Sample records for future space programs

  1. The OAST space power program

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.

    1991-01-01

    The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.

  2. Current status and future direction of NASA's Space Life Sciences Program

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.

  3. The first meeting of the Advisory Committee on the Future of the US Space Program (C-FUSSP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These are minutes of the Advisory Committee on the Future of the U.S. Space Program (C-FUSSP). From September 13-15, 1990, presentations were made by the major leaders at NASA as well as industry leaders. The presentations draw on previous studies of the future of NASA space programs. Allowance was made for plenty of questions. The minutes reflect the views of governmental units such as the National Space Council, the NASA Administrators Office, Office of Space Science and Applications, Office of Space Flight, Office of Space Operations, Office of Aeronautics, Exploration, and Technology as well as other pertinent units and outside organizations. Members of the committee are listed at the conclusion of the minutes.

  4. Future space transportation systems systems analysis study, phase 1 technical report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The requirements of projected space programs (1985-1995) for transportation vehicles more advanced than the space shuttle are discussed. Several future program options are described and their transportation needs are analyzed. Alternative systems approaches to meeting these needs are presented.

  5. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  6. The International Space Station in Space Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; McKay, Meredith M.

    2006-01-01

    The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

  7. International Space Programs. Aerospace Education III.

    ERIC Educational Resources Information Center

    Bulmer, S. B.

    This book, one in the series on Aerospace Education III, is a collection of the diverse information available regarding the international space programs. The five goals listed for the book are: to examine the Soviet space program, to understand the future of Soviet space activity, to examine other national and international space programs, to…

  8. Challenges and Future Opportunities in Our Nation's Space Program

    NASA Technical Reports Server (NTRS)

    Clements, Greg

    2011-01-01

    For the first time in decades, there is a significant amount of change in our nation's space program. Along with change, there are opportunities, and NASA has begun a set of planning to be prepared for the future, emphasizing innovation and technology development, increased emphasis on collaboration, commercially-provided access to space, and the need for reinvention. This discussion will briefly give an overview of NASA, showcase some of the diverse activities that are part of our nation' fs space program, identify some of the new changes envisioned to NASA's mission, and how our space program can continue to inspire the nation during changing times.

  9. The NASA technology push towards future space mission systems

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Povinelli, Frederick P.; Rosen, Robert

    1988-01-01

    As a result of the new Space Policy, the NASA technology program has been called upon to a provide a solid base of national capabilities and talent to serve NASA's civil space program, commercial, and other space sector interests. This paper describes the new technology program structure and its characteristics, traces its origin and evolution, and projects the likely near- and far-term strategic steps. It addresses the alternative 'push-pull' approaches to technology development, the readiness levels to which the technology needs to be developed for effective technology transfer, and the focused technology programs currently being implemented to satisfy the needs of future space systems.

  10. The NASA Space Power Technology Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Hudson, W. R.; Randolph, L. P.

    1979-01-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.

  11. A Perspective on the Use of Storable Propellants for Future Space Vehicle Propulsion

    NASA Technical Reports Server (NTRS)

    Boyd, William C.; Brasher, Warren L.

    1989-01-01

    Propulsion system configurations for future NASA and DOD space initiatives are driven by the continually emerging new mission requirements. These initiatives cover an extremely wide range of mission scenarios, from unmanned planetary programs, to manned lunar and planetary programs, to earth-oriented (Mission to Planet Earth) programs, and they are in addition to existing and future requirements for near-earth missions such as to geosynchronous earth orbit (GEO). Increasing space transportation costs, and anticipated high costs associated with space-basing of future vehicles, necessitate consideration of cost-effective and easily maintainable configurations which maximize the use of existing technologies and assets, and use budgetary resources effectively. System design considerations associated with the use of storable propellants to fill these needs are presented. Comparisons in areas such as complexity, performance, flexibility, maintainability, and technology status are made for earth and space storable propellants, including nitrogen tetroxide/monomethylhydrazine and LOX/monomethylhydrazine.

  12. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  13. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  14. The 1989 long-range program plan

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The President's National Space Policy of 1988 reaffirms that space activities serve a variety of vital national goals and objectives, including the strengthening of U.S. scientific, technological, political, economic, and international leadership. The new policy stresses that civil space activities contribute significantly to enhancing America's world leadership. Goals and objectives must be defined and redefined, and each advance toward a given objective must be viewed as a potential building block for future programs. This important evolutionary process for research and development is reflected, describing NASA's program planning for FY89 and later years. This plan outlines the direction of NASA's future activities by discussing goals, objectives, current programs, and plans for the future. The 1989 plan is consistent with national policy for both space and aeronautics, and with the FY89 budget that the President submitted to Congress in February 1988.

  15. Application of advanced technology to space automation

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  16. Teacher in Space Program - The challenge to education in the space age

    NASA Technical Reports Server (NTRS)

    Brown, R. W.; Morgan, B. R.

    1986-01-01

    An account is given of the significant events which occurred in the Teacher in Space Program following the Challenger Space Shuttle accident on January 28, 1986. The analysis indicates that the accident has not prevented the continuing effective implementation of the three educational goals of the Teacher in Space Program which are to: (1) raise the prestige of the teaching profession, (2) increase the awareness in the education community of the impact of technology and science on this country's future in preparing students for the future, and (3) use aeronautics and space as a catalyst to enhance all subject areas and grade levels of U.S. education systems.

  17. Technology for the Future: In-Space Technology Experiments Program, part 2

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme.

  18. In-space production of large space systems from extraterrestrial materials: A program implementation model

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1977-01-01

    A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.

  19. Space prospects. [european space programs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A strategy for keeping the Common Market's space effort independent of and competitive with NASA and the space shuttle is discussed. Limited financing is the chief obstacle to this. Proposals include an outer space materials processing project and further development of the Ariane rocket. A manned space program is excluded for the foreseeable future.

  20. Logistics: An integral part of cost efficient space operations

    NASA Technical Reports Server (NTRS)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  1. Space qualification of silicon carbide for mirror applications: progress and future objectives

    NASA Astrophysics Data System (ADS)

    Palusinski, Iwona A.; Ghozeil, Isaac

    2006-09-01

    Production of optical silicon carbide (SiC) for mirror applications continues to evolve and there are renewed plans to use this material in future space-based systems. While SiC has the potential for rapid and cost-effective manufacturing of large, lightweight, athermal optical systems, this material's use in mirror applications is relatively new and has limited flight heritage. This combination of drivers stresses the necessity for a space qualification program for this material. Successful space qualification will require independent collaboration to absorb the high cost of executing this program while taking advantage of each contributing group's laboratory expertise to develop a comprehensive SiC database. This paper provides an overview of the trends and progress in the production of SiC, and identifies future objectives such as non-destructive evaluation and space-effects modeling to ensure proper implementation of this material into future space-based systems.

  2. Lessons learned on the Skylab program

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Lessons learned in the Skylab program and their application and adaptation to other space programs are summarized. Recommendations and action taken on particular problems are described. The use of Skylab recommendations to identify potential problems of future space programs is discussed.

  3. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  4. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  5. The evolution of Orbiter depot support, with applications to future space vehicles

    NASA Technical Reports Server (NTRS)

    Mcclain, Michael L.

    1990-01-01

    The reasons for depot consolidation and the processes established to implement the Orbiter depot are presented. The Space Shuttle Orbiter depot support is presently being consolidated due to equipment suppliers leaving the program, escalating depot support costs, and increasing repair turnaround times. Details of the depot support program for orbiter hardware and selected pieces of support equipment are discussed. The benefits gained from this consolidation and the lessons learned are then applied to future reuseable space vehicles to provide program managers a forward look at the need for efficient depot support.

  6. Long-term prospects for developments in space: A scenario approach

    NASA Technical Reports Server (NTRS)

    Brown, W. M.; Kahn, H. D.

    1977-01-01

    Long-term plans for future NASA programs are reported, and some of the following topics are discussed in detail: (1) systematic formulation of space scenarios; (2) the basic international context; (3) potential 21st century space developments; (4) space vehicle developments; and (5) future exploration.

  7. Man in Space, Space in the Seventies.

    ERIC Educational Resources Information Center

    Froehlich, Walter

    Included is a summary of the Apollo lunar program to date. Projected future NASA programs planned for the 1970's are discussed under the headings Skylab, Space Shuttle, and Space Station. Possibilities for the 1980's are outlined in the final section. (Author/AL)

  8. The 21st century propulsion

    NASA Technical Reports Server (NTRS)

    Haloulakos, V. E.; Boehmer, C.

    1990-01-01

    The prediction of future space travel in the next millennium starts by examining the past and extrapolating into the far future. Goals for the 21st century include expanded space travel and establishment of permanent manned outposts, and representation of Lunar and Mars outposts as the most immediate future in space. Nuclear stage design/program considerations; launch considerations for manned Mars missions; and far future propulsion schemes are outlined.

  9. Commercial potential of European and Japanese space programs, task 5

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The current and expected future competitive status in the commercialization of space of the two principal programs competitive with NASA: the European Space Agency (ESA) and the program sponsored by the Ministry of International Trade and Industry (MITI) of Japan are evaluated, quantitatively assessed, and presented in usable format.

  10. Use of the space shuttle to avoid spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An existing data base covering 304 spacecraft of the U.S. space program was analyzed to determine the effect on individual spacecraft failures and other anomalies that the space shuttle might have had if it had been operational throughout the period covered by the data. By combining the results of this analysis, information on the prelaunch activities of selected spacecraft programs, and shuttle capabilities data, the potential impact of the space shuttle on future space programs was derived. The shuttle was found to be highly effective in the prevention or correction of spacecraft anomalies, with 887 of 1,230 anomalies analyzed being favorably impacted by full utilization of shuttle capabilities. The shuttle was also determined to have a far-reaching and favorable influence on the design, development, and test phases of future space programs. This is documented in 37 individual statements of impact.

  11. 21st Space Simulation Conference: The Future of Space Simulation Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    2000-01-01

    The Institute of Environmental Sciences and Technology's Twenty-first Space Simulation Conference, "The Future of Space Testing in the 21st Century" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, programs/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Future of Space Testing in the 21st Century."

  12. Marshall Space Flight Center - Launching the Future of Science and Exploration

    NASA Technical Reports Server (NTRS)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  13. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  14. Ten-year space launch technology plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is the response to the National Space Policy Directive-4 (NSPD-4), signed by the President on 10 Jul. 1991. Directive NSPD-4 calls upon the Department of Defense (DoD), the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA) to coordinate national space launch technology efforts and to jointly prepare a 10-year space launch technology plan. The nation's future in space rests on the strength of its national launch technology program. This plan documents our current launch technology efforts, plans for future initiatives in this arena, and the overarching philosophy that links these activities into an integrated national technology program.

  15. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  16. The application of micromachined sensors to manned space systems

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Havey, Gary; Wald, Jerry; Nasr, Hatem

    1993-01-01

    Micromachined sensors promise significant system advantages to manned space vehicles. Vehicle Health Monitoring (VHM) is a critical need for most future space systems. Micromachined sensors play a significant role in advancing the application of VHM in future space vehicles. This paper addresses the requirements that future VHM systems place on micromachined sensors such as: system integration, performance, size, weight, power, redundancy, reliability and fault tolerance. Current uses of micromachined sensors in commercial, military and space systems are used to document advantages that are gained and lessons learned. Based on these successes, the future use of micromachined sensors in space programs is discussed in terms of future directions and issues that need to be addressed such as how commercial and military sensors can meet future space system requirements.

  17. Lubrication of space systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1994-01-01

    NASA has many high-technology programs plannned for the future, such as the space station, Mission to Planet Earth (a series of Earth-observing satellites), space telescopes, and planetary orbiters. These missions will involve advanced mechanical moving components, space mechanisms that will need wear protection and lubrication. The tribology practices used in space today are primarily based on a technology that is more than 20 years old. The question is the following: Is this technology base good enough to meet the needs of these future long-duration NASA missions? This paper examines NASA's future space missions, how mechanisms are currently lubricated, some of the mechanism and tribology challenges that may be encountered in future missions, and some potential solutions to these future challenges.

  18. Progress in space power technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  19. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, M. Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.

  20. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.

  1. Strategies For Human Exploration Leading To Human Colonization of Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  2. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu

    1993-01-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  3. Future directions in technology development - Increased use of space as a facility

    NASA Technical Reports Server (NTRS)

    Ambrus, Judith H.; Harris, Leonard A.; Levine, Jack; Tyson, Richard W.

    1988-01-01

    As human activities in space continue to grow in size and scope, the role of in-space technology experiments, as a necessary tool for essential technological development, will also grow. NASA has recognized the increasing importance of such experiments, and has instituted programs to plan, organize, and coordinate future in-space technology experiment activities within the overall space community. This paper discusses the history of in-space technology experiments, and expected future trends. It also describes NASA activities in this growing area of experimentation, and provides several examples of such experiments.

  4. The future of human spaceflight.

    PubMed

    Reichert, M

    2001-01-01

    After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available. c 2001. Elsevier Science Ltd. All rights reserved.

  5. The future of human spaceflight

    NASA Astrophysics Data System (ADS)

    Reichert, M.

    2001-08-01

    After the Apollo Moon program, the international space station represents a further milestone of humankind in space. International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST ( Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. 50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about 2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.

  6. Habitability and Human Factors: Lessons Learned in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Baggerman, Susan D.; Rando, Cynthia M.; Duvall, Laura E.

    2006-01-01

    This study documents the investigation of qualitative habitability and human factors feedback provided by scientists, engineers, and crewmembers on lessons learned from the ISS Program. A thorough review and understanding of this data is critical in charting NASA's future path in space exploration. NASA has been involved in ensuring that the needs of crewmembers to live and work safely and effectively in space have been met throughout the ISS Program. Human factors and habitability data has been collected from every U.S. crewmember that has resided on the ISS. The knowledge gained from both the developers and inhabitants of the ISS have provided a significant resource of information for NASA and will be used in future space exploration. The recurring issues have been tracked and documented; the top 5 most critical issues have been identified from this data. The top 5 identified problems were: excessive onsrbit stowage; environment; communication; procedures; and inadequate design of systems and equipment. Lessons learned from these issues will be used to aid in future improvements and developments to the space program. Full analysis of the habitability and human factors data has led to the following recommendations. It is critical for human factors to be involved early in the design of space vehicles and hardware. Human factors requirements need to be readdressed and redefined given the knowledge gained during previous ISS and long-duration space flight programs. These requirements must be integrated into vehicle and hardware technical documentation and consistently enforced. Lastly, space vehicles and hardware must be designed with primary focus on the user/operator to successfully complete missions and maintain a safe working environment. Implementation of these lessons learned will significantly improve NASA's likelihood of success in future space endeavors.

  7. Space industrialization. Volume 3: Space industrialization implementation concepts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Methods for selecting the most viable program options were examined along with techniques for hardware development. Several separate program options were defined, and future plans for space exploitation were reviewed. Hardware elements in various sectors of space are discussed in detail to provide a definition for the major functional elements and operations.

  8. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  9. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns are joining agency scientists, contributing in the area of plant growth research for food production in space. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  10. NASA CONNECT(TradeMark): Space Suit Science in the Classroom

    NASA Technical Reports Server (NTRS)

    Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.

    2003-01-01

    NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.

  11. Pointing and control system enabling technology for future automated space missions

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1978-01-01

    Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.

  12. Marshall Space Flight Center CFD overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, Luke A.

    1989-01-01

    Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.

  13. Technology for the Future: In-Space Technology Experiments Program, part 1

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments.

  14. Managing the space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  15. OAST Technology for the Future. Executive Summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  16. NASA Hydrogen Research at Florida Universities, Program Year 2003

    NASA Technical Reports Server (NTRS)

    Block, David L.; Raissi, Ali

    2006-01-01

    This document presents the final report for the NASA Hydrogen Research at Florida Universities project for program year 2003. This multiyear hydrogen research program has positioned Florida to become a major player in future NASA space and space launch projects. The program is funded by grants from NASA Glenn Research Center with the objective of supporting NASA's hydrogen-related space, space launch and aeronautical research activities. The program conducts over 40 individual projects covering the areas of cryogenics, storage, production, sensors, fuel cells, power and education. At the agency side, this program is managed by NASA Glenn Research Center and at the university side, co-managed by FSEC and the University of Florida with research being conducted by FSEC and seven Florida universities: Florida International University, Florida State University, Florida A&M University, University of Central Florida, University of South Florida, University of West Florida and University of Florida. For detailed information, see the documents section of www.hydrogenresearch.org. This program has teamed these universities with the nation's premier space research center, NASA Glenn, and the nation's premier space launch facility, NASA Kennedy Space Center. It should be noted that the NASA Hydrogen Research at Florida Universities program has provided a shining example and a conduit for seven Florida universities within the SUS to work collaboratively to address a major problem of national interest, hydrogen energy and the future of energy supply in the U.S.

  17. MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing

    NASA Technical Reports Server (NTRS)

    Gates, Thomas G.

    1988-01-01

    The Marshall Space Flight Center maintains an active history program to assure that the foundation of the Center's history is captured and preserved for current and future generations. As part of that overall effort, the Center began a project in 1987 to capture historical information and documentation on the Marshall Center's roles regarding Space Shuttle and Space Station. This document is MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing. It contains acronyms and abbreviations used in Space Station documentation and in the Historian Annotated Bibliography of Space Station Program. The information may be used by the researcher as a reference tool.

  18. National facilities study. Volume 3: Mission and requirements model report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facility Study (NFS) was initiated in 1992 by Daniel S. Goldin, Administrator of NASA as an initiative to develop a comprehensive and integrated long-term plan for future facilities. The resulting, multi-agency NFS consisted of three Task Groups: Aeronautics, Space Operations, and Space Research and Development (R&D) Task Groups. A fourth group, the Engineering and Cost Analysis Task Group, was subsequently added to provide cross-cutting functions, such as assuring consistency in developing an inventory of space facilities. Space facilities decisions require an assessment of current and future needs. Therefore, the two task groups dealing with space developed a consistent model of future space mission programs, operations and R&D. The model is a middle ground baseline constructed for NFS analytical purposes with excursions to cover potential space program strategies. The model includes three major sectors: DOD, civilian government, and commercial space. The model spans the next 30 years because of the long lead times associated with facilities development and usage. This document, Volume 3 of the final NFS report, is organized along the following lines: Executive Summary -- provides a summary view of the 30-year mission forecast and requirements baseline, an overview of excursions from that baseline that were studied, and organization of the report; Introduction -- provides discussions of the methodology used in this analysis; Baseline Model -- provides the mission and requirements model baseline developed for Space Operations and Space R&D analyses; Excursions from the baseline -- reviews the details of variations or 'excursions' that were developed to test the future program projections captured in the baseline; and a Glossary of Acronyms.

  19. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Technology Transfer Program Executive Daniel Lockney moderates the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  20. Deep Space 1: Testing New Technologies for Future Small Bodies Missions

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.

    2001-01-01

    Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.

  1. Owning the program technical baseline for future space systems acquisition: program technical baseline tracking tool

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.; Hant, James J.; Kizer, Justin R.; Min, Inki A.; Siedlak, Dennis J. L.; Yoh, James

    2017-05-01

    The U.S. Air Force (USAF) has recognized the needs for owning the program and technical knowledge within the Air Force concerning the systems being acquired to ensure success. This paper extends the previous work done by the authors [1-2] on the "Resilient Program Technical Baseline Framework for Future Space Systems" and "Portfolio Decision Support Tool (PDST)" to the development and implementation of the Program and Technical Baseline (PTB) Tracking Tool (PTBTL) for the DOD acquisition life cycle. The paper describes the "simplified" PTB tracking model with a focus on the preaward phases and discusses how to implement this model in PDST.

  2. War-gaming application for future space systems acquisition part 1: program and technical baseline war-gaming modeling and simulation approaches

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2017-05-01

    This paper describes static Bayesian game models with "Pure" and "Mixed" games for the development of an optimum Program and Technical Baseline (PTB) solution for affordable acquisition of future space systems. The paper discusses System Engineering (SE) frameworks and analytical and simulation modeling approaches for developing the optimum PTB solutions from both the government and contractor perspectives.

  3. NASA photovoltaic research and technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.

  4. Space Shuttle Main Engine (SSME) Evolution

    NASA Technical Reports Server (NTRS)

    Worlund, Len A.; Hastings, J. H.; McCool, Alex (Technical Monitor)

    2001-01-01

    The SSME when developed in the 1970's was a technological leap in space launch propulsion system design. The engine has safely supported the space shuttle for the last two decades and will be required for at least another decade to support human space flight to the international space station. This paper discusses the continued improvements and maturing of the system to its current state and future considerations for its critical role in the nations space program. Discussed are the initiatives of the late 1980's, which lead to three major upgrades through the 1990's. The current capabilities of the propulsion system are defined in the areas of highest programmatic importance: ascent risk, in-flight abort thrust, reusability, and operability. Future initiatives for improved shuttle safety, the paramount priority of the Space Shuttle program are discussed.

  5. Manned Systems Utilization Analysis. Study 2.1: Space Servicing Pilot Program Study. [for automated payloads

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1975-01-01

    Space servicing automated payloads was studied for potential cost benefits for future payload operations. Background information is provided on space servicing in general, and on a pilot flight test program in particular. An fight test is recommended to demonstrate space servicing. An overall program plan is provided which builds upon the pilot program through an interim servicing capability. A multipayload servicing concept for the time when the full capability tug becomes operational is presented. The space test program is specifically designed to provide low-cost booster vehicles and a flight test platform for several experiments on a single flight.

  6. Space life sciences: A status report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  7. Technology for the future - Long range planning for space technology development

    NASA Technical Reports Server (NTRS)

    Collier, Lisa D.; Breckenridge, Roger A.; Llewellyn, Charles P.

    1992-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) has begun the definition of an Integrated Technology Plan for the civilian space program which guides long-term technology development for space platforms, in light of continuing marker research and other planning data. OAST has conferred particular responsibility for future candidate space mission evaluations and platform performance requirement projections to NASA-Langley. An implementation plan is devised which is amenable to periodic space-platform technology updates.

  8. Environmental control and life support testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  9. [NASA] in the 21st Century

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.

    2006-01-01

    This viewgraph presentation reviews the NASA programs in support of Aeronautical and Space research. This research involves imagining the future of air travel. There are three major Aeronautics technology programs: (1) Fundamental Aeronautics, (2) Aviation Safety and (3) Airspace Systems. The aim of exploring the depths of the universe through earth based and space based assets. Other Space programs include the plans for exploration of the moon and Mars.

  10. Making Breakthroughs in the Turbulent Decade: China's Space Technology During the Cultural Revolution.

    PubMed

    Li, Chengzhi; Zhang, Dehui; Hu, Danian

    2017-09-01

    This article discusses why Chinese space programs were able to develop to the extent they did during the turbulent decade of the Cultural Revolution (1966-1976). It first introduces briefly what China had accomplished in rocket and missile technology before the Cultural Revolution, including the establishment of a system for research and manufacturing, breakthroughs in rocket technology, and programs for future development. It then analyzes the harmful impacts of the Cultural Revolution on Chinese space programs by examining activities of contemporary mass factions in the Seventh Ministry of Machinery Industry. In the third section, this article presents the important developments of Chinese space programs during the Cultural Revolution and explores briefly the significance of these developments for the future and overall progress in space technology. Finally, it discusses the reasons for the series of developments of Chinese space technology during the Cultural Revolution. This article concludes that, although the Cultural Revolution generated certain harmful impacts on the development of Chinese space technology, the Chinese essentially accomplished their scheduled objectives in their space program, both because of the great support of top Chinese leaders, including the officially disgraced Lin Biao and the Gang of Four, and due to the implementation of many effective special measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Space technology research plans

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1992-01-01

    Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.

  12. The International Space Station: A Pathway to the Future

    NASA Technical Reports Server (NTRS)

    Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas

    2004-01-01

    Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.

  13. The organizations for space education and outreach programs in the Republic of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwon; Jo, Hyun-Jung; Choi, Jae Dong

    2011-09-01

    Korea has a short history in space development compared to neighboring countries like Japan, China, India and Russia. During the past 20 years, Korea has focused on developing satellite and rocket space technology under the national space development plan. KOMPSAT-1 and 2, and KSLV-1 are the results of the selection and concentration policy of the Korean government. Due to the arduous mission of developing hardware oriented space technology, the topic of space education and outreach for the general public has not received much in the national space program. But recently, the Korean government has begun planning a space science outreach program in the detailed action plan of the mid-long term national space development plan. This paper introduces and analyzes the organizations performing space education and outreach programs for primary and secondary schools in the Republic of Korea. "Young Astronaut Korea (YAK)" is one such program. This is a non-profit organization established to provide space education for students in 1989 when Korea just started its space development program. "YAK" is a unique group in Korea for space education and outreach activities because it is organized by branches at each school in the nation and it is much like the Boy Scout and Girl Scout programs. Space Science Museum and National Youth Space Center (NYSC), which are located near NARO space center in the southernmost part of the Korean peninsula are other examples of space education and outreach programs. NARO space center, which is the only launch site in Korea became the center of public interest by showing the KSLV-1 launch in 2009 and will be expected to play a key role for the space education of students in the Republic of Korea. The NYSC will perform many mission oriented space education programs for students as Space Camp in the USA does. This paper introduces the status of the space education and outreach programs of each organization and presents the future direction of space education and outreach for the Korean public and students. If these three organizations cooperate with each other and develop systematic programs of space education and outreach for the people, they will prepare a base for growth and progress in future space science and technology in Korea.

  14. Visions of tomorrow: A focus on national space transportation issues; Proceedings of the Twenty-fifth Goddard Memorial Symposium, Greenbelt, MD, Mar. 18-20, 1987

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A. (Editor)

    1987-01-01

    The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.

  15. Toward a global space exploration program: A stepping stone approach

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.

  16. The human quest in space; Proceedings of the Twenty-fourth Goddard Memorial Symposium, Greenbelt, MD, Mar. 20, 21, 1986

    NASA Technical Reports Server (NTRS)

    Burdett, Gerald L. (Editor); Soffen, Gerald A. (Editor)

    1987-01-01

    Papers are presented on the Space Station, materials processing in space, the status of space remote sensing, the evolution of space infrastructure, and the NASA Teacher Program. Topics discussed include visionary technologies, the effect of intelligent machines on space operations, future information technology, and the role of nuclear power in future space missions. Consideration is given to the role of humans in space exploration; medical problems associated with long-duration space flights; lunar and Martian settlements, and Biosphere II (the closed ecology project).

  17. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.

  18. The next 25 years: Industrialization of space: Rationale for planning

    NASA Technical Reports Server (NTRS)

    Vonputtkamer, J.

    1976-01-01

    The goals of NASA's space industralization program include contributing to increased productivity on earth without taxing the environment, generating new values through extraterrestrial productivity, and providing new growth options for the future which include the permanent settlement of space and long-range colonization and exploration projects. In planning the long-range space program based on essentially utilitarian aspects, without losing sight of the more humanistically significant long term, and to forecast associated technology requirements, a realistic approach is obtained by combining extrapolative and normative planning modes so that common stepping stones can be identified. In the extrapolative view, alternative futures are projected on the basis of past and current trends and tendencies. In the normative view, some ideal state in the far future is envisioned or postulated, and policies and decisions are directed toward its attainment.

  19. Space station systems analysis study. Part 1, volume 1: Executive study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.

  20. Power technologies and the space future

    NASA Technical Reports Server (NTRS)

    Faymon, Karl A.; Fordyce, J. Stuart; Brandhorst, Henry W., Jr.

    1991-01-01

    Advancements in space power and energy technologies are critical to serve space development needs and help solve problems on Earth. The availability of low cost power and energy in space will be the hallmark of this advance. Space power will undergo a dramatic change for future space missions. The power systems which have served the U.S. space program so well in the past will not suffice for the missions of the future. This is especially true if the space commercialization is to become a reality. New technologies, and new and different space power architectures and topologies will replace the lower power, low-voltage systems of the past. Efficiencies will be markedly improved, specific powers will be greatly increased, and system lifetimes will be markedly extended. Space power technology is discussed - its past, its current status, and predictions about where it will go in the future. A key problem for power and energy is its cost of affordability. Power must be affordable or it will not serve future needs adequately. This aspect is also specifically addressed.

  1. The human role in space. Volume 3: Generalizations on human roles in space

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The human role in space was studied. The role and the degree of direct involvement of humans that will be required in future space missions, was investigated. Valid criteria for allocating functional activities between humans and machines were established. The technology requirements, ecnomics, and benefits of the human presence in space were examined. Factors which affect crew productivity include: internal architecture; crew support; crew activities; LVA systems; IVA/EVA interfaces; and remote systems management. The accomplished work is reported and the data and analyses from which the study results are derived are included. The results provide information and guidelines to enable NASA program managers and decision makers to establish, early in the design process, the most cost effective design approach for future space programs, through the optimal application of unique human skills and capabilities in space.

  2. Research and technology report, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.

  3. Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to bring together various disciplines of the aviation, missile, and space programs involved in predicting, measuring, modeling, and understanding the processes of atmospheric turbulence. Working committees re-examined the current state of knowledge, identified present and future needs, and documented and prioritized integrated and cooperative research programs.

  4. MSFC Skylab lessons learned

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Key lessons learned during the Skylab Program that could have impact on on-going and future programs are presented. They present early and sometimes subjective opinions; however, they give insights into key areas of concern. These experiences from a complex space program management and space flight serve as an early assessment to provide the most advantage to programs underway. References to other more detailed reports are provided.

  5. Legacy of Operational Space Medicine During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.

    2011-01-01

    The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.

  6. Space Shuttle Program Legacy Report

    NASA Technical Reports Server (NTRS)

    Johnson, Scott

    2012-01-01

    Share lessons learned on Space Shuttle Safety and Mission Assurance (S&MA) culture, processes, and products that can guide future enterprises to improve mission success and minimize the risk of catastrophic failures. Present the chronology of the Johnson Space Center (JSC) S&MA organization over the 40-year history of the Space Shuttle Program (SSP) and identify key factors and environments which contributed to positive and negative performance.

  7. Lessons learned from and the future for NASA's Small Explorer Program

    NASA Technical Reports Server (NTRS)

    Newton, George P.

    1991-01-01

    NASA started the Small Explorer Program to provide space scientists with an opportunity to conduct space science research in the Explorer Program using scientific payloads launched on small-class expendable launch vehicles. A series of small payload, scientific missions was envisioned that could be launched at the rate of one to two missions per year. Three missions were selected in April 1989: Solar Anomalous and Magnetospheric Particle Explorer, Fast Auroral Snapshot Explorer, and Sub-millimeter Wave Astronomy. These missions are planned for launch in June 1992, September 1994 and June 1995, respectively. At a program level, this paper presents the history, objectives, status, and lessons learned which may be applicable to similar programs, and discusses future program plans.

  8. OAST Technology for the Future. Volume 2 - Critical Technologies, Themes 1-4

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which. require validation in the space environment. A secondary objective was to review the current NASA (InReach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  9. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  10. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  11. The NASA Space Biology Program

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1982-01-01

    A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.

  12. Advanced technology requirements for large space structures. Part 5: Atlas program requirements

    NASA Technical Reports Server (NTRS)

    Katz, E.; Lillenas, A. N.; Broddy, J. A.

    1977-01-01

    The results of a special study which identifies and assigns priorities to technology requirements needed to accomplish a particular scenario of future large area space systems are described. Proposed future systems analyzed for technology requirements included large Electronic Mail, Microwave Radiometer, and Radar Surveillance Satellites. Twenty technology areas were identified as requirements to develop the proposed space systems.

  13. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Alex Litvin are joining agency scientists, contributing in the area of plant growth research for food production in space. Litvin is pursuing doctorate in horticulture at Iowa State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  14. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  15. The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science

    NASA Astrophysics Data System (ADS)

    McPhee, J. C.

    2017-12-01

    How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.

  16. Nutritional questions relevant to space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Schulz, Leslie O.

    1992-01-01

    This historical review of nutritionally related research in the U.S. and Soviet space programs discusses the uses of nutrition as a countermeasure to the effects of microgravity, with respect to body composition and to exercise. Available information is reviewed from space and ground research in the nutritional requirements for energy, protein, fluids, electrolytes, vitamins, and minerals. Past, present, and future systems for nutrient delivery in space are described, and finally, future directions and challenges are presented.

  17. The ninth Dr. Albert Plesman memorial lecture: The Future of Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1984-01-01

    The history of space flight is reviewed and major NASA programs (Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz, Science and Applications, Space Shuttle, Space Station) are summarized. Developments into the early 21st century are predicted.

  18. Space Industrialization. Volume 2: Opportunities, Markets and Programs

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The nature of space industrialization and the reasons for its promotion are examined. Increases in space industry activities to be anticipated from 1980 to 2010 are assessed. A variety of future scenarios against which space industrialization could evolve were developed and the various industrial opportunities that might constitute that evolution were defined. The needs and markets of industry activities were quantitatively and qualitatively assessed and messed. The various hardware requirements vs. time (space industry programs) as space industrialization evolves are derived and analyzed.

  19. SP-100 Program: space reactor system and subsystem investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harty, R.B.

    1983-09-30

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs.

  20. SP-100 program: Space reactor system and subsystem investigations

    NASA Astrophysics Data System (ADS)

    Harty, R. B.

    1983-09-01

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. The nuclear safety review/approval process that is required for a space reactor system is summarized. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that is expected and to provide information that could be usable in future programs.

  1. Evolution of telemedicine in the space program and earth applications.

    PubMed

    Nicogossian, A E; Pober, D F; Roy, S A

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  2. Evolution of telemedicine in the space program and earth applications

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  3. OAST Technology for the Future. Volume 3 - Critical Technologies, Themes 5-8

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the 5 ace environment. A secondary objective was to review the current NASA (In-Reach and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  4. Transportation technology program: Strategic plan

    NASA Astrophysics Data System (ADS)

    1991-09-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  5. Transportation technology program: Strategic plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  6. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  7. NASA's commercial space program - Initiatives for the future

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1990-01-01

    NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.

  8. Space Station Freedom. A Foothold on the Future.

    ERIC Educational Resources Information Center

    David, Leonard

    This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space"; (4) "Dreams Fulfilled" (summarizing the history of the space station development, including the…

  9. NASA advanced space photovoltaic technology-status, potential and future mission applications

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  10. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  11. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is majoring in computer science and chemistry at Rocky Mountain College in Billings, Montana. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  12. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  13. The International Space University

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1990-01-01

    The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.

  14. NASA/MOD Operations Impacts from Shuttle Program

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Michael; Mattes, Gregory; Grabois, Michael; Griffith, Holly

    2011-01-01

    Operations plays a pivotal role in the success of any human spaceflight program. This paper will highlight some of the core tenets of spaceflight operations from a systems perspective and use several examples from the Space Shuttle Program to highlight where the success and safety of a mission can hinge upon the preparedness and competency of the operations team. Further, awareness of the types of operations scenarios and impacts that can arise during human crewed space missions can help inform design and mission planning decisions long before a vehicle gets into orbit. A strong operations team is crucial to the development of future programs; capturing the lessons learned from the successes and failures of a past program will allow for safer, more efficient, and better designed programs in the future. No matter how well a vehicle is designed and constructed, there are always unexpected events or failures that occur during space flight missions. Preparation, training, real-time execution, and troubleshooting are skills and values of the Mission Operations Directorate (MOD) flight controller; these operational standards have proven invaluable to the Space Shuttle Program. Understanding and mastery of these same skills will be required of any operations team as technology advances and new vehicles are developed. This paper will focus on individual Space Shuttle mission case studies where specific operational skills, techniques, and preparedness allowed for mission safety and success. It will detail the events leading up to the scenario or failure, how the operations team identified and dealt with the failure and its downstream impacts. The various options for real-time troubleshooting will be discussed along with the operations team final recommendation, execution, and outcome. Finally, the lessons learned will be summarized along with an explanation of how these lessons were used to improve the operational preparedness of future flight control teams.

  15. Commerce Lab: Mission analysis payload integration study. Appendix A: Data bases

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The development of Commerce Lab is detailed. Its objectives are to support the space program in these areas: (1) the expedition of space commercialization; (2) the advancement of microgravity science and applications; and (3) as a precursor to future missions in the space program. Ways and means of involving private industry and academia in this commercialization is outlined.

  16. Address by James C. Fletcher, Administrator National Aeronautics and Space Administration at the National Academy of Engineering, Washington, D.C., 10 November 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Future plans and programs of the space agency are discussed. Topics discussed include solar energy, space stations, planetary exploration, interstellar exploration, the space shuttles, and satellites.

  17. Space industrialization. Volume 4: Appendices

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Program development and analysis and recommendations for NASA activities are discussed. The impact of international space law on future use of outer space is examined in the light of applicable international agreements. Recommendations for actions designed to facilitate space industralization are also proposed.

  18. Space Station Freedom - Approaching the critical design phase

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard H.; Huckins, Earle, III

    1992-01-01

    The status and future developments of the Space Station Freedom are discussed. To date detailed design drawings are being produced to manufacture SSF hardware. A critical design review (CDR) for the man-tended capability configuration is planned to be performed in 1993 under the SSF program. The main objective of the CDR is to enable the program to make a full commitment to proceed to manufacture parts and assemblies. NASA recently signed a contract with the Russian space company, NPO Energia, to evaluate potential applications of various Russian space hardware for on-going NASA programs.

  19. Past Realities Versus Hypothetical Futures: Bridging Accurate Perceptions and Individual Expectations Gaps in Relation to Future Space Exploration at Entertainment Attractions

    NASA Astrophysics Data System (ADS)

    Charania, A.; Bradford, J.; Shkirenko, A.

    2002-01-01

    Past Realities Versus Hypothetical Futures: Bridging Accurate Perceptions and Individual Expectation Gaps in Relation to It has been more than forty years since the dawn of the space age and the notion of human space flight has settled comfortably into the human psyche. Yet there is disconnect between the cinematic representations of space exploration and long-term program plans of national space agencies. For entertainment attractions, too often these cinematic representations cloud public perceptions of the art of the possible in space exploration. The forecasts of personal hover mobiles, ubiquitous robots, and luxury cruises to the moon that were to be available to society at the end of the last century have turned out to be grossly exaggerated. This results in continued frustration and subsequent ambivalence of the public towards space. Eventually, these misperceptions have a direct relationship to the level of support shown by legislative bodies towards public outlays for space exploration. The value proposition to society of space has changed, from one of transformational change (Apollo) to transactional apathy (the current Space Shuttle). The past realities of the space program and the potential futures enabled by the current generation of space scientists and engineers will not be equivalent. Yet there is an opportunity to showcase the best of the upcoming future without defrauding the public's imagination. At the start of this century, new visions of the future are being prepared by various entertainment entities (e.g. for movies, them park attractions). This examination consists of a review of previous paradigms of translating space visions to the public. Given the background of the authors in conceptual space engineering, recommendations are made as to more scientifically credible attractions while maintaining the entertainment proposition. Different scenarios are presented as to potential futures and impact of these on entertainment attractions. Criteria are given as to the characteristics of exhibits that can be robust enough for both the near term and will not fall into the trap of being outdated by actual events.

  20. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.

  1. AI in space: Past, present, and possible futures

    NASA Technical Reports Server (NTRS)

    Rose, Donald D.; Post, Jonathan V.

    1992-01-01

    While artificial intelligence (AI) has become increasingly present in recent space applications, new missions being planned will require even more incorporation of AI techniques. In this paper, we survey some of the progress made to date in implementing such programs, some current directions and issues, and speculate about the future of AI in space scenarios. We also provide examples of how thinkers from the realm of science fiction have envisioned AI's role in various aspects of space exploration.

  2. Report to the President on the US Space Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The National Space Council is responsible for advising the President on national space policy and strategy, and coordinating the implementation of the President's policies. It was authorized by an act of Congress in 1988 and was established as an agency of the federal government by President Bush on April 20, 1989. The Space Council is chaired by Vice President Dan Quayle, who serves as the President's principal advisor on national space policy and strategy. Content of this report includes: status of the US Space Program - Space Transportation, National Security, Civil Space, and Space Commerce and Trade; and Planning for the Future.

  3. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Korona, F. Adam; McFarland, Shane

    2012-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars [1] left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper will address the space suit system architecture and technologies required based upon human exploration extravehicular activity (EVA) destinations, and describe how they should evolve to meet the future exploration EVA needs of the US human space flight program.1, 2, 3 In looking forward to future US space exploration to a space suit architecture with maximum reuse of technology and functionality across a range of mission profiles and destinations, a series of exercises and analyses have provided a strong indication that the Constellation Program (CxP) space suit architecture is postured to provide a viable solution for future exploration missions4. The destination environmental analysis presented in this paper demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew given any human mission outside of low-Earth orbit (LEO). Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important the farther away from Earth humans venture. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, independent of any particular program, and provide architecture and design solutions for space suit systems in time or ahead of need dates for any particular crewed flight program in the future. The approach to space suit design and interface definition discussion will show how the architecture is very adaptable to programmatic and funding changes with minimal redesign effort such that the modular architecture can be quickly and efficiently honed into a specific mission point solution if required. Additionally, the modular system will allow for specific technology incorporation and upgrade as required with minimal redesign of the system.

  4. Human Skeletal Muscle Health with Spaceflight

    NASA Astrophysics Data System (ADS)

    Trappe, Scott

    2012-07-01

    This lecture will overview the most recent aerobic and resistance exercise programs used by crewmembers while aboard the International Space Station (ISS) for six months and examine its effectiveness for protecting skeletal muscle health. Detailed information on the exercise prescription program, whole muscle size, whole muscle performance, and cellular data obtained from muscle biopsy samples will be presented. Historically, detailed information on the exercise program while in space has not been available. These most recent exercise and muscle physiology findings provide a critical foundation to guide the exercise countermeasure program forward for future long-duration space missions.

  5. Aerospace century XXI: Space sciences, applications, and commercial developments; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenthaler, G.W.; Koster, J.N.

    1987-01-01

    Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.

  6. NASA Life Sciences Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  7. Impact of low cost refurbishable and standard spacecraft upon future NASA space programs. Payload effects follow-on study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study has concluded that there are very large space program cost savings to be obtained by use of low cost, refurbishable, and standard spacecraft in conjunction with the shuttle transportation system. The range of space program cost savings for three different groups of programs are shown in quantitative terms. The total savings for the 91 programs will range from $13.4 billion to $18.0 billion depending on the degree of hardware standardization. These savings, principally resulting from payload cost reductions, tangibly support the development costs of the shuttle system.

  8. Telescience Testbed Pilot Program

    NASA Technical Reports Server (NTRS)

    Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)

    1988-01-01

    The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.

  9. Review of the Space Applications program, 1974

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The purpose of this review is to provide the participants in the National Aeronautics and Space Administration/National Academy of Engineers' Summer Study in Applications a concise overview of the NASA Applications Program as it stands in 1974. The review covers the accomplishments of the various discipline-oriented programs that make up the total Applications Program, discusses the program plan for the 1975 to 1980 period, and examines the anticipated spaceflight capabilities of the 1980's. NASA has requested the National Academy of Engineers to conduct through its Space Applications Board a comprehensive study of the future Space Applications Program encompassing the following: (1) the Applications Program in general, with particular emphasis on practical approaches, including assessment of the socio-economic benefits and (2) how the broad comprehensive program envisioned above influences, or is influenced by, the shuttle system, the principal space transport system of the 1980's.

  10. NASA space biology accomplishments, 1982

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Pleasant, L. G.

    1983-01-01

    Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.

  11. Analysis and critical assessment of the current and near future plans of the Brazilian satellite applications program and its role in the global space program

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator)

    1983-01-01

    Brazilian programs using satellites for remote sensing, meteorology and communications are analyzed including their current status and near future plans. The experience gained and available information are used to critically discuss some aspects of great importance for the existing and prospective user countries.

  12. Space power tubes - very much alive

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1983-01-01

    The application of the traveling wave tubes (TWT), the backbone of all civilian and military space communication programs, to past, present and future satellites is discussed. Performance characteristics and the trends and challenges in the future are reviewed. Finally, a comparison with Solid State devices, as derived from fundamental laws, is made and limitations discussed.

  13. Space: The New Frontier.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This document is designed primarily to describe the U.S. Space Program, its history, its current state of development, and its goals for the future. Chapter headings include: Space and You; The Early History of Space Flight; The Solar System; Space Probes and Satellites; Scientific Satellites and Sounding Rockets; Application Satellites, Unmanned…

  14. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  15. Assessment and Mitigation of the Effects of Noise on Habitability in Deep Space Environments: Report on Non-Auditory Effects of Noise

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    2018-01-01

    This document reviews non-auditory effects of noise relevant to habitable volume requirements in cislunar space. The non-auditory effects of noise in future long-term space habitats are likely to be impactful on team and individual performance, sleep, and cognitive well-being. This report has provided several recommendations for future standards and procedures for long-term space flight habitats, along with recommendations for NASA's Human Research Program in support of DST mission success.

  16. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with minimal redesign effort required such that the modular architecture can be quickly and efficiently honed into a specific mission point solution if required.

  17. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  18. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    NASA Technical Reports Server (NTRS)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  19. The expanded role of computers in Space Station Freedom real-time operations

    NASA Technical Reports Server (NTRS)

    Crawford, R. Paul; Cannon, Kathleen V.

    1990-01-01

    The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.

  20. NASA's Next Generation Launch Technology Program - Strategy and Plans

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2003-01-01

    The National Aeronautics and Space Administration established a new program office, Next Generation Launch Technology (NGLT) Program Office, last year to pursue technologies for future space launch systems. NGLT will fund research in key technology areas such as propulsion, launch vehicles, operations and system analyses. NGLT is part of NASA s Integrated Space Technology Plan. The NGLT Program is sponsored by NASA s Office of Aerospace Technology and is part of the Space Launch Initiative theme that includes both NGLT and Orbital Space Plane. NGLT will focus on technology development to increase safety and reliability and reduce overall costs associated with building, flying and maintaining the nation s next-generations of space launch vehicles. These investments will be guided by systems engineering and analysis with a focus on the needs of National customers.

  1. NASA's mobile satellite communications program; ground and space segment technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  2. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  3. Strategies in transition

    NASA Technical Reports Server (NTRS)

    Diaz, Alphonso V.

    1993-01-01

    A new vision has emerged within the Office of Space Science and Applications (OSSA), and within the agency as a whole, for how to design missions to be responsive to the changing budget environment of the 1990s. The overall space science and applications program had to be looked at, restructuring the most expensive and complex projects to bring down costs and ensure their place in the mission queue of the future. The recent restructuring of some of OSSA's largest programs in development and the work to improve efficiency for those in operation is part of OSSA's effort to free funds for more frequent space science missions in the future. Instead of more great observatories, we are looking toward a new vision encompassing a level of great activity through small, frequent missions. The strategy developed for attaining this vision was to lower costs by reducing size and complexity through new technology, while at the same time making progress in space science. The strategy comprises two interwoven parts: the flight program strategy of each of the science disciplines and OSSA's new-technology strategy. The overall purpose of all OSSA's efforts to date has been to free resources for maximizing the space science program in a tough fiscal environment.

  4. KSC-2009-4331

    NASA Image and Video Library

    2009-07-30

    CAPE CANAVERAL, Fla. – Spectators interested in the future of the Space Program discuss statements made during the public meeting of the Augustine Commission in Cocoa Beach, Fla. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Jim Grossmann

  5. JPL future missions and energy storage technology implications

    NASA Technical Reports Server (NTRS)

    Pawlik, Eugene V.

    1987-01-01

    The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.

  6. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  7. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  8. Long range planning for the development of space flight emergency systems.

    NASA Technical Reports Server (NTRS)

    Bolger, P. H.; Childs, C. W.

    1972-01-01

    The importance of long-range planning for space flight emergency systems is pointed out. Factors in emergency systems planning are considered, giving attention to some of the mission classes which have to be taken into account. Examples of the hazards in space flight include fire, decompression, mechanical structure failures, radiation, collision, and meteoroid penetration. The criteria for rescue vehicles are examined together with aspects regarding the conduction of rescue missions. Future space flight programs are discussed, taking into consideration low earth orbit space stations, geosynchronous orbit space stations, lunar operations, manned planetary missions, future space flight vehicles, the space shuttle, special purpose space vehicles, and a reusable nuclear shuttle.

  9. Exploration of the utility of military man in space in the year 2025

    NASA Astrophysics Data System (ADS)

    Hansen, Daniel L.

    1992-03-01

    It is absolutely essential for the well being of today's space forces as well as the future space forces of 2025, that DOD develop manned advanced technology space systems in lieu of or in addition to unmannned systems to effectively utilize mulitary man's compelling and aggressive warfighting abilities to accomplish the critical wartime mission elements of space control and force application. National space policy, military space doctrine and common all dictate they should do so if space superiority during future, inevitable conflict with enemy space forces is the paramount objective. Deploying military man in space will provide that space superiority and he will finally become the 'center of gravity' of the U.S. space program.

  10. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  11. KSC-2013-3517

    NASA Image and Video Library

    2013-09-09

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, officials pose at the site where a Shuttle Program time capsule has been secured vault within the walls of the Space Shuttle Atlantis home at the Kennedy Space Center Visitor Complex. From the left are: Pete Nickolenko, deputy director of NASA Ground Processing at Kennedy, Patty Stratton of Abacus Technology, currently program manager for the Information Management Communications Support Contract. During the Shuttle Program she was deputy director of Ground Operations for NASA's Space Program Operations Contractor, United Space Alliance, Rita Wilcoxon, NASA's now retired director of Shuttle Processing, Bob Cabana, director of the Kennedy Space Center and George Jacobs, deputy director of Center Operations, who was manager of the agency's Shuttle Transition and Retirement Project Office. The time capsule, containing artifacts and other memorabilia associated with the history of the program is designated to be opened on the 50th anniversary of the shuttle's final landing, STS-135. The new $100 million "Space Shuttle Atlantis" facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. Photo credit: NASA/Jim Grossmann

  12. Evolution of a standard microprocessor-based space computer

    NASA Technical Reports Server (NTRS)

    Fernandez, M.

    1980-01-01

    An existing in inventory computer hardware/software package (B-1 RFS/ECM) was repackaged and applied to multiple missile/space programs. Concurrent with the application efforts, low risk modifications were made to the computer from program to program to take advantage of newer, advanced technology and to meet increasingly more demanding requirements (computational and memory capabilities, longer life, and fault tolerant autonomy). It is concluded that microprocessors hold promise in a number of critical areas for future space computer applications. However, the benefits of the DoD VHSIC Program are required and the old proliferation problem must be revised.

  13. A Crisis in Space--A Futuristic Simulation Using Creative Problem Solving.

    ERIC Educational Resources Information Center

    Clode, Linda

    1992-01-01

    An enrichment program developed for sixth-grade gifted students combined creative problem solving with future studies in a way that would simulate real life crisis problem solving. The program involved forecasting problems of the future requiring evacuation of Earth, assuming roles on a spaceship, and simulating crises as the spaceship traveled to…

  14. Status of NASA's Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  15. Vision 2040: Evolving the Successful International Space University

    NASA Technical Reports Server (NTRS)

    Martin, Gary; Marti, Izan Peris; Tlustos, Reinhard; Lorente, Arnau Pons; Panerati, Jocopo; Mensink, Wendy; Sorkhabi, Elbruz; Garcia, Oriol Gasquez; Musilova, Michaela; Pearson, Thomas

    2015-01-01

    Space exploration has always been full of inspiration, innovation, and creativity, with the promise of expanding human civilization beyond Earth. The space sector is currently experiencing rapid change as disruptive technologies, grassroots programs, and new commercial initiatives have reshaped long-standing methods of operation. Throughout the last 28 years, the International Space University (ISU) has been a leading institution for space education, forming international partnerships, and encouraging entrepreneurship in its over 4,000 alumni. In this report, our Vision 2040 team projected the next 25 years of space exploration and analyzed how ISU could remain a leading institution in the rapidly changing industry. Vision 2040 considered five important future scenarios for the space sector: real-time Earth applications, orbital stations, lunar bases, lunar and asteroid mining, and a human presence on Mars. We identified the signals of disruptive change within these scenarios, including underlying driving forces and potential challenges, and derived a set of skills that will be required in the future space industry. Using these skills as a starting point, we proposed strategies in five areas of focus for ISU: the future of the Space Studies Program (SSP), analog missions, outreach, alumni, and startups. We concluded that ISU could become not just an increasingly innovative educational institution, but one that acts as an international organization that drives space commercialization, exploration, innovation, and cooperation.

  16. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  17. Research opportunities in human behavior and performances

    NASA Technical Reports Server (NTRS)

    Christensen, J. M.; Talbot, J. M.

    1985-01-01

    The NASA research program in the biological and medical aspects of space flight includes investigations of human behavior and performance. The research focuses on psychological and psychophysiological responses to operational and environmental stresses and demands of spaceflight, and encompasses problems in perception, cognition, motivation, psychological stability, small group dynamics, and performance. The primary objective is to acquire the knowledge and methodology to aid in achieving high productivity and essential psychological support of space and ground crews in the Space Shuttle and space station programs. The Life Sciences Research Office (LSRO) of the Federation of American Societies for Experimental Biology reviewed its program in psychology and identified its research for future program planning to be in line with NASA's goals.

  18. NASA's Space Environments and Effects (SEE) Program: Contamination Engineering Technology Development

    NASA Technical Reports Server (NTRS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-01-01

    ABSTRACT The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  19. NASA's Space Environments and Effects (SEE) program: contamination engineering technology development

    NASA Astrophysics Data System (ADS)

    Pearson, Steven D.; Clifton, K. Stuart

    1999-10-01

    The return of the Long Duration Exposure Facility (LDEF) in 1990 brought a wealth of space exposure data on materials, paints, solar cells, etc. and data on the many space environments. The effects of the harsh space environments can provide damaging or even disabling effects on spacecraft, its materials, and its instruments. In partnership with industry, academia, and other government agencies, National Aeronautics & Space Administration's (NASA's) Space Environments & Effects (SEE) Program defines the space environments and provides technology development to accommodate or mitigate these harmful environments on the spacecraft. This program provides a very comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this information is properly maintained and inserted into spacecraft design programs. This paper will describe the current SEE Program and will present SEE contamination engineering technology development and risk mitigation for future spacecraft design.

  20. X-34 Poster Art

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  1. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured is NASA's poster art for the X-34 technology Demonstrator. The X-34 was part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments would support the Agency's goal of dramatically reducing the cost of access to space and would define the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  2. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  3. A new day: Challenger and space flight thereafter

    NASA Technical Reports Server (NTRS)

    Vonputtkamer, Jesco

    1986-01-01

    On January 28, 1986, at an altitude of 14 kilometers, the Space Shuttle Challenger was torn apart by an explosion of the external tank. The effects of the accident are undoubtedly far-reaching; they have broad repercussions that affect NASA's international partner organizations. The effects of the postponed shuttle flights on European space programs are discussed. A review of the German participation in the American space program is presented. The need to continue the future projects such as the space station is examined in light of its importance as a springboard for further exploration.

  4. The NASA Space Solar Cell Advanced Research Program

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    Two major requirements for space solar cells are high efficiency and survivability in the naturally occurring charged particle space radiation environment. Performance limits for silicon space cells are well understood. Advanced cells using GaAs and InP are under development to provide significantly improved capability for the future.

  5. Future Orbital Power Systems Technology Requirements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA is actively involved in program planning for missions requiring several orders of magnitude, more energy than in the past. Therefore, a two-day symposium was held to review the technology requirements for future orbital power systems. The purpose of the meeting was to give leaders from government and industry a broad view of current government supported technology efforts and future program plans in space power. It provided a forum for discussion, through workshops, to comment on current and planned programs and to identify opportunities for technology investment. Several papers are presented to review the technology status and the planned programs.

  6. Launch Vehicle Propulsion Life Cycle Cost Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Rhodes, Russell E.; Robinson, John W.

    2010-01-01

    This paper will review lessons learned for space transportation systems from the viewpoint of the NASA, Industry and academia Space Propulsion Synergy Team (SPST). The paper provides the basic idea and history of "lessons learned". Recommendations that are extremely relevant to NASA's future investments in research, program development and operations are"'provided. Lastly, a novel and useful approach to documenting lessons learned is recommended, so as to most effectively guide future NASA investments. Applying lessons learned can significantly improve access to space for cargo or people by focusing limited funds on the right areas and needs for improvement. Many NASA human space flight initiatives have faltered, been re-directed or been outright canceled since the birth of the Space Shuttle program. The reasons given at the time have been seemingly unique. It will be shown that there are common threads as lessons learned in many a past initiative.

  7. KSC-2013-1046

    NASA Image and Video Library

    2013-01-09

    CAPE CANAVERAL, Fla. -- At a news conference NASA officials and industry partners discuss progress of the agency's Commercial Crew Program CCP. Participating in the briefing, from the left are, Mike Curie, NASA Public Affairs, Ed Mango, NASA Commercial Crew Program manager, Phil McAlister, NASA Commercial Spaceflight Development director, Rob Meyerson, Blue Origin president and program manager, John Mulholland, The Boeing Company Commercial Programs Space Exploration vice president and program manager, Mark Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman and Garrett Reisman, Space Exploration Technologies SpaceX Commercial Crew project manager. Through CCP, NASA is facilitating the development of U.S. commercial crew space transportation capabilities to achieve safe, reliable and cost-effective access to and from low-Earth orbit for potential future government and commercial customers. For more information, visit http://www.nasa.gov/commercialcrew Photo credit: NASA/Kim Shiflett

  8. Future space experiments on cosmic rays and radiation on Russian segments of ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii

    1999-01-22

    The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.

  9. Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles

    NASA Technical Reports Server (NTRS)

    London, John, III; Sumrall, Phil

    1999-01-01

    The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.

  10. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Emma Boehm, left, and Jessica Scotten are joining agency scientists, contributing in the area of plant growth research for food production in space. Boehm is pursuing a degree in ecology and evolution at the University of Minnesota. Scotten is majoring in microbiology at Oregon State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  11. College education

    NASA Technical Reports Server (NTRS)

    Criswell, David R.

    1990-01-01

    Space Grant Colleges and Universities must build the space curriculum of the future on the firm basis of deep knowledge of an involvement with the present operating programs of the nation and an on-going and extensive program of leading edge research in the aerospace sciences and engineering, management, law, finance, and the other arts that are integral to our planetary society. The Space Grant College and Fellowship Program must create new academic fields of enquiry, which is a long and difficult process that will require deeper and broader interaction between NASA and academia than has previously existed.

  12. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  13. Experimenters' reference based upon Skylab experiment management

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The methods and techniques for experiment development and integration that evolved during the Skylab Program are described to facilitate transferring this experience to experimenters in future manned space programs. Management responsibilities and the sequential process of experiment evolution from initial concept through definition, development, integration, operation and postflight analysis are outlined and amplified, as appropriate. Emphasis is placed on specific lessons learned on Skylab that are worthy of consideration by future programs.

  14. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs smiles during a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  15. What's Next for NASA? Life After the Shuttle Program

    NASA Technical Reports Server (NTRS)

    MacLaughlin, Mary; Petro, Janet E.

    2012-01-01

    KSC is the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC safely manages, develops, integrates, and sustains space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers capabilities to make accessing space less costly and more routine.

  16. NASA-OAST program in photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  17. Research Opportunities in Nutrition and Metabolism in Space

    NASA Technical Reports Server (NTRS)

    Altman, Philip L. (Editor); Fisher, Kenneth D. (Editor)

    1986-01-01

    The objectives of the Life Sciences Research Office (LSRO) study on nutrient requirements for meeting metabolic needs in manned space flights are as follows: review extant knowledge on the subject; identify significant gaps in knowledge; formulate suggestions for possible research; and produce a documented report of the foregoing items that can be used for program planning. In accordance with NASA's request for this study, the report focuses on issues of nutrition and metabolism that relate primarily to the contemplated United States Space Station, secondarily to the Shuttle Program as an orbital test bed for operational studies, and incidentally to scenarios for future long-term space flights. Members of the LSRO ad hoc Working Group on Nutrition and Metabolism were provided with pertinent articles and summaries on the subject. At the meeting of the Working Group, presentations were made by NASA Headquarters program staff on past experiences relative to space-flight nutrition and metabolism, as well as scenarios for future flights. The discussions of the ad hoc Working Group focused on the following: (1) metabolic needs related to work and exercise; (2) nutrients required to meet such needs; (3) food types, management, and records; and (4) nutritional amelioration or prevention of space-related physiological and behavioral changes.

  18. War-gaming application for future space systems acquisition

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.

  19. Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of unique flame retardant fibers for the specific requirements of different space programs. Three of these fibers have greatly contributed to the safety of all the space missions since the Apollo program. Beta alumina-silica microfiber developed for the outer layer of the space suit after the Apollo 1 fire is no longer used and has been replaced by other glass fibers. Expanded polytetrafluoroethylene (e-PTFE) fiber used in the current spacesuit is mostly known today through its trade mark Gore-Tex®. Polybenzimidazole (PBI) filament fiber used in many applications from the Apollo to the Space Shuttle program is no longer available. More recently, TOR"TM" copolymer of polyimide fiber developed during the space shuttle program to resist the atomic oxygen present in Low Earth Orbit has been barely used. The high cost and narrow range of aeronautical and aerospace applications have, however, led to a limited production of these fibers. Only fibers that found niche markets survived. Yet, deep space exploration will require more of these inherently flame retardant fibers than what is available today. There is a need for new flame retardant fabrics inside the space vehicles as well as a need for logistics reduction for long term space missions. Materials like modacrylic and polyimide are good candidates for future flame retardant aerospace fabrics. New fabrics must be developed for astronauts' clothing, as well as crew quarters and habitat. Therefore, both staple and filament fibers of various linear densities are needed for a three years mission to Mars.

  20. Extravehicular Activity (EVA) Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2010-01-01

    Beginning in Fiscal Year (FY) 2011, Extravehicular activity (EVA) technology development became a technology foundational domain under a new program Enabling Technology Development and Demonstration. The goal of the EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA technology life and limited availability of the EMUs will become a critical issue eventually. The current Extravehicular Mobility Unit (EMU) has vastly served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability could be an option for the future mission applications building off of the technology development over the last several years. Besides ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast

  1. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna; Minor, Jody

    2003-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  2. Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities

    NASA Technical Reports Server (NTRS)

    Kauffman, B.; Hardage, D.; Minor, J.

    2004-01-01

    Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.

  3. The Lunar Roving Vehicle: Historical perspective

    NASA Technical Reports Server (NTRS)

    Morea, Saverio F.

    1992-01-01

    As NASA proceeds with its studies, planning, and technology efforts in preparing for the early twenty-first century, it seems appropriate to reexamine past programs for potential applicability in meeting future national space science and exploration goals and objectives. Both the National Commission on Space (NCOS) study and NASA's 'Sally Ride study' suggest future programs involving returning to the Moon and establishing man's permanent presence there, and/or visiting the planet Mars in both the unmanned and manned mode. Regardless of when and which of these new bold initiatives is selected as our next national space goal, implementing these potentially new national thrusts in space will undoubtedly require the use of both manned and remotely controlled roving vehicles. Therefore, the purpose of this paper is to raise the consciousness level of the current space exploration planners to what, in the early 1970s, was a highly successful roving vehicle. During the Apollo program the vehicle known as the Lunar Roving Vehicle (LRV) was designed for carrying two astronauts, their tools, and the equipment needed for rudimentary exploration of the Moon. This paper contains a discussion of the vehicle, its characteristics, and its use on the Moon. Conceivably, the LRV has the potential to meet some future requirements, either with relatively low cost modifications or via an evolutionary route. This aspect, however, is left to those who would choose to further study these options.

  4. The Role of Independent Assessment in the International Space Station Program

    NASA Technical Reports Server (NTRS)

    Strachan, Russell L.; Cook, David B.; Baker, Hugh A.

    1999-01-01

    This paper presents the role of Independent Assessment in the International Space Station (ISS) Program. Independent Assessment is responsible for identifying and specifying technical and programmatic risks that may impact development, launch, and on-orbit assembly and operations of the ISS. The various phases of the assessment process are identified and explained. This paper also outlines current and future participation by Independent Assessment in Human Exploration and Development of Space projects including the X-38 Space Plane, Mars mission scenarios, and applications of Nanotechnology. This paper describes how Independent Assessment helps the shuttle, ISS, and other programs to safely achieve mission goals now and into the next century.

  5. Operations analysis (study 2.1). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, R. R.

    1975-01-01

    Subjects related to future STS operations concepts were investigated. The majority of effort was directed at assessing the benefits of automated space servicing concepts as related to improvements in payload procurement and shuttle utilization. Another subject was directed at understanding shuttle upper stage software development and recurring costs relative to total program projections. Space serving of automated payloads is addressed by examining the broad spectrum of payload applications with the belief that shared logistic operations will be a major contributor to reduction of future program costs. However, there are certain requirements for support of payload operations, such as availability of the payload, that may place demands upon the shuttle fleet. Because future projections of the NASA Mission Model are only representative of the payload traffic, it is important to recognize that it is the general character of operations that is significant rather than service to any single payload program.

  6. Antarctica - Lessons for a Mars exploration program

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    The history of exploration and the international system of control of Antarctica has often been cited as a paradigm for the exploration of space. The small isolated research stations have been used to model the psychological stresses of future space missions. In addition, the programmatic structure of the U.S. Antarctic Research Program provides several possible analogs to future Mars Programs presently under discussion. These are: (1) Continued presence; (2) Civilian, military and private sector involvement; (3) Scientific activities; (4) Risk assessment and logistical support; (5) Accessibility for non-specialists; (6) Political and strategic motivations; (7) International cooperation/competition. Survival in Antarctica is contingent on advanced technology and the active transport of supplies. The scientific exploration of this remote and barren expanse without, of course, the aid and guidance of indigenous people certainly provides one of the closest analogs available to future science activities on the Martian surface.

  7. SSC microgravity sounding rocket program MASER.

    PubMed

    Jonsson, R

    1988-01-01

    The Swedish Microgravity Sounding Rocket program MASER is presented. Especially the MASER 1 payload is depicted, but also an outlook for the future possibilities within the Short Duration Flight Opportunities is given. Furthermore the coordination and relation with the German TEXUS program is touched upon. With the two TEXUS and MASER programs--possibly together with other fascinating projects like M-ARIES and MG-M-ARIANNE--the microgravity scientific community in Europe should get reasonable amounts of flight opportunities in preparation for the big space venture the European Space Station.

  8. ITOS/space shuttle study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are reported of a study to explore the potential cost reductions in the operational ITOS weather satellite program as a consequence of shuttle/bug availability for satellite placement and retrieval, and satellite servicing and maintenance. The study program was divided into shuttle impact on equipment and testing costs, and shuttle impact on overall future ITOS operational program costs, and shuttle impact on configuration. It is concluded that savings in recurring spacecraft costs can be realized in the 1978 ITOS program, if a space shuttle is utilized.

  9. The history and development of NASA survival equipment.

    NASA Technical Reports Server (NTRS)

    Radnofsky, M. I.

    1972-01-01

    A research and development program on survival equipment was begun in early 1960 with the Mercury Program. The Mercury survival kit is discussed together with Gemini survival equipment, and Apollo I survival equipment. A study program is conducted to assess potential survival problems that may be associated with future space flights landing in polar waters. Survival kit requirements for applications on the Skylab program are also considered. Other investigations are concerned with the design of a global survival kit in connection with Space Shuttle missions.

  10. Measuring the Value of AI in Space Science and Exploration

    NASA Astrophysics Data System (ADS)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  11. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  12. Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia

    1997-01-01

    This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.

  13. New millennium program ST6: autonomous technologies for future NASA spacecraft

    NASA Technical Reports Server (NTRS)

    Chmielewski, Arthur B.; Chien, Steve; Sherwood, Robert; Wyman, William; Brady, T.; Buckley, S.; Tillier, C.

    2005-01-01

    The purpose of NASA's New Millennium Program (NMP) is to validate advanced technologies in space and thus lower the risk for the first mission user. The focus of NMP is only on those technologies which need space environment for proper validation. The ST6 project has developed two advanced, experimental technologies for use on spacecraft of the future. These technologies are the Autonomous Sciencecraft Experiment and the Inertial Stellar Compass. These technologies will improve spacecraft's ability to: make decisions on what information to gather and send back to the ground, determine its own attitude and adjust its pointing.

  14. Joint Space Doctrine: Catapulting into the Future

    DTIC Science & Technology

    1994-01-01

    Information dominance will provide the stimulus for the military space program in the near term. Maximizing the capabilities of the information weapon, however, requires formulating joint space doctrine that has broad support and applicability. This doctrine will provide a significant advantage for the United States over those nations which employ space assets in a piecemeal

  15. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating, the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics. This program was proposed and accepted as a three year research program, a period of time necessary to make the type of fundamental developments to make a significant contributions to space robotics. Unfortunately, less than a year into the program it became clear that the NASA Langley Research Center would be forced by budgetary constraints to essentially leave this area of research. As a result, the total funding we received under this grant represented approximately one year of the original, proposed and approved, funding. For some time, there was substantial uncertainty that even this very reduced level of funding would be provided. The spending of the reduced available funds was spread just over two years to provide the support to permit the MS students who had joined the program to receive their master's degree and terminate their studies in this area.

  16. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre, left, and Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is pursuing a degree in computer science and chemistry at Rocky Mountain College in Billings, Montana. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  17. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    NASA Technical Reports Server (NTRS)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  18. MSFC Skylab experimenter's reference

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The methods and techniques for experiment development and integration that evolved during the Skylab Program are described to facilitate transferring this experience to experimenters in future manned space programs. Management responsibilities and the sequential process of experiment evolution from initial concept through definition, development, integration, operation and postflight analysis are outlined in the main text and amplified, as appropriate, in appendixes. Emphasis is placed on specific lessons learned on Skylab that are worthy of consideration by future programs.

  19. Engineering Education's Contribution to the Space Program.

    ERIC Educational Resources Information Center

    Stever, H. Guyford

    1988-01-01

    States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…

  20. Space sciences - Keynote address

    NASA Technical Reports Server (NTRS)

    Alexander, Joseph K.

    1990-01-01

    The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.

  1. Policy and Organization: The Next Step in the National Space Program.

    DTIC Science & Technology

    1983-01-01

    organizations. Industry to government relationships in other countries differ greatly from those in the United States. Although the private sector:’is...of all major projects. Today, individual firms differ on what they believe should be the emphasis for future civilian space programs. Those with...publication of PDs 37 and 42 in 1978, the Air Force repub- lished AFM 1-1, with a slightly different title, and included space 47 AUTHOR SCHICHTLE DOCUMENT

  2. New horizons. [assessment of technology developed and utilized under various NASA programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The contribution of space exploration and space related research to the future of man and the accomplishments of the space program are assessed. Topics discussed include: the role of applications satellites in crop surveillance, land use surveys, weather forecasting, education, communications, and pollution monitoring; planetary studies which examine the origin and evolution of the solar system, including dynamic processes that bear directly on earth's environment; and fuel conservation and development of new energy sources.

  3. NASA Space Biology Research Associate Program for the 21st Century

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2000-01-01

    The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective model.

  4. Columbia Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia s external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The CAIB's findings and recommendations were published in 2003 and are available on the web at http://caib.nasa.gov/. NASA responded to the CAIB findings and recommendations with the Space Shuttle Return to Flight Implementation Plan. Significant enhancements were made to NASA's organizational structure, technical rigor, and understanding of the flight environment. The ET was redesigned to reduce foam shedding and eliminate critical debris. In 2005, NASA succeeded in returning the space shuttle to flight. In 2010, the space shuttle will complete its mission of assembling the International Space Station and will be retired to make way for the next generation of human space flight vehicles: the Constellation Program. The Space Shuttle Program recognized the importance of capturing the lessons learned from the loss of Columbia and her crew to benefit future human exploration, particularly future vehicle design. The program commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). The SCSIIT was asked to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles. To do this, the SCSIIT investigated all elements of crew survival, including the design features, equipment, training, and procedures intended to protect the crew. This report documents the SCSIIT findings, conclusions, and recommendations.

  5. Leadership and America's future in space

    NASA Technical Reports Server (NTRS)

    Ride, Sally K.

    1987-01-01

    In response to growing concern over the posture and long-term direction of the U.S. civilian space program, a task group was formed to define potential U.S. space initiatives, and to evaluate them in light of the current space program and the nation's desire to regain and retain space leadership. The objectives were to energize a discussion of the long-term goals of the civilian space program and to begin to investigate overall strategies to direct that program to a position of leadership. Four initiatives were identified: mission to planet Earth; exploration of the solar system; outpost on the Moon, and humans to Mars. All four initiatives were developed in detail, and the implications and requirements of each was assessed. The long-term goals, current posturing required to attain these goals, and the need for a continuing process to define, refine, and assess both the goals and the strategy to achieve them are discussed.

  6. Study of the commonality of space vehicle applications to future national needs (unclassified portion)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A midterm progress report was presented on the study of commonality of space vehicle applications to future national needs. Two of the four objectives in the entire study were discussed. The first one involved deriving functional requirements for space systems based on future needs and environments for the military and civilian communities. Possible space initiatives based on extrapolations of technology were compiled without regard as to need but only with respect to feasibility, given the advanced state of technology which could exist through the year 2,000. The second one involved matching the initiatives against the requirements, developing a methodology to match and select the initiatives with each of the separate plans based on the future environments, and deriving common features of the military and civilian support requirements for these programs.

  7. Multi-cultural components and keys for European worldwide space programs

    NASA Astrophysics Data System (ADS)

    Pinotti, Roberto

    1991-12-01

    The role of different cultures in space missions is considered with regard to NASA and ESA astronauts and Russian cosmonauts. The identification of all the psychological and socio-anthropological components in the behavior of human groups in space is extremely important to understand and solve different problems and obtain the mission's success. In this light, the creation of a multicultural atmosphere aboard is considered a positive aspect for future space programs, and the synthesis of European cultural elements is a definite key to develop morale and productivity.

  8. Space life sciences strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  9. X-34 Technology Demonstrator in High Bay

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  10. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 4: Detailed data. Part 2: Program plans and common support needs (a study of the commonality of space vehicle applications to future national needs

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.

  11. Kennedy Space Center Annual Report, FY 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The John F. Kennedy Space Center (KSC) has a nearly 40-year tradition of excellence in processing and launching space vehicles and their payloads. The Center's outstanding record of achievements in America's space program has earned it an honored place in history and an essential role in the present; KSC also intends to play a vital part in the future of space exploration.

  12. Skylab

    NASA Image and Video Library

    1972-01-01

    This chart details Skylab's Time and Motion experiment (M151), a medical study to measure performance differences between tasks undertaken on Earth and the same tasks performed by Skylab crew members in orbit. Data collected from this experiment evaluated crew members' zero-gravity behavior for designs and work programs for future space exploration. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  13. NASA Programs in Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1992-01-01

    Highlighted here are some of the current programs in advanced space solar cell and array development conducted by NASA in support of its future mission requirements. Recent developments are presented for a variety of solar cell types, including both single crystal and thin film cells. A brief description of an advanced concentrator array capable of AM0 efficiencies approaching 25 percent is also provided.

  14. Integrating National Space Visions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2006-01-01

    This paper examines value proposition assumptions for various models nations may use to justify, shape, and guide their space programs. Nations organize major societal investments like space programs to actualize national visions represented by leaders as investments in the public good. The paper defines nine 'vision drivers' that circumscribe the motivations evidently underpinning national space programs. It then describes 19 fundamental space activity objectives (eight extant and eleven prospective) that nations already do or could in the future use to actualize the visions they select. Finally the paper presents four contrasting models of engagement among nations, and compares these models to assess realistic pounds on the pace of human progress in space over the coming decades. The conclusion is that orthogonal engagement, albeit unlikely because it is unprecedented, would yield the most robust and rapid global progress.

  15. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  16. 2009 ESMD Space Grant Faculty Project Final Report

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William

    2009-01-01

    The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be part of the evaluation process to help ensure that these courses are developed in such a way that the students' educational objectives are maximized. Ultimately, with NASA-related content used as projects in the course, students will be exposed to space exploration concepts and issues while still in college. This will help to produce NASA engineers and scientists that are knowledgeable of space exploration. By the concerted efforts of these five senior design projects, NASA's ESMD Space Grant Project is making great strides at helping to develop talented engineers and scientists that will continue our exploration into space.

  17. Enabling the space exploration initiative: NASA's exploration technology program in space power

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Cull, Ronald C.

    1991-01-01

    Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.

  18. Space station, 1959 to . .

    NASA Astrophysics Data System (ADS)

    Butler, G. V.

    1981-04-01

    Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.

  19. Space Transportation Propulsion Technology Symposium. Volume 3: Panel Session Summaries and Presentations

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Technology Symposium was held at the Pennsylvania State University on June 25 to 29, 1990. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps and other programmatic deficiencies. Key space transportation propulsion issues are addressed through four panels with government, industry, and academia membership. The panel focused on systems engineering and integration; development, manufacturing, and certification; operational efficiency; program development; and cultural issues.

  20. Space Transportation Propulsion Technology Symposium. Volume 2: Symposium proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Symposium was held to provide a forum for communication within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

  1. The evolution of space mechanisms in the ESA R and D program

    NASA Technical Reports Server (NTRS)

    Wyn-Roberts, D.

    1989-01-01

    The status of recently completed and already ongoing technology developments, as well as some of the most important future developments of the European Space Agency are discussed. Among the subjects considered are Scientific Satellites, Columbus space station development, applications spacecraft for communications, Earth observation and meteorology, and the Ariane V and Hermes space transportation systems.

  2. Relativistic Gravitational Experiments in Space

    NASA Technical Reports Server (NTRS)

    Hellings, Ronald W. (Editor)

    1989-01-01

    The results are summarized of a workshop on future gravitational physics space missions. The purpose of the workshop was to define generic technological requirements for such missions. NASA will use the results to direct its program of advanced technology development.

  3. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  4. KSC-2013-1916

    NASA Image and Video Library

    2013-03-22

    TITUSVILLE, Fla. – Visitors to the Tico Air Show near NASA's Kennedy Space Center in Florida take time to learn about the work the agency is pursuing and plans for future exploration. Visitors to the NASA booth found out about the Ground Systems Development and Operations Program, the Launch Services Program and the Commercial Crew Program, all based at Kennedy. They could also see models of spacecraft and rockets including the Space Launch System, or SLS. Photo credit: NASA/Dimitri Gerondidokis

  5. KSC-2013-1914

    NASA Image and Video Library

    2013-03-22

    TITUSVILLE, Fla. – Visitors to the Tico Air Show near NASA's Kennedy Space Center in Florida take time to learn about the work the agency is pursuing and plans for future exploration. Visitors to the NASA booth found out about the Ground Systems Development and Operations Program, the Launch Services Program and the Commercial Crew Program, all based at Kennedy. They could also see models of spacecraft and rockets including the Space Launch System, or SLS. Photo credit: NASA/Dimitri Gerondidokis

  6. KSC-2013-1915

    NASA Image and Video Library

    2013-03-22

    TITUSVILLE, Fla. – Visitors to the Tico Air Show near NASA's Kennedy Space Center in Florida take time to learn about the work the agency is pursuing and plans for future exploration. Visitors to the NASA booth found out about the Ground Systems Development and Operations Program, the Launch Services Program and the Commercial Crew Program, all based at Kennedy. They could also see models of spacecraft and rockets including the Space Launch System, or SLS. Photo credit: NASA/Dimitri Gerondidokis

  7. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  8. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry, more than 70% of the TDM funds will be competitively awarded as a result of yearly calls for proposed flight demonstrators and selected based on possible payoff to NASA, technology maturity, customer interest, cost, and technical risk reduction. This paper will give an overview of the TDM Program s mission and organization, as well as its current status in delivering advanced space technologies that will enable more flexible and robust future missions. It also will provide several examples of missions that fit within these parameters and expected outcomes.

  9. Report of the Advisory Committee on the Future of the US Space Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The United States' civil space program was rather hurriedly formulated some three decades ago on the heels of the successful launch of the Soviet Sputnik. A dozen humans have been placed on the Moon and safely returned to Earth, seven of the other eight planets have been viewed at close range, including the soft landing of two robot spacecraft on Mars, and a variety of significant astronomical and other scientific observations have been accomplished. Closer to Earth, a network of communications satellites has been established, weather and ocean conditions are now monitored and reported as they occur, and the Earth's surface is observed from space to study natural resources and detect sources of pollution. Problems and perspectives of the program are given as seen by the committee. The committee finds that there are nine concerns about the space program which are deserving of attention. The responsibilities of the agency are given. The space agenda becomes one of what can and should the U.S. afford for its space program. Also given is a concept of what the committee believes is a balanced space program. The programs international role is defined and some final observations and recommendations are made.

  10. The role of the International Space University in building capacity in emerging space nations.

    NASA Astrophysics Data System (ADS)

    Richards, Robert

    The International Space University provides graduate-level training to the future leaders of the emerging global space community at its Central Campus in Strasbourg, France, and at locations around the world. In its two-month Summer Session and one-year Masters program, ISU offers its students a unique Core Curriculum covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. Both programs also involve an intense student research Team Project providing international graduate students and young space professionals the opportunity to solve complex problems by working together in an intercultural environment. Since its founding in 1987, ISU has graduated more than 2500 students from 96 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation.

  11. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  12. Research and technology at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report.

  13. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  14. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs is seen during a dialogue with present NASA Administrator Charles Bolden on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  15. Astrotech 21: A technology program for future astrophysics missions

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Newton, George P.

    1991-01-01

    The Astrotech 21 technology program is being formulated to enable a program of advanced astrophysical observatories in the first decade of the 21st century. This paper describes the objectives of Astrotech 21 and the process that NASA is using to plan and implement it. It also describes the future astrophysical mission concepts that have been defined for the twenty-first century and discusses some of the requirements that they will impose on information systems for space astrophysics.

  16. The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy

    NASA Astrophysics Data System (ADS)

    Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.

    2018-04-01

    Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.

  17. A survey of life support system automation and control

    NASA Technical Reports Server (NTRS)

    Finn, Cory K.

    1993-01-01

    The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.

  18. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  19. Space science in the 1990's and beyond

    NASA Astrophysics Data System (ADS)

    Huntress, Wesley T., Jr.; Kicza, Mary E.; Feeley, T. Jens

    NASA's Office of Space Sciences is changing its approach to our missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at our role in the Federal Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires far less resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs.

  20. Space science in the 1990's and beyond

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley T., Jr.; Kicza, Mary E.; Feeley, T. Jens

    1994-01-01

    NASA's Office of Space Sciences is changing its approach to our missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at our role in the Federal Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires far less resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs.

  1. Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    NASA Technical Reports Server (NTRS)

    Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen

    1987-01-01

    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.

  2. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  3. Human space flight and future major space astrophysics missions: servicing and assembly

    NASA Astrophysics Data System (ADS)

    Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao

    2017-09-01

    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.

  4. Biological challenges of true space settlement

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Mankins, Willa M.; Walter, Helen

    2018-05-01

    "Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.

  5. Senate subcommittee examines NASA's identity crisis

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    With the Cold War fading into history, economic competitiveness becoming the watchwords of the decade, and the space race against the Russians turning into probable cooperation, NASA is struggling to redefine its role. On November 16, the Senate Commerce Subcommittee on Science, Technology and Space invited NASA Administrator Daniel Goldin, Martin Marietta CEO Norman Augustine, and Robert Frosch of Harvard University's John F. Kennedy School of Government to offer their thoughts on NASA's plans, priorities, and budgetary difficulties. Augustine, who chaired the Committee on the Future of the U.S. Space Program in 1990, posed two questions: What does America want its space program to be, and can the country afford to pay for the program it wants? He stated bluntly that if the answers were incompatible, “we are unlikely to have a satisfactory program.”

  6. Manned Space Exploration Can Provide Great Scientific Benefits

    NASA Astrophysics Data System (ADS)

    Singer, S. Fred

    2005-08-01

    An AGU Council statement (NASA: Earth and space sciences at risk, available at http:// www.agu.org/sci_soc/policy/positions/ earthspace_risk.shtml) and an Eos editorial [Barron, 2005], addressing NASA's envisioned manned Moon-Mars initiative, implicitly assume a zero-sum situation between manned and unmanned space programs. They also imply that the NASA initiative will not contribute significantly to science but will ``impact on the current and future health of Earth and space science research.'' I wish to respond to these concerns. It is generally agreed that the International Space Station and shuttle program have limited value and need to be terminated. But one should not assume that funds freed up by elimination of manned programs will accrue to unmanned programs. On the contrary, without a manned component, NASA will probably cease to exist. Congress likely will not continue to fund unmanned planetary exploration over the long term, and Earth and space researchers will then have to compete for support with scientists using non-space techniques.

  7. RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    2015-01-01

    A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.

  8. RL10 Engine Ability to Transition from Atlas to Shuttle/Centaur Program

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    2014-01-01

    A key launch vehicle design feature is the ability to take advantage of new technologies while minimizing expensive and time consuming development and test programs. With successful space launch experiences and the unique features of both the National Aeronautics and Space Administration (NASA) Space Transportation System (Space Shuttle) and Atlas/Centaur programs, it became attractive to leverage these capabilities. The Shuttle/Centaur Program was created to transition the existing Centaur vehicle to be launched from the Space Shuttle cargo bay. This provided the ability to launch heaver and larger payloads, and take advantage of new unique launch operational capabilities. A successful Shuttle/Centaur Program required the Centaur main propulsion system to quickly accommodate the new operating conditions for two new Shuttle/Centaur configurations and evolve to function in the human Space Shuttle environment. This paper describes the transition of the Atlas/Centaur RL10 engine to the Shuttle/Centaur configurations; shows the unique versatility and capability of the engine; and highlights the importance of ground testing. Propulsion testing outcomes emphasize the value added benefits of testing heritage hardware and the significant impact to existing and future programs.

  9. CSTI high capacity power. [Civil Space Technology Initiative

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.

  10. Analysis of the Apollo spacecraft operational data management system. Executive summary

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A study was made of Apollo, Skylab, and several other data management systems to determine those techniques which could be applied to the management of operational data for future manned spacecraft programs. The results of the study are presented and include: (1) an analysis of present data management systems, (2) a list of requirements for future operational data management systems, (3) an evaluation of automated data management techniques, and (4) a plan for data management applicable to future space programs.

  11. Space resources. Volume 1: Scenarios

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    A number of possible future paths for space exploration and development are presented. The topics covered include the following: (1) the baseline program; (2) alternative scenarios utilizing nonterrestrial resources; (3) impacts of sociopolitical conditions; (4) common technologies; and issues for further study.

  12. Skylab

    NASA Image and Video Library

    1970-01-01

    This 1970 photograph shows Skylab's Time and Motion experiment (M151) control unit, a medical study to measure performance differences between tasks undertaken on Earth and the same tasks performed by Skylab crew members in orbit. Data collected from this experiment evaluated crew members' zero-gravity behavior for designs and work programs for future space exploration. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  13. Technology R&D for space commerce

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Christensen, Carissa B.; Steen, Robert G.

    1992-01-01

    The potential effects of reserach conducted by the NASA Office of Aeronautics and Space Technology, OAST, on the aerospace industry are addressed. Program elements aimed at meeting commercial needs and those aimed at meeting NASA needs which have secondary effects benefiting aerospace firms are considered. Particular attention is given to current and future NASA programs for cooperating with industry and the potential effects of OAST research on nonaerospace industries.

  14. NASA's Space Environments and Effects Program: Technology for the New Millennium

    NASA Technical Reports Server (NTRS)

    Hardage, Donna M.; Pearson, Steven D.

    2000-01-01

    Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.

  15. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an EVA capability for these types of missions enables in-space construction of complex vehicles or satellites, hands on exploration of new parts of our solar system, and engages the public through the inspiration of knowing that humans are exploring places that they have never been before. This paper offers insight into what is currently being developed and what the potential opportunities are in the forecast.

  16. Experiment module concepts study. Volume 2: Experiments and mission operations

    NASA Technical Reports Server (NTRS)

    Macdonald, J. M.

    1970-01-01

    The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.

  17. KSC-2011-6159

    NASA Image and Video Library

    2011-08-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the water tower (right) which supported the space shuttle's water deluge system still stands on Launch Pad 39B after the pad's deconstruction. In 2009, the structure at the pad was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit http://www.nasa.gov/exploration. Photo credit: NASA/Kim Shiflett

  18. An Overview of Solar Sail Propulsion within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Swartzlander, Grover A.; Artusio-Glimpse, Alexandra

    2013-01-01

    Solar Sail Propulsion (SSP) is a high-priority new technology within The National Aeronautics and Space Administration (NASA), and several potential future space missions have been identified that will require SSP. Small and mid-sized technology demonstration missions using solar sails have flown or will soon fly in space. Multiple mission concept studies have been performed to determine the system level SSP requirements for their implementation and, subsequently, to drive the content of relevant technology programs. The status of SSP technology and potential future mission implementation within the United States (US) will be described.

  19. Third Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.

  20. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  1. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  2. Advanced development of a programmable power processor

    NASA Technical Reports Server (NTRS)

    Lukens, F. E.; Lanier, J. R., Jr.; Kapustka, R. E.; Graves, J.

    1980-01-01

    The need for the development of a multipurpose flexible programmable power processor (PPP) has increased significantly in recent years to reduce ever rising development costs. One of the program requirements the PPP specification will cover is the 25 kW power module power conversion needs. The 25 kW power module could support the Space Shuttle program during the 1980s and 1990s and could be the stepping stone to future large space programs. Trades that led to selection of a microprocessor controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Component selection and design considerations are also discussed.

  3. Low cost program practices for future NASA space programs, volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The progress and outcomes of a NASA/HQ indepth analysis of NASA program practices are documented. Included is a survey of NASA and industry reaction to the utility and application of a Program Effects Relationship Handbook. The results and outcomes of all study tasks are presented as engineering memoranda as the appendix.

  4. Impacts of sociopolitical conditions

    NASA Technical Reports Server (NTRS)

    Finney, Ben R.

    1992-01-01

    Space development scenarios and the choice of technologies to carry them out depend upon the future social, economic, and political factors. A brief discussion concerning the impact of sociopolitical conditions on space exploration is presented. Some of the topics mentioned include: space weapons/warfare, international cooperation, NASA's Search for Extraterrestrial Intelligence (SETI) Program, and superpower rivelry.

  5. Preparing America for Deep Space Exploration Episode 10: Constructing the Future

    NASA Image and Video Library

    2015-08-13

    Published on Aug 13, 2015 Between April and June 2015, NASA’s Explorations Systems Development programs continued to make progress developing and building the Space Launch System rocket, Orion spacecraft and the ground systems needed to launch them on deep space missions to new destinations in the solar system.

  6. A Service Portal for the Integrated SCaN Network

    NASA Technical Reports Server (NTRS)

    Marx, Sarah R.

    2012-01-01

    The Space Communication and Navigation (SCaN) program office owns the assets and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and Space Network (SN). At present, these individual networks are operated by different NASA centers--JPL for DSN--and Goddard Space Flight Center (GSFC) for NEN and SN--with separate commitments offices for each center. In the near future, SCaN's program office would like to deploy an integrated service portal which would merge the two commitments offices with the goal of easing the task of user planning for space missions requiring services of two or more of these networks. Following interviews with subject matter experts in this field, use cases were created to include the services and functionality mission users would like to see in this new integrated service portal. These use cases provide a guideline for a mock-up of the design of the user interface for the portal. The benefit of this work will ease the time required and streamline/standardize the process for planning and scheduling SCAN's services for future space missions.

  7. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  8. Ultralightweight optics for space applications

    NASA Astrophysics Data System (ADS)

    Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.

    2000-07-01

    Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.

  9. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics.

  10. Identification and evaluation of educational uses and users for the STS. Educational planning for utilization of space shuttle ED-PLUSS

    NASA Technical Reports Server (NTRS)

    Engle, H. A.; Christensen, D. L.

    1974-01-01

    A planning and feasibility study to identify and document a methodology needed to incorporate educational programs into future missions and operations of the space transportation system was conducted. Six tasks were identified and accomplished during the study. The task statements are as follows: (1) potential user identification, (2) a review of space education programs, (3) development of methodology for user involvement, (4) methods to encourage user awareness, (5) compilation of follow-on ideas, and (6) response to NASA questions. Specific recommendations for improving the educational coverage of space activities are provided.

  11. Glenn Research Center Human Research Program: Overview

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Myers, Jerry G.

    2013-01-01

    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program.

  12. Testing of Twin Linear Aerospike XRS-2200 Engine

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.

  13. Research Technology

    NASA Image and Video Library

    2001-08-06

    The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.

  14. The NASA Skylab Program

    ERIC Educational Resources Information Center

    Levin, Richard R.

    1973-01-01

    An experimental space station having three-man crews which will live and work there for periods up to 56 days is designed to provide data needed for long-duration space flight and future spacecraft design. This project will answer many scientific and medical questions. (DF)

  15. Technology Applications that Support Space Exploration

    NASA Technical Reports Server (NTRS)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future consideration and are addressed in this paper. These applications have been made available to the various NASA study groups that are determining the next steps the Agency must take to secure a sound foundation for future space exploration The paper also addresses how follow-on demonstrations, as launch performance grows, can build on the earlier applications to provide increased benefits for both the commercial and scientific communities. The architecture of incrementally building upon previous successes and insights dramatically lowers the overall associated risk for developing and maturing the key enabling technologies. The goal is to establish a potential business case that encourages commercial activity, thereby reducing the cost for the demonstration while using the technology maturation in developing readiness for future space exploration with overall less risk.

  16. Workshop Proceedings: Sensor Systems for Space Astrophysics in the 21st Century, Volume 2

    NASA Technical Reports Server (NTRS)

    Wilson, Barbara A. (Editor)

    1991-01-01

    In 1989, the Astrophysics Division of the Office of Space Science and Applications initiated the planning of a technology development program, Astrotech 21, to develop the technological base for the Astrophysics missions developed in the period 1995 to 2015. The Sensor Systems for Space Astrophysics in the 21st Century Workshop was one of three Integrated Technology Planning workshops. Its objectives were to develop an understanding of the future comprehensive development program to achieve the required capabilities. Program plans and recommendations were prepared in four areas: x ray and gamma ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.

  17. Implications of Public Opinion for Space Program Planning, 1980 - 2000

    NASA Technical Reports Server (NTRS)

    Overholt, W.; Wiener, A. J.; Yokelson, D.

    1975-01-01

    The effect of public opinion on future space programs is discussed in terms of direct support, apathy, or opposition, and concern about the tax burden, budgetary pressures, and national priorities. Factors considered include: the salience and visibility of NASA as compared with other issues, the sources of general pressure on the federal budget which could affect NASA, the public's opinions regarding the size and priority of NASA'S budget, the degree to which the executive can exercise leverage over NASA's budget through influencing or disregarding public opinion, the effects of linkages to other issues on space programs, and the public's general attitudes toward the progress of science.

  18. Research and technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing emphasis on its research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1988 Annual Report.

  19. KSC-2013-3002

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, the "rocket garden" includes many of the historic launch vehicles of the United States' efforts to explore space. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  20. Space Transportation Propulsion Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transportation Propulsion Technology Symposium was held to provide a forum for communication within the propulsion within the propulsion technology developer and user communities. Emphasis was placed on propulsion requirements and initiatives to support current, next generation, and future space transportation systems, with the primary objectives of discerning whether proposed designs truly meet future transportation needs and identifying possible technology gaps, overlaps, and other programmatic deficiencies. Key space transportation propulsion issues were addressed through four panels with government, industry, and academia membership. The panels focused on systems engineering and integration; development, manufacturing and certification; operational efficiency; and program development and cultural issues.

  1. Propellant Technologies: A Persuasive Wave of Future Propulsion Benefits

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Ianovski, Leonid S.; Carrick, Patrick

    1997-01-01

    Rocket propellant and propulsion technology improvements can be used to reduce the development time and operational costs of new space vehicle programs. Advanced propellant technologies can make the space vehicles safer, more operable, and higher performing. Five technology areas are described: Monopropellants, Alternative Hydrocarbons, Gelled Hydrogen, Metallized Gelled Propellants, and High Energy Density Materials. These propellants' benefits for future vehicles are outlined using mission study results and the technologies are briefly discussed.

  2. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  3. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  4. Research and technology 1987 annual report of the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects of this Kennedy Space Center 1987 Annual Report.

  5. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  6. Proceedings of the Seventh Annual Summer Conference. NASA/USRA: University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Advanced Design Program (ADP) is a unique program that brings together students and faculty from U.S. engineering schools with engineers from the NASA centers through integration of current and future NASA space and aeronautics projects into university engineering design curriculum. The Advanced Space Design Program study topics cover a broad range of projects that could be undertaken during a 20-30 year period beginning with the deployment of the Space Station Freedom. The Advanced Aeronautics Design Program study topics typically focus on nearer-term projects of interest to NASA, covering from small, slow-speed vehicles through large, supersonic passenger transports and on through hypersonic research vehicles. Student work accomplished during the 1990-91 academic year and reported at the 7th Annual Summer Conference is presented.

  7. The rocky Soviet road to Mars

    NASA Astrophysics Data System (ADS)

    Klaes, Larry

    1990-08-01

    The history of the Soviet space program is reviewed with particular attention given to the Soviet Mars exploration program. Missions of the Mars and Zond series and their exploration of Mars are described in detail, and the progress of the Soviet Mars exploration program is compared and contrasted with that of U.S. programs. Soviet space exploration in the 1980s is reviewed, noting that changes in political climate enabled more open discussion of the Phobos mission, which facilitated both international cooperation in assembling the craft and extensive U.S.-Soviet cooperation in the communications aspect of the probe through use of NASA's Deep Space Network of radio telescopes. The Phobos 1 and Phobos 2 missions are discussed and reasons for difficulties are analyzed; the future of the Soviet Mars program is reviewed.

  8. Cost-estimating relationships for space programs

    NASA Technical Reports Server (NTRS)

    Mandell, Humboldt C., Jr.

    1992-01-01

    Cost-estimating relationships (CERs) are defined and discussed as they relate to the estimation of theoretical costs for space programs. The paper primarily addresses CERs based on analogous relationships between physical and performance parameters to estimate future costs. Analytical estimation principles are reviewed examining the sources of errors in cost models, and the use of CERs is shown to be affected by organizational culture. Two paradigms for cost estimation are set forth: (1) the Rand paradigm for single-culture single-system methods; and (2) the Price paradigms that incorporate a set of cultural variables. For space programs that are potentially subject to even small cultural changes, the Price paradigms are argued to be more effective. The derivation and use of accurate CERs is important for developing effective cost models to analyze the potential of a given space program.

  9. International Space Education Outreach: Taking Exploration to the Global Classroom

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  10. Manipulator system man-machine interface evaluation program. [technology assessment

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Kirkpatrick, M.; Shields, N. L.

    1974-01-01

    Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.

  11. An evaluation of the Goddard Space Flight Center Library

    NASA Technical Reports Server (NTRS)

    Herner, S.; Lancaster, F. W.; Wright, N.; Ockerman, L.; Shearer, B.; Greenspan, S.; Mccartney, J.; Vellucci, M.

    1979-01-01

    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis.

  12. KSC-2010-4358

    NASA Image and Video Library

    2010-08-12

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Constellation Program Manager Dale Thomas talks to employees at a completion ceremony for NASA's new mobile launcher, or ML, support structure. The ceremony was held underneath the structure's launch mount opening. It took about two years to construct the launcher in the Mobile Launcher Park site, north of the Vehicle Assembly Building, or VAB. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  13. Opportunities for Space Science Education Using Current and Future Solar System Missions

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.

    2010-12-01

    The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a unique glimpse into the Space Department’s “end-to-end” approach to mission design and execution. College students - both undergraduate and graduate - are recruited from around the U.S. to work with APL scientists and engineers who act as mentors to the students. Many students are put on summer projects that allow them to work with existing spacecraft systems, while others participate in projects that investigate the operational and science objectives of future planned spacecraft systems. In many cases these interns have returned to APL as full-time staff after graduation.

  14. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  15. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  16. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  17. Essential SpaceWire Hardware Capabilities for a Robust Network

    NASA Technical Reports Server (NTRS)

    Birmingham, Michael; Krimchansky, Alexander; Anderson, William; Lombardi, Matthew

    2016-01-01

    The Geostationary Operational Environmental Satellite R-Series Program (GOES-R) mission is a joint program between National Oceanic & Atmospheric Administration (NOAA) and National Aeronautics & Space Administration (NASA) Goddard Space Flight Center (GSFC). GOES-R project selected SpaceWire as the best solution to satisfy the desire for simple and flexible instrument to spacecraft command and telemetry communications. GOES-R development and integration is complete and the observatory is scheduled for launch October 2016. The spacecraft design was required to support redundant SpaceWire links for each instrument side, as well as to route the fewest number of connections through a Slip Ring Assembly necessary to support Solar pointing instruments. The final design utilized two different router designs. The SpaceWire standard alone does not ensure the most practical or reliable network. On GOES-R a few key hardware capabilities were identified that merit serious consideration for future designs. Primarily these capabilities address persistent port stalls and the prevention of receive buffer overflows. Workarounds were necessary to overcome shortcomings that could be avoided in future designs if they utilize the capabilities, discussed in this paper, above and beyond the requirements of the SpaceWire standard.

  18. NASA Space Program experience in hydrogen transportation and handling

    NASA Technical Reports Server (NTRS)

    Bain, A. L.

    1976-01-01

    This paper portrays the experience gained in the transportation and handling of hydrogen in support of the Apollo launch site at Kennedy Space Center (KSC), Fla., one of NASA's prime hydrogen users in the Space Program. The objective of the paper is basically to reveal the types of systems involved in handling hydrogen, safety practices, operational techniques, other general experience information, and primarily to convey the routinism by which this potential fuel of the future has already been handled in significant quantities for a number of years.

  19. The X2000 Program: An Institutional Approach to Enabling Smaller Spacecraft

    NASA Technical Reports Server (NTRS)

    Deutsch, Les; Salvo, Chris; Woerner, Dave

    2000-01-01

    NASA's X2000 Program is important for many reasons - It develops the technology that will enable new types of deep space space exploration - It is a new, faster and cheaper process for technology infusion into NASA missions - It transfers these capabilities to US industry so they are available for future spacecraft. Many of these new capabilities are relevant to Earth missions as well X2000 will work with the NASA Goddard Space Flight Center (and others) to help make these capabilities available to a larger community.

  20. Progress in space nuclear reactor power systems technology development - The SP-100 program

    NASA Technical Reports Server (NTRS)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  1. Advanced degrees in astronautical engineering for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2014-10-01

    Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department's educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master's degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.

  2. Center Planning and Development: Multi-User Spaceport Initiatives

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher John

    2015-01-01

    The Vehicle Assembly building at NASAs Kennedy Space Center has been used since 1966 to vertically assemble every launch vehicle, since the Apollo Program, launched from Launch Complex 39 (LC-39). After the cancellation of the Constellation Program in 2010 and the retirement of the Space Shuttle Program in 2011, the VAB faced an uncertain future. As the Space Launch System (SLS) gained a foothold as the future of American spaceflight to deep space, NASA was only using a portion of the VABs initial potential. With three high bays connected to the Crawler Way transportation system, the potential exists for up to three rockets to be simultaneously processed for launch. The Kennedy Space Center (KSC) Master plan, supported by the Center Planning and Development (CPD) Directorate, is guiding Kennedy toward a 21st century multi-user spaceport. This concept will maintain Kennedy as the United States premier gateway to space and provide multi-user operations through partnerships with the commercial aerospace industry. Commercial aerospace companies, now tasked with transporting cargo and, in the future, astronauts to the International Space Station (ISS) via the Commercial Resupply Service (CRS) and Commercial Crew Program (CCP), are a rapidly growing industry with increasing capabilities to make launch operations more economical for both private companies and the government. Commercial operations to Low Earth Orbit allow the government to focus on travel to farther destinations through the SLS Program. With LC-39B designated as a multi-use launch pad, companies seeking to use it will require an integration facility to assemble, integrate, and test their launch vehicle. An Announcement for Proposals (AFP) was released in June, beginning the process of finding a non-NASA user for High Bay 2 (HB2) and the Mobile Launcher Platforms (MLPs). An Industry Day, a business meeting and tour for interested companies and organizations, was also arranged to identify and answer any additional questions posed by potential proposers. After amending the AFP and posting additional material for potential users to consider, proposals are being accepted until July 31, at which point they will be evaluated to determine the proposer which best meets the objectives of the government. By identifying VAB HB2 as available and seeking proposals from the commercial sector for VAB HB2 and MLP use, Center Planning and Development is ensuring Kennedy Space Centers relevance in the evolving launch industry of the 21st century.

  3. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  4. Space Exploration: Manned and Unmanned Flight. Aerospace Education III.

    ERIC Educational Resources Information Center

    Coard, E. A.

    This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…

  5. Space Acquisitions: Some Programs Have Overcome Past Problems, but Challenges and Uncertainty Remain for the Future

    DTIC Science & Technology

    2015-04-29

    are being conducted for the SpaceX Falcon 9 v1.1 launch system. In addition, in its fiscal year 2016 President’s Budget request, DOD requested funding...DOD expects SpaceX to be certified by June 2015. Additionally, the department has faced unexpected complications, such as challenges to its

  6. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  7. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  8. Research opportunities in human behavior and performance

    NASA Technical Reports Server (NTRS)

    Christensen, J. M. (Editor); Talbot, J. M. (Editor)

    1985-01-01

    Extant information on the subject of psychological aspects of manned space flight are reviewed; NASA's psychology research program is examined; significant gaps in knowledge are identified; and suggestions are offered for future research program planning. Issues of human behavior and performance related to the United States space station, to the space shuttle program, and to both near and long term problems of a generic nature in applicable disciplines of psychology are considered. Topics covered include: (1) human performance requirements for a 90 day mission; (2) human perceptual, cognitive, and motor capabilities and limitations in space; (3) crew composition, individual competencies, crew competencies, selection criteria, and special training; (4) environmental factors influencing behavior; (5) psychosocial aspects of multiperson space crews in long term missions; (6) career determinants in NASA; (7) investigational methodology and equipment; and (8) psychological support.

  9. Research and technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safe, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to Space Station and other future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1985 Annual Report. The report contains brief descriptions of research and technology projects in major areas of Kennedy Space Center's disciplinary expertise.

  10. Deep Space Systems Technology Program Future Deliveries

    NASA Technical Reports Server (NTRS)

    Salvo, Christopher G.; Keuneke, Matthew S.

    2000-01-01

    NASA is in a period of frequent launches of low cost deep space missions with challenging performance needs. The modest budgets of these missions make it impossible for each to develop its own technology, therefore, efficient and effective development and insertion of technology for these missions must be approached at a higher level than has been done in the past. The Deep Space Systems Technology Program (DSST), often referred to as X2000, has been formed to address this need. The program is divided into a series of "Deliveries" that develop and demonstrate a set of spacecraft system capabilities with broad applicability for use by multiple missions. The First Delivery Project, to be completed in 2001, will provide a one MRAD-tolerant flight computer, power switching electronics, efficient radioisotope power source, and a transponder with services at 8.4 GHz and 32 GHz bands. Plans call for a Second Delivery in late 2003 to enable complete deep space systems in the 10 to 50 kg class, and a Third Delivery built around Systems on a Chip (extreme levels of electronic and microsystems integration) around 2006. Formulation of Future Deliveries (past the First Delivery) is ongoing and includes plans for such developments as highly miniaturized digital/analog/power electronics, optical communications, multifunctional structures, miniature lightweight propulsion, advanced thermal control techniques, highly efficient radioisotope power sources, and a unified flight ground software architecture to support the needs of future highly intelligent space systems. All developments are targeted at broad applicability and reuse, and will be commercialized within the US.

  11. Feasibility of remotely manipulated welding in space: A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1985-01-01

    A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report.

  12. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

  13. KSC-2013-2975

    NASA Image and Video Library

    2013-06-28

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, center director Bob Cabana speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  14. Educational benefits of ISY - NASA's perspective

    NASA Technical Reports Server (NTRS)

    Owens, Frank C.; Mcgee, A. S.

    1992-01-01

    Education is a key component of the International Space Year (ISY) and NASA has taken on several roles in the development of ISY educational activities. ISY presents a unique opportunity for international cooperation in education and the global importance of science, math and technology across the educational spectrum has been emphasized. NASA monitors the progress of educational projects, develops educational activities and facilitates the development of such activities in both the public and private sectors. The Space Agency Forum on ISY (SAFISY), the international space and education program, space science and space communications in education are discussed and several educational programs are described. Current activities, distribution of products and future evaluation plans are discussed.

  15. NASA's Advanced Space Transportation Hypersonic Program

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)

    2002-01-01

    NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  16. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx.10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders, if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering. management, and operational successes of the Space Station have demonstrated that international collaboration is possible. However, there is a danger that the hard-won lessons of current programs will be lost without continuing development of in-space operations. A program to achieve. for example, major astronomical goals in space using astronauts and robots will sustain international capabilities, produce highly visible achievements, and appeal to an additional broad community of stakeholders not currently involved with missions to the lunar surface.

  17. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating for long periods in free space must be developed. The engineering, management. and operational successes of the Space Station have demonstrated that international collaboratioi is possible. However, there is a danger that the hard-won lessons of cLul+sent programs will be lost without continuing development of in-space operations. A program to achieve. for example. major astronomical goals in space using astronauts and robots will sustain international capabilities. produce highly visible achievements. and appeal to a11 additional broad community of stakeholders not currently involved with missions to the lunar surface.

  18. [Bone metabolism in human space flight and bed rest study].

    PubMed

    Ohshima, Hiroshi; Mukai, Chiaki

    2008-09-01

    Japanese Experiment Module "KIBO" is Japan's first manned space facility and will be operated as part of the international space station (ISS) . KIBO operations will be monitored and controlled from Tsukuba Space Center. In Japan, after the KIBO element components are fully assembled and activated aboard the ISS, Japanese astronauts will stay on the ISS for three or more months, and full-scale experiment operations will begin. Bone loss and renal stone are significant medical concerns for long duration human space flight. This paper will summarize the results of bone loss, calcium balance obtained from the American and Russian space programs, and ground-base analog bedrest studies. Current in-flight training program, nutritional recommendations and future countermeasure plans for station astronauts are also described.

  19. Space science and applications: Strategic plan 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.

  20. SP-100 nuclear space power systems with application to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, John M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power.

  1. Advanced 3-V semiconductor technology assessment. [space communications

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Against a background of an extensive survey of the present state of the art in the field of III-V semiconductors for operation at microwave frequencies (or gigabit rate speeds), likely requirements of future space communications systems are identified, competing technologies and physical device limitations are discussed, and difficulties in implementing emerging technologies are projected. On the basis of these analyses, specific research and development programs required for the development of future systems components are recommended.

  2. An overview of NASA ISS human engineering and habitability: past, present, and future.

    PubMed

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  3. KSC-2010-4654

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  4. KSC-2010-4652

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  5. KSC-2010-4659

    NASA Image and Video Library

    2010-09-16

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair at a hotel in Cape Canaveral, Fla., to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The first part of the job fair took place Sept. 15 in Kennedy's Operations Support Building II and Space Station Processing Facility. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Jack Pfaller

  6. KSC-2010-4653

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  7. KSC-2010-4657

    NASA Image and Video Library

    2010-09-16

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair at a hotel in Cape Canaveral, Fla., to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The first part of the job fair took place Sept. 15 in Kennedy's Operations Support Building II and Space Station Processing Facility. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Jack Pfaller

  8. KSC-2010-4658

    NASA Image and Video Library

    2010-09-16

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair at a hotel in Cape Canaveral, Fla., to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The first part of the job fair took place Sept. 15 in Kennedy's Operations Support Building II and Space Station Processing Facility. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Jack Pfaller

  9. KSC-2010-4656

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  10. KSC-2010-4655

    NASA Image and Video Library

    2010-09-15

    CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center and Brevard Workforce host a job fair in Kennedy's Operations Support Building II and Space Station Processing Facility to help center employees with future planning and placement as the Space Shuttle Program comes to an end. Recruiters included federal, state and local government agencies and organizations, as well as private companies from across the country. The second part of the job fair is scheduled for Sept. 16 at a hotel in Cape Canaveral, Fla. Kennedy's Human Resources Office also has hosted workshops, seminars and other events to prepare employees as much as possible for future opportunities. Photo credit: NASA/Kim Shiflett

  11. The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.

  12. KSC-08pd1093

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker maneuvers a panel to build another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  13. KSC-08pd1096

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers line up the new equipment cabinets. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  14. KSC-08pd1090

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, cabinets are being erected to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  15. KSC-08pd1094

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  16. KSC-08pd1091

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, workers put together another cabinet to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  17. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.

  18. Space Station program status and research capabilities

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1995-01-01

    Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.

  19. Architectural Implementation of NASA Space Telecommunications Radio System Specification

    NASA Technical Reports Server (NTRS)

    Peters, Kenneth J.; Lux, James P.; Lang, Minh; Duncan, Courtney B.

    2012-01-01

    This software demonstrates a working implementation of the NASA STRS (Space Telecommunications Radio System) architecture specification. This is a developing specification of software architecture and required interfaces to provide commonality among future NASA and commercial software-defined radios for space, and allow for easier mixing of software and hardware from different vendors. It provides required functions, and supports interaction with STRS-compliant simple test plug-ins ("waveforms"). All of it is programmed in "plain C," except where necessary to interact with C++ plug-ins. It offers a small footprint, suitable for use in JPL radio hardware. Future NASA work is expected to develop into fully capable software-defined radios for use on the space station, other space vehicles, and interplanetary probes.

  20. Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, 1971-2010

    NASA Technical Reports Server (NTRS)

    Hale, Wayne (Editor); Lane, Helen (Editor); Chapline, Gail (Editor); Lulla, Kamlesh (Editor)

    2011-01-01

    The Space Shuttle is an engineering marvel perhaps only exceeded by the station itself. The shuttle was based on the technology of the 1960s and early 1970s. It had to overcome significant challenges to make it reusable. Perhaps the greatest challenges were the main engines and the Thermal Protection System. The program has seen terrible tragedy in its 3 decades of operation, yet it has also seen marvelous success. One of the most notable successes is the Hubble Space Telescope, a program that would have been a failure without the shuttle's capability to rendezvous, capture, repair, as well as upgrade. Now Hubble is a shining example of success admired by people around the world. As the program comes to a close, it is important to capture the legacy of the shuttle for future generations. That is what "Wings In Orbit" does for space fans, students, engineers, and scientists. This book, written by the men and women who made the program possible, will serve as an excellent reference for building future space vehicles. We are proud to have played a small part in making it happen. Our journey to document the scientific and engineering accomplishments of this magnificent winged vehicle began with an audacious proposal: to capture the passion of those who devoted their energies to its success while answering the question "What are the most significant accomplishments?" of the longestoperating human spaceflight program in our nation s history. This is intended to be an honest, accurate, and easily understandable account of the research and innovation accomplished during the era.

  1. Compiling the space shuttle wind tunnel data base: An exercise in technical and managerial innovators

    NASA Technical Reports Server (NTRS)

    Kemp, N. D.

    1983-01-01

    Engineers evaluating Space Shuttle flight data and performance results are using a massive data base of wind tunnel test data. A wind tunnel test data base of the magnitude attained is a major accomplishment. The Apollo program spawned an automated wind tunnel data analysis system called SADSAC developed by the Chrysler Space Division. An improved version of this system renamed DATAMAN was used by Chrysler to document analyzed wind tunnel data and data bank the test data in standardized formats. These analysis documents, associated computer graphics and standard formatted data were disseminated nationwide to the Shuttle technical community. These outputs became the basis for substantiating and certifying the flight worthiness of the Space Shuttle and for improving future designs. As an aid to future programs this paper documents the lessons learned in compiling the massive wind tunnel test data base for developing the Space Shuttle. In particular, innovative managerial and technical concepts evolved in the course of conceiving and developing this successful DATAMAN system and the methods and organization for applying the system are presented.

  2. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  3. Reference earth orbital research and applications investigations (blue book). Volume 7: Technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.

  4. Developing a taxonomy for mission architecture definition

    NASA Technical Reports Server (NTRS)

    Neubek, Deborah J.

    1990-01-01

    The Lunar and Mars Exploration Program Office (LMEPO) was tasked to define candidate architectures for the Space Exploration Initiative to submit to NASA senior management and an externally constituted Outreach Synthesis Group. A systematic, structured process for developing, characterizing, and describing the alternate mission architectures, and applying this process to future studies was developed. The work was done in two phases: (1) national needs were identified and categorized into objectives achievable by the Space Exploration Initiative; and (2) a program development process was created which both hierarchically and iteratively describes the program planning process.

  5. Astrophysics space systems critical technology needs

    NASA Technical Reports Server (NTRS)

    Gartrell, C. F.

    1982-01-01

    This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.

  6. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.

    2012-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

  7. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  8. Microgravity Science and Applications Flight Programs, January - March 1987, selected papers, volume 1

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A compilation of papers presented at this conference is given. The science dealing with materials and fluids and with fundamental studies in physics and chemistry in a low gravity environment is examined. Program assessments are made along with directions for progress in the future use of the space shuttle program.

  9. History and perspectives of scientific ballooning

    NASA Astrophysics Data System (ADS)

    Lefevre, Frank

    2001-08-01

    Prehistory: Robertson, Biot and Gay-Lussac; Glaisher and the first studies of the atmosphere; Flammarion. The rebirth of scientific ballooning: polyethylene and mylar vehicles at Minneapolis. Super-pressurized balloons. The CNES and the Nasa programs; meteorology, aeronomy and astronomy, The Eole program. The Venus and Mars balloons in the French-Soviet space program. The future.

  10. Payload accommodations. Avionics payload support architecture

    NASA Technical Reports Server (NTRS)

    Creasy, Susan L.; Levy, C. D.

    1990-01-01

    Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.

  11. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs, left, and present NASA Administrator Charles Bolden conduct a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. Bolden took over the post as NASA's 12th administrator in July 2009. The dialogue is part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  12. Repeater in the sky. [public service communications satellite program

    NASA Technical Reports Server (NTRS)

    Cote, C. E.; Brown, J. P.

    1977-01-01

    The Public Service Communications Satellite (PSCS) program is intended to develop and demonstrate a space system aimed at stimulating future commercial markets in fixed and mobile applications. The services are envisioned for rural areas, regions beyond access to terrestrial systems, or for continuous cross-country applications. The system incorporates a UHF repeater for mobile voice and data experiments; 8 MHz of spectrum is specified for serving 70 channels. This paper describes the PSCS program and discusses some demonstration experiments. A future concept based on large structure multibeam antennas is also discussed.

  13. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  14. Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized.

  15. Vibration isolation technology: An executive summary of systems development and demonstration

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos M.; Logsdon, Kirk A.; Lubomski, Joseph F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  16. Vibration isolation technology - An executive summary of systems development and demonstration

    NASA Astrophysics Data System (ADS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  17. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1986 Annual Report.

  18. Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Scholz, A. L.; Hart, M. T.; Lowry, D. J.

    1987-01-01

    Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.

  19. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  20. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  1. Space Tethers Design Criteria

    NASA Technical Reports Server (NTRS)

    Tomlin, Donald D.; Faile, Gwyn C.; Hayashida, Kazuo B.; Frost, Cynthia L.; Wagner, Carole Y.; Mitchell, Michael L.; Vaughn, Jason A.; Galuska, Michael J.

    1998-01-01

    The small expendable deployable system and tether satellite system programs did not have a uniform written criteria for tethers. The JSC safety panel asked what criteria was used to design the tethers. Since none existed, a criteria was written based on past experience for future tether programs.

  2. Our Future in Space

    NASA Astrophysics Data System (ADS)

    Impey, Chris David

    2017-06-01

    The Space Age is half a century old. Its early successes were driven by a fierce superpower rivalry between the Soviet Union and the United States, which tended to obscure the fact that exploration and risk-taking is built into human DNA. Decades after we last set foot on the Moon, and years after the Space Shuttle was retired, the space activity is finally leaving the doldrums. A vibrant private sector led by SpaceX, Blue Origins, and Virgin Galactic plans to launch supplies cheaply into Earth orbit and give anyone the chance of a sub-orbital joy ride. New materials are being developed that could lead to space elevators and transform the economics of space travel. Fighting gravity will always be difficult but engineers are rethinking rockets and developing new propulsion technologies. Permanent bases on the Moon and Mars are now within reach, and a new Space Race is brewing, with China ascendant. Medical advances might even allow us to reach for the stars. The talk will review the history and landmarks of the international space program, give a snapshot of the current dynamic situation, and plot the trajectory of the future of space travel. The time has come to envision our future off-Earth.

  3. KSC-2013-2973

    NASA Image and Video Library

    2013-06-28

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Mike Konzen of PGAV Destinations speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. PGAV was responsible for the "Space Shuttle Atlantis" facility design and architecture. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  4. KSC-2013-2987

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, Expedition 36 flight engineers Karen Nyberg, left, and Chris Cassidy speak to guests via television from the International Space Station. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  5. High Frontier: The Journal for Space & Missile Professionals. Volume 1, Number 3, Winter 2005

    DTIC Science & Technology

    2005-01-01

    masquerading as attempts to prevent the weaponization of space. China , for instance, is steadfast in their opposition to weaponizing space, and has brought...adversary, China , has both the intent and an expand- ing capability to exploit the vulnerability of US space systems in the event of a future...justification for US space programs.” He went on to discount any hostile Chinese intent, stating: “ China is interested in space but has done nothing

  6. Vibration isolation technology - An executive summary of systems development and demonstration. [for proposed microgravity experiments aboard STS and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Grodsinsky, C. M.; Logsdon, K. A.; Lubomski, J. F.

    1993-01-01

    A program was organized to develop the enabling technologies needed for the use of Space Station Freedom as a viable microgravity experimental platform. One of these development programs was the Vibration Isolation Technology (VIT). This technology development program grew because of increased awareness that the acceleration disturbances present on the Space Transportation System (STS) orbiter can and are detrimental to many microgravity experiments proposed for STS, and in the future, Space Station Freedom (SSF). Overall technological organization are covered of the VIT program. Emphasis is given to the results from development and demonstration of enabling technologies to achieve the acceleration requirements perceived as those most likely needed for a variety of microgravity science experiments. In so doing, a brief summary of general theoretical approaches to controlling the acceleration environment of an isolated space based payload and the design and/or performance of two prototype six degree of freedom active magnetic isolation systems is presented.

  7. NASA's attack on costs

    NASA Technical Reports Server (NTRS)

    Low, George M.

    1994-01-01

    This article's concern is regarding the high costs of space travel and the need to minimize or reduce these costs in order to effectively provide the continuation of the space programs and space exploration needs of the future. Discussed is the possibility and need to optimize payloads in order to lower the costs associated with them. Design phase principles and implementation phase points are discussed.

  8. Chemical Physics of Charge Mechanisms in Nonmetallic Spacecraft Materials.

    DTIC Science & Technology

    1979-05-01

    techniques may not provide data truly representative of actual in-orbit space - craft charging effects . The results of the discharge characterization...phenomena, commonly referred to collectively as space - !. craft charging effects , can produce undesirable and sometimes serious prob- lems with the...lifetime of future space systems requires a practical understanding of spacecraft charging phenomena and their effects . The laboratory program

  9. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    This work joins two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for other required deep space exploration capabilities. These other capabilities include landers, stages and more. We mature the concept of costed baseball cards, adding cost estimates to NASAs space systems baseball cards.

  10. Launch and Landing Effects Ground Operations (LLEGO) Model

    NASA Technical Reports Server (NTRS)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  11. KSC-2013-2938

    NASA Image and Video Library

    2013-06-27

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, a display inside the "Space Shuttle Atlantis" facility features a 43-feet-tall full-scale replica of the Hubble telescope hung through an opening in the second floor. The new $100 million facility will include interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit is scheduled to open June 29, 2013.Photo credit: NASA/Jim Grossmann

  12. KSC-2013-2992

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  13. KSC-2013-2988

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  14. KSC-2013-2984

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, CNN correspondent John Zarrella speaks to guests at the opening of the new "Space Shuttle Atlantis" facility. Zarrella served as master of ceremonies for the event. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  15. KSC-2013-2990

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, NASA Administrator Charlie Bolden speaks to guests gathered for the ceremony. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  16. KSC-2013-2989

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- During opening ceremonies for the new 90,000-square-foot "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, center director Bob Cabana speaks to guests gathered for the ceremony. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  17. KSC-2013-2986

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president, speaks to guests during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  18. KSC-2013-2985

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president, speaks to guests during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  19. KSC-2013-2974

    NASA Image and Video Library

    2013-06-28

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Rick Abramson, Delaware North Parks and Resorts president speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  20. KSC-2013-2998

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- Inside the new "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, guests gather around the spacecraft on display with payload bay doors open and remote manipulator system robot arm extended. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  1. KSC-2013-2997

    NASA Image and Video Library

    2013-06-29

    CAPE CANAVERAL, Fla. -- Inside the new "Space Shuttle Atlantis" facility at the Kennedy Space Center Visitor Complex in Florida, 40 astronauts posed with the spacecraft on display with payload bay doors open and remote manipulator system robot arm extended. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  2. Vision for the Future of Lws TR&T

    NASA Astrophysics Data System (ADS)

    Schwadron, N.; Mannucci, A. J.; Antiochos, S. K.; Bhattacharjee, A.; Gombosi, T. I.; Gopalswamy, N.; Kamalabadi, F.; Linker, J.; Pilewskie, P.; Pulkkinen, A. A.; Spence, H. E.; Tobiska, W. K.; Weimer, D. R.; Withers, P.; Bisi, M. M.; Kuznetsova, M. M.; Miller, K. L.; Moretto, T.; Onsager, T. G.; Roussev, I. I.; Viereck, R. A.

    2014-12-01

    The Living With a Star (LWS) program addresses acute societal needs for understanding the effects of space weather and developing scientific knowledge to support predictive capabilities. Our society's heavy reliance on technologies affected by the space environment, an enormous number of airline customers, interest in space tourism, and the developing plans for long-duration human exploration space missions are clear examples that demonstrate urgent needs for space weather models and detailed understanding of space weather effects and risks. Since its inception, the LWS program has provided a vehicle to innovate new mechanisms for conducting research, building highly effective interdisciplinary teams, and ultimately in developing the scientific understanding needed to transition research tools into operational models that support the predictive needs of our increasingly space-reliant society. The advances needed require broad-based observations that cannot be obtained by large missions alone. The Decadal Survey (HDS, 2012) outlines the nation's needs for scientific development that will build the foundation for tomorrow's space weather services. Addressing these goals, LWS must develop flexible pathways to space utilizing smaller, more diverse and rapid development of observational platforms. Expanding utilization of ground-based assets and shared launches will also significantly enhance opportunities to fulfill the growing LWS data needs. Partnerships between NASA divisions, national/international agencies, and with industry will be essential for leveraging resources to address increasing societal demand for space weather advances. Strengthened connections to user communities will enhance the quality and impact of deliverables from LWS programs. Thus, we outline the developing vision for the future of LWS, stressing the need for deeper scientific understanding to improve forecasting capabilities, for more diverse data resources, and for project deliverables that address the growing needs of user communities.

  3. A survey of experiments and experimental facilities for active control of flexible structures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard

    1989-01-01

    A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.

  4. Interaction Challenges in Human-Robot Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  5. Pathfinder technologies for bold new missions. [U.S. research and development program for space exploration

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Rosen, Robert

    1987-01-01

    Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.

  6. Medical System Concept of Operations for Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric

    2017-01-01

    Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.

  7. SP-100 design, safety, and testing

    NASA Technical Reports Server (NTRS)

    Cox, Carl. M.; Mahaffey, Michael M.; Smith, Gary L.

    1991-01-01

    The SP-100 Program is developing a nuclear reactor power system that can enhance and/or enable future civilian and military space missions. The program is directed to develop space reactor technology to provide electrical power in the range of tens to hundreds of kilowatts. The major nuclear assembly test is to be conducted at the Hanford Site near Richland, Washington, and is designed to validate the performance of the 2.4-MWt nuclear and heat transport assembly.

  8. CASH 2021: commercial access and space habitation.

    PubMed

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Feretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frederic; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-01-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  9. Support for International Space University?s (ISU) 2003 Summer Session Program and the Theme Day on ?Living and Working in Space?

    NASA Technical Reports Server (NTRS)

    Finarelli, Margaret G.

    2004-01-01

    The 2003 Summer Session Program of the International Space University (ISU) was conducted at the ISU Central Campus in Strasbourg, France, July 5-September 6, 2003. Attending the Summer Session were 114 students from 27 countries including the US. The International Space University (ISU) offers its students a unique and comprehensive educational package covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. By providing international graduate students and young space professionals both an intensive interdisciplinary curriculum and also the opportunity to solve complex problems together in an intercultural environment, ISU is preparing the future leaders of the emerging global space community. Since its founding in 1988, ISU has graduated more than 2200 students from 87 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation. ISU's interdisciplinary Student Theme Days and Student Workshops are intended to have great educational value for the participants. Along with the interdisciplinary Core Lectures, they apprise the students of state-of-the-art activities, programs and policies in spacefaring nations. They also provide ISU students the opportunity to meet world experts in space-related subjects.

  10. ESA's Mars Program: European Plans for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Forget, Francois

    2005-01-01

    A viewgraph presentation on the European Space Agency Mars Exploration Program is shown. The topics include: 1) History:Mars Exploration in Europe; 2) A few preliminary results from Mars Express; 3) A new instrument:Radar MARSIS; and 4) European Mars Exploration in the future?

  11. Behavioral Health and Performance, Risk to Mitigation Strategy

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren; Whitemire, Alexandra

    2009-01-01

    This poster reviews the working of the Behavioral Health and Performance (BHP) group, which supports the research element which manages an integrated program for future space flight. The BHP operations group supports astronauts and their families in all phases of the International Space Station Mission, and post mission effects.

  12. Space program payload costs and their possible reduction

    NASA Technical Reports Server (NTRS)

    Vanvleck, E. M.; Deerwester, J. M.; Norman, S. M.; Alton, L. R.

    1973-01-01

    The possible ways by which NASA payload costs might be reduced in the future were studied. The major historical reasons for payload costs being as they were, and if there are technologies (hard and soft), or criteria for technology advances, that could significantly reduce total costs of payloads were examined. Payload costs are placed in historical context. Some historical cost breakdowns for unmanned NASA payloads are presented to suggest where future cost reductions could be most significant. Space programs of NOAA, DoD and COMSAT are then examined to ascertain if payload reductions have been brought about by the operational (as opposed to developmental) nature of such programs, economies of scale, the ability to rely on previously developed technology, or by differing management structures and attitudes. The potential impact was investigated of NASA aircraft-type management on spacecraft program costs, and some examples relating previous costs associated with aircraft costs on the one hand and manned and unmanned costs on the other are included.

  13. Evolution of Government and Industrial Partnerships to Open the Space Frontier

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    If the logical extension of the current exploration program is to develop self-sustaining settlements on the Moon and Mars over the next few centuries, then there is a path that takes civilization from its current one planet existence to a multi-world future. By considering the far term goal of space settlements as a desired endpoint and using the current state as a starting point, the policy drivers and potential pathways to the goal of sustainable space settlements can be explored. This paper describes a three-phased evolution of government and industrial partnerships from current day relationships to a time when there are sustainable settlements in space. Phase I details the current state government-led exploration while Phase III describes a desired endpoint of self-sufficient settlements in space. Phase II is an important transition phase, which acts as a bridge between now and the future. This paper discusses the critical evolution that must take place in two key areas to ensure a thriving future in space; space transportation and the right to use space property and resources. This paper focuses on the enabling role of government necessary to achieve United States (U.S.) goals for space exploration and open the frontier.

  14. CSTI Earth-to-orbit propulsion research and technology program overview

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.

    1993-01-01

    NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.

  15. Program manual for ASTOP, an Arbitrary space trajectory optimization program

    NASA Technical Reports Server (NTRS)

    Horsewood, J. L.

    1974-01-01

    The ASTOP program (an Arbitrary Space Trajectory Optimization Program) designed to generate optimum low-thrust trajectories in an N-body field while satisfying selected hardware and operational constraints is presented. The trajectory is divided into a number of segments or arcs over which the control is held constant. This constant control over each arc is optimized using a parameter optimization scheme based on gradient techniques. A modified Encke formulation of the equations of motion is employed. The program provides a wide range of constraint, end conditions, and performance index options. The basic approach is conducive to future expansion of features such as the incorporation of new constraints and the addition of new end conditions.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2007-02-09

    The STS-120 patch reflects the role of the mission in the future of the space program. The shuttle payload bay carries Node 2, Harmony, the doorway to the future international laboratory elements on the International Space Station (ISS). The star on the left represents the ISS; the red colored points represent the current location of the P6 solar array, furled and awaiting relocation when the crew arrives. During the mission, the crew will move P6 to its final home at the end of the port truss. The gold points represent the P6 solar array in its new location, unfurled and producing power for science and life support. On the right, the moon and Mars can be seen representing the future of NASA. The constellation Orion rises in the background, symbolizing NASA's new exploration vehicle. Through all, the shuttle rises up and away, leading the way to the future.

  17. Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1995-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.

  18. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    NASA Technical Reports Server (NTRS)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed.

  19. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  20. Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs

    NASA Astrophysics Data System (ADS)

    Kolb, I. L.; Curran, D. G. T.; Lee, C. S.

    2004-06-01

    The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.

  1. Status of the NASA Space Power Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Holcomb, L.

    1977-01-01

    The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.

  2. Cost and Business Analysis Module (CABAM). Revision A

    NASA Technical Reports Server (NTRS)

    Lee, Michael Hosung

    1997-01-01

    In the recent couple of decades, due to international competition, the US launchers lost a considerable amount of market share in the international space launch industry'. Increased international competition has continuously affected the US dominance to eventually place great pressure on future US space launch programs. To compete for future payload and passenger delivery markets, new launch vehicles must first be capable of reliably reaching a number of desired orbital destinations with customer-desired payload capacities. However, the ultimate success of a new launch vehicle program will depend on the launch price it is capable of offering it's customers. Extremely aggressive pricing strategies will be required for a new domestic launch service to compete with low-price international launchers. Low launch prices, then, naturally require a tight budget for the launch program economy. Therefore, budget constraints established by low-pricing requirements eventually place pressure on new launch vehicles to have unprecedentedly low Life Cycle Costs (LCC's).

  3. Control of flexible structures

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1985-01-01

    The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.

  4. Materials processing in space, 1980 science planning document. [crystal growth, containerless processing, solidification, bioprocessing, and ultrahigh vacuum processes

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.

  5. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  6. The issue is leadership. [Space Station program

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    Four NASA Phase B centers (NASA-Johnson, NASA-Marshall, NASA-Goddard, and NASA-Lewis) are responsible for construction, assembly, servicing, habitat, and other particular tasks and functions of the Space Station. The project has been joined by the aerospace programs of Canada, Japan, and the European Space Agency, ensuring technological and financial support, and cooperative use by the participants. Some of the future uses of the Space Station include biomedical research and applications; experiments in solar-terrestrial physics and astronomy; building, maintenance, and launching of space instruments and planetary missions; manufacturing and processing of materials that call for the conditions of microgravity and weightlessness; supporting communication operations; and improving earth and atmospheric observations. The political significance of the Space Station as a symbol of leadership and of friendly cooperation is noted.

  7. NASA lithium cell applications

    NASA Technical Reports Server (NTRS)

    Juvinall, G. L.

    1978-01-01

    The advantages of lithium systems are described and a general summary of their application in present and future NASA programs is presented. Benefits of the lithium systems include an increased payload weight and an increased cost effectiveness to the customer. This also allows for more flexibility in the design of future space transportation systems.

  8. Panel discussion: The future of IR astronomy

    NASA Technical Reports Server (NTRS)

    Caroff, Lawrence J.

    1995-01-01

    A panel discussion was held on the future of IR astronomy. The chairman gave a brief introduction to current planned programs for NASA and other space agencies, followed by short contributions from the six panel members on a variety of special topics. After that, a short question and answer session was held.

  9. The Space Shuttle - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1974-01-01

    The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.

  10. Commerce Lab: Mission analysis and payload integration study

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.

  11. NASA Space Biology Research Associate Program for the 21st Century

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1999-01-01

    The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective manner. The program began on June 1, 1980 with funding to support several Research Associates each year. 113 awards, plus 1 from an independently supported minority component were made for the Research Associates program. The program was changed from a one year award with a possibility for renewal to a two year award. In 1999, the decision was made by NASA to discontinue the program due to development of new priorities for funding. This grant was discontinued because of the move of the Program Director to a new institution; a new grant was provided to that new institution to allow completion of the training of the remaining 2 research associates in 1999. After 1999, the program will be discontinued.

  12. Future In-Space Operations (FISO): A Working Group and Community Engagement

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Lester, Dan

    2013-01-01

    Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.

  13. Small Spacecraft Technology Initiative Education Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  14. Introduction of the Space Shuttle Columbia Accident, Investigation Details, Findings and Crew Survival Investigation Report

    NASA Technical Reports Server (NTRS)

    Chandler, Michael

    2010-01-01

    As the Space Shuttle Program comes to an end, it is important that the lessons learned from the Columbia accident be captured and understood by those who will be developing future aerospace programs and supporting current programs. Aeromedical lessons learned from the Accident were presented at AsMA in 2005. This Panel will update that information, closeout the lessons learned, provide additional information on the accident and provide suggestions for the future. To set the stage, an overview of the accident is required. The Space Shuttle Columbia was returning to Earth with a crew of seven astronauts on 1Feb, 2003. It disintegrated along a track extending from California to Louisiana and observers along part of the track filmed the breakup of Columbia. Debris was recovered from Littlefield, Texas to Fort Polk, Louisiana, along a 567 statute mile track; the largest ever recorded debris field. The Columbia Accident Investigation Board (CAIB) concluded its investigation in August 2003, and released their findings in a report published in February 2004. NASA recognized the importance of capturing the lessons learned from the loss of Columbia and her crew and the Space Shuttle Program managers commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT) to accomplish this. Their task was to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival, including the design features, equipment, training and procedures intended to protect the crew. NASA released the Columbia Crew Survival Investigation Report in December 2008. Key personnel have been assembled to give you an overview of the Space Shuttle Columbia accident, the medical response, the medico-legal issues, the SCSIIT findings and recommendations and future NASA flight surgeon spacecraft accident response training. Educational Objectives: Set the stage for the Panel to address the investigation, medico-legal issues, the Spacecraft Crew Survival Integrated Investigation Team report and training for accident response.

  15. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  16. Astronautics in past and future

    NASA Technical Reports Server (NTRS)

    Stuhlinger, E.

    1974-01-01

    The contributions of Oberth in the development of rocket technology as a basis for the conduction of manned and unmanned space flights are considered, giving attention also to other rocket pioneers, including Ziolkowski, Ganswindt, von Hoefft, and Goddard. Early stages in rocket development in Germany, Russia, and the U.S. are examined. The launching of Sputnik I in October 1957 was the beginning of a new era in the history of mankind. The start of this new era of space exploration and space utilization comes at a time when the limited resources of the earth begin to impose severe restrictions upon the continuing growth of human technology and civilization. It is predicted that the new space technology will provide the means for overcoming these restrictions. Future space programs, which are partly based on the development of the space shuttle, are discussed, taking into account the international aspects of the new plans for the utilization and the study of space.

  17. Workshop on Exercise Prescription for Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Harris, Bernard A., Jr. (Editor); Stewart, Donald F. (Editor)

    1989-01-01

    The National Aeronautics and Space Administration has a dedicated history of ensuring human safety and productivity in flight. Working and living in space long term represents the challenge of the future. Our concern is in determining the effects on the human body of living in space. Space flight provides a powerful stimulus for adaptation, such as cardiovascular and musculoskeletal deconditioning. Extended-duration space flight will influence a great many systems in the human body. We must understand the process by which this adaptation occurs. The NASA is agressively involved in developing programs which will act as a foundation for this new field of space medicine. The hallmark of these programs deals with prevention of deconditioning, currently referred to as countermeasures to zero g. Exercise appears to be most effective in preventing the cardiovascular and musculoskeletal degradation of microgravity.

  18. KSC-2013-2972

    NASA Image and Video Library

    2013-06-28

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Bill Moore, Delaware North Parks and Resorts chief operating officer speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  19. KSC-2013-2976

    NASA Image and Video Library

    2013-06-28

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Andrea Farmer, Delaware North Parks and Resorts manager of Public Relations speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  20. KSC-2013-2977

    NASA Image and Video Library

    2013-06-28

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center Visitor Complex in Florida, Bill Moore, Delaware North Parks and Resorts chief operating officer speaks to news media representatives during the opening of the 90,000-square-foot "Space Shuttle Atlantis" facility. The new $100 million facility includes interactive exhibits that tell the story of the 30-year Space Shuttle Program and highlight the future of space exploration. The "Space Shuttle Atlantis" exhibit formally opened to the public on June 29, 2013.Photo credit: NASA/Jim Grossmann

  1. KSC-08pd1095

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, the number of new equipment cabinets increases as workers put the elements together. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd1088

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- A near-empty Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center is ready for the installation of racks of equipment. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd1092

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, a worker holds on to a cabinet being put together to hold equipment that will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd1089

    NASA Image and Video Library

    2008-05-01

    CAPE CANAVERAL, Fla. -- In Firing Room No. 1 in the Launch Control Center at NASA's Kennedy Space Center, panels stretch across the floor in preparation for erecting equipment racks. The firing room will support the future Ares rocket launches as part of the Constellation Program. Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle's solid rocket booster, for the first stage. Ares will be launched from Pad 39B, which is being reconfigured from supporting space shuttle launches. The Launch Control Center firing rooms face the launch pads. Photo credit: NASA/Kim Shiflett

  5. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  6. Design and operations technologies - Integrating the pieces. [for future space systems design

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.

    1979-01-01

    As major elements of life-cycle costs (LCC) having critical impacts on the initiation and utilization of future space programs, the areas of vehicle design and operations are reviewed in order to identify technology requirements. Common to both areas is the requirement for efficient integration of broad, complex systems. Operations technologies focus on the extension of space-based capabilities and cost reduction through the combination of innovative design, low-maintenance hardware, and increased manpower productivity. Design technologies focus on computer-aided techniques which increase productivity while maintaining a high degree of flexibility which enhances creativity and permits graceful design changes.

  7. Survey of the US materials processing and manufacturing in space program

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  8. Space science at NASA - Retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Rosendhal, Jeffrey D.

    1988-01-01

    Following a brief overview of past accomplishments in space science, a status report is given concerning progress toward recovering from the Challenger accident and a number of trends are described which are likely to have a major influence on the future of the NASA Space Science program. Key changes in process include a trend toward a program centered on the use of large, long-lived facilities, the emergence of strong space capabilities outside the U.S., and steps being taken toward the diversification of NASA's launch capability. A number of recent planning activities are also discussed. Major considerations which will specifically need to be taken into account in NASA's prgram planning include the need for provision of a spectrum of flight activities and the need to recognize likely resource limitations and to do more realistic program planning.

  9. KSC-2010-5649

    NASA Image and Video Library

    2010-11-11

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Launch Pad 39B is seen from Launch Pad 39A. Pad B is morphing to support a commercial space program with multiple customers, multiple providers and multiple systems that will take Americans to the International Space Station and other low Earth orbit destinations. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jack Pfaller

  10. KSC-2010-4437

    NASA Image and Video Library

    2010-08-20

    CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett

  11. KSC-2010-4436

    NASA Image and Video Library

    2010-08-20

    CAPE CANAVERAL, Fla. -- The interior of NASA's new mobile launcher, or ML, support structure is outfitted with solid steel flooring, lights, air conditioning, electrical boxes and sprinkler piping at NASA's Kennedy Space Center in Florida. The 355-foot-tall structure will support NASA's future human spaceflight program. The base of the launcher is lighter than space shuttle mobile launcher platforms so the crawler-transporter can pick up the heavier load of the tower and a taller rocket. The next step will be to add ground support equipment, such as umbilicals and access arms, for future rocket launches. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Kim Shiflett

  12. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  13. A Bootstrap Approach to an Affordable Exploration Program

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2011-01-01

    This paper examines the potential to build an affordable sustainable exploration program by adopting an approach that requires investing in technologies that can be used to build a space infrastructure from very modest initial capabilities. Human exploration has had a history of flight programs that have high development and operational costs. Since Apollo, human exploration has had very constrained budgets and they are expected be constrained in the future. Due to their high operations costs it becomes necessary to consider retiring established space facilities in order to move on to the next exploration challenge. This practice may save cost in the near term but it does so by sacrificing part of the program s future architecture. Human exploration also has a history of sacrificing fully functional flight hardware to achieve mission objectives. An affordable exploration program cannot be built when it involves billions of dollars of discarded space flight hardware, instead, the program must emphasize preserving its high value space assets and building a suitable permanent infrastructure. Further this infrastructure must reduce operational and logistics cost. The paper examines the importance of achieving a high level of logistics independence by minimizing resource consumption, minimizing the dependency on external logistics, and maximizing the utility of resources available. The approach involves the development and deployment of a core suite of technologies that have minimum initial needs yet are able expand upon initial capability in an incremental bootstrap fashion. The bootstrap approach incrementally creates an infrastructure that grows and becomes self sustaining and eventually begins producing the energy, products and consumable propellants that support human exploration. The bootstrap technologies involve new methods of delivering and manipulating energy and materials. These technologies will exploit the space environment, minimize dependencies, and minimize the need for imported resources. They will provide the widest range of utility in a resource scarce environment and pave the way to an affordable exploration program.

  14. Research on International Space Station - Building a Partnership for the Future

    NASA Technical Reports Server (NTRS)

    Gindl, Heinz; Scheimann, Jens; Shirakawa, Masaki; Suvorov, Vadim; Uri, John J.

    2004-01-01

    As its name implies, the International Space Station is a platform where the research programs of 16 partner nations are conducted. While each partner pursues its own research priorities, cooperation and coordination of the various national and agency research programs occurs at multiple levels, from strategic through tactical planning to experiment operations. Since 2000, a significant number of experiments have been carried out in the Russian ISS utilization program, which consists of the Russian national program of fundamental and applied research in 11 research areas and international cooperative programs and contract activities. The US research program began with simple payloads in 2000 and was significantly expanded with the addition of the US Laboratory module Destiny in 2001, and its outfitting with seven research racks to date. The Canadian Space Agency (CSA), the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) have made use of international cooperative arrangements with both the US and Russia to implement a variety of investigations in diverse research areas, and in the case of ESA included the flights of crewmembers to ISS as part of Soyuz Science Missions. In the future, ESA and JAXA will add their own research modules, Columbus and Kibo, respectively, to expand research capabilities both inside and outside ISS. In the aftermath of the Columbia accident and the temporary grounding of the Space Shuttle fleet, all ISS logistics have relied on Russian Progress and Sopz vehicles. The Russian national program has continued as before the Shuttle accident, as have international cooperative programs and contract activities, both during long-duration expeditions and visiting taxi missions. In several instances, Russian international cooperative activities with JAXA and ESA have also involved the use of US facilities and crewmembers in successful truly multilateral efforts. The US research program was rapidly refocused after the Shuttle accident to rely on greatly reduced upmass, and for the first time in the ISS program, US research hardware was launched on Progress vehicles and returned with crews on Soyuz spacecraft. It is hoped that these small but significant steps in international cooperation will lead to even greater endeavors once the remaining research modules are added to ISS.

  15. Launch Control Systems: Moving Towards a Scalable, Universal Platform for Future Space Endeavors

    NASA Technical Reports Server (NTRS)

    Sun, Jonathan

    2011-01-01

    The redirection of NASA away from the Constellation program calls for heavy reliance on commercial launch vehicles for the near future in order to reduce costs and shift focus to research and long term space exploration. To support them, NASA will renovate Kennedy Space Center's launch facilities and make them available for commercial use. However, NASA's current launch software is deeply connected with the now-retired Space Shuttle and is otherwise not massively compatible. Therefore, a new Launch Control System must be designed that is adaptable to a variety of different launch protocols and vehicles. This paper exposits some of the features and advantages of the new system both from the perspective of the software developers and the launch engineers.

  16. KSC-2010-4758

    NASA Image and Video Library

    2010-09-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay large wooden mats on top of sand and reinforcing steel to protect the concrete under the rotating service structure (RSS) of Launch Pad 39B during deconstruction. In the background, space shuttle Discovery stands tall on Launch Pad 39A, awaiting its STS-133 mission to the International Space Station. Starting in 2009, the structure at Pad B was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann

  17. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    USGS Publications Warehouse

    Allner, Matthew; McKay, C.; Coe, L.; Rask, Jon; Paradise, Jim; Wynne, J.J.

    2008-01-01

    Introduction: NASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers. Purpose: This paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs. Methods: The investigation further provides a detailed overview of the structure of these two NASA education outreach programs, while providing information regarding selection criteria and program developments over time. Results: Since its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  18. The U.S. Commercial Space Launch Program and the Department of Defense Dilemma

    NASA Technical Reports Server (NTRS)

    Clapp, William G.

    1995-01-01

    The U.S. space launch program no longer dominates the world and is now playing 'catch-up' with the world's first commercial launch company, Arianespace. A healthy U.S. commercial launch program is essential and will assure continued low-cost military access to space. The effort to regain the lead in commercial space launch market has been hindered by declining Department of Defense budgets. President Clinton's space policy prohibits expensive new launch vehicles and limits the Department of Defense to low cost upgrades of existing launch vehicles. The U.S. government created the space sector and must ensure a smooth and effective split from the emerging commercial space program in order to regain world dominance. Until U.S. government and commercial ties are severed, the Department of Defense must consider commercial space launch interests when making military decisions. Ariane provides an excellent 'bench mark' for the U.S. to base future launch vehicle upgrades. Ariane advantages were identified and low-cost recommendations have been made. If the U.S. sets the target of first equaling and then surpassing Ariane by incorporating these recommendations, then the U.S. could once again dominate the world commercial launch market and ensure low cost military access to space.

  19. Integrated Technology Plan for the Civil Space Program, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of the Integrated Technology Plan (ITP) is to serve as a strategic plan for the OAST space research and technology (R&T) program, and as a strategic planning framework for other NASA and national participants in advocating and conducting technology developments that support future U.S. civil space missions. The ITP begins with a discussion of the national policy and NASA organization which establishes the overall framework for civil space R&T planning. The second chapter provides a top-level review of the potential users of civil space R&T, their strategic mission plans, and the technologies they have identified as needed to achieve those plans. The overall methodology used to develop a civil space technology strategy is discussed. The technical details of the 1991 strategic plan are described, ending with a review of civil space R&T priorities. The fourth chapter describes how the strategic plan is annually translated into the OAST Space R&T Program, with a summary of the fiscal year 1992 program. The ITP concludes with a discussion of requirements for technology development coordination and strategies for facilitating the transfer of civil space technology to the private sector. Several appendices also are attached that provide further information regarding budget implications of the strategic plan, organizational roles, and other topics.

  20. KSC-2013-3989

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on future agency programs by Billy Stover, a NASA Commercial Crew Program Safety engineer. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  1. NASA Deputy Administrator Tours Sierra Nevada Space Systems' Dre

    NASA Image and Video Library

    2011-02-05

    Director of Advanced Programs, Sierra Nevada Corporation, Jim Voss talks during a press conference with Sierra Nevada's Dream Chaser spacecraft in the background on Saturday, Feb. 5, 2011, at the University of Colorado at Boulder. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  2. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  3. Continuation of research into language concepts for the mission support environment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A concept for a more intuitive and graphically based Computation (Comp) Builder was developed. The Graphical Comp Builder Prototype was developed, which is an X Window based graphical tool that allows the user to build Comps using graphical symbols. Investigation was conducted to determine the availability and suitability of the Ada programming language for the development of future control center type software. The Space Station Freedom Project identified Ada as the desirable programming language for the development of Space Station Control Center software systems.

  4. Space station evolution: Planning for the future

    NASA Technical Reports Server (NTRS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  5. Space station evolution: Planning for the future

    NASA Astrophysics Data System (ADS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  6. NASA's Ultraviolet Astrophysics Branch: Present and future detector program

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1992-01-01

    The various concepts in ultraviolet detector technology currently being funded by NASA's Astrophysics Division to carry out observations in the 100 to 3000 A region are reviewed. In order to match the science objectives of future space missions with new observational techniques, critical detector technology needs in the ultraviolet regime have been identified. The attempt by NASA's Astrophysics Division Advanced Programs Branch to formulate an integrated detector technology plan as part of the ongoing 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century is described.

  7. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  8. The NASA Electric Propulsion Program

    NASA Technical Reports Server (NTRS)

    Callahan, Lisa Wood; Curran, Francis M.

    1996-01-01

    Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.

  9. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long-term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  10. A program for advancing the technology of space concentrators

    NASA Technical Reports Server (NTRS)

    Naujokas, Gerald J.; Savino, Joseph M.

    1989-01-01

    In 1985, the NASA Lewis Research Center formed a project, the Advanced Solar Dynamics Power Systems Project, for the purpose of advancing the technology of Solar Dynamic Power Systems for space applications beyond 2000. Since then, technology development activities have been initiated for the major components and subsystems such as the concentrator, heat receiver and engine, and radiator. Described here is a program for developing long lived (10 years or more), lighter weight, and more reflective space solar concentrators than is presently possible. The program is progressing along two parallel paths: one is concentrator concept development and the other is the resolution of those critical technology issues that will lead to durable, highly specular, and lightweight reflector elements. Outlined are the specific objectives, long term goals, approach, planned accomplishments for the future, and the present status of the various program elements.

  11. The NASA Firefighter's Breathing System Program: A Status Report

    NASA Technical Reports Server (NTRS)

    McLaughlan, Pat B.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), through its Technology Utilization Program, has been making its advanced technology developments available to the public. This has coincided in recent years with a growing demand within the fire service for improved protective equipment. A better breathing system for firefighters was one of the more immediate needs identified by the firefighting organizations. The Johnson Space Center (JSC), based upon their experience in providing life support systems for space flight, was subsequently requested to determine the feasibility of providing an improved breathing system for firefighters. Such a system was determined to be well within the current state of the art, and the Center is well into a development program to provide design verification of this improved protective' equipment. This report - outlines the overall objectives of this program, progress to date, and future planned activities.

  12. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  13. Army Science Board Ad Hoc Study Group Report on Human Issues.

    DTIC Science & Technology

    1980-03-01

    top level attention on human issues research and to formulate human issues programs to meet future needs. A concept paper was presented to the Army...the Army (Operations Research), 10 spaces were allo- cated to provide in-house research/study capability under the ADCSPER. These 10 spaces should be...combined with the present three- space study and analysis section, thus providing a 13- space group which could support the PPRC, APSC, and DCSPER. In

  14. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  15. Optimized Autonomous Space - In-situ Sensorweb: A new Tool for Monitoring Restless Volcanoes

    NASA Astrophysics Data System (ADS)

    Lahusen, R. G.; Kedar, S.; Song, W.; Chien, S.; Shirazi, B.; Davies, A.; Tran, D.; Pieri, D.

    2007-12-01

    An interagency team of earth scientists, space scientists and computer scientists are collaborating to develop a real-time monitoring system optimized for rapid deployment at restless volcanoes. The primary goals of this Optimized Autonomous Space In-situ Sensorweb (OASIS) are: 1) integrate complementary space and in-situ (ground-based) elements into an interactive, autonomous sensorweb; 2) advance sensorweb power and communication resource management technology; and 3) enable scalability for seamless infusion of future space and in-situ assets into the sensorweb. A prototype system will be deployed on Mount St. Helens by December 2009. Each node will include GPS, seismic, infrasonic and lightning (for ash plume detection) sensors plus autonomous decision making capabilities and interaction with EO-1 multi-spectral satellite. This three year project is jointly funded by NASA AIST program and USGS Volcano Hazards Program. Work has begun with a rigorous multi-disciplinary discussion and resulted in a system requirements document aimed to guide the design of OASIS and future networks and to achieve the project's stated goals. In this presentation we will highlight the key OASIS system requirements, their rationale and the physical and technical challenges they pose. Preliminary design decisions will be presented.

  16. Using the ISS as a Testbed to Prepare for the Next Generation of Space-Based Telescopes

    NASA Technical Reports Server (NTRS)

    Ess, Kim; Thronson, Harley; Boyles, Mark; Sparks, William; Postman, Marc; Carpenter, Kenneth

    2012-01-01

    The ISS provides a unique opportunity to develop the technologies and operational capabilities necessary to assemble future large space telescopes that may be used to investigate planetary systems around neighboring stars. Assembling telescopes in space is a paradigm-shifting approach to space astronomy. Using the ISS as a testbed will reduce the technical risks of implementing this major scientific facility, such as laser metrology and wavefront sensing and control (WFSC). The Optical Testbed and Integration on ISS eXperiment (OpTIIX) will demonstrate the robotic assembly of major components, including the primary and secondary mirrors, to mechanical tolerances using existing ISS infrastructure, and the alignment of the optical elements to a diffraction-limited optical system in space. Assembling the optical system and removing and replacing components via existing ISS capabilities, such as the Special Purpose Dexterous Manipulator (SPDM) or the ISS flight crew, allows for future experimentation and repair, if necessary. First flight on ISS for OpTIIX, a small 1.5 meter optical telescope, is planned for 2015. In addition to demonstration of key risk-retiring technologies, the OpTIIX program includes a public outreach program to show the broad value of ISS utilization.

  17. Spain: Success story in space

    NASA Astrophysics Data System (ADS)

    Longdon, Norman

    From the early 1960's, European governments were aware that they had to take part in the exploration, and potential exploitation, of space, or be left behind in a field of high-technology that had far-reaching possibilities. It was also realized that financial and manpower constraints would limit the extent to which individual nations could carry out their own national programs. They, therefor, joined forces in two organizations: the European Space Research Organization (ESRO) and the European Launcher Development Organization (ELDO). By 1975, when the potential of space development had been more fully appreciated, the two organizations were merged into the Europeans Space Agency (ESA) of which Spain was a founding member. ESA looks after the interest of 13 member states, one associated member state (Finland), and one cooperating state (Canada) in the peaceful uses of space. Its programs center around a mandatory core of technological research and space science to which member states contribute on the basis of their Gross National Product. Spain in 1992 contributes 6.46% to this mandatory program budget. The member states then have the chance to join optional programs that include telecommunications, observation of the earth and its environment, space transportation systems, microgravity research, and participation in the European contribution to the International Space Station Freedom. Each government decides whether it is in its interest to join a particular optional program, and the percentage that it wishes to contribute to the budget. Although in the early days of ESA, Spain participated in only a few optional programs, today Spain makes a significant contribution to nearly all of ESA's optional programs. This document presents Spain's contributions to particular ESA Programs and discusses Spain's future involvement in ESA.

  18. NASA earth science and applications division: The program and plans for FY 1988-1989-1990

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Described here are the Division's research goals, priorities and emphases for the next several years and an outline of longer term plans. Included are highlights of recent accomplishments, current activities in FY 1988, research emphases in FY 1989, and longer term future plans. Data and information systems, the Geodynamics Program, the Land Processes Program, the Oceanic Processes Program, the Atmospheric Dynamics and Radiation Program, the Atmospheric Chemistry Program, and space flight programs are among the topic covered.

  19. Making Space for Preservice Teacher Agency through Connected Learning in Preservice Educational Technology Courses

    ERIC Educational Resources Information Center

    Lohnes Watulak, Sarah

    2018-01-01

    Preparing future teachers to integrate technology into their teaching in ways that support transformative student learning is a priority for teacher preparation programs in the United States. However, technology instruction often focuses on functional technology skills, leading to ineffective future technology integration. This study examined two…

  20. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda

    2012-01-01

    Among 2011's many accomplishments, we safely retired the Space Shuttle Program after 30 incredible years; completed the International Space Station and are taking steps to enable it to reach its full potential as a multi-purpose laboratory; and helped to expand scientific knowledge with missions like Aquarius, GRAIL, and the Mars Science Laboratory. Responding to national budget challenges, we are prioritizing critical capabilities and divesting ourselves of assets no longer needed for NASA's future exploration programs. Since these facilities do not have to be maintained or demolished, the government saves money. At the same time, our commercial partners save money because they do not have to build new facilities. It is a win-win for everyone. Moving forward, 2012 will be even more historically significant as we celebrate the 50th Anniversary of Kennedy Space Center. In the coming year, KSC will facilitate commercial transportation to low-Earth orbit and support the evolution of the Space Launch System and Orion crew vehicle as they ready for exploration missions, which will shape how human beings view the universe. While NASA's Vision is to lead scientific and technological advances in aeronautics and space for a Nation on the frontier of discovery KSC's vision is to be the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC's Mission is to safely manage, develop, integrate, and sustain space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers.

  1. Nuclear space power safety and facility guidelines study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlman, W.F.

    1995-09-11

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system ismore » planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.« less

  2. NASA's Integrated Space Transportation Plan — 3 rd generation reusable launch vehicle technology update

    NASA Astrophysics Data System (ADS)

    Cook, Stephen; Hueter, Uwe

    2003-08-01

    NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.

  3. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.

    2013-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

  4. The space telescope: A study of NASA, science, technology, and politics

    NASA Technical Reports Server (NTRS)

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  5. Space exploration and colonization - Towards a space faring society

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  6. P91-1 ARGOS spacecraft thermal control

    NASA Astrophysics Data System (ADS)

    Sadunas, Jonas; Baginski, Ben; McCarthy, Daniel

    1993-07-01

    The P91-1, or ARGOS, is a Department of Defense funded (DOD) Space Test Program (STP) satellite managed by the Space and Missile Systems Center Space and Small Launch Vehicle Programs Office (SMC/CUL). Rockwell International Space Systems Division is the space vehicle prime contractor. The P91-1 mission is to fly a suite of eight experiments in a 450 nautical mile sun-synchronous orbit dedicated to three dimensional UV imaging of the ionosphere, X-ray source mapping, navigation, space debris characterization, performance characterization of high temperature super conductivity RF devices, and on orbit demonstration of an electrical propulsion system. The primary purpose of this paper is to acquaint the thermal control community, and potential future follow on mission users, with the thermal control characteristics of the spacecraft, experiment/SV thermal integration aspects, and test verification plans.

  7. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    NASA Technical Reports Server (NTRS)

    Bejmuk, Bohdan I.; Williams, Larry

    1992-01-01

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

  8. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    NASA Astrophysics Data System (ADS)

    Bejmuk, Bohdan I.; Williams, Larry

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations. The future success of NASA space programs and Rockwell hinges upon the ability to adopt new, more efficient and effective work processes. Efficiency, proficiency, cost effectiveness, and teamwork are a necessity for economic survival. Continuous improvement initiatives like the CEE are, and will continue to be, vehicles by which the road can be traveled with a vision to the future.

  9. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  10. Demographics of Investigators Involved in OSSA-Funded Research

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Konkel, Ronald; Habegger, Jay; Byerly, Radford, Jr.

    1991-01-01

    The birth of the U.S. civil space program and the subsequent, dramatic growth in the ranks of the space science research population occurred in the 1950s and 1960s'. The large, post- Sputnik/ Apollo buildup in space program manpower is now approximately one career-lifetime in the past. It is therefore natural to anticipate that a large fraction of the space program engineers, scientists, and managers who pioneered the early exploration of space are approaching retirement. Such a "retirement wave" bodes both a loss of manpower and, more fundamentally, a loss of experience from the civil-space manpower base. Such losses could play a critical role constraining in NASA's ability to expand or maintain its technical capabilities. If this indeed applies to the NASA space science research population, then the potential for problems is exacerbated by the anticipated growth in flight rates, data volume, and data-set diversity which will accompany the planned expansion in the OSSA science effort during the 1990s and 2000s. The purpose of this study was to describe the OSSA PI/Co-I population and to determine the degree to which the OSSA space science investigator population faces a retirement wave, and to estimate the future population of PIs in the 1990-2010 era. To conduct such a study, we investigated the present demographics of the PI and Co-1 population contained in the NASA/OSSA Announcement of Opportunity (AO) mailing list. PIs represent the "leadership" class of the OSSA scientific researcher population, and Co-Is represent one important, oncoming component of the "replacement" generation. Using the PI population data, we then make projection estimates of the future PI population from 1991 through 2010, under various NASA growth/PI demand scenarios.

  11. NASA Workshop on Biological Adaptation

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily (Editor); Tischler, Marc (Editor)

    1988-01-01

    A workshop was convened to review the current program in Space Biology Biological Adaptation Research and its objectives and to identify future research directions. Two research areas emerged from these deliberations: gravitational effects on structures and biomineralization and gravity affected regulatory mechanisms. The participants also recommended that research concentrate on rapidly growing animals, since gravity effects may be more pronounced during growth and development. Both research areas were defined and future research directions were identified. The recommendations of the workshop will assist the Life Sciences Division of NASA in it assessment and long-range planning of these areas of space biology. Equally important, the workshop was intended to stimulate thought and research among those attending so that they would, in turn, interest, excite, and involve other members of the academic community in research efforts relevant to these programs.

  12. Software Construction and Analysis Tools for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.

  13. Space commerce - Preparing for the next century

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1991-01-01

    The role of NASA in space commerce is discussed in terms of providing direct assistance to the private sector and in terms of the most suitable industrial areas for such support. The primary mechanism for such support is the program of Centers for the Commercial Development of Space (CCDS) which selects industrial high-technology projects to help make them viable. The research spans such fields as remote sensing, crop forecasting, and microgravity materials processing. The collaboration of NASA and private industry is discussed in terms of sounding-rocket projects, the Commercial Experiment Transporter, and academic/industrial programs designed to generate enthusiasm for commercial space research. The future of such research is expected to focus on CCDSs for microgravity-developed products, commercial infrastructure, SEI, and commercial use of the Space Station Freedom.

  14. KSC-2012-4598

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. - In the Operations and Checkout Building at the Kennedy Space Center in Florida, NASA Administrator Charles Bolden, center, addresses news media in front of the Orion EFT-1 spacecraft. Also participating are Jules Schneider, senior manager of Project Engineering for the Lockheed Martin Orion Program at Kennedy, left, and Scott Wilson, NASA's manager of Production Operations for the Orion Program. Bolden took a few dozen members of the news media on a tour of the space agency's Kennedy Space Center and adjacent Cape Canaveral Air Force Station on Aug. 23, 2012 to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. For more information, visit: http://www.nasa.gov/centers/kennedy/news/kennedy-bolden-tour.html Photo credit: NASA/Kim Shiflett

  15. Human Research Program Human Health Countermeasures Element Nutrition Risk Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Bistrian, Bruce

    2009-01-01

    The Nutrition Risk Standing Review Panel (SRP) reviewed and discussed the specific gaps and tasks for the Human Health Countermeasures (HHC) Element related to nutrition identified in the Human Research Program (HRP) Integrated Research Plan. There was general consensus that the described gaps and proposed tasks were critical to future NASA mission success. The SRP acknowledged the high scientific quality of the work currently being undertaken by the Nutritional Biochemistry group under the direction of Dr. Scott Smith. In review of the entire HRP, four new gaps were identified that complement the Element's existing research activities. Given the limitations of ground-based analogs for many of the unique physiological and metabolic alterations in space, future studies are needed to quantify nutritional factors that change during actual space flight. In addition, future tasks should seek to better evaluate the time course of physiological and metabolic alterations during flight to better predict alterations during longer duration missions. Finally, given the recent data suggesting a potential role for increased inflammatory responses during space flight, the role of inflammation needs to be explored in detail, including the development of potential countermeasures and new ground based analogs, if this possibility is confirmed.

  16. NASA's Spaceliner Investment Area Technology Activities

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.

  17. NASA Deputy Administrator Tours Sierra Nevada Space Systems

    NASA Image and Video Library

    2011-02-05

    NASA Deputy Administrator Lori Garver speaks at Sierra Nevada Space Systems, on Saturday, Feb. 5, 2011, in Louisville, Colo. Sierra Nevada's Dream Chaser spacecraft is under development with support from NASA's Commercial Crew Development Program to provide crew transportation to and from low Earth orbit. NASA is helping private companies develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  18. Cryogenic Selective Surfaces: A Phase 2 NIAC Project: Mid-Term Continuation Review

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concepts (NIAC) program has been funding work at KSC (Kennedy Space Center) on a new coating that should allow cryogenic commodities to be stored in deep space. Recently a mid-term review of this work was given. I am requesting that this presentation be cleared for release so that the material can be presented publicly at an upcoming FISO (Future in Space) telecom.

  19. Design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Crouse, K. R.; Wechsler, D. B.

    1987-01-01

    The benefits of design knowledge availability are identifiable and pervasive. The implementation of design knowledge capture and storage using current technology increases the probability for success, while providing for a degree of access compatibility with future applications. The space station design definition should be expanded to include design knowledge. Design knowledge should be captured. A critical timing relationship exists between the space station development program, and the implementation of this project.

  20. KSC-2010-5660

    NASA Image and Video Library

    2010-11-12

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, two rainbows appear between Launch Pad 39B and Launch Pad 39A. Pad B, seen here, is morphing to support a commercial space program with multiple customers, multiple providers and multiple systems that will take Americans to the International Space Station and other low Earth orbit destinations. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Troy Cryder

  1. Operations analysis (study 2.6). Volume 4: Computer specification; logistics of orbiting vehicle servicing (LOVES)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The logistics of orbital vehicle servicing computer specifications was developed and a number of alternatives to improve utilization of the space shuttle and the tug were investigated. Preliminary results indicate that space servicing offers a potential for reducing future operational and program costs over ground refurbishment of satellites. A computer code which could be developed to simulate space servicing is presented.

  2. Defense Advanced Research Projects Agency Technology Transition

    DTIC Science & Technology

    1997-01-01

    detection of nuclear testing in space , navigation, meteo- rological monitoring, and communication. These early activities were transferred to the Military...used to detect nuclear tests in space and in the atmosphere as part of the overall basis for verification of a future nuclear test ban treaty. The first...background data to detect nuclear explosions taking place in space , and eventually also in the earth’s atmosphere. The program developed x-ray, neutron

  3. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  4. KSC-2012-4210

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Commercial Crew Program CCP Manager Ed Mango discusses the program's newest partnerships from the Operations Support Building 2 OSB II at Kennedy Space Center in Florida. Three integrated systems were selected for CCP's Commercial Crew Integrated Capability CCiCap initiative to propel America's next human space transportation system to low Earth orbit forward. Operating under funded Space Act Agreements SAAs, The Boeing Co. of Houston, Sierra Nevada Corp. SNC Space Systems of Louisville, Colo., and Space Exploration Technologies SpaceX of Hawthorne, Calif., will spend the next 21 months completing their designs, conducting critical risk reduction testing on their spacecraft and launch vehicles, and showcasing how they would operate and manage missions from launch through orbit and landing, setting the stage for future demonstration missions. To learn more about CCP, which is based at Kennedy and supported by NASA's Johnson Space Center in Houston, visit www.nasa.gov/commercialcrew. Photo credit: NASA/Kim Shiflett

  5. Space transportation systems within ESA programmes: Current status and perspectives

    NASA Astrophysics Data System (ADS)

    Delahais, Maurice

    1993-03-01

    An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.

  6. The Space Shuttle focused-technology program - Lessons learned

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Gabris, E. A.

    1983-01-01

    The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.

  7. International Academy of Astronautics 5th cosmic study—preparing for a 21st century program of integrated, Lunar and Martian exploration and development (executive summary)

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.; Stephenson, D. G.

    2003-04-01

    This report is an initial review of plans for a extensive program to survey and develop the Moon and to explore the planet Mars during the 21st century. It presents current typical plans for separate, associated and fully integrated programs of Lunar and Martian research, exploration and development, and concludes that detailed integrated plans must be prepared and be subject to formal criticism. Before responsible politicians approve a new thrust into space they will demand attractive, defensible, and detailed proposals that explain the WHEN, HOW and WHY of each stage of an expanded program of 21st century space research, development and exploration. In particular, the claims of daring, innovative, but untried systems must be compared with the known performance of existing technologies. The time has come to supersede the present haphazard approach to strategic space studies with a formal international structure to plan for future advanced space missions under the aegis of the world's national space agencies, and supported by governments and the corporate sector.

  8. Status of DSMT research program

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.

    1991-01-01

    The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.

  9. The development of composite materials for spacecraft precision reflector panels

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.

    1990-01-01

    One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.

  10. KSC-2012-4668

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-4666

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  12. KSC-2012-4667

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  13. KSC-2012-4664

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  14. KSC-2012-4665

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  15. SPE propulsion electrolyzer for NASA's integrated propulsion test article

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

  16. NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Johnson, Les C.; Harris, David

    2008-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of funding for over half of the technologies in the original portfolio. In addition, the frequency at which the application requirements for the program changed exceeded the development time required to mature technologies: forcing sometimes radical rescoping of research efforts already halfway (or more) to completion. At the end of its fifth year, both the scope and funding of the program were at a minimum despite the program successfully meeting all of it's initial high priority objectives. This paper will describe the program, its requirements, technology portfolio, and technology maturation processes. Also discussed will be the major technology milestones achieved and the lessons learned from managing a $100M+ technology program.

  17. KSC-08pd0153

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) is given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  18. KSC-08pd0150

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0152

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd0151

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

Top