2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) is given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
Thirty years together: A chronology of U.S.-Soviet space cooperation
NASA Technical Reports Server (NTRS)
Portree, David S. F.
1993-01-01
The chronology covers 30 years of cooperation between the U.S. and the Soviet Union (and its successor, the Commonwealth of Independent States, of which the Russian Federation is the leading space power). It tracks successful cooperative projects and failed attempts at space cooperation. Included are the Dryden-Blagonravov talks; the UN Space Treaties; the Apollo Soyuz Test Project; COSPAS-SARSAT; the abortive Shuttle-Salyut discussions; widespread calls for joint manned and unmanned exploration of Mars; conjectural plans to use Energia and other Russian space hardware in ambitious future joint missions; and contemporary plans involving the U.S. Shuttle, Russian Mir, and Soyuz-TM. The chronology also includes events not directly related to space cooperation to provide context. A bibliography lists works and individuals consulted in compiling the chronology, plus works not used but relevant to the topic of space cooperation.
NASA Technical Reports Server (NTRS)
Garshnek, V.; Davies, P.; Ballard, R.
1992-01-01
Current international capabilities in the space life sciences/technology areas are reviewed focusing on the cooperative potential of the international community as applied to advanced Shuttle/Spacelab flights. The review of the international experience base and mutual cooperative benefits of the United States and international partners presented in the paper provides a guide to the young professional in planning for a space life sciences career.
The Ninth National Space Symposium
NASA Astrophysics Data System (ADS)
Lipskin, Beth Ann; Patterson, Sara; Brescia, David A.; Burk, Donna; Flannery, Jack; St. John, Pat; Zimkas, Chuck
Proceedings of the Ninth National Space Symposium held 13-16 April 1993 by the United States Space Foundation are presented. Presentations made at the symposium are included. Topics discussed include: Change, Challenge and Opportunity; Washington Insiders: National Space Policy and Budget Issues; Civil Space: a Vision for the Future; Space Power for an Expanded Vision; Unparalled Launch Vehicle Propulsion Capabilities; National Security Space Issues; Perspectives on the Air Force in Space; Future Technology: Space Propulsion, Earth Observation and International Cooperation; Achieving Efficient Space Transportation; the Future in Space Exploration; Kids, Parents and Teachers are into Space; and Public Congressional Forum on Space - International Space Issues.
2008-02-01
KENNEDY SPACE CENTER, FLA. -- At the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair show their pleasure after signing a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- At a ceremony at the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair sign a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
The Future of Human Space Exploration: Toward Cooperation or Competition?
2013-09-01
permitted to conduct eight commercial launches of American-made satellites as well as be paid $ 400 million for specific space cooperation activities...inception.155 However, with the ISS as the largest technical cooperation program yet, this was going to be more like a marathon then a sprint .156 As...ATV can carry supplies three times that of Progress.359 The estimated cost was about $ 400 million per vehicle.360 Four ATVs have successfully
The International Space Station in Space Exploration
NASA Technical Reports Server (NTRS)
Gerstenmaier, William H.; McKay, Meredith M.
2006-01-01
The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.
Our Future in the Cosmos: Space
NASA Technical Reports Server (NTRS)
Asimov, I.
1985-01-01
The possibility and consequences of the extension of human society into space are addressed. The establishment of space colonies, orbital power plants and factories, and space exploration are discussed. The necessity of world cooperation to realize such projects and the development of a global space-centered society are considered.
Space ventures and society long-term perspectives
NASA Technical Reports Server (NTRS)
Brown, W. M.
1985-01-01
A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.
NASA Technical Reports Server (NTRS)
Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean
2011-01-01
During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.
Game-theoretic homological sensor resource management for SSA
NASA Astrophysics Data System (ADS)
Chin, Sang Peter
2009-05-01
We present a game-theoretic approach to Level 2/3/4 fusion for the purpose of Space Situational Awareness (SSA) along with prototypical SW implementation of this approach to demonstrate its effectiveness for possible future space operations. Our approach is based upon innovative techniques that we are developing to solve dynamic games and Nperson cooperative/non-cooperative games, as well as a new emerging homological sensing algorithms which we apply to control disparate network of space sensors in order to gain better SSA.
NASA Astrophysics Data System (ADS)
Nguyen, Tien M.; Guillen, Andy T.
2017-05-01
This paper describes cooperative and non-cooperative static Bayesian game models with complete and incomplete information for the development of optimum acquisition strategies associated with the Program and Technical Baseline (PTB) solutions obtained from Part 1 of this paper [1]. The optimum acquisition strategies discussed focus on achieving "Affordability" by incorporating contractors' bidding strategies into the government acquisition strategies for acquiring future space systems. The paper discusses System Engineering (SE) frameworks, analytical and simulation approaches and modeling for developing the optimum acquisition strategies from both the government and contractor perspectives for Firm Fixed Price (FFP) and Fixed Price Incentive Firm (FPIF) contract types.
The International Space University
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1990-01-01
The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.
Toward a global space exploration program: A stepping stone approach
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret
2012-01-01
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.
Crew roles and interactions in scientific space exploration
NASA Astrophysics Data System (ADS)
Love, Stanley G.; Bleacher, Jacob E.
2013-10-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.
Future space experiments on cosmic rays and radiation on Russian segments of ISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii
1999-01-22
The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.
Impacts of sociopolitical conditions
NASA Technical Reports Server (NTRS)
Finney, Ben R.
1992-01-01
Space development scenarios and the choice of technologies to carry them out depend upon the future social, economic, and political factors. A brief discussion concerning the impact of sociopolitical conditions on space exploration is presented. Some of the topics mentioned include: space weapons/warfare, international cooperation, NASA's Search for Extraterrestrial Intelligence (SETI) Program, and superpower rivelry.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Lynda Weatherman, president and CEO of the Economic Development Commission of Floridas Space Coast, and Jim Kennedy, director of Kennedy Space Center, sign a three-year Space Act Agreement for economic development cooperation in support of existing and future missions of NASA at KSC. The agreement underscores business development strategies to ensure KSC and Brevard County continue to be competitive and develop space-related initiatives.
ERIC Educational Resources Information Center
Stanley Foundation, Muscatine, IA.
This is a report of a conference held to discuss maintaining peace in outer space. Nineteen space specialists participated in the conference. Topics discussed were recent technological developments, international cooperation for peaceful uses of outer space, prevention of weapons in space, and the future role of the United Nations. The report's…
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.
The issue is leadership. [Space Station program
NASA Technical Reports Server (NTRS)
Beggs, J. M.
1985-01-01
Four NASA Phase B centers (NASA-Johnson, NASA-Marshall, NASA-Goddard, and NASA-Lewis) are responsible for construction, assembly, servicing, habitat, and other particular tasks and functions of the Space Station. The project has been joined by the aerospace programs of Canada, Japan, and the European Space Agency, ensuring technological and financial support, and cooperative use by the participants. Some of the future uses of the Space Station include biomedical research and applications; experiments in solar-terrestrial physics and astronomy; building, maintenance, and launching of space instruments and planetary missions; manufacturing and processing of materials that call for the conditions of microgravity and weightlessness; supporting communication operations; and improving earth and atmospheric observations. The political significance of the Space Station as a symbol of leadership and of friendly cooperation is noted.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Lynda Weatherman, president and CEO of the Economic Development Commission of Floridas Space Coast, and Jim Kennedy, director of Kennedy Space Center, congratulate each other after signing a three-year Space Act Agreement for economic development cooperation in support of existing and future missions of NASA at KSC. The agreement underscores business development strategies to ensure KSC and Brevard County continue to be competitive and develop space-related initiatives.
Space station: A step into the future
NASA Technical Reports Server (NTRS)
Stofan, Andrew J.
1989-01-01
The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
NASA Astrophysics Data System (ADS)
Butler, G. V.
1981-04-01
Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.
Research on International Space Station - Building a Partnership for the Future
NASA Technical Reports Server (NTRS)
Gindl, Heinz; Scheimann, Jens; Shirakawa, Masaki; Suvorov, Vadim; Uri, John J.
2004-01-01
As its name implies, the International Space Station is a platform where the research programs of 16 partner nations are conducted. While each partner pursues its own research priorities, cooperation and coordination of the various national and agency research programs occurs at multiple levels, from strategic through tactical planning to experiment operations. Since 2000, a significant number of experiments have been carried out in the Russian ISS utilization program, which consists of the Russian national program of fundamental and applied research in 11 research areas and international cooperative programs and contract activities. The US research program began with simple payloads in 2000 and was significantly expanded with the addition of the US Laboratory module Destiny in 2001, and its outfitting with seven research racks to date. The Canadian Space Agency (CSA), the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) have made use of international cooperative arrangements with both the US and Russia to implement a variety of investigations in diverse research areas, and in the case of ESA included the flights of crewmembers to ISS as part of Soyuz Science Missions. In the future, ESA and JAXA will add their own research modules, Columbus and Kibo, respectively, to expand research capabilities both inside and outside ISS. In the aftermath of the Columbia accident and the temporary grounding of the Space Shuttle fleet, all ISS logistics have relied on Russian Progress and Sopz vehicles. The Russian national program has continued as before the Shuttle accident, as have international cooperative programs and contract activities, both during long-duration expeditions and visiting taxi missions. In several instances, Russian international cooperative activities with JAXA and ESA have also involved the use of US facilities and crewmembers in successful truly multilateral efforts. The US research program was rapidly refocused after the Shuttle accident to rely on greatly reduced upmass, and for the first time in the ISS program, US research hardware was launched on Progress vehicles and returned with crews on Soyuz spacecraft. It is hoped that these small but significant steps in international cooperation will lead to even greater endeavors once the remaining research modules are added to ISS.
Colonizing the Red Planet: An Interdisciplinary Activity.
ERIC Educational Resources Information Center
Tomblin, David C.; Bentley, Michael L.
1998-01-01
Describes a simulation activity based on the hypothesis that human habitation on Mars is a realistic future public policy issue and a reasonable consequence of space exploration. Uses cooperative learning. (DDR)
Remote sensing by satellite - Technical and operational implications for international cooperation
NASA Technical Reports Server (NTRS)
Doyle, S. E.
1976-01-01
International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.
NASDA's view of ground control in mission operations
NASA Technical Reports Server (NTRS)
Tateno, Satoshi
1993-01-01
This paper presents an overview of the present status and future plans of the National Space Development Agency of Japan 's (NASDA's) ground segment and related space missions. The described ground segment consists of the tracking and data acquisition (T&DA) system and the Earth Observation Center (EOC) system. In addition to these systems, the current plan of the Engineering Support Center (ESC) for the Japanese Experiment Module (JEM) attached to Space Station Freedom is introduced. Then, NASDA's fundamental point of view on the future trend of operations and technologies in the coming new space era is discussed. Within the discussion, the increasing importance of international cooperation is also mentioned.
Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs
NASA Technical Reports Server (NTRS)
Camp, Dennis W. (Editor); Frost, Walter (Editor)
1987-01-01
The purpose of the workshop was to bring together various disciplines of the aviation, missile, and space programs involved in predicting, measuring, modeling, and understanding the processes of atmospheric turbulence. Working committees re-examined the current state of knowledge, identified present and future needs, and documented and prioritized integrated and cooperative research programs.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians install the second Materials International Space Station Experiments, or MISSE, in space shuttle Endeavour's payload bay. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
Space Station Freedom media handbook
NASA Astrophysics Data System (ADS)
1992-05-01
Work underway at NASA to design and develop Space Station Freedom is described in this handbook. The roles, responsibilities, and tasks at NASA are discussed in order to provide information for the media. Ground facilities are described with a look towards future possibilities and requirements. Historical perspectives, international cooperation, and the responsibilities of specific NASA centers are also examined.
In-Space Inspection Technologies Vision
NASA Technical Reports Server (NTRS)
Studor, George
2012-01-01
Purpose: Assess In-Space NDE technologies and needs - current & future spacecraft. Discover & build on needs, R&D & NDE products in other industries and agencies. Stimulate partnerships in & outside NASA to move technologies forward cooperatively. Facilitate group discussion on challenges and opportunities of mutual benefit. Focus Areas: Miniaturized 3D Penetrating Imagers Controllable Snake-arm Inspection systems Miniature Free-flying Micro-satellite Inspectors
Debris Removal: An Opportunity for Cooperative Research?
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2007-01-01
Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.
Commercial Space Policy in the 1980s: Proceedings of a Roundtable Discussion
NASA Technical Reports Server (NTRS)
Dahlstrom, Neil (Editor)
2000-01-01
The Space Business Archives and the NASA History Office signed a Memorandum of Understanding in March of 1999. The MOU outlines several opportunities for cooperative endeavors between the two agencies in historical programming. This oral history, and subsequently this publication, are the first products of that cooperation. In accordance with the purpose of the Space Business Archives--to provide an impartial forum for lessons learned in the development of the commercial space industry--the idea for this roundtable discussion seemed appropriate as the Archives first public program. With the combined resources of the Archives and the NASA History Office we were fortunate to assemble a panel of individuals that served in both industry and government during the 1980s, many working in both sectors during that time. When envisioning the focus of this oral history, we decided that it was appropriate to highlight space policy in the 1980s, with an emphasis on the emerging commercial industry. Panelists were sent several documents in preparation, such as the Land Remote Sensing Commercialization Act and the Commercial Space Launch Act of 1984, President Reagan's 1982 National Space Policy, and other memoranda and letters that outline important policy issues of the decade. This discussion, we think, fills in some of the gaps that would otherwise be left unfilled when simply reading through the documents themselves. Some of these gaps include: how were these policy directives, legislation and decisions introduced and developed, by whom, and at what political and financial cost? This transcript is meant to serve as a reference to some of the issues, organizations and individuals involved in the creation and development of space policy during the 1980s. It is also the result of the first of many future roundtable discussions aimed at providing an open exchange of ideas concerning past success and failure in order to provide a stronger base for future endeavors in governmental, civil and commercial cooperation in space.
Theater Security Cooperation in Oceania for the 21st Century
2012-05-04
nations of the Pacific struggle to meet the demands of their societies, they combat rampant overfishing and transnational crime. These countries are...Systems model” will be able to guide the implementation of future UAV technologies through the support of an established community . 13 While the P...space to operate UAVs because the air space is not governed by FAA regulations. This space offers the UAV community an superb opportunity to hone their
Preservation of Near-Earth Space for Future Generations
NASA Astrophysics Data System (ADS)
Simpson, John A.
2007-05-01
List of contributors; Preface; Part I. Introduction: 1. Introduction J. A. Simpson; Part II. Defining the Problem: 2. The Earth satellite population: official growth and constituents Nicholas L. Johnson; 3. The current and future environment: an overall assessment Donald J. Kessler; 4. The current and future space debris environment as assessed in Europe Dietrich Rex; 5. Human survivability issues in the low Earth orbit space debris environment Bernard Bloom; 6. Protecting the space environment for astronomy Joel R. Primack; 7. Effects of space debris on commercial spacecraft - the RADARSAT example H. Robert Warren and M. J. Yelle; 8. Potential effects of the space debris environment on military space systems Albert E. Reinhardt; Part III. Mitigation of and Adaptation to the Space Environment: Techniques and Practices: 9. Precluding post-launch fragmentation of delta stages Irvin J. Webster and T. Y. Kawamura; 10. US international and interagency cooperation in orbital debris Daniel V. Jacobs; 11. ESA concepts for space debris mitigation and risk reduction Heiner Klinkrad; 12. Space debris: how France handles mitigation and adaptation Jean-Louis Marcé; 13. Facing seriously the issue of protection of the outer space environment Qi Yong Liang; 14. Space debris - mitigation and adaptation U. R. Rao; 15. Near Earth space contamination and counteractions Vladimir F. Utkin and S. V. Chekalin; 16. The current and future space debris environment as assessed in Japan Susumu Toda; 17. Orbital debris minimization and mitigation techniques Joseph P. Loftus Jr, Philip D. Anz-Meador and Robert Reynolds; Part IV. Economic Issues: 18. In pursuit of a sustainable space environment: economic issues in regulating space debris Molly K. Macauley; 19. The economics of space operations: insurance aspects Christopher T. W. Kunstadter; Part V. Legal Issues: 20. Environmental treatymaking: lessons learned for controlling pollution of outer space Winfried Lang; 21. Regulation of orbital debris - current status Howard A. Baker; 22. Who should regulate the space environment: the laissez-faire, national and multinational options Diane P. Wood; Part VI. A Multilateral Treaty: 23. Orbital debris: prospects for international cooperation Jeffrey Maclure and William C. Bartley; 24. Preservation of near Earth space for future generations: current initiatives on space debris in the United Nations Stephen Gorove; 25. A legal regime for orbital debris: elements of a multilateral treaty Pamela L. Meredith; Part VII. Panel Discussions: 26. Panel discussion led by Diane Wood; 27. Panel discussion led by Paul Uhlir; 28. Suggested further reading on orbital debris.
NASA Astrophysics Data System (ADS)
Klaes, Larry
1990-08-01
The history of the Soviet space program is reviewed with particular attention given to the Soviet Mars exploration program. Missions of the Mars and Zond series and their exploration of Mars are described in detail, and the progress of the Soviet Mars exploration program is compared and contrasted with that of U.S. programs. Soviet space exploration in the 1980s is reviewed, noting that changes in political climate enabled more open discussion of the Phobos mission, which facilitated both international cooperation in assembling the craft and extensive U.S.-Soviet cooperation in the communications aspect of the probe through use of NASA's Deep Space Network of radio telescopes. The Phobos 1 and Phobos 2 missions are discussed and reasons for difficulties are analyzed; the future of the Soviet Mars program is reviewed.
International programs - A growing trend
NASA Technical Reports Server (NTRS)
Bunner, A. N.
1990-01-01
The National Aeronautics and Space Administration has collaborated successfully in space science missions with a multiplicity of partners, including the European Space Agency, Federal Republic of Germany, the Netherlands, United Kingdom, Japan, and the Soviet Union, among others. These collaborations generally arise out of common scientific goals and in the interest of economizing to take advantage of skills and capabilities among the partners. A trend towards increased cooperation in space is expected to continue as the global scientific community works together to plan future space science missions and the missions become more sophisticated.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, the second of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
NASA Astrophysics Data System (ADS)
Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.
2017-11-01
Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.
NASA Astrophysics Data System (ADS)
Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.
2017-11-01
Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.
Crew Roles and Interactions in Scientific Space Exploration
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Bleacher, Jacob E.
2013-01-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.
International Cooperation in the Field of International Space Station (ISS) Payload Safety
NASA Technical Reports Server (NTRS)
Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso
2005-01-01
In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.
Peng, Wei; Crouse, Julia
2013-06-01
Although multiplayer modes are common among contemporary video games, the bulk of game research focuses on the single-player mode. To fill the gap in the literature, the current study investigated the effects of different multiplayer modes on enjoyment, future play motivation, and the actual physical activity intensity in an active video game. One hundred sixty-two participants participated in a one-factor between-subject laboratory experiment with three conditions: (a) single player: play against self pretest score; (b) cooperation with another player in the same physical space; (c) parallel competition with another player in separated physical spaces. We found that parallel competition in separate physical spaces was the optimal mode, since it resulted in both high enjoyment and future play motivation and high physical intensity. Implications for future research on multiplayer mode and play space as well as active video game-based physical activity interventions are discussed.
International Space Station Logistics Approach: Partnership and Dialog for a Successful Future
NASA Technical Reports Server (NTRS)
Banasik, Natalie
2000-01-01
This article seeks to investigate trends and challenges for establishing a successful partnership in a multi-cultural Logistics environment. The U.S. - Russian relationship in the field of space studies is used as the model for this inquiry. Case studies of culture specific responses to a variety of Logistics situations developed during the initial phase of this cooperation are discussed.
Technology R&D for space commerce
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Christensen, Carissa B.; Steen, Robert G.
1992-01-01
The potential effects of reserach conducted by the NASA Office of Aeronautics and Space Technology, OAST, on the aerospace industry are addressed. Program elements aimed at meeting commercial needs and those aimed at meeting NASA needs which have secondary effects benefiting aerospace firms are considered. Particular attention is given to current and future NASA programs for cooperating with industry and the potential effects of OAST research on nonaerospace industries.
Geometry-Based Observability Metric
NASA Technical Reports Server (NTRS)
Eaton, Colin; Naasz, Bo
2012-01-01
The Satellite Servicing Capabilities Office (SSCO) is currently developing and testing Goddard s Natural Feature Image Recognition (GNFIR) software for autonomous rendezvous and docking missions. GNFIR has flight heritage and is still being developed and tailored for future missions with non-cooperative targets: (1) DEXTRE Pointing Package System on the International Space Station, (2) Relative Navigation System (RNS) on the Space Shuttle for the fourth Hubble Servicing Mission.
Standardization of Assistive Products with Robotic Technology - From a Perspective of ISO/TC173.
Inoue, Takenobu; Yamauchi, Shigeru; Westman, Karl-Erik
2017-01-01
ISO/TC173 is a technical committee, in charge of international standardization of assistive products (APs). Robotic technology (RT) is currently an important topic in this field. APs with RT will be included in future revisions of the scope of TC173. Cooperation between the AP and RT space is essential to reach suitable solutions of future standardization.
International Cooperation in the Field of International Space Station (ISS) Payload Safety
NASA Astrophysics Data System (ADS)
Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.
2005-12-01
In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians help lift the first of the Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove another Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove one of two Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is moved across facility toward space shuttle Endeavour. The MISSE is part of the payload onboard Endeavour for mission STS-123 and will be installed in the payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
Presentation on systems cluster research
NASA Technical Reports Server (NTRS)
Morgenthaler, George W.
1989-01-01
This viewgraph presentation presents an overview of systems cluster research performed by the Center for Space Construction. The goals of the research are to develop concepts, insights, and models for space construction and to develop systems engineering/analysis curricula for training future aerospace engineers. The following topics are covered: CSC systems analysis/systems engineering (SIMCON) model, CSC systems cluster schedule, system life-cycle, model optimization techniques, publications, cooperative efforts, and sponsored research.
NASA Technical Reports Server (NTRS)
2005-01-01
The Transformational Concept of Operations (CONOPS) provides a long-term, sustainable vision for future U.S. space transportation infrastructure and operations. This vision presents an interagency concept, developed cooperatively by the Department of Defense (DoD), the Federal Aviation Administration (FAA), and the National Aeronautics and Space Administration (NASA) for the upgrade, integration, and improved operation of major infrastructure elements of the nation s space access systems. The interagency vision described in the Transformational CONOPS would transform today s space launch infrastructure into a shared system that supports worldwide operations for a variety of users. The system concept is sufficiently flexible and adaptable to support new types of missions for exploration, commercial enterprise, and national security, as well as to endure further into the future when space transportation technology may be sufficiently advanced to enable routine public space travel as part of the global transportation system. The vision for future space transportation operations is based on a system-of-systems architecture that integrates the major elements of the future space transportation system - transportation nodes (spaceports), flight vehicles and payloads, tracking and communications assets, and flight traffic coordination centers - into a transportation network that concurrently accommodates multiple types of mission operators, payloads, and vehicle fleets. This system concept also establishes a common framework for defining a detailed CONOPS for the major elements of the future space transportation system. The resulting set of four CONOPS (see Figure 1 below) describes the common vision for a shared future space transportation system (FSTS) infrastructure from a variety of perspectives.
On-Orbit Propulsion and Methods of Momentum Management for the International Space Station
NASA Technical Reports Server (NTRS)
Russell, Samuel P.; Spencer, Victor; Metrocavage, Kevin; Swanson, Robert A.; Krajchovich, Mark; Beisner, Matthew; Kamath, Ulhas P.
2010-01-01
Since the first documented design of a space station in 1929, it has been a dream of many to sustain a permanent presence in space. Russia and the US spent several decades competing for a sustained human presence in low Earth orbit. In the 1980 s, Russia and the US began to openly collaborate to achieve this goal. This collaboration lead to the current design of the ISS. Continuous improvement of procedures for controlling the ISS have lead to more efficient propellant management over the years. Improved efficiency combined with the steady use of cargo vehicles has kept ISS propellant levels well above their defined thresholds in all categories. The continuing evolution of propellant and momentum management operational strategies demonstrates the capability and flexibility of the ISS propulsion system. The hard work and cooperation of the international partners and the evolving operational strategies have made the ISS safe and successful. The ISS s proven success is the foundation for the future of international cooperation for sustaining life in space.
International Cooperation at NASA
NASA Astrophysics Data System (ADS)
Tawney, Timothy; Feldstein, Karen
International cooperation is a cornerstone principle of NASA’s activities, especially within the activities of the Science Mission Directorate. Nearly two thirds of the flight missions in which NASA leads or participates involve international cooperation. Numerous ground based activities also rely on international cooperation, whether because of unique expertise, unique geography, or the need for a global response. Going forward, in an era of tighter budgets and a more integrated global perspective, NASA and the rest of the space agencies around the world will be forced to work more closely together, in a broader array of activities than ever before, in order to be able to afford to push the boundaries of space exploration. The goal of this presentation is to provide an overview of NASA’s current international science cooperative activities. It will include a discussion of why NASA conducts international cooperation and look at the mechanisms through which international cooperation can occur at NASA, including peer-to-peer development of relationships. It will also discuss some of the limiting factors of international cooperation, such as export control, and ways in which to manage those constraints. Finally, the presentation would look at some of the present examples where NASA is working to increase international cooperation and improve coordination. Case studies will be used to demonstrate these mechanisms and concepts. For example, NASA continues to participate in international coordination groups such as the International Mars Exploration Working Group (IMEWG) and International Space Exploration Coordination Group (ISECG), but is expanding into new areas as well. NASA is one of the leaders in expanding and improving international coordination in the area of Near-Earth Object detection, characterization, and mitigation. Having participated in the first meetings of such groups as the International Asteroid Warning Network (IAWN) and Space Missions Planning Advisory Group (SMPAG), NASA is placing an ever greater emphasis on sharing information among members and working to avoid duplication of effort for the betterment of all humanity. International cooperation at NASA takes many forms. In some cases NASA leads, while in other cases it follows the lead of our many international partners, all in the name of obtaining the best science. In many cases, truly stellar partnerships emerge. In a few cases, the partnership is ended before it can flourish. But in all cases, the partners are learning to work more closely together so that in the future, our partnerships will yield ever better results.
Programmatic and economic challenges for commercial space processing
NASA Astrophysics Data System (ADS)
Overfelt, Tony; Watkins, John
1997-01-01
The International Space Station is the largest cooperative space project in history and is likely to be industry's most viable access to the low-g environment for long duration materials processing experiments. Such access will provide unique and competitive research capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial projects. Although ``commercial utilization'' implies a variety of things to different people, the key industrial issues are frequent, reliable, and economical access to space as well as protection of private sector intellectual property rights. This paper discusses how these key issues will influence the programmatic and economic challenges for commercial space processing in the future Space Station era.
NASA Technical Reports Server (NTRS)
Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)
2003-01-01
In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.
Autonomous System for MISSE Temperature Measurements
NASA Technical Reports Server (NTRS)
Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.
2001-01-01
The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.
2006-01-01
Satellite Service in cooperation with ARISS (Amateur Radio on the International Space Station) and provides a PSK-31 multiuser transponder, an FM voice...interference with existing ARISS missions. PCSat2 has quad redun- dant transmit inhibits for extravehicular activity safety issues, thus it is easy...to deactivate to avoid any issues with other UHF ARISS experiments that may be acti- vated in the future. Acknowledgments: The authors acknowledge
Space Studies Board Annual Report, 2008
NASA Technical Reports Server (NTRS)
2008-01-01
The year 2008 was an historic one for both our country and the Space Studies Board (SSB). The United States elected a new president. His first task has been to cope with an economic crisis of historic proportions. In the same year, the United States celebrated the 50th anniversary of its first spaceflight, and the SSB celebrated its 50th anniversary. As we in the space community looked back, we also looked forward. The year 2008 was truly a year of transition, for the country and for the space enterprise. Under Lennard Fisk's continued leadership, the SSB completed its year-long seminar series, Forging the Future of Space Science, which highlighted the accomplishments of space science over the past 50 years and looked ahead to the next 50 years of discoveries that await us. During the first half of the year, events were held in Tallahasse, Florida; Austin, Texas; Paris, France (in conjunction with the Committee on Space Research, which is headquartered here); Boulder, Colorado; and Fairmont, West Virginia. The series culminated in a celebration at the National Air and Space Museum in Washington, D.C., on June 26, .50 years to the day after the SSB was created. At that event, the Board presented its first James A. Van Allen Lectureship to Frank McDonald. The recent economic crisis has made it obvious that the U.S. economy does not stand alone. The global economy is becoming more and more integrated. The space enterprise cannot avoid this trend. In November, the SSB conducted a workshop in conjunction with the Aeronautics and Space Engineering Board entitled 'Future International Space Cooperation and Competition in a Globalizing World'. Its goals were to assess the current state of international cooperation and competition in space and to discuss ways in which new and emerging space powers might be better integrated into the global space community.
Uranium Reserves on Planet Zeus: A Unit on Imperialism.
ERIC Educational Resources Information Center
Price, Mary A.
1988-01-01
Designed as a follow up unit on the study of imperialism, this lesson requires students to use their knowledge of imperialism to solve a problem that could arise in the future space frontier. Organized for small group participation, the lesson focuses on international cooperation. Includes all required resources and suggests appropriate additional…
Contractor and government - Teamwork and commitment
NASA Technical Reports Server (NTRS)
Griffin, G. D.
1985-01-01
Procedures being implemented at NASA to improve cooperation with contractors and increase productivity are reviewed from the NASA point of view. The goals of the U.S. space program for the coming 25 years are listed, and the importance of the commercial utilization of space in these plans is stressed. Consideration is given to the ongoing American Productivity Center White-Collar Productivity-Improvement Project, the implementation of the recommendations of the 1984 NASA/Contractor Conferences in present and future contracts, and the use of incentive contracts to create situations in which both NASA and the contractor benefit from increased productivity. Future plans call for increased industry responsibility in managing and operating the STS; steamlining of Shuttle operations; advanced design-to-cost procedures, increased commonality, better NASA-contractor communications, and more use of CAD/CAM and robotics for the Space Station; and accommodation of greatly expanded private investment and exploitation of space.
International Cooperation of Space Science and Application in Chinese Manned Space Program
NASA Astrophysics Data System (ADS)
Gao, Ming; Guo, Jiong; Yang, Yang
Early in China Manned Space Program, lots of space science and application projects have been carried out by utilizing the SZ series manned spaceships and the TG-1 spacelab, and remarkable achievements have been attained with the efforts of international partners. Around 2020, China is going to build its space station and carry out space science and application research of larger scale. Along with the scientific utilization plan for Chinese space station, experiment facilities are considered especially for international scientific cooperation, and preparations on international cooperation projects management are made as well. This paper briefs the international scientific cooperation history and achievement in the previous missions of China Manned Space Program. The general resources and facilities that will support potential cooperation projects are then presented. Finally, the international cooperation modes and approaches for utilizing Chinese Space Station are discussed.
2008-03-01
solar telescope to study solar physics. — Develop technologies for a three-satellite constellation called Kua Fu to study solar activity that will...consist of one satellite to monitor solar activity and two others to study the aurora. • International cooperation. Participate in the Sino...Russian Mars environment exploration plan, the World Space Observatory Ultraviolet Project,50 and the Sino-French Small Satellite Solar Flare Exploration
Educational benefits of ISY - NASA's perspective
NASA Technical Reports Server (NTRS)
Owens, Frank C.; Mcgee, A. S.
1992-01-01
Education is a key component of the International Space Year (ISY) and NASA has taken on several roles in the development of ISY educational activities. ISY presents a unique opportunity for international cooperation in education and the global importance of science, math and technology across the educational spectrum has been emphasized. NASA monitors the progress of educational projects, develops educational activities and facilitates the development of such activities in both the public and private sectors. The Space Agency Forum on ISY (SAFISY), the international space and education program, space science and space communications in education are discussed and several educational programs are described. Current activities, distribution of products and future evaluation plans are discussed.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Members of the Economic Development Commission (EDC) of Floridas Space Coast were on hand to witness the signing of a three-year agreement for economic development cooperation in support of existing and future missions of NASA at KSC. Lynda Weatherman (third from left), president and CEO of the EDC, and Jim Kennedy (center) , director of Kennedy Space Center, signed the Space Act Agreement. At far right is Lisa Malone, director of External Relations and Business Development at KSC. Standing with them are members of the NASA External Relations directorate who helped facilitate the Space Act Agreement are, from left, James Ball, Kim Agee, John Hudiberg, David Pierce, Jessica Livingston and Trudy McCarthy.
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
ISS Benefits for Humanity: Train Like an Astronaut
2015-01-29
Published on Jan 29, 2015 Developed in cooperation with NASA scientists and fitness professionals working directly with astronauts, the Train Like an Astronaut program is an exciting and engaging way to get the children of today up and moving. The project uses the excitement of exploration to challenge students to set physical fitness and research goals, practice physical fitness activities, and research proper nutrition, enabling each child to become our next generation of fit explorers! The International Space Station is a blueprint for global cooperation and scientific advancements, a destination for a growing commercial marketplace in low-Earth orbit and a test bed for demonstrating new technologies. The space station is the springboard to NASA’s next great leap in exploration, including future missions to an asteroid and Mars. For more information: http://go.nasa.gov/1zhkuW9
Vision 2040: Evolving the Successful International Space University
NASA Technical Reports Server (NTRS)
Martin, Gary; Marti, Izan Peris; Tlustos, Reinhard; Lorente, Arnau Pons; Panerati, Jocopo; Mensink, Wendy; Sorkhabi, Elbruz; Garcia, Oriol Gasquez; Musilova, Michaela; Pearson, Thomas
2015-01-01
Space exploration has always been full of inspiration, innovation, and creativity, with the promise of expanding human civilization beyond Earth. The space sector is currently experiencing rapid change as disruptive technologies, grassroots programs, and new commercial initiatives have reshaped long-standing methods of operation. Throughout the last 28 years, the International Space University (ISU) has been a leading institution for space education, forming international partnerships, and encouraging entrepreneurship in its over 4,000 alumni. In this report, our Vision 2040 team projected the next 25 years of space exploration and analyzed how ISU could remain a leading institution in the rapidly changing industry. Vision 2040 considered five important future scenarios for the space sector: real-time Earth applications, orbital stations, lunar bases, lunar and asteroid mining, and a human presence on Mars. We identified the signals of disruptive change within these scenarios, including underlying driving forces and potential challenges, and derived a set of skills that will be required in the future space industry. Using these skills as a starting point, we proposed strategies in five areas of focus for ISU: the future of the Space Studies Program (SSP), analog missions, outreach, alumni, and startups. We concluded that ISU could become not just an increasingly innovative educational institution, but one that acts as an international organization that drives space commercialization, exploration, innovation, and cooperation.
Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.
Space Station: Leadership for the Future
NASA Technical Reports Server (NTRS)
Martin, Franklin D.; Finn, Terence T.
1987-01-01
No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space.
Space radiation health program plan
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.
Critical Technologies for the Development of Future Space Elevator Systems
NASA Technical Reports Server (NTRS)
Smitherman, David V., Jr.
2005-01-01
A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.
2012-02-17
International Cooperation: NASA international cooperation provides opportunities for utilization of space by NASA partners worldwide. Cooperative programs allow each participating country to contribute its special talents and facilities to a common goal. International cooperation is a cornerstone of NASA’s space program today with multi-national crews living and working aboard the International Space Station. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
1995-11-12
The STS-76 crew patch depicts the Space Shuttle Atlantis and Russia's Mir Space Station as the space ships prepare for a rendezvous and docking. The Spirit of 76, an era of new beginnings, is represented by the Space Shuttle rising through the circle of 13 stars in the Betsy Ross flag. STS-76 begins a new period of international cooperation in space exploration with the first Shuttle transport of a United States astronaut, Shannon W. Lucid, to the Mir Space Station for extended joint space research. Frontiers for future exploration are represented by stars and the planets. The three gold trails and the ring of stars in union form the astronaut logo. Two suited extravehicular activity (EVA) crew members in the outer ring represent the first EVA during Shuttle-Mir docked operations. The EVA objectives were to install science experiments on the Mir exterior and to develop procedures for future EVA's on the International Space Station. The surnames of the crew members encircle the patch: Kevin P. Chilton, mission commander; Richard A. Searfoss, pilot; Ronald M. Sega, Michael R. ( Rich) Clifford, Linda M. Godwin and Lucid, all mission specialists. This patch was designed by Brandon Clifford, age 12, and the crew members of STS-76.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1985-01-01
Space exploration goals for NASA in the year 2000 time frame are examined. A lunar base would offer the opportunity for continuous earth viewing, further cosmogeochemical exploration and rudimentary steps at self-sufficiency in space. The latter two factors are also compelling reasons to plan a manned Mars base. Furthermore, competition and cooperation in a Mars mission and further interplanetary exploration is an attractive substitute for war. The hardware requirements for various configurations of Mars missions are briefly addressed, along with other, unmanned missions to the asteroid belt, Mercury, Venus, Jupiter and the moons of Jupiter and Saturn. Finally, long-range technological requirements for providing adequate living/working facilities for larger human populations in Space Station environments are summarized.
Services, architectures, and protocols for space data systems
NASA Technical Reports Server (NTRS)
Helgert, Hermann J.
1991-01-01
The author presents a comprehensive discussion of three major aspects of the work of the Consultative Committee for Space Data Systems (CCSDS), a worldwide cooperative effort of national space agencies. The author examines the CCSDS space data communications network concept on which the data communications facilities of future advanced orbiting systems will be based. He derives the specifications of an open communications architecture as a reference model for the development of services and protocols that support the transfer of information over space data communications networks. Detailed specifications of the communication services and information transfer protocols that have reached a high degree of maturity and stability are offered. The author also includes a complete list of currently available CCSDS standards and supporting documentation.
NASA's commercial space program - Initiatives for the future
NASA Technical Reports Server (NTRS)
Rose, James T.; Stone, Barbara A.
1990-01-01
NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.
Transformational System Concepts and Technologies for Our Future in Space
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.
2004-01-01
Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process. The success of this well planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.
Antarctica - Lessons for a Mars exploration program
NASA Technical Reports Server (NTRS)
Mckay, C. P.
1985-01-01
The history of exploration and the international system of control of Antarctica has often been cited as a paradigm for the exploration of space. The small isolated research stations have been used to model the psychological stresses of future space missions. In addition, the programmatic structure of the U.S. Antarctic Research Program provides several possible analogs to future Mars Programs presently under discussion. These are: (1) Continued presence; (2) Civilian, military and private sector involvement; (3) Scientific activities; (4) Risk assessment and logistical support; (5) Accessibility for non-specialists; (6) Political and strategic motivations; (7) International cooperation/competition. Survival in Antarctica is contingent on advanced technology and the active transport of supplies. The scientific exploration of this remote and barren expanse without, of course, the aid and guidance of indigenous people certainly provides one of the closest analogs available to future science activities on the Martian surface.
Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-05-28
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.
Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks
Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan
2013-01-01
Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087
1989-11-21
Assesses Future Role 90EP0068C Warsaw RZECZPOSPOLITA in Polish 16-17Sep89p8 [Article by (kraj): "The Dim Future of the Cooperative Movement "] [Text...on the future and direction of development. In short, the future of the Polish cooperative movement will be discussed. It is hard to say what the... movement . And we can fully agree with this, on condition that this is a genuine cooperative movement . Role of Cooperatives in Changing Economic
Summary and Recommendations for Future Work. Chapter 12
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Shavers, Mark R.; Saganti, Premkumar B.; Miller, Jack
2003-01-01
The safety of astronauts is the primary concern of all space missions. Space radiation has been identified as a major concern for ISS, and minimizing radiation risks during EVA is a principle component of NASA s radiation protection program. The space suit plays a critical role in shielding astronauts from EVA radiation exposures. In cooperation with the JSC Extravehicular Activity Project Office, and the Space Radiation Health Project Office, the NASA EMU and RSA Orlan space suits were taken to the LLUPTF for a series of measurements with proton and electron beams to simulate exposures during EVA operations. Additional tests with material layouts of the EMU suit sleeve were made in collaboration with NASA LaRC at the LBNL 88-inch cyclotron and at the Brookhaven National Laboratory Alternating Gradient Synchrotron.
Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)
NASA Astrophysics Data System (ADS)
Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.
2012-04-01
Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021 dd. 30.11.10)
One year old and growing: a status report of the International Space Station and its partners
NASA Technical Reports Server (NTRS)
Bartoe, J. D.; Fortenberry, L.
2000-01-01
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future. Published by Elsevier Science Ltd.
2002-03-01
The International Space Station (ISS) Expedition 6 crew patch depicts the station orbiting the Earth on its mission of international cooperation and scientific research. The Earth is placed in the center of the patch to emphasize that work conducted aboard this orbiting laboratory is intended to improve life on our home planet. The shape of the Space Station’s orbit symbolizes the role that experience gained from ISS will have on future exploration of our solar system and beyond. The American and Russian flags encircling the Earth represent the native countries of the Expedition 6 crew members, which are just two of the many participant countries contributing to the ISS and committed to the peaceful exploration of space.
2002-03-01
The International Space Station (ISS) Expedition 6 crew patch depicts the station orbiting the Earth on its mission of international cooperation and scientific research. The Earth is placed in the center of the patch to emphasize that work conducted aboard this orbiting laboratory is intended to improve life on our home planet. The shape of the Space Station’s orbit symbolizes the role that experience gained from ISS will have on future exploration of our solar system and beyond. The American and Russian flags encircling the Earth represent the native countries of the Expedition 6 crew members, which are just two of the many participant countries contributing to the ISS and committed to the peaceful exploration of space.
The International Space Life Sciences Strategic Planning Working Group
NASA Technical Reports Server (NTRS)
White, Ronald J.; Rabin, Robert; Lujan, Barbara F.
1993-01-01
Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.
Space transportation systems within ESA programmes: Current status and perspectives
NASA Astrophysics Data System (ADS)
Delahais, Maurice
1993-03-01
An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.
Soviet/Russian-American space cooperation
NASA Astrophysics Data System (ADS)
Karash, Yuri Y.
This dissertation seeks to answer two questions: (1) what are the necessary conditions for the emergence of meaningful space cooperation between Russia and the United States, and (2) might this cooperation continue developing on its own merit, contributing to the further rapprochement between the two countries, even if the conditions that originated the cooperation were to change? The study examines the entire space era up to this point, 1957 to 1997, from the first satellite launch through the joint U.S.-Russian work on the ISS project. It focuses on the analysis of three distinct periods of possible and real cooperation between the United States and the Soviet Union/Russia. The first possibility for a limited Soviet-American cooperation in space emerged in the late 1950s, together with the space age, and continued until the mid-1960s. The major potential joint project of this period was a human expedition to the Moon. The global competition/confrontation between the two countries prevented actual cooperation. The second period was from the late 1960s until 1985 with consideration of experimental docking missions, including the docking of a reusable U.S. shuttle to a Soviet Salyut-type station. The global U.S.-Soviet competition still continued, but the confrontation was replaced by detente for a brief period of time lasting from the end of 1960s until mid-1970s. Detente gave the first example of U.S.-Soviet cooperation in space---the Apollo-Soyuz joint space flight (ASTP) which took place in 1975. However, the lack of interest of political leaderships in continuation of broad-scale cooperation between the two countries, and the end of detente, removed ASTP-like projects out of question at least until 1985. The third period started together with Mikhail Gorbachev's Perestroika in 1985 and continues until now. It involves almost a hundred of joint space projects both at the governmental and at the private sectors levels. The mainstream of the joint activities became U.S.-Russian work on the International Space Station (ISS). The interest of the Kremlin and White House in making space an "area of common interests" for the two countries, the interest of U.S. and Russian space communities in meaningful cooperation with each other, and the interdependence of the two countries within the ISS project, give hope that the U.S.-Russian cooperation will finally develop a long-term character.
The role of the International Space University in building capacity in emerging space nations.
NASA Astrophysics Data System (ADS)
Richards, Robert
The International Space University provides graduate-level training to the future leaders of the emerging global space community at its Central Campus in Strasbourg, France, and at locations around the world. In its two-month Summer Session and one-year Masters program, ISU offers its students a unique Core Curriculum covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. Both programs also involve an intense student research Team Project providing international graduate students and young space professionals the opportunity to solve complex problems by working together in an intercultural environment. Since its founding in 1987, ISU has graduated more than 2500 students from 96 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation.
Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture
NASA Astrophysics Data System (ADS)
Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López
2017-11-01
With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.
Properties of a Formal Method to Model Emergence in Swarm-Based Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Vanderbilt, Amy; Truszkowski, Walt; Rash, James; Hinchey, Mike
2004-01-01
Future space missions will require cooperation between multiple satellites and/or rovers. Developers are proposing intelligent autonomous swarms for these missions, but swarm-based systems are difficult or impossible to test with current techniques. This viewgraph presentation examines the use of formal methods in testing swarm-based systems. The potential usefulness of formal methods in modeling the ANTS asteroid encounter mission is also examined.
NASA Astrophysics Data System (ADS)
Viso, Michel
The committee for Space research was established by the International Council of Scientific Union during the year following the launch of Sputnik 1(October 4th, 1957) which opened the space Era. The committee was the main point of contact in the, then, bipolarized world between scientists from the eastern and western countries. This committee remained the main and sometimes the sole point of contact for the scientists from both parties. During this period, called “cold war” the exchanges were very difficult and language barrier was also a major obstacle in exchanges. Beyond its former, strong political significance, COSPAR aims at promoting the space research, the exchanges of results, information. It was often the starting point of actual scientific cooperation. Even COSPAR has a continuous activity, the focal point for most of the space scientists is the general assembly which was held every year from 1958 up to 1980, then once every other year. The governing body is composed of representatives of various institutions and scientific unions. With the present structure by commissions and sub-commissions, the general assembly are quite big events with numerous scientists working in parallel sessions. The number of oral presentations and poster is continuously increasing. COSPAR is the best and perhaps the unique place for space scientists to exchange and enlarge their vision of space science. While structured in specialized commissions individuals can build up their own interdisciplinary program. Beyond the commissions there are several groups of interests, cross disciplinary and not linked to a single scientific domain: these are the panels. Some are supposed to be transient; some are supposed to be indefinite. The panels can propose advices and recommendations which could be used by the space agencies or other institutions. The officers of the panels are appointed by the COSPAR Bureau. COSPAR is an international cooperative body for scientists. It is the ideal place for young scientist to extend their knowledge not only in their own field but also in other disciplines to prepare their own future and their future research. COSPAR is editing two scientific journals and a bulletin. Just use them!! You are scientists, you are interested in space sciences or science in space; COSPAR is good for you!
NASA Astrophysics Data System (ADS)
van den Dool, T. C.; Kamphues, F.; Gielesen, W.; Dorrepaal, M.; Doelman, N.; Loix, N.; Verschueren, J. P.; Kooijman, P. P.; Visser, M.; Velsink, G.; Fleury, K.
2005-08-01
TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has developed a compact breadboard cryogenic Optical Delay Line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard delay line is representative of a future flight mechanism, with all used materials and processes being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings are used for guiding. They provide frictionless and wear free operation with zero-hysteresis. The manufacturing, assembly and acceptance testing have been completed and are reported in this paper. The verification program, including functional testing at 40 K, will start in the final quarter of 2005.
NASA Technical Reports Server (NTRS)
de Jong, Daphne
2015-01-01
From the 1st of June until the 21st of August, the internship has been conducted at NASA Ames Research Center as part of the Master of Space Studies at the International Space University. The main activities consisted of doing research on UAV flight--testing and the assessing of safety with respect to Beyond--Line--Of--Sight operations. Further activities consisted of accommodating international partners and potential partners at the NASA Ames site, in order to identify mutual interest and future collaboration. Besides those activities, the report describes the planning process of the ISU Space Coast Trip to 10 different space related companies on the west--coast of California. Key words: UAS, UAV, BLOS, Ames, ISU Trip
Senate subcommittee examines NASA's identity crisis
NASA Astrophysics Data System (ADS)
Leath, Audrey T.
With the Cold War fading into history, economic competitiveness becoming the watchwords of the decade, and the space race against the Russians turning into probable cooperation, NASA is struggling to redefine its role. On November 16, the Senate Commerce Subcommittee on Science, Technology and Space invited NASA Administrator Daniel Goldin, Martin Marietta CEO Norman Augustine, and Robert Frosch of Harvard University's John F. Kennedy School of Government to offer their thoughts on NASA's plans, priorities, and budgetary difficulties. Augustine, who chaired the Committee on the Future of the U.S. Space Program in 1990, posed two questions: What does America want its space program to be, and can the country afford to pay for the program it wants? He stated bluntly that if the answers were incompatible, “we are unlikely to have a satisfactory program.”
NASA Technical Reports Server (NTRS)
1984-01-01
The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.
Space/ground systems as cooperating agents
NASA Technical Reports Server (NTRS)
Grant, T. J.
1994-01-01
Within NASA and the European Space Agency (ESA) it is agreed that autonomy is an important goal for the design of future spacecraft and that this requires on-board artificial intelligence. NASA emphasizes deep space and planetary rover missions, while ESA considers on-board autonomy as an enabling technology for missions that must cope with imperfect communications. ESA's attention is on the space/ground system. A major issue is the optimal distribution of intelligent functions within the space/ground system. This paper describes the multi-agent architecture for space/ground systems (MAASGS) which would enable this issue to be investigated. A MAASGS agent may model a complete spacecraft, a spacecraft subsystem or payload, a ground segment, a spacecraft control system, a human operator, or an environment. The MAASGS architecture has evolved through a series of prototypes. The paper recommends that the MAASGS architecture should be implemented in the operational Dutch Utilization Center.
NASA Technical Reports Server (NTRS)
1973-01-01
Brief summaries are given of NASA's participation in international space programs. This participation can be categorized in five principal areas: manned space flight, space sciences, space applications, ground support of space operations, and cooperative international aeronautics research. All projects are carried out on a cooperative or reimbursable basis.
The design of a breadboard cryogenic optical delay line for DARWIN
NASA Astrophysics Data System (ADS)
van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.
2004-09-01
TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a future flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The BB delay line will be built in the second half of 2004. The manufacturing and assembly phase is followed by a comprehensive test program, including functional testing at 40 K in 2005. The tests will be carried out by Alcatel Space and SAGEIS-CSO.
A new cooperative strategy for space in the 21st century
NASA Technical Reports Server (NTRS)
Delpech, J. F.; Logsdon, J. M.; Meslin, B.
1993-01-01
The context within which the major government space programs of the world are planned and obtain political approval has changed dramatically with the end of the Cold War. International economic competition has become a central issue in international affairs. Economic and political constraints require that space agencies adapt the ambitious plans they put forward in the 1980s to the realities of this decade and beyond. This paper argues that in this changed context, enhanced international space cooperation can make important contributions to advancing the core interests of nations and firms, and that in some situations, increased and more intimate cooperation may be the only way to achieve ambitious space goals. The paper contains a series of policy-oriented findings and recommendations that together comprise a 'new cooperative strategy' for space.
International Cooperation and Competition in Civilian Space Activities.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
This report assesses the state of international competition in civilian space activities, explores United States civilian objectives in space, and suggests alternative options for enhancing the overall U.S. position in space technologies. It also investigated past, present, and projected international cooperative arrangements for space activities…
Investment and Return in International Space Life Sciences Research Cooperation
NASA Technical Reports Server (NTRS)
McPhee, Jancy C.; White, Ronald J.
2007-01-01
Today, a worldwide community of life scientists interested in space research is attempting to improve the understanding of general biological processes, aid the development of procedures to reduce the biomedically-related risks of space flight, and/or directly support the health care of people who fly in space. Unfortunately, limited resource and subject availability and the technical challenges of performing space experiments have all hampered the full growth and development of space life sciences research. For many years, international cooperation in this field has been considered an attractive approach towards overcoming some of these difficulties, since pooling resources and sharing results would enhance the knowledge of all cooperating partners. International cooperative activities, however, require an investment by each partner and, just as in many other endeavors, the research gain can be directly related to the investment made. In this paper, the authors will discuss three possible levels of cooperation: sharing of data from independent investigations, harmonious integration of pre-designed independent investigations, and de novo design of an integrated suite of investigations using a joint investigator team. The degree of investment and potential return for each level of cooperation will be described.
NASA International Environmental Partnerships
NASA Technical Reports Server (NTRS)
Lewis, Pattie; Valek, Susan
2010-01-01
For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.
International cooperation in the Space Station programme - Assessing the experience to date
NASA Technical Reports Server (NTRS)
Logsdon, John M.
1991-01-01
The origins and framework for cooperation in the Space Station program are outlined. Particular attention is paid to issues and commitments between the countries and to the political context of the Station partnership. A number of conclusions concerning international cooperation in space are drawn based on the Space Station experience. Among these conclusions is the assertion that an international partnership requires realistic assesments, mutual trust, and strong commitments in order to work.
Back to the future: Rational maps for exploring acetylcholine receptor space and time.
Tessier, Christian J G; Emlaw, Johnathon R; Cao, Zhuo Qian; Pérez-Areales, F Javier; Salameh, Jean-Paul J; Prinston, Jethro E; McNulty, Melissa S; daCosta, Corrie J B
2017-11-01
Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Froehlich, Annette
2010-04-01
The two European flagship space projects, Galileo and GMES, clearly show that the current existing legal rules of the two organisations involved (European Union and European Space Agency) are not compatible. Moreover, it is quite impossible to implement a common project if every single organisation insists on the application of its own rules strictu sensu. Nevertheless, due to the political desire to advance these projects rapidly and to make them a success, legal obstacles were to be overcome. Consequently, recently concluded agreements between ESA and the EU-Commission concerning the financial and governmental matters of the Galileo and GMES implementation feature a new approach to cooperation between these two organisations. However, the question remains if they can be taken as precedence for a future institutionalised cooperation? It follows that the agreements have to be analysed in order to understand how a mutually acceptable agreement was reached despite the disparity in the rules of both organisations. In this regard, especially the financial decision agreement concerning Galileo in December 2007 shows a very interesting and unique way in applying EU-competition law. In the same way, the GMES-Delegation Agreement of spring 2008 is a good example of how two different legal systems can be applied to make a project success. Additionally, the reasons and arguments of both organisations have to be considered, especially once the Treaty of Lisbon will be in force. As these two main projects of the European Space Policy are characterized by the desire for a successful European cooperation, they can be regarded as an important step forward for a new legal approach. A new system emerges which could be taken into consideration for further common projects undertaken by ESA and the EU.
Technology transfer personnel exchange at the Boeing Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.
1993-03-01
The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less
Technology transfer personnel exchange at the Boeing Company
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.
1993-03-01
The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less
Beyond Earth's boundaries: Human exploration of the Solar System in the 21st Century
NASA Technical Reports Server (NTRS)
1991-01-01
This is an annual report describing work accomplished in developing the knowledge base that will permit informed recommendations and decisions concerning national space policy and the goal of human expansion into the solar system. The following topics are presented: (1) pathways to human exploration; (2) human exploration case studies; (3) case study results and assessment; (4) exploration program implementation strategy; (5) approach to international cooperation; (6) recommendations; and (7) future horizons.
Toward Cooperation or Conflict on the Moon? Considering Lunar Governance in Historical Perspective
2009-01-01
Clay Moltz The question of how the moon will be governed once humans return in about a decade and begin to establish permanent bases matters greatly...list in the coming years. Establishing a peaceful framework for lunar governance will be im portant, because hostile international relations on the...Press, 2008). The author thanks the members of the Space Futures Working Group at the NASA Ames Research Center in Mountain View, California, for their
NASA Technical Reports Server (NTRS)
1996-01-01
In October 1992, the National Aeronautics and Space Administration (NASA) and the Russian Space Agency (RSA) formally agreed to conduct a fundamentally new program of human cooperation in space. The 'Shuttle-Mir Program' encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz Test Module(TM), and Mir station spacecraft. At that time, NASA and RSA limited the project to: the STS-60 mission carrying the first Russian cosmonaut to fly on the U.S. Space Shuttle; the launch of the first U.S. astronaut on the Soyuz vehicle for a multi-month mission as a member of a Mir crew; and the change-out of the U.S.-Russian Mir crews with a Russian crew during a Shuttle rendezvous and docking mission with the Mir Station. The objectives of the Phase 1 Program are to provide the basis for the resolution of engineering and technical problems related to the implementation of the ISS and future U.S.-Russian cooperation in space. This, combined with test data generated during the course of the Shuttle flights to the Mir station and extended joint activities between U.S. astronauts and Russian cosmonauts aboard Mir, is expected to reduce the technical risks associated with the construction and operation of the ISS. Phase 1 will further enhance the ISS by combining space operations and joint space technology demonstrations. Phase 1 also provides early opportunities for extended U.S. scientific and research activities, prior to utilization of the ISS.
Department of Defense International Space Cooperation Strategy
2017-01-01
Secretary of Defense on .January 18. 2017. the unclassified version provides DoD’s approach for invigorating cooperation and collaboration with trusted ...Cooperation Strategy (ISCS) establishes DoD’ s approach for invigorating cooperation and collaboration with trusted allies and partners across the...collaborating with trusted allies and partners to address shared security challenges by leveraging allies’ and partners ’ capabilities to enhance space mission
New role for space station—Enhanced cooperation with Russia?
NASA Astrophysics Data System (ADS)
Leath, Audrey T.
The Clinton administration's recent discussions with Russia on enhanced space cooperation and a possible joint space station prompted a two-part hearing by the House Science Subcommittee on Space, held on October 6 and 14. Subcommittee members, citing rumors and news stories about a joint station, questioned Presidential Science Advisor Jack Gibbons and NASA Administrator Daniel Goldin on the status of the proposed cooperation and heard from additional witnesses regarding the feasibility of and support for the concept.Gibbons reassured subcommittee members that no decision has yet been made on Russian cooperation, and that Congress would be consulted in the process. He explained that, after the Vancouver Summit, establishment of a Joint Commission headed by Vice President Gore and Russian Prime Minister Chernomyrdin provided an opportunity for enhanced cooperation in space, as well as in such other areas as energy, nuclear safety, the environment, business development, science and technology, and defense diversification. Gibbons testified that the study of a cooperative station program took place concurrently with NASA's work on defining the redesigned U.S. space station, now being referred to as “Alpha.” He affirmed that while Alpha's modular design made it adaptable to a joint effort, it could “be built independent of any Russian participation.”
Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning.
Liu, Weirong; Zhuang, Peng; Liang, Hao; Peng, Jun; Huang, Zhiwu; Weirong Liu; Peng Zhuang; Hao Liang; Jun Peng; Zhiwu Huang; Liu, Weirong; Liang, Hao; Peng, Jun; Zhuang, Peng; Huang, Zhiwu
2018-06-01
Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.
Attaining Situational Understanding in the Space Domain
NASA Astrophysics Data System (ADS)
Schiff, B.; Foster, J.; McShane, W.; Simon, K.
The information available today in the space domain consists primarily of basic positional, mission, and status data for ground and space based assets. This data provides a necessary, but not sufficient, basis for understanding the true situation of the overall space domain. Experts analyze this information, put it into context with other ongoing events, and then make assessments of the risks posed to allied assets. The potential for unknown, unexpected, and unprecedented situations to overwhelm this manual process is increasing as the number of space faring nations and orbiting objects increases. This paper describes a product family called iSpace that Lockheed has created, and continues to invest in, to help tackle the problems of attaining space information more timely, deriving deeper space situational understanding from the data, and integrating components and tools generated throughout the world-wide industry to contribute towards a comprehensive space solution. We will also update the group on iSpace’s usage in the USSTRATCOM Space Situational Awareness (SSA) Table Top Exercises (TTX), used to explore future SSA cooperation concepts and procedures among allied nations.
2015-01-06
CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden looked over the agency's Orion spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. At right is Kennedy Space Center Associate Director Kelvin Manning. At left is Paul Cooper, a Lockheed Martin manager. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston
First International Microgravity Laboratory
NASA Technical Reports Server (NTRS)
Mcmahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise
1990-01-01
This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.
Space nuclear power: Key to outer solar system exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, G.L.; Allen, D.M.
1998-07-01
In 1995, in response to threatened budget cuts, the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper supporting the maintenance of the technology base for space nuclear power. The position paper contained four recomemndations: (1) DOE, NASA, and DoD should develop and support an integrated program that maintains the nuclear option and develops the needed high-payoff technologies; (2) Congress should provide strong, continuing financial and political support for the agencies' program; (3) Government and industry leaders should voice their advocacy for a strong space nuclear power program to support future system requirements; and (4) The US shouldmore » continue to maintain its cooperation and technical interchanges with other countries to advance nuclear power source technology and to promote nuclear safety.« less
2002-08-30
KENNEDY SPACE CENTER, FLA. -- Cape Canaveral Spaceport leaders gather after the master plan signing ceremony at Port Canaveral Terminal 10. From left are Canaveral National Seashore Superintendent Robert Newkirk, Canaveral Port Authority Executive Director Malcolm "Mac" McLouth, KSC Director Roy Bridges Jr., U.S. Sen. Bill Nelson, 45th Space Wing Commander Gregory Pavlovich, U.S. Fish & Wildlife Services Refuge Manager Ron Hight, Naval Ordnance Test Unit Commanding Officer William Borger, and Florida Space Authority Executive Director Ed Gormel. The plan represents interagency cooperation between the leadership group's agencies and the U.S. Fish and Wildlife Service, the National Park Service and U.S. Navy. Joining them in developing a vision of the Spaceport's future have been aerospace educators, researchers, and businesses, along with representatives from local, state and national government.
2002-08-28
KENNEDY SPACE CENTER, FLA. -- Cape Canaveral Spaceport leaders gather after the master plan signing ceremony at Port Canaveral Terminal 10. From left are Canaveral National Seashore Superintendent Robert Newkirk, Canaveral Port Authority Executive Director Malcolm "Mac" McLouth, KSC Director Roy Bridges Jr., U.S. Rep. Dave Weldon, 45th Space Wing Commander Gregory Pavlovich, U.S. Fish & Wildlife Services Refuge Manager Ron Hight, Naval Ordnance Test Unit Commanding Officer William Borger, and Florida Space Authority Executive Director Ed Gormel. The plan represents interagency cooperation between the leadership group's agencies and the U.S. Fish and Wildlife Service, the National Park Service and U.S. Navy. Joining them in developing a vision of the Spaceport's future have been aerospace educators, researchers, and businesses, along with representatives from local, state and national government.
2002-08-30
KENNEDY SPACE CENTER, FLA. - U.S. Sen. Bill Nelson talks to the media after the master plan signing ceremony at Port Canaveral Terminal 10. Also attending were Canaveral National Seashore Superintendent Robert Newkirk, Canaveral Port Authority Executive Director Malcolm "Mac" McLouth, KSC Director Roy Bridges Jr., U.S. Rep. Dave Weldon, 45th Space Wing Commander Gregory Pavlovich, U.S. Fish & Wildlife Services Refuge Manager Ron Hight, Naval Ordnance Test Unit Commanding Officer William Borger, and Florida Space Authority Executive Director Ed Gormel. The plan represents interagency cooperation between the leadership group's agencies and the U.S. Fish and Wildlife Service, the National Park Service and U.S. Navy. Joining them in developing a vision of the Spaceport's future have been aerospace educators, researchers, and businesses, along with representatives from local, state and national government.
2002-08-30
KENNEDY SPACE CENTER, FLA. -- Center Director Roy Bridges addresses guests at the master plan signing ceremony at Port Canaveral Terminal 10. Also attending were Canaveral National Seashore Superintendent Robert Newkirk, Canaveral Port Authority Executive Director Malcolm "Mac" McLouth, KSC Director Roy Bridges Jr., U.S. Rep. Dave Weldon, U.S. Sen. Bill Nelson, 45th Space Wing Commander Gregory Pavlovich, U.S. Fish & Wildlife Services Refuge Manager Ron Hight, Naval Ordnance Test Unit Commanding Officer William Borger, and Florida Space Authority Executive Director Ed Gormel. The plan represents interagency cooperation between the leadership group's agencies and the U.S. Fish and Wildlife Service, the National Park Service and U.S. Navy. Joining them in developing a vision of the Spaceport's future have been aerospace educators, researchers, and businesses, along with representatives from local, state and national government.
Expanding NASA Science Cooperation with New Partners
NASA Astrophysics Data System (ADS)
Allen, Marc; Bress, Kent
Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.
Long-term/strategic scenario for reusable booster stages
NASA Astrophysics Data System (ADS)
Sippel, Martin; Manfletti, Chiara; Burkhardt, Holger
2006-02-01
This paper describes the final design status of a partially reusable space transportation system which has been under study for five years within the German future launcher technology research program ASTRA. It consists of dual booster stages, which are attached to an advanced expendable core. The design of the reference liquid fly-back boosters (LFBB) is focused on LOX/LH2 propellant and a future advanced gas-generator cycle rocket motor. The preliminary design study was performed in close cooperation between DLR and the German space industry. The paper's first part describes recent progress in the design of this reusable booster stage. The second part of the paper assesses a long-term, strategic scenario of the reusable stage's operation. The general idea is the gradual evolution of the above mentioned basic fly-back booster vehicle into three space transportation systems performing different tasks: Reusable First Stage for a small launcher application, successive development to a fully reusable TSTO, and booster for a super-heavy-lift rocket to support an ambitious space flight program like manned Mars missions. The assessment addresses questions of technical sanity, preliminary sizing and performance issues and, where applicable, examines alternative options.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Taxes. 1260.64 Section 1260.64 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.64 Taxes. Taxes (For grants or cooperative agreements with foreign organizations...
14 CFR 1274.207 - Extended agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Extended agreements. 1274.207 Section 1274.207 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Pre-Award Requirements § 1274.207 Extended agreements. (a) Multiple year cooperative...
14 CFR 1274.207 - Extended agreements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Extended agreements. 1274.207 Section 1274.207 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Pre-Award Requirements § 1274.207 Extended agreements. (a) Multiple year cooperative...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Taxes. 1260.64 Section 1260.64 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.64 Taxes. Taxes (For grants or cooperative agreements with foreign organizations...
Curriculum in aerospace science and technology in cooperation with NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Garner-Gilchrist, Cathine
1988-01-01
A curriculum was written to show teachers how to best use the many resources that are available at the Teacher Resource Center (TRC). This curriculum packet was written using teaching units that teachers in both the elementary and middle schools can use to help students better understand some of the research that has been conducted at NASA and will be conducted in the future. The units are written with certain standards. Each unit contains: (1) specific objectives, using the Virginia standards of learning; (2) the materials that are available from the TRC; (3) many activities that teachers can use in a variety of ways; and (4) specific strategies for measuring the objectives to determine if the students mastered the knowledge, concepts or skills that were taught. The curriculum packet contains specific units on several topics. They are: (1) Careers in Aerospece Science and Technology; (2) The History of Flight; (3) The History of Satellites; (4) The History of the Manned Space Projects and the Future of the Future of the Space Program; (5) The Solar System; and (6) The History of Rockets.
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Alkalai, Leon
1996-01-01
Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.
South Korea--U.S. Economic Relations: Cooperation, Friction, and Future Prospects
2004-07-01
The Korean won lost half its value in the space of a few days, tumbling from 900 to 1900 won to the dollar. In a futile attempt to prop up the...elected longtime democracy activist Kim Dae Jung to the presidency, the first time since the early 1960s that an opposition leader had won the...the 1997 crisis, banks and other financial institutions turned to consumers — at times recklessly — as a new source of profit. CRS-5 2 Hye- Seung Seo
The Skylab Student Project. [high school winners selection and experiments description
NASA Technical Reports Server (NTRS)
Floyd, H. B.
1973-01-01
The National Aeronautics and Space Administration (NASA) and the National Science Teachers' Association (NSTA) undertook in 1971 a cooperative effort which brought high school students of the Nation into the mainstream of Skylab research through the Skylab Student Project. This paper presents the background, objectives and scope of the project, experiment selection procedures, as well as experiment descriptions and status. The paper includes observations on student caliber and inclinations and implications of some developments for the benefit of future researchers.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard
2015-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the Russian led science payload, focusing on developing an characterising the resource opportunities offered at the lunar surface. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. In the frame of a broader future international programme under discussion through the International Space Exploration Coordination Group (ISECG) future missions are under investigation that would provide access to the lunar surface through international cooperation and human-robotic partnerships.
The Architecture and Application of RAMSES, a CCSDS and ECSS PUS Compliant Test and Control System
NASA Astrophysics Data System (ADS)
Battelino, Milan; Svard, Christian; Carlsson, Anna; Carlstedt-Duke, Theresa; Tornqvist, Marcus
2010-08-01
SSC, Swedish Space Corporation, has more than 30 years of experience in developing test and control systems for sounding rockets, experimental test modules and satellites. The increasing amount of ongoing projects made SSC to consider developing a test and control system conformant to CCSDS (Consultative Committee for Space Data Systems) and ECSS (European Cooperation for Space Standardization), that with small effort and cost, could be reused between separate projects and products. The foreseen reduction in cost and development time for different future space-related projects made such a reusable control system desirable. This paper will describe the ideas behind the RAMSES (Rocket and Multi-Satellite EMCS Software) system, its architecture and how it has been and is being used in a variety of applications at SSC such as the multi-satellite mission PRISMA and sounding rocket project MAXUS-8.
Research on the Legislation of Chinese Space Laws
NASA Astrophysics Data System (ADS)
Yang, Dongwen
2002-01-01
1 Need and necessity for the legislation of Chinese space activities --Complying with UN treaties and principles on outer space --Adapting to the requirements of market economy --Promoting the further development of Chinese space activities --Developing international space cooperation 2 Research method for legislation of Chinese space activities The research method is ROCCIPI. This method was introduced into China with the project "Legislation Supports Economy Reform" supported by the UN Office of Development Planning - By analyzing the correlations among the seven factors: Rule, Opportunity, Capacity, Communication, Interest, Process and Ideology, the optimal legal measures can be found . Such analysis and research works on the master law of Chinese space activities have been made in the paper. 3 Research of international treaties &principles on outer space, and of national space laws of other countries. Studies have been made in this paper on many aspects of international outer space laws, such as framework, development stage, current characteristics, new problems will be faced with in new century, and development tendency in the future, etc. Based on the investigation and study of national space laws of other countries, analyses and researches on national space law have been made in the paper from some aspects, such as legislative purpose, legislative aim, legislative form, legislative content and etc, and some enlightenments, which can be used for reference in the legislation of Chinese Space Laws, are found. 4 Framework of Chinese Space Laws The jurisdiction of Chinese Space Laws lies in three areas: space technology - space applications and space science. Chinese Space Laws are divided into 3 levels: Master law, Administration Regulations of the State Council of the P.R.C, Rules of governmental sectors. 5 Conclusions and Suggestions --The legislation of Chinese Space Activities should be strengthened --More attentions should be paid to the research work in the policies &laws of Chinese space --The international exchanges and cooperation in the research work of space laws should be --The system of Chinese Space Laws should be constructed by the master law of Chinese space
Following Up: Huygens Data, Questions Will Guide Cassini on Its Future Titan Passes
NASA Technical Reports Server (NTRS)
Morring, Frank, Jr.; Taverna, Michael A.
2005-01-01
Planetary scientists plan to use the instruments on NASA's Cassini Saturn orbiter in future flybys of Titan to answer questions raised by Europe's Huygens probe. In particular, they hope to discover whether the dark, flat areas on the moon's surface are liquid or quasi-liquid methane seas. As the scientists plotted their next moves, European Space Agency (ESA) officials continued their investigation into how a critical command in the Huygens descent sequence was omitted costing the imaging team half of its data and rendering another Huygens instrument useless. There were suggestions that U.S. export-control rules may have hampered the sort of close international cooperation that might have caught the error.
Spacecraft Modularity for Serviceable Satellites
NASA Technical Reports Server (NTRS)
Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert
2015-01-01
Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.
Evolution of cooperation in a multidimensional phenotype space.
Kroumi, Dhaker; Lessard, Sabin
2015-06-01
The emergence of cooperation in populations of selfish individuals is a fascinating topic that has inspired much theoretical work. An important model to study cooperation is the phenotypic model, where individuals are characterized by phenotypic properties that are visible to others. The phenotype of an individual can be represented for instance by a vector x = (x1,…,xn), where x1,…,xn are integers. The population can be well mixed in the sense that everyone is equally likely to interact with everyone else, but the behavioral strategies of the individuals can depend on their distance in the phenotype space. A cooperator can choose to help other individuals exhibiting the same phenotype and defects otherwise. Cooperation is said to be favored by selection if it is more abundant than defection in the stationary state. This means that the average frequency of cooperators in the stationary state strictly exceeds 1/2. Antal et al. (2009c) found conditions that ensure that cooperation is more abundant than defection in a one-dimensional (i.e. n = 1) and an infinite-dimensional (i.e. n = ∞) phenotype space in the case of the Prisoner's Dilemma under weak selection. However, reality lies between these two limit cases. In this paper, we derive the corresponding condition in the case of a phenotype space of any finite dimension. This is done by applying a perturbation method to study a mutation-selection equilibrium under weak selection. This condition is obtained in the limit of a large population size by using the ancestral process. The best scenario for cooperation to be more likely to evolve is found to be a high population-scaled phenotype mutation rate, a low population-scaled strategy mutation rate and a high phenotype space dimension. The biological intuition is that a high population-scaled phenotype mutation rate reduces the quantity of interactions between cooperators and defectors, while a high population-scaled strategy mutation rate introduces newly mutated defectors that invade groups of cooperators. Finally it is easier for cooperation to evolve in a phenotype space of higher dimension because it becomes more difficult for a defector to migrate to a group of cooperators. The difference is significant from n = 1 to n = 2 and from n = 2 to n = 3, but becomes small as soon as n ≥ 3. Copyright © 2015 Elsevier Inc. All rights reserved.
Jaasc Cooperation League for Education and Public Outreach
NASA Astrophysics Data System (ADS)
Watanabe, Jun-Ichi; JAASC Committee
The JAASC Japanese Astronomy Aeronautical Science Space Science cooperation league has been established in 2000 among the related institutes for education and public outreach. The participating institutes are National Astronomical Observatory of Japan Institute of Space and Astronautical Science National Space Development Agency of Japan National Aerospace Laboratory of Japan Young Astronomers Club Japan Science and Technology Corporation and Japan Space Forum. These institutes started several joint efforts such as making web site for beginners in general public or educational materials for junior high school. This is a challenging trial for Japanese institutes to cooperate beyond the barrier of the
International Space Station (ISS)
1998-11-08
Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.
Space Cooperation Working Group
2010-11-18
NASA Administrator Charles Bolden, left, and NASA Deputy Administrator Lori Garver, welcome Head of the Russian Federal Space Agency Anatoly Perminov, right, for the third Space Cooperation Working Group meeting of the U.S. – Russia Bilateral Presidential Commission on Thursday, Nov. 18, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)
Towards the Establishment of a Strategic Framework for a Global Exploration Strategy.
NASA Technical Reports Server (NTRS)
Messina, Piero
2006-01-01
A viewgraph presentation on the development of space exploration through a framework of the European Space Policy is shown. The topics include: 1) Europe's Involvement in Space Exploration; 2) Different Programs-Similar Goals; 3) International Cooperation; and 4) Establishing an International Cooperation Framework.
Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces
ERIC Educational Resources Information Center
Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian
2007-01-01
Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…
International Research on ISS - The Benefits of Working Together
NASA Technical Reports Server (NTRS)
Uri, John J.; Thomas, Donald A.
2005-01-01
International Space Station is the most complex multinational cooperative space endeavor in history. Interagency agreements define utilization accommodations and resources available to each partner. Based on these arrangements, the partners select and implement research to meet agency goals and objectives. But to optimize the limited resources available to utilization, cooperation among the partners is essential. This paper describes various avenues available for partner cooperation and provides specific examples to demonstrate the value of such cooperation to accelerate and enhance science return.
Reduced-Order Modeling: Cooperative Research and Development at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Beran, Philip S.; Cesnik, Carlos E. S.; Guendel, Randal E.; Kurdila, Andrew; Prazenica, Richard J.; Librescu, Liviu; Marzocca, Piergiovanni; Raveh, Daniella E.
2001-01-01
Cooperative research and development activities at the NASA Langley Research Center (LaRC) involving reduced-order modeling (ROM) techniques are presented. Emphasis is given to reduced-order methods and analyses based on Volterra series representations, although some recent results using Proper Orthogonal Deco in position (POD) are discussed as well. Results are reported for a variety of computational and experimental nonlinear systems to provide clear examples of the use of reduced-order models, particularly within the field of computational aeroelasticity. The need for and the relative performance (speed, accuracy, and robustness) of reduced-order modeling strategies is documented. The development of unsteady aerodynamic state-space models directly from computational fluid dynamics analyses is presented in addition to analytical and experimental identifications of Volterra kernels. Finally, future directions for this research activity are summarized.
Study of Travelling Interplanetary Phenomena Report
NASA Astrophysics Data System (ADS)
Dryer, Murray
1987-09-01
Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.
Tracking techniques for space shuttle rendezvous
NASA Technical Reports Server (NTRS)
1975-01-01
The space shuttle rendezvous radar has a requirement to track cooperative and non-cooperative targets. For this reason the Lunar Module (LM) Rendezvous Radar was modified to incorporate the capability of tracking a non-cooperative target. The modifications are discussed. All modifications except those relating to frequency diversity were completed, and system tests were performed to confirm proper performance in the non-cooperative mode. Frequency diversity was added to the radar and to the special test equipment, and then system tests were performed. This last set of tests included re-running the tests of the non-cooperative mode without frequency diversity, followed by tests with frequency diversity and tests of operation in the original cooperative mode.
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Callahan, Lisa Wood; Curran, Francis M.
1996-01-01
Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.
NASA/USRA University Advanced Design Program Fifth Annual Summer Conference
NASA Technical Reports Server (NTRS)
1989-01-01
The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.
NASA Technical Reports Server (NTRS)
Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen
2017-01-01
The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankinds understand of the universe and extending human presence into the solar system.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.
2017-01-01
The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system.
NASA Astrophysics Data System (ADS)
Jankovic, Marko; Paul, Jan; Kirchner, Frank
2016-04-01
Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.
NASA Technical Reports Server (NTRS)
1998-01-01
Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.
A shared-world conceptual model for integrating space station life sciences telescience operations
NASA Technical Reports Server (NTRS)
Johnson, Vicki; Bosley, John
1988-01-01
Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.
Random diffusion and cooperation in continuous two-dimensional space.
Antonioni, Alberto; Tomassini, Marco; Buesser, Pierre
2014-03-07
This work presents a systematic study of population games of the Prisoner's Dilemma, Hawk-Dove, and Stag Hunt types in two-dimensional Euclidean space under two-person, one-shot game-theoretic interactions, and in the presence of agent random mobility. The goal is to investigate whether cooperation can evolve and be stable when agents can move randomly in continuous space. When the agents all have the same constant velocity cooperation may evolve if the agents update their strategies imitating the most successful neighbor. If a fitness difference proportional is used instead, cooperation does not improve with respect to the static random geometric graph case. When viscosity effects set-in and agent velocity becomes a quickly decreasing function of the number of neighbors they have, one observes the formation of monomorphic stable clusters of cooperators or defectors in the Prisoner's Dilemma. However, cooperation does not spread in the population as in the constant velocity case. Copyright © 2013 Elsevier Ltd. All rights reserved.
Panel discussion: Roles of space program in the Asia Pacific region
NASA Astrophysics Data System (ADS)
Nomura, Tamiya
1992-03-01
A panel discussion on the subject 'Roles played by space development in Asia Pacific region' was held chaired by Space Activities Commission member and attended by the representatives of the participating countries, special attendance and observers. Opinions were expressed by each representative on three subjects, that is, social effects and benefits obtained by remote sensing data, observation data desired to augment the effect, and expectation for developed countries in space development. President of NASDA (National Space Development Agency of Japan) expressed his intension to promote international cooperation for the Japanese Earth Resources Satellite-1 (JERS-1) verification program, utilization augmentation of Japanese earth observing satellites and human resource training and education. Deputy Director-General for Science and Technology Agency (STA) outlined ASCA (Association for Science Cooperation in Asia) seminar and STA fellowship in relation to human resource development. Chairman of the Japan International Space Year (ISY) Association cited the necessity of closer and extensive communication networks free from the existing commercial communication. Deputy-Minister for Posts and Telecommunications outlined the PARTNERS project (Post-operational utilization of the Engineering Test Satellite-5 (ETS-5)) for international cooperation in space activities in Asia Pacific region. President of the Institute of Space and Astronautical Science (ISAS) outlined Japan's present status of and international cooperation in space science.
14 CFR 1230.114 - Cooperative research.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Cooperative research. 1230.114 Section 1230... § 1230.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each...
14 CFR 1230.114 - Cooperative research.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Cooperative research. 1230.114 Section 1230... § 1230.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each...
14 CFR 1230.114 - Cooperative research.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Cooperative research. 1230.114 Section 1230... § 1230.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each...
14 CFR 1230.114 - Cooperative research.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Cooperative research. 1230.114 Section 1230... § 1230.114 Cooperative research. Cooperative research projects are those projects covered by this policy which involve more than one institution. In the conduct of cooperative research projects, each...
Activities on space debris in U.S.
NASA Astrophysics Data System (ADS)
Johnson, Nicholas L.
2001-10-01
In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.
Activities on Space Debris in U.S.
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2001-01-01
In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.
US and Russian Cooperation in Space Biology and Medicine
NASA Technical Reports Server (NTRS)
Sawin, C.F.; Hanson, S.I.; House, N.G.; Pestov, I.D.
2009-01-01
This slide presentation concerns the 5th volume of a joint publication that describes the cooperation between the United States and Russia in research into space biology and medicine. Each of the chapters is briefly summarized.
The DARWIN breadboard cryogenic optical delay line
NASA Astrophysics Data System (ADS)
van den Dool, T. C.; Gielesen, W.; Kamphues, F.; Loix, N.; Kooijman, P. P.; de Vries, C.; van Weers, H.; Fleury, K.; Stockman, Y.; Velsink, G.; Benoit, J.; Poupinet, A.; Sève, F.
2017-11-01
TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line (figure 1) for use in future space interferometry missions. The work is performed under ESA contract 17.747/03 in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a twomirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. The design of the BB delay line has been completed. The development test program, including operation at 100 K has been completed. The verification test programme is currently being carried out and will include functional testing at 40 K.
ESA's satellite communications programme
NASA Astrophysics Data System (ADS)
Bartholome, P.
1985-02-01
The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.
Future Aeronautical Communication Infrastructure Technology Investigation
NASA Technical Reports Server (NTRS)
Gilbert, Tricia; Jin, Jenny; Bergerm Jason; Henriksen, Steven
2008-01-01
This National Aeronautics and Space Administration (NASA) Contractor Report summarizes and documents the work performed to investigate technologies that could support long-term aeronautical mobile communications operating concepts for air traffic management (ATM) in the timeframe of 2020 and beyond, and includes the associated findings and recommendations made by ITT Corporation and NASA Glenn Research Center to the Federal Aviation Administration (FAA). The work was completed as the final phase of a multiyear NASA contract in support of the Future Communication Study (FCS), a cooperative research and development program of the United States FAA, NASA, and EUROCONTROL. This final report focuses on an assessment of final five candidate technologies, and also provides an overview of the entire technology assessment process, including final recommendations.
Powering the future - a new generation of high-performance solar arrays
NASA Astrophysics Data System (ADS)
Geyer, Freddy; Caswell, Doug; Signorini, Carla
2007-08-01
Funded by ESA's Advanced Research in Telecommunication (ARTES) programme, Thales Alenia Space has developed a new generation of high-power ultra-lightweight solar arrays for telecommunications satellites. Thanks to close cooperation with its industrial partners in Europe, the company has generically qualified a solar array io meet market needs. Indeed, three flight projects were already using the new design as qualification was completed. In addition, the excellent mechanical and thermal behaviour of the new panel structure are contributing to other missions such as Pleïades and LISA Pathfinder.
NASA Astrophysics Data System (ADS)
Robb, David W.
1984-04-01
Following the formal announcement of a national space strategy in August, President Ronald Reagan is moving ahead on many of his administration's declared objectives for strengthening the U.S. role in space-based research and space exploration.Possibly the most significant long-term aspect of the administration's national space strategy is its emphasis on international cooperation. While the U.S. space program in the 1960s and 1970s was fueled by intense competition in the race to be the first to put a man on the moon, it may very well be characterized through the beginning of the next century by the spirit of international collaboration. The national space strategy calls for “increased international cooperation in civil space activities,” particularly in the “development and utilization” of the space station. In addition, in late October, President Reagan announced the possibility of a joint U.S.-Soviet simulated space rescue mission. In his statement, Reagan said that the U.S. “is prepared to work with the Soviets on cooperation in space in programs which are mutually beneficial and productive.”
Making Space Cool - Successful Outreach at Yuri's Night Stuttgart
NASA Astrophysics Data System (ADS)
Hill, Christine; Bretschneider, Jens; Nathanson, Emil; Grossmann, Agnes
Yuri’s Night - also known as the “World Space Party” - is the annual celebration commemorating Gagarin’s historic flight on April 12, 1961, and the maiden voyage of the American space shuttle on April 12, 1981. It was created by young space enthusiasts in 2000 at the annual Space Generation Congress and was first celebrated in 2001, registering more than 60 events around the world from the start. Since then the interest in celebrating human spaceflight grew constantly to over 350 events across all seven continents in 2013. The honoring of Yuri Gagarin’s first spaceflight in Stuttgart started in 2007 and resulted in one of the largest events outside the US, with five parties following in 2008, 2009, 2010, 2012 and 2013. The Stuttgart event was originally organized as space party for an audience at the age of 20 and beyond including informative aspects at the afternoon and a following party far into the night. Since 2010 the focus of the Yuri’s Night Stuttgart is to bring awareness of space exploration to people of all ages, including particularly many participatory hands-on space activities for kids and families that attract hundreds of visitors every year. As much as Yuri’s Night is a worldwide party, the events in Stuttgart successfully concentrate on educational aspects that help to inspire new generations of space enthusiasts who will ultimately shape the future of space exploration. It is therefore not only a look back to one of the greatest achievements of the 20th Century, but it is also a look into the future: from multinational cooperation on the International Space Station to benefit of space flight to the introduction of the next generation of space technology. This paper will introduce the celebrations of Yuri’s Night in Stuttgart of the past four years and compare them to the early events. It provides a summary of the development of the Yuri’s Night including educational aspects, public relations and media attraction and gives recommendations to similar future events worldwide.
NASA Technical Reports Server (NTRS)
Conley, Carolynn Lee; Bauer, Frank H.; Brown, Deborah A.; White, Rosalie
2002-01-01
Amateur Radio on the International Space Station (ARISS) represents the first educational outreach program that is flying on the International Space Station (ISS). The astronauts and cosmonauts will work hard on the International Space Station, but they plan to take some time off for educational activities with schools. The National Aeronautics and Space Administration s (NASA s) Education Division is a major supporter and sponsor of this student outreach activity on the ISS. This meets NASA s educational mission objective: To inspire the next generation of explorers.. .as only NASA can. The amateur radio community is helping to enrich the experience of those visiting and living on the station as well as the students on Earth. Through ARISS sponsored hardware and activities, students on Earth get a first-hand feel of what it is like to live and work in space. This paper will discuss the educational outreach accomplishments of ARISS, the school contact process, the ARISS international cooperation and volunteers, and ISS Ham radio plans for the future.
Orders of magnitude: A history of the NACA and NASA, 1915-1990
NASA Technical Reports Server (NTRS)
Bilstein, Roger E.
1989-01-01
This edition brings up to date the history of U.S. agencies for space exploration, the NACA and NASA, from 1915 through 1990. Early aviation and aeronautics research are described, with particular emphasis on the impact of the two world wars on aeronautics development and the postwar exploitation of those technologies. The reorganization and expansion of the NACA into NASA is described in detail as well as NASA's relationship with industry, the university system, and international space agencies such as the ESA. The dramatic space race of the 1950 and 1960s is recounted through a detailed histroy of the Gemini and Apollo programs and followed by a discussion of the many valuable social/scientific application of aeronautics technologies, many of which were realized through the launching of successful satellite projects. The further solar system explorations of the Voyager missions are described, as it the Challenger tragedy and the 1988 return to space of the Shuttle program. Future plans are outlined for a cooperatively funded international space station to foster the ongoing study of space science.
NASA Technical Reports Server (NTRS)
Hudiburg, John J.
2004-01-01
NASA's international programs are both numerous and successful, with over two thousand international agreements forming a foundation of U.S. government cooperation that involved over half the United Nation's membership. Previous research, by the author, into these agreements has identified five variables underlying NASA's international cooperation efforts and these variables form a framework for explaining international cooperation behavior on a macro-level. This paper builds upon that research to effectively explain lower-level patterns of cooperation in NASA's experience. Two approaches for analyzing the space agency's history are used: aggregation of all agreements and a cluster (disaggregated) analysis of four key segments. While researchers of NASA's international cooperation often considered individual cases first, and then generalize to macro-level explanations. This study, in contrast, begins by considering all agreements together in order to explain as much as possible at the macro level before proceeding to lower tier explanations. These lower tier assessments are important to understanding regional and political influences on bilateral and multilateral cooperation. In order to accomplish this lower-tier analysis, the 2000 agreements are disaggregated into logical groupings enabling an analysis of important questions and clearer focus on key patterns concerning developing states, such as the role of international institutions or privatization on international cooperation in space technology.
Maintaining outer space for peaceful purposes through international cooperation
NASA Technical Reports Server (NTRS)
Reese, George E.; Thacher, David J.; Kupperman, Helen S.
1988-01-01
NASA activities in support of international cooperation in space exploration and exploitation are briefly reviewed, with a focus on their compatibility with UN treaties. Particular attention is given to the provisions of the National Aeronautics and Space Act of 1958 and other applicable legislation, the over 1000 bilateral and international agreements NASA has entered into since 1958, international participation in currently ongoing NASA projects (Hubble Space Telescope, Galileo, Ulysses, Rosat, the D-2 Spacelab mission), and plans for the International Space Station.
7 CFR 550.15 - Resource contribution.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF AGRICULTURE GENERAL ADMINISTRATIVE POLICY FOR NON-ASSISTANCE COOPERATIVE AGREEMENTS Formation of... Cooperator as established by an independent appraiser (e.g., certified real property appraiser or General... of comparable space as established by an independent appraisal of comparable space and facilities in...
7 CFR 550.15 - Resource contribution.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF AGRICULTURE GENERAL ADMINISTRATIVE POLICY FOR NON-ASSISTANCE COOPERATIVE AGREEMENTS Formation of... Cooperator as established by an independent appraiser (e.g., certified real property appraiser or General... of comparable space as established by an independent appraisal of comparable space and facilities in...
2015-01-06
CAPE CANAVERAL, Fla. -- NASA Administrator Charlie Bolden, third from right, looked over the agency's Orion spacecraft this morning for the first time since it returned to Kennedy Space Center following the successful Orion flight test on Dec. 5. At far right is Jules Schneider, Lockheed Martin manager. Standing near Bolden is Paul Cooper, a Lockheed Martin manager. At far left is Kennedy Space Center Associate Director Kelvin Manning. Bearing the marks of a spacecraft that has returned to Earth through a searing plunge into the atmosphere, Orion is perched on a pedestal inside the Launch Abort System Facility at Kennedy where it is going through post-mission processing. Although the spacecraft Bolden looked over did not fly with a crew aboard during the flight test, Orion is designed to carry astronauts into deep space in the future setting NASA and the nation firmly on the journey to Mars. Photo credit: NASA/Cory Huston
TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots
NASA Technical Reports Server (NTRS)
Su, Renjeng
1990-01-01
In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.
2002-08-28
KENNEDY SPACE CENTER, FLA. - During the master plan signing ceremony at Port Canaveral Terminal 10, Matt Taylor gives a presentation to attendees, who included Canaveral National Seashore Superintendent Robert Newkirk, Canaveral Port Authority Executive Director Malcolm "Mac" McLouth, KSC Director Roy Bridges Jr., U.S. Rep. Dave Weldon, 45th Space Wing Commander Gregory Pavlovich, U.S. Fish & Wildlife Services Refuge Manager Ron Hight, Naval Ordnance Test Unit Commanding Officer William Borger, and Florida Space Authority Executive Director Ed Gormel. Taylor is vice president and chief planning officer of ZHA, Inc., which provided consulting services for the plan. The plan represents interagency cooperation between the leadership group's agencies and the U.S. Fish and Wildlife Service, the National Park Service and U.S. Navy. Joining them in developing a vision of the Spaceport's future have been aerospace educators, researchers, and businesses, along with representatives from local, state and national government.
NASA Astrophysics Data System (ADS)
Froning, H. David
2009-03-01
It is suggested that flaws in terrestrial sociology (the negative social dynamics of individual and corporate human natures on Earth) is, to some degree, delaying achievement of the science and technology needed to revolutionize spaceflight and meet this planet's future energy and transportation. Here, scientific timidity, self interest and resistance to change is delaying the replacement of current propellant-consuming and carbon-emitting power and propulsion by nearly propellant-less, emission-free power and propulsion for terrestrial energy and transportation and cost-effective space exploration to the further reaches of the cosmos. Propellant-less and emission-less power and propulsion systems would generate energy and force by the actions of fields-not the combustion of matter. So, when favorable developments in terrestrial sociology and technology enable field power and propulsion, long, ambitious space expeditions can begin if ``astrosociology''-stable, harmonious social dynamics between many cooperating people in space-can also be achieved.
International cooperation for Mars exploration and sample return
NASA Technical Reports Server (NTRS)
Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.
1990-01-01
The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.
CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps
NASA Astrophysics Data System (ADS)
Pallamraju, D.; Kozyra, J.; Basu, S.
Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future
The telecommunications programme of the European Space Agency
NASA Astrophysics Data System (ADS)
Collette, R. C. L.; Ashford, E. W.
An overview of the long-term telecommunications program of the ESA approved in November 1992 is presented. The project involves the Data Relay and Technology Mission (DRTM) program, and the Advanced Research in Telecommunications Systems (ARTES) program. The DRTM program contains both ARTEMIS and the operational DRS satellites, together with their corresponding earth segment elements required for satellite checkout, control and operation. ARTES is designed to group together all ongoing and future ESA telecommunications programs, with the exception of DRTM, into one large legal and financial framework. It will incorporate all running and planned activities in the present Payload and Spacecraft Development and Experimentation program, together with activities that would otherwise have been carried out as part of the Advanced Systems and Technology program. ARTES goals are: promotion of new and improved satellite communications services, cooperation with operating entities, improvements in the competitiveness of industry, and international cooperation.
Summary of DSN (Deep Space Network) reimbursable launch support
NASA Technical Reports Server (NTRS)
Fanelli, N. A.; Wyatt, M. E.
1988-01-01
The Deep Space Network is providing ground support to space agencies of foreign governments as well as to NASA and other agencies of the Federal government which are involved in space activities. DSN funding for support of missions other than NASA are on either a cooperative or a reimbursable basis. Cooperative funding and support are accomplished in the same manner as NASA sponsored missions. Reimbursable launch funding and support methods are described.
Space orbits of collaboration. [international cooperation and the U.S.S.R. space program
NASA Technical Reports Server (NTRS)
Petrov, B.
1978-01-01
The U.S.S.R. cooperative space efforts with other Socialist countries dating back to 1957 are reviewed. The Interkosmos program, which is divided into three series of satellites (solar, ionospheric and magnetospheric), is discussed as well as the Prognoz, Kosmos, Soyuz, and Molniya spacecraft. Collaboration with France, India, Sweden, and the United States is mentioned.
ISS Benefits for Humanity: Eye on the Tide
2015-04-22
Published on Apr 22, 2015 The vantage point of space not only contributes to a better understanding of our home planet, it helps improve lives around the world. Onboard the International Space Station, the Hyperspectral Imager for the Coastal Ocean (HICO) instrument gave scientists an exceptional new view of the coastal ocean and the Great Lakes. Using a special camera that separates light into hundreds of wavelength channels, HICO was used to identify potentially harmful algae blooms in Lake Erie and other lakes and reservoirs that provide critical drinking water for millions of users. The EPA is developing an early warning indicator system using historical and current satellite data to detect algal blooms. For more information, visit: http://www.epa.gov The International Space Station is a blueprint for global cooperation and scientific advancements, a destination for a growing commercial marketplace in low-Earth orbit and a test bed for demonstrating new technologies. The space station is the springboard to NASA’s next great leap in exploration, including future missions to an asteroid and Mars.
Modeling Advance Life Support Systems
NASA Technical Reports Server (NTRS)
Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan
1996-01-01
Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.
Oser, H
1989-08-01
International cooperation in life sciences, as in any other of the space research fields, takes place at two distinct levels: scientist to scientist, or agency to agency. This article is more concerned with the agency to agency level, which involves the arrangements made between two partners for the flying of experiments and/or hardware on space missions. International cooperation is inherent to the European Space Agency (ESA), since it consists of 13 member states (Austria, Belgium, Denmark, France, Ireland, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom, and West Germany) and one associated member, Finland. ESA also has special cooperative arrangements with Canada. Life sciences research in ESA is carried out within the Microgravity Research Program, an optional program to which member states (in this case all but Austria and Ireland) contribute "a la carte," and receive their "share" accordingly. Therefore, many of the activities are naturally linked to international arrangements within the member states, and also to arrangements between the agencies, with life sciences being the dominant activity between NASA and ESA.
Cooperating Expert Systems For Space Station Power Distribution Management
NASA Astrophysics Data System (ADS)
Nguyen, T. A.; Chiou, W. C.
1987-02-01
In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.
International ties. [international cooperation in the space sciences
NASA Technical Reports Server (NTRS)
1980-01-01
A historical overview of NASA's participation in international activities in space science is given. The Ariel, Alouette, Isis, and San Marco satellite programs are addressed along with sounding rocket and ground based projects. Relations and cooperation with the Soviet Union are also discussed.
14 CFR 1274.202 - Methods of award.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Pre-Award Requirements § 1274.202 Methods of award. (a) Competitive agreements. Consistent with 31 U.S.C. 6301(3), NASA uses competitive procedures to award cooperative agreements whenever possible...
14 CFR 1274.213 - Distribution of cooperative agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Distribution of cooperative agreements... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Pre-Award Requirements § 1274.213 Distribution of cooperative... functions are delegated to DOD or another agency), NASA Center for Aerospace Information (CASI), Attn...
The Cooperative Satellite Learning Project.
ERIC Educational Resources Information Center
Caler, Michelle
This document describes the Cooperative Satellite Learning Project (CSLP) which is designed to educate students in the areas of space science, engineering, and technology in a business-like atmosphere. The project is a partnership between the National Aeronautics and Space Association (NASA), Allied Signal Technical Services Corporation, and…
Strategies and Policies for Space - Indian Perspective
NASA Astrophysics Data System (ADS)
Kasturirangan, K.; Sridhara Murthy, K. R.; Sundararmiah, V.; Rao, Mukund
2002-01-01
Indian Space Program, which was established as government effort about three decades ago has become a major force in providing vital services for social and economic sectors in India in the fields of satellite telecommunications, television broadcasting, meteorological services and remote sensing of natural resources. Capabilities have been developed over the years, following a step-by-step process to develop and operate space infrastructure in India, including state-of-the-art satellites and satellite launch vehicles. In carrying out these developments, Indian Space Research Organisation, which is the national agency responsible for space activities under Government of India, develop policies and programs, which promoted industrial participation in variety of space activities including manufacture of space hardware, conduct of value added activities and provision of services involving space systems. Policy initiatives have also been taken recently to promote private sector participation in the establishment of Indian Satellite Systems for telecommunications. Strategic alliances have also been developed with international space industries for marketing of services such as remote sensing data. The paper traces evaluation of the policies towards development of industrial participation in space and future transition into commercial space enterprise. Policy issues concerning the national requirements vis-à-vis the international environment will also be discussed to analyze the strategies for international cooperation.
STS-76 Atlantis, Orbiter Vehicle (OV) 104, crew insignia
1995-11-01
STS076-S-001 (November 1995) --- The STS-76 crew patch depicts the space shuttle Atlantis and Russia's Mir Space Station as the space ships prepare for a rendezvous and docking. The "Spirit of 76," an era of new beginnings, is represented by the space shuttle rising through the circle of 13 stars in the Betsy Ross flag. STS-76 begins a new period of international cooperation in space exploration with the first shuttle transport of a United States astronaut, Shannon W. Lucid, to the Mir Space Station for extended joint space research. Frontiers for future exploration are represented by stars and the planets. The three gold trails and the ring of stars in union form the astronaut logo. Two suited extravehicular activity (EVA) crew members in the outer ring represent the first EVA during Shuttle-Mir docked operations. The EVA objectives are to install science experiments on the Mir exterior and to develop procedures for future EVA's on the International Space Station. The surnames of the crew members encircle the patch: Kevin P. Chilton, mission commander; Richard A. Searfoss, pilot; Ronald M. Sega, Michael R. ( Rich) Clifford, Linda M. Godwin and Lucid, all mission specialists. This patch was designed by Brandon Clifford, age 12, and the crew members of STS-76. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
14 CFR 1267.620 - Cooperative agreement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Cooperative agreement. 1267.620 Section... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 1267.620 Cooperative agreement. Cooperative agreement means an award of financial assistance that, consistent with 31 U.S.C. 6305, is used to...
14 CFR 1267.620 - Cooperative agreement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Cooperative agreement. 1267.620 Section... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 1267.620 Cooperative agreement. Cooperative agreement means an award of financial assistance that, consistent with 31 U.S.C. 6305, is used to...
Early Bird Visions and Telchnology for Space Hotel
NASA Astrophysics Data System (ADS)
Amekrane, R.; Holze, C.
2002-01-01
The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito, visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of . Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term 2001 fifty students from the university occupied themselves with the topic, "Design of a hotel for space". During this time seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present an overview of the 17 designs as a vision of a future space station. The designs used technologies which are currently in a development phase (e.g. tether technology, inflatable habitats). But the during the design process requirements for the development of technologies have been defined as well (e.g. multifunctional surfaces, smart materials etc.). This paper will deal with the concepts basing on the today technologies and the definition of new technologies for future large space stations. www.spacehotel.org
NASA Astrophysics Data System (ADS)
Stolfi, A.; Gasbarri, P.; Sabatini, M.
2018-07-01
In the near future robotic systems will be playing an increasingly important role in space applications such as repairing, refueling, re-orbiting spacecraft and cleaning up the increasing amount of space debris. Space Manipulator Systems (SMSs) are robotic systems made of a bus (which has its own actuators such as thrusters and reaction wheels) equipped with one or more deployable arms. The present paper focuses on the issue of maintaining a stable first contact between the arms terminal parts (i.e. the end-effectors) and a non-cooperative target satellite, before the actual grasp is performed. The selected approach is a modified version of the Impedance Control algorithm in which the end-effector is controlled in order to make it behave like a mass-spring-damper system regardless of the reaction motion of the base, so to absorb the impact energy. The effects of non-modeled dynamics in control determination such as the structural flexibility of the manipulator and the target satellite are considered as well, and their impact on control effectiveness is analyzed. The performance of the proposed control architecture and a parametric analysis are studied by means of a co-simulation involving the MSC Adams multibody code (for describing the dynamics of the space robot and target) together with Simulink (for the determination of the control actions). The results show that the first contact phase of the grasping operation of a large satellite requires careful tuning of the control gains and a proper selection of the end-effector dimensions; otherwise, the large geometric and inertia characteristics of the target could lead to a failure with serious consequences. Both successful and underperforming cases are presented and commented in the paper.
Cooperative Program In Space Science
NASA Technical Reports Server (NTRS)
Black, David
2003-01-01
The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
SpaceFibre: The Standard, Simulation, IP Cores and Test Equipment
NASA Astrophysics Data System (ADS)
Parkes, Steve; McClements, Chris; McLaren, David; Ferrer Florit, Albert; Gonzalez Villafranca, Alberto
2015-09-01
SpaceFibre is an emerging new standard for spacecraft on-board data-handling networks. Initially targeted to deliver multi-Gbit/s data rates for synthetic aperture radar and high-resolution, multi-spectral imaging instruments, SpaceFibre has developed into a unified network technology that integrates high bandwidth, with low latency, quality of service (QoS) and fault detection, isolation and recovery (FDIR). Furthermore SpaceFibre is backwards compatible with the widely used SpaceWire standard at the network level allowing simple interconnection of existing SpaceWire equipment to a SpaceFibre link or network. Developed by the University of Dundee for the European Space Agency (ESA) SpaceFibre is able to operate over fibre-optic and electrical cable and supports data rates of 2 Gbit/s in the near future and up to 5 Gbit/s long-term. Multi-laning improves the data-rate further to well over 20 Gbits/s. This paper details the current state of SpaceFibre which is now in the process of formal standardisation by the European Cooperation for Space Standardization (ECSS). It describes the SpaceFibre IP core being developed for ESA. The design of a SpaceFibre demonstration board is introduced and available SpaceFibre test and development equipment is described. The way in which several SpaceWire links can be concentrated over a single SpaceFibre link will be explained.
2002-02-24
KENNEDY SPACE CENTER, FLA. - Former astronaut Gordon Cooper shares his experiences with the audience in KSC's Apollo/Saturn V Center during the celebration of the 40th anniversary of American spaceflight. Cooper, flying in the Faith 7 spacecraft, was the fourth American in space. The spacecraft was launched May 15, 1963
NASA Technical Reports Server (NTRS)
2002-01-01
JOHNSON SPACE CENTER, HOUSTON, TEXAS -- (ISS006-S-001) Revised -- The International Space Station (ISS) Expedition 6 crew patch depicts the Station orbiting the Earth on its mission of international cooperation and scientific research. The Earth is placed in the center of the patch to emphasize that work conducted aboard this orbiting laboratory is intended to improve life on our home planet. The shape of the Space Station's orbit symbolizes the role that experience gained from ISS will have on future exploration of our solar system and behond. The American and Russian flags encircling the Earth represent the native countries of the Expedition 6 crew members, which are just two of the many participant countries contributing to the ISS and committed to the peaceful exploration of space. The NASA insignia design for International Space Station missions is reserved for use by the crew members and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.
Space Research, Education, and Related Activities in the Space Sciences
NASA Technical Reports Server (NTRS)
Black, David; Marshall, Frank (Technical Monitor)
2002-01-01
The Universities Space Research Association received an award of Cooperative Agreement NCC5-356 on September 29, 1998. The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
Space Research, Education, and Related Activities In the Space Sciences
NASA Technical Reports Server (NTRS)
Black, David
2002-01-01
The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.
Space Research, Education, and Related Activities in the Space Sciences
NASA Technical Reports Server (NTRS)
2000-01-01
The Universities Space Research Association received an award of Cooperative Agreement #NCC5-356 on September 29, 1998. The mission of this activity, know as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, USRA recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members.
French-Soviet Cooperation in Space Research,
SPACE FLIGHT, *SPACE PROBES, USSR, FRANCE , SCIENTIFIC RESEARCH, INSTRUMENTATION, SPACE TO SURFACE, METEOROLOGY, UPPER ATMOSPHERE, SPACE COMMUNICATIONS, LUNAR PROBES, ARTIFICIAL SATELLITES, MANAGEMENT PLANNING AND CONTROL.
What Should Space Be Used For? Physical and Political Guidelines
NASA Astrophysics Data System (ADS)
Grego, Laura
2005-04-01
Space has long been important to the commercial, civil scientific, and military sectors, serving essential missions like communications, environmental monitoring and astronomical research, early warning of missile attack, and precision navigation. However, rhetoric, official planning documents, and funded military research programs show that the current administration has a vision for space that significantly departs from long-held norms. This new vision includes four additional missions for satellites: 1) ballistic missile defense, 2) attacking targets on the ground 3) protecting other satellites, and 4) denying other users the ability to operate in space. Such a dramatic change deserves a thorough vetting. The discussion can be organized into three main types of issues: The first are international and strategic issues, such as how space weaponization may affect national and international security and stability; and, in space, what are the roles of weapons versus treaties and cooperation? Second: how useful would space actually be for these four proposed military missions? The laws of physics and the current state of technology will strongly limit what orbiting craft can do. And third: how may these new uses of space affect other current and future users of space? And what are the proper guidelines for the equitable use and longterm stewardship of space?
Space-Hotel Early Bird - Visions for a Commercial Space Hotel
NASA Astrophysics Data System (ADS)
Amekrane, R.; Holze, C.; Apel, U.
2002-01-01
rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the designs as a vision of a future space hotel and will deal with and summarize the outcome of the 17 designs, which may trigger the development of technologies required for a space station dedicated to tourism. www.spacehotel.org
14 CFR § 1230.114 - Cooperative research.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Cooperative research. § 1230.114 Section Â... SUBJECTS (Eff. until 2-14-14) § 1230.114 Cooperative research. Cooperative research projects are those... research projects, each institution is responsible for safeguarding the rights and welfare of human...
14 CFR § 1267.620 - Cooperative agreement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Cooperative agreement. § 1267.620 Section... REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Definitions § 1267.620 Cooperative agreement. Cooperative agreement means an award of financial assistance that, consistent with 31 U.S.C. 6305, is used to...
Past and present engagement in space activities in Central and Eastern Europe
NASA Astrophysics Data System (ADS)
Sagath, Daniel; Adriaensen, Maarten; Giannopapa, Christina
2018-07-01
Central and Eastern European (CEE) countries have been facing different cooperation models in the last fifty years regarding space policy and industrial activities. The period before the 1990s provided these countries with a strong heritage of expertise in space engagement which after the fall of the 'Eastern Block' offered the basis for cooperation with the other European countries and organisations. The way space policy in the CEE region was shaped during the early period and the way collaboration is conducted today have not been fully analysed. The objective of this paper is to provide a holistic analysis of the evolution of past and present developments of the CEE countries in space activities. The main focus of this paper is given to the Intercosmos period before the 1990s and following that, the integration process of these countries to the European Space Agency (ESA). Additionally, the CEE countries have been engaging in cooperation with other space agencies in Europe and outside. The countries also participate through the EU and its two flagship programmes Galileo and Copernicus amongst others. Furthermore, this paper provides an overview of the ESA accession process established in the early 2000s as ESA responded to the increasing interest of the CEE countries to engage in cooperation in the field of space. The comparison of both, historical and recent developments on CEE countries in space activities, indicates that CEE region has the basis for integrating in the European space sector. Participation in ESA and collaboration with other space faring nations is needed to ensure successful transformation of both their scientific and industrial basis as well as their governance, to the evolving space sector while utilizing the heritage obtained through the past engagements.
Advocating mindset for cooperative partnership for better future of construction industry
NASA Astrophysics Data System (ADS)
Omar, Datuk Wahid
2017-11-01
Construction industry players are known for their low acceptance on the changes. Hence, it is identified that the biggest challenge in the industry is changing the mindset. This paper highlights the importance of transformation in shaping for better future of the industry. Transformation favors innovation and progressive development in the industry and specifically in managing a project. Thus changes in mindset of players with an eye to the future and focus on what is coming are paramount in inculcating the transformation culture in construction eco-system. The key to the success of transformation is the collaborative and cooperative partnering which ensuring the performance of every stage of project delivery. The collaborative, cooperative and concerted effort of all parties involved in the project creates mutual understanding on mission and vision of project. Adopting healthy and harmonious project culture, implementing innovative procurement that emphasis on fair risk sharing should be a working culture. This cooperative partnership should be the future of the project undertaking in the construction industry.
International cooperation in space transportation
NASA Astrophysics Data System (ADS)
Carlson, C. R.
1997-01-01
International cooperation in the field of Space Transportation has become an accepted norm as companies and countries have come to understand the necessity of lower costs for launch services. Many different approaches have been attempted, some of which are more successful than others. This paper discusses the history of McDonnell Douglas Aerospace (MDA) launch vehicle cooperation with Japan, as well as how MDA developed Mitsubishi Heavy Industries (MHI) as a supplier for the Delta III program, and how MDA became a supplier for the Japanese H-2 vehicle.
NASA Technical Reports Server (NTRS)
Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin
2012-01-01
A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond
2012-01-01
Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.
NASA Technical Reports Server (NTRS)
Finarelli, Margaret G.
2004-01-01
The 2003 Summer Session Program of the International Space University (ISU) was conducted at the ISU Central Campus in Strasbourg, France, July 5-September 6, 2003. Attending the Summer Session were 114 students from 27 countries including the US. The International Space University (ISU) offers its students a unique and comprehensive educational package covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. By providing international graduate students and young space professionals both an intensive interdisciplinary curriculum and also the opportunity to solve complex problems together in an intercultural environment, ISU is preparing the future leaders of the emerging global space community. Since its founding in 1988, ISU has graduated more than 2200 students from 87 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation. ISU's interdisciplinary Student Theme Days and Student Workshops are intended to have great educational value for the participants. Along with the interdisciplinary Core Lectures, they apprise the students of state-of-the-art activities, programs and policies in spacefaring nations. They also provide ISU students the opportunity to meet world experts in space-related subjects.
Test tools and test data for the future EUMETSAT EPS-SG platform
NASA Astrophysics Data System (ADS)
Khlystova, Iryna; Sunda, Michela
2017-04-01
The EUMETSAT Polar System - Second Generation (EPS-SG) represents Europe's contribution to the future Joint Polar System (JPS), which is planned to be established together with the National Oceanic and Atmospheric Administration (NOAA) of the United States, following on from the Initial Joint Polar System (IJPS). Due to its global coverage and the variety of passive and active sensors on the EPS-SG platform, a significant positive impact on Numerical Weather Prediction (NWP) can be expected for all forecasts based on NWP in the 2020-2040 time frame. It will increase direct socio-economic benefits to Member States and leverage additional benefits through its integration into the JPS and cooperation in the context of CGMS and WMO. For the EUMETSAT will develop the EPS-SG overall system of satellites and the Overall Ground Segment (OGS) and be responsible for the Payload Data Acquisition and Processing (PDAP) system. This will include all the functionality dedicated to the L0, L1 and L2 Operational Processor, for generation of the near-real time L1 and L2 mission central products. Also the European Space Agency will develop the EPS-SG satellites and a number of instruments, with CNES and DLR playing a key role. The general processing chain should be in place and be extensively tested before the first data set is sent from the space platform to the ground. For this, numerous test tools, such as satellite data simulators (IDS) and processors prototypes (GPPs and IPPs) need to be developed and operated before the launch of the satellites. EUMETSAT cooperated with several European agencies in order to provide all the testing items in time. Here, we present the insight into the EPS-SG the logic of the test tools for the generation of the test data and provide insights into the modern space-based mission planning and preparation activities.
ART CONCEPTS - APOLLO-SOYUZ TEST PROJECT (ASTP)
1975-04-01
S75-27288 (April 1975) --- An artist?s concept illustrating the mission profile of the Apollo-Soyuz Test Project. The phases of the mission depicted include launch, rendezvous, docking, separation and splashdown. During the joint U.S.-USSR ASTP flight, scheduled for July 1975, the American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked for a maximum period of two days. The mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions. This artwork is by Davis Meltzer.
Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan
2016-10-28
Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems' architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation.
Palomar, Esther; Chen, Xiaohong; Liu, Zhiming; Maharjan, Sabita; Bowen, Jonathan
2016-01-01
Smart city systems embrace major challenges associated with climate change, energy efficiency, mobility and future services by embedding the virtual space into a complex cyber-physical system. Those systems are constantly evolving and scaling up, involving a wide range of integration among users, devices, utilities, public services and also policies. Modelling such complex dynamic systems’ architectures has always been essential for the development and application of techniques/tools to support design and deployment of integration of new components, as well as for the analysis, verification, simulation and testing to ensure trustworthiness. This article reports on the definition and implementation of a scalable component-based architecture that supports a cooperative energy demand response (DR) system coordinating energy usage between neighbouring households. The proposed architecture, called refinement of Cyber-Physical Component Systems (rCPCS), which extends the refinement calculus for component and object system (rCOS) modelling method, is implemented using Eclipse Extensible Coordination Tools (ECT), i.e., Reo coordination language. With rCPCS implementation in Reo, we specify the communication, synchronisation and co-operation amongst the heterogeneous components of the system assuring, by design scalability and the interoperability, correctness of component cooperation. PMID:27801829
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž
2013-10-01
Economic experiments reveal that humans value cooperation and fairness. Punishing unfair behavior is therefore common, and according to the theory of strong reciprocity, it is also directly related to rewarding cooperative behavior. However, empirical data fail to confirm that positive and negative reciprocity are correlated. Inspired by this disagreement, we determine whether the combined application of reward and punishment is evolutionarily advantageous. We study a spatial public goods game, where in addition to the three elementary strategies of defection, rewarding, and punishment, a fourth strategy that combines the latter two competes for space. We find rich dynamical behavior that gives rise to intricate phase diagrams where continuous and discontinuous phase transitions occur in succession. Indirect territorial competition, spontaneous emergence of cyclic dominance, as well as divergent fluctuations of oscillations that terminate in an absorbing phase are observed. Yet, despite the high complexity of solutions, the combined strategy can survive only in very narrow and unrealistic parameter regions. Elementary strategies, either in pure or mixed phases, are much more common and likely to prevail. Our results highlight the importance of patterns and structure in human cooperation, which should be considered in future experiments.
We'll Meet Again: Revealing Distributional and Temporal Patterns of Social Contact
Pachur, Thorsten; Schooler, Lael J.; Stevens, Jeffrey R.
2014-01-01
What are the dynamics and regularities underlying social contact, and how can contact with the people in one's social network be predicted? In order to characterize distributional and temporal patterns underlying contact probability, we asked 40 participants to keep a diary of their social contacts for 100 consecutive days. Using a memory framework previously used to study environmental regularities, we predicted that the probability of future contact would follow in systematic ways from the frequency, recency, and spacing of previous contact. The distribution of contact probability across the members of a person's social network was highly skewed, following an exponential function. As predicted, it emerged that future contact scaled linearly with frequency of past contact, proportionally to a power function with recency of past contact, and differentially according to the spacing of past contact. These relations emerged across different contact media and irrespective of whether the participant initiated or received contact. We discuss how the identification of these regularities might inspire more realistic analyses of behavior in social networks (e.g., attitude formation, cooperation). PMID:24475073
The shadow of the future promotes cooperation in a repeated prisoner’s dilemma for children
Blake, Peter R.; Rand, David G.; Tingley, Dustin; Warneken, Felix
2015-01-01
Cooperation among genetically unrelated individuals can be supported by direct reciprocity. Theoretical models and experiments with adults show that the possibility of future interactions with the same partner can promote cooperation via conditionally cooperative strategies such as tit-for-tat (TFT). Here, we introduce a novel implementation of the repeated Prisoner’s Dilemma (PD) designed for children to examine whether repeated interactions can successfully promote cooperation in 10 and 11 year olds. We find that children cooperate substantially more in repeated PDs than in one-shot PDs. We also find that girls cooperate more than boys, and that children with more conduct problems cooperate less. Finally, we find that children use conditional cooperation strategies but that these strategies vary by gender and conduct problem rating. Specifically, girls and children with few conduct problems appear to follow an altruistic version of win-stay, lose-shift (WSLS), attempting to re-establish cooperation after they had defected. Boys and children with more conduct problems appear to follow a Grim strategy, defecting for the duration after the partner defects. Thus we provide evidence that children utilize the power of direct reciprocity to promote cooperation in strategic interactions and that, by late elementary school, distinct strategies of conditional cooperation have emerged. PMID:26417661
NASA Technical Reports Server (NTRS)
Holmes, Dwight P.; Thompson, Tommy; Simpson, Richard; Tyler, G. Leonard; Dehant, Veronique; Rosenblatt, Pascal; Hausler, Bernd; Patzold, Martin; Goltz, Gene; Kahan, Daniel;
2008-01-01
Radio Science is an opportunistic discipline in the sense that the communication link between a spacecraft and its supporting ground station can be used to probe the intervening media remotely. Radio science has recently expanded to greater, cooperative use of international assets. Mars Express and Venus Express are two such cooperative missions managed by the European Space Agency with broad international science participation supported by NASA's Deep Space Network (DSN) and ESA's tracking network for deep space missions (ESTRAK). This paper provides an overview of the constraints, opportunities, and lessons learned from international cross support of radio science, and it explores techniques for potentially optimizing the resultant data sets.
Technology and Cooperation: The Behaviors of Networking.
ERIC Educational Resources Information Center
Martin, Susan K.
1987-01-01
Discusses the pros and cons of library cooperation as exemplified by interlibrary loan and OCLC. Moving away from cooperation toward the more intensive use of local systems is suggested as one alternative for the future. (MES)
United Nations/European Space Agency Workshops on Basic Space Science
NASA Technical Reports Server (NTRS)
Haubold, H. J.; Ocampo, A.; Torres, S.; Wamsteker, W.
1995-01-01
In 1958, the United Nations (UN) formally recognized a new potential for international cooperation by establishing an ad hoc Committee on the Peaceful Uses of Outer Space (COPUOS). A year later the Committee became a permanent body, and by 1983 membership had expanded to 53 states, with more than half of the members coming from the developing world. In 1970, COPUOS established the UN Program on Space Applications in order to strengthen cooperation in space science and technology between non-industrialized and industrialized countries. In the last few years, the UN and its COPUOS have paid increasing attention to education and research in space science and technology, including basic space science. In 1991 the UN, in cooperation with ESA, initiated the organization of annual Workshops in Basic Space Science for developing countries. These Workshops are designed to be held in one of the following major regions: Asia and the Pacific, Latin America and the Caribbean, Africa, Western Asia, and Europe. Accordingly, Basic Space Science Workshops have already been held in India (1991), Costa Rica andColombia (1992), and Nigeria (1993). The fourth Workshop was held from 27 June to 1 July 1994 at the Cairo University, in Egypt, for Western Asia.
New generation of space capabilities resulting from US/RF cooperative efforts
NASA Astrophysics Data System (ADS)
Humpherys, Thomas; Misnik, Victor; Sinelshchikov, Valery; Stair, A. T., Jr.; Khatulev, Valery; Carpenter, Jack; Watson, John; Chvanov, Dmitry; Privalsky, Victor
2006-09-01
Previous successful international cooperative efforts offer a wealth of experience in dealing with highly sensitive issues, but cooperative remote sensing for monitoring and understanding the global environmental is in the national interest of all countries. Cooperation between international partners is paramount, particularly with the Russian Federation, due to its technological maturity and strategic political and geographical position in the world. Based on experience gained over a decade of collaborative space research efforts, continued cooperation provides an achievable goal as well as understanding the fabric of our coexistence. Past cooperative space research efforts demonstrate the ability of the US and Russian Federation to develop a framework for cooperation, working together on a complex, state-of-the-art joint satellite program. These efforts consisted of teams of scientists and engineers who overcame numerous cultural, linguistic, engineering approaches and different political environments. Among these major achievements are: (1) field measurement activities with US satellites MSTI and MSX and the Russian RESURS-1 satellite, as well as the joint experimental use of the US FISTA aircraft; (2) successful joint Science, Conceptual and Preliminary Design Reviews; (3) joint publications of scientific research technical papers, (4) Russian investment in development, demonstration and operation of the Monitor-E spacecraft (Yacht satellite bus), (5) successful demonstration of the conversion of the SS-19 into a satellite launch system, and (6) negotiation of contractual and technical assistant agreements. This paper discusses a new generation of science and space capabilities available to the Remote Sensing community. Specific topics include: joint requirements definition process and work allocation for hardware and responsibility for software development; the function, description and status of Russian contributions in providing space component prototypes and test articles; summary of planned experimental measurements and simulations; results of the ROKOT launch system; performance of the Monitor-E spacecraft; prototype joint mission operations control center; and a Handbook for Success in satellite collaborative efforts based upon a decade of lessons learned.
Perspectives from space: NASA classroom information and activities
NASA Technical Reports Server (NTRS)
1992-01-01
This booklet contains the information and classroom activities included on the backs of the eight poster series, 'Perspectives From Space'. The first series, Earth, An Integrated System, contains information on global ecology, remote sensing from space, data products, earth modeling, and international environmental treaties. The second series, Patterns Among Planets, contains information on the solar system, planetary processes, impacts and atmospheres, and a classroom activity on Jupiter's satellite system. The third series, Our Place In The Cosmos, contains information on the scale of the universe, origins of the universe, mission to the universe, and three classroom activities. The fourth series, Our Sun, The Nearest Star, contains information on the Sun. The fifth series, Oasis Of Life, contains information on the development of life, chemical and biological evolution on Earth and the search for other life in the universe. The sixth series, The Influence Of Gravity, contains information on Newton's Law of Gravity, space and microgravity, microgravity environment, and classroom activities on gravity. The seventh series, The Spirit Of Exploration, contains information on space exploration, the Apollo Program, future exploration activities, and two classroom activities. The eighth series, Global Cooperation, contains information on rocketry, the space race, and multi-nation exploration projects.
Activities of the Structures Division, Lewis Research Center
NASA Technical Reports Server (NTRS)
1990-01-01
The purpose of the NASA Lewis Research Center, Structures Division's 1990 Annual Report is to give a brief, but comprehensive, review of the technical accomplishments of the Division during the past calendar year. The report is organized topically to match the Center's Strategic Plan. Over the years, the Structures Division has developed the technology base necessary for improving the future of aeronautical and space propulsion systems. In the future, propulsion systems will need to be lighter, to operate at higher temperatures and to be more reliable in order to achieve higher performance. Achieving these goals is complex and challenging. Our approach has been to work cooperatively with both industry and universities to develop the technology necessary for state-of-the-art advancement in aeronautical and space propulsion systems. The Structures Division consists of four branches: Structural Mechanics, Fatigue and Fracture, Structural Dynamics, and Structural Integrity. This publication describes the work of the four branches by three topic areas of Research: (1) Basic Discipline; (2) Aeropropulsion; and (3) Space Propulsion. Each topic area is further divided into the following: (1) Materials; (2) Structural Mechanics; (3) Life Prediction; (4) Instruments, Controls, and Testing Techniques; and (5) Mechanisms. The publication covers 78 separate topics with a bibliography containing 159 citations. We hope you will find the publication interesting as well as useful.
NASA Technical Reports Server (NTRS)
Thomas, D.; Fitts, M.; Wear, M.; VanBaalen, M.
2011-01-01
As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health Repository (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future research studies.
ERIC Educational Resources Information Center
Kijtorntham, Wichuda; Ruangdej, Phumjit; Saisuwan, Chatchanog
2015-01-01
Thailand and Cambodia set up educational cooperation since 1996, before signed a Memorandum of Understanding on Cooperation in the Promotion of Education in 2003. This research aimed to investigate outcomes of educational cooperation projects on Cambodia human development and international understanding, process of participatory learning and…
Flood Management Enhancement Using Remotely Sensed Data
NASA Technical Reports Server (NTRS)
Romanowski, Gregory J.
1997-01-01
SENTAR, Inc., entered into a cooperative agreement with NASA Goddard Space Flight Center (GSFC) in December 1994. The intent of the NASA Cooperative Agreement was to stimulate broad public use, via the Internet, of the very large remote sensing databases maintained by NASA and other agencies, thus stimulating U.S. economic growth, improving the quality of life, and contributing to the implementation of a National Information Infrastructure. SENTAR headed a team of collaborating organizations in meeting the goals of this project. SENTAR's teammates were the NASA Marshall Space Flight Center (MSFC) Global Hydrology and Climate Center (GHCC), the U.S. Army Space and Strategic Defense Command (USASSDC), and the Alabama Emergency Management Agency (EMA). For this cooperative agreement, SENTAR and its teammates accessed remotely sensed data in the Distributed Active Archive Centers, and other available sources, for use in enhancing the present capabilities for flood disaster management by the Alabama EMA. The project developed a prototype software system for addressing prediction, warning, and damage assessment for floods, though it currently focuses on assessment. The objectives of the prototype system were to demonstrate the added value of remote sensing data for emergency management operations during floods and the ability of the Internet to provide the primary communications medium for the system. To help achieve these objectives, SENTAR developed an integrated interface for the emergency operations staff to simplify acquiring and manipulating source data and data products for use in generating new data products. The prototype system establishes a systems infrastructure designed to expand to include future flood-related data and models or to include other disasters with their associated remote sensing data requirements and distributed data sources. This report covers the specific work performed during the seventh, and final, milestone period of the project, which began on 1 October 1996 and ended on 31 January 1997. In addition, it provides a summary of the entire project.
Advanced Image Processing for NASA Applications
NASA Technical Reports Server (NTRS)
LeMoign, Jacqueline
2007-01-01
The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.
Advanced optical delay line demonstrator
NASA Astrophysics Data System (ADS)
van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Hogenhuis, Harm
2004-09-01
TNO TPD, in cooperation with Micromega-Dynamics and Dutch Space, has designed an advanced Optical Delay Line (ODL) for use in future ground based and space interferometry missions. The work is performed under NIVR contract in preparation for GENIE and DARWIN. Using the ESO PRIMA DDL requirements as a baseline, the delay line can be used for PRIMA and GENIE without any modifications. The delay line design is modular and flexible, which makes scaling for other applications a relatively easy task. The ODL has a single linear motor actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye with SiC mirrors and CFRP structure. Magnetic bearings provide frictionless and wear free operation with zerohysteresis. The delay line is currently being assembled and will be subjected to a comprehensive test program in the second half of 2004.
Time-Critical Cooperative Path Following of Multiple UAVs: Case Studies
2012-10-30
control algorithm for UAVs in 3D space. Section IV derives a strategy for time-critical cooperative path following of multiple UAVs that relies on the...UAVs in 3D space, in which a fleet of UAVs is tasked to converge to and follow a set of desired feasible paths so as to meet spatial and temporal...cooperative trajectory generation is not addressed in this paper. In fact, it is assumed that a set of desired 3D time trajectories pd,i(td) : R → R3
ERIC Educational Resources Information Center
Faysse, Nicolas; Srairi, Mohamed Taher; Errahj, Mostafa
2012-01-01
Purpose: The study investigated to what extent local farmers' organisations are spaces where farmers discuss, learn and innovate. Design/methodology/approach: Two milk collection cooperatives in Morocco were studied. The study analysed the discussion networks, their impacts on farmers' knowledge and innovation, and the performance of collective…
From Safe Spaces to Resilient Places: A Role for Interfaith Cooperation in Contentious Times
ERIC Educational Resources Information Center
Gill, Rahuldeep Singn
2017-01-01
This article builds on theories of safe and brave spaces to demonstrate how to transform higher education institutions to be better able to incorporate multivalent forms of diversity. In particular, the article suggests leveraging the civic-oriented methodology of interfaith cooperation (Patel & Meyer, 2011) in order to encourage people to…
An international approach to Mission to Planet Earth
NASA Technical Reports Server (NTRS)
Lawrence, Robert M.; Sadeh, Willy Z.; Tsygichko, Viktor N.
1992-01-01
The new international political constellation resulting from the disintegration of the Soviet Union opens up unique opportunities for cooperation in the space arena. Precedents since 1955 indicate a pervasive interest in mutual cooperation to use military reconnaissance and surveillance satellites for space observations to enforce treaty verification and compliance. One of the avenues that offer immediate prospects for fruitful cooperation is the incorporation of the military reconnaissance and surveillance satellite capabilities of both U.S. and Russia into the Mission to Planet Earth. Formation of a United Nations Satellite (UNSAT) fleet drawn from the American and Russian space assets is proposed. The role of UNSAT is to provide world wide monitoring of both military and enviromental activities under the umbrella of the Mission to Planet Earth.
NASA Technical Reports Server (NTRS)
Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville
2005-01-01
Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.
COSPAR, a platform for international cooperation in space research
NASA Astrophysics Data System (ADS)
Fellous, Jean-Louis
The Committee on Space Research (COSPAR) was founded by the International Council for Science (ICSU) in 1958, with the aim of favouring the dialogue between the USSR and USA in the time of the Cold War. Fifty-six years later, COSPAR is continuing its mission of service to the worldwide space research community. Thousands of scientists attend COSPAR assemblies, read and publish their results in its journals, participate in its workshops, colloquia and symposia, but many are unaware of the wealth of activities that COSPAR undertakes or supports. Many of them ignore the processes through which this organisation develops its activities, how it is structured, how to get involved in its governance, how to promote new initiatives with its help, etc. Young space scientists do not know the history of, and prominent roles played by COSPAR, past and present, and more importantly need to understand better the benefits that can be accrued from their involvement within COSPAR. This presentation will review these aspects and offer all interested scientists a detailed overview of COSPAR activities and plans for the future.
Factors shaping the evolution of electronic documentation systems
NASA Technical Reports Server (NTRS)
Dede, Christopher J.; Sullivan, Tim R.; Scace, Jacque R.
1990-01-01
The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments.
Rationalisation of the Solar System exploration
NASA Astrophysics Data System (ADS)
Czechowski, L.
2017-09-01
Present attitude to space exploration is often a result irrational political pressure. The better cooperation between space agencies could be beneficial for the space exploration and for national space programs.
Young PHD's in Human Space Flight
NASA Technical Reports Server (NTRS)
Wilson, Eleanor
2002-01-01
The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.
NASA Technical Reports Server (NTRS)
Hudiburg, John J.; Chinworth, Michael W.
2005-01-01
The President's Commission on Implementation of United States Space Exploration Policy suggests that after NASA establishes the Space Exploration vision architecture, it should pursue international partnerships. Two possible approaches were suggested: multiple independently operated missions and an integrated mission with carefully selected international components. The U.S.-Japan defense sectors have learned key lessons from experience with both of these approaches. U.S.-Japan defense cooperation has evolved over forty years from simple military assistance programs to more complex joint development efforts. With the evolution of the political-military alliance and the complexity of defense programs, these cooperative efforts have engaged increasingly industrial resources and capabilities as well as more sophisticated forms of planning, technology transfers and program management. Some periods of this evolution have been marked by significant frictions. The U.S.Japan FS-X program, for example, provides a poor example for management of international cooperation. In November 1988, the United States and Japan signed a Memorandum of Understanding (MOU) to co-develop an aircraft, named FS-X and later renamed F -2, as a replacement to the aging Japan support fighter F-l. The program was marked by numerous political disputes. After over a decade of joint development and testing, F -2 production deliveries finally began in 1999. The production run was curtailed due to much higher than anticipated costs and less than desired aircraft performance. One universally agreed "lesson" from the FSX/F-2 case was that it did not represent the ideal approach to bilateral cooperation. More recent cooperative programs have involved targeted joint research and development, including component development for ballistic missile defense systems. These programs could lay the basis for more ambitious cooperative efforts. This study examines both less-than-stellar international cooperation efforts as well as more successful initiatives to identify lessons from military programs that can help NASA encourage global investment in its Space Exploration Vision. The paper establishes a basis for examining related policy and industrial concerns such as effective utilization of dual-use technologies and trans-Pacific program management of large, complex cooperative programs.
International interest in space assets under the Cape Town Convention
NASA Astrophysics Data System (ADS)
Ametova, Lutfiie
2013-12-01
Private human access to outer space is impossible without space equipment. Nowadays space equipment is increasingly being financed by private sector. Private sector financiers, naturally, seek to secure their interest in space equipment. At the same time, increasing international cooperation in space industry leads to some problems of legal character. Thus, space equipment involved in international cooperation programs crosses national borders and is subject to a certain jurisdiction in a given period of time. The problem is that when an interest is created in one jurisdiction, it may not necessarily be recognised in another one. In order to provide a unified approach to interests vested in space equipment an international legal instrument is necessary. The Cape Town Convention represents an international instrument designed to provide a unified approach to interests vested in mobile equipment, including space assets.
Automation in the Space Station module power management and distribution Breadboard
NASA Technical Reports Server (NTRS)
Walls, Bryan; Lollar, Louis F.
1990-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) Breadboard, located at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, models the power distribution within a Space Station Freedom Habitation or Laboratory module. Originally designed for 20 kHz ac power, the system is now being converted to high voltage dc power with power levels on a par with those expected for a space station module. In addition to the power distribution hardware, the system includes computer control through a hierarchy of processes. The lowest level process consists of fast, simple (from a computing standpoint) switchgear, capable of quickly safing the system. The next level consists of local load center processors called Lowest Level Processors (LLP's). These LLP's execute load scheduling, perform redundant switching, and shed loads which use more than scheduled power. The level above the LLP's contains a Communication and Algorithmic Controller (CAC) which coordinates communications with the highest level. Finally, at this highest level, three cooperating Artificial Intelligence (AI) systems manage load prioritization, load scheduling, load shedding, and fault recovery and management. The system provides an excellent venue for developing and examining advanced automation techniques. The current system and the plans for its future are examined.
Goswami, Nandu; Batzel, Jerry J; Clément, Gilles; Stein, T Peter; Hargens, Alan R; Sharp, M Keith; Blaber, Andrew P; Roma, Peter G; Hinghofer-Szalkay, Helmut G
2013-07-01
Regulatory systems are affected in space by exposure to weightlessness, high-energy radiation or other spaceflight-induced changes. The impact of spaceflight occurs across multiple scales and systems. Exploring such interactions and interdependencies via an integrative approach provides new opportunities for elucidating these complex responses. This paper argues the case for increased emphasis on integration, systematically archiving, and the coordination of past, present and future space and ground-based analogue experiments. We also discuss possible mechanisms for such integration across disciplines and missions. This article then introduces several discipline-specific reviews that show how such integration can be implemented. Areas explored include: adaptation of the central nervous system to space; cerebral autoregulation and weightlessness; modelling of the cardiovascular system in space exploration; human metabolic response to spaceflight; and exercise, artificial gravity, and physiologic countermeasures for spaceflight. In summary, spaceflight physiology research needs a conceptual framework that extends problem solving beyond disciplinary barriers. Administrative commitment and a high degree of cooperation among investigators are needed to further such a process. Well-designed interdisciplinary research can expand opportunities for broad interpretation of results across multiple physiological systems, which may have applications on Earth.
The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation
2009-05-14
fuel for future civilian light water reactors deployed” in the UAE. The agreement also states that future cooperation may encompass training...planned nuclear reactor . (...continued) May 4, 2008; and, Chris Stanton and Ivan...already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two consulting and advisory services contracts related to the establishment
Crop area estimation based on remotely-sensed data with an accurate but costly subsample
NASA Technical Reports Server (NTRS)
Gunst, R. F.
1985-01-01
Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.
NASA Astrophysics Data System (ADS)
Vanichai, Yupa
During the last decade of twentieth century astronomical articles in Thai scientific magazines were out of date. Interacting galaxies blackholes and other celestial objects beyond solar system were hardly found. While a pocket book for deep space was purposefully written by a lecturer a website of astronomy for Thais was planned by the cooperation of two computer programmers. An obseravatory with 600-mm reflector was the first attempt by a Thai engineer. The product of the first 150-mm reflector Dosonian made in Thailand is sold in low price. Future optical programs are now being planned to be made by Thais. These people have recently worked together to develope astronomy in Thailand.
NASA Astrophysics Data System (ADS)
Nakamura, Yasuhiro; Ozawa, Masayuki; Takeyasu, Yoshioka; Griffith, Gerald; Goto, Katsuhito; Mitsui, Masami
2010-09-01
The importance of international cooperation among the International Space Station(ISS) Program participants is ever increasing as the ISS nears assembly complete. In the field of payload safety assurance, NASA and JAXA have enhanced their cooperation level. The authors describe the evolution of cooperation between the two agencies and the challenges encountered and overcame. NASA and JAXA have been working toward development of a NASA Payload Safety Review Panel(PSRP) franchise panel at JAXA for several years. When the JAXA Safety Review Panel(SRP) becomes a fully franchised panel of the NASA PSRP, the JAXA SRP will have the authority review and approve all JAXA ISS payloads operated on USOS and JEM, although NASA and JAXA joint reviews may be conducted as necessary. A NASA PSRP franchised panel at JAXA will streamline the conventional review process. Japanese payload organizations will not have to go through both JAXA and NASA payload safety reviews, while NASA will be relieved of a certain amount of review activities. The persistent efforts have recently born fruit. For the past two years, NASA and JAXA have increased emphasis on efforts to develop a NASA PSRP Franchised Panel at JAXA with concrete results. In 2009, NASA and JAXA signed Charter and Joint Development Plan. At the end of 2009, NASA PSRP transferred some review responsibility to the JAXA SRP under the franchising charter. Although JAXA had long history of reviewing payloads by their own panel prior to NASA PSRP reviews, it took several years for JAXA to receive NASA PSRP approval for delegation of franchised review authority to JAXA. This paper discusses challenges JAXA and NAXA faced. Considerations were required in developing a franchise at JAXA for history and experiences of the JAXA SRP as well as language and cultural differences. The JAXA panel, not only had its own well-established processes and supporting organizational structures which had some differences from its NASA PSRP counterparts, but the JAXA SRP also had a practice of emphasizing pre-coordination instead of addressing issues in formal reviews, reflecting Japanese cultural influences. These points are illustrated in the paper. The authors will also discuss how NASA and JAXA overcame these issues by providing specific examples including review responsibilities of NASA and JAXA panels, panel and supporting positions, and accommodation of language differences. In conclusion, the current status and future plan for NASA PSRP franchise efforts at JAXA are described and significance of having a NASA PSRP franchise panel at JAXA will be reviewed.
Experiences in Interagency and International Interfaces for Mission Support
NASA Technical Reports Server (NTRS)
Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.
1996-01-01
The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.
Code of Federal Regulations, 2010 CFR
2010-01-01
... into by the cooperator or a subcontractor of the cooperator pursuant to the cooperative agreement...-PMS means the Department of Health and Human Services/Payment Management System (also see EFT). i... during the same or a future period. OMB means the Office of Management and Budget. Outlays or...
ERIC Educational Resources Information Center
EHRESMAN, NORMAN D.; HEMP, PAUL E.
THE PURPOSE OF THIS STUDY WAS TO IDENTIFY (1) WHAT IS BEING TAUGHT REGARDING COOPERATIVES, (2) COOPERATIVE ACTIVITIES IN WHICH ILLINOIS FUTURE FARMERS OF AMERICA (FFA) CHAPTERS PARTICIPATE, (3) THE TEACHING AIDS BEING USED TO TEACH ABOUT COOPERATIVE ORGANIZATIONS, AND (4) THE TEACHING AIDS AND INFORMATION WHICH TEACHERS WOULD LIKE TO HAVE.…
Final Tier 2 Environmental Impact Statement for International Space Station
NASA Technical Reports Server (NTRS)
1996-01-01
The Final Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA!s participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.
Draft Tier 2 Environmental Impact Statement for International Space Station
NASA Technical Reports Server (NTRS)
1995-01-01
The Draft Tier 2 Environmental Impact Statement (EIS) for the International Space Station (ISS) has been prepared by the National Aeronautics and Space Administration (NASA) and follows NASA's Record of Decision on the Final Tier 1 EIS for the Space Station Freedom. The Tier 2 EIS provides an updated evaluation of the environmental impacts associated with the alternatives considered: the Proposed Action and the No-Action alternative. The Proposed Action is to continue U.S. participation in the assembly and operation of ISS. The No-Action alternative would cancel NASA's participation in the Space Station Program. ISS is an international cooperative venture between NASA, the Canadian Space Agency, the European Space Agency, the Science and Technology Agency of Japan, the Russian Space Agency, and the Italian Space Agency. The purpose of the NASA action would be to further develop a human presence in space; to meet scientific, technological, and commercial research needs; and to foster international cooperation.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Espinasse, S.; Hufenbach, B.
2013-09-01
Lunar exploration continues to be a priority for the European Space Agency (ESA) and is recognized as the next step for human exploration beyond low Earth orbit. The Moon is also recognized as an important scientific target providing vital information on the history of the inner solar system; Earth and the emergence of life, and fundamental information on the formation and evolution of terrestrial planets. The Moon also provides a platform that can be utilized for fundamental science and to prepare the way for exploration deeper into space and towards a human Mars mission, the ultimate exploration goal. Lunar missions can also provide a means of preparing for a Mars sample return mission, which is an important long term robotic milestone. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. These include activities on the ISS and participation with US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017. Future activities planned activities also include participation in international robotic missions. These activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We present ESA's plans for Lunar exploration and the current status of activities. In particular we will show that this programme gives rise to unique scientific opportunities and prepares scientifically and technologically for future exploratory steps.
Global governance, international health law and WHO: looking towards the future.
Taylor, Allyn L.
2002-01-01
The evolving domain of international health law encompasses increasingly diverse and complex concerns. Commentators agree that health development in the twenty-first century is likely to expand the use of conventional international law to create a framework for coordination and cooperation among states in an increasingly interdependent world. This article examines the forces and factors behind the emerging expansion of conventional international health law as an important tool for present and future multilateral cooperation. It considers challenges to effective international health cooperation posed for intergovernmental organizations and other actors involved in lawmaking. Although full consolidation of all aspects of future international health lawmaking under the auspices of a single international organization is unworkable and undesirable, the World Health Organization (WHO) should endeavour to serve as a coordinator, catalyst and, where appropriate, platform for future health law codification. Such leadership by WHO could enhance coordination, coherence and implementation of international health law policy. PMID:12571727
7 CFR 4285.46 - Prohibited use of cooperative agreement funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... excluded as the research on cooperatives program activities. (b) Federal funds cannot be used to purchase... purchase: (1) Promotional pieces such as point-of-sale materials, promotional kits, billboard space and... gift nature. (d) Cooperative agreement funds cannot be used to conduct general publicity or information...
2014-10-01
Views September–October 2014 Air & Space Power Journal | 92 Aviation Security Cooperation Advancing Global Vigilance, Global Reach, and Global Power...2014 to 00-00-2014 4. TITLE AND SUBTITLE Aviation Security Cooperation: Advancing Global Vigilance, Global Reach, and Global Power in a Dynamic
Industry-university cooperation/research
NASA Technical Reports Server (NTRS)
Whitten, Raymond P.
1991-01-01
The paper concentrates on the commercial development of space programs through cooperative research with the U.S. universities and industry. The origins of the programs are discussed, beginning with the Communication Satellite Act of 1963. The National Space Policy is outlined, and the creation of NASA's Office of Commercial Programs is emphasized, along with its Centers for the Commercial Development of Space. It is noted that the centers are consortia of university, industry, and government involved in commercial-space-technology database development and research and testing of potentially valuable products and services. The center titles, locations, and brief descriptions for such area of research as remote sensing, life sciences, materials processing, space power, space propulsion, materials and space structures, and automation and robotics centers are listed, along with some results of the programs.
Space-Hotel EARLY BIRD - A Visionary Prospect of a Space Station
NASA Astrophysics Data System (ADS)
Amekrane, R.; Holze, C.
2002-01-01
rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun, Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore this dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the overview of the 17 designs as visions of a future space hotel. The designs used technologies which are currently in a development phase (e.g. tether technology, inflatable habitats). But during the design process requirements for the development of new technologies have been defined as well (e.g. multifunctional surfaces, smart materials etc.). The paper will deal with and summarize the outcome of the design study which may trigger the development of technologies required for a space station which will be dedicated to tourism. www.spacehotel.org
The Hubble Space Telescope at 25: Lessons Learned for Future Missions
NASA Astrophysics Data System (ADS)
Wiseman, Jennifer
2015-08-01
This year we celebrate the 25th anniversary of the Hubble Space Telescope mission. Astronomy worldwide has been transformed by the discoveries made with Hubble. At this momentous milestone it is important to reflect on the unique successes of Hubble, and the components of that success, as the astronomical community develops facilities and a vision for future major international efforts in scientific space exploration. First, Hubble was envisioned by pioneering astronomers long before its launch, galvanizing support from astronomers, NASA, and governmental leaders for such an innovative and risky endeavor. Second, the interplay of the astronaut program with scientific exploration was paramount to the success of Hubble, not only with the initial dramatic repair mission, but also for the subsequent five servicing missions that kept the observatory perpetually refreshed. Cooperative missions involving astronauts, engineers, and scientists may be critical for constructing and operating large facilities in space in the future. Third, the scientific discoveries of Hubble involve both incredible successes that were planned from the outset as well as new discoveries and innovative uses of the observatory that could not have been planned in advance. Hubble has been used not only to gauge the expansion rate and age of the universe, but has also been a major player in the recent surprise detection of acceleration in that expansion. Hubble has also been key for studying star formation and now the atmospheres of exoplanets; even water has been detected in exoplanetary systems, something never envisioned for Hubble originally. And the incredible evolutionary picture of galaxies has been unveiled through Hubble observations, now enhanced by the revolutionary uses of gravitational lensing to study both dark matter in the lensing clusters, and extremely distant magnified galaxies. Finally, Hubble’s great success in public outreach has made the discoveries of astronomy easily accessible and treasured by people around the world. This talk will outline how these successes of the Hubble Space Telescope program can inform and prepare us for future large scale astronomical facilities and exploration endeavors.
Reciprocity, culture and human cooperation: previous insights and a new cross-cultural experiment
Gächter, Simon; Herrmann, Benedikt
2008-01-01
Understanding the proximate and ultimate sources of human cooperation is a fundamental issue in all behavioural sciences. In this paper, we review the experimental evidence on how people solve cooperation problems. Existing studies show without doubt that direct and indirect reciprocity are important determinants of successful cooperation. We also discuss the insights from a large literature on the role of peer punishment in sustaining cooperation. The experiments demonstrate that many people are ‘strong reciprocators’ who are willing to cooperate and punish others even if there are no gains from future cooperation or any other reputational gains. We document this in new one-shot experiments, which we conducted in four cities in Russia and Switzerland. Our cross-cultural approach allows us furthermore to investigate how the cultural background influences strong reciprocity. Our results show that culture has a strong influence on positive and in especially strong negative reciprocity. In particular, we find large cross-cultural differences in ‘antisocial punishment’ of pro-social cooperators. Further cross-cultural research and experiments involving different socio-demographic groups document that the antisocial punishment is much more widespread than previously assumed. Understanding antisocial punishment is an important task for future research because antisocial punishment is a strong inhibitor of cooperation. PMID:19073476
Separating conditional and unconditional cooperation in a sequential Prisoner’s Dilemma game
Mieth, Laura; Buchner, Axel
2017-01-01
Most theories of social exchange distinguish between two different types of cooperation, depending on whether or not cooperation occurs conditional upon the partner’s previous behaviors. Here, we used a multinomial processing tree model to distinguish between positive and negative reciprocity and cooperation bias in a sequential Prisoner’s Dilemma game. In Experiments 1 and 2, the facial expressions of the partners were varied to manipulate cooperation bias. In Experiment 3, an extinction instruction was used to manipulate reciprocity. The results confirm that people show a stronger cooperation bias when interacting with smiling compared to angry-looking partners, supporting the notion that a smiling facial expression in comparison to an angry facial expression helps to construe a situation as cooperative rather than competitive. Reciprocity was enhanced for appearance-incongruent behaviors, but only when participants were encouraged to form expectations about the partners’ future behaviors. Negative reciprocity was not stronger than positive reciprocity, regardless of whether expectations were manipulated or not. Experiment 3 suggests that people are able to ignore previous episodes of cheating as well as previous episodes of cooperation if these turn out to be irrelevant for predicting a partner’s future behavior. The results provide important insights into the mechanisms of social cooperation. PMID:29121671
Reciprocity, culture and human cooperation: previous insights and a new cross-cultural experiment.
Gächter, Simon; Herrmann, Benedikt
2009-03-27
Understanding the proximate and ultimate sources of human cooperation is a fundamental issue in all behavioural sciences. In this paper, we review the experimental evidence on how people solve cooperation problems. Existing studies show without doubt that direct and indirect reciprocity are important determinants of successful cooperation. We also discuss the insights from a large literature on the role of peer punishment in sustaining cooperation. The experiments demonstrate that many people are 'strong reciprocators' who are willing to cooperate and punish others even if there are no gains from future cooperation or any other reputational gains. We document this in new one-shot experiments, which we conducted in four cities in Russia and Switzerland. Our cross-cultural approach allows us furthermore to investigate how the cultural background influences strong reciprocity. Our results show that culture has a strong influence on positive and in especially strong negative reciprocity. In particular, we find large cross-cultural differences in 'antisocial punishment' of pro-social cooperators. Further cross-cultural research and experiments involving different socio-demographic groups document that the antisocial punishment is much more widespread than previously assumed. Understanding antisocial punishment is an important task for future research because antisocial punishment is a strong inhibitor of cooperation.
Space weather activities in Australia
NASA Astrophysics Data System (ADS)
Cole, D.
Space Weather Plan Australia has a draft space weather plan to drive and focus appropriate research into services that meet future industry and social needs. The Plan has three main platforms, space weather monitoring and service delivery, support for priority research, and outreach to the community. The details of monitoring, service, research and outreach activities are summarised. A ground-based network of 14 monitoring stations from Antarctica to Papua New Guinea is operated by IPS, a government agency. These sites monitor ionospheric and geomagnetic characteristics, while two of them also monitor the sun at radio and optical wavelengths. Services provided through the Australian Space Forecast Centre (ASFC) include real-time information on the solar, space, ionospheric and geomagnetic environments. Data are gathered automatically from monitoring sites and integrated with data exchanged internationally to create snapshots of current space weather conditions and forecasts of conditions up to several days ahead. IPS also hosts the WDC for Solar-Terrestrial Science and specialises in ground-based solar, ionospheric, and geomagnetic data sets, although recent in-situ magnetospheric measurements are also included. Space weather activities A research consortium operates the Tasman International Geospace Environment Radar (TIGER), an HF southward pointing auroral radar operating from Hobart (Tasmania). A second cooperative radar (Unwin radar) is being constructed in the South Island of New Zealand. This will intersect with TIGER over the auroral zone and enhance the ability of the radar to image the surge of currents that herald space environment changes entering the Polar Regions. Launched in November 2002, the micro satellite FEDSAT, operated by the Cooperative Research Centre for Satellite Systems, has led to successful space science programs and data streams. FEDSAT is making measurements of the magnetic field over Australia and higher latitudes. It also carries a GPS receiver measuring total electron content data for magnetospheric and ionospheric studies. Understanding cosmic ray phenomena requires observations from a range of locations. The Mawson observatory, comprising low and high energy surface and high energy underground instruments, is the largest and most sophisticated observatory of its type in the Southern Hemisphere, and the only one at polar latitudes. The Australian Antarctic Division operates similar detectors at other sites. Australia has proved to be a successful site for ground-based studies and satellite downlink facilities for international collaborative projects, such as ILWS, which are monitoring Sun-Earth activity and exploring techniques for space weather forecasting.
The trading company in space development in Japan
NASA Astrophysics Data System (ADS)
Gonda, Toshi N.
Trading companies have a unique status in the Japanese market and a really deep involvement in Japanese trade. They are also involved in space development and the space industry as well. An overview of trading companies activities and, more specifically, a way of involving them more in the space industry are presented. The activities of Nissho Iwai Corporation, one of the Sogo Shosha, are described in detail. Their activities in the space industry have two aspects, one is social and the other is commercial. They have been stimulating space projects in these aspects. There are several international cooperative space projects between Japan and the U.S. These projects are proceeding on a government to government basis. But, it is worthwhile to realize that the Sogo Shosha may create trade flow through increased international space cooperation in the private sector.
Lessons learned from a decade of international space cooperation.
NASA Technical Reports Server (NTRS)
Barnes, R. J. H.
1971-01-01
A case history of the Alouette/ISIS series is presented, giving attention to aspects of U.S.-Canadian cooperation in this program. The project is only one example of a broad network of international cooperative relationships established by NASA over the past decade. Participation by other countries in important space science and applications projects is not limited to those providing flight hardware or conducting flight observations. Much valuable work is done on the ground, ranging from analysis in the laboratories of samples returned from the moon to correlated ground-based reception and analysis of radio beacon signals from satellites. It was found that cooperation is more likely to proceed smoothly and produce beneficial results if it is focused on projects that are clearly defined and agreed on in advance.
The organizations for space education and outreach programs in the Republic of Korea
NASA Astrophysics Data System (ADS)
Lee, Jeongwon; Jo, Hyun-Jung; Choi, Jae Dong
2011-09-01
Korea has a short history in space development compared to neighboring countries like Japan, China, India and Russia. During the past 20 years, Korea has focused on developing satellite and rocket space technology under the national space development plan. KOMPSAT-1 and 2, and KSLV-1 are the results of the selection and concentration policy of the Korean government. Due to the arduous mission of developing hardware oriented space technology, the topic of space education and outreach for the general public has not received much in the national space program. But recently, the Korean government has begun planning a space science outreach program in the detailed action plan of the mid-long term national space development plan. This paper introduces and analyzes the organizations performing space education and outreach programs for primary and secondary schools in the Republic of Korea. "Young Astronaut Korea (YAK)" is one such program. This is a non-profit organization established to provide space education for students in 1989 when Korea just started its space development program. "YAK" is a unique group in Korea for space education and outreach activities because it is organized by branches at each school in the nation and it is much like the Boy Scout and Girl Scout programs. Space Science Museum and National Youth Space Center (NYSC), which are located near NARO space center in the southernmost part of the Korean peninsula are other examples of space education and outreach programs. NARO space center, which is the only launch site in Korea became the center of public interest by showing the KSLV-1 launch in 2009 and will be expected to play a key role for the space education of students in the Republic of Korea. The NYSC will perform many mission oriented space education programs for students as Space Camp in the USA does. This paper introduces the status of the space education and outreach programs of each organization and presents the future direction of space education and outreach for the Korean public and students. If these three organizations cooperate with each other and develop systematic programs of space education and outreach for the people, they will prepare a base for growth and progress in future space science and technology in Korea.
Risks of radiation cataracts from interplanetary space missions.
Lett, J T; Lee, A C; Cox, A B
1994-11-01
Recognition of the human risks from radiation exposure during manned missions in deep space has been fostered by international co-operation; interagency collaboration is facilitating their evaluation. Further co-operation can lead, perhaps by the end of this decade, to an evaluation of one of the three major risks, namely radiation cataractogenesis, sufficient for use in the planning of the manned mission to Mars.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1977-01-01
To accelerate the development of multi-armed, free-flying satellite manipulators, a fixed-base cooperative manipulation facility is being developed. The work performed on multiple arm cooperation on a free-flying robot is summarized. Research is also summarized on global navigation and control of free-flying space robots. The Locomotion Enhancement via Arm Pushoff (LEAP) approach is described and progress to date is presented.
Aerospace Flywheel Technology Development for IPACS Applications
NASA Technical Reports Server (NTRS)
McLallin, Kerry L.; Jansen, Ralph H.; Fausz, Jerry; Bauer, Robert D.
2001-01-01
The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) are cooperating under a space act agreement to sponsor the research and development of aerospace flywheel technologies to address mutual future mission needs. Flywheel technology offers significantly enhanced capability or is an enabling technology. Generally these missions are for energy storage and/or integrated power and attitude control systems (IPACS) for mid-to-large satellites in low earth orbit. These missions require significant energy storage as well as a CMG or reaction wheel function for attitude control. A summary description of the NASA and AFRL flywheel technology development programs is provided, followed by specific descriptions of the development plans for integrated flywheel system tests for IPACS applications utilizing both fixed and actuated flywheel units. These flywheel system development tests will be conducted at facilities at AFRL and NASA Glenn Research Center and include participation by industry participants Honeywell and Lockheed Martin.
NASA Astrophysics Data System (ADS)
Graham, Christopher J.
2012-05-01
Success in the future battle space is increasingly dependent on rapid access to the right information. Faced with a shrinking budget, the Government has a mandate to improve intelligence productivity, quality, and reliability. To achieve increased ISR effectiveness, leverage of tactical edge mobile devices via integration with strategic cloud-based infrastructure is the single, most likely candidate area for dramatic near-term impact. This paper discusses security, collaboration, and usability components of this evolving space. These three paramount tenets outlined below, embody how mission information is exchanged securely, efficiently, with social media cooperativeness. Tenet 1: Complete security, privacy, and data integrity, must be ensured within the net-centric battle space. This paper discusses data security on a mobile device, data at rest on a cloud-based system, authorization and access control, and securing data transport between entities. Tenet 2: Lack of collaborative information sharing and content reliability jeopardizes mission objectives and limits the end user capability. This paper discusses cooperative pairing of mobile devices and cloud systems, enabling social media style interaction via tagging, meta-data refinement, and sharing of pertinent data. Tenet 3: Fielded mobile solutions must address usability and complexity. Simplicity is a powerful paradigm on mobile platforms, where complex applications are not utilized, and simple, yet powerful, applications flourish. This paper discusses strategies for ensuring mobile applications are streamlined and usable at the tactical edge through focused features sets, leveraging the power of the back-end cloud, minimization of differing HMI concepts, and directed end-user feedback.teInput=
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.
1993-01-01
Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.
NASA Technical Reports Server (NTRS)
1994-01-01
During the past 30 years as NASA has conducted technology transfer programs, it has gained considerable experience - particularly pertaining to the processes. However, three areas have not had much scrutiny: the examination of the contributions of the individuals who have developed successful spinoffs, the commercial success of the spinoffs themselves, and the degree to which they are understood by the public. In short, there has been limited evaluation to measure the success of technology transfer efforts mandated by Congress. Research conducted during the first year of a three-year NASA grant to the United States Space Foundation has taken the initial steps toward measuring the success of methodologies to accomplish that Congressionally-mandated technology transfer. In particular, the US Space Foundation, in cooperation with ARAC, technology transfer experts; JKA, a nationally recognized themed entertainment design company; and top evaluation consultants, inaugurated and evaluated a fresh approach including commercial practices to encourage, motivate, and energize technology transfer by: recognizing already successful efforts (Space Technology Hall of Fame Award), drawing potential business and industrial players into the process (Space Commerce Expo), and informing and motivating the general public (Space Technology Hall of Fame public venues). The first year's efforts are documented and directions for the future are outlined.
Experiences applying Formal Approaches in the Development of Swarm-Based Space Exploration Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher A.; Hinchey, Michael G.; Truszkowski, Walter F.; Rash, James L.
2006-01-01
NASA is researching advanced technologies for future exploration missions using intelligent swarms of robotic vehicles. One of these missions is the Autonomous Nan0 Technology Swarm (ANTS) mission that will explore the asteroid belt using 1,000 cooperative autonomous spacecraft. The emergent properties of intelligent swarms make it a potentially powerful concept, but at the same time more difficult to design and ensure that the proper behaviors will emerge. NASA is investigating formal methods and techniques for verification of such missions. The advantage of using formal methods is the ability to mathematically verify the behavior of a swarm, emergent or otherwise. Using the ANTS mission as a case study, we have evaluated multiple formal methods to determine their effectiveness in modeling and ensuring desired swarm behavior. This paper discusses the results of this evaluation and proposes an integrated formal method for ensuring correct behavior of future NASA intelligent swarms.
Memory-n strategies of direct reciprocity
Martinez-Vaquero, Luis A.; Chatterjee, Krishnendu; Nowak, Martin A.
2017-01-01
Humans routinely use conditionally cooperative strategies when interacting in repeated social dilemmas. They are more likely to cooperate if others cooperated before, and are ready to retaliate if others defected. To capture the emergence of reciprocity, most previous models consider subjects who can only choose from a restricted set of representative strategies, or who react to the outcome of the very last round only. As players memorize more rounds, the dimension of the strategy space increases exponentially. This increasing computational complexity renders simulations for individuals with higher cognitive abilities infeasible, especially if multiplayer interactions are taken into account. Here, we take an axiomatic approach instead. We propose several properties that a robust cooperative strategy for a repeated multiplayer dilemma should have. These properties naturally lead to a unique class of cooperative strategies, which contains the classical Win–Stay Lose–Shift rule as a special case. A comprehensive numerical analysis for the prisoner’s dilemma and for the public goods game suggests that strategies of this class readily evolve across various memory-n spaces. Our results reveal that successful strategies depend not only on how cooperative others were in the past but also on the respective context of cooperation. PMID:28420786
Kin competition and the evolution of cooperation
Platt, Thomas G.; Bever, James D.
2017-01-01
Kin and multilevel selection theories predict that genetic structure is required for the evolution of cooperation. However, local competition among relatives can limit cooperative benefits, antagonizing the evolution of cooperation. We show that several ecological factors determine the extent to which kin competition constrains cooperative benefits. In addition, we argue that cooperative acts that expand local carrying capacity are less constrained by kin competition than other cooperative traits, and are therefore more likely to evolve. These arguments are particularly relevant to microbial cooperation, which often involves the production of public goods that promote population expansion. The challenge now is to understand how an organism’s ecology influences how much cooperative groups contribute to future generations and thereby the evolution of cooperation. PMID:19409651
NASA and ESA Collaboration on Hexavalent Chrome Free Coatings
NASA Technical Reports Server (NTRS)
Greene, Brian
2017-01-01
Presentation on the NASA and ESA Collaboration on Hexavalent Chrome Free Coatings project. Project is in response to a Memorandum of Understanding between NASA and ESA Concerning Cooperation in the Field of Space Transportation - signed September 11, 2009. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) have expressed mutual interest in pursuing cooperation in the areas of evaluating hexavalent chrome-free coatings, environmentally-preferable coatings for maintenance of launch facilities and ground support equipment, citric acid as an alternative to nitric acid for passivation of stainless steel alloys.
An Overview of NASA's In-Space Cryogenic Propellant Management Technologies
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)
2001-01-01
Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.
NASA Technical Reports Server (NTRS)
Skor, Mike; Hoffman, Dave J.
1997-01-01
The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.
Cooperative Learning: A Pedagogy to Improve Students' Generic Skills?
ERIC Educational Resources Information Center
Ballantine, Joan; Larres, Patricia McCourt
2007-01-01
Purpose: The objective of this study is two-fold. First, it provides guidance to educators and trainers on establishing a cooperative learning environment. Second, it examines final-year undergraduate accounting students' opinions on the effectiveness of a cooperative learning environment in delivering generic skills for their future professional…
ESTEC/Geovusie/ILEWG planetary student design workshop: a teacher training perspective
NASA Astrophysics Data System (ADS)
Preusterink, Jolanda; Foing, Bernard H.; Kaskes, Pim
An important role for education is to inform and create the right skills for people to develop their own vision, using their talents to the utmost and inspire others to learn to explore in the future. Great effort has been taken to prepare this interactive design workshop thoroughly. Three days in a row, starting with presentations of Artscience The Hague to ESA colleagues, followed by a Planetary research Symposium in Amsterdam and a student design workshop at the end complemented a rich environment with the focus on Planetary exploration. The design workshop was organised by GeoVUsie students, with ESTEC and ILEWG support for tutors and inviting regional and international students to participate in an interactive workshop to design 5 Planetary Missions, with experts sharing their expertise and knowhow on specific challenging items: 1. Mercury - Post BepiColombo (with Sébastien Besse, ESA) 2. Moon South Pole Mission (with Bernard Foing, ESA) 3. Post-ExoMars - In search for Life on Mars (with Jorge Vago, ESA) 4. Humans in Space - Mars One investigated(with Arno Wielders, Space Horizon) 5. Europa - life on the icy moon of Jupiter? (with Bert Vermeersen, TU Delft) Lectures were given for more than 150 geology students at the symposium “Moon, Mars and More” at VU university, Amsterdam (organized by GeoVUsie earth science students). All students were provided with information before and at start for designing their mission. After the morning session there was a visit to the exhibition at The Erasmus Facility - ESTEC to inspire them even more with real artifacts of earlier and future missions into space. After this visit they prepared their final presentations, with original results, with innovative ideas and a good start to work out further in the future. A telescope session for geology students had been organized indoor due to rain. A follow-up visit to the nearby public Copernicus observatory was planned for another clear sky occasion. The interactive character of this setting was inspirational and motivating. A good method with vision to modernize school education and bring innovation to educators: they are the key promoters and facilitators for change in the culture of education. Tutors and mentors are very important to pave the way with more modern interactive learning, including: 1. Social Media 2. Online Learning 3. Creator Society 4. Data-driven learning 5. Virtual Assistance The great importance of emerging technologies and their potential impact on and use in teaching, learning, and creative inquiry in pre-college education environments offer good prospects. The International Lunar Exploration Working Group (ILEWG) has given support to emphasize their vision, goal to "international cooperation towards a world strategy for the exploration and utilization of the Moon” by organizing and facilitating students, teachers, schools and universities with relevant material, ready to use in the classroom and inform the greater audience. This underlines the vision of the importance and responsibility to “draw in” education for primary, secondary and higher education on a more regular base and to implant space exploration on its widest scale and on a more sustainable way in the future. Developing and building a stronger network is crucial to gain technical personal for future Moon missions, samples return and research on other planets, moons or asteroids. This workshop helped to give more outreach about current space projects and will have a follow-up. The international and cooperative character was an innovative experience with enriching information and great promising students for more science and future space exploration. Acknowledgements: we thank the volunteer organiser students from VU GeoVUsie, the participants and the tutors. A video of highlights is available on " 2. Planetary Design student workshop organised by VU Amsterdam GeoVusie/ESTEC/ILEWG" http://www.youtube.com/watch?v=NJxvHKcNeKo
Women and International Intellectual Co-Operation
ERIC Educational Resources Information Center
Goodman, Joyce
2012-01-01
The article explores ways in which intellectual co-operation at the League of Nations [SDN] provided a space for the engagement of culturally elite women in intellectual co-operation circles in Geneva, Paris and a range of national contexts stretching across Europe, Latin America and Asia. It discusses the language of the "international mind" and…
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin
2010-01-01
Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.
Committee on solar and space physics
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
The Committee on Solar and Space Physics (CSSP) is the Committee of the Space Science Board (SSB) of the National Research Council that is responsible for providing scientific advice to NASA in areas of solar/solar-terrestrial/space-plasma physics. The committee, composed of members who serve 3-year terms, wishes to solicit comments from colleagues on topics of interest to them and related to issues in the field.Current subjects on which the committee is devoting considerable effort include the following: (a) considerations of data handling and data systems in solar-terrestrial research for the future (This is being carried out with the encouragement of the SSB and its Committee on Data Management. The activity is in collaboration with the Committee on Solar-Terrestrial Research (CSTR) of the Geophysics Research Board. The handling, integration, and dissemination of solar-terrestrial data obtained by all techniques will be addressed. Chairmen of the responsible subgroup are D. J. Williams (CSSP) and M. A. Shea (CSTR).); (b) consideration of the policies and issues associated with a revitalized Explorer satellite program responsive to the requirements of the solar-terrestrial physics community (Inputs of ideas for potential Explorer missions have been received from a wide range of the community and will be further elaborated upon by additional community participation. A number of these ideas and examples will form a portion of a report discussing solar-terrestrial science topics of high contemporary interest that could be well addressed with Explorerclass missions.); (c) inputs to a more comprehensive consideration of the requirements for theoretical research in all the space sciences (This is an overall task of the Space Science Board. The CSSP response relies heavily upon the Colgate committee report on space plasma physics.); (d) a future workshop, in collaboration with the Space Science Committee of the European Science foundation, on potential cooperative work in space plasma physics with European nations (Four major program items will be addressed, including reviews of several major scientific achievements within the field, a review of the status of solar and space plasma physics as academic subjects in the U.S. and in Western Europe, a review of future research programs, and a discussion of the forms of collaboration between the U.S. and European space plasma physics communities, with recommendations for the future. The workshop will be held in the U.S., tentatively during the 1982-83 academic year.); (e) continuing dialogue with NASA public relations officials and other knowledgeable individuals regarding the status of public knowledge of the results, importance, and applications of solar-terrestrial research.); (f) discussions with relevant officials concerning the issues of scientific funding in the United States, particularly as related to solar-terrestrial research.
Space technology and robotics in school projects
NASA Astrophysics Data System (ADS)
Villias, Georgios
2016-04-01
Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics experiments (propulsion, comet's compositions and trajectories, gravitational forces, etc.) using educational resourses from ESA's website (http://www.esa.int/Education) and small theoretical researches related with subjects of Astrobiology, Mars & Moon Exploration and Space Science, trying to shed some light over some of the big questions related with: - the origin of life in the universe. - the requirements/conditions/possibilities for the existence of life elsewhere. - whether terraforming is possible or not. - the existing reasons/benefits/problems for the colonization of the moon/mars. - the quest for earth-like exoplanets, etc.
MISSE 5 Thin Films Space Exposure Experiment
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Kinard, William H.; Jones, James L.
2007-01-01
The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.
JPRS Report, Science & Technology, Europe & Latin America
1988-02-23
Space Cooperation With USSR, PRC ( ESPACIAL , May 87) 121 - c - Brazil’s SMAR May Sell Automation Equipment to Cuba (0 GLOBO, 16 Nov 87) 124...Edson Fregni, president of Scopus Tecnologia and former president of Abicomp, expects that the process of mergers or takeovers among domestic data...its equipment. 5058 CSO: 3699/0013 120 TECHNOLOGY TRANSFER LATIN AMERICA BRAZILIAN SPACE COOPERATION WITH USSR, PRC San Jose dos Campos ESPACIAL
NASA Technical Reports Server (NTRS)
1990-01-01
In response to a Presidential directive, NASA has implemented a space policy which actively supports and encourages U.S. industry investment and participation in commercial space ventures. NASA's Office of Commercial Programs (OCP) has played a significant role in stimulating the growth of commercial space activity. Through a variety of programs, OCP encourages commercial interest and involvement in space endeavors by providing access to NASA resources and opportunities for the emerging space industry to reduce the technical, financial, and business risks associated with space-related activities. This manual describes NASA's Commercial Uses of Space Program and introduces participants to four major OCP Commercial programs: Technology Utilization (TU), Small Business Innovation Research (SBIR), Centers for the Commercial Development of Space Flight Agreement (CCDSFA), and Cooperative Agreements Programs. The objective of this manual is to assist U.S. industry identify and pursue the appropriate agreement for participation in a commercial space venture.
ERIC Educational Resources Information Center
Kinsley, Allison P., Ed.; And Others
Forum topics included discussions on: (1) "Provocative Perceptions: Space Achievement and Challenge"; (2) "International Cooperation and Competition"; (3) "International Space Programs"; (4) "Astronauts Memorial Foundation"; (5) "Prospects for U.S. Commerical Space Transportation"; (6)…
A model for interprovincial air pollution control based on futures prices.
Zhao, Laijun; Xue, Jian; Gao, Huaizhu Oliver; Li, Changmin; Huang, Rongbing
2014-05-01
Based on the current status of research on tradable emission rights futures, this paper introduces basic market-related assumptions for China's interprovincial air pollution control problem. The authors construct an interprovincial air pollution control model based on futures prices: the model calculated the spot price of emission rights using a classic futures pricing formula, and determined the identities of buyers and sellers for various provinces according to a partitioning criterion, thereby revealing five trading markets. To ensure interprovincial cooperation, a rational allocation result for the benefits from this model was achieved using the Shapley value method to construct an optimal reduction program and to determine the optimal annual decisions for each province. Finally, the Beijing-Tianjin-Hebei region was used as a case study, as this region has recently experienced serious pollution. It was found that the model reduced the overall cost of reducing SO2 pollution. Moreover, each province can lower its cost for air pollution reduction, resulting in a win-win solution. Adopting the model would therefore enhance regional cooperation and promote the control of China's air pollution. The authors construct an interprovincial air pollution control model based on futures prices. The Shapley value method is used to rationally allocate the cooperation benefit. Interprovincial pollution control reduces the overall reduction cost of SO2. Each province can lower its cost for air pollution reduction by cooperation.
The US Army and Future Security Force Assistance Operations
2013-04-01
havens. It addresses the recent evolution of SFA doctrine, guidance and authorities, and the role of interagency cooperation related to the future...safe havens. It addresses the recent evolution of SFA doctrine, guidance and authorities, and the role of interagency cooperation related to the...organizations at all levels. 5 SFA extends well beyond military-to-military training and conceptually addresses security as a system of
The Further Evolution of Cooperation
NASA Astrophysics Data System (ADS)
Axelrod, Robert; Dion, Douglas
1988-12-01
Axelrod's model of the evolution of cooperation was based on the iterated Prisoner's Dilemma. Empirical work following this approach has helped establish the prevalence of cooperation based on reciprocity. Theoretical work has led to a deeper understanding of the role of other factors in the evolution of cooperation: the number of players, the range of possible choices, variation in the payoff structure, noise, the shadow of the future, population dynamics, and population structure.
Santos, José Ignacio; Pereda, María; Zurro, Débora; Álvarez, Myrian; Caro, Jorge; Galán, José Manuel; Briz i Godino, Ivan
2015-01-01
This article presents an agent-based model designed to explore the development of cooperation in hunter-fisher-gatherer societies that face a dilemma of sharing an unpredictable resource that is randomly distributed in space. The model is a stylised abstraction of the Yamana society, which inhabited the channels and islands of the southernmost part of Tierra del Fuego (Argentina-Chile). According to ethnographic sources, the Yamana developed cooperative behaviour supported by an indirect reciprocity mechanism: whenever someone found an extraordinary confluence of resources, such as a beached whale, they would use smoke signals to announce their find, bringing people together to share food and exchange different types of social capital. The model provides insight on how the spatial concentration of beachings and agents’ movements in the space can influence cooperation. We conclude that the emergence of informal and dynamic communities that operate as a vigilance network preserves cooperation and makes defection very costly. PMID:25853728
NASA Technical Reports Server (NTRS)
Weaver, Johnathan M.
1993-01-01
A method was developed to plan feasible and obstacle-avoiding paths for two spatial robots working cooperatively in a known static environment. Cooperating spatial robots as referred to herein are robots which work in 6D task space while simultaneously grasping and manipulating a common, rigid payload. The approach is configuration space (c-space) based and performs selective rather than exhaustive c-space mapping. No expensive precomputations are required. A novel, divide-and-conquer type of heuristic is used to guide the selective mapping process. The heuristic does not involve any robot, environment, or task specific assumptions. A technique was also developed which enables solution of the cooperating redundant robot path planning problem without requiring the use of inverse kinematics for a redundant robot. The path planning strategy involves first attempting to traverse along the configuration space vector from the start point towards the goal point. If an unsafe region is encountered, an intermediate via point is identified by conducting a systematic search in the hyperplane orthogonal to and bisecting the unsafe region of the vector. This process is repeatedly applied until a solution to the global path planning problem is obtained. The basic concept behind this strategy is that better local decisions at the beginning of the trouble region may be made if a possible way around the 'center' of the trouble region is known. Thus, rather than attempting paths which look promising locally (at the beginning of a trouble region) but which may not yield overall results, the heuristic attempts local strategies that appear promising for circumventing the unsafe region.
NASA Astrophysics Data System (ADS)
Kosuge, Toshio
2002-01-01
" P e aceful use of outer space of outer space.....Principles of exploitation of outer space was passed in the Japanese Diet. It clearly mentioned that any activity of launching space object into outer space and developing launching rocket should be exclusively for peaceful purpose. NASDA was also established based upon the same principles of the public law. Japanese interpretation of Space Treaty and other related international agreements has been more strict on peaceful use of outer space, like non-military use rather than non-aggressive, because of influence of Japanese Constitution. Treaty and other agreements is analyzed through rapid development of its space activities, technologies and international cooperation with other space powers. Through more than thirty years experiences in space activities in public and private sectors, Japanese domestic laws and policies have not been changed in relation with basic principles. and laws relating to space activities in order to develop new space law and more international cooperation for space utilization rather than military use in new century.
Intelligent resources for satellite ground control operations
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1994-01-01
This paper describes a cooperative approach to the design of intelligent automation and describes the Mission Operations Cooperative Assistant for NASA Goddard flight operations. The cooperative problem solving approach is being explored currently in the context of providing support for human operator teams and also in the definition of future advanced automation in ground control systems.
ERIC Educational Resources Information Center
Anderson, Kevin J. B.
2012-01-01
Assuming that quality science education plays a role in economic growth within a country, it becomes important to understand how education policy might influence science education teaching and learning. This integrative research review draws on Cooper's methodology (Cooper, 1982; Cooper & Hedges, 2009) to synthesize empirical findings on the…
The Role of Venezuelan Space Technology in Promoting Development in Latin America
NASA Astrophysics Data System (ADS)
Pena, J. A.; Yumin, T.
2017-09-01
Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela's rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.
The Road from the NASA Access to Space Study to a Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae
1998-01-01
NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.
The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G
NASA Astrophysics Data System (ADS)
Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe
2016-12-01
Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.
MISSE 1 and 2 Tray Temperature Measurements
NASA Technical Reports Server (NTRS)
Harvey, Gale A.; Kinard, William H.
2006-01-01
The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.
Effects of simulated weightlessness on regional blood flow specifically during cardiovascular stress
NASA Technical Reports Server (NTRS)
Harrison, D. C.
1986-01-01
Significant changes in the cardiovasular system of humans and animals have been observed following exposure to prolonged periods of weightlessness during space flight. Although adaption to weightlessness is relatively uncomplicated, marked changes in cardiovascular deconditioning become evident upon return to normal gravity, including orthostatic hypotension and tachycardia. Some evidence that myocardial degeneration occurs has been demonstrated in animals who have been immobilized for two months. Also, evidence of possible loss of myocardial mass following manned space flight has been obtained by means of echocardiographic studies. These findings have serious implications in light of the increasing frequency and duration of Space Shuttle missions and the prospect of extended space station missions in the future. A number of both military and civilian investigators, including middle-aged scientists, will probably encounter prolonged periods of weightlessness. It has been imperative, therefore, to determine the effects of prolonged weightlessness on cardiovascular deconditioning and whether such effects are cumulative or reversible. The research project conducted under NASA Cooperative Agreement NCC 2-126 was undertaken to determine the effects of prolonged simulated weightlessness on regional blood flow. Research results are reported in the three appended publications.
Risk and Cooperation: Managing Hazardous Fuel in Mixed Ownership Landscapes
NASA Astrophysics Data System (ADS)
Fischer, A. Paige; Charnley, Susan
2012-06-01
Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.
Risk and cooperation: managing hazardous fuel in mixed ownership landscapes.
Fischer, A Paige; Charnley, Susan
2012-06-01
Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions that cross ownership boundaries. Cooperation depends on people's beliefs and norms about reciprocity and perceptions of the risks and benefits of interacting with others. Using logistic regression tests on mail survey data and qualitative analysis of interviews with landowners, we examined the relationship between perceived wildfire risk and cooperation in the management of hazardous fuel by nonindustrial private forest (NIPF) owners in fire-prone landscapes of eastern Oregon. We found that NIPF owners who perceived a risk of wildfire to their properties, and perceived that conditions on nearby public forestlands contributed to this risk, were more likely to have cooperated with public agencies in the past to reduce fire risk than owners who did not perceive a risk of wildfire to their properties. Wildfire risk perception was not associated with past cooperation among NIPF owners. The greater social barriers to private-private cooperation than to private-public cooperation, and perceptions of more hazardous conditions on public compared with private forestlands may explain this difference. Owners expressed a strong willingness to cooperate with others in future cross-boundary efforts to reduce fire risk, however. We explore barriers to cooperative forest management across ownerships, and identify models of cooperation that hold potential for future collective action to reduce wildfire risk.
Heintze, Christoph; Matysiak-Klose, Dorothea; Howorka, Antje; Kröhn, Thorsten; Braun, Vittoria
2004-08-15
Ideas of general practitioners (GPs) could be of value for the restructuring of the German ambulant health care system. The way managed care is seen by GPs is of particular interest. The aim of this study was to record opinions of GPs, working in Berlin, in regard to several aspects of their daily work. 14 female and 16 male GPs from Berlin participated in a qualitative survey. These 30 GPs were interviewed about their attitude toward cooperation with specialized colleagues and their opinions on a future medical care system. The interviews performed were summarized, structured and analyzed according to the qualitative content analysis by Mayring. From the GPs' point of view, ambulant cooperation is facilitated by knowing specialized colleagues, by staying in close contact to them via telephone and by being able to arrange short-term appointments with these specialists. A closer cooperation with specialists in a network as well as an advanced use of digital information systems for accessing patients' data were considered to be vital elements for a future health care system. An important reason for choosing the cooperation with specialists is to find quick comprehensive treatment strategies for patients. It may be concluded that ambulant managed care of patients could be optimized with the creation of medical networks.
Motion prediction of a non-cooperative space target
NASA Astrophysics Data System (ADS)
Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan
2018-01-01
Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.
International cooperation and competition in space - A current perspective
NASA Technical Reports Server (NTRS)
Pedersen, K. S.
1983-01-01
International cooperative efforts undertaken by NASA are evaluated and consideration is given to the proposed space station. The Shuttle RMS and Spacelab were constructed through efforts of Canadian and European companies and the ESA. Landsat, with its widely dispersed technology and data, has encouraged international access to its capabilities and start-up of follow-on programs in other countries. Space station planning is proceeding with a view to worldwide utilization of space and to the commitment and resources other nations are willing to place in the station. It is conceded that administrative difficulties will arise if the space station is a completely international effort guided by NASA. Additionally, concern will be present for technology leaks, national security implications on the space station, and reasonably fulfilling the benefits expected by those who become partners in the construction and operation of the station.
Future scenarios of impacts to ecosystem services on California rangelands
Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan
2014-01-01
The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.
Portraits - American Apollo-Soyuz Test Project (ASTP) Prime Crewmen
1974-01-01
S74-15241 (January 1974) --- These three NASA astronauts are the United States flight crew for the 1975 Apollo-Soyuz Test Project (ASTP) mission. The prime crew members for the joint United States - Soviet Union spaceflight are, left to right, Donald K. Slayton, docking module pilot; Vance D. Brand, command module pilot; and Thomas P. Stafford, commander. The American and Soviet crews will visit one another?s spacecraft while the Soyuz and Apollo are docked in Earth orbit for a maximum of two days. The ASTP mission is designed to test equipment and techniques that will establish international crew rescue capability in space, as well as permit future cooperative scientific missions.
Bargaining babblers: vocal negotiation of cooperative behaviour in a social bird
Bell, M. B. V.; Radford, A. N.; Smith, R. A.; Thompson, A. M.; Ridley, A. R.
2010-01-01
Wherever individuals perform cooperative behaviours, each should be selected to adjust their own current contributions in relation to the likely future contributions of their collaborators. Here, we use the sentinel system of pied babblers (Turdoides bicolor) to show that individuals anticipate contributions by group mates, adjusting their own contribution in response to information about internal state broadcast by others. Specifically, we show that (i) short-term changes in state influence contributions to a cooperative behaviour, (ii) individuals communicate short-term changes in state, and (iii) individuals use information about the state of group mates to adjust their own investment in sentinel behaviour. Our results demonstrate that individual decisions about contributions to a cooperative effort can be influenced by information about the likely future contribution of others. We suggest that similar pre-emptive adjustments based on information obtained from collaborators will be a common feature of cooperative behaviour, and may play an important role in the development of complex communication in social species. PMID:20519221
Activities on space debris in Europe
NASA Astrophysics Data System (ADS)
Flury, W.
2001-10-01
Activities on space debris in Europe are carried out by ESA, by national space agencies such as ASI (Italy), BNSC (United Kingdom), CNES (France) and DLR (Germany) and by various research groups. The objectives of ESA's activities in the field of space debris have been defined by the Council of ESA in 1989, and were updated in 2000 with the adoption of the Resolution for a European policy on the protection of the space environment from debris. ESA's debris-related activities comprise research, application of debris mitigation measures and international cooperation. The research activities address the knowledge of the terrestrial particulate environment, risk assessment, hypervelocity impacts and protection, and preventative measures. In all these areas substantial progress has been achieved. Examples are the MASTER 99 model, the DISCOS database, beam-park experiments with the FGAN radar, the discovery of a small-size debris population in GEO with the Space Debris telescope at the Teide observatory, and the GORID dust detector in the geostationary orbit. The ESA Space Debris Mitigation Handbook was issued, and in a joint effort of ESA and the national agencies ASI, BNSC, CNES and DLR the European Space Debris Safety and Mitigation Standard (draft) was established. This standard will be harmonized with standards of other agencies through the deliberations in the Inter-Agency Space Debris Coordination Committee (IADC). In order to strengthen the European cooperation, the pilot network of centers - Working Group on Space Debris was created in 2000. The members are ESA, ASI, BNSC, CNES and DLR. An integrated work plan has been established for the period 2001-2003. Global cooperation among the space-faring nations is achieved through the IADC. ESA and its Member States strongly support the deliberations on space debris within the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).
Priority scheme planning for the robust SSM/PMAD testbed
NASA Technical Reports Server (NTRS)
Elges, Michael R.; Ashworth, Barry R.
1991-01-01
Whenever mixing priorities of manually controlled resources with those of autonomously controlled resources, the space station module power management and distribution (SSM/PMAD) environment requires cooperating expert system interaction between the planning function and the priority manager. The elements and interactions of the SSM/PMAD planning and priority management functions are presented. Their adherence to cooperating for common achievement are described. In the SSM/PMAD testbed these actions are guided by having a system planning function, KANT, which has insight to the executing system and its automated database. First, the user must be given access to all information which may have an effect on the desired outcome. Second, the fault manager element, FRAMES, must be informed as to the change so that correct diagnoses and operations take place if and when faults occur. Third, some element must engage as mediator for selection of resources and actions to be added or removed at the user's request. This is performed by the priority manager, LPLMS. Lastly, the scheduling mechanism, MAESTRO, must provide future schedules adhering to the user modified resource base.
Problems of humanization in cosmonautics
NASA Astrophysics Data System (ADS)
Bul'Diaev, G. A.
1992-03-01
The paper discusses the ways of improving humanization of space-related science and technology projects, using the development of the space-rocket industry as an example. Consideration is given to ways of optimizing the military space-rocket programs with respect to minimizing environmental pollution and losses to arable and pasture land and maximizing benefits from rockets for scientific and agricultural programs. It is noted that the present economical crisis makes the continuation of the space project Buran not rational and that money saved would be better spent on the further development of the Energiia-series carriers. Attention is also given to work done on redirecting the research and technology for military projects toward civilian-type projects, on commercialization of these projects, and on further development of cooperation with foreign space programs and initiation of new cooperative projects.
ERIC Educational Resources Information Center
Swift, Elijah Raford, Jr.
2012-01-01
The purpose of this study was to address the gap in research regarding the use of cooperative learning instructional methods in college mathematics courses to prepare future teachers. Bruner's constructivist theory and social interdependence theory guided this study. The research questions focused on the effects of the use of cooperative learning…
Business-School Cooperatives: Meeting Educational Needs. Bar/School Partnership Programs Series.
ERIC Educational Resources Information Center
Taylor, Elenor
Business-school cooperatives are a potential solution to the need of students and educators to learn more about business, its functions in U.S. society, and the need of businesses to have a future workforce ready to face the challenges of an increasingly more complicated and highly technical work atmosphere. Such cooperatives, which are an…
NASA Technical Reports Server (NTRS)
1971-01-01
On or about 24 April 1971, the San Marco-C spacecraft will be launched from the San Marco Range located off the coast of Kenya, Africa, by a Scout launch vehicle. The launch will be conducted by an Italian crew. The San Marco-C is the third cooperative satellite project between Italy and the United States. The first such cooperative project resulted in the San Marco-1 satellite which was launched into orbit from the Wallops Island Range with a Scout vehicle on 15 December 1964. The successful launch demonstrated the readiness of the Italian Centro Ricerche Aerospaziuli (CRA) launch crews to launch the Scout vehicle and qualified the basic spacecraft design. The second in the series of cooperative satellite launches was the San Marco-II which was successfully launched into orbit from the San Marco Range on 26 April 1967. This was the first Scout launch from the San Marco Range. The San Marco-II carried the same accelerometer as San Marco-1, but the orbit permitted the air drag to be studied in detail in the equatorial region. The successful launch also served to qualify the San Marco Range as a reliable facility for future satellite launches, and has since been used for the successful launch of SAS-A (Explorer 42). This cooperative project has been implemented jointly by the Italian Space Commission and NASA. The CRA provided the spacecraft, its subsystems, and an air drag balance; Goddard Space Flight Center (GSFC) provided an omegatron and a neutral mass spectrometer, technical consultation and support. In addition, NASA provided the Scout launch vehicle. The primary scientific objective of the San Marco-C is to obtain, by measurement, a description of the equatorial neutral-particle atmosphere in terms of its density, com- position, and temperature at altitudes of 200 km and above, and to obtain a description of variations that result from solar and geomagnetic activities. The secondary scientific objective is to investigate the interdependence of three neutral-density-measurement techniques from one spacecraft: direct particle detection, direct drag, and integrated drag.
An International Solar Energy Development Decade. A Proposal for Global Cooperation
ERIC Educational Resources Information Center
Stonier, Tom
1972-01-01
Argues that international cooperation in developing solar energy, either by collecting the energy in space stations and transmitting to earth via microwave beams or by terrestrial collection, can lead to peace between nations. (AL)
Trust and cooperation among economic agents
Dasgupta, Partha
2009-01-01
The units that are subject to selection pressure in evolutionary biology are ‘strategies’, which are conditional actions (‘Do P if X occurs, otherwise do Q’). In contrast, the units in economics select strategies from available menus so as to further their projects and purposes. As economic agents do not live in isolation, each agent's optimum choice, in general, depends on the choices made by others. Because their projects and purposes involve the future, not just the present, each agent reasons about the likely present and future consequences of their respective choices. That is why beliefs, about what others may do and what the consequences of those choices could be, are at the basis of strategy selection. A catalogue of social environments is constructed in which agents not only promise each other's cooperation, but also rationally believe that the promises will be kept. Unfortunately, non-cooperation arising from mistrust can be the outcome in those same environments: societies harbour multiple ‘equilibria’ and can skid from cooperation to non-cooperation. Moreover, a pre-occupation among analysts with the Prisoners' Dilemma game has obscured the fact that cooperative arrangements can harbour not only inequality, but also exploitation. The analysis is used to discuss why international cooperation over the use of global public goods has proved to be so elusive. PMID:19805436
Automated Cooperative Trajectories
NASA Technical Reports Server (NTRS)
Hanson, Curt; Pahle, Joseph; Brown, Nelson
2015-01-01
This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.
Governance: The Mission Ingredient in Security Cooperation
2017-06-09
assistance guiding principle of “do-no-harm,” should be included in the future DOS guidance. Seven do-no-harm lessons include: (1) norms and... principle of “do-no-harm.” 15. SUBJECT TERMS Security cooperation, security assistance, defense institution building, USAID, best practices...foreign assistance guiding principle of “do-no-harm,” should be included in the future DOS guidance. Seven do-no-harm lessons include: (1) norms and
Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2016-07-01
The International Lunar Exploration Working Group (ILEWG) was established in April 1995 at a meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon. It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18], present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities. ILEWG supported community forums, ILEWG EuroMoonMars field campaigns and technology validation activities, as well as Young Lunar Explorers events, and activities with broad stakeholders. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap towards the Moon Village. GLUC/ICEUM11 declaration: "467 International Lunar Explorers, registered delegates from 26 countries, assembled at GLUC Global Lunar Conference including the 11th ILEWG Conference on Exploration and Utilisation of the Moon (ICEUM11) in Beijing. The conference engaged scientists, engineers, enthusiast explorers, agencies and organisations in the discussion of recent results and activities and the review of plans for exploration. Space agencies representatives gave the latest reports on their current lunar activities and programmes. GLUC-ICEUM11 was a truly historical meeting that demonstrated the world-wide interest in lunar exploration, discovery, and science. More than 400 abstracts were accepted for oral and poster presentations in the technical sessions, organised in 32 sessions within 4 symposia: Science and Exploration; Technology and Resource Utilisation; Infrastructure and Human aspects; Moon, Space and Society. The latest technical achievements and results of recent missions (SMART-1, Kaguya, Chang'E1, Chandrayaan-1, LCROSS and LRO) were discussed at a plenary panel and technical sessions, with the Lunar Reconnaissance Orbiter (LRO) still in operation. Chang'E1 has generated many useful results for the community. Four plenary panel sessions were conducted: 1. What are the plans? 2. New mission results; 3. From space stations and robotic precursors to lunar bases; 4. Moon, Space, Society The participants summarised their findings, discussions and recommend o continue efforts by agencies and the community on previous ICEUM recommendations, and the continuation of the ILEWG forum, technical groups activities and pilot projects. 1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole- Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide inputs to future missions, including a gap analysis of needed measurements. Highly resolved global data sets are required. Autonomous landing and hazard avoidance will depend on the best topographic map of the Moon, achievable by combining shared data. - New topics such as life sciences, partial gravity processes on the Moon should be followed in relation to future exploration needs. 2. Technologies and resources - A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential. 3. Infrastructures and human aspects - It is recommended to have technical sessions and activities dealing with different aspects of human adaptation to space environments, the modeling of sub-systems, microbial protection and use of inflatable technologies - While the Moon is the best and next logical step in human exploration, we should make best use of the space stations as stepping stones for exploration and human spaceflight beyond Low Earth Orbit. - Further research is needed on lunar dust aspects in regard to humans and interaction with habitats. We note high interest in CELSS for Moon and Mars bases, and recommend further research and development. - We recommend the development and use of terrestrial analogues research sites and facilities, for technology demonstrations, comparative geology and human performance research, and public engagement. We endorse the proposal of development of a site at La Reunion for international Moon-Mars analogue research. 4. Moon, Space, Society and Young Explorers - We consider that the current legal regime as set out in the Outer Space Treaty and the Moon agreement are satisfactory for current and future missions, but may require further clarification for future exploration. Issues of transparency and security will need to be addressed. - Great things are happening for Young Lunar Explorers, with inspiring missions and hands-on activities as coordinated by ILEWG. Lunar exploration is encouraging students of all ages to pursue higher education. - More possibilities for participatory engagement should be offered to the society for example via interdisciplinary activities with the humanities. - We appreciate the work from COSPAR panel on Exploration PEX that should be shared further. - Continued cooperation should be enforced at all levels. The space community feels strongly that joining the forces of space faring nations to explore the Moon should be seriously implemented, with the views of expanding a Global Robotic Village and building in the long run a Manned International Lunar Base. - We propose that a panel be formed through ILEWG with the help of IAF and Chinese Society of Astronautics in cooperation with space agencies, COSPAR and other stakeholders in order to initiate a permanent International Space Exploration Governance Forum We, the participants of the GLUC-ICEUM11 conference, commit to an enhanced global cooperation towards international lunar exploration for the benefit of humankind. Endorsed by the delegates of GLUC-ICEUM11" References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [17] http://sci.esa.int/ilewg/43654-declaration-iceum10-leag-srr-florida-2008/ [18] Ehrenfreund P. et al (COSPAR planetary exploration panel report) 2012, ASR Vol 49, Nr 1, pp. 2-48.
1998-09-01
STS088-S-001 (September 1998) --- Designed by the crew members, this STS-88 patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task is to assemble the cornerstone of the space station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the space shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, "These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future." The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Code of Federal Regulations, 2012 CFR
2012-01-01
... Space Operations resources for support of a cooperative mission. [56 FR 28048, June 19, 1991] ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scope. 1215.101 Section 1215.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Space Operations resources for support of a cooperative mission. [56 FR 28048, June 19, 1991] ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Scope. 1215.101 Section 1215.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM...
U.S. and Canada Sign Space Agreement
2009-10-20
NASA Administrator Charles Bolden, right, and Canadian Space Agency President Steve MacLean sign a framework agreement on civil space cooperation, Wednesday, Sept. 9, 2009, at the Canadian Embassy in Washington, DC. Photo Credit: (NASA/Bill Ingalls)
U.S. and Canada Sign Space Agreement
2009-10-20
Canadian Space Agency President Steve MacLean signs a framework agreement on civil space cooperation between the U.S. and Canada, Wednesday, Sept. 9, 2009, at the Canadian Embassy in Washington, DC. Photo Credit: (NASA/Bill Ingalls)
International Space Station (ISS)
1995-04-17
International Cooperation Phase III: A Space Shuttle docked to the International Space Station (ISS) in this computer generated representation of the ISS in its completed and fully operational state with elements from the U.S., Europe, Canada, Japan, and Russia.
The International Space Weather Initiative
NASA Technical Reports Server (NTRS)
Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson
2010-01-01
The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.
Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station
NASA Technical Reports Server (NTRS)
Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.
2011-01-01
The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-06-30
In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.
Cooperative control of two active spacecraft during proximity operations. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Polutchko, Robert J.
1989-01-01
A cooperative autopilot is developed for the control of the relative attitude, relative position and absolute attitude of two maneuvering spacecraft during on orbit proximity operations. The autopilot consists of an open-loop trajectory solver which computes a nine dimensional linearized nominal state trajectory at the beginning of each maneuver and a phase space regulator which maintains the two spacecraft on the nominal trajectory during coast phases of the maneuver. A linear programming algorithm is used to perform jet selection. Simulation tests using a system of two space shuttle vehicles are performed to verify the performance of the cooperative controller and comparisons are made to a traditional passive target/active pursuit vehicle approach to proximity operations. The cooperative autopilot is shown to be able to control the two vehicle system when both the would be pursuit vehicle and the target vehicle are not completely controllable in six degrees of freedom. The cooperative controller is also shown to use as much as 37 percent less fuel and 57 percent fewer jet firings than a single pursuit vehicle during a simple docking approach maneuver.
ERIC Educational Resources Information Center
Ferrier, Fran; Trood, Clifford; Whittingham, Karen
This document presents case studies of 10 cooperative research centers (CRCs) across Australia and their relationships with the vocational education and training (VET) sector. The CRCs profiled in the case studies are as follows: Co-operative Research Centre for Sustainable Rice Production; Cast Alloy and Solidification Technology Co-operative…
Decelerated invasion and waning-moon patterns in public goods games with delayed distribution.
Szolnoki, Attila; Perc, Matjaž
2013-05-01
We study the evolution of cooperation in the spatial public goods game, focusing on the effects that are brought about by the delayed distribution of goods that accumulate in groups due to the continuous investments of cooperators. We find that intermediate delays enhance network reciprocity because of a decelerated invasion of defectors, who are unable to reap the same high short-term benefits as they do in the absence of delayed distribution. Long delays, however, introduce a risk because the large accumulated wealth might fall into the wrong hands. Indeed, as soon as the curvature of a cooperative cluster turns negative, the engulfed defectors can collect the heritage of many generations of cooperators and by doing so start a waning-moon pattern that nullifies the benefits of decelerated invasion. Accidental meeting points of growing cooperative clusters may also act as triggers for the waning-moon effect, thus linking the success of cooperators with their propensity to fail in a rather bizarre way. Our results highlight that "investing in the future" is a good idea only if that future is sufficiently near and not likely to be burdened by inflation.
ASTRONAUT COOPER, GORDON L. - TRAINING - MERCURY-ATLAS (MA)-9 - CAMERA
1963-03-01
S63-03952 (1963) --- Astronaut L. Gordon Cooper Jr. explains the 16mm handheld spacecraft camera to his backup pilot astronaut Alan Shepard. The camera, designed by J.R. Hereford of McDonnell Aircraft Corp., will be used by Cooper during the Mercury-Atlas 9 (MA-9) mission to photograph experiments in space for M.I.T. and the Weather Bureau. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Morse, Jon; Project Blue team
2018-01-01
Project Blue is a coronagraphic imaging space telescope mission designed to search for habitable worlds orbiting the nearest Sun-like stars in the Alpha Centauri system. With a 45-50 cm baseline primary mirror size, Project Blue will perform a reconnaissance of the habitable zones of Alpha Centauri A and B in blue light and one or two longer wavelength bands to determine the hue of any planets discovered. Light passing through the off-axis telescope feeds into a coronagraphic instrument that forms the heart of the mission. Various coronagraph designs are being considered, such as phase induced amplitude apodization (PIAA), vector vortex, etc. Differential orbital image processing techniques will be employed to analyze the data for faint planets embedded in the residual glare of the parent star. Project Blue will advance our knowledge about the presence or absence of terrestrial-class exoplanets in the habitable zones and measure the brightness of zodiacal dust around each star, which will aid future missions in planning their observational surveys of exoplanets. It also provides on-orbit demonstration of high-contrast coronagraphic imaging technologies and techniques that will be useful for planning and implementing future space missions by NASA and other space agencies. We present an overview of the science goals, mission concept and development schedule. As part of our cooperative agreement with NASA, the Project Blue team intends to make the data available in a publicly accessible archive.
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew;
2014-01-01
Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.
SPACE: Enhancing Life on Earth. Proceedings Report
NASA Technical Reports Server (NTRS)
Hobden, Alan (Editor); Hobden, Beverly (Editor); Bagley, Larry E. (Editor); Bolton, Ed (Editor); Campaigne, Len O. (Editor); Cole, Ron (Editor); France, Marty (Editor); Hand, Rich (Editor); McKinley, Cynthia (Editor); Zimkas, Chuck (Editor)
1996-01-01
The proceedings of the 12th National Space Symposium on Enhancing Life on Earth is presented. Technological areas discussed include: Space applications and cooperation; Earth sensing, communication, and navigation applications; Global security interests in space; and International space station and space launch capabilities. An appendices that include featured speakers, program participants, and abbreviation & acronyms glossary is also attached.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1990-01-01
New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.
NASA Astrophysics Data System (ADS)
Xie, Xuemei
Based on a survey to 1206 Chinese firms, this paper empirically explores the factors impacting cooperative innovation effect of firms, and seeks to explore the relationship between cooperative innovation effect (CIE) and innovation performance using the technique of Structural Equation Modeling (SEM). The study finds there are significant positive relationships between basic sustaining factors, factors of government and policy, factors of cooperation mechanism and social network, and cooperative innovation effect. However, the result reveals that factors of government and policy demonstrate little impact on the CIE of firms compared with other factors. It is hoped that the findings can pave the way for future studies in improving cooperative innovation capacity for firms in emerging countries.
The NORSTAR Program: Space shuttle to space station
NASA Technical Reports Server (NTRS)
Fortunato, Ronald C.
1988-01-01
The development of G-325, the first high school student-run space flight project, is updated. An overview is presented of a new international program, which involves students from space station countries who will be utilizing Get Away Special technology to cooperatively develop a prototype experiment for controlling a space station research module environment.
2004-05-01
KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Gordon Cooper is introduced as a previous inductee. One of America’s original Mercury Seven astronauts, Cooper flew the last and longest Project Mercury orbital mission and spent eight days in space aboard Gemini 5. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.
Testing the renormalisation group theory of cooperative transitions at the lambda point of helium
NASA Technical Reports Server (NTRS)
Lipa, J. A.; Li, Q.; Chui, T. C. P.; Marek, D.
1988-01-01
The status of high resolution tests of the renormalization group theory of cooperative phase transitions performed near the lambda point of helium is described. The prospects for performing improved tests in space are discussed.
Spatial self-organization favors heterotypic cooperation over cheating.
Momeni, Babak; Waite, Adam James; Shou, Wenying
2013-11-12
Heterotypic cooperation-two populations exchanging distinct benefits that are costly to produce-is widespread. Cheaters, exploiting benefits while evading contribution, can undermine cooperation. Two mechanisms can stabilize heterotypic cooperation. In 'partner choice', cooperators recognize and choose cooperating over cheating partners; in 'partner fidelity feedback', fitness-feedback from repeated interactions ensures that aiding your partner helps yourself. How might a spatial environment, which facilitates repeated interactions, promote fitness-feedback? We examined this process through mathematical models and engineered Saccharomyces cerevisiae strains incapable of recognition. Here, cooperators and their heterotypic cooperative partners (partners) exchanged distinct essential metabolites. Cheaters exploited partner-produced metabolites without reciprocating, and were competitively superior to cooperators. Despite initially random spatial distributions, cooperators gained more partner neighbors than cheaters did. The less a cheater contributed, the more it was excluded and disfavored. This self-organization, driven by asymmetric fitness effects of cooperators and cheaters on partners during cell growth into open space, achieves assortment. DOI: http://dx.doi.org/10.7554/eLife.00960.001.
Control of free-flying space robot manipulator systems
NASA Technical Reports Server (NTRS)
Cannon, Robert H., Jr.
1988-01-01
The focus of the work is to develop and perform a set of research projects using laboratory models of satellite robots. These devices use air cushion technology to simulate in two dimensions the drag-free, zero-g conditions of space. Five research areas are examined: cooperative manipulation on a fixed base; cooperative manipulation on a free-floating base; global navigation and control of a free-floating robot; an alternative transport mode call Locomotion Enhancement via Arm Push-Off (LEAP), and adaptive control of LEAP.
Modeling occupancy distribution in large spaces with multi-feature classification algorithm
Wang, Wei; Chen, Jiayu; Hong, Tianzhen
2018-04-07
We present that occupancy information enables robust and flexible control of heating, ventilation, and air-conditioning (HVAC) systems in buildings. In large spaces, multiple HVAC terminals are typically installed to provide cooperative services for different thermal zones, and the occupancy information determines the cooperation among terminals. However, a person count at room-level does not adequately optimize HVAC system operation due to the movement of occupants within the room that creates uneven load distribution. Without accurate knowledge of the occupants’ spatial distribution, the uneven distribution of occupants often results in under-cooling/heating or over-cooling/heating in some thermal zones. Therefore, the lack of high-resolutionmore » occupancy distribution is often perceived as a bottleneck for future improvements to HVAC operation efficiency. To fill this gap, this study proposes a multi-feature k-Nearest-Neighbors (k-NN) classification algorithm to extract occupancy distribution through reliable, low-cost Bluetooth Low Energy (BLE) networks. An on-site experiment was conducted in a typical office of an institutional building to demonstrate the proposed methods, and the experiment outcomes of three case studies were examined to validate detection accuracy. One method based on City Block Distance (CBD) was used to measure the distance between detected occupancy distribution and ground truth and assess the results of occupancy distribution. Finally, the results show the accuracy when CBD = 1 is over 71.4% and the accuracy when CBD = 2 can reach up to 92.9%.« less
Modeling occupancy distribution in large spaces with multi-feature classification algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Chen, Jiayu; Hong, Tianzhen
We present that occupancy information enables robust and flexible control of heating, ventilation, and air-conditioning (HVAC) systems in buildings. In large spaces, multiple HVAC terminals are typically installed to provide cooperative services for different thermal zones, and the occupancy information determines the cooperation among terminals. However, a person count at room-level does not adequately optimize HVAC system operation due to the movement of occupants within the room that creates uneven load distribution. Without accurate knowledge of the occupants’ spatial distribution, the uneven distribution of occupants often results in under-cooling/heating or over-cooling/heating in some thermal zones. Therefore, the lack of high-resolutionmore » occupancy distribution is often perceived as a bottleneck for future improvements to HVAC operation efficiency. To fill this gap, this study proposes a multi-feature k-Nearest-Neighbors (k-NN) classification algorithm to extract occupancy distribution through reliable, low-cost Bluetooth Low Energy (BLE) networks. An on-site experiment was conducted in a typical office of an institutional building to demonstrate the proposed methods, and the experiment outcomes of three case studies were examined to validate detection accuracy. One method based on City Block Distance (CBD) was used to measure the distance between detected occupancy distribution and ground truth and assess the results of occupancy distribution. Finally, the results show the accuracy when CBD = 1 is over 71.4% and the accuracy when CBD = 2 can reach up to 92.9%.« less
Commercial involvement in the development of space-based plant growing technology
NASA Astrophysics Data System (ADS)
Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.
1992-07-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
Commercial involvement in the development of space-based plant growing technology.
Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R
1992-01-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
ASTRONAUT COOPER - SPACECRAFT "FAITH 7" - RECOVERY - USS KEARSAGE - PACIFIC
1963-05-16
S63-07701 (16 May 1963) --- Recovery Force personnel bring the Mercury-Atlas 9 (MA-9) spacecraft aboard the prime recovery vessel following its successful flight into space. Pilot inside the spacecraft is astronaut L. Gordon Cooper Jr. Photo credit: NASA
Rendezvous radar modification and evaluation. [for space shuttles
NASA Technical Reports Server (NTRS)
1976-01-01
The purpose of this effort was to continue the implementation and evaluation of the changes necessary to add the non-cooperative mode capability with frequency diversity and a doppler filter bank to the Apollo Rendezvous Radar while retaining the cooperative mode capability.
1963-03-01
S63-03964 (1963) --- Al Rochford, Crew Systems, Manned Space Center, assists astronaut L. Gordon Cooper Jr., in checking his life vest, normally stowed in a pocket in the lower left leg. Photo credit: NASA
14 CFR 1274.301 - Delegation of administration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Delegation of administration. 1274.301... AGREEMENTS WITH COMMERCIAL FIRMS Administration § 1274.301 Delegation of administration. Cooperative... Technical Officer Delegation for Cooperative Agreements with Commercial Firms, will be used to delegate...
Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor
NASA Astrophysics Data System (ADS)
Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz
2018-01-01
We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.
A Laser Optical System to Remove Low Earth Orbit Space Debris
NASA Astrophysics Data System (ADS)
Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.
2013-08-01
Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.
The design of a breadboard cryogenic optical delay line for DARWIN
NASA Astrophysics Data System (ADS)
van den Dool, Teun C.; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Kooijman, P. P.; Visser, Martijn; Velsink, G.; Fleury, K.
2004-09-01
TNO TPD, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line for use in future space interferometry missions. The work is performed under ESA contract in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism, with all materials and processes used being flight representative. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a two-mirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. Overall power consumption is below the ESA specification of 2.5 W. The power dissipated on the optical bench at 40 K is considerably less than the maximum allowable 25 mW. The design of the BB delay line has been completed. Verification testing, including functional testing at 40 K, is planned to start in the 4th quarter of 2004. The current design could also be adapted to the needs of the TPF-I mission.
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2001-01-01
This report outlines National Space Biomedical Research Institute (NSBRI) activities during FY 2001, the fourth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI).
14 CFR 1260.144 - Procurement procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Procurement procedures. 1260.144 Section 1260.144 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE... Commerce's Minority Business Development Agency in the solicitation and utilization of small businesses...
14 CFR 1260.144 - Procurement procedures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Procurement procedures. 1260.144 Section 1260.144 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE... Commerce's Minority Business Development Agency in the solicitation and utilization of small businesses...
14 CFR 1260.144 - Procurement procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Procurement procedures. 1260.144 Section 1260.144 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE... Commerce's Minority Business Development Agency in the solicitation and utilization of small businesses...
14 CFR 1274.510 - Subcontracts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Subcontracts. 1274.510 Section 1274.510 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Procurement Standards § 1274.510 Subcontracts. Recipients (individual firms or consortia) are not...
U.S. and Canada Sign Space Agreement
2009-10-20
NASA Administrator Charles Bolden, right, and Canadian Space Agency President Steve MacLean shake hands after signing a framework agreement on civil space cooperation, Wednesday, Sept. 9, 2009, at the Canadian Embassy in Washington, DC. Photo Credit: (NASA/Bill Ingalls)
14 CFR 1274.941 - Insurance and indemnification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Insurance and indemnification. 1274.941 Section 1274.941 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE... insurance for, or indemnification of, developers of experimental aerospace vehicles. Insurance and...
14 CFR 1274.510 - Subcontracts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Subcontracts. 1274.510 Section 1274.510 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Procurement Standards § 1274.510 Subcontracts. Recipients (individual firms or consortia) are not...
Space-Hotel Early Bird - An Educational and Public Outreach Approach
NASA Astrophysics Data System (ADS)
Amekrane, R.; Holze, C.
2002-01-01
In April 2001 the German Aerospace Society DGLR e.V. in cooperation with the Technical University of Darmstadt, Germany initiated an interdisciplinary students contest, under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA), for the summer term 2001. It was directed to graduated architecture students, who had to conceive and design a space-hotel with specific technical, economical and social requirements. The to be developed Space Hotel for a low earth orbit has to accommodate 220 guests. It was of utmost importance that this contest becomes an integral part of the student's tuition and that professors of the different academic and industrial institutions supported the project idea. During the summer term 2001 about fifty students occupied themselves with the topic, "design of an innovative space-hotel". The overall challenge was to create rooms used under microgravity environment, which means to overcome existing definitions and to find a new definition of living space. Because none of the students were able to experience such a room under microgravity they were forced to use the power of their imagination capability. The students attended moreover a number of lectures on different technical subjects focusing on space and went on several space-related excursions. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within the summer term seventeen major designs developed from the conceptual status to high sophisticated concepts and later on also to respective models. A competition combined with a public exhibition, that took place within the Annual German Aeronautics and Astronautics Congress, and intense media relations finalized this project. The project idea of "Early Bird - Visions of a Space Hotel" which was developed within six month is a remarkable example, how education and public outreach can be combined and how a cooperation among an association, the industry and academia can work successfully. Representatives of the DGLR and the academia developed a method to spread space related knowledge in a short time to a motivated working group. The project was a great success in the sense to involve other disciplines in space related topics by interdisciplinary work and in the sense of public and educational outreach. With more than 2.3 million contacts the DGLR e.V. promoted space and the vision of living (in) space to the public. The task of the paper is mainly to describe the approach and the experience made related to the organization, lectures, financing and outreach efforts in respect to similar future international outreach activities, which are planned for the 54th International Astronautical Congress in Bremen/Germany. www.spacehotel.org
FBIS report. Science and technology: Europe/International, March 29, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-29
;Partial Contents: Advanced Materials (EU Project to Improve Production in Metal Matrix Compounds Noted, Germany: Extremely Hard Carbon Coating Development, Italy: Director of CNR Metallic Materials Institute Interviewed); Aerospace (ESA Considers Delays, Reductions as Result of Budget Cuts, Italy: Space Agency`s Director on Restructuring, Future Plans); Automotive, Transportation (EU: Clean Diesel Engine Technology Research Reviewed); Biotechnology (Germany`s Problems, Successes in Biotechnology Discussed); Computers (EU Europort Parallel Computing Project Concluded, Italy: PQE 2000 Project on Massively Parallel Systems Viewed); Defense R&D (France: Future Tasks of `Brevel` Military Intelligence Drone Noted); Energy, Environment (German Scientist Tests Elimination of Phosphates); Advanced Manufacturing (France:more » Advanced Rapid Prototyping System Presented); Lasers, Sensors, Optics (France: Strategy of Cilas Laser Company Detailed); Microelectronics (France: Simulation Company to Develop Microelectronic Manufacturing Application); Nuclear R&D (France: Megajoule Laser Plan, Cooperation with Livermore Lab Noted); S&T Policy (EU Efforts to Aid Small Companies` Research Viewed); Telecommunications (France Telecom`s Way to Internet).« less
Exercise Countermeasures on ISS: Summary and Future Directions.
Loerch, Linda H
2015-12-01
The first decade of the International Space Station Program (ISS) yielded a wealth of knowledge regarding the health and performance of crewmembers living in microgravity for extended periods of time. The exercise countermeasures hardware suite evolved during the last decade to provide enhanced capabilities that were previously unavailable to support human spaceflight, resulting in attenuation of cardiovascular, muscle, and bone deconditioning. The ability to protect crew and complete mission tasks in the autonomous exploration environment will be a critical component of any decision to proceed with manned exploration initiatives.The next decade of ISS habitation promises to be a period of great scientific utilization that will yield both the tools and technologies required to safely explore the solar system. Leading countermeasure candidates for exploration class missions must be studied methodically on ISS over the next decade to ensure protocols and systems are highly efficient, effective, and validated. Lessons learned from the ISS experience to date are being applied to the future, and international cooperation enables us to maximize this exceptional research laboratory.
Open-Loop Performance of COBALT Precision Landing Payload on a Commercial Sub-Orbital Rocket
NASA Technical Reports Server (NTRS)
Restrepo, Carolina I.; Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Lovelace, Ronney S.; McCarthy, Megan M.; Tse, Teming; Stelling, Richard; Collins, Steven M.
2018-01-01
An open-loop flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuses the NDL and LVS data in real time to produce a navigation solution that is independent of GPS and suitable for future, autonomous, planetary, landing systems. COBALT was a passive payload during the open loop tests. COBALT's sensors were actively taking data and processing it in real time, but the Xodiac rocket flew with its own GPS-navigation system as a risk reduction activity in the maturation of the technologies towards space flight. A future closed-loop test campaign is planned where the COBALT navigation solution will be used to fly its host vehicle.
Spatial self-organization favors heterotypic cooperation over cheating
Momeni, Babak; Waite, Adam James; Shou, Wenying
2013-01-01
Heterotypic cooperation—two populations exchanging distinct benefits that are costly to produce—is widespread. Cheaters, exploiting benefits while evading contribution, can undermine cooperation. Two mechanisms can stabilize heterotypic cooperation. In ‘partner choice’, cooperators recognize and choose cooperating over cheating partners; in ‘partner fidelity feedback’, fitness-feedback from repeated interactions ensures that aiding your partner helps yourself. How might a spatial environment, which facilitates repeated interactions, promote fitness-feedback? We examined this process through mathematical models and engineered Saccharomyces cerevisiae strains incapable of recognition. Here, cooperators and their heterotypic cooperative partners (partners) exchanged distinct essential metabolites. Cheaters exploited partner-produced metabolites without reciprocating, and were competitively superior to cooperators. Despite initially random spatial distributions, cooperators gained more partner neighbors than cheaters did. The less a cheater contributed, the more it was excluded and disfavored. This self-organization, driven by asymmetric fitness effects of cooperators and cheaters on partners during cell growth into open space, achieves assortment. DOI: http://dx.doi.org/10.7554/eLife.00960.001 PMID:24220506
Nuclear thermal propulsion program overview
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1991-01-01
Nuclear thermal propulsion program is described. The following subject areas are covered: lunar and Mars missions; national space policy; international cooperation in space exploration; propulsion technology; nuclear rocket program; and budgeting.
77 FR 68121 - Notice of Agreements Filed
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
...: Priority/Marine Express Space Charter, Sailing and Cooperative Working Agreement. Parties: Priority RoRo....: 012186. Title: Crowley/Priority Ro/Ro Space Charter and Sailing Agreement. Parties: Crowley Latin America...
Digitalization in the space sector - The Guatemalan experience
NASA Astrophysics Data System (ADS)
Robles, Jorge Rodolfo
The present status of Guatemalan satellite- and communications-related technology is discussed, including recent changes and plans for future work. The international telecommunications capacity and the operations of Guatel are emphasized. Plans for the digitalization of the land-based station Quetzal I and the addition of a second station are described. The equipment and configurations of the digital conversion are specified. The anticipated capacity of the Quetzal I station will be 300,000 telephone lines and the technology used will integrate international digital service for both transmission and exchange. The capacity of the second land station includes 1500 telephone channels, 30 IBS channels, and television transmission and reception. A plan for regional cooperation is proposed to improve the utilization of satellite technology in Central America.
Integration of planetary protection activities
NASA Technical Reports Server (NTRS)
Race, Margaret S.
1995-01-01
For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.
International Co-operation in Educational Research
ERIC Educational Resources Information Center
Malmquist, Eve; Grundin, Hans U.
1976-01-01
Discusses certain issues of international cooperation in educational research and presents recommendations on its the future development, pointing out that its development as a viable scientific discipline is a prerequisite for its successful utilization as an instrument of educational policy-making. (Author/RK)
Mackinger, Barbara; Jonas, Eva; Mühlberger, Christina
2017-01-01
When making financial decisions bank customers are confronted with two types of uncertainty: first, return on investments is uncertain and there is a risk of losing money. Second, customers cannot be certain about their financial advisor's true intentions. This might decrease customers' willingness to cooperate with advisors. However, the uncertainty management model and fairness heuristic theory predict that in uncertain situations customers are willing to cooperate with financial advisors when they perceive fairness. In the current study, we investigated how perceived fairness in the twofold uncertain situations increased people's intended future cooperation with an advisor. We asked customers of financial consultancies about their experienced uncertainty regarding both the investment decision and the advisor's intentions. Moreover, we asked them about their perceived fairness, as well as their intention to cooperate with the advisor in the future. A three-way moderation analysis showed that customers who faced high uncertainty regarding the investment decision and high uncertainty regarding the advisor's true intentions indicated the lowest intended cooperation with the advisor but high fairness increased their cooperation. Interestingly, when people were only uncertain about the advisor's intentions (but certain about the decision) they indicated less cooperation than when they were only uncertain about the decision (but certain about the advisor's intentions). A mediated moderation analysis revealed that this relationship was explained by customers' lower trust in their advisors.
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Vengerov, David
1999-01-01
Successful operations of future multi-agent intelligent systems require efficient cooperation schemes between agents sharing learning experiences. We consider a pseudo-realistic world in which one or more opportunities appear and disappear in random locations. Agents use fuzzy reinforcement learning to learn which opportunities are most worthy of pursuing based on their promise rewards, expected lifetimes, path lengths and expected path costs. We show that this world is partially observable because the history of an agent influences the distribution of its future states. We consider a cooperation mechanism in which agents share experience by using and-updating one joint behavior policy. We also implement a coordination mechanism for allocating opportunities to different agents in the same world. Our results demonstrate that K cooperative agents each learning in a separate world over N time steps outperform K independent agents each learning in a separate world over K*N time steps, with this result becoming more pronounced as the degree of partial observability in the environment increases. We also show that cooperation between agents learning in the same world decreases performance with respect to independent agents. Since cooperation reduces diversity between agents, we conclude that diversity is a key parameter in the trade off between maximizing utility from cooperation when diversity is low and maximizing utility from competitive coordination when diversity is high.
Rand, David G
2016-09-01
Does cooperating require the inhibition of selfish urges? Or does "rational" self-interest constrain cooperative impulses? I investigated the role of intuition and deliberation in cooperation by meta-analyzing 67 studies in which cognitive-processing manipulations were applied to economic cooperation games (total N = 17,647; no indication of publication bias using Egger's test, Begg's test, or p-curve). My meta-analysis was guided by the social heuristics hypothesis, which proposes that intuition favors behavior that typically maximizes payoffs, whereas deliberation favors behavior that maximizes one's payoff in the current situation. Therefore, this theory predicts that deliberation will undermine pure cooperation (i.e., cooperation in settings where there are few future consequences for one's actions, such that cooperating is not in one's self-interest) but not strategic cooperation (i.e., cooperation in settings where cooperating can maximize one's payoff). As predicted, the meta-analysis revealed 17.3% more pure cooperation when intuition was promoted over deliberation, but no significant difference in strategic cooperation between more intuitive and more deliberative conditions. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo
2012-05-01
Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the "Kirari" Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common analyses among the different optical ground stations.
NASA Technical Reports Server (NTRS)
Morgun, V. V.; Voronin, L. I.; Kaspransky, R. R.; Pool, S. L.; Barratt, M. R.; Novinkov, O. L.
1999-01-01
As the Russian Space Agency (RSA) and the U.S. National Aviation and Space Administration (NASA) began in the mid 1990s to plan a preliminary cooperative flight program in anticipation of the International Space Station, programmatic and philosophical differences became apparent in the technical and medical approaches of the two agencies. This paper briefly describes some of these differences and the process by which the two sides resolved differences in their approaches to the medical selection and certification of Shuttle-Mir crew members. These negotiations formed the basis for developing policies on other aspects of the medical support function for international missions, including crew training, preflight and postflight data collection, and rehabilitation protocols. The experience gained through this cooperative effort has been invaluable for developing medical care capabilities for the International Space Station.
An integrated control scheme for space robot after capturing non-cooperative target
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich
2018-06-01
How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.
14 CFR 1260.40 - Investigation of research misconduct.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Investigation of research misconduct. 1260... COOPERATIVE AGREEMENTS General Provisions § 1260.40 Investigation of research misconduct. Investigation of Research Misconduct May 2005 Recipients of this grant or cooperative agreement are subject to the...
14 CFR 1260.40 - Investigation of research misconduct.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Investigation of research misconduct. 1260... COOPERATIVE AGREEMENTS General Provisions § 1260.40 Investigation of research misconduct. Investigation of Research Misconduct May 2005 Recipients of this grant or cooperative agreement are subject to the...
14 CFR 1260.40 - Investigation of research misconduct.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Investigation of research misconduct. 1260... COOPERATIVE AGREEMENTS General Provisions § 1260.40 Investigation of research misconduct. Investigation of Research Misconduct May 2005 Recipients of this grant or cooperative agreement are subject to the...
14 CFR 1260.40 - Investigation of research misconduct.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Investigation of research misconduct. 1260... COOPERATIVE AGREEMENTS General Provisions § 1260.40 Investigation of research misconduct. Investigation of Research Misconduct May 2005 Recipients of this grant or cooperative agreement are subject to the...
NASA Astrophysics Data System (ADS)
Wang, Jin; Xu, Fan; Lu, GuoDong
2017-09-01
More complex problems of simultaneous position and internal force control occur with cooperative manipulator systems than that of a single one. In the presence of unwanted parametric and modelling uncertainties as well as external disturbances, a decentralised position synchronised force control scheme is proposed. With a feedforward neural network estimating engine, a precise model of the system dynamics is not required. Unlike conventional cooperative or synchronised controllers, virtual position and virtual synchronisation errors are introduced for internal force tracking control and task space position synchronisation. Meanwhile joint space synchronisation and force measurement are unnecessary. Together with simulation studies and analysis, the position and the internal force errors are shown to asymptotically converge to zero. Moreover, the controller exhibits different characteristics with selected synchronisation factors. Under certain settings, it can deal with temporary cooperation by an intelligent retreat mechanism, where less internal force would occur and rigid collision can be avoided. Using a Lyapunov stability approach, the controller is proven to be robust in face of the aforementioned uncertainties.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Purpose. 1274.902 Section 1274.902 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... agreement will advance the technology developments and research which have been performed on The specific...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Purpose. 1274.902 Section 1274.902 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... agreement will advance the technology developments and research which have been performed on The specific...
14 CFR 1274.936 - Breach of safety or security.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Breach of safety or security. 1274.936 Section 1274.936 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE... following: compromise of classified information; illegal technology transfer; workplace violence resulting...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Scope. 1274.102 Section 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... development; (2) Provide technology transfer from the Government to the recipient; or (3) Develop a capability...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Scope. 1274.102 Section 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... development; (2) Provide technology transfer from the Government to the recipient; or (3) Develop a capability...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Purpose. 1274.902 Section 1274.902 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... agreement will advance the technology developments and research which have been performed on The specific...
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2004-01-01
This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.
14 CFR 1274.507 - Procurement records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Procurement records. 1274.507 Section 1274.507 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH...) Basis for contractor selection. (b) Justification for lack of competition when competitive bids or...
14 CFR 1274.930 - Travel and transportation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Travel and transportation. 1274.930 Section 1274.930 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.930 Travel and transportation...
14 CFR 1274.930 - Travel and transportation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Travel and transportation. 1274.930 Section 1274.930 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.930 Travel and transportation...
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a...
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a...
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a...
14 CFR 1274.930 - Travel and transportation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Travel and transportation. 1274.930 Section 1274.930 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.930 Travel and transportation...
14 CFR 1274.908 - Milestone payments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Milestone payments. 1274.908 Section 1274.908 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH...) Taxpayer identification number (TIN). (x) While not required, the recipient is strongly encouraged to...
NASA Astrophysics Data System (ADS)
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2017-08-01
The capability of an active spacecraft to accurately estimate its relative position and attitude (pose) with respect to an active/inactive, artificial/natural space object (target) orbiting in close-proximity is required to carry out various activities like formation flying, on-orbit servicing, active debris removal, and space exploration. According to the specific mission scenario, the pose determination task involves both theoretical and technological challenges related to the search for the most suitable algorithmic solution and sensor architecture, respectively. As regards the latter aspect, electro-optical sensors represent the best option as their use is compatible with mass and power limitation of micro and small satellites, and their measurements can be processed to estimate all the pose parameters. Overall, the degree of complexity of the challenges related to pose determination largely varies depending on the nature of the targets, which may be actively/passively cooperative, uncooperative but known, or uncooperative and unknown space objects. In this respect, while cooperative pose determination has been successfully demonstrated in orbit, the uncooperative case is still under study by universities, research centers, space agencies and private companies. However, in both the cases, the demand for space applications involving relative navigation maneuvers, also in close-proximity, for which pose determination capabilities are mandatory, is significantly increasing. In this framework, a review of state-of-the-art techniques and algorithms developed in the last decades for cooperative and uncooperative pose determination by processing data provided by electro-optical sensors is herein presented. Specifically, their main advantages and drawbacks in terms of achieved performance, computational complexity, and sensitivity to variability of pose and target geometry, are highlighted.
Exploring the mammalian sensory space: co-operations and trade-offs among senses.
Nummela, Sirpa; Pihlström, Henry; Puolamäki, Kai; Fortelius, Mikael; Hemilä, Simo; Reuter, Tom
2013-12-01
The evolution of a particular sensory organ is often discussed with no consideration of the roles played by other senses. Here, we treat mammalian vision, olfaction and hearing as an interconnected whole, a three-dimensional sensory space, evolving in response to ecological challenges. Until now, there has been no quantitative method for estimating how much a particular animal invests in its different senses. We propose an anatomical measure based on sensory organ sizes. Dimensions of functional importance are defined and measured, and normalized in relation to animal mass. For 119 taxonomically and ecologically diverse species, we can define the position of the species in a three-dimensional sensory space. Thus, we can ask questions related to possible trade-off vs. co-operation among senses. More generally, our method allows morphologists to identify sensory organ combinations that are characteristic of particular ecological niches. After normalization for animal size, we note that arboreal mammals tend to have larger eyes and smaller noses than terrestrial mammals. On the other hand, we observe a strong correlation between eyes and ears, indicating that co-operation between vision and hearing is a general mammalian feature. For some groups of mammals we note a correlation, and possible co-operation between olfaction and whiskers.
Greed and Fear in Network Reciprocity: Implications for Cooperation among Organizations.
Kitts, James A; Leal, Diego F; Felps, Will; Jones, Thomas M; Berman, Shawn L
2016-01-01
Extensive interdisciplinary literatures have built on the seminal spatial dilemmas model, which depicts the evolution of cooperation on regular lattices, with strategies propagating locally by relative fitness. In this model agents may cooperate with neighbors, paying an individual cost to enhance their collective welfare, or they may exploit cooperative neighbors and diminish collective welfare. Recent research has extended the model in numerous ways, incorporating behavioral noise, implementing other network topologies or adaptive networks, and employing alternative dynamics of replication. Although the underlying dilemma arises from two distinct dimensions-the gains for exploiting cooperative partners (Greed) and the cost of cooperating with exploitative partners (Fear)-most work following from the spatial dilemmas model has argued or assumed that the dilemma can be represented with a single parameter: This research has typically examined Greed or Fear in isolation, or a composite such as the K-index of Cooperation or the ratio of the benefit to cost of cooperation. We challenge this claim on theoretical grounds-showing that embedding interaction in networks generally leads Greed and Fear to have divergent, interactive, and highly nonlinear effects on cooperation at the macro level, even when individuals respond identically to Greed and Fear. Using computational experiments, we characterize both dynamic local behavior and long run outcomes across regions of this space. We also simulate interventions to investigate changes of Greed and Fear over time, showing how model behavior changes asymmetrically as boundaries in payoff space are crossed, leading some interventions to have irreversible effects on cooperation. We then replicate our experiments on inter-organizational network data derived from links through shared directors among 2,400 large US corporations, thus demonstrating our findings for Greed and Fear on a naturally-occurring network. In closing, we discuss implications of our main findings regarding Greed and Fear for the problem of cooperation on inter-organizational networks.
Greed and Fear in Network Reciprocity: Implications for Cooperation among Organizations
Kitts, James A.; Leal, Diego F.; Felps, Will; Jones, Thomas M.; Berman, Shawn L.
2016-01-01
Extensive interdisciplinary literatures have built on the seminal spatial dilemmas model, which depicts the evolution of cooperation on regular lattices, with strategies propagating locally by relative fitness. In this model agents may cooperate with neighbors, paying an individual cost to enhance their collective welfare, or they may exploit cooperative neighbors and diminish collective welfare. Recent research has extended the model in numerous ways, incorporating behavioral noise, implementing other network topologies or adaptive networks, and employing alternative dynamics of replication. Although the underlying dilemma arises from two distinct dimensions—the gains for exploiting cooperative partners (Greed) and the cost of cooperating with exploitative partners (Fear)–most work following from the spatial dilemmas model has argued or assumed that the dilemma can be represented with a single parameter: This research has typically examined Greed or Fear in isolation, or a composite such as the K-index of Cooperation or the ratio of the benefit to cost of cooperation. We challenge this claim on theoretical grounds—showing that embedding interaction in networks generally leads Greed and Fear to have divergent, interactive, and highly nonlinear effects on cooperation at the macro level, even when individuals respond identically to Greed and Fear. Using computational experiments, we characterize both dynamic local behavior and long run outcomes across regions of this space. We also simulate interventions to investigate changes of Greed and Fear over time, showing how model behavior changes asymmetrically as boundaries in payoff space are crossed, leading some interventions to have irreversible effects on cooperation. We then replicate our experiments on inter-organizational network data derived from links through shared directors among 2,400 large US corporations, thus demonstrating our findings for Greed and Fear on a naturally-occurring network. In closing, we discuss implications of our main findings regarding Greed and Fear for the problem of cooperation on inter-organizational networks. PMID:26863540
Discriminative Cooperative Networks for Detecting Phase Transitions
NASA Astrophysics Data System (ADS)
Liu, Ye-Hua; van Nieuwenburg, Evert P. L.
2018-04-01
The classification of states of matter and their corresponding phase transitions is a special kind of machine-learning task, where physical data allow for the analysis of new algorithms, which have not been considered in the general computer-science setting so far. Here we introduce an unsupervised machine-learning scheme for detecting phase transitions with a pair of discriminative cooperative networks (DCNs). In this scheme, a guesser network and a learner network cooperate to detect phase transitions from fully unlabeled data. The new scheme is efficient enough for dealing with phase diagrams in two-dimensional parameter spaces, where we can utilize an active contour model—the snake—from computer vision to host the two networks. The snake, with a DCN "brain," moves and learns actively in the parameter space, and locates phase boundaries automatically.
National Aeronautics and Space Administration Twenty-Fifth Anniversary, 1958-1983
NASA Technical Reports Server (NTRS)
1983-01-01
This year marks a major milestone for the National Aeronautics and Space Administration: its silver anniversary. It seems appropriate, on this occasion, to sum up how NASA has responded to the legislative charter that established the agency. Among the responsibilities the Congress assigned NASA in the National Aeronautics and Space Act of 1958 were these: preservation of U.S. leadership in aerospace science and technology; cooperation with other nations in the peaceful application of technology; expansion of human knowledge of phenomena in the atmosphere and in space; pursuit of the practical benefits to be gained from aeronautical and space activities. There can be no doubt that NASA's quarter century of effort has preserved the nation's leadership role and strengthened its posture in aerospace science and technology. As for international cooperation. NASA has - since its inception - fostered the concept that the fruits of civil space research are to be shared with all mankind. The agency has provided technical assistance to scores of nations and has actively promoted cooperative ventures; indeed, virtually every major NASA space project today boasts some degree of foreign participation. In the last 25 years, man has teamed more about his planet, the near-Earth environment, and the universe than in all the prior years of history. NASA's space science program has spearheaded this great expansion of human knowledge. And, from the beginning, NASA has vigorously pursued the practical benefits that aerospace research offers. The agency pioneered in weather, communications and Earth resources survey satellites, the prime examples of space technology applied for Earth benefit, and it has built a broad base for expanding into new applications, some of which promise direct benefits of exceptional order. In aeronautical research, NASA has contributed in substantial degree to safer, better performing, more efficient, more environmentally acceptable aircraft.
Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach.
Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
2009-12-01
In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K,C(0)) and (K,sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K(c) decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.
76 FR 50312 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Surface Transportation Environment and... Legacy for Users (SAFETEA-LU) established the Surface Transportation Environment and Planning Cooperative... national research on issues related to planning, environment, and realty will be included in future surface...
77 FR 38709 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Surface Transportation Environment and... Legacy for Users (SAFETEA-LU) established the Surface Transportation Environment and Planning Cooperative... national research on issues related to planning, environment, and realty will be included in future surface...
75 FR 38605 - Surface Transportation Environment and Planning Cooperative Research Program (STEP)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Surface Transportation Environment and... Legacy for Users (SAFETEA-LU) established the Surface Transportation Environment and Planning Cooperative... national research on issues related to planning, environment, and realty will be included in future surface...
U.S. Security Cooperation with India and Pakistan: A Comparative Study
2013-06-01
Pakistan’s nuclear ambitions, and resulted in further sanctions200 Pakistan spent the better part of the 1990s seething about the U.S. “abandonment... nuclear accident that happens in future. (From India’s perspective, the problem of liability has been exacerbated by the Fukushima disaster and anti...14. SUBJECT TERMS: United States, India, Pakistan, Security Cooperation, South Asia, Cold War, Defense Cooperation, Kashmir, Nuclear
STS-9 and Spacelab 1. NASA Educational Briefs for the Classroom.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
Designed for classroom use, this publication provides an overview of the first Space Shuttle/Spacelab mission, a cooperative venture between the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The main purpose of ESA's Spacelab, which will be carried aboard NASA's Space Shuttle (technically called the…
NASA Astrophysics Data System (ADS)
Singh, Balbir
This paper is an effort to study and analyze several constraints and issues of space technology and education that organizations other than governmental organizations face in awareness program. In recent years, advancements in technologies have made it possible for Volunteer and Technical Communities, non-government organizations, private agencies and academic research institutions to provide increasing support to space education management and emphasis on response efforts. Important cornerstones of this effort and support are the possibility to access and take advantage of satellite imagery as well as the use of other space-based technologies such as telecommunications satellites and global navigation satellite systems included in main curriculum plus the implementation of programs for use of high class sophisticated technologies used by industries to the students and researchers of non-space faring nations. The authors recognize the importance of such new methodologies for education and public Awareness. This paper demonstrates many hurdles universities and scientific institutions face including lack of access in terms of financial and technical resources for better support. A new model for coordinated private sector partnership in response to space sciences and education has been discussed. In depth analysis and techniques need to connect these pioneering communities with the space industry as well as the space governmental agencies, with special emphasis on financial constraints. The paper mandates its role to promote the use of space-based information; its established networks bringing together national institutions responsible for these space based activities, as well as other end users, and space solution experts; and its technical foundation, particularly in the area of information technologies. To help building a tighter cooperation and further understanding among all these communities, paper delivers an intensive report and solutions for future coordination and ease
14 CFR § 1260.40 - Investigation of research misconduct.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Investigation of research misconduct. Â... AND COOPERATIVE AGREEMENTS General Provisions § 1260.40 Investigation of research misconduct. Investigation of Research Misconduct May 2005 Recipients of this grant or cooperative agreement are subject to...
14 CFR 1260.4 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Applicability. 1260.4 Section 1260.4 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General... to large businesses, special conditions at § 1260.57, New Technology, and § 1260.58, Designation of...
14 CFR 1260.4 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Applicability. 1260.4 Section 1260.4 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General... to large businesses, special conditions at § 1260.57, New Technology, and § 1260.58, Designation of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Scope. 1274.102 Section 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS...) Provide technology transfer from the Government to the recipient; or (3) Develop a capability among U.S...
14 CFR 1260.4 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Applicability. 1260.4 Section 1260.4 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General... to large businesses, special conditions at § 1260.57, New Technology, and § 1260.58, Designation of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Scope. 1215.101 Section 1215.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... for rendering such services. Cooperative missions are not under the purview of this subpart. The...
14 CFR 1274.206 - Metric Conversion Act.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Metric Conversion Act. 1274.206 Section 1274.206 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Pre-Award Requirements § 1274.206 Metric Conversion Act. The Metric Conversion...
14 CFR Appendix to Part 1274 - Listing of Exhibits
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Listing of Exhibits Appendix to Part 1274 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... Under a Contract or Agreement— Contracts or agreements for the performance of experimental...
14 CFR 1260.36 - Travel and transportation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Travel and transportation. 1260.36 Section 1260.36 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Provisions § 1260.36 Travel and transportation. Travel and Transportation October 2000 (a...
14 CFR 1260.36 - Travel and transportation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Travel and transportation. 1260.36 Section 1260.36 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Provisions § 1260.36 Travel and transportation. Travel and Transportation October 2000 (a...
14 CFR 1274.402 - Contractor acquired property.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Contractor acquired property. 1274.402 Section 1274.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Property § 1274.402 Contractor acquired property. As provided in § 1274.923...
14 CFR 1260.53 - Incremental funding.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Incremental funding. 1260.53 Section 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a) Only $___ of the...
14 CFR 1260.36 - Travel and transportation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Travel and transportation. 1260.36 Section 1260.36 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Provisions § 1260.36 Travel and transportation. Travel and Transportation October 2000 (a...
Tactical versus space cryocoolers: a comparision
NASA Astrophysics Data System (ADS)
Arts, R.; Mullié, J.; Leenders, H.; de Jonge, G.; Benschop, T.
2017-05-01
In recent years, several space cryocooler developments have been performed in parallel at Thales Cryogenics. On one end of the spectrum are research programmes such as the ESA-funded 30-50 K system developed in cooperation with CEA and Absolut System and the LPT6510 cooler developed in cooperation with Absolut System. On the other end of the spectrum are commercial designs adapted for space applications, such as the LPT9310 commercial coolers delivered for JPL's ECOSTRESS instrument and the LSF9199/30 SADA-compatible cooler delivered for various space programmes at Sofradir. In this paper, an overview is presented of the latest developments regarding these coolers. Initial performance results of the 30-50K cooler are discussed, pending developments for the LPT6510 cooler are presented, and the synergies between COTS and space are reviewed, such as design principles from space coolers being applied to an upgraded variant of the COTS LPT9310, as well as design principles from COTS coolers being applied to the LPT6510 for improved manufacturability.
Space Station power system autonomy demonstration
NASA Technical Reports Server (NTRS)
Kish, James A.; Dolce, James L.; Weeks, David J.
1988-01-01
The Systems Autonomy Demonstration Program (SADP) represents NASA's major effort to demonstrate, through a series of complex ground experiments, the application and benefits of applying advanced automation technologies to the Space Station project. Lewis Research Center (LeRC) and Marshall Space Flight Center (MSFC) will first jointly develop an autonomous power system using existing Space Station testbed facilities at each center. The subsequent 1990 power-thermal demonstration will then involve the cooperative operation of the LeRC/MSFC power system with the Johnson Space Center (JSC's) thermal control and DMS/OMS testbed facilities. The testbeds and expert systems at each of the NASA centers will be interconnected via communication links. The appropriate knowledge-based technology will be developed for each testbed and applied to problems requiring intersystem cooperation. Primary emphasis will be focused on failure detection and classification, system reconfiguration, planning and scheduling of electrical power resources, and integration of knowledge-based and conventional control system software into the design and operation of Space Station testbeds.
NASA Astrophysics Data System (ADS)
Jono, Takashi; Arai, Katsuyoshi
2017-11-01
The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.
1996-04-01
STS-79 was the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompassed research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 was also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the Space Shuttle’s airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) which are suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries space personnel in science, engineering, medicine and logistics.
A laser-optical system to re-enter or lower low Earth orbit space debris
NASA Astrophysics Data System (ADS)
Phipps, Claude R.
2014-01-01
Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1-10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.
Morgun, V V; Voronin, L I; Kaspranskiy, R R; Pool, S L; Barratt, M R; Navinkov, A L
2002-02-01
As the Russian Space Agency and the U.S. National Aeronautics and Space Administration began in the mid-1990s to plan a preliminary cooperative flight program in anticipation of the International Space Station, programmatic and philosophical differences became apparent in the technical and medical approaches of the two agencies. This paper briefly describes some of these differences and the process by which the two sides resolved differences in their approaches to the medical selection and certification of NASA-Mir crewmembers. These negotiations formed the basis for developing policies on other aspects of the medical support function for international missions, including crew training, preflight and postflight data collection, and rehabilitation protocols. The experience gained through this cooperative effort has been invaluable for developing medical care capabilities for the International Space Station.
NASA Astrophysics Data System (ADS)
Kalnins, Indulis
2002-01-01
COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.
Carbon and Nutrient Cycling in the Southwestern Atlantic Ocean
NASA Astrophysics Data System (ADS)
Windom, Herbert; Piola, Alberto; McKee, Brent
2009-03-01
State of Knowledge on the Southwestern Atlantic Ocean Margin; Montevideo, Uruguay, 16-22 November 2008; The southwestern Atlantic Ocean margin (SWAOM), along the coasts of southern Brazil, Uruguay, and Argentina, is one of the most productive regions of the world ocean and is believed to be the largest carbon dioxide (CO2) sink in the Atlantic Ocean. The region is dominated by two major boundary currents (the Brazil and the Malvinas), which impinge on a broad continental shelf along southeastern South America and converge offshore of the Rio de la Plata, the largest source of freshwater to the South Atlantic Ocean. Scientific knowledge about this region is based on past research focused generally on processes within the confines of the waters of the individual countries and from single disciplines. However, the complex interactions of physical, chemical, and biological processes that control the transport and production in time and space across this region require multidisciplinary investigation and international cooperation. This led a group of more than 40 marine scientists from these countries and the United States to convene a workshop to review what is known about this region, to suggest how future multidisciplinary research might be organized, and to foster regional and North-South scientific cooperation.
Tampa Bay International Business Summit Keynote Speech
NASA Technical Reports Server (NTRS)
Clary, Christina
2011-01-01
A keynote speech outlining the importance of collaboration and diversity in the workplace. The 20-minute speech describes NASA's challenges and accomplishments over the years and what lies ahead. Topics include: diversity and inclusion principles, international cooperation, Kennedy Space Center planning and development, opportunities for cooperation, and NASA's vision for exploration.
14 CFR 1214.403 - Code of Conduct for the International Space Station Crew.
Code of Federal Regulations, 2012 CFR
2012-01-01
... disciplinary policy, and requirements imposed by their Cooperating Agency or those relating to the Earth-to... Cooperating Agency providing him or her through the crew training curriculum and normal program operations as... his or her authority, leads the ISS crewmembers through the training curriculum and mission...
14 CFR 1214.403 - Code of Conduct for the International Space Station Crew.
Code of Federal Regulations, 2011 CFR
2011-01-01
... disciplinary policy, and requirements imposed by their Cooperating Agency or those relating to the Earth-to... Cooperating Agency providing him or her through the crew training curriculum and normal program operations as... his or her authority, leads the ISS crewmembers through the training curriculum and mission...
14 CFR 1214.403 - Code of Conduct for the International Space Station Crew.
Code of Federal Regulations, 2013 CFR
2013-01-01
... disciplinary policy, and requirements imposed by their Cooperating Agency or those relating to the Earth-to... Cooperating Agency providing him or her through the crew training curriculum and normal program operations as... his or her authority, leads the ISS crewmembers through the training curriculum and mission...
Designing a Culturally Sensitive Wiki Space for Developing Chinese Students' Media Literacy
ERIC Educational Resources Information Center
Mezentceva, Daria
2014-01-01
Due to technological development and intensification of integration processes all over the world, people from different cultural backgrounds have more opportunities to maintain academic and professional cooperation. To make this cooperation more effective, it is important to take into consideration diverse ethnic values and their influence on…
14 CFR 1274.906 - Designation of New Technology Representative and Patent Representative.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Designation of New Technology Representative and Patent Representative. 1274.906 Section 1274.906 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Purpose. § 1274.902 Section § 1274.902 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... agreement will advance the technology developments and research which have been performed on The specific...
14 CFR 1274.906 - Designation of New Technology Representative and Patent Representative.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Designation of New Technology Representative and Patent Representative. 1274.906 Section 1274.906 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special...
14 CFR 1274.206 - Metric Conversion Act.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Metric Conversion Act. 1274.206 Section 1274.206 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Pre-Award Requirements § 1274.206 Metric Conversion Act. The Metric Conversion Act, as...
14 CFR § 1274.207 - Extended agreements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Extended agreements. § 1274.207 Section § 1274.207 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Pre-Award Requirements § 1274.207 Extended agreements. (a) Multiple year...
14 CFR 1274.916 - Liability and risk of loss.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Liability and risk of loss. 1274.916 Section 1274.916 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS..., or indemnification of, developers of experimental aerospace vehicles. Liability and Risk of Loss July...
14 CFR 1260.124 - Program income.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Program income. 1260.124 Section 1260.124 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS Uniform... and Trademark Amendments (35 U.S.C. 18) apply to inventions made under an experimental, developmental...
14 CFR 1260.30 - Rights in data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Rights in data. 1260.30 Section 1260.30 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General... protective conditions) only for experimental, evaluation, research and development purposes, by or on behalf...
14 CFR 1260.61 - Allocation of risk/liability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Allocation of risk/liability. 1260.61 Section 1260.61 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.61 Allocation of risk/liability. Allocation of Risk/Liability...
On the manipulability of dual cooperative robots
NASA Technical Reports Server (NTRS)
Chiacchio, P.; Chiaverini, S.; Sciavicco, L.; Siciliano, B.
1989-01-01
The definition of manipulability ellipsoids for dual robot systems is given. A suitable kineto-static formulation for dual cooperative robots is adopted which allows for a global task space description of external and internal forces, and relative velocities. The well known concepts of force and velocity manipulability ellipsoids for a single robot are formally extended and the contributions of the two single robots to the cooperative system ellipsoids are illustrated. Duality properties are discussed. A practical case study is developed.
Co-evolving prisoner's dilemma: Performance indicators and analytic approaches
NASA Astrophysics Data System (ADS)
Zhang, W.; Choi, C. W.; Li, Y. S.; Xu, C.; Hui, P. M.
2017-02-01
Understanding the intrinsic relation between the dynamical processes in a co-evolving network and the necessary ingredients in formulating a reliable theory is an important question and a challenging task. Using two slightly different definitions of performance indicator in the context of a co-evolving prisoner's dilemma game, it is shown that very different cooperative levels result and theories of different complexity are required to understand the key features. When the payoff per opponent is used as the indicator (Case A), non-cooperative strategy has an edge and dominates in a large part of the parameter space formed by the cutting-and-rewiring probability and the strategy imitation probability. When the payoff from all opponents is used (Case B), cooperative strategy has an edge and dominates the parameter space. Two distinct phases, one homogeneous and dynamical and another inhomogeneous and static, emerge and the phase boundary in the parameter space is studied in detail. A simple theory assuming an average competing environment for cooperative agents and another for non-cooperative agents is shown to perform well in Case A. The same theory, however, fails badly for Case B. It is necessary to include more spatial correlation into a theory for Case B. We show that the local configuration approximation, which takes into account of the different competing environments for agents with different strategies and degrees, is needed to give reliable results for Case B. The results illustrate that formulating a proper theory requires both a conceptual understanding of the effects of the adaptive processes in the problem and a delicate balance between simplicity and accuracy.
Wang, Fang; Liang, Yuan
2017-03-01
The Cooperative Medical Scheme (CMS) was popular in rural China in the 1960s and 1970s, having garnered praise from the World Bank and World Health Organization as an unprecedented example of a successful health care model in a low-income developing country. However, the CMS almost collapsed in the 1980s. Based on its historical origins and main activities, we think the CMS functioned as a health cooperative rather than a health insurance scheme. Perhaps, however, the importance to the CMS of cooperation between institutions has been overestimated. Overlooked, yet equally important, has been the cooperation between health workers and farmers to target health-related risk factors associated with agricultural work and ways of life. The 'cooperative' character of the CMS includes two aspects: cooperative institutions and cooperative behaviour. Although the CMS collapsed in China, similar schemes are flourishing elsewhere in the world. In the future, in-depth analysis of these schemes is required.
Risk of collective failure provides an escape from the tragedy of the commons.
Santos, Francisco C; Pacheco, Jorge M
2011-06-28
From group hunting to global warming, how to deal with collective action may be formulated in terms of a public goods game of cooperation. In most cases, contributions depend on the risk of future losses. Here, we introduce an evolutionary dynamics approach to a broad class of cooperation problems in which attempting to minimize future losses turns the risk of failure into a central issue in individual decisions. We find that decisions within small groups under high risk and stringent requirements to success significantly raise the chances of coordinating actions and escaping the tragedy of the commons. We also offer insights on the scale at which public goods problems of cooperation are best solved. Instead of large-scale endeavors involving most of the population, which as we argue, may be counterproductive to achieve cooperation, the joint combination of local agreements within groups that are small compared with the population at risk is prone to significantly raise the probability of success. In addition, our model predicts that, if one takes into consideration that groups of different sizes are interwoven in complex networks of contacts, the chances for global coordination in an overall cooperating state are further enhanced.
A bottom-up institutional approach to cooperative governance of risky commons
NASA Astrophysics Data System (ADS)
Vasconcelos, Vítor V.; Santos, Francisco C.; Pacheco, Jorge M.
2013-09-01
Avoiding the effects of climate change may be framed as a public goods dilemma, in which the risk of future losses is non-negligible, while realizing that the public good may be far in the future. The limited success of existing attempts to reach global cooperation has been also associated with a lack of sanctioning institutions and mechanisms to deal with those who do not contribute to the welfare of the planet or fail to abide by agreements. Here we investigate the emergence and impact of different types of sanctioning to deter non-cooperative behaviour in climate agreements. We show that a bottom-up approach, in which parties create local institutions that punish free-riders, promotes the emergence of widespread cooperation, mostly when risk perception is low, as it is at present. On the contrary, global institutions provide, at best, marginal improvements regarding overall cooperation. Our results clearly suggest that a polycentric approach involving multiple institutions is more effective than that associated with a single, global one, indicating that such a bottom-up, self-organization approach, set up at a local scale, provides a better ground on which to attempt a solution for such a complex and global dilemma.
NASA Technical Reports Server (NTRS)
1996-01-01
STS-79 was the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompassed research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 was also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the Space Shuttle's airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) which are suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries space personnel in science, engineering, medicine and logistics.
Comparison of JSFR design with EDF requirements for future SFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uematsu, M. M.; Prele, G.; Mariteau, P.
2012-07-01
A comparison of Japan sodium-cooled fast reactor (JSFR) design with future French SFR concept has been done based on the requirement of EDF, the investor-operator of future French SFR, and the French safety baseline, under the framework of EDF-JAEA bilateral agreement of research and development cooperation on future SFR. (authors)
U.S. and Canada Sign Space Agreement
2009-10-20
NASA Administrator Charles Bolden signs a framework agreement on civil space cooperation between the U.S. and Canada, Wednesday, Sept. 9, 2009, at the Canadian Embassy in Washington, DC. Photo Credit: (NASA/Bill Ingalls)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space... (Draft SEA) to the September 2008 Environmental Assessment for Space Florida Launch Site Operator License... States Air Force, cooperating agency ACTION: Notice of availability, notice of public comment period, and...
14 CFR 1260.58 - Designation of new technology representative and patent representative.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Designation of new technology representative and patent representative. 1260.58 Section 1260.58 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.58 Designation...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Scope. § 1274.102 Section § 1274.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL... development; (2) Provide technology transfer from the Government to the recipient; or (3) Develop a capability...
14 CFR § 1274.906 - Designation of New Technology Representative and Patent Representative.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Designation of New Technology Representative and Patent Representative. § 1274.906 Section § 1274.906 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special...
14 CFR 1260.58 - Designation of new technology representative and patent representative.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Designation of new technology representative and patent representative. 1260.58 Section 1260.58 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.58 Designation...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Scope. § 1215.101 Section § 1215.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM... for rendering such services. Cooperative missions are not under the purview of this subpart. The...
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2003-01-01
This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.
14 CFR 1260.63 - Customs clearance and visas.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Customs clearance and visas. 1260.63 Section 1260.63 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.63 Customs clearance and visas. Customs Clearance and Visas (For...
14 CFR 1260.63 - Customs clearance and visas.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Customs clearance and visas. 1260.63 Section 1260.63 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.63 Customs clearance and visas. Customs Clearance and Visas (For...
14 CFR 1260.63 - Customs clearance and visas.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Customs clearance and visas. 1260.63 Section 1260.63 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.63 Customs clearance and visas. Customs Clearance and Visas (For...
14 CFR 1260.63 - Customs clearance and visas.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Customs clearance and visas. 1260.63 Section 1260.63 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.63 Customs clearance and visas. Customs Clearance and Visas (For...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Authority. 1260.1 Section 1260.1... § 1260.1 Authority. (a) The National Aeronautics and Space Administration (NASA) awards grants and cooperative agreements under the authority of 42 U.S.C. 2473(c)(5), the National Aeronautics and Space Act...
14 CFR § 1260.53 - Incremental funding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Incremental funding. § 1260.53 Section § 1260.53 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.53 Incremental funding. Incremental Funding October 2000 (a...
Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules
Elhanany-Tamir, Hadas; Yu, Yanxun V.; Shnayder, Miri; Jain, Ankit; Welte, Michael
2012-01-01
Striated muscle fibers are characterized by their tightly organized cytoplasm. Here, we show that the Drosophila melanogaster KASH proteins Klarsicht (Klar) and MSP-300 cooperate in promoting even myonuclear spacing by mediating a tight link between a newly discovered MSP-300 nuclear ring and a polarized network of astral microtubules (aMTs). In either klar or msp-300ΔKASH, or in klar and msp-300 double heterozygous mutants, the MSP-300 nuclear ring and the aMTs retracted from the nuclear envelope, abrogating this even nuclear spacing. Anchoring of the myonuclei to the core acto-myosin fibrillar compartment was mediated exclusively by MSP-300. This protein was also essential for promoting even distribution of the mitochondria and ER within the muscle fiber. Larval locomotion is impaired in both msp-300 and klar mutants, and the klar mutants were rescued by muscle-specific expression of Klar. Thus, our results describe a novel mechanism of nuclear spacing in striated muscles controlled by the cooperative activity of MSP-300, Klar, and astral MTs, and demonstrate its physiological significance. PMID:22927463
NASA Astrophysics Data System (ADS)
Pseiner, K.; Balogh, W.
2002-01-01
After several years of preparation and discussion among the involved players, the Austrian Space Plan was approved for implementation in November 2001. Based on careful benchmarking and analysis of the capabilities of the Austrian space sector it aims to create excellent conditions for the sector's further development. The new space strategy embraces Austria's participation in the mandatory and optional programmes of the European Space Agency and establishes a National Space Programme supported by separate funding opportunities. A set of clearly-defined indicators ensures that the progress in implementing the Space Plan can be objectively judged through independent, annual reviews. The National Space Programme promotes international cooperation in space research and space activities with the aim to strengthen the role of space science and to better prepare Austrian space industry for the commercial space market. In the framework of the Space Plan the Austrian Space Agency has been tasked with integrating the industry's growing involvement in aeronautics activities to better utilize synergies with the space sector. This paper reviews the various steps leading to the approval of the new space strategy and discusses the hurdles mastered in this process. It reports on the Space Plan's first results, specifically taking into account projects involving international cooperation. For the first the Austria aerospace-sector can rely on an integrated strategy for aeronautics- and space activities which is firmly rooted in the efforts to enhance the country's R&D activities. It may also act as a useful example for other small space- using countries planning to enhance their involvement in space activities.
NASA Astrophysics Data System (ADS)
Aleva, D.; McCracken, J.
This paper will overview a Cognitive Task Analysis (CTA) of the tasks accomplished by space operators in the Combat Operations Division (COD) of the Joint Space Operations Center (JSpOC). The methodology used to collect data will be presented. The work was performed in support of the AFRL Space Situation Awareness Fusion Intelligent Research Environment (SAFIRE) effort. SAFIRE is a multi-directorate program led by Air Force Research Laboratory (AFRL), Space Vehicles Directorate (AFRL/RV) and supporting Future Long Term Challenge 2.6.5. It is designed to address research areas identified from completion of a Core Process 3 effort for Joint Space Operations Center (JSpOC). The report is intended to be a resource for those developing capability in support of SAFIRE, the Joint Functional Component Command (JFCC) Space Integrated Prototype (JSIP) User-Defined Operating Picture (UDOP), and other related projects. The report is under distribution restriction; our purpose here is to expose its existence to a wider audience so that qualified individuals may access it. The report contains descriptions of the organization, its most salient products, tools, and cognitive tasks. Tasks reported are derived from the data collected and presented at multiple levels of abstraction. Recommendations for leveraging the findings of the report are presented. The report contains a number of appendices that amplify the methodology, provide background or context support, and includes references in support of cognitive task methodology. In a broad sense, the CTA is intended to be the foundation for relevant, usable capability in support of space warfighters. It presents, at an unclassified level, introductory material to familiarize inquirers with the work of the COD; this is embedded in a description of the broader context of the other divisions of the JSpOC. It does NOT provide guidance for the development of Tactics, Techniques, and Procedures (TT&Ps) in the development of JSpOC processes. However, the TT&Ps are a part of the structure of work, and are, therefore, a factor in developing future capability. The authors gratefully acknowledge the cooperation and assistance from the warfighters at the JSpOC as well as the personnel of the JSpOC Capabilities Integration Office (JCIO). Their input to the process created the value of this effort.
International cooperation in basic space science, Western Asian countries and the world
NASA Astrophysics Data System (ADS)
de Morais Mendonca Teles, Antonio
The world will never better develop and attain a global peace state, if it does not exist a world-wide cooperation, union of interests among all countries on planet Earth, respecting and understanding each other culture differences. So, if the countries interested in space science want to create or better develop this field, they need to firstly construct peace states and social cooperation, while scientific and technological cooperation will develop -among them. Here in this paper, under the principles in the United Nations (UN)' Agenda 21 (UN UNCED, 1992), I propose four points that can lead to a practical and solid international cooperation in basic aerospace science and technology, based on ground studies, with sustainable space programs in countries with social necessities, and to the construction of an avenue of peace states in those areas and in the world, 1) The creation of LINKS among the "developing" countries, among the "developed" ones and between them -with scientists, engineers, educators and administrative personnel. This can catalyze a self-sustainable scientific and technological production in the "developing" countries. Financial matters could be done through the World Bank in coopera-tion with UNESCO. 2) The administration of this difficult enterprise of international coopera-tion. With the increasing complexity of relationships among the aerospace-interested countries, it will be necessary the creation of a center capable to serve as an INTERNATIONAL CO-ORDINATOR CENTER FOR AEROSPACE ACTIVITIES. 3) CULTURE: in Western Asian countries there is a cultural habit that when somebody gives something valuable to a person, this person should give something back. Thus, the Western Asian countries receiving infor-mation on basic aerospace science and technology from the "developed" ones, those countries would probably feel they should give something in return. Western Asian countries could trans-mit their costumes, thinking ways, habits, persons' worries, thoughts and life knowledge, and music -culture -among themselves and to the "developed" countries. With this transmission of culture, principally among children, a better understanding among the countries could be created and the relationships among them could be very much easier for a sustainable inter-national cooperation in basic aerospace science and technology, and for a sustainable better development and peace states for all Peoples and Nations on Earth. A cultural aspect which can highly increase children's interest in basic space science and technologies is by preparing the `terrain' of their minds, planting seeds of peace on them. It is known that if children live in countries with peace states their learning capacity is much better. So, I also propose (a neces-sity) to reeducate children -by teaching them about peace, showing them about Nations which have peace societies, redirecting children's mind for them to acquire knowledge of peace. So, they will grow into adults with more possibilities of developing science and technology (space research included) for peaceful purposes. We can extend our hands and actually help persons and Peoples with real necessities. By doing this way and keeping it constant we all can greatly grow together socially, and scientific-technologically, and real peace states will be achieved while sustainable space program will develop better -these two matters go 'hands-in-hands'. 4) The PARTICIPATION of the Western Asian countries in already programmed space missions, the participation in the astrobiology research, and in the transference of aerospace-related sci-entific and technical information to them. The better social development of the world (with sustainable space programs) with more union among the Peoples and Nations on Earth, within a protected environment, it is a goal we (a living species Homo sapiens, among others species, on this extremely rare unique special planet Earth) all need to achieve together.
ESAs in the Shadows: Meeting Rural Challenges in an Urban State.
ERIC Educational Resources Information Center
Bouchard, Rene L.
2003-01-01
Boards of Cooperative Educational Services (BOCES) provide cost-effective shared services to New York's rural districts. Services in career and technical education and staff development offered by the Steuben-Allegany BOCES are described. Future plans include increased cooperation with colleges in providing adult education, evolution of the…
Marketing and Distribution: New Minimum Wage Legislation: Impact on Co-Op DE Programs.
ERIC Educational Resources Information Center
Husted, Stewart W.
1978-01-01
Impact on distributive education cooperative programs due to the legislation increasing the minimum wage effective January 1, 1978, indicates that the change could greatly restrict future cooperative placements, thereby reducing distributive education enrollments. Employer strategies (for example, reducing student work hours) to overcome wage…
Designing the Future: South-South Cooperation in Science and Technology.
ERIC Educational Resources Information Center
Zhou, Yiping, Ed.; Gitta, Cosmas, Ed.
2000-01-01
This journal special issue contains the following articles on the role of science and Technology in accelerating sustainable development in the countries of the South: (1) "The History and Urgency of South-South Cooperation in Science and Technology" (John F.E. Ohiorhenuan, Amitav Rath); (2) "Challenges, Opportunities and…
NASA's Swarm Missions: The Challenge of Building Autonomous Software
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Hinchey, Mike; Rash, James; Rouff, Christopher
2004-01-01
The days of watching a massive manned cylinder thrust spectacularly off a platform into space might rapidly become ancient history when the National Aeronautics and Space Administration (NASA) introduces its new millenium mission class. Motivated by the need to gather more data than is possible with a single spacecraft, scientists have developed a new class of missions based on the efficiency and cooperative nature of a hive culture. The missions, aptly dubbed nanoswarm will be little more than mechanized colonies cooperating in their exploration of the solar system. Each swarm mission can have hundreds or even thousands of cooperating intelligent spacecraft that work in teams. The spacecraft must operate independently for long periods both in teams and individually, as well as have autonomic properties - self-healing, -configuring, -optimizing, and -protecting- to survive the harsh space environment. One swarm mission under concept development for 2020 to 2030 is the Autonomous Nano Technology Swarm (ANTS), in which a thousand picospacecraft, each weighing less than three pounds, will work cooperatively to explore the asteroid belt. Some spacecraft will form teams to catalog asteroid properties, such as mass, density, morphology, and chemical composition, using their respective miniature scientific instruments. Others will communicate with the data gatherers and send updates to mission elements on Earth. For software and systems development, this is uncharted territory that calls for revolutionary techniques.
Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models
NASA Astrophysics Data System (ADS)
Braun, V.; Horstmann, A.; Reihs, B.; Lemmens, S.; Merz, K.; Krag, H.
The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled reentries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For objects larger than 1 cm, thus potentially being observable from ground, the MASTER model has been validated through dedicated observation campaigns. Recent campaign results shall be discussed. Moreover, catalogue data from the Space Surveillance Network (SSN) has been used to correlate the larger objects. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). They were collected for more than 20 ESA spacecraft in the recent years. The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.
NASA Astrophysics Data System (ADS)
Longdon, Norman
From the early 1960's, European governments were aware that they had to take part in the exploration, and potential exploitation, of space, or be left behind in a field of high-technology that had far-reaching possibilities. It was also realized that financial and manpower constraints would limit the extent to which individual nations could carry out their own national programs. They, therefor, joined forces in two organizations: the European Space Research Organization (ESRO) and the European Launcher Development Organization (ELDO). By 1975, when the potential of space development had been more fully appreciated, the two organizations were merged into the Europeans Space Agency (ESA) of which Spain was a founding member. ESA looks after the interest of 13 member states, one associated member state (Finland), and one cooperating state (Canada) in the peaceful uses of space. Its programs center around a mandatory core of technological research and space science to which member states contribute on the basis of their Gross National Product. Spain in 1992 contributes 6.46% to this mandatory program budget. The member states then have the chance to join optional programs that include telecommunications, observation of the earth and its environment, space transportation systems, microgravity research, and participation in the European contribution to the International Space Station Freedom. Each government decides whether it is in its interest to join a particular optional program, and the percentage that it wishes to contribute to the budget. Although in the early days of ESA, Spain participated in only a few optional programs, today Spain makes a significant contribution to nearly all of ESA's optional programs. This document presents Spain's contributions to particular ESA Programs and discusses Spain's future involvement in ESA.
PlasmaLab/Eco-Plasma - The future of complex plasma research in space
NASA Astrophysics Data System (ADS)
Knapek, Christina; Thomas, Hubertus; Huber, Peter; Mohr, Daniel; Hagl, Tanja; Konopka, Uwe; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir
The next Russian-German cooperation for the investigation of complex plasmas under microgravity conditions on the International Space Station (ISS) is the PlasmaLab/Eco-Plasma project. Here, a new plasma chamber -- the ``Zyflex'' chamber -- is being developed. The chamber is a cylindrical plasma chamber with parallel electrodes and a flexible system geometry. It is designed to extend the accessible plasma parameter range, i.e. neutral gas pressure, plasma density and electron temperature, and also to allow an independent control of the plasma parameters, therefore increasing the experimental quality and expected knowledge gain significantly. With this system it will be possible to reach low neutral gas pressures (which means weak damping of the particle motion) and to generate large, homogeneous 3D particle systems for studies of fundamental phenomena such as phase transitions, dynamics of liquids or phase separation. The Zyflex chamber has already been operated in several parabolic flight campaigns with different configurations during the last years, yielding a promising outlook for its future development. Here, we will present the current status of the project, the technological advancements the Zyflex chamber will offer compared to its predecessors, and the latest scientific results from experiments on ground and in microgravity conditions during parabolic flights. This work and some of the authors are funded by DLR/BMWi (FKZ 50 WP 0700).
China’s Participation in Anti-Piracy Operations off the Horn of Africa: Drivers and Implications
2009-07-01
stakeholder” in resolving global issues , China may be opening the door for other cooperative efforts in the future. China’s naval cooperation in anti...cooperate on global issues of mutual interest. This is particularly important, panelists noted, because the U.S. will increasingly need China’s...to continue to “challenge China to participate as a responsible stakeholder” on global issues , and to provide positive feedback when it does so
Emergence of social cohesion in a model society of greedy, mobile individuals
Roca, Carlos P.; Helbing, Dirk
2011-01-01
Human wellbeing in modern societies relies on social cohesion, which can be characterized by high levels of cooperation and a large number of social ties. Both features, however, are frequently challenged by individual self-interest. In fact, the stability of social and economic systems can suddenly break down as the recent financial crisis and outbreaks of civil wars illustrate. To understand the conditions for the emergence and robustness of social cohesion, we simulate the creation of public goods among mobile agents, assuming that behavioral changes are determined by individual satisfaction. Specifically, we study a generalized win-stay-lose-shift learning model, which is only based on previous experience and rules out greenbeard effects that would allow individuals to guess future gains. The most noteworthy aspect of this model is that it promotes cooperation in social dilemma situations despite very low information requirements and without assuming imitation, a shadow of the future, reputation effects, signaling, or punishment. We find that moderate greediness favors social cohesionby a coevolution between cooperation and spatial organization, additionally showing that those cooperation-enforcing levels of greediness can be evolutionarily selected. However, a maladaptive trend of increasing greediness, although enhancing individuals’ returns in the beginning, eventually causes cooperation and social relationships to fall apart. Our model is, therefore, expected to shed light on the long-standing problem of the emergence and stability of cooperative behavior. PMID:21709245
Emergence of social cohesion in a model society of greedy, mobile individuals.
Roca, Carlos P; Helbing, Dirk
2011-07-12
Human wellbeing in modern societies relies on social cohesion, which can be characterized by high levels of cooperation and a large number of social ties. Both features, however, are frequently challenged by individual self-interest. In fact, the stability of social and economic systems can suddenly break down as the recent financial crisis and outbreaks of civil wars illustrate. To understand the conditions for the emergence and robustness of social cohesion, we simulate the creation of public goods among mobile agents, assuming that behavioral changes are determined by individual satisfaction. Specifically, we study a generalized win-stay-lose-shift learning model, which is only based on previous experience and rules out greenbeard effects that would allow individuals to guess future gains. The most noteworthy aspect of this model is that it promotes cooperation in social dilemma situations despite very low information requirements and without assuming imitation, a shadow of the future, reputation effects, signaling, or punishment. We find that moderate greediness favors social cohesion by a coevolution between cooperation and spatial organization, additionally showing that those cooperation-enforcing levels of greediness can be evolutionarily selected. However, a maladaptive trend of increasing greediness, although enhancing individuals' returns in the beginning, eventually causes cooperation and social relationships to fall apart. Our model is, therefore, expected to shed light on the long-standing problem of the emergence and stability of cooperative behavior.
Humanoids for lunar and planetary surface operations
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier; Csaszar, Ambrus; Gan, Quan; Hidalgo, Timothy; Moore, Jeff; Newton, Jason; Sandoval, Steven; Xu, Jiajing
2005-01-01
This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans, for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project in this direction is outlined.
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.
Autonomous Path Planning for On-Orbit Servicing Vehicles
NASA Astrophysics Data System (ADS)
McInnes, C. R.
On-orbit servicing has long been considered as a means of reducing mission costs. While automated on-orbit servicing of satellites in LEO and GEO has yet to be realised, the International Space Station (ISS) will require servicing in a number of forms for re-supply, external visual inspection and maintenance. This paper will discuss a unified approach to path planning for such servicing vehicles using artificial potential field methods. In particular, path constrained rendezvous and docking of the ESA Automated Transfer Vehicle (ATV) at the ISS will be investigated as will mission and path planning tools for the Daimler-Chrysler Aerospace ISS Inspector free-flying camera. Future applications for free-flying microcameras and co-operative control between multiple free-flyers for on-orbit assembly will also be considered.