a PC. The PC is necessary only for calibration of the system, which can be run independently after calibration. Experiments were conducted to test the performance of the whole system. Experimentally, ranging accuracy was found to be within ±0.05 mm, with a range of over 1.5 m. The main advantages of this ultrasonic range measurement system are high resolution, low cost, narrow bandwidth requirements, and ease of implementation.
Power electronics for low power arcjets
NASA Technical Reports Server (NTRS)
Hamley, John A.; Hill, Gerald M.
1991-01-01
In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.
The limits of scientific information for informing forest policy decisions under changing climate
NASA Astrophysics Data System (ADS)
McLachlan, J. S.
2011-12-01
The distribution of tree species is largely determined by climate, with important consequences for ecosystem function, biodiversity, and the human economy. In the past, conflicts about priority among these various goods have produced persistent debate about forest policy and management. Despite this history of conflict, there has been general agreement on the framework for the debate: Our benchmark for assessing human impact is generally some historical condition (in the New World, this is often pre-European settlement). Wilderness is to be managed with minimal human intervention. Native species are preferred over non-natives. And regional landscapes can be effectively partitioned into independent jurisdictions with different management priorities. Each of these principles was always somewhat mythical, but the dynamics of broad scale species range shifts under climate change make all of them untenable in the future. Managed relocation (MR, or assisted migration) is a controversial proposal partly because it demands scientific answers that we do not have: Are trees naturally capable of shifting their ranges as fast as climate will force them? Will deliberate introductions of species beyond their native ranges have adverse impacts on the receiving ecosystem? What are appropriate targets for hydrologic or fire management under novel no-analog climates? However, these demands on science mask a more fundamental concern: the ethical framework underlying existing forest policy is unsupported in the context of long-term non-stationary environmental trends. Whether or not we conclude that MR is a useful policy option, debate about MR is useful because it forces us to place the global change ecology agenda in a larger ethical debate about our goals when managing novel ecosystems.
Unique genetic variation at a species' rear edge is under threat from global climate change
Provan, Jim; Maggs, Christine A.
2012-01-01
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming. PMID:21593035
Paradigm Shifts Towards Understanding the Full Story of Mars, a Possible Future
NASA Astrophysics Data System (ADS)
Diniega, S.; Zurek, R.
2017-02-01
A new phase of Mars and planetary science exploration has opened that studies Mars through a holistic lens. We describe the advances needed for achieving this future: in measurement characteristic and type; in technology and access; and in model development.
Bråtveit, Magne; Kirkeleit, Jorunn; Hollund, Bjørg Eli; Moen, Bente E
2007-07-01
This study characterized the exposure of crude oil process operators to benzene and related aromatics during ordinary activity and investigated whether the operators take up benzene at this level of exposure. We performed the study on a fixed, integrated oil and gas production facility on Norway's continental shelf. The study population included 12 operators and 9 referents. We measured personal exposure to benzene, toluene, ethylbenzene and xylene during three consecutive 12-h work shifts using organic vapour passive dosimeter badges. We sampled blood and urine before departure to the production facility (pre-shift), immediately after the work shift on Day 13 of the work period (post-shift) and immediately before the following work shift (pre-next shift). We also measured the exposure to hydrocarbons during short-term tasks by active sampling using Tenax tubes. The arithmetic mean exposure over the 3 days was 0.042 ppm for benzene (range <0.001-0.69 ppm), 0.05 ppm for toluene, 0.02 ppm for ethylbenzene and 0.03 ppm for xylene. Full-shift personal exposure was significantly higher when the process operators performed flotation work during the shift versus other tasks. Work in the flotation area was associated with short-term (6-15 min) arithmetic mean exposure to benzene of 1.06 ppm (range 0.09-2.33 ppm). The concentrations of benzene in blood and urine did not differ between operators and referents at any time point. When we adjusted for current smoking in regression analysis, benzene exposure was significantly associated with the post-shift concentration of benzene in blood (P = 0.01) and urine (P = 0.03), respectively. Although these operators perform tasks with relatively high short-term exposure to benzene, the full-shift mean exposure is low during ordinary activity. Some evidence indicates benzene uptake within this range of exposure.
NASA Astrophysics Data System (ADS)
Jung, Sukgeun; Pang, Ig-Chan; Lee, Joon-ho; Lee, Kyunghwan
2016-12-01
Recent studies in the western North Pacific reported a declining standing stock biomass of anchovy ( Engraulis japonicus) in the Yellow Sea and a climate-driven southward shift of anchovy catch in Korean waters. We investigated the effects of a warming ocean on the latitudinal shift of anchovy catch by developing and applying individual-based models (IBMs) based on a regional ocean circulation model and an IPCC climate change scenario. Despite the greater uncertainty, our two IBMs projected that, by the 2030s, the strengthened Tsushima warm current in the Korea Strait and the East Sea, driven by global warming, and the subsequent confinement of the relatively cold water masses within the Yellow Sea will decrease larval anchovy biomass in the Yellow Sea, but will increase it in the Korea Strait and the East Sea. The decreasing trend of anchovy biomass in the Yellow Sea was reproduced by our models, but further validation and enhancement of the models is required together with extended ichthyoplankton surveys to understand and reliably project range shifts of anchovy and the impacts such range shifts will have on the marine ecosystems and fisheries in the region.
Duan, Ren-Yan; Kong, Xiao-Quan; Huang, Min-Yi; Varela, Sara; Ji, Xiang
2016-01-01
Many studies predict that climate change will cause species movement and turnover, but few have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change may cause a major shift in spatial patterns of amphibian diversity. Amphibians in China would lose 20% of their original ranges on average; the distribution outside current ranges would increase by 15%. Suitable habitats for over 90% of species will be located in the north of their current range, for over 95% of species in higher altitudes (from currently 137-4,124 m to 286-4,396 m in the 2050s or 314-4,448 m in the 2070s), and for over 75% of species in the west of their current range. Also, our results predict two different general responses to the climate change: some species contract their ranges while moving westwards, southwards and to higher altitudes, while others expand their ranges. Finally, our analyses indicate that range dynamics and fragmentation are related, which means that the effects of climate change on Chinese amphibians might be two-folded.
Huang, Min-Yi; Varela, Sara
2016-01-01
Many studies predict that climate change will cause species movement and turnover, but few have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change may cause a major shift in spatial patterns of amphibian diversity. Amphibians in China would lose 20% of their original ranges on average; the distribution outside current ranges would increase by 15%. Suitable habitats for over 90% of species will be located in the north of their current range, for over 95% of species in higher altitudes (from currently 137–4,124 m to 286–4,396 m in the 2050s or 314–4,448 m in the 2070s), and for over 75% of species in the west of their current range. Also, our results predict two different general responses to the climate change: some species contract their ranges while moving westwards, southwards and to higher altitudes, while others expand their ranges. Finally, our analyses indicate that range dynamics and fragmentation are related, which means that the effects of climate change on Chinese amphibians might be two-folded. PMID:27547522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
NASA Astrophysics Data System (ADS)
Graham, N. M.
2015-12-01
The evolution and speciation of plants is directly tied to the environment as the constrained stages of dispersal creates strong genetic differentiation among populations. This can result in differing genetic patterns between nuclear and chloroplast loci, where genes are inherited differently and dispersed via separate vectors. By developing distribution models based on genetic patterns found within a species, it is possible to begin understanding the influence of historic geomorphic and/or climatic processes on population evolution. If genetic patterns of the current range correlate with specific patterns of climate variability within the Pleistocene, it is possible that future shifts in species distribution in response to climate change can be more accurately modelled due to the historic signature that is found within inherited genes. Preliminary genetic analyses of Linanthus dichotomus, an annual herb distributed across California, suggests that the current taxonomic treatment does not accurately depict how this species is evolving. Genetic patterns of chloroplast genes suggest that populations are more correlated with biogeography than what the current nomenclature states. Additionally, chloroplast and nuclear genes show discrepancies in the dispersal across the landscape, suggesting pollinator driven gene flow overcoming seed dispersal boundaries. By comparing discrepancies between pollinator and seed induced gene flow we may be able to gain insight into historical pollinator communities within the Pleistocene. This information can then be applied to projected climate models to more accurately understand how species and/or communities will respond to a changing environment.
Kueppers, Lara; Faist, Akasha; Ferrenberg, Scott; ...
2017-11-11
Accurately predicting upslope shifts in subalpine tree ranges with warming requires understanding how future forest populations will be affected by climate change, as these are the seed sources for new tree line and alpine populations. Early life history stages are particularly sensitive to climate and are also influenced by genetic variation among populations. Here, we tested the climate sensitivity of germination and initial development for two widely distributed subalpine conifers, using controlled-environment growth chambers with one temperature regime from subalpine forest in the Colorado Rocky Mountains and one 5 °C warmer, and two soil moisture levels. We also tracked germinationmore » rate and timing, rate of seedling development, and seedling morphology for two seed provenances separated by ~300 m elevation. Warming advanced germination timing and initial seedling development by a total of ~2 weeks, advances comparable to mean differences between provenances. Advances were similar for both provenances and species; however, warming reduced the overall germination rate, as did low soil moisture, only for Picea engelmannii. A three-year field warming and watering experiment planted with the same species and provenances yielded responses qualitatively consistent with the lab trials. Altogether these experiments indicate that in a warmer, drier climate, P. engelmannii germination, and thus regeneration, could decline, which could lead to declining subalpine forest populations, while Pinus flexilis forest populations could remain robust as a seed source for upslope range shifts.« less
Global change and the evolution of phenotypic plasticity in plants.
Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando
2010-09-01
Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yang; Lu, Jian; Leung, L. Ruby
This study investigates the North Atlantic atmospheric rivers (ARs) making landfall over western Europe in the present and future climate from the multi-model ensemble of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Overall, CMIP5 captures the seasonal and spatial variations of historical landfalling AR days, with the large inter-model variability strongly correlated with the inter-model spread of historical jet position. Under RCP 8.5, AR frequency is projected to increase a few times by the end of this century. While thermodynamics plays a dominate role in the future increase of ARs, wind changes associated with the midlatitude jet shifts alsomore » significantly contribute to AR changes, resulting in dipole change patterns in all seasons. In the North Atlantic, the model projected jet shifts are strongly correlated with the simulated historical jet position. As models exhibit predominantly equatorward biases in the historical jet position, the large poleward jet shifts reduce AR days south of the historical mean jet position through the dynamical connections between the jet positions and AR days. Using the observed historical jet position as an emergent constraint, dynamical effects further increase AR days in the future above the large increases due to thermodynamical effects. In the future, both total and extreme precipitation induced by AR contribute more to the seasonal mean and extreme precipitation compared to present primarily because of the increase in AR frequency. While AR precipitation intensity generally increases more relative to the increase in integrated vapor transport, AR extreme precipitation intensity increases much less.« less
Campbell, John L.; Shinneman, Douglas
2017-01-01
IntroductionClimate change is expected to impose significant tension on the geographic distribution of tree species. Yet, tree species range shifts may be delayed by their long life spans, capacity to withstand long periods of physiological stress, and dispersal limitations. Wildfire could theoretically break this biological inertia by killing forest canopies and facilitating species redistribution under changing climate. We investigated the capacity of wildfire to modulate climate-induced tree redistribution across a montane landscape in the central Rocky Mountains under three climate scenarios (contemporary and two warmer future climates) and three wildfire scenarios (representing historical, suppressed, and future fire regimes).MethodsDistributions of four common tree species were projected over 90 years by pairing a climate niche model with a forest landscape simulation model that simulates species dispersal, establishment, and mortality under alternative disturbance regimes and climate scenarios.ResultsThree species (Douglas-fir, lodgepole pine, subalpine fir) declined in abundance over time, due to climate-driven contraction in area suitable for establishment, while one species (ponderosa pine) was unable to exploit climate-driven expansion of area suitable for establishment. Increased fire frequency accelerated declines in area occupied by Douglas-fir, lodgepole pine, and subalpine fir, and it maintained local abundance but not range expansion of ponderosa pine.ConclusionsWildfire may play a larger role in eliminating these conifer species along trailing edges of their distributions than facilitating establishment along leading edges, in part due to dispersal limitations and interspecific competition, and future populations may increasingly depend on persistence in locations unfavorable for their establishment.
Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts
Harrah, Larry A.; Renschler, Clifford L.
1986-01-01
In a radiation or high energy particle responsive system useful as a scintillator, and comprising, a first component which interacts with said radiation or high energy particle to emit photons in a certain first wavelength range; and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range; an improvement is provided wherein at least one of said components absorbs substantially no photons in said wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.
Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts
Harrah, L.A.; Renschler, C.L.
1984-08-01
A radiation or high energy particle responsive system useful as a scintillator comprises, a first component which interacts with radiation or high energy particles to emit photons in a certain first wavelength range, and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range. An improvement is provided wherein at least one of said components absorbs substantially no photons in the wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.
NASA Astrophysics Data System (ADS)
McCabe, M. F.; Aragon, B.; Houborg, R.; Mascaro, J.
2017-12-01
Satellite-based remote sensing has generally necessitated a trade-off between spatial resolution and temporal frequency, affecting the capacity to observe fast hydrological processes and rapidly changing land surface conditions. An avenue for overcoming these spatiotemporal restrictions is the concept of using constellations of satellites, as opposed to the mission focus exemplified by the more conventional space-agency approach to earth observation. Referred to as CubeSats, these platforms offer the potential to provide new insights into a range of earth system variables and processes. Their emergence heralds a paradigm shift from single-sensor launches to an operational approach that envisions tens to hundreds of small, lightweight, and comparatively inexpensive satellites placed into a range of low earth orbits. Although current systems are largely limited to sensing in the optical portion of the electromagnetic spectrum, we demonstrate the opportunity and potential that CubeSats present the hydrological community via the retrieval of vegetation dynamics and terrestrial evaporation and foreshadow future sensing capabilities.
The ecology of climate change and infectious diseases
Lafferty, Kevin D.
2009-01-01
The projected global increase in the distribution and prevalence of infectious diseases with climate change suggests a pending societal crisis. The subject is increasingly attracting the attention of health professionals and climate-change scientists, particularly with respect to malaria and other vector-transmitted human diseases. The result has been the emergence of a crisis discipline, reminiscent of the early phases of conservation biology. Latitudinal, altitudinal, seasonal, and interannual associations between climate and disease along with historical and experimental evidence suggest that climate, along with many other factors, can affect infectious diseases in a nonlinear fashion. However, although the globe is significantly warmer than it was a century ago, there is little evidence that climate change has already favored infectious diseases. While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area. Many factors can affect infectious disease, and some may overshadow the effects of climate.
Hall, Amy L; Smit, Andrea N; Mistlberger, Ralph E; Landry, Glenn J; Koehoorn, Mieke
2017-01-01
Shift work is a common working arrangement with wide-ranging implications for worker health. Organisational determinants of shift work practices are not well characterised; such information could be used to guide evidence-based research and best practices to mitigate shift work's negative effects. This exploratory study aimed to describe and assess organisational-level determinants of shift work practices thought to affect health, across a range of industry sectors. Data on organisational characteristics, shift work scheduling, provision of shift work education materials/training to employees and night-time lighting policies in the workplace were collected during phone interviews with organisations across the Canadian province of British Columbia. Relationships between organisational characteristics and shift work practices were assessed using multivariable logistic regression models. The study sample included 88 participating organisations, representing 30 700 shift workers. Long-duration shifts, provision of shift work education materials/training to employees and night-time lighting policies were reported by approximately one-third of participating organisations. Odds of long-duration shifts increased in larger workplaces and by industry. Odds of providing shift work education materials/training increased in larger workplaces, in organisations reporting concern for shift worker health and in organisations without seasonal changes in shift work. Odds of night-time lighting policies in the workplace increased in organisations reporting previous workplace accidents or incidents that occurred during non-daytime hours, site maintenance needs and client service or care needs. This study points to organisational determinants of shift work practices that could be useful for targeting research and workplace interventions. Results should be interpreted as preliminary in an emerging body of literature on shift work and health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Rossi, Sergio; Anfodillo, Tommaso; Čufar, Katarina; Cuny, Henri E.; Deslauriers, Annie; Fonti, Patrick; Frank, David; Gričar, Jožica; Gruber, Andreas; King, Gregory M.; Krause, Cornelia; Morin, Hubert; Oberhuber, Walter; Prislan, Peter; Rathgeber, Cyrille B. K.
2013-01-01
Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Methods Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1–9 years per site from 1998 to 2011. Key Results The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern Conclusions The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions. PMID:24201138
Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R
2014-01-01
Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study. PMID:24934878
Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R
2014-09-01
Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2014-01-01
Our results indicated that climate-induced contractions and shifts in seedling distribution in response to recent change are already under way and are particularly severe in montane tree species. While adult trees may persist for hundreds of years without significant regeneration, tree species ranges will eventually contract where tree regeneration fails.
Yu Liang; Matthew J. Duveneck; Eric J. Gustafson; Josep M. Serra-Diaz; Jonathan R. Thompson
2018-01-01
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition-induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquino, Fredy W.; Govind, Niranjan; Autschbach, Jochen
2011-10-01
Density functional theory (DFT) calculations of NMR chemical shifts and molecular g-tensors with Gaussian-type orbitals are implemented via second-order energy derivatives within the scalar relativistic zeroth order regular approximation (ZORA) framework. Nonhybrid functionals, standard (global) hybrids, and range-separated (Coulomb-attenuated, long-range corrected) hybrid functionals are tested. Origin invariance of the results is ensured by use of gauge-including atomic orbital (GIAO) basis functions. The new implementation in the NWChem quantum chemistry package is verified by calculations of nuclear shielding constants for the heavy atoms in HX (X=F, Cl, Br, I, At) and H2X (X = O, S, Se, Te, Po), and Temore » chemical shifts in a number of tellurium compounds. The basis set and functional dependence of g-shifts is investigated for 14 radicals with light and heavy atoms. The problem of accurately predicting F NMR shielding in UF6-nCln, n = 1 to 6, is revisited. The results are sensitive to approximations in the density functionals, indicating a delicate balance of DFT self-interaction vs. correlation. For the uranium halides, the results with the range-separated functionals are mixed.« less
Global mountain topography and the fate of montane species under climate change
NASA Astrophysics Data System (ADS)
Elsen, Paul R.; Tingley, Morgan W.
2015-08-01
Increasing evidence indicates that species throughout the world are responding to climate change by shifting their geographic distributions. Although shifts can be directionally heterogeneous, they often follow warming temperatures polewards and upslope. Montane species are of particular concern in this regard, as they are expected to face reduced available area of occupancy and increased risk of extinction with upslope movements. However, this expectation hinges on the assumption that surface area decreases monotonically as species move up mountainsides. We analysed the elevational availability of surface area for a global data set containing 182 of the world's mountain ranges. Sixty-eight per cent of these mountain ranges had topographies in which area did not decrease monotonically with elevation. Rather, mountain range topographies exhibited four distinct area-elevation patterns: decreasing (32% of ranges), increasing (6%), a mid-elevation peak in area (39%), and a mid-elevation trough in area (23%). These findings suggest that many species, particularly those of foothills and lower montane zones, may encounter increases in available area as a result of shifting upslope. A deeper understanding of underlying mountain topography can inform conservation priorities by revealing where shifting species stand to undergo area increases, decreases and bottlenecks as they respond to climate change.
Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures.
Forero-Medina, German; Terborgh, John; Socolar, S Jacob; Pimm, Stuart L
2011-01-01
Species may respond to a warming climate by moving to higher latitudes or elevations. Shifts in geographic ranges are common responses in temperate regions. For the tropics, latitudinal temperature gradients are shallow; the only escape for species may be to move to higher elevations. There are few data to suggest that they do. Yet, the greatest loss of species from climate disruption may be for tropical montane species. We repeat a historical transect in Peru and find an average upward shift of 49 m for 55 bird species over a 41 year interval. This shift is significantly upward, but also significantly smaller than the 152 m one expects from warming in the region. To estimate the expected shift in elevation we first determined the magnitude of warming in the locality from historical data. Then we used the temperature lapse rate to infer the required shift in altitude to compensate for warming. The range shifts in elevation were similar across different trophic guilds. Endothermy may provide birds with some flexibility to temperature changes and allow them to move less than expected. Instead of being directly dependent on temperature, birds may be responding to gradual changes in the nature of the habitat or availability of food resources, and presence of competitors. If so, this has important implications for estimates of mountaintop extinctions from climate change.
Schreckenbach, Georg
2002-12-16
In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.
The Future of Clinical Dentistry.
ERIC Educational Resources Information Center
Slavkin, Harold C.
1998-01-01
Discussion of the future of clinical dentistry looks at a variety of influences, including historical development factors; demographic trends; the role of the Human Genome Project in the development of scientific knowledge; a paradigm shift in approaches to oral infection and systemic disease; advancing technology; and reforms resulting from these…
NASA Astrophysics Data System (ADS)
Zichichi, Antonino
The following sections are included: * Physics Problems * The Whole of our Knowledge * The Future * Appendices * Appendix A: Dirac - Antiparticles & Antimatter * Appendix B: Blackett - The discovery of the "Vacuum Polarization" (1932) [the 1st example of radiative effect: pre-the Lamb-shift (1947)] * Appendix C: The New Manhattan Project * References
NASA Astrophysics Data System (ADS)
Henebry, G. M.; Wimberly, M. C.; Senay, G.; Wang, A.; Chang, J.; Wright, C. R.; Hansen, M. C.
2008-12-01
Land cover change across the Northern Great Plains of North America over the past three decades has been driven by changes in agricultural management (conservation tillage; irrigation), government incentives (Conservation Reserve Program; subsidies to grain-based ethanol), crop varieties (cold-hardy soybean), and market dynamics (increasing world demand). Climate change across the Northern Great Plains over the past three decades has been evident in trends toward earlier warmth in the spring and a longer frost-free season. Together these land and climate changes induce shifts in local and regional land surface phenologies (LSPs). Any significant shift in LSP may correspond to a significant shift in evapotranspiration, with consequences for regional hydrometeorology. We explored possible future scenarios involving land use and climate change in six steps. First, we defined the nominal draw areas of current and future biorefineries in North Dakota, South Dakota, Nebraska, Minnesota, and Iowa and masked those land cover types within the draw areas that were unlikely to change to agricultural use (open water, settlements, forests, etc.). Second, we estimated the proportion of corn and soybean remaining within the masked draw areas using MODIS-derived crop maps. Third, in each draw area, we modified LSPs to simulate crop changes for a control and two treatment scenarios. In the control, we used LSP profiles identified from MODIS Collection 5 NBAR data. In one treatment, we increased the proportion of tallgrass LSPs in the draw areas to represent widespread cultivation of a perennial cellulosic crop, like switchgrass. In a second treatment, we increased the proportion of corn LSPs in the draw areas to represent increased corn cultivation. Fourth, we characterized the seasonal progression of the thermal regime associated with the LSP profiles using MODIS Land Surface Temperature (LST) products. Fifth, we modeled the LSP profile as a quadratic function of accumulated growing degree-days based on the LST time series. Sixth, we used representative IPCC AR4 mid-century projections to force the quadratic models and produce possible future LSPs. The resulting shifts in potential peak vegetation to earlier dates indicate potential seasonal shifts in evapotranspiration.
Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Leitner, Philip; Matocq, Marjorie D.; Weisberg, Peter J.; Dilts, Thomas E.
2016-01-01
Predicting changes in species distributions under a changing climate is becoming widespread with the use of species distribution models (SDMs). The resulting predictions of future potential habitat can be cast in light of planned land use changes, such as urban expansion and energy development to identify areas with potential conflict. However, SDMs rarely incorporate an understanding of dispersal capacity, and therefore assume unlimited dispersal in potential range shifts under uncertain climate futures. We use SDMs to predict future distributions of the Mojave ground squirrel, Xerospermophilus mohavensis Merriam, and incorporate partial dispersal models informed by field data on juvenile dispersal to assess projected impact of climate change and energy development on future distributions of X. mohavensis. Our models predict loss of extant habitat, but also concurrent gains of new habitat under two scenarios of future climate change. Under the B1 emissions scenario- a storyline describing a convergent world with emphasis on curbing greenhouse gas emissions- our models predicted losses of up to 64% of extant habitat by 2080, while under the increased greenhouse gas emissions of the A2 scenario, we suggest losses of 56%. New potential habitat may become available to X. mohavensis, thereby offsetting as much as 6330 km2 (50%) of the current habitat lost. Habitat lost due to planned energy development was marginal compared to habitat lost from changing climates, but disproportionately affected current habitat. Future areas of overlap in potential habitat between the two climate change scenarios are identified and discussed in context of proposed energy development.
Regime shifts and resilience in China's coastal ecosystems.
Zhang, Ke
2016-02-01
Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.
Fine-scale modeling of bristlecone pine treeline position in the Great Basin, USA
NASA Astrophysics Data System (ADS)
Bruening, Jamis M.; Tran, Tyler J.; Bunn, Andrew G.; Weiss, Stuart B.; Salzer, Matthew W.
2017-01-01
Great Basin bristlecone pine (Pinus longaeva) and foxtail pine (Pinus balfouriana) are valuable paleoclimate resources due to their longevity and climatic sensitivity of their annually-resolved rings. Treeline research has shown that growing season temperatures limit tree growth at and just below the upper treeline. In the Great Basin, the presence of precisely dated remnant wood above modern treeline shows that the treeline ecotone shifts at centennial timescales tracking long-term changes in climate; in some areas during the Holocene climatic optimum treeline was 100 meters higher than at present. Regional treeline position models built exclusively from climate data may identify characteristics specific to Great Basin treelines and inform future physiological studies, providing a measure of climate sensitivity specific to bristlecone and foxtail pine treelines. This study implements a topoclimatic analysis—using topographic variables to explain patterns in surface temperatures across diverse mountainous terrain—to model the treeline position of three semi-arid bristlecone and/or foxtail pine treelines in the Great Basin as a function of growing season length and mean temperature calculated from in situ measurements. Results indicate: (1) the treeline sites used in this study are similar to other treelines globally, and require a growing season length of between 147-153 days and average temperature ranging from 5.5°C-7.2°C, (2) site-specific treeline position models may be improved through topoclimatic analysis and (3) treeline position in the Great Basin is likely out of equilibrium with the current climate, indicating a possible future upslope shift in treeline position.
NASA Astrophysics Data System (ADS)
Ziauddin; Qamar, Sajid
2014-05-01
Control of the longitudinal shifts, i.e., spatial and angular Goos-Hänchen (GH) shifts, is revisited to study the effect of width of incident Gaussian beam on the shifts and distortion in the reflected beam. The beam is incident on a cavity consisted of atomic medium where each four-level atom follows N-type atom-field configuration. The atom-field interaction leads to Raman gain process which has been used earlier to observe a significant enhancement of the negative group index, i.e., in the range -103 to -104 for 23Na condensate [G.S. Agarwal, S. Dasgupta, Phys. Rev. A 70 (2004) 023802]. The negative and positive longitudinal shifts could be observed in the reflected light corresponding to the anomalous and normal dispersions of the intracavity medium, respectively. It is observed that the shifts are relatively large for small range of beam width and these became small for large width of the incident beam. It is also noticed that the magnitudes of spatial and angular GH shifts behave differently when the beam width increases. Further, distortion in the reflected beam decreases with an increase in beam width.
2012-02-20
Leland Melvin, NASA Associate Administrator for Education and NASA Astronaut, moderates the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-20
Ohio Space Grant Consortium (OSGC) Director Gary Slater talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Russian in Latvia: An Outlook for Bilingualism in a Post-Soviet Transitional Society
ERIC Educational Resources Information Center
Dilans, Gatis
2009-01-01
What makes people, in shifting power positions of a post-independence period, plan on disusing an already known L2 or learn a new L2? What are the reasons for such shifts and what outcomes can, therefore, be predicted for the future of societal bilingualism surviving alongside ongoing efforts at monolingual unification in a newly independent…
Preparing School Social Work for the Future: An Update of School Social Workers' Tasks in Iowa
ERIC Educational Resources Information Center
Peckover, Christopher A.; Vasquez, Matthew L.; Van Housen, Stephanie L.; Saunders, Jeanne A.; Allen, Larry
2013-01-01
The authors begin this article by highlighting clinical social casework as a historic trend in school social work practice. They then identify two major shifts in current education policy related to school social work practice. One shift is an emphasis on a multilevel intervention approach, and the other is the differentiation between academic and…
ERIC Educational Resources Information Center
Meyer, Jan
2004-01-01
The Norwegian Welfare System and how its programs support Norwegians with intellectual and developmental disabilities is described and proffered as a case example of how one nation's public policy shifted to provide community-invested services for people with lifelong disabilities. The foundation of Norway's shift to complete reliance on home and…
Back to the Future: Reoccurring Issues and Discourses in Health Education in New Zealand Schools
ERIC Educational Resources Information Center
Sinkinson, Margaret
2011-01-01
A key function of health education in New Zealand schools has always been to educate individuals to be responsible and accountable for their own health status. Educational, economic and political stances on what best constitutes effective health education, however, shift over time. The outcome of these shifts is that a multiplicity of disciplines…
U.S. hardwood fiber demand and supply situation : globalization and structural change
Peter J. Ince; Irene Durbak
2005-01-01
This paper reviews demand and supply trends for hardwood fiber in the United States. The objective is to illustrate nationwide shifts in demand and supply and show how the hardwood pulpwood market reacts to those shifts at a regional level. Thus, the market situation is illustrated using an economic rationale, and trends are projected under assumptions about future...
ERIC Educational Resources Information Center
Jackson, Robert
2015-01-01
In looking to the future, some writers on religious education (RE) have attempted to evaluate current approaches to the subject. Some have characterised any significant change in approach as a "paradigm shift", a term derived from Thomas Kuhn's work in the philosophy of science. This article examines the uses of the terms…
Phylogeny predicts future habitat shifts due to climate change.
Kuntner, Matjaž; Năpăruş, Magdalena; Li, Daiqin; Coddington, Jonathan A
2014-01-01
Taxa may respond differently to climatic changes, depending on phylogenetic or ecological effects, but studies that discern among these alternatives are scarce. Here, we use two species pairs from globally distributed spider clades, each pair representing two lifestyles (generalist, specialist) to test the relative importance of phylogeny versus ecology in predicted responses to climate change. We used a recent phylogenetic hypothesis for nephilid spiders to select four species from two genera (Nephilingis and Nephilengys) that match the above criteria, are fully allopatric but combined occupy all subtropical-tropical regions. Based on their records, we modeled each species niche spaces and predicted their ecological shifts 20, 40, 60, and 80 years into the future using customized GIS tools and projected climatic changes. Phylogeny better predicts the species current ecological preferences than do lifestyles. By 2080 all species face dramatic reductions in suitable habitat (54.8-77.1%) and adapt by moving towards higher altitudes and latitudes, although at different tempos. Phylogeny and life style explain simulated habitat shifts in altitude, but phylogeny is the sole best predictor of latitudinal shifts. Models incorporating phylogenetic relatedness are an important additional tool to predict accurately biotic responses to global change.
Major advances in extension education programs in dairy production.
Chase, L E; Ely, L O; Hutjens, M F
2006-04-01
The dairy industry has seen structural changes in the last 25 yr that have an impact on extension programming. The number of cows in the United States has decreased by 17%, whereas the number of dairy farms has decreased by 74%. The average milk production per cow has increased from 5,394 to 8,599 kg/lactation. Even though there are fewer farms, dairy farm managers are asking for more specific and targeted information. The extension resources available have also decreased during this period. Because of these changes, shifts have taken place in extension programming and staffing. A key change has been a shift to subject matter-targeted programs and workshops. Extension has also incorporated and expanded use of the Internet. Discussion groups, subject matter courses, and searchable databases are examples of Internet use. There will be continuing shifts in the demographics of the US dairy industry that will influence future extension efforts. It is also probable that fewer extension professionals will be available to provide programming due to changes in funding sources at national, state, and local levels. Future shifts in extension programming will be needed to provide the information needs of the industry with a smaller number of extension workers.
Bauer, P; Barthelmes, D; Kurz, M; Fleischhauer, J C; Sutter, F K
2008-05-01
Due to the predicted age shift of the population an increase in the number of patients with late AMD is expected. At present smoking represents the only modifiable risk factor. Supplementation of antioxidants in patients at risk is the sole effective pharmacological prevention. The aim of this study is to estimate the future epidemiological development of late AMD in Switzerland and to quantify the potential effects of smoking and antioxidants supplementation. The modelling of the future development of late AMD cases in Switzerland was based on a meta-analysis of the published data on AMD-prevalence and on published Swiss population development scenarios until 2050. Three different scenarios were compared: low, mean and high. The late AMD cases caused by smoking were calculated using the "population attributable fraction" formula and data on the current smoking habits of the Swiss population. The number of potentially preventable cases was estimated using the data of the Age-Related Eye Disease Study (AREDS). According to the mean population development scenario, late AMD cases in Switzerland will rise from 37 200 cases in 2005 to 52 500 cases in 2020 and to 93 200 cases in 2050. Using the "low" and the "high" scenarios the late AMD cases may range from 49 500 to 56 000 in 2020 and from 73 700 to 118 400 in 2050, respectively. Smoking is responsible for approximately 7 % of all late AMD cases, i. e., 2600 cases in 2005, 3800 cases in 2020, 6600 cases in 2050 ("mean scenario"). With future antioxidant supplementation to all patients at risk another 3100 cases would be preventable until 2020 and possibly 23 500 cases until 2050. Due to age shift in the population a 2.5-fold increase in late AMD cases until 2050 is expected, representing a socioeconomic challenge. Cessation of smoking and supplementation of antioxidants to all patients at risk has the potential to reduce this number. Unfortunately, public awareness is low. These data may support health-care providers and public opinion leaders when developing public education and prevention strategies.