Sample records for future space research

  1. Space construction activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Center for Space Construction at the University of Colorado at Boulder was established in 1988 as a University Space Engineering Research Center. The mission of the Center is to conduct interdisciplinary engineering research which is critical to the construction of future space structures and systems and to educate students who will have the vision and technical skills to successfully lead future space construction activities. The research activities are currently organized around two central projects: Orbital Construction and Lunar Construction. Summaries of the research projects are included.

  2. Free-space optical communications in support of future manned space flight

    NASA Technical Reports Server (NTRS)

    Stephens, Elaine M.

    1990-01-01

    Four areas of research in optical communications in support of future manned space missions being carried out at Johnson Space Center are discussed. These are the Space Station Freedom proximity operations, direct LEO-to-ground communications, IR voice communications inside manned spacecraft, and deep space and lunar satellite operations. The background, requirements, and scenario for each of these areas of research are briefly described.

  3. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  4. Space life sciences: A status report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  5. Space Research Institute (IKI) Exhibition as an Educational Project

    NASA Astrophysics Data System (ADS)

    Sadovski, Andrei; Antonenko, Elena

    2016-07-01

    The Exhibition "Space Science: Part and Future" in Space Research Institute (IKI) was opened in 2007 in commemoration of the 50th anniversary of the first man-made satellite launch. It covers the latest and the most important findings in space research, shows instruments which are used in space exploration, and presents past, current, and future Russian science missions. Prototypes of space instruments developed by Russian specialists and mockups of spacecraft and spaceships flown to space are displayed, together with information posters, describing space missions, their purposes and results. The Exhibition takes a great part in school space education. Its stuff actively works with schoolchildren, undergraduate students and also makes a great contribution in popularization of space researches. Moreover the possibility to learn about scientific space researches first-hand is priceless. We describe the main parts of the Exhibition and forms of it work and also describe the collaboration with other museums and educational organizations.

  6. A perspective on space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Ohkami, Yoshiaki; Nakatani, Ichiro; Wakabayashi, Yasufumi; Iwata, Tsutomu

    1994-01-01

    This report summarizes the research and development status and perspective on space robotics in Japan. The R & D status emphasizes the current on-going projects at NASDA including the JEM Remote Manipulator System (JEMRMS) to be used on Space Station Freedom and the robotics experiments on Engineering Satellite 7 (ETS-7). As a future perspective, not only NASDA, but also ISAS and other government institutes have been promoting their own research in space robotics in order to support wide spread space activities in the future. Included in this future research is an autonomous satellite retrieval experiment, a dexterous robot experiment, an on-orbit servicing platform, an IVA robot, and several moon/planetary rovers proposed by NASDA or ISAS and other organizations.

  7. Limitations in predicting the space radiation health risk for exploration astronauts.

    PubMed

    Chancellor, Jeffery C; Blue, Rebecca S; Cengel, Keith A; Auñón-Chancellor, Serena M; Rubins, Kathleen H; Katzgraber, Helmut G; Kennedy, Ann R

    2018-01-01

    Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.

  8. The International Space Station: A Pathway to the Future

    NASA Technical Reports Server (NTRS)

    Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas

    2004-01-01

    Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.

  9. [Research in space environmental medicine: review and future].

    PubMed

    Yu, Xue-jun; Qi, Zhang-nian; Chang, Shao-yong; Liang, Hong; Liu, Hong-tao

    2003-01-01

    The investigation progress of space environmental medicine in China is summarized. Then, the application of space environmental medicine to formulating medical requirements for the crew module design, and performing medical evaluation for Shenzhou spaceship are addressed. Additionally, the medical and engineering means for the protection from harmful agents during spaceflight is illustrated. Finally, the objective and challenge of space environment medicine faced in the future research in China are presented.

  10. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    NASA Technical Reports Server (NTRS)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed.

  11. Nutritional questions relevant to space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Schulz, Leslie O.

    1992-01-01

    This historical review of nutritionally related research in the U.S. and Soviet space programs discusses the uses of nutrition as a countermeasure to the effects of microgravity, with respect to body composition and to exercise. Available information is reviewed from space and ground research in the nutritional requirements for energy, protein, fluids, electrolytes, vitamins, and minerals. Past, present, and future systems for nutrient delivery in space are described, and finally, future directions and challenges are presented.

  12. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-042] NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... topics: --Overview of Research in Space Life and Physical Sciences --Space Station and Future Exploration...

  13. Space Photovoltaic Research and Technology 1985: High Efficiency, Space Environment, and Array Technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.

  14. Space robotics: Recent accomplishments and opportunities for future research

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Buttrill, Carey S.; Dorsey, John T.; Juang, Jer-Nan; Lallman, Frederick J.; Moerder, Daniel D.; Scott, Michael A.; Troutman, Patrick; Williams, Robert L., II

    1992-01-01

    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.)

  15. Propulsion and Power Technologies for the NASA Exploration Vision: A Research Perspective

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2004-01-01

    Future propulsion and power technologies for deep space missions are profiled in this viewgraph presentation. The presentation includes diagrams illustrating possible future travel times to other planets in the solar system. The propulsion technologies researched at Marshall Space Flight Center (MSFC) include: 1) Chemical Propulsion; 2) Nuclear Propulsion; 3) Electric and Plasma Propulsion; 4) Energetics. The presentation contains additional information about these technologies, as well as space reactors, reactor simulation, and the Propulsion Research Laboratory (PRL) at MSFC.

  16. Redesigning Learning Spaces: What Do Teachers Want for Future Classrooms?

    ERIC Educational Resources Information Center

    Pedro, Neuza

    2017-01-01

    The concepts of future classrooms, multimedia labs or active learning space has recently gained prominence in educational research. Evidence-based research has found that well-designed primary school classrooms can boost students' learning. Also, schools' principals, teachers and students are requesting for more flexible, reconfigurable and modern…

  17. Vision for Micro Technology Space Missions. Chapter 2

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2005-01-01

    It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

  18. Space Photovoltaic Research and Technology 1986. High Efficiency, Space Environment, and Array Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.

  19. Space: where are we headed?

    PubMed

    Jones, Thomas D

    2003-04-01

    In a new column, the author reviews NASA space activities since the beginning of 2003 and looks at plans for the future. Topics include the Space Shuttle Columbia, what's in store for the International Space Station (ISS), the development of an orbital space plane, orbiter safety upgrades, and the future of space exploration and research beyond the ISS. He presents arguments for sending astronauts to asteroids, the Moon, and Mars.

  20. Future perspectives on space psychology: Recommendations on psychosocial and neurobehavioural aspects of human spaceflight

    NASA Astrophysics Data System (ADS)

    De La Torre, Gabriel G.; van Baarsen, Berna; Ferlazzo, Fabio; Kanas, Nick; Weiss, Karine; Schneider, Stefan; Whiteley, Iya

    2012-12-01

    Recently the psychological effects of space flight have gained in attention. In uncovering the psychological challenges that individuals and teams can face, we need research options that integrate psychosocial aspects with behavioral, performance, technical and environmental issues. Future perspectives in Space Psychology and Human Spaceflight are reviewed in this paper. The topics covered include psychosocial and neurobehavioural aspects, neurocognitive testing tools, decision making, autonomy and delayed communications, well being, mental health, situational awareness, and methodology. Authors were members of a European Space Agency (ESA) Research Topical Team on Psychosocial and Behavioral Aspects of Human Spaceflight. They discuss the different topics under a common perspective of a theoretical and practical framework, showing interactions, relationships and possible solutions for the different aspects and variables in play. Recommendations for every topic are offered and summarized for future research in the field. The different proposed research ideas can be accomplished using analogs and simulation experiments, short- and long-duration bed rest, and in-flight microgravity studies. These topics are especially important for future Moon and Mars mission design and training.

  1. Foundations of Space Biology and Medicine. Volume 3: Space Medicine and Biotechnology

    NASA Technical Reports Server (NTRS)

    Calvin, M. (Editor); Gazenko, O. G. (Editor)

    1975-01-01

    The results of medical and biological research in space are presented. Specific topics discussed include: methods of providing life support systems for astronauts, characteristics of integrated life support systems, protection against adverse factors of space flight, selection and training of astronauts, and future space biomedical research.

  2. International space research perspectives of commercialization for German industry

    NASA Technical Reports Server (NTRS)

    Jordan, H. L.

    1985-01-01

    A brief overview of space flight activities is presented. West German contributions to satellite mapping, communication satellites, navigation, Spacelab, diffusion under weightlessness, crystal growth in space, metal bonding, and biochemistry are described. The future of the research in the space station is analyzed.

  3. Future of Space Astronomy: A Global Road Map for the Next Decades

    NASA Technical Reports Server (NTRS)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  4. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns are joining agency scientists, contributing in the area of plant growth research for food production in space. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  5. Countdown to the Future

    NASA Technical Reports Server (NTRS)

    Cheng-Campbell, Meg; Scott, Ryan T.; Torres, Samantha; Murray, Matthew; Moyer, Eric

    2017-01-01

    At the NASA Ames Research Center in California, the next generation of space biologists are working to understand the effects of long duration space flight on model organisms, and are developing ways to protect the health of future astronauts.

  6. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Fayette Collier, Aeronautics Research Mission Directorate, NASA Headquarters talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  7. An ESA roadmap for geobiology in space exploration

    NASA Astrophysics Data System (ADS)

    Cousins, Claire R.; Cockell, Charles S.

    2016-01-01

    Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.

  8. Outstanding Research Issues in Systematic Technology Prioritization for New Space Missions: Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R. (Editor)

    2004-01-01

    A workshop entitled, "Outstanding Research Issues in Systematic Technology Prioritization for New Space Missions," was convened on April 21-22, 2004 in San Diego, California to review the status of methods for objective resource allocation, to discuss the research barriers remaining, and to formulate recommendations for future development and application. The workshop explored the state-of-the-art in decision analysis in the context of being able to objectively allocate constrained technical resources to enable future space missions and optimize science return. This article summarizes the highlights of the meeting results.

  9. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Johnson, A. Steve; Badhwar, Gautam D.; Golightly, Michael J.; Hardy, Alva C.; Konradi, Andrei; Yang, Tracy Chui-Hsu

    1993-01-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  10. Exploration-Related Research on ISS: Connecting Science Results to Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.

    2005-01-01

    In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.

  11. KSC-06pd0971

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Columbus module onto a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  12. KSC-06pd0970

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  13. Science on the International Space Station: Stepping Stones for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.

  14. Summary results of the Industry Conference on the Commercial Use of Space

    NASA Technical Reports Server (NTRS)

    REUSE; Thuerbach, R. P.

    1985-01-01

    The future intentions of the Federal Republic of Germany in the area of the commercialization of space are presented. It is shown that significant advances in microgravity research, particulary in the areas of materials science, composite materials, physical chemistry, crystal growth, biology, and process engineering will have an effect on future plans for establishing sponsoring organizations to guide commercial interests in German space research. An organizational and functional outline of a proposed sponsoring organization to promote space commercialization under German supervision, including the objectives, the target group to be served, and the administrative structure, is presented. The role of the DFVLR (German Aerospace Research Establishment) and the BMFT (German Ministry for Research and Technology) as sponsoring organizations representing the interests of the German government is shown.

  15. Technology for the future - Long range planning for space technology development

    NASA Technical Reports Server (NTRS)

    Collier, Lisa D.; Breckenridge, Roger A.; Llewellyn, Charles P.

    1992-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) has begun the definition of an Integrated Technology Plan for the civilian space program which guides long-term technology development for space platforms, in light of continuing marker research and other planning data. OAST has conferred particular responsibility for future candidate space mission evaluations and platform performance requirement projections to NASA-Langley. An implementation plan is devised which is amenable to periodic space-platform technology updates.

  16. Biofilms On Orbit and On Earth: Current Methods, Future Needs

    NASA Technical Reports Server (NTRS)

    Vega, Leticia

    2013-01-01

    Biofilms have played a significant role on the effectiveness of life support hardware on the Space Shuttle and International Space Station (ISS). This presentation will discuss how biofilms impact flight hardware, how on orbit biofilms are analyzed from an engineering and research perspective, and future needs to analyze and utilize biofilms for long duration, deep space missions.

  17. 12th Man in Space Symposium: The Future of Humans in Space. Abstract Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The National Aeronautics and Space Administration (NASA) is pleased to host the 12th IAA Man in Space Symposium. A truly international forum, this symposium brings together scientists, engineers, and managers interested in all aspects of human space flight to share the most recent research results and space agency planning related to the future of humans in space. As we look out at the universe from our own uniquely human perspective, we see a world that we affect at the same time that it affects us. Our tomorrows are highlighted by the possibilities generated by our knowledge, our drive, and our dreams. This symposium will examine our future in space from the springboard of our achievements.

  18. The 1991 Marshall Space Flight Center research and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.

  19. Investigation of Vehicle Requirements and Options for Future Space Tourism

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    2001-01-01

    The research in support of this grant was performed by the PI, Dr. John Olds, and graduate students in the Space Systems Design Lab (SSDL) at Georgia Tech over the period December 1999 to December 2000. The work was sponsored by Dr. Ted Talay, branch chief of the Vehicle Analysis Branch at the NASA Langley Research Center. The objective of the project was to examine the characteristics of future space tourism markets and to identify the vehicle requirements that are necessary to enable this emerging new business segment.

  20. KSC-06pd0969

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane carries the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. Once on the work stand , it will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  1. KSC-06pd0968

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane carries the Columbus module away from its transportation canister. Columbus is the European Space Agency's research laboratory for the International Space Station. The module is being moved to a work stand to prepare it for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  2. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  3. Power Subsystem for Extravehicular Activities for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle

    2005-01-01

    The NASA Glenn Research Center has the responsibility to develop the next generation space suit power subsystem to support the Vision for Space Exploration. Various technology challenges exist in achieving extended duration missions as envisioned for future lunar and Mars mission scenarios. This paper presents an overview of ongoing development efforts undertaken at the Glenn Research Center in support of power subsystem development for future extravehicular activity systems.

  4. CASH 2021: commercial access and space habitation.

    PubMed

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Feretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frederic; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-01-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  5. NASA Hydrogen Research at Florida Universities, Program Year 2003

    NASA Technical Reports Server (NTRS)

    Block, David L.; Raissi, Ali

    2006-01-01

    This document presents the final report for the NASA Hydrogen Research at Florida Universities project for program year 2003. This multiyear hydrogen research program has positioned Florida to become a major player in future NASA space and space launch projects. The program is funded by grants from NASA Glenn Research Center with the objective of supporting NASA's hydrogen-related space, space launch and aeronautical research activities. The program conducts over 40 individual projects covering the areas of cryogenics, storage, production, sensors, fuel cells, power and education. At the agency side, this program is managed by NASA Glenn Research Center and at the university side, co-managed by FSEC and the University of Florida with research being conducted by FSEC and seven Florida universities: Florida International University, Florida State University, Florida A&M University, University of Central Florida, University of South Florida, University of West Florida and University of Florida. For detailed information, see the documents section of www.hydrogenresearch.org. This program has teamed these universities with the nation's premier space research center, NASA Glenn, and the nation's premier space launch facility, NASA Kennedy Space Center. It should be noted that the NASA Hydrogen Research at Florida Universities program has provided a shining example and a conduit for seven Florida universities within the SUS to work collaboratively to address a major problem of national interest, hydrogen energy and the future of energy supply in the U.S.

  6. The Space Factor--fundamental and applied research benefiting Europe's citizens and economy.

    PubMed

    Heppener, M

    2002-08-01

    Although "made in space" products are not expected to appear in the near-future, space is gaining interest as an area for industrial or applied R&D. ESA is supporting a growing number of projects involving non-space industries and other third parties. This article gives an overview of the potential of research in space to develop valuable applications on Earth.

  7. Materials processing in space: Future technology trends

    NASA Technical Reports Server (NTRS)

    Barter, N. J.

    1980-01-01

    NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.

  8. Taking Risks for the Future of Space Weather Forecasting, Research, and Operations

    NASA Astrophysics Data System (ADS)

    Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.

    2017-12-01

    Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.

  9. Present and Future Airborne and Space-borne Systems

    DTIC Science & Technology

    2007-02-01

    Present and Future Airborne and Space-borne Systems Wolfgang Keydel Microwaves and Radar Institute German Aerospace Research Centre (DLR...airborne and space-borne SAR systems with polarimetric interferometry capability, their technological, system technical and application related...interferometry accuracies in the cm range have been obtained. In order to reach these values an exact system calibration is indispensable. The calibration of

  10. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Alex Litvin are joining agency scientists, contributing in the area of plant growth research for food production in space. Litvin is pursuing doctorate in horticulture at Iowa State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  11. Space technology research plans

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1992-01-01

    Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs within OAST.

  12. Gravitational biology on the space station

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  13. KSC-06pd0950

    NASA Image and Video Library

    2006-05-30

    KENNEDY SPACE CENTER, FLA. - A Beluga aircraft taxis on the runway at the Shuttle Landing Facility on NASA's Kennedy Space Center. The Beluga carries the European Space Agency's research laboratory, designated Columbus, flown to Kennedy from its manufacturer in Germany. The module will be prepared for delivery to the International Space Station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  14. KSC-06pd0949

    NASA Image and Video Library

    2006-05-30

    KENNEDY SPACE CENTER, FLA. - A Beluga aircraft arrives at the Shuttle Landing Facility on NASA's Kennedy Space Center. The Beluga carries the European Space Agency's research laboratory, designated Columbus, flown to Kennedy from its manufacturer in Germany. The module will be prepared for delivery to the International Space Station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  15. Space facilities: Meeting future needs for research, development, and operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  16. Space facilities: Meeting future needs for research, development, and operations

    NASA Astrophysics Data System (ADS)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  17. NHQ_2018_0627_E56_NASM Inflight

    NASA Image and Video Library

    2018-06-27

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH FUTURE ENGINEERS----- Aboard the International Space Station, Expedition 56 Flight Engineer Serena Aunon-Chancellor discussed life and research onboard the orbital complex with future engineers gathered at the Smithsonian Air and Space Museum in Washington, D.C. during an in-flight educational event June 27. Aunon-Chancellor arrived at the complex on June 8 at the start of a six and a half month mission.

  18. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  19. Expedition_55_Education_In-flight_Interview_with Boeing_Genes_in Space_2018_130_1615_651411

    NASA Image and Video Library

    2018-05-10

    SPACE STATION CREW MEMBERS DISCUSS RESEARCH WITH TEXAS STUDENTS------- Aboard the International Space Station, Expedition 55 Flight Engineers Drew Feustel and Scott Tingle of NASA discussed research on the orbital laboratory during an in-flight educational event May 10 with students gathered at Space Center Houston. The in-flight event centered around the Boeing-sponsored Genes in Space experiment which enlisted students in grades 7-12 to submit various ideas for DNA research with an eye to future implications for deep space exploration.

  20. Results of the Advanced Space Structures Technology Research Experiments (ASTREX) hardware and control development

    NASA Technical Reports Server (NTRS)

    Cossey, Derek F.

    1993-01-01

    Future DOD, NASA, and SDI space systems will be larger than any spacecraft flown before. The economics of placing these Precision Space Systems (PSS) into orbit dictates that they be as low in mass as possible. This stringent weight reduction creates structural flexibility causing severe technical problems when combined with the precise shape and pointing requirements associated with many future PSS missions. Development of new Control Structure Interaction (CSI) technologies which can solve these problems and enable future space missions is being conducted at the Phillips Laboratory, On-Location Site, CA.

  1. External Long-Duration Materials Instrument Research Observatory

    NASA Astrophysics Data System (ADS)

    Engelhardt, J. P.; Heath, K.

    2018-02-01

    The External Long-duration Materials and Instrument Research Observatory (ELMIRO) is a commercial facility that will allow for continuous and repeatable external testing on the Deep Space Gateway of materials, electronics/instruments for future deep space spacecraft.

  2. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  3. KSC-06pd0978

    NASA Image and Video Library

    2006-06-02

    KENNEDY SPACE CENTER, FLA. - The European Space Agency's Columbus module rests on a work stand in view of media representatives and invited guests following a ceremony to welcome the module into the Space Station Processing Facility (SSPF). Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared in the SSPF for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the life, physical and materials sciences. Photo credit: NASA/Amanda Diller

  4. KSC-06pd0966

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, the Columbus module waits to be lifted out of its transportation canister. An overhead crane is being lowered toward the module, which is the European Space Agency's research laboratory for the International Space Station. The module will be moved to a work stand and prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  5. KSC-06pd0967

    NASA Image and Video Library

    2006-06-01

    KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane is lowered onto the Columbus module to lift it out of its transportation canister. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be moved to a work stand and prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  6. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  7. Developments in Space Research in Nigeria

    NASA Astrophysics Data System (ADS)

    Oke, O.

    2006-08-01

    Nigeria's desire to venture into space technology was first made known to ECA/ OAU member countries at an inter-governmental meeting in Addis Ababa, 1976. The Nigerian space research is highly rated in Africa in terms of reputation and scientific results. The National Space Research and Development Agency (NASRDA), Nigeria's space research coordinating body; has taken a more active role to help Nigeria's space research community to succeed internationally. The paper presents recent examples of Nigeria's successes in space and its detailed applications in areas such as remote sensing, meteorology, communication and Information Technology. and many more. It gave an analysis of the statistics of Nigerian born space scientists working in the other space-faring nations. The analysis have been used to develop a model for increasing Nigerian scientist's involvement in the development of space research in Nigeria. It concluded with some thoughts on the current and future of Nigeria's space borne scientific experiments, policies and programs.

  8. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is majoring in computer science and chemistry at Rocky Mountain College in Billings, Montana. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  9. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  10. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  11. Army Science Board Ad Hoc Study Group Report on Human Issues.

    DTIC Science & Technology

    1980-03-01

    top level attention on human issues research and to formulate human issues programs to meet future needs. A concept paper was presented to the Army...the Army (Operations Research), 10 spaces were allo- cated to provide in-house research/study capability under the ADCSPER. These 10 spaces should be...combined with the present three- space study and analysis section, thus providing a 13- space group which could support the PPRC, APSC, and DCSPER. In

  12. Aerospace century XXI: Space sciences, applications, and commercial developments; Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26-29, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenthaler, G.W.; Koster, J.N.

    1987-01-01

    Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.

  13. Processing materials in space - The history and the future

    NASA Technical Reports Server (NTRS)

    Chassay, Roger; Carswell, Bill

    1987-01-01

    The development of materials processing in space, and some of the Soyuz, Apollo, Skylab, and Shuttle orbital materials experiments are reviewed. Consideration is given to protein crystal growth, electrophoresis, low-gravity isoelectric focusing, phase partitioning, a monodisperse latex reactor, semiconductor crystal growth, solution crystal growth, the triglycine sulfate experiment, vapor crystal growth experiments, the mercuric iodide experiment, electronic and electrooptical materials, organic thin films and crystalline solids, deep undercooling of metals and alloys, magnetic materials, immiscible materials, metal solidification research, reluctant glass-forming materials, and containerless glass formation. The space processing apparatuses and ground facilities, for materials processing are described. Future facilities for commercial research, development, and manufacturing in space are proposed.

  14. Playing in parallel: the effects of multiplayer modes in active video game on motivation and physical exertion.

    PubMed

    Peng, Wei; Crouse, Julia

    2013-06-01

    Although multiplayer modes are common among contemporary video games, the bulk of game research focuses on the single-player mode. To fill the gap in the literature, the current study investigated the effects of different multiplayer modes on enjoyment, future play motivation, and the actual physical activity intensity in an active video game. One hundred sixty-two participants participated in a one-factor between-subject laboratory experiment with three conditions: (a) single player: play against self pretest score; (b) cooperation with another player in the same physical space; (c) parallel competition with another player in separated physical spaces. We found that parallel competition in separate physical spaces was the optimal mode, since it resulted in both high enjoyment and future play motivation and high physical intensity. Implications for future research on multiplayer mode and play space as well as active video game-based physical activity interventions are discussed.

  15. NASA Space Biology Research Associate Program for the 21st Century

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2000-01-01

    The Space Biology Research Associate Program for the 21st Century provided a unique opportunity to train individuals to conduct biological research in hypo- and hyper-gravity, and to conduct ground-based research. This grant was developed to maximize the potential for Space Biology as an emerging discipline and to train a cadre of space biologists. The field of gravitational and space biology is rapidly growing at the future of the field is reflected in the quality and education of its personnel. Our chief objective was to train and develop these scientists rapidly and in a cost effective model.

  16. Future Space Transportation Technology: Prospects and Priorities

    NASA Technical Reports Server (NTRS)

    Billie, Matt; Reed, Lisa; Harris, David

    2003-01-01

    The Transportation Working Group (TWG) was chartered by the NASA Exploration Team (NEXT) to conceptualize, define, and advocate within NASA the space transportation architectures and technologies required to enable the human and robotic exploration and development of space envisioned by the NEXT. In 2002, the NEXT tasked the TWG to assess exploration space transportation requirements versus current and prospective Earth-to-Orbit (ETO) and in-space transportation systems, technologies, and research, in order to identify investment gaps and recommend priorities. The result was a study now being incorporated into future planning by the NASA Space Architect and supporting organizations. This paper documents the process used to identify exploration space transportation investment gaps, as well as the group's recommendations for closing these gaps and prioritizing areas of future investment for NASA work on advanced propulsion systems.

  17. Use of telescience for biomedical research during space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, Carolyn L.; Schneider, Howard J.; Karamanos, Gayle M.

    1991-01-01

    When the U.S. first embarked on a manned space flight program, NASA's use of medical telescience was focused on crew health monitoring. In recent years, medical telescience use has been expanded to include support of basic research in space medicine. It enables ground support personnel to assist on-board crews in the performance of experiments and improves the quality and quantity of data return. NASA is continuing to develop its telescience capabilities. Future plans include telemedicine that will enable physicians on Earth to support crewmembers during flight and telescience that will enable investigators at their home institutions to support and conduct in-flight medical research. NASA's use of telescience for crew safety and biomedical research from Project Mercury to the present is described and NASA's plans for the future are presented.

  18. Space syntax in healthcare facilities research: a review.

    PubMed

    Haq, Saif; Luo, Yang

    2012-01-01

    Space Syntax is a theory and method that has been developing for the last 40 years. Originally conceived as a theory of "society and space," it has expanded to other areas. An important aspect of this is technical; it allows the quantification of layouts, and unit spaces within a layout, so that the environment itself can produce independent variables in quantitative research. Increasingly, it is being used to study healthcare facilities. Space Syntax has thereby become relevant to healthcare facilities researchers and designers. This paper attempts to explain Space Syntax to a new audience of healthcare designers, administrators, and researchers; it provides a literature review on the use of Space Syntax in healthcare facility research and suggests some possibilities for future application.

  19. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  20. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  1. Critical Technologies for the Development of Future Space Elevator Systems

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  2. KSC-06pd0951

    NASA Image and Video Library

    2006-05-30

    KENNEDY SPACE CENTER, FLA. - A Beluga aircraft parks near the mate/demate device at the Shuttle Landing Facility on NASA's Kennedy Space Center. The Beluga carries the European Space Agency's research laboratory, designated Columbus, flown to Kennedy from its manufacturer in Germany. The module will be prepared for delivery to the International Space Station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann

  3. Space Station Freedom Gateway to the Future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The first inhabited outpost on the frontier of space will be a place to live, work, and discover. Experiments conducted on Freedom will advance scientific knowledge about our world, our environment, and ourselves. We will learn how to adapt to the space environment and to build and operate new spacecraft with destinations far beyond Earth, continuing the tradition of exploration that began with a journey to the Moon. What we learn from living and working on Freedom will strengthen our expertise in science and engineering, promote national research and development initiatives and inspire another generation of Americans to push forward and onward. On the eve of the 21st century, Space Station Freedom will be our gateway to the future. This material covers gateways to space, research, discovery, utilization, benefits, and NASA.

  4. Bounding the Spacecraft Atmosphere Design Space for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Perka, Alan T.; Duffield, Bruce E.; Jeng, Frank F.

    2005-01-01

    The selection of spacecraft and space suit atmospheres for future human space exploration missions will play an important, if not critical, role in the ultimate safety, productivity, and cost of such missions. Internal atmosphere pressure and composition (particularly oxygen concentration) influence many aspects of spacecraft and space suit design, operation, and technology development. Optimal atmosphere solutions must be determined by iterative process involving research, design, development, testing, and systems analysis. A necessary first step in this process is the establishment of working bounds on the atmosphere design space.

  5. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2006-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  6. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  7. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

    2006-01-01

    In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  8. Assessment and Mitigation of the Effects of Noise on Habitability in Deep Space Environments: Report on Non-Auditory Effects of Noise

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    2018-01-01

    This document reviews non-auditory effects of noise relevant to habitable volume requirements in cislunar space. The non-auditory effects of noise in future long-term space habitats are likely to be impactful on team and individual performance, sleep, and cognitive well-being. This report has provided several recommendations for future standards and procedures for long-term space flight habitats, along with recommendations for NASA's Human Research Program in support of DST mission success.

  9. Space Science: Past, Present and Future. Report Prepared by the Subcommittee on Space Science and Applications. Transmitted to the Committee on Science and Technology, House of Representatives, Ninety-Ninth Congress, Second Session, Serial O.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science and Technology.

    Congressional hearings held on October 8-10, 1985, were meant to characterize the attributes of past successes of the United States' efforts in the space sciences, and to project the direction of future research in that area. This report prepared by the subcommittee on space science and application includes recommendations of expert panels on…

  10. Space Electrochemical Research and Technology (SERT), 1989

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S. (Editor)

    1989-01-01

    The proceedings of NASA's second Space Electrochemical Research and Technology Conference are presented. The objectives of the conference were to examine current technologies, research efforts, and advanced ideas, and to identify technical barriers which affect the advancement of electrochemical energy storage systems for space applications. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, with the intention of coalescing views and findings into conclusions on progress in the field, prospects for future advances, areas overlooked, and the directions of future efforts. Related overviews were presented in the areas of NASA advanced mission models. Papers were presented and workshops conducted in four technical areas: advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, the nickel electrode, and advanced rechargable batteries.

  11. Robotics research at Canadian Space Agency

    NASA Technical Reports Server (NTRS)

    Hui, Raymond

    1994-01-01

    In addition to major crown projects such as the Mobile Servicing System for Space Station, the Canadian Space Agency is also engaged in internal, industrial and academic research and development activities in robotics and other space-related areas of science and technology. These activities support current and future space projects, and lead to technology development which can be spun off to terrestrial applications, thus satisfying the Agency's objective of providing economic benefits to the public at large through its space-related work.

  12. Space Station program status and research capabilities

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1995-01-01

    Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.

  13. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  14. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    ERIC Educational Resources Information Center

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  15. Committee on solar and space physics

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    The Committee on Solar and Space Physics (CSSP) is the Committee of the Space Science Board (SSB) of the National Research Council that is responsible for providing scientific advice to NASA in areas of solar/solar-terrestrial/space-plasma physics. The committee, composed of members who serve 3-year terms, wishes to solicit comments from colleagues on topics of interest to them and related to issues in the field.Current subjects on which the committee is devoting considerable effort include the following: (a) considerations of data handling and data systems in solar-terrestrial research for the future (This is being carried out with the encouragement of the SSB and its Committee on Data Management. The activity is in collaboration with the Committee on Solar-Terrestrial Research (CSTR) of the Geophysics Research Board. The handling, integration, and dissemination of solar-terrestrial data obtained by all techniques will be addressed. Chairmen of the responsible subgroup are D. J. Williams (CSSP) and M. A. Shea (CSTR).); (b) consideration of the policies and issues associated with a revitalized Explorer satellite program responsive to the requirements of the solar-terrestrial physics community (Inputs of ideas for potential Explorer missions have been received from a wide range of the community and will be further elaborated upon by additional community participation. A number of these ideas and examples will form a portion of a report discussing solar-terrestrial science topics of high contemporary interest that could be well addressed with Explorerclass missions.); (c) inputs to a more comprehensive consideration of the requirements for theoretical research in all the space sciences (This is an overall task of the Space Science Board. The CSSP response relies heavily upon the Colgate committee report on space plasma physics.); (d) a future workshop, in collaboration with the Space Science Committee of the European Science foundation, on potential cooperative work in space plasma physics with European nations (Four major program items will be addressed, including reviews of several major scientific achievements within the field, a review of the status of solar and space plasma physics as academic subjects in the U.S. and in Western Europe, a review of future research programs, and a discussion of the forms of collaboration between the U.S. and European space plasma physics communities, with recommendations for the future. The workshop will be held in the U.S., tentatively during the 1982-83 academic year.); (e) continuing dialogue with NASA public relations officials and other knowledgeable individuals regarding the status of public knowledge of the results, importance, and applications of solar-terrestrial research.); (f) discussions with relevant officials concerning the issues of scientific funding in the United States, particularly as related to solar-terrestrial research.

  16. A space crane concept for performing on-orbit assembly

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    1992-01-01

    The topics are presented in viewgraph form and include: in-space assembly and construction enhances future mission planning flexibility; in-space assembly and construction facility concept; space crane concept with mobile base; fundamental characteristics; space crane research approach; spacecraft component positioning and assembly test-bed; and articulating joint testbed.

  17. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics.

  18. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  19. Space Weather - Current Capabilities, Future Requirements, and the Path to Improved Forecasting

    NASA Astrophysics Data System (ADS)

    Mann, Ian

    2016-07-01

    We present an overview of Space Weather activities and future opportunities including assessments of current status and capabilities, knowledge gaps, and future directions in relation to both observations and modeling. The review includes input from the scientific community including from SCOSTEP scientific discipline representatives (SDRs), COSPAR Main Scientific Organizers (MSOs), and SCOSTEP/VarSITI leaders. The presentation also draws on results from the recent activities related to the production of the COSPAR-ILWS Space Weather Roadmap "Understanding Space Weather to Shield Society" [Schrijver et al., Advances in Space Research 55, 2745 (2015) http://dx.doi.org/10.1016/j.asr.2015.03.023], from the activities related to the United Nations (UN) Committee on the Peaceful Uses of Outer Space (COPUOS) actions in relation to the Long-term Sustainability of Outer Space (LTS), and most recently from the newly formed and ongoing efforts of the UN COPUOS Expert Group on Space Weather.

  20. Composites research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Duffy, Stephen; Vary, Alex; Nathal, Michael V.; Miner, Robert V.; Arnold, Steven M.; Castelli, Michael G.; Hopkins, Dale A.; Meador, Michael A.

    1994-01-01

    Composites research at NASA Lewis is focused on their applications in aircraft propulsion, space propulsion, and space power, with the first being predominant. Research on polymer-, metal-, and ceramic-matrix composites is being carried out from an integrated materials and structures viewpoint. This paper outlines some of the topics being pursued from the standpoint of key technical issues, current status, and future directions.

  1. Marshall Space Flight Center CFD overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, Luke A.

    1989-01-01

    Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.

  2. NASA Workshop on Biological Adaptation

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily (Editor); Tischler, Marc (Editor)

    1988-01-01

    A workshop was convened to review the current program in Space Biology Biological Adaptation Research and its objectives and to identify future research directions. Two research areas emerged from these deliberations: gravitational effects on structures and biomineralization and gravity affected regulatory mechanisms. The participants also recommended that research concentrate on rapidly growing animals, since gravity effects may be more pronounced during growth and development. Both research areas were defined and future research directions were identified. The recommendations of the workshop will assist the Life Sciences Division of NASA in it assessment and long-range planning of these areas of space biology. Equally important, the workshop was intended to stimulate thought and research among those attending so that they would, in turn, interest, excite, and involve other members of the academic community in research efforts relevant to these programs.

  3. KSC-08pd0153

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) is given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  4. Managing the space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  5. KSC-08pd0150

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd0152

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  7. KSC-08pd0151

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  8. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  9. Developments in Space Research in Nigeria

    NASA Astrophysics Data System (ADS)

    Oke, O.

    Nigeria s desire to venture into space technology was first made known to ECA OAU member countries at an inter-governmental meeting in Addis Ababa 1976 The Nigerian space research is highly rated in Africa in terms of reputation and scientific results The National Space Research and Development Agency NASRDA Nigeria s space research coordinating body has taken a more active role to help Nigeria s space research community to succeed internationally The paper presents recent examples of Nigeria s successes in space and its detailed applications in areas such as remote sensing meteorology communication and Information Technology and many more It gave an analysis of the statistics of Nigerian born space scientists working in the other space-faring nations The analysis have been used to develop a model for increasing Nigerian scientist s involvement in the development of space research in Nigeria It concluded with some thoughts on the current and future of Nigeria s space borne scientific experiments policies and programs

  10. Future directions in two-phase flow and heat transfer in space

    NASA Technical Reports Server (NTRS)

    Bankoff, S. George

    1994-01-01

    Some areas of opportunity for future research in microgravity two-phase flow and heat transfer are pointed out. These satisfy the dual requirements of relevance to current and future needs, and scientific/engineering interest.

  11. 16th Space Photovoltaic Research and Technology Conference. Revised

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila (Editor)

    2005-01-01

    The purpose of the SPRAT conference is to bring members of the space solar cell community together in a relatively informal conference setting to discuss the recent developments in solar cell technology and to discuss the future directions of the field. The conference is sponsored by the Photovoltaic and Space Environmental Effects Branch at the NASA Glenn Research Center.

  12. Intelligent Systems Technologies for Ops

    NASA Technical Reports Server (NTRS)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration programs.

  13. National Aeronautics and Space Administration Biological Specimen Repository

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  14. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.

  15. With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017

    NASA Image and Video Library

    2017-12-27

    NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall

  16. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  17. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  18. Team Composition Issues for Future Space Exploration: A Review and Directions for Future Research.

    PubMed

    Bell, Suzanne T; Brown, Shanique G; Abben, Daniel R; Outland, Neal B

    2015-06-01

    Future space exploration, such as a mission to Mars, will require space crews to live and work in extreme environments unlike those of previous space missions. Extreme conditions such as prolonged confinement, isolation, and expected communication time delays will require that crews have a higher level of interpersonal compatibility and be able to work autonomously, adapting to unforeseen challenges in order to ensure mission success. Team composition, or the configuration of member attributes, is an important consideration for maximizing crewmember well-being and team performance. We conducted an extensive search to find articles about team composition in long-distance space exploration (LDSE)-analogue environments, including a search of databases, specific relevant journals, and by contacting authors who publish in the area. We review the team composition research conducted in analogue environments in terms of two paths through which team composition is likely to be related to LDSE mission success, namely by 1) affecting social integration, and 2) the team processes and emergent states related to team task completion. Suggestions for future research are summarized as: 1) the need to identify ways to foster unit-level social integration within diverse crews; 2) the missed opportunity to use team composition variables as a way to improve team processes, emergent states, and task completion; and 3) the importance of disentangling the effect of specific team composition variables to determine the traits (e.g., personality, values) that are associated with particular risks (e.g., subgrouping) to performance.

  19. [Research progress of thermal control system for extravehicular activity space suit].

    PubMed

    Wu, Z Q; Shen, L P; Yuan, X G

    1999-08-01

    New research progress of thermal control system for oversea Extravehicular Activity (EVA) space suit is presented. Characteristics of several thermal control systems are analyzed in detail. Some research tendencies and problems are discussed, which are worthwhile to be specially noted. Finally, author's opinion about thermal control system in the future is put forward.

  20. Programmatic status of NASA's CSTI high capacity power Stirling space power converter program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.

    1990-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. The status of test activities with the Space Power Research Engine (SPRE) is discussed. Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs were completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. An update of progress in these technologies is provided.

  1. Integration and Cooperation in the Next Golden Age of Human Space Flight Data Repositories: Tools for Retrospective Analysis and Future Planning

    NASA Technical Reports Server (NTRS)

    Thomas, D.; Fitts, M.; Wear, M.; VanBaalen, M.

    2011-01-01

    As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health Repository (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future research studies.

  2. A survey of life support system automation and control

    NASA Technical Reports Server (NTRS)

    Finn, Cory K.

    1993-01-01

    The level of automation and control necessary to support advanced life support systems for use in the manned space program is steadily increasing. As the length and complexity of manned missions increase, life support systems must be able to meet new space challenges. Longer, more complex missions create new demands for increased automation, improved sensors, and improved control systems. It is imperative that research in these key areas keep pace with current and future developments in regenerative life support technology. This paper provides an overview of past and present research in the areas of sensor development, automation, and control of life support systems for the manned space program, and it discusses the impact continued research in several key areas will have on the feasibility, operation, and design of future life support systems.

  3. Atmospheric Chemistry from Space: Present Status and Future Plans

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    One of the unqualified successes of the earth observation program is NASA's continuing monitoring of the ozone layer from space. This activity began in the early 70's with research instruments and continues to this day with the TOMS instrument series and the Upper Atmosphere Research Satellite. In the near future, NASA will be launching the EOS Aura spacecraft (launch mid-2003) which will continue our study of the chemical processes that produce stratospheric ozone depletion. In addition, Aura will begin the first global study of lower atmospheric air pollution including urban ozone, aerosols, nitrogen oxides and carbon monoxide. Atmospheric air pollution measurements from earth orbit involve the development of very high precision spectrometer technologies that have never been flown in space. Farther into the future, lower atmospheric ozone and aerosols may be monitored by space based lidars in low earth orbit, by sensors in geostationary orbit and by continuous limb observations instrument from the Lagrange point L2.

  4. Human space exploration the next fifty years.

    PubMed

    Williams, David R; Turnock, Matthew

    2011-06-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.

  5. Evolving Markets for Commercial, Civil, and Military Services

    NASA Astrophysics Data System (ADS)

    Kaplan, Marshall H.

    2003-01-01

    Recent commercial failures in the LEO market, declining budgets for research, and other political factors have made it difficult for entrepreneurs and financial institutions to realize returns from investments in new space transportation systems and satellites. This paper explores the major factors impacting future markets that make use of our space infrastructure. At the top of the list is the high cost of space access. This has been extremely expensive, and will continue to be expensive as long as space access remains low on the nation's priority list. While launch prices have generally been reduced over the past several years, they remain well above the elastic range of supply and demand. Our best estimate is that it will take an order of magnitude reduction to significantly expand the market. Projections about market segments that will represent future winners in space and launch demand forecasts are presented. Future markets, outside of traditional strongholds, are explored, including a long-term view of new commercial space activities, conventional and ambitious future/futuristic activities, and related business aspects.

  6. Space Internet-Embedded Web Technologies Demonstration

    NASA Technical Reports Server (NTRS)

    Foltz, David A.

    2001-01-01

    The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.

  7. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Emma Boehm, left, and Jessica Scotten are joining agency scientists, contributing in the area of plant growth research for food production in space. Boehm is pursuing a degree in ecology and evolution at the University of Minnesota. Scotten is majoring in microbiology at Oregon State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  8. Geographic data from space

    USGS Publications Warehouse

    Alexander, Robert H.

    1964-01-01

    Space science has been called “the collection of scientific problems to which space vehicles can make some specific contributions not achievable by ground-based experiments.” Geography, the most spatial of the sciences, has now been marked as one of these “space sciences.” The National Aeronautics and Space Administration (NASA) is sponsoring an investigation to identify the Potential geographic benefits from the nation’s space program. This is part of NASA’s long-range inquiry to determine the kinds of scientific activities which might profitably be carried out on future space missions. Among such future activities which are now being planned by NASA are a series of manned earth orbital missions, many of which would be devoted to research. Experiments in physics, astronomy, geophysics, meteorology, and biology are being discussed for these long-range missions. The question which is being put to geographers is, essentially, what would it mean to geographic research to have an observation satellite (or many such satellites) orbiting the earth, gathering data about earth-surface features and environments?

  9. Bringing the Future Within Reach: Celebrating 75 Years of the NASA John H. Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Arrighi, Robert S.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center in Cleveland, Ohio, has been making the future for 75 years. The center's work with aircraft engines, high-energy fuels, communications technology, electric propulsion, energy conversion and storage, and materials and structures has been, and continues to be, crucial to both the Agency and the region. Glenn has partnered with industry, universities, and other agencies to continually advance technologies that are propelling the nation's aerospace community into the future. Nonetheless these continued accomplishments would not be possible without the legacy of our first three decades of research, which led to over one hundred R&D 100 Awards, three Robert J. Collier Trophies, and an Emmy. Glenn, which is located in Cleveland, Ohio, is 1 of 10 NASA field centers, and 1 of only 3 that stem from an earlier research organization-the National Advisory Committee for Aeronautics (NACA). Glenn began operation in 1942 as the NACA Aircraft Engine Research Laboratory (AERL). In 1947 the NACA renamed the lab the Flight Propulsion Laboratory to reflect the expansion of the research. In September 1948, following the death of the NACA's Director of Aeronautics, George Lewis, the NACA rededicated the lab as the Lewis Flight Propulsion Laboratory. On 1 October 1958, the lab was incorporated into the new NASA space agency and was renamed the NASA Lewis Research Center. Following John Glenn's return to space on the space shuttle, on 1 March 1999 the center name was changed once again, becoming the NASA John H. Glenn Research Center.

  10. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    DTIC Science & Technology

    1988-01-01

    SEPTEMBER 1988 PACE Space Research and Technology Overview 1 Frederick P. Povinelli Civil Space Technology Initiative 15 Judith H. Ambrus...Peterson Peterson Pierson Pietsch Pilcher Pistole Piszczor Pittian Plotkin Portnoy Poucher Povinelli Povell Pozarovski Priebe Prior Pyle

  11. The NASA Space Solar Cell Advanced Research Program

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    Two major requirements for space solar cells are high efficiency and survivability in the naturally occurring charged particle space radiation environment. Performance limits for silicon space cells are well understood. Advanced cells using GaAs and InP are under development to provide significantly improved capability for the future.

  12. [NASA] in the 21st Century

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.

    2006-01-01

    This viewgraph presentation reviews the NASA programs in support of Aeronautical and Space research. This research involves imagining the future of air travel. There are three major Aeronautics technology programs: (1) Fundamental Aeronautics, (2) Aviation Safety and (3) Airspace Systems. The aim of exploring the depths of the universe through earth based and space based assets. Other Space programs include the plans for exploration of the moon and Mars.

  13. The N.E.X.T. Thing for Space Travel

    NASA Image and Video Library

    2013-07-26

    The NASA Evolutionary Xenon Thruster or NEXT is an advanced Ion propulsion system developed at Glenn Research Center. Its unmatched fuel efficiency could give a real boost to future deep space exploration missions -- extending the reach of NASA science missions and yielding a higher return on scientific research.

  14. Fire safety concerns in space operations

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1987-01-01

    This paper reviews the state-of-the-art in fire control techniques and identifies important issues for continuing research, technology, and standards. For the future permanent orbiting facility, the space station, fire prevention and control calls for not only more stringent fire safety due to the long-term and complex missions, but also for simplified and flexible safety rules to accommodate the variety of users. Future research must address a better understanding of the microgravity space environment as it influences fire propagation and extinction and the application of the technology of fire detection, extinguishment, and material assessment. Spacecraft fire safety should also consider the adaptation of methods and concepts derived from aircraft and undersea experience.

  15. Bringing Gravity to Space

    NASA Technical Reports Server (NTRS)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  16. Evaluation of the need for a large primate research facility in space

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.

    1986-01-01

    In the summer of 1983, an advisory committee was organized that would be able to evaluate NASA's current and future capabilities for nonhuman primate research in space. Individuals were chosen who had experience in four key research areas: cardiovascular physiology, vestibular neurophysiology, musculo-skeletal physiology, and fluid and electrolyte balance. Recommendations of the committee to NASA are discussed.

  17. Biological challenges of true space settlement

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Mankins, Willa M.; Walter, Helen

    2018-05-01

    "Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.

  18. Strategies For Human Exploration Leading To Human Colonization of Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  19. NASA Ames and Future of Space Exploration, Science, and Aeronautics

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2015-01-01

    Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.

  20. The Influence of Microgravity on Plants

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.

    2010-01-01

    This slide presentation reviews the studies and the use of plants in various space exploration scenarios. The current state of research on plant growth in microgravity is reviewed, with several questions that require research for answers to assist in our fundamental understanding of the influence of microgravity and the space environment on plant growth. These questions are posed to future Principal Investigators and Payload Developers, attending the meeting, in part, to inform them of NASA's interest in proposals for research on the International Space Station.

  1. Presentation on systems cluster research

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1989-01-01

    This viewgraph presentation presents an overview of systems cluster research performed by the Center for Space Construction. The goals of the research are to develop concepts, insights, and models for space construction and to develop systems engineering/analysis curricula for training future aerospace engineers. The following topics are covered: CSC systems analysis/systems engineering (SIMCON) model, CSC systems cluster schedule, system life-cycle, model optimization techniques, publications, cooperative efforts, and sponsored research.

  2. Research opportunities in human behavior and performances

    NASA Technical Reports Server (NTRS)

    Christensen, J. M.; Talbot, J. M.

    1985-01-01

    The NASA research program in the biological and medical aspects of space flight includes investigations of human behavior and performance. The research focuses on psychological and psychophysiological responses to operational and environmental stresses and demands of spaceflight, and encompasses problems in perception, cognition, motivation, psychological stability, small group dynamics, and performance. The primary objective is to acquire the knowledge and methodology to aid in achieving high productivity and essential psychological support of space and ground crews in the Space Shuttle and space station programs. The Life Sciences Research Office (LSRO) of the Federation of American Societies for Experimental Biology reviewed its program in psychology and identified its research for future program planning to be in line with NASA's goals.

  3. Training the Future - Interns Harvesting & Testing Plant Experim

    NASA Image and Video Library

    2017-07-19

    In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre, left, and Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is pursuing a degree in computer science and chemistry at Rocky Mountain College in Billings, Montana. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.

  4. Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration

    NASA Technical Reports Server (NTRS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2007-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,

  5. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  6. The impact of interventions to promote physical activity in urban green space: a systematic review and recommendations for future research.

    PubMed

    Hunter, Ruth F; Christian, Hayley; Veitch, Jenny; Astell-Burt, Thomas; Hipp, J Aaron; Schipperijn, Jasper

    2015-01-01

    Evidence is mounting on the association between the built environment and physical activity (PA) with a call for intervention research. A broader approach which recognizes the role of supportive environments that can make healthy choices easier is required. A systematic review was undertaken to assess the effectiveness of interventions to encourage PA in urban green space. Five databases were searched independently by two reviewers using search terms relating to 'physical activity', 'urban green space' and 'intervention' in July 2014. Eligibility criteria included: (i) intervention to encourage PA in urban green space which involved either a physical change to the urban green space or a PA intervention to promote use of urban green space or a combination of both; and (ii) primary outcome of PA. Of the 2405 studies identified, 12 were included. There was some evidence (4/9 studies showed positive effect) to support built environment only interventions for encouraging use and increasing PA in urban green space. There was more promising evidence (3/3 studies showed positive effect) to support PAprograms or PA programs combined with a physical change to the built environment, for increasing urban green space use and PA of users. Recommendations for future research include the need for longer term follow-up post-intervention, adequate control groups, sufficiently powered studies, and consideration of the social environment, which was identified as a significantly under-utilized resource in this area. Interventions that involve the use of PA programs combined with a physical change to the built environment are likely to have a positive effect on PA. Robust evaluations of such interventions are urgently required. The findings provide a platform to inform the design, implementation and evaluation of future urban green space and PAintervention research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Space Station: Leadership for the Future

    NASA Technical Reports Server (NTRS)

    Martin, Franklin D.; Finn, Terence T.

    1987-01-01

    No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space.

  8. A perspective about the total solar eclipse observation from future space settlements and a review of Indonesian space researches

    NASA Astrophysics Data System (ADS)

    Sastradipradja, D.; Dwivany, F. M.; Swandjaja, L.

    2016-11-01

    Viewing astronomy objects from space is superior to that from Earth due to the absence of terrestrial atmospheric disturbances. Since decades ago, there has been an idea of building gigantic spaceships to live in, i.e., low earth orbit (LEO) settlement. In the context of solar eclipse, the presuming space settlements will accommodate future solar eclipse chasers (amateur or professional astronomers) to observe solar eclipse from space. Not only for scientific purpose, human personal observation from space is also needed for getting aesthetical mental impression. Furthermore, since space science indirectly aids solar eclipse observation, we will discuss the related history and development of Indonesian space experiments. Space science is an essential knowledge to be mastered by all nations.

  9. Future of Human Space Exploration

    NASA Image and Video Library

    2014-07-01

    Now that the Space Shuttle era is over, NASA is writing the next chapters in human Spaceflight with its commercial and international partners. It is advancing research and technology on the International Space Station, opening low-Earth orbit to US industry, and pushing the frontiers of deep space even farther ... all the way to Mars.

  10. The Need to Update Space Planning Policies for the California Community Colleges. Fact Sheet 05-07

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2005

    2005-01-01

    California plans its development of public higher education facilities using policies called "space and utilization" guidelines and standards. These are budgetary planning tools that can measure existing and future need for academic spaces such as classrooms, laboratories, research space, and faculty offices. California's current space…

  11. Materials Requirements for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Cook, Mary Beth; Clinton, R. G., Jr.

    2005-01-01

    NASA's mission to "reach the Moon and Mars" will be obtained only if research begins now to develop materials with expanded capabilities to reduce mass, cost and risk to the program. Current materials cannot function satisfactorily in the deep space environments and do not meet the requirements of long term space propulsion concepts for manned missions. Directed research is needed to better understand materials behavior for optimizing their processing. This research, generating a deeper understanding of material behavior, can lead to enhanced implementation of materials for future exploration vehicles. materials providing new approaches for manufacture and new options for In response to this need for more robust materials, NASA's Exploration Systems Mission Directorate (ESMD) has established a strategic research initiative dedicated to materials development supporting NASA's space propulsion needs. The Advanced Materials for Exploration (AME) element directs basic and applied research to understand material behavior and develop improved materials allowing propulsion systems to operate beyond their current limitations. This paper will discuss the approach used to direct the path of strategic research for advanced materials to ensure that the research is indeed supportive of NASA's future missions to the moon, Mars, and beyond.

  12. Role of Fundamental Physics in Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava

    2004-01-01

    This talk will discuss the critical role that fundamental physics research plays for the human space exploration. In particular, the currently available technologies can already provide significant radiation reduction, minimize bone loss, increase crew productivity and, thus, uniquely contribute to overall mission success. I will discuss how fundamental physics research and emerging technologies may not only further reduce the risks of space travel, but also increase the crew mobility, enhance safety and increase the value of space exploration in the near future.

  13. Measuring the Value of AI in Space Science and Exploration

    NASA Astrophysics Data System (ADS)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  14. Research and technology report, 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.

  15. Third Microgravity Fluid Physics Conference

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The conference's purpose was to inform the fluid physics community of research opportunities in reduced-gravity fluid physics, present the status of the existing and planned reduced gravity fluid physics research programs, and inform participants of the upcoming NASA Research Announcement in this area. The plenary sessions provided an overview of the Microgravity Fluid Physics Program, present and future areas of emphasis, information on NASA's ground-based and space-based flight research facilities-especially use of the International Space Station, and the process by which future investigators enter the program. An international forum offered participants an opportunity to hear from Russian speakers about their microgravity research programs. Three keynote speakers provided broad technical overviews on the history and future development of the moon and on multiphase flow and complex fluids research. One keynote paper and an extended abstract are included in the proceedings. One hundred and thirty-two technical papers were presented in 28 sessions. Presenters briefed their peers on the scientific results of their ground-based and flight research. One hundred and twenty-two papers are included here.

  16. The economics of microgravity research.

    PubMed

    DiFrancesco, Jeanne M; Olson, John M

    2015-01-01

    In this introduction to the economics of microgravity research, DiFrancesco and Olson explore the existing landscape and begin to define the requirements for a robust, well-funded microgravity research environment. This work chronicles the history, the opportunities, and how the decisions made today will shape the future. The past 60 years have seen tremendous growth in the capabilities and resources available to conduct microgravity science. However, we are now at an inflection point for the future of humanity in space. A confluence of factors including the rise of commercialization, a shifting funding landscape, and a growing international presence in space exploration, and terrestrial research platforms are shaping the conditions for full-scale microgravity research programs. In this first discussion, the authors focus on the concepts of markets, tangible and intangible value, research pathways and their implications for investments in research projects, and the collateral platforms needed. The opportunities and implications for adopting new approaches to funding and market-making illuminate how decisions made today will affect the speed of advances the community will be able to achieve in the future.

  17. The economics of microgravity research

    PubMed Central

    DiFrancesco, Jeanne M; Olson, John M

    2015-01-01

    In this introduction to the economics of microgravity research, DiFrancesco and Olson explore the existing landscape and begin to define the requirements for a robust, well-funded microgravity research environment. This work chronicles the history, the opportunities, and how the decisions made today will shape the future. The past 60 years have seen tremendous growth in the capabilities and resources available to conduct microgravity science. However, we are now at an inflection point for the future of humanity in space. A confluence of factors including the rise of commercialization, a shifting funding landscape, and a growing international presence in space exploration, and terrestrial research platforms are shaping the conditions for full-scale microgravity research programs. In this first discussion, the authors focus on the concepts of markets, tangible and intangible value, research pathways and their implications for investments in research projects, and the collateral platforms needed. The opportunities and implications for adopting new approaches to funding and market-making illuminate how decisions made today will affect the speed of advances the community will be able to achieve in the future. PMID:28725707

  18. Crystal Growth and Other Materials Physical Researches in Space Environment

    NASA Astrophysics Data System (ADS)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  19. NASA Propulsion Engineering Research Center, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.

  20. Effects of radiation on DNA's double helix

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)

  1. Biotechnology

    NASA Image and Video Library

    2003-01-22

    The blueprint of life, DNA's double helix is found in the cells of everything from bacteria to astronauts. Exposure to radiation(depicted at right) such as X-rays (upper) or heavy ion particles (lower), can damage DNA and cause dire consequences both to the organism itself and to future generations. One of NASA's main goals is to develop better radiation shielding materials to protect astronauts from destructive radiation in space. This is particularly important for long space missions. NASA has selected researchers to study materials that provide better shielding. This research is managed by NASA's Office of Biological and Physical Research and is supported by the Microgravity Science and Applications Department at NASA's Marshall Center. During International Space Station Expedition Six, the Extravehicular Activity Radiation Monitoring (EVARM) will continue to measure radiation dosage encountered by the eyes, internal organs and skin during specific spacewalks, and relate it to the type of activity, location and other factors. An analysis of this information may be useful in mitigating potential exposure to space walkers in the future. (Illustration by Dr. Frank Cucinotta, NASA/Johnson Space Center, and Prem Saganti, Lockheed Martin)

  2. Plant biology in space: recent accomplishments and recommendations for future research.

    PubMed

    Ruyters, G; Braun, M

    2014-01-01

    Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as components of bioregenerative life support and energy systems that are necessary to complement physico-chemical systems in upcoming long-term exploratory missions. In order to achieve major progress in the future, however, standardised experimental conditions and more advanced analytical tools, such as state-of-the-art onboard analysis, are required. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Human Research Program Human Health Countermeasures Element Nutrition Risk Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Bistrian, Bruce

    2009-01-01

    The Nutrition Risk Standing Review Panel (SRP) reviewed and discussed the specific gaps and tasks for the Human Health Countermeasures (HHC) Element related to nutrition identified in the Human Research Program (HRP) Integrated Research Plan. There was general consensus that the described gaps and proposed tasks were critical to future NASA mission success. The SRP acknowledged the high scientific quality of the work currently being undertaken by the Nutritional Biochemistry group under the direction of Dr. Scott Smith. In review of the entire HRP, four new gaps were identified that complement the Element's existing research activities. Given the limitations of ground-based analogs for many of the unique physiological and metabolic alterations in space, future studies are needed to quantify nutritional factors that change during actual space flight. In addition, future tasks should seek to better evaluate the time course of physiological and metabolic alterations during flight to better predict alterations during longer duration missions. Finally, given the recent data suggesting a potential role for increased inflammatory responses during space flight, the role of inflammation needs to be explored in detail, including the development of potential countermeasures and new ground based analogs, if this possibility is confirmed.

  4. The NASA Space Radiation Research Program

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2006-01-01

    We present a comprehensive overview of the NASA Space Radiation Research Program. This program combines basic research on the mechanisms of radiobiological action relevant for improving knowledge of the risks of cancer, central nervous system and other possible degenerative tissue effects, and acute radiation syndromes from space radiation. The keystones of the NASA Program are five NASA Specialized Center's of Research (NSCOR) investigating space radiation risks. Other research is carried out through peer-reviewed individual investigations and in collaboration with the US Department of Energies Low-Dose Research Program. The Space Radiation Research Program has established the Risk Assessment Project to integrate data from the NSCOR s and other peer-reviewed research into quantitative projection models with the goals of steering research into data and scientific breakthroughs that will reduce the uncertainties in current risk projections and developing the scientific knowledge needed for future individual risk assessment approaches and biological countermeasure assessments or design. The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory was created by the Program to simulate space radiation on the ground in support of the above research programs. New results from NSRL will be described.

  5. Living aloft: Human requirements for extended spaceflight

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Harrison, A. A.; Akins, F. R.

    1985-01-01

    Human psychological and social adjustment to space is investigated. Studies and experiences bearing on human performance capability, psychological well being, and social organization, as they relate to space, were identified and assessed, and suggestions offered as to where further research could ease the Earth/space transition. Special emphasis was given to the variables of crew size, crew diversity, and mission duration, all of which can be expected to increase in future spaceflight. By providing a conceptual framework in which issues and related information can be integrated, the hope is to aid in discovering those conditions under which future space travelers can flourish.

  6. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  7. In-Space Networking On NASA's SCaN Testbed

    NASA Technical Reports Server (NTRS)

    Brooks, David; Eddy, Wesley M.; Clark, Gilbert J., III; Johnson, Sandra K.

    2016-01-01

    The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios (SDRs) and a programmable flight computer. The purpose of the Testbed is to conduct inspace research in the areas of communication, navigation, and networking in support of NASA missions and communication infrastructure. Multiple reprogrammable elements in the end to end system, along with several communication paths and a semi-operational environment, provides a unique opportunity to explore networking concepts and protocols envisioned for the future Solar System Internet (SSI). This paper will provide a general description of the system's design and the networking protocols implemented and characterized on the testbed, including Encapsulation, IP over CCSDS, and Delay-Tolerant Networking (DTN). Due to the research nature of the implementation, flexibility and robustness are considered in the design to enable expansion for future adaptive and cognitive techniques. Following a detailed design discussion, lessons learned and suggestions for future missions and communication infrastructure elements will be provided. Plans for the evolving research on SCaN Testbed as it moves towards a more adaptive, autonomous system will be discussed.

  8. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  9. Proceedings of the First Biennial Space Biomedical Investigators' Workshop

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The First Biennial Space Biomedical Investigators' Workshop, held January 11-13, 1999, was unique in that it assembled, for the first time, a broad cross section of NASA-funded biomedical researchers to present the current status of their projects and their plans for future investigations. All principal investigators with active, or recently-completed ground-based projects in NASA's Biomedical Research and Countermeasures Program that were funded through NASA's Office of Life and Microgravity Sciences and Applications were invited. Included were individual investigators funded through NASA Research Announcements, investigators with NASA Specialized Centers of Research and Training, investigators with the recently established National Space Biomedical Research Institute (NSBRI), and NASA civil servant investigators. Seventy-seven percent of all eligible projects were presented at the workshop. Thus, these Proceedings should provide a useful snapshot of the status of NASA-funded space biomedical research as of January 1999. An important workshop objective was to achieve free and open communication among the presenting investigators. Therefore, presentation of new and incomplete results, as well as hypotheses and ideas for future research, was encouraged. Comments and constructive criticisms from the presenters' colleagues were also encouraged. These ground rules resulted in many lively and useful discussions, during both the presentation sessions and informal evening gatherings and breaks.

  10. Research Opportunities in Nutrition and Metabolism in Space

    NASA Technical Reports Server (NTRS)

    Altman, Philip L. (Editor); Fisher, Kenneth D. (Editor)

    1986-01-01

    The objectives of the Life Sciences Research Office (LSRO) study on nutrient requirements for meeting metabolic needs in manned space flights are as follows: review extant knowledge on the subject; identify significant gaps in knowledge; formulate suggestions for possible research; and produce a documented report of the foregoing items that can be used for program planning. In accordance with NASA's request for this study, the report focuses on issues of nutrition and metabolism that relate primarily to the contemplated United States Space Station, secondarily to the Shuttle Program as an orbital test bed for operational studies, and incidentally to scenarios for future long-term space flights. Members of the LSRO ad hoc Working Group on Nutrition and Metabolism were provided with pertinent articles and summaries on the subject. At the meeting of the Working Group, presentations were made by NASA Headquarters program staff on past experiences relative to space-flight nutrition and metabolism, as well as scenarios for future flights. The discussions of the ad hoc Working Group focused on the following: (1) metabolic needs related to work and exercise; (2) nutrients required to meet such needs; (3) food types, management, and records; and (4) nutritional amelioration or prevention of space-related physiological and behavioral changes.

  11. HRP Chief Scientist's Office: Conducting Research to Enable Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Fogarty, J.; Vega, L.; Cromwell, R. L.; Haven, C. P.; McFather, J. C.; Savelev, I.

    2017-01-01

    The HRP Chief Scientist's Office sets the scientific agenda for the Human Research Program. As NASA plans for deep space exploration, HRP is conducting research to ensure the health of astronauts, and optimize human performance during extended duration missions. To accomplish this research, HRP solicits for proposals within the U.S., collaborates with agencies both domestically and abroad, and makes optimal use of ISS resources in support of human research. This session will expand on these topics and provide an opportunity for questions and discussion with the HRP Chief Scientist. Presentations in this session will include: NRA solicitations - process improvements and focus for future solicitations, Multilateral Human Research Panel for Exploration - future directions (MHRPE 2.0), Extramural liaisons - National Science Foundation (NSF) and Department of Defense (DOD), Standardized Measures for spaceflight, Ground-based Analogs - international collaborations, and International data sharing.

  12. Global Survey on Future Trends in Human Spaceflight: the Implications for Space Tourism

    NASA Astrophysics Data System (ADS)

    Gurtuna, O.; Garneau, S.

    2002-01-01

    With the much-publicized first ever space tourist flight, of Dennis Tito, and the announcement of the second space tourist flight to take place in April 2002, it is clear that an alternative motivation for human spaceflight has emerged. Human spaceflight is no longer only about meeting the priorities of national governments and space agencies, but is also about the tangible possibility of ordinary people seeing the Earth from a previously exclusive vantage point. It is imperative that major space players look beyond the existing human spaceflight rationale to identify some of the major driving forces behind space tourism, including the evolving market potential and developments in enabling technologies. In order to determine the influence of these forces on the future of commercial human spaceflight, the responses of a Futuraspace survey on future trends in human spaceflight are analyzed and presented. The motivation of this study is to identify sought-after space destinations, explore the expected trends in enabling technologies, and understand the future role of emerging space players. The survey will reflect the opinions of respondents from around the world including North America, Europe (including Russia) and Asia. The profiles of targeted respondents from space industry, government and academia are high-level executives/managers, senior researchers, as well as former and current astronauts. The survey instrument is a questionnaire which is validated by a pilot study. The sampling method is non-probabilistic, targeting as many space experts as possible who fit our intended respondent profile. Descriptive and comparative statistical analysis methods are implemented to investigate both global and regional perceptions of future commercial trends in human spaceflight. This study is not intended to be a formal market study of the potential viability of the space tourism market. Instead, the focus is on the future trends of human spaceflight, by drawing on the knowledge and vision of a pool of space experts from many countries, representing the multidisciplinary and international nature of human spaceflight. A comprehensive look into the future can be achieved which surpasses our individual perceptions of future trends and which will complement existing and future space tourism market studies.

  13. NASA Life Sciences Data Repositories: Tools for Retrospective Analysis and Future Planning

    NASA Technical Reports Server (NTRS)

    Thomas, D.; Wear, M.; VanBaalen, M.; Lee, L.; Fitts, M.

    2011-01-01

    As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future research studies.

  14. The NASA Microgravity Fluid Physics Program: Knowledge for Use on Earth and Future Space Missions

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Alexander, J. Iwan; Shaw, Nancy J.; Hill, Myron E.; Gati, Frank G.

    2002-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. The purpose of the Fluid Physics Program is to support the goals of NASA's Biological and Physical Research Enterprise which seeks to exploit the space environment to conduct research and to develop commercial opportunities, while building the vital knowledge base needed to enable efficient and effective systems for protecting and sustaining humans during extended space flights. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, multiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA-sponsored fluid physics and transport phenomena studies will be carried out on the International Space Station in the Fluids Integrated Rack, in the Microgravity Science Glovebox, in EXPRESS racks, and in other facilities provided by international partners. This paper will present an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to achieve this research.

  15. Large space structures controls research and development at Marshall Space Flight Center: Status and future plans

    NASA Technical Reports Server (NTRS)

    Buchanan, H. J.

    1983-01-01

    Work performed in Large Space Structures Controls research and development program at Marshall Space Flight Center is described. Studies to develop a multilevel control approach which supports a modular or building block approach to the buildup of space platforms are discussed. A concept has been developed and tested in three-axis computer simulation utilizing a five-body model of a basic space platform module. Analytical efforts have continued to focus on extension of the basic theory and subsequent application. Consideration is also given to specifications to evaluate several algorithms for controlling the shape of Large Space Structures.

  16. Microgravity Fluid Management Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.

  17. NASA Space Engineering Research Center Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1990-01-01

    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers.

  18. Activities on space debris in U.S.

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  19. Activities on Space Debris in U.S.

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  20. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  1. Proceedings of the NASA Conference on Space Telerobotics, volume 3

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  2. History of nutrition in space flight: overview

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  3. History of nutrition in space flight: overview.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.

  4. Proceedings of the NASA Conference on Space Telerobotics, volume 2

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor); Seraji, Homayoun (Editor)

    1989-01-01

    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research.

  5. Space batteries for mobile battlefield power applications

    NASA Technical Reports Server (NTRS)

    O'Donnell, Patricia M.

    1991-01-01

    A review of space power systems was undertaken to identify advanced space batteries for mobile applications. State-of-the-art systems are described. The technology issues that need to be addressed in order to bring these systems along and meet the needs of the user are discussed. Future research directions are examined.

  6. Opportunities for research in space life sciences aboard commercial suborbital flights.

    PubMed

    Wagner, Erika B; Charles, John B; Cuttino, Charles Marsh

    2009-11-01

    The emergence of commercial suborbital spaceflight offers a wide range of new research and development opportunities for those in the space life sciences. Large numbers of diverse flyers, frequent re-flights, and flexible operations provide a fertile ground for both basic and applied science, as well as technology demonstrations. This commentary explores some of the unique features available to the space life science community and encourages engagement with commercial developers and operators during the design phase to help optimize platform designs and operations for future research.

  7. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.

    PubMed

    Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob

    2014-02-01

    Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark

    2015-01-01

    NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.

  9. Space Opportunities for Tropospheric Chemistry Research

    NASA Technical Reports Server (NTRS)

    Levine, Joel S. (Editor)

    1987-01-01

    The objective of this workshop was to assess future technological and scientific directions for measurements of tropospheric trace gases and aerosols from space. Various instrument technologies were considered including spectrometry, gas correlation filter radiometry, spectral radiometry, and lidar.

  10. Space Weather Research: Indian perspective

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  11. Research on Retro-reflecting Modulation in Space Optical Communication System

    NASA Astrophysics Data System (ADS)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  12. Space artificial gravity facilities - An approach to their construction

    NASA Technical Reports Server (NTRS)

    Wercinski, P. F.; Searby, N. D.; Tillman, B. W.

    1988-01-01

    In the course of adaptation to a space microgravity environment, humans experience cardiovascular deconditioning, loss of muscle mass, and loss of bone minerals. One possible solution to these space adaptation problems is to simulate earth's gravity using the centripetal acceleration created by a rotating system. The design and construction of rotating space structures pose many challenges. Before committing to the use of artificial gravity in future space missions, a man-rated Variable Gravity Research Facility (VGRF) should be developed in earth orbit as a gravitational research tool and testbed. This paper addresses the requirements and presents preliminary concepts for such a facility.

  13. Understanding climate: A strategy for climate modeling and predictability research, 1985-1995

    NASA Technical Reports Server (NTRS)

    Thiele, O. (Editor); Schiffer, R. A. (Editor)

    1985-01-01

    The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.

  14. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating, the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics. This program was proposed and accepted as a three year research program, a period of time necessary to make the type of fundamental developments to make a significant contributions to space robotics. Unfortunately, less than a year into the program it became clear that the NASA Langley Research Center would be forced by budgetary constraints to essentially leave this area of research. As a result, the total funding we received under this grant represented approximately one year of the original, proposed and approved, funding. For some time, there was substantial uncertainty that even this very reduced level of funding would be provided. The spending of the reduced available funds was spread just over two years to provide the support to permit the MS students who had joined the program to receive their master's degree and terminate their studies in this area.

  15. Microgravity

    NASA Image and Video Library

    2000-01-31

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  16. A Year in the Life of International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2006-01-01

    The past twelve months (October 2005 to September 2006) have been among the busiest in the life of the International Space Station (ISS), both in terms of on-orbit operations as well as future planning, for both ISS systems and research. The Expedition 12 and 13 crews completed their missions successfully, carrying out research for Russia, the United States, Europe and Japan, and bringing continuous ISS occupancy to nearly six years. The European Space Agency's (ESA) first Long Duration Mission on ISS is underway, involving significant international research. The Expedition 14 crew completed its training and is embarking on its own 6-month mission with a full slate of international research. Future crews are in training for their respective assembly and research missions. Shuttle flights resumed after a 10-month hiatus, delivering new research facilities and resuming assembly of ISS. ESA's Columbus research module was delivered to the Kennedy Space Center, joining Japan's Kibo research module already there. Following preflight testing, the two modules will launch in 2007 and 2008, respectively, joining Destiny as ISS's research infrastructure. A revised ISS configuration and assembly sequence were endorsed by all the Partners, with a reduced number of Shuttle flights, but for the first time including plans for post-Shuttle ISS operations after 2010. The new plan will pose significant challenges to the ISS research community. As Europe and Japan build their on-orbit research infrastructure, and long-term plans become firmer, the next 12 months should prove to be equally challenging and exciting.

  17. Behavioral Health and Performance at NASA JSC: Recent Successes and Future Plan for BHP Research and Operations

    NASA Technical Reports Server (NTRS)

    Leveton, L. B.; VanderArk, S. T.

    2014-01-01

    The Behavioral Health and Performance discipline at NASA Johnson Space Center is organized into two distinct Divisions (Biomedical Research and Environmental Science Division and Space and Clinical Operations Division) but is integrated and interrelated in its day-to-day work. Ongoing operations supporting NASA's spaceflight goals benefit from the research portfolios that address risks to mission success. Similarly, these research portfolios are informed by operations to ensure investigations stay relevant given the dynamic environment of spaceflight. There are many success stories that can be presented where initial work begun as a BHP Research project, and funded through the Human Research Program, was fully implemented in operations or addressed an operational need. Examples include improving effectiveness of the debriefings used within Mission Control by the Mission Operations Directorate and countermeasures for fatigue management. There is also ongoing collaboration with research and operations for developing selection methods for future generation astronauts, and to enhance and inform the current family support function. The objective of this panel is to provide examples of recent success stories, describe areas where close collaboration is benefitting ongoing research and operations, and summarize how this will come together as NASA plans for the one year ISS mission - a unique opportunity for both BHP operations and research to learn more about preparing and supporting crewmembers for extended missions in space. The proposed panel will be comprised of six presentations, each describing a unique aspect of research or operations and the benefits to current and future spaceflight.

  18. Growth requirements for multidiscipline research and development on the evolutionary space station

    NASA Technical Reports Server (NTRS)

    Meredith, Barry; Ahlf, Peter; Saucillo, Rudy; Eakman, David

    1988-01-01

    The NASA Space Station Freedom is being designed to facilitate on-orbit evolution and growth to accommodate changing user needs and future options for U.S. space exploration. In support of the Space Station Freedom Program Preliminary Requirements Review, The Langley Space Station Office has identified a set of resource requirements for Station growth which is deemed adequate for the various evolution options. As part of that effort, analysis was performed to scope requirements for Space Station as an expanding, multidiscipline facility for scientific research, technology development and commercial production. This report describes the assumptions, approach and results of the study.

  19. Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives

    PubMed Central

    Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao

    2014-01-01

    Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885

  20. Psychological and interpersonal issues in space.

    PubMed

    Kanas, N

    1987-06-01

    As future manned space missions become longer, and as crews become more heterogeneous, psychological and interpersonal factors will take on increasing importance in assuring mission success. On the basis of a review of more than 60 American and Soviet space simulation studies on Earth, along with reports from U.S. and Soviet space missions, the author identifies nine psychological and seven interpersonal issues, which are discussed along with pertinent research findings and examples from manned spaceflights. He concludes that more psychological and interpersonal research should be done under actual spaceflight conditions and offers suggestions.

  1. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  2. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, pours a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  3. KSC-04PD-1293

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Dr. Gary Stutte explains to Paul Curto (right), chief technologist with NASAs Inventions and Contributions Board, the research being done in this plant growth chamber in the Space Life Sciences Lab. Stutte is a senior research scientist with Dynamac Corp. Curto is visiting KSC to talk to innovators and encourage workers to submit technologies for future Space Act Awards. The Inventions and Contributions Board, established in 1958, is a major contributor in rewarding outstanding scientific or technical contributions sponsored, adopted, supported or used by NASA that are significant to aeronautics and space activities.

  4. Fluid management in space construction

    NASA Technical Reports Server (NTRS)

    Snyder, Howard

    1989-01-01

    The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.

  5. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  6. Space Mechanisms Technology Workshop

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B. (Editor)

    2001-01-01

    The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop to discuss the state of drive systems technology needed for space exploration. The Workshop was held Thursday, November 2, 2000. About 70 space mechanisms experts shared their experiences from working in this field and considered technology development that will be needed to support future space exploration in the next 10 to 30 years.

  7. Alignment achieved? The learning landscape and curricula in health profession education.

    PubMed

    Nordquist, Jonas

    2016-01-01

    The overall aim of this review is to map the area around the topic of the relationship between physical space and learning and to then draw further potential implications from this for the specific area of health profession education. The nature of the review is a scoping review following a 5-step-model by Arksey & O'Malley. The charting of the data has been conducted with the help of the networked learning landscape framework from Nordquist and Laing. The majority of the research studies on classroom-scale level have focused on how technology may enable active learning. There are no identified research studies on the building-scale level. Hence, the alignment of curricula and physical learning spaces has scarcely been addressed in research from other sectors. In order to 'create a field', conclusions from both case studies and research in related areas must be identified and taken into account to provide insights into health profession education. Four areas have been identified as having potential for future development in health profession education: (i) active involvement of faculty members in the early stages of physical space development; (ii) further development of the assessment strategies for evaluating how physical space impacts learning; (iii) exploration of how informal spaces are being developed in other sectors; and (iv) initiating research projects in HPE to study how informal spaces impact on students' learning. Potentially, the results of this scoping review will result in better future research questions and better-designed studies in this new and upcoming academic field of aligning physical learning spaces and curricula in health profession education. © 2015 John Wiley & Sons Ltd.

  8. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  9. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017.

  10. Estimating the Effects of Astronaut Career Ionizing Radiation Dose Limits on Manned Interplanetary Flight Programs

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.

    2013-01-01

    The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.

  11. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  12. The 1989 long-range program plan

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The President's National Space Policy of 1988 reaffirms that space activities serve a variety of vital national goals and objectives, including the strengthening of U.S. scientific, technological, political, economic, and international leadership. The new policy stresses that civil space activities contribute significantly to enhancing America's world leadership. Goals and objectives must be defined and redefined, and each advance toward a given objective must be viewed as a potential building block for future programs. This important evolutionary process for research and development is reflected, describing NASA's program planning for FY89 and later years. This plan outlines the direction of NASA's future activities by discussing goals, objectives, current programs, and plans for the future. The 1989 plan is consistent with national policy for both space and aeronautics, and with the FY89 budget that the President submitted to Congress in February 1988.

  13. Intracranial Hypertension Research Foundation

    MedlinePlus

    ... Diseases Registry (GRDR) IHRF Scientific Advisor Awarded NSBRI/NASA Grant to Study Non-Invasive Pressure Monitoring CNN: ... For Future Deep Space Missions IHRF Part Of NASA Research Team On Microgravity-Induced IH Is Vision ...

  14. The Japanese and Indian space programmes : two roads into space

    NASA Astrophysics Data System (ADS)

    Harvey, Brian

    The development of the space industry in the Asian and Pacific Rim region provides the context for this book. The two major countries hoping for leadership in the area (apart from China) are Japan and India, both of whom have significant launcher capabilities.There is a general introductory chapter which places the space programmes of the region in the comparative context of the other space-faring nations of the world. The author reviews the main space programmes of Japan and India in turn, concentrating on their origins, the development of launcher and space facilities, scientific and engineering programmes, and future prospects.The book concludes with a chapter comparing how similarly/differently Japan and India are developing their space programmes, how they are likely to proceed in the future, and what impact the programmes have had in their own region and what they have contributed so far to global space research.

  15. Space station systems analysis study. Part 1, volume 1: Executive study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.

  16. Innovation: Key to the future

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics.

  17. Space Station Freedom: A foothold on the future

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An overview of the Space Station Freedom is given. Its modules are discussed and illustrated along with its microgravity research facilities. These facilities include the advanced protein crystal growth facility, the containerless processing facility, a furnace facility, a combustion facility, and a fluid physics/dynamics facility. The topic of living in space is also addressed.

  18. Man in space: The use of animal models

    NASA Astrophysics Data System (ADS)

    Ballard, Rodney W.; Souza, Kenneth A.

    Animals have traditionally preceded man into space. During animal and human travels in space over the past almost 30 years, numerous anatomical, physiological, and biochemical changes have been observed. In order to safely qualify humans for extended duration space missions, scientific research needs to be performed. It may be possible to achieve many of these research goals with flight crews serving as experimental subjects; however, to do this with human subjects alone is impractical. Therefore, the use of animal surrogates as experimental subjects is essential to provide the missing information on the effects of spaceflights, to validate countermeasures, and to test medical treatment techniques which will be necessary for long duration missions. This research to assure human health, safety, and productivity in future extended duration space flights will include flights on NASA's Space Shuttle, unmanned biosatellites, and the Space Station Freedom.

  19. Man in space: the use of animal models.

    PubMed

    Ballard, R W; Souza, K A

    1991-01-01

    Animals have traditionally preceded man into space. During animal and human travels in space over the past almost 30 years, numerous anatomical, physiological, and biochemical changes have been observed. In order to safely qualify humans for extended duration space missions, scientific research needs to be performed. It may be possible to achieve many of these research goals with flight crews serving as experimental subjects; however, to do this with human subjects alone is impractical. Therefore, the use of animal surrogates as experimental subjects is essential to provide the missing information on the effects of spaceflights, to validate countermeasures, and to test medical treatment techniques which will be necessary for long duration missions. This research to assure human health, safety, and productivity in future extended duration space flights will include flights on NASA's Space Shuttle, unmanned biosatellites, and the Space Station Freedom.

  20. Glenn Research Center Human Research Program: Overview

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Myers, Jerry G.

    2013-01-01

    The NASA-Glenn Research Centers Human Research Program office supports a wide range of technology development efforts aimed at enabling extended human presence in space. This presentation provides a brief overview of the historical successes, current 2013 activities and future projects of NASA-GRCs Human Research Program.

  1. Class Explorations in Space: From the Blackboard and History to the Outdoors and Future

    NASA Astrophysics Data System (ADS)

    Cavicchi, Elizabeth

    2011-11-01

    Our everyday activities occur so seamlessly in the space around us as to leave us unawares of space, its properties, and our use of it. What might we notice, wonder about and learn through interacting with space exploratively? My seminar class took on that question as an opening for personal and group experiences during this semester. In the process, they observe space locally and in the sky, read historical works of science involving space, and invent and construct forms in space. All these actions arise responsively, as we respond to: physical materials and space; historical resources; our seminar participants, and future learners. Checks, revisions and further developments -- on our findings, geometrical constructions, shared or personal inferences---come about observationally and collaboratively. I teach this seminar as an expression of the research pedagogy of critical exploration, developed by Eleanor Duckworth from the work of Jean Piaget, B"arbel Inhelder and the Elementary Science Study. This practice applies the quest for understanding of a researcher to spontaneous interactions evolving within a classroom. The teacher supports students in satisfying and developing their curiosities, which often results in exploring the subject matter by routes that are novel to both teacher and student. As my students ``mess about'' with geometry, string and chalk at the blackboard, in their notebooks, and in response to propositions in Euclid's Elements, they continually imagine further novel venues for using geometry to explore space. Where might their explorations go in the future? I invite you to hear from them directly!

  2. Sustainable and Autonomic Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

    2006-01-01

    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

  3. Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Allen, Christopher S.; Barshi, Immanuel; Billman, Dorrit; Holden, Kritina L.

    2010-01-01

    As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities.

  4. Life support for aquatic species - past; present; future

    NASA Astrophysics Data System (ADS)

    Slenzka, K.

    Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.

  5. Feasibility of remotely manipulated welding in space: A step in the development of novel joining technologies

    NASA Technical Reports Server (NTRS)

    Masubuchi, K.; Agapakis, J. E.; Debiccari, A.; Vonalt, C.

    1985-01-01

    A six month research program entitled Feasibility of Remotely Manipulated Welding in Space - A Step in the Development of Novel Joining Technologies is performed at the Massachusetts Institute of Technology for the Office of Space Science and Applications, NASA, under Contract No. NASW-3740. The work is performed as a part of the Innovative Utilization of the Space Station Program. The final report from M.I.T. was issued in September 1983. This paper presents a summary of the work performed under this contract. The objective of this research program is to initiate research for the development of packaged, remotely controlled welding systems for space construction and repair. The research effort includes the following tasks: (1) identification of probable joining tasks in space; (2) identification of required levels of automation in space welding tasks; (3) development of novel space welding concepts; (4) development of recommended future studies; and (5) preparation of the final report.

  6. NASA Space Engineering Research Center for utilization of local planetary resources

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In 1987, responding to widespread concern about America's competitiveness and future in the development of space technology and the academic preparation of our next generation of space professionals, NASA initiated a program to establish Space Engineering Research Centers (SERC's) at universities with strong doctoral programs in engineering. The goal was to create a national infrastructure for space exploration and development, and sites for the Centers would be selected on the basis of originality of proposed research, the potential for near-term utilization of technologies developed, and the impact these technologies could have on the U.S. space program. The Centers would also be charged with a major academic mission: the recruitment of topnotch students and their training as space professionals. This document describes the goals, accomplishments, and benefits of the research activities of the University of Arizona/NASA SERC. This SERC has become recognized as the premier center in the area known as In-Situ Resource Utilization or Indigenous Space Materials Utilization.

  7. Human behavioral research in space: quandaries for research subjects and researchers

    NASA Technical Reports Server (NTRS)

    Shepanek, Marc

    2005-01-01

    With the advent of long-duration spaceflight on board the International Space Station (ISS) and possible future missions beyond low Earth orbit (LEO) such as Mars, it is critical that those at NASA have a realistic assessment of the challenges that will face individuals on long-duration missions so that they can develop preventive and real-time countermeasures to behavioral health issues. While space travellers are very interested in having countermeasures to the deleterious effects of space missions, they have a powerful disincentive to participate in this research if they feel it could in any way negatively affect their flight status. The behavioral issues of isolation and confinement for extended-duration space missions are reviewed. Areas of basic and clinical behavioral research are listed. And the classical clinical model for research is not considered appropriate for the current configuration of the space program. The use of analogue environments and advanced statistical analysis are suggested as ways to address the limited spaceflight research opportunities. The challenge of research subject or patient confidentiality vs. mission safety and issues of personal flight status are addressed.

  8. Human behavioral research in space: quandaries for research subjects and researchers.

    PubMed

    Shepanek, Marc

    2005-06-01

    With the advent of long-duration spaceflight on board the International Space Station (ISS) and possible future missions beyond low Earth orbit (LEO) such as Mars, it is critical that those at NASA have a realistic assessment of the challenges that will face individuals on long-duration missions so that they can develop preventive and real-time countermeasures to behavioral health issues. While space travellers are very interested in having countermeasures to the deleterious effects of space missions, they have a powerful disincentive to participate in this research if they feel it could in any way negatively affect their flight status. The behavioral issues of isolation and confinement for extended-duration space missions are reviewed. Areas of basic and clinical behavioral research are listed. And the classical clinical model for research is not considered appropriate for the current configuration of the space program. The use of analogue environments and advanced statistical analysis are suggested as ways to address the limited spaceflight research opportunities. The challenge of research subject or patient confidentiality vs. mission safety and issues of personal flight status are addressed.

  9. KSC00pp0849

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  10. KSC-00pp0849

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  11. Space Studies Board Annual Report 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During 1995, the Space Studies Board and its committees and task groups gathered for a total of 40 meetings. Highlights of these meetings are presented. Formal study reports and short reports developed and approved during the meetings and issued during 1995 are represented in this annual report either by their executive summaries (for full-length reports), or by reproduction in full (for short reports). Nine full-length reports were distributed or delivered, including a congressionally mandated report by the Committee on the Future of Space Science and a comprehensive survey of Earth observation programs by the Committee on Earth Studies. Major research guidance reports were completed and published by the Committee on Microgravity Research and by the federated Committee on Solar and Space Physics/Committee on Solar-Terrestrial Research. Several significant assessment reports were also published, including an assessment of small missions by the Committee on Planetary and Lunar Exploration, a scientific evaluation of Gravity Probe B by the Task Group on Gravity Probe B, and an analysis of technologies for a 4-meter active optics telescope by the Task Group on BMDO New Technology Orbital Observatory. In addition, the Committee on Astronomy and Astrophysics Panel on Ground-based Optical and Infrared Astronomy released its report, and the Task Group on Priorities in Space Research issued its second and final report. Five short reports were also prepared and released during 1995. They addressed such diverse topics as reflight of shuttle-borne synthetic aperture radars, the role of NASA centers and center scientists in scientific research, guidelines for establishment of NASA research institutes, and clarification of findings of the microgravity research opportunities report and of the Future of Space Science Committee's management study.

  12. Study to identify future cryogen payload elements/users for space shuttle launch during period 1990 to 2000

    NASA Technical Reports Server (NTRS)

    Elim, Frank M.

    1989-01-01

    This study provides a summary of future cryogenic space payload users, their currently projected needs and reported planning for space operations over the next decade. At present, few users with payloads consisting of reactive cryogens, or any cryogen in significant quantities, are contemplating the use of the Space Shuttle. Some members of the cryogenic payload community indicated an interest in flying their future planned payloads on the orbiter, versus an expendable launch vehicle (ELV), but are awaiting the outcome of a Rockwell study to define what orbiter mods and payloads requirements are needed to safely fly chemically reactive cryogen payloads, and the resultant cost, schedule, and operational impacts. Should NASA management decide in early 1990 to so modify orbiter(s), based on the Rockwell study and/or changes in national defense payloads launch requirements, then at least some cryo payload customers will reportedly plan on using the Shuttle orbiter vehicle in preference to an ELV. This study concludes that the most potential for possible future cryogenic space payloads for the Space Transportation System Orbiter fleet lies within the scientific research and defense communities.

  13. The NASA Space Biology Program

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.

    1982-01-01

    A discussion is presented of the research conducted under the auspices of the NASA Space Biology Program. The objectives of this Program include the determination of how gravity affects and how it has shaped life on earth, the use of gravity as a tool to investigate relevant biological questions, and obtaining an understanding of how near-weightlessness affects both plants and animals in order to enhance the capability to use and explore space. Several areas of current developmental research are discussed and the future focus of the Program is considered.

  14. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production. This work is supported by NASA.

  15. Future Food Production System Development Pulling from Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Romeyn, M. W.; Fritsche, R. F.

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production.

  16. GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa

    2004-01-01

    The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.

  17. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  18. STEM Education as a Gateway to Future Astronomy: the Case of Ethiopian Universities

    NASA Astrophysics Data System (ADS)

    Adhana Teklr, Kelali

    2015-08-01

    Over last two decades education sector in Ethiopia has got due attention. To meet the education deficit of the nation number of universities has been increased from two to thirty eight and twelve more are coming soon. The proliferation has brought a spillover effect that universities have to compete for center excellence in research and education. Convincingly, government’s support is geared towards knowledge-based and innovation-driven system of education to back up the green economic development plan.In an effort to build inclusive economic development emphasis is given to innovative competency building through science and technology fields. The universities in the nation have establish laboratories to educate school boys and girls at early stage of their schooling in STEM (Science, Technology, Engineering and Mathematics) subjects as means to paving future destiny. Though most of the astronomy and space science labs are virtual ones; more and more student have been inspired and want astronomy and space science as their future career fields. Assessment study carried out in universities running STEM education showed that there is a mismatch between the capacity of the labs and number of students wanted to study astronomy and space sciences. The universities have endorsed that STEM education is the gateway to future astronomy and strongly advised concerned bodies and partnering institutions to collaboratively work to intensify the teaching-learning of STEM subjects.The assessment study compiled astronomic and space science exercises carried out by instructors and students and the document is ready to be disseminated to universities and middle and secondary schools to promote the science nationwide. The results have motivated university instructors, science and technology professionals, researchers and policy makers to be more involved in shaping future destiny of the young generation and have their shown determination to support the STEM education so that it will serve as a gateway for future astronomy education and research in the nation.

  19. Research and technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safe, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to Space Station and other future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1985 Annual Report. The report contains brief descriptions of research and technology projects in major areas of Kennedy Space Center's disciplinary expertise.

  20. LCA in space - current status and future development

    NASA Astrophysics Data System (ADS)

    Ko, Nathanael; Betten, Thomas; Schestak, Isabel; Gantner, Johannes

    2018-06-01

    This paper represents the first stage of extending the scope of LCA to space and is intended as a discussion starter. Based on the assumption, that the future and outlast of humanity lies within the exploration and colonisation of space, the LCA methodology as of today, is discussed with regards to its capabilities to cover the impact of human activities in space. Based on this assessment, ideas whether and how LCA can be extended are outlined. Initially, an understanding of additional environmental impacts which occur in space compared to Earth is built up by the means of literature research. The state of the art of space regulations and availability of LCAs in space and for astronautics is clarified as well. Further literature research was conducted on the LCA subtopic of regionalization. Based on this and assumptions regarding future space travel, the suitability of LCA as an assessment method is validated. Afterwards, different potential development phases of LCA towards its applicability in space are defined. For activities in space, the regarded environmental impacts have to be expanded (e.g. space debris, extra-terrestrial life toxicity, etc.). Space regulations, if in place, cover only impacts of space activities on Earth so far. LCAs for space activities are not widespread yet. One reason for this is that the state of the art LCA methodology has not been expanded and existing regionalisation approaches are not easily transferable to space. Critical issues are faced in all phases of an LCA and include widening of boundaries, definition of space regions, finding suitable reference units and ethical problems. As a result, four LCA development phases are suggested: Earth-bound, solar system-bound, transition phase and intergalactic. Each phase involves different activities and goals, which result in different system boundaries and impact categories and widen the scope of LCA subsequently. It is a long way for humanity to populate space and so, it is for enabling LCA to assess these activities. The methodology of LCA is flexible and capable to make this adaptation. This paper can be seen as a starting point of a discussion opening up many questions. Some of these questions can only be answered in the future with more certainty about the development of space colonialization.

  1. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on 14 to 15 May 1991 at the NASA Lewis Research Center. Presentations were made by industry, university, and government researchers organized into four sessions: (1) aerothermodynamic loads; (2) instrumentation; (3) fatigue, fracture, and constitutive modeling; and (4) structural dynamics. The principle objectives were to disseminate research results and future plans in each of four areas. This publication contains extended abstracts and the visual material presented during the conference. Particular emphasis is placed on the Space Shuttle Main Engine (SSME) and the SSME turbopump.

  2. Experimental gravitation in space - Is there a future?

    NASA Astrophysics Data System (ADS)

    Wharton, R. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M.

    Experimental gravitation enters the 1990s with a past full of successes, but with a future full of uncertainties. Intellectually, the field is as vigorous as ever, with major thrusts in three main areas: the search for gravitational radiation, the study of post and post-post Newtonian effects, and the detection of hypothetical feeble new interactions. It is the only branch of space research involved in fundamental physics. But politically and financially, the future is uncertain. Competition for funding and for flight opportunities will be stiff for the foreseeable future, both with other disciplines such as astrophysics, planetary science and the military, and within experimental gravitation itself. Difficult choices lie ahead. This paper reviews the current state of the field and attempts to peer into the future.

  3. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  4. Preparing future space leaders - International Space University

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Van Reeth, George P.

    1992-01-01

    The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.

  5. The human role in space. Volume 2: Research analysis and technology report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The human role in space was studied. The role and the degree of direct involvement of humans that will be required in future space missions are investigated. Valid criteria for allocating functional activities between humans and machines were established. The technology requirements, economics, and benefits of the human presence in space was examined. Topics discussed include: human qualifications for space activities; specific project assessments; technology requirements and tasks; and generalization on human roles in space.

  6. Research and technology at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1989-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of current mission, the technical tools are developed needed to execute Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1989 Annual Report.

  7. Human Factors in Automated and Robotic Space Systems: Proceedings of a Symposium (Washington, D.C., January 29-30, 1987).

    ERIC Educational Resources Information Center

    Sheridan, Thomas B., Ed.; And Others

    This document attempts to identify and promote human factors research that would likely produce results applicable to the evolutionary design of a National Aeronautics and Space Administration (NASA) national space station to be launched in the 1990s. It reports on a symposium designed to yield information applicable to future space systems. The…

  8. Progress in space power technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.

    1980-01-01

    The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.

  9. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate very high reliability of critical ECLSS and other technologies.

  10. The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.

  11. Overview of materials processing in space activity at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Chassay, R. P.; Moore, W. W.; Ruff, R. C.; Yates, I. C.

    1984-01-01

    An overview of activities involving the Space Transportation System (STS), now in the operational phase, and results of some of the current space experiments, as well as future research opportunities in microgravity environment, are presented. The experiments of the Materials Processing in Space Program flown on the STS, such as bioseparation processes, isoelectric focusing, solidification and crystal growth processes, containerless processes, and the Materials Experiment Assembly experiments are discussed. Special consideration is given to the experiments to be flown aboard the Spacelab 3 module, the Fluids Experiments System, and the Vapor Crystal Growth System. Ground-based test facilities and planned space research facilities, as well as the nature of the commercialization activities, are briefly explained.

  12. Future space development scenarios: Environmental considerations

    NASA Technical Reports Server (NTRS)

    Tangum, Richard

    1992-01-01

    The formation of positive attitudes and values concerning the environment of space, as the basis for assuming a wise stewardship role, is becoming increasingly important as many nations begin their journeys into space. A strong emphasis should be placed on fostering an international space environmental ethics. The object of environmental assessment and management in space should be to define what interplanetary regulatory procedures are needed to avoid unnecessary environmental damage and to monitor the effectiveness of such avoidance. The first requirement for research is to narrow the field of concern to areas where there could be an increased scale of development in space in the immediate future. Research needs to be focused on methodologies for defining the environmental systems involved (e.g., the lunar surface) and then recognizing key variables in the system that are fragile and need to be respected. Criteria for environmental quality should emerge which identify, in the case of lunar surface, how much mining activity can be safely undertaken and what quantity of exhaust gases can be released over a given period of time. Only then will humans be most able to evaluate the likely consequences of ventures into space.

  13. 17th International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.

  14. A Bright Future for Evolutionary Methods in Drug Design.

    PubMed

    Le, Tu C; Winkler, David A

    2015-08-01

    Most medicinal chemists understand that chemical space is extremely large, essentially infinite. Although high-throughput experimental methods allow exploration of drug-like space more rapidly, they are still insufficient to fully exploit the opportunities that such large chemical space offers. Evolutionary methods can synergistically blend automated synthesis and characterization methods with computational design to identify promising regions of chemical space more efficiently. We describe how evolutionary methods are implemented, and provide examples of published drug development research in which these methods have generated molecules with increased efficacy. We anticipate that evolutionary methods will play an important role in future drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Decentralisation, Decision Space and Directions for Future Research Comment on "Decentralisation of Health Services in Fiji: A Decision Space Analysis".

    PubMed

    Zahmatkesh, Maryam; Exworthy, Mark

    2016-06-18

    Decentralisation continues to re-appear in health system reform across the world. Evaluation of these reforms reveals how research on decentralisation continues to evolve. In this paper, we examine the theoretical foundations and empirical references which underpin current approaches to studying decentralisation in health systems. © 2016 by Kerman University of Medical Sciences.

  16. Space station evolution: Planning for the future

    NASA Technical Reports Server (NTRS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  17. Space station evolution: Planning for the future

    NASA Astrophysics Data System (ADS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  18. Advanced 3-V semiconductor technology assessment. [space communications

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Against a background of an extensive survey of the present state of the art in the field of III-V semiconductors for operation at microwave frequencies (or gigabit rate speeds), likely requirements of future space communications systems are identified, competing technologies and physical device limitations are discussed, and difficulties in implementing emerging technologies are projected. On the basis of these analyses, specific research and development programs required for the development of future systems components are recommended.

  19. Space, Elastic And Impeding: Two Qualities Of Space Define Energy Which Defines Elementary Particles and Their Interactions

    NASA Astrophysics Data System (ADS)

    Salvatore, Gerard Micheal

    The conceptual foundations for a deterministic quantum mechanics are presented with the Socratic method. The theory is attacked and weaknesses elucidated. These are compared against those of convention. Directions for future research are proposed.

  20. Is Space Big Enough for a US-Sino Partnership?

    DTIC Science & Technology

    2010-04-01

    believe that space is big enough, that there is a future for the US and China in space. I would like to thank Lt Col Rick Rogers, my research...professionals who have aided and directed my own development to this point in my career. The list is long, but a few stand out: Cols John Riordan , Jeff

  1. Energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    Both the United States and the Soviet Union perform human space research. This paper reviews data available on energy metabolism in the microgravity of space flight. The level of energy utilization in space seems to be similar to that on earth, as does energy availability. However, despite adequate intake of energy and protein and in-flight exercise, lean body mass was catabolized, as indicated by negative nitrogen balance. Metabolic studies during simulated microgravity (bed rest) and true microgravity in flight have shown changes in blood glucose, fatty acids and insulin concentrations, suggesting that energy metabolism may be altered during space flight. Future research should focus on the interactions of lean body mass, diet and exercise in space, and their roles in energy metabolism during space flight.

  2. Blue space geographies: Enabling health in place.

    PubMed

    Foley, Ronan; Kistemann, Thomas

    2015-09-01

    Drawing from research on therapeutic landscapes and relationships between environment, health and wellbeing, we propose the idea of 'healthy blue space' as an important new development Complementing research on healthy green space, blue space is defined as; 'health-enabling places and spaces, where water is at the centre of a range of environments with identifiable potential for the promotion of human wellbeing'. Using theoretical ideas from emotional and relational geographies and critical understandings of salutogenesis, the value of blue space to health and wellbeing is recognised and evaluated. Six individual papers from five different countries consider how health can be enabled in mixed blue space settings. Four sub-themes; embodiment, inter-subjectivity, activity and meaning, document multiple experiences within a range of healthy blue spaces. Finally, we suggest a considerable research agenda - theoretical, methodological and applied - for future work within different forms of blue space. All are suggested as having public health policy relevance in social and public space. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  4. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  5. When you think about it, your past is in front of you: how culture shapes spatial conceptions of time.

    PubMed

    de la Fuente, Juanma; Santiago, Julio; Román, Antonio; Dumitrache, Cristina; Casasanto, Daniel

    2014-09-01

    In Arabic, as in many languages, the future is "ahead" and the past is "behind." Yet in the research reported here, we showed that Arabic speakers tend to conceptualize the future as behind and the past as ahead of them, despite using spoken metaphors that suggest the opposite. We propose a new account of how space-time mappings become activated in individuals' minds and entrenched in their cultures, the temporal-focus hypothesis: People should conceptualize either the future or the past as in front of them to the extent that their culture (or subculture) is future oriented or past oriented. Results support the temporal-focus hypothesis, demonstrating that the space-time mappings in people's minds are conditioned by their cultural attitudes toward time, that they depend on attentional focus, and that they can vary independently of the space-time mappings enshrined in language. © The Author(s) 2014.

  6. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  7. Managing Programmatic Risk for Complex Space System Developments

    NASA Technical Reports Server (NTRS)

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  8. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  9. Space commerce - Preparing for the next century

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1991-01-01

    The role of NASA in space commerce is discussed in terms of providing direct assistance to the private sector and in terms of the most suitable industrial areas for such support. The primary mechanism for such support is the program of Centers for the Commercial Development of Space (CCDS) which selects industrial high-technology projects to help make them viable. The research spans such fields as remote sensing, crop forecasting, and microgravity materials processing. The collaboration of NASA and private industry is discussed in terms of sounding-rocket projects, the Commercial Experiment Transporter, and academic/industrial programs designed to generate enthusiasm for commercial space research. The future of such research is expected to focus on CCDSs for microgravity-developed products, commercial infrastructure, SEI, and commercial use of the Space Station Freedom.

  10. Research on the International Space Station: Understanding Future Potential from Current Accomplishments

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various scientific disciplines represented in investigations on ISS? Are there lessons specific to human research, technology development, life sciences, and physical sciences that can be used to increase future research accomplishments? Research has been conducted and completed on ISS under a set of challenging constraints during the past 7 years. The history of research accomplished on ISS during this time serves as an indicator of the value and potential of ISS when full utilization begins. By learning from our early experience in completing research on ISS, NASA and our partners can be positioned to optimize research returns as a full crew complement comes onboard, assembly is completed, and research begins in full.

  11. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    NASA Astrophysics Data System (ADS)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  12. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer

    2009-01-01

    This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.

  13. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  14. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  15. Transportation technology program: Strategic plan

    NASA Astrophysics Data System (ADS)

    1991-09-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  16. Transportation technology program: Strategic plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The purpose of this report is to define the technology program required to meet the transportation technology needs for current and future civil space missions. It is a part of an integrated plan, prepared by NASA in part in response to the Augustine Committee recommendations, to describe and advocate expanded and more aggressive efforts in the development of advanced space technologies. This expanded program will provide a technology basis for future space missions to which the U.S. aspires, and will help to regain technology leadership for the U.S. on a broader front. The six aspects of this integrated program/plan deal with focused technologies to support space sciences, exploration, transportation, platforms, and operations as well as provide a Research and Technology Base Program. This volume describes the technologies needed to support transportation systems, e.g., technologies needed for upgrades to current transportation systems and to provide reliable and efficient transportation for future space missions. The Office of Aeronautics, Exploration, and Technology (OAET) solicited technology needs from the major agency technology users and the aerospace industry community and formed a transportation technology team (appendix A) to develop a technology program to respond to those needs related to transportation technologies. This report addresses the results of that team activity. It is a strategic plan intended for use as a planning document rather than as a project management tool. It is anticipated that this document will be primarily utilized by research & technology (R&T) management at the various NASA Centers as well as by officials at NASA Headquarters and by industry in planning their corporate Independent Research and Development (IR&D) investments.

  17. Space Electrochemical Research and Technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document contains the proceedings of NASA's fourth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on April 14-15, 1993. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: advanced secondary batteries, fuel cells, and advanced concepts for space power. This document contains the papers presented.

  18. The Upper Atmosphere; Threshold of Space.

    ERIC Educational Resources Information Center

    Bird, John

    This booklet contains illustrations of the upper atmosphere, describes some recent discoveries, and suggests future research questions. It contains many color photographs. Sections include: (1) "Where Does Space Begin?"; (2) "Importance of the Upper Atmosphere" (including neutral atmosphere, ionized regions, and balloon and investigations); (3)…

  19. Science in orbit: The shuttle and spacelab experience, 1981-1986

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Significant achievements across all scientific disciplines and missions for the first six years of Shuttle flights are presented. Topics covered include science on the Space Shuttle and Spacelab, living and working in space, studying materials and processes in microgravity, observing the sun and earth, space plasma physics, atmospheric science, astronony and astrophysics, and testing new technology in space. Future research aboard the Shuttle/Spacelab is also briefly mentioned.

  20. Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2008-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.

  1. NASA advanced space photovoltaic technology-status, potential and future mission applications

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  2. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  3. The Future is Hera! Analyzing Astronomical Over the Internet

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Chai, P.; Pence, W.; Shafer, R.; Snowden, S.

    2008-01-01

    Hera is the data processing facility provided by the High Energy Astrophysics Science Archive Research Center (HEASARC) at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the pre-installed software packages, local disk space, and computing resources need to do general processing of FITS format data files residing on the users local computer, and to do research using the publicly available data from the High ENergy Astrophysics Division. Qualified students, educators and researchers may freely use the Hera services over the internet of research and educational purposes.

  4. Demographics of Investigators Involved in OSSA-Funded Research

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Konkel, Ronald; Habegger, Jay; Byerly, Radford, Jr.

    1991-01-01

    The birth of the U.S. civil space program and the subsequent, dramatic growth in the ranks of the space science research population occurred in the 1950s and 1960s'. The large, post- Sputnik/ Apollo buildup in space program manpower is now approximately one career-lifetime in the past. It is therefore natural to anticipate that a large fraction of the space program engineers, scientists, and managers who pioneered the early exploration of space are approaching retirement. Such a "retirement wave" bodes both a loss of manpower and, more fundamentally, a loss of experience from the civil-space manpower base. Such losses could play a critical role constraining in NASA's ability to expand or maintain its technical capabilities. If this indeed applies to the NASA space science research population, then the potential for problems is exacerbated by the anticipated growth in flight rates, data volume, and data-set diversity which will accompany the planned expansion in the OSSA science effort during the 1990s and 2000s. The purpose of this study was to describe the OSSA PI/Co-I population and to determine the degree to which the OSSA space science investigator population faces a retirement wave, and to estimate the future population of PIs in the 1990-2010 era. To conduct such a study, we investigated the present demographics of the PI and Co-1 population contained in the NASA/OSSA Announcement of Opportunity (AO) mailing list. PIs represent the "leadership" class of the OSSA scientific researcher population, and Co-Is represent one important, oncoming component of the "replacement" generation. Using the PI population data, we then make projection estimates of the future PI population from 1991 through 2010, under various NASA growth/PI demand scenarios.

  5. The Future is Hera: Analyzing Astronomical Data Over the Internet

    NASA Astrophysics Data System (ADS)

    Valencic, Lynne A.; Snowden, S.; Chai, P.; Shafer, R.

    2009-01-01

    Hera is the new data processing facility provided by the HEASARC at the NASA Goddard Space Flight Center for analyzing astronomical data. Hera provides all the preinstalled software packages, local disk space, and computing resources needed to do general processing of FITS format data files residing on the user's local computer, and to do advanced research using the publicly available data from High Energy Astrophysics missions. Qualified students, educators, and researchers may freely use the Hera services over the internet for research and educational purposes.

  6. Intelligent tutoring systems for space applications

    NASA Technical Reports Server (NTRS)

    Luckhardt-Redfield, Carol A.

    1990-01-01

    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described.

  7. An expert systems application to space base data processing

    NASA Technical Reports Server (NTRS)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  8. ISS Training Best Practices and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Dempsey, Donna L.; Barshi, Immanuel

    2018-01-01

    Training our crew members for long-duration Deep Space Transport (DST) missions will have to be qualitatively and quantitatively different from current training practices. However, there is much to be learned from the extensive experience NASA has gained in training crew members for missions on board the International Space Station (ISS). Furthermore, the operational experience on board the ISS provides valuable feedback concerning training effectiveness. Keeping in mind the vast differences between current ISS crew training and training for DST missions, the needs of future crew members, and the demands of future missions, this ongoing study seeks to document current training practices and lessons learned. The goal of the study is to provide input to the design of future crew training that takes as much advantage as possible of what has already been learned and avoids as much as possible past inefficiencies. Results from this study will be presented upon its completion. By researching established training principles, examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.

  9. Space Technology 5 - A Successful Micro-Satellite Constellation Mission

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Webb, Evan H.

    2007-01-01

    The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.

  10. An assessment of advanced displays and controls technology applicable to future space transportation systems

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  11. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.

    2012-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

  12. High Resolution Mass Spectrometry for future space instrumentation : current development within the French Space Orbitrap Consortium

    NASA Astrophysics Data System (ADS)

    Briois, Christelle; Lebreton, Jean-Pierre; Szopa, Cyril; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Kukui, Alexandre; Pennanech, Cyril; Thissen, Roland; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander

    2014-05-01

    Mass spectrometry has been used for years in space exploration to characterise the chemical composition of solar system bodies and their environment. Because of the harsh constraints imposed to the space probe instruments, their mass resolution is quite limited compared to laboratory instruments, sometimes leading to significant limitations in the treatment of the data collected with this type of instrumentation. Future in situ solar system exploration missions would significantly benefit from High Resolution Mass Spectrometry (HRMS). For a few years, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies formed a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). This development is carried out in the frame of a Research and Technology (R&T) development programme partly funded by the French Space Agency (CNES). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercialises Orbitrap-based laboratory instruments. The R&T activities are currently concentrating on the core elements of the Orbitrap analyser that are required to reach a sufficient maturity level for allowing design studies of future space instruments. We are indeed pursuing, within international collaborations, the definition of several instrument concepts based on the core elements that are subject of our R&T programme. In this talk, we briefly discuss science applications for future orbitrap-based HRMS space instruments. We highlight present results of our R&T programme.

  13. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  14. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  15. The TEF modeling and analysis approach to advance thermionic space power technology

    NASA Astrophysics Data System (ADS)

    Marshall, Albert C.

    1997-01-01

    Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.

  16. Research Technology

    NASA Image and Video Library

    2002-08-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  17. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.

    2014-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.

  18. Research and technology 1987 annual report of the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects of this Kennedy Space Center 1987 Annual Report.

  19. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  20. PNT Activities at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Sands, Obed

    2017-01-01

    This presentation provides a review of Position Navigation and Timing activities at the Glenn Research Center. Topics include 1) contributions to simulation studies for the Space Service Volume of the Global Navigation Satellite System, 2) development and integration efforts for a Software Defined Radio (SDR) waveform for the Space Communications and Navigation (SCaN) testbed, currently onboard the International Space Station and 3) a GPS L5 testbed intended to explore terrain mapping capabilities with communications signals. Future directions are included and a brief discussion of NASA, GRC and the SCAN office.

  1. Research and technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing emphasis on its research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1988 Annual Report.

  2. The International Space Station in Space Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; McKay, Meredith M.

    2006-01-01

    The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

  3. Space: exploration-exploitation and the role of man.

    PubMed

    Loftus, J P

    1986-10-01

    The early years of space activity have emphasized a crew role similar to that of the test pilot or the crew of a high performance aircraft; even the Apollo lunar exploration missions were dominated by the task of getting to and from the moon. Skylab was a prototype space station and began to indicate the range of other functional roles man will play in space. The operation of the Space Shuttle has the elements of the operation of any other high performance flight vehicle during launch and landing; but in its on-orbit operations, it is often a surrogate space station, developing techniques and demonstrating the role of a future space station in various functions. In future space systems, the role of the crew will encompass all of the activities pursued in research laboratories, manufacturing facilities, maintenance shops, and construction sites. The challenge will be to design the tasks and the tools so that the full benefit of the opportunities offered by performing these functions in space can be attained.

  4. KSC-07pd3322

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians install the second Materials International Space Station Experiments, or MISSE, in space shuttle Endeavour's payload bay. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  5. The Space Shuttle - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.

    1974-01-01

    The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.

  6. Space transportation system biomedical operations support study

    NASA Technical Reports Server (NTRS)

    White, S. C.

    1983-01-01

    The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.

  7. Launch Control Systems: Moving Towards a Scalable, Universal Platform for Future Space Endeavors

    NASA Technical Reports Server (NTRS)

    Sun, Jonathan

    2011-01-01

    The redirection of NASA away from the Constellation program calls for heavy reliance on commercial launch vehicles for the near future in order to reduce costs and shift focus to research and long term space exploration. To support them, NASA will renovate Kennedy Space Center's launch facilities and make them available for commercial use. However, NASA's current launch software is deeply connected with the now-retired Space Shuttle and is otherwise not massively compatible. Therefore, a new Launch Control System must be designed that is adaptable to a variety of different launch protocols and vehicles. This paper exposits some of the features and advantages of the new system both from the perspective of the software developers and the launch engineers.

  8. [Cell biology researches aboard the robotic space vehicles: preparation and performance].

    PubMed

    Tairbekov, M G

    2006-01-01

    The article reviews the unique aspects of preparation and performance of cell biology experiments flown on robotic space vehicles Bion and Foton, and gives an overview of key findings in researches made under the author's leadership over the past decades. Described are the criteria of selecting test objects, and the conditions required for preparation and implementation of space and control (synchronous) experiments. The present-day status and issues of researches into cell responsivity to space microgravity and other factors are discussed. Also, potentialities of equipment designed to conduct experiments with cell cultures in vitro and populations of single-celled organisms are presented, as well as some ideas for new devices and systems. Unveiled are some circumstances inherent to the development and performance of space experiments, setting up laboratory facilities at the launch and landing site, and methods of safe transportation and storage of biosamples. In conclusion, the author puts forward his view on biospecies, equipment and areas of research aboard future space vehicles.

  9. Refractory metal alloys and composites for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  10. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1991-01-01

    A summary and viewgraphs of a discussion presented at the National Space Science Data Center (NSSDC) Mass Storage Workshop is included. Some of the experiences of the Scientific Computing Division at the National Center for Atmospheric Research (NCAR) dealing the the 'data problem' are discussed. A brief history and a development of some basic mass storage system (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. Future MSS needs for future computing environments is discussed.

  11. Distributed computing environments for future space control systems

    NASA Technical Reports Server (NTRS)

    Viallefont, Pierre

    1993-01-01

    The aim of this paper is to present the results of a CNES research project on distributed computing systems. The purpose of this research was to study the impact of the use of new computer technologies in the design and development of future space applications. The first part of this study was a state-of-the-art review of distributed computing systems. One of the interesting ideas arising from this review is the concept of a 'virtual computer' allowing the distributed hardware architecture to be hidden from a software application. The 'virtual computer' can improve system performance by adapting the best architecture (addition of computers) to the software application without having to modify its source code. This concept can also decrease the cost and obsolescence of the hardware architecture. In order to verify the feasibility of the 'virtual computer' concept, a prototype representative of a distributed space application is being developed independently of the hardware architecture.

  12. Future of robotic space exploration: visions and prospects

    NASA Astrophysics Data System (ADS)

    Haidegger, Tamas

    Autonomous and remote controlled mobile robots and manipulators have already proved their utility throughout several successful national and international space missions. NASA and ESA both sent robots and probes to Mars and beyond in the past years, and the Space Shuttle and Space Station Remote Manipulator Systems brought recognition to CSA. These achievements gained public attention and acknowledgement; however, all are based on technologies developed decades ago. Even the Canadian Dexter robotic arm-to be delivered to the International Space Station this year-had been completed many years ago. In the past decade robotics has become ubiquitous, and the speed of development has increased significantly, opening space for grandiose future plans of autonomous exploration missions. In the mean time, space agencies throughout the world insist on running their own costly human space flight programs. A recent workshop at NASA dealing with the issue stated that the primary reason behind US human space exploration is not science; rather the USA wants to maintain its international leadership in this field. A second space-race may fall upon us, fueled by the desire of the developing space powers to prove their capabilities, mainly driven by national pride. The aim of the paper is to introduce the upcoming unmanned space exploration scenarios that are already feasible with present day robotic technology and to show their humandriven alternatives. Astronauts are to conquer Mars in the foreseeable future, in but robots could go a lot further already. Serious engineering constraints and possibilities are to be discussed, along with issues beyond research and development. Future mission design planning must deal with both the technological and political aspects of space. Compromising on the scientific outcome may pay well by taking advantage of public awareness and nation and international interests.

  13. KSC-00pp0846

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  14. KSC-00pp0850

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  15. KSC-00pp0841

    NASA Image and Video Library

    2000-06-30

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  16. KSC-00pp0842

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  17. KSC-00pp0844

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  18. KSC00pp0862

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  19. KSC-00pp0845

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  20. KSC-00pp0852

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  1. KSC00pp0864

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  2. KSC00pp0844

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  3. KSC00pp0846

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  4. KSC-00pp0843

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  5. KSC-00pp0864

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  6. KSC00pp0841

    NASA Image and Video Library

    2000-06-30

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  7. KSC00pp0851

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  8. KSC-00pp0848

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  9. KSC-00pp0851

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  10. KSC-00pp0847

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  11. KSC00pp0842

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  12. KSC00pp0850

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  13. KSC00pp0848

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  14. KSC-00pp0862

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  15. KSC00pp0852

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  16. KSC00pp0843

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  17. KSC00pp0845

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  18. KSC00pp0847

    NASA Image and Video Library

    2000-07-01

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  19. Antarctica - Lessons for a Mars exploration program

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.

    1985-01-01

    The history of exploration and the international system of control of Antarctica has often been cited as a paradigm for the exploration of space. The small isolated research stations have been used to model the psychological stresses of future space missions. In addition, the programmatic structure of the U.S. Antarctic Research Program provides several possible analogs to future Mars Programs presently under discussion. These are: (1) Continued presence; (2) Civilian, military and private sector involvement; (3) Scientific activities; (4) Risk assessment and logistical support; (5) Accessibility for non-specialists; (6) Political and strategic motivations; (7) International cooperation/competition. Survival in Antarctica is contingent on advanced technology and the active transport of supplies. The scientific exploration of this remote and barren expanse without, of course, the aid and guidance of indigenous people certainly provides one of the closest analogs available to future science activities on the Martian surface.

  20. SPEAR (Space Plasma Exploration by Active Radar): New Developments and Future Plans

    NASA Astrophysics Data System (ADS)

    Baddeley, L. J.; Oksavik, K.

    2009-12-01

    The SPEAR heating facility is located on Svalbard at 75° CGM latitude and as such is 10° closer to a geomagnetic pole than any current ionospheric heating facility. It thus has the unique ability to perform heating experiments inside the polar cap at all local times. It is co-located with several facilities, including the EISCAT Svalbard Radar, the SOUZY radar and the Kjell Henriksen Observatory. After much speculation regarding the operational future of the SPEAR facility, UNIS has taken ownership of the system, with a 3 year research and operational grant from the Norwegian Research Council. The facility has a detailed and successful research history, with results having already been presented at international scientific conferences and appeared in 13 peer-review papers in international journals. Successful experiments have been carried out using both X and O mode polarisation in conjunction with both ground and space based instrumentation. Additionally, the operational frequency the facility (4.45 - 5.825 MHz) means that its scientific capabilities will increase towards the next solar activity maximum in 2012. Future plans, both experimentally and logistically will be discussed in additional to possibilities for future experimental collaborations

  1. Habitability in long-term space missions

    NASA Technical Reports Server (NTRS)

    Mount, Frances E.

    1987-01-01

    The research (both in progress and completed) conducted for the U.S. Space Station in relation to the crew habitability and crew productivity is discussed. Methods and tasks designed to increase the data base of the man/system information are described. The particular research areas discussed in this paper include human productivity, on-orbit maintenance, vewing requirements, fastener types, and crew quarters. This information (along with data obtained on human interaction with command/control work station, anthropometic factors, crew equipment, galley/wardroom, restraint systems, etc) will be integrated into the common data base for the purpose of assisting the design of the Space Station and other future manned space missions.

  2. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Seated at right is Susan Manning-Roach, a quality assurance specialist on the Engineering Services Contract. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  3. NASA Life Sciences Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  4. The Scent of the Future: Manned Space Travel and the Soviet Union.

    DTIC Science & Technology

    1981-06-01

    AND ECONOMIC APPLICATIONS 56 GREENHOUSES , BOOSTERS, AND SPACE PLANES: SOVIET SPACE-RELATED RESEARCH AND DEVELOPMENT 72 R.U.R. REVISITED: MANNED VERSUS... greenhouse that was part of their 12-square-meter closed environment.9 6 The successful conclusion of this test demonstrated the feasibility of a manned...will probably be timed to coincide with the XXVI Party Congress which convenes in February 1981. 71 GREENHOUSES , BOOSTERS, AND SPACE PLANES: SOVIET

  5. Dressing for Altitude: U.S. Aviation Pressure Suits--Wiley Post to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2012-01-01

    Since its earliest days, flight has been about pushing the limits of technology and, in many cases, pushing the limits of human endurance. The human body can be the limiting factor in the design of aircraft and spacecraft. Humans cannot survive unaided at high altitudes. There have been a number of books written on the subject of spacesuits, but the literature on the high-altitude pressure suits is lacking. This volume provides a high-level summary of the technological development and operational use of partial- and full-pressure suits, from the earliest models to the current high altitude, full-pressure suits used for modern aviation, as well as those that were used for launch and entry on the Space Shuttle. The goal of this work is to provide a resource on the technology for suits designed to keep humans alive at the edge of space. Hopefully, future generations will learn from the hard-fought lessons of the past. NASA is committed to the future of aerospace, and a key component of that future is the workforce. Without these men and women, technological advancements would not be possible. Dressing for Altitude is designed to provide the history of the technology and to explore the lessons learned through years of research in creating, testing, and utilizing today s high-altitude suits. It is our hope that this information will prove helpful in the development of future suits. Even with the closeout of the Space Shuttle and the planned ending of the U-2 program, pressure suits will be needed for protection as long as humans seek to explore high frontiers. The NASA Aeronautics Research Mission Directorate is committed to the training of the current and future aerospace workforce. This book and the other books published by the NASA Aeronautics Research Mission Directorate are in support of this commitment. Hopefully, you will find this book a valuable resource for many years to come.

  6. In-Space Networking on NASA's SCAN Testbed

    NASA Technical Reports Server (NTRS)

    Brooks, David E.; Eddy, Wesley M.; Clark, Gilbert J.; Johnson, Sandra K.

    2016-01-01

    The NASA Space Communications and Navigation (SCaN) Testbed, an external payload onboard the International Space Station, is equipped with three software defined radios and a flight computer for supporting in-space communication research. New technologies being studied using the SCaN Testbed include advanced networking, coding, and modulation protocols designed to support the transition of NASAs mission systems from primarily point to point data links and preplanned routes towards adaptive, autonomous internetworked operations needed to meet future mission objectives. Networking protocols implemented on the SCaN Testbed include the Advanced Orbiting Systems (AOS) link-layer protocol, Consultative Committee for Space Data Systems (CCSDS) Encapsulation Packets, Internet Protocol (IP), Space Link Extension (SLE), CCSDS File Delivery Protocol (CFDP), and Delay-Tolerant Networking (DTN) protocols including the Bundle Protocol (BP) and Licklider Transmission Protocol (LTP). The SCaN Testbed end-to-end system provides three S-band data links and one Ka-band data link to exchange space and ground data through NASAs Tracking Data Relay Satellite System or a direct-to-ground link to ground stations. The multiple data links and nodes provide several upgradable elements on both the space and ground systems. This paper will provide a general description of the testbeds system design and capabilities, discuss in detail the design and lessons learned in the implementation of the network protocols, and describe future plans for continuing research to meet the communication needs for evolving global space systems.

  7. The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations.

    PubMed

    Posner, A; Hesse, M; St Cyr, O C

    2014-04-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Manuscript assesses current and near-future space weather assetsCurrent assets unreliable for forecasting of severe geomagnetic stormsNear-future assets will not improve the situation.

  8. The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations

    PubMed Central

    Posner, A; Hesse, M; St Cyr, O C

    2014-01-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Key Points Manuscript assesses current and near-future space weather assets Current assets unreliable for forecasting of severe geomagnetic storms Near-future assets will not improve the situation PMID:26213516

  9. Research opportunities in human behavior and performance

    NASA Technical Reports Server (NTRS)

    Christensen, J. M. (Editor); Talbot, J. M. (Editor)

    1985-01-01

    Extant information on the subject of psychological aspects of manned space flight are reviewed; NASA's psychology research program is examined; significant gaps in knowledge are identified; and suggestions are offered for future research program planning. Issues of human behavior and performance related to the United States space station, to the space shuttle program, and to both near and long term problems of a generic nature in applicable disciplines of psychology are considered. Topics covered include: (1) human performance requirements for a 90 day mission; (2) human perceptual, cognitive, and motor capabilities and limitations in space; (3) crew composition, individual competencies, crew competencies, selection criteria, and special training; (4) environmental factors influencing behavior; (5) psychosocial aspects of multiperson space crews in long term missions; (6) career determinants in NASA; (7) investigational methodology and equipment; and (8) psychological support.

  10. Working in the Interpretive Zone: Conceptualizing Collaboration in Qualitative Research Teams.

    ERIC Educational Resources Information Center

    Wasser, Judith Davidson; Bresler, Liora

    1996-01-01

    Formulates the idea of the "interpretive zone" as a way to describe the space in which collaborative interpretation of research unfolds. Because of the importance of teamwork to qualitative research, the interpretive zone becomes a critical location for future methodological inquiry and examination of the dynamics of group research. (SLD)

  11. Charles Brady in Life and Microgravity Spacelab (LMS) Onboard STS-78

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. In this onboard photograph, mission specialist Charles Brady is working in the LMS.

  12. Around Marshall

    NASA Image and Video Library

    1996-06-20

    Launched on June 20, 1996, the STS-78 mission’s primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. In this photo, LMS mission scientist Patton Downey and LMS mission manager Mark Boudreaux display the flag that was flown for the mission at MSFC.

  13. Advances in our understanding of the Reinke space.

    PubMed

    Thibeault, Susan L

    2005-06-01

    Normal vocal fold vibration depends critically upon the composition of the Reinke space or the lamina propria extracellular matrix. Alterations in the normal composition of the extracellular matrix result in a loss of normal vibratory function. In this article, the present literature on the Reinke space in normal and disease states is reviewed including publications in the multidisciplinary fields of biomechanics, histology, molecular biology, and tissue engineering. With recent technology advances, the etiology for benign lesions has been investigated with computer models and bioreactors. Particular extracellular matrix constituents in various benign vocal fold lesions--fibronectin, fibromodulin and hyaluronan--appear to be involved in altering the viscoelastic properties of the Reinke space. Significant basic science approaches to the investigation of the characterization of the Reinke space in vocal fold scarring has produced several potential future treatment avenues. Tissue-engineering approaches for regeneration of the Reinke space are the most recent addition to the literature showing promising research directions. Voice disorders represent a significant clinical problem. Research attempting to discover the underlying molecular and genetic regulation and homeostasis of the extracellular matrix of the Reinke space are essential. Effective future clinical interventions must be based upon the knowledge of how genetic and biologic features are disturbed in vocal diseases and how they relate to vocal symptoms.

  14. Growing Spaceships?

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2013-01-01

    NASA currently has a program called the Space Synthetic Biology Project. Synthetic Biology or SynBio is the design and construction of new biological functions and systems not found in nature. Four NASA field centers, along with experts from industry and academia, have been partnering on the Space Synthetic Biology Project and are working on new breakthroughs in this increasingly useful pursuit, which is part a science discipline and part engineering. Led by researchers at NASA s Ames Research Center, the team is studying how this powerful new tool can help NASA now and in the future. The project was created to harness biology in reliable, robust, engineered systems to support the agency s exploration and science missions, to improve life on Earth and to help shape NASA's future. The program also is intended to contribute foundational tools to the synthetic biology research community.

  15. Advancing Translational Research through Facility Design in Non-AMC Hospitals.

    PubMed

    Pati, Debajyoti; Pietrzak, Michael P; Harvey, Thomas E; Armstrong, Walter B; Clarke, Robert; Weissman, Neil J; Rapp, Paul E; Smith, Mark S; Fairbanks, Rollin J; Collins, Jeffreyg M

    2013-01-01

    This article aims to explore the future of translational research and its physical design implications for community hospitals and hospitals not attached to large centralized research platforms. With a shift in medical services delivery focus to community wellness, continuum of care, and comparative effectiveness research, healthcare research will witness increasing pressure to include community-based practitioners. The roundtable discussion group, comprising 14 invited experts from 10 institutions representing the fields of biomedical research, research administration, facility planning and design, facility management, finance, and environmental design research, examined the issue in a structured manner. The discussion was conducted at the Washington Hospital Center, MedStar Health, Washington, D.C. Institutions outside the AMCs will be increasingly targeted for future research. Three factors are crucial for successful research in non-AMC hospitals: operational culture, financial culture, and information culture. An operating culture geared towards creation, preservation, and protection of spaces needed for research; creative management of spaces for financial accountability; and a flexible information infrastructure at the system level that enables complete link of key programmatic areas to academic IT research infrastructure are critical to success of research endeavors. Hospital, interdisciplinary, leadership, planning, work environment.

  16. National facilities study. Volume 3: Mission and requirements model report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facility Study (NFS) was initiated in 1992 by Daniel S. Goldin, Administrator of NASA as an initiative to develop a comprehensive and integrated long-term plan for future facilities. The resulting, multi-agency NFS consisted of three Task Groups: Aeronautics, Space Operations, and Space Research and Development (R&D) Task Groups. A fourth group, the Engineering and Cost Analysis Task Group, was subsequently added to provide cross-cutting functions, such as assuring consistency in developing an inventory of space facilities. Space facilities decisions require an assessment of current and future needs. Therefore, the two task groups dealing with space developed a consistent model of future space mission programs, operations and R&D. The model is a middle ground baseline constructed for NFS analytical purposes with excursions to cover potential space program strategies. The model includes three major sectors: DOD, civilian government, and commercial space. The model spans the next 30 years because of the long lead times associated with facilities development and usage. This document, Volume 3 of the final NFS report, is organized along the following lines: Executive Summary -- provides a summary view of the 30-year mission forecast and requirements baseline, an overview of excursions from that baseline that were studied, and organization of the report; Introduction -- provides discussions of the methodology used in this analysis; Baseline Model -- provides the mission and requirements model baseline developed for Space Operations and Space R&D analyses; Excursions from the baseline -- reviews the details of variations or 'excursions' that were developed to test the future program projections captured in the baseline; and a Glossary of Acronyms.

  17. Software Component Technologies and Space Applications

    NASA Technical Reports Server (NTRS)

    Batory, Don

    1995-01-01

    In the near future, software systems will be more reconfigurable than hardware. This will be possible through the advent of software component technologies which have been prototyped in universities and research labs. In this paper, we outline the foundations for those technologies and suggest how they might impact software for space applications.

  18. Behavioral Health and Performance, Risk to Mitigation Strategy

    NASA Technical Reports Server (NTRS)

    Leveton, Lauren; Whitemire, Alexandra

    2009-01-01

    This poster reviews the working of the Behavioral Health and Performance (BHP) group, which supports the research element which manages an integrated program for future space flight. The BHP operations group supports astronauts and their families in all phases of the International Space Station Mission, and post mission effects.

  19. RME 1318 TVIS - assembly

    NASA Image and Video Library

    1997-02-19

    STS081-340-020 (12-22 Jan. 1997) --- Left to right, astronaut and future cosmonaut guest researcher, Jerry M. Linenger, and mission specialists Marsha S. Ivins and Peter J. K. (Wisoff) check out the Treadmill Vibration Isolation Stabilization System (TVIS) onboard the Space Shuttle Atlantis, during the Atlantis and Russia's Mir Space Station docking mission.

  20. OAST Technology for the Future. Executive Summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  1. Space Science is Alive with Art

    NASA Astrophysics Data System (ADS)

    Pell, Sarah Jane; Vermeulen, Angelo

    2013-02-01

    The history of human space flight and analogue and ground-based space science is alive with art. Artists, scientists and engineers working together build upon diverse frameworks of understanding, but also share tools and processes of investigation. By jointly stepping into new worlds and territories - with common purpose and mutual respect for curiosity - there emerge opportunities for encounters that offer an alternative viewpoint on things. Artists can introduce a meta perspective (taking a step back and inquiring into the practice of research), a historical, conceptual or aesthetic view, all of which can invite those who are researchers, engineers and inventors toward new insight and discovery. Scientist’s methods of inquiry and their particular ways of dealing with natural phenomena and technology can also be a great source of inspiration for artists. Often with technical curiosity, artists can also contribute to concrete R&D just as science can directly impact art and inform aesthetics. So combined, the different philosophies, the experiments and the field work can lead to collaborative outcomes that are positively contributing to research, exploration and advancement. Artist and biologist Angelo Vermeulen has been working together with the European Space Agency (ESA) MELiSSA research program since 2009. In response to the ESA invitation to reflect on the development of future space habitats, Vermeulen set up SEAD (Space Ecologies Art & Design), a platform for artistic research on the transfer of terrestrial ecosystems to space to facilitate space settlement. Artist and diver Sarah Jane Pell has been working with the underwater technology and biotechnology community since 2003. She joined NASA’s Luna Gaia team and the League of New World Explorers analogue space subsea habitat exploration mission Atlantica in 2006. Current and future work by these, and similar partnerships, illustrates a dynamic culture of fieldwork, lab protocols/studio practice, research and development, experimentation, demonstration/exhibition, publication and dissemination made possible by including artists in the fields of science and engineering. As ‘real’ collaborators, artists can truly move science and engineering forward; and by co-creating art works, they can improve science and technology communication. Collaboration between the arts and science should therefore be encouraged and fostered.

  2. Status and Future of Lunar Geoscience.

    ERIC Educational Resources Information Center

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  3. We Have the Spaceship; But Where's the Start Button: Human Engineering Issues in the Age of Long Duration Space Exploration - Presentation

    NASA Technical Reports Server (NTRS)

    Hamilton, George; Adams, Chris

    2005-01-01

    This viewgraph presentation addresses the following considerations for human factors engineering during long duration human space flight: gravitational adaptation, 2-D to 3-D adaptation, handles, exercise posture, and space ergonomics. The presentation argues that there is an urgent need to advance research is these areas in preparation for future manned missions.

  4. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025017 (26 July 2013) --- In the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, speaks in a microphone as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  5. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025034 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  6. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025030 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  7. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025012 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  8. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    NASA Technical Reports Server (NTRS)

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  9. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  10. Military Space Control: An Intuitive Analysis

    DTIC Science & Technology

    2004-04-01

    information dominance is the impetus for an increasing military dependence on space services. This reliance on space systems is compelling military decision makers to make key strategic choices about the future of space control. The purpose of this paper is to analyze major aspects of military space control strategy and determine if U.S. initiatives are on track to meet the needs of the warfighter. To analyze U.S. military space control strategy, this research takes an intuitive approach based on a methodology introduced by Newman, Logan, and Hegarty in their book,

  11. World Space Congress: a vision quest.

    PubMed

    Iannotta, Ben

    2003-01-01

    The World Space Congress (WSC) in October, 2002, brought together luminaries, aerospace engineers, students, and scientists to discuss strategies for reviving the world's space agency. WSC lectures and plenary sessions focused on future research in space. Among topics discussed are the use of the Hubble Space Telescope to scan for habitable planets and obtain data about the beginning of the universe, new weather satellites, planetary protection from comets or asteroids, exploration and establishment of colonies on the Moon and Mars, medical advances, the role of space exploration in the world economy.

  12. Overview of NASA Glenn Research Center's Communications and Intelligent Systems Division

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    The Communications and Intelligent Systems Division provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.

  13. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler technology for space Rankine cycle systems. Research is summarized on the problems of flow stability, liquid carryover, pressure drop and heat transfer, and on potential solutions developed, primarily those developed by the NASA Lewis Research Center in the 1960's and early 1970's.

  14. Impact of space-based instruments on magnetic star research: past and future

    NASA Astrophysics Data System (ADS)

    Weiss, WW.; Neiner, C.; Wade, G. A.

    2018-01-01

    Magnetic stars are observed at a large variety of spectral ranges, frequently with photometric and spectroscopic techniques and on time scales ranging from a 'snap shot' to years, sometimes using data sets which are continuous over many months. The outcome of such observations has been discussed during this conference and many examples have been presented, demonstrating the high scientific significance and gains in our knowledge that result from these observations. A key question that should be addressed is, what are the advantages and requirements of space based research of magnetic stars, particularly in relation to ground based observations? And what are the drawbacks? What are the hopes for the future? In the following, we intend to present an overview that addresses these questions.

  15. Novel active driven drop tower facility for microgravity experiments investigating production technologies on the example of substrate-free additive manufacturing

    NASA Astrophysics Data System (ADS)

    Lotz, Christoph; Wessarges, Yvonne; Hermsdorf, Jörg; Ertmer, Wolfgang; Overmeyer, Ludger

    2018-04-01

    Through the striving of humanity into space, new production processes and technologies for the use under microgravity will be essential in the future. Production of objects in space demands for new processes, like additive manufacturing. This paper presents the concept and the realization for a new machine to investigate microgravity production processes on earth. The machine is based on linear long stator drives and a vacuum chamber carrying up to 1000 kg. For the first time high repetition rate and associated low experimental costs can provide basic research. The paper also introduces the substrate-free additive manufacturing as a future research topic and one of our primary application.

  16. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  17. Artist's Concept of NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.

  18. Debris Removal: An Opportunity for Cooperative Research?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.

  19. NASA photovoltaic research and technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.

  20. Transformational System Concepts and Technologies for Our Future in Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.

    2004-01-01

    Continued constrained budgets and growing national and international interests in the commercialization and development of space requires NASA to be constantly vigilant, to be creative, and to seize every opportunity for assuring the maximum return on space infrastructure investments. Accordingly, efforts are underway to forge new and innovative approaches to transform our space systems in the future to ultimately achieve two or three or five times as much with the same resources. This bold undertaking can be achieved only through extensive cooperative efforts throughout the aerospace community and truly effective planning to pursue advanced space system design concepts and high-risk/high-leverage research and technology. Definitive implementation strategies and roadmaps containing new methodologies and revolutionary approaches must be developed to economically accommodate the continued exploration and development of space. Transformation can be realized through modular design and stepping stone development. This approach involves sustainable budget levels and multi-purpose systems development of supporting capabilities that lead to a diverse amy of sustainable future space activities. Transformational design and development requires revolutionary advances by using modular designs and a planned, stepping stone development process. A modular approach to space systems potentially offers many improvements over traditional one-of-a-kind space systems comprised of different subsystem element with little standardization in interfaces or functionality. Modular systems must be more flexible, scaleable, reconfigurable, and evolvable. Costs can be reduced through learning curve effects and economies of scale, and by enabling servicing and repair that would not otherwise be feasible. This paper briefly discusses achieving a promising approach to transforming space systems planning and evolution into a meaningful stepping stone design, development, and implementation process. The success of this well planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.

  1. Robotic lunar exploration: Architectures, issues and options

    NASA Astrophysics Data System (ADS)

    Mankins, John C.; Valerani, Ernesto; Della Torre, Alberto

    2007-06-01

    The US ‘vision for space exploration’ articulated at the beginning of 2004 encompasses a broad range of human and robotic space missions, including missions to the Moon, Mars and destinations beyond. It establishes clear goals and objectives, yet sets equally clear budgetary ‘boundaries’ by stating firm priorities, including ‘tough choices’ regarding current major NASA programs. The new vision establishes as policy the goals of pursuing commercial and international collaboration in realizing future space exploration missions. Also, the policy envisions that advances in human and robotic mission technologies will play a key role—both as enabling and as a major public benefit that will result from implementing that vision. In pursuing future international space exploration goals, the exploration of the Moon during the coming decades represents a particularly appealing objective. The Moon provides a unique venue for exploration and discovery—including the science of the Moon (e.g., geological studies), science from the Moon (e.g., astronomical observatories), and science on the Moon (including both basic research, such as biological laboratory science, and applied research and development, such as the use of the Moon as a test bed for later exploration). The Moon may also offer long-term opportunties for utilization—including Earth observing applications and commercial developments. During the coming decade, robotic lunar exploration missions will play a particularly important role, both in their own right and as precursors to later, more ambitious human and robotic exploration and development efforts. The following paper discusses some of the issues and opportunities that may arise in establishing plans for future robotic lunar exploration. Particular emphasis is placed on four specific elements of future robotic infrastructure: Earth Moon in-space transportation systems; lunar orbiters; lunar descent and landing systems; and systems for long-range transport on the Moon.

  2. Advances in terrestrial physics research at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1987-01-01

    Some past, current, and future terrestrial physics research activities at NASA/Goddard Space Flight Center are described. The uses of satellites and sensors, such as Tiros, Landsat, Nimbus, and SMMR, for terrestrial physics research are discussed. The spaceborne data are applicable for monitoring and studying vegetation, snow, and ice dynamics; geological features; soil moisture; water resources; the geoid of the earth; and the earth's magnetic field. Consideration is given to improvements in remote sensing systems and data records and the Earth Observing System sensor concepts.

  3. Overview of NASA communications infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Fuechsel, Charles

    1991-01-01

    The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.

  4. Research and technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center is placing increasing emphasis on the Center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of our current mission, we are developing the technological tools needed to execute the Center's mission relative to future programs. The Engineering Development Directorate encompasses most of the laboratories and other Center resources that are key elements of research and technology program implementation, and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1986 Annual Report.

  5. Eye movements during mental time travel follow a diagonal line.

    PubMed

    Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt

    2014-11-01

    Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Hourly test reference weather data in the changing climate of Finland for building energy simulations.

    PubMed

    Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim

    2015-09-01

    Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

  7. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  8. The Antarctic Search for Meteorites: The Future of Space, on Earth Today - EVA Knowledge Capture Outbrief

    NASA Technical Reports Server (NTRS)

    Love, Stan

    2013-01-01

    NASA astronaut Stan Love shared his experiences with the Antarctic Search for Meteorites (ANSMET), an annual expedition to the southern continent to collect valuable samples for research in planetary science. ANSMET teams operate from isolated, remote field camps on the polar plateau, where windchill factors often reach -40 F. Several astronaut participants have noted ANSMET's similarity to a space mission. Some of the operational concepts, tools, and equipment employed by ANSMET teams may offer valuable insights to designers of future planetary surface exploration hardware.

  9. Research and technology, fiscal year 1986, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  10. Architectural considerations for lunar long duration habitat

    NASA Astrophysics Data System (ADS)

    Bahrami, Payam

    The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.

  11. Methodological Issues in Researching Online Representations: Production, Classification and Personal Web Space

    ERIC Educational Resources Information Center

    Seale, Jane; Abbott, Chris

    2007-01-01

    This paper argues that if education practitioners, policy-makers and researchers are to gain insights from new forms of online self-representations, there is a need to take stock of research involving homepages in order to identify important methodological issues and lessons that need to be addressed in future research. Home page authorship…

  12. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    NASA Astrophysics Data System (ADS)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long term, multi-generational biological studies with large sample sizes and appropriate controls.

  13. Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs

    NASA Astrophysics Data System (ADS)

    Kolb, I. L.; Curran, D. G. T.; Lee, C. S.

    2004-06-01

    The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.

  14. Bone and muscle - The structural system in long duration space missions

    NASA Technical Reports Server (NTRS)

    Buchanan, Paul

    1987-01-01

    Losses of bone mineral and muscle mass have been observed, and in varying degrees measured, following all long duration missions in space. These observations portend an unacceptable threat to the crews' ability to return to earth, without protracted rehabilitation, following periods of a year or more in microgravity. The impact to crew capabilities and productivity in space is not well understood. Past research has dealt with bone loss and muscle atrophy as two separate problems with little discernible relationship. This paper reviews the available information on both and suggests a combined structural approach for future research.

  15. Space Research Data Management in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Ludwig, G. H.

    1986-01-01

    Space related scientific research has passed through a natural evolutionary process. The task of extracting the meaningful information from the raw data is highly involved and will require data processing capabilities that do not exist today. The results are presented of a three year examination of this subject, using an earlier report as a starting point. The general conclusion is that there are areas in which NASA's data management practices can be improved and recommends specific actions. These actions will enhance NASA's ability to extract more of the potential data and to capitalize on future opportunities.

  16. An overview of expert systems. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1982-01-01

    An expert system is defined and its basic structure is discussed. The knowledge base, the inference engine, and uses of expert systems are discussed. Architecture is considered, including choice of solution direction, reasoning in the presence of uncertainty, searching small and large search spaces, handling large search spaces by transforming them and by developing alternative or additional spaces, and dealing with time. Existing expert systems are reviewed. Tools for building such systems, construction, and knowledge acquisition and learning are discussed. Centers of research and funding sources are listed. The state-of-the-art, current problems, required research, and future trends are summarized.

  17. Research and Technology 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.

  18. KSC-07pd3320

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd3321

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, the second of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3319

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  1. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 7: Materials panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Materials technology requirements pertinent to structures, power, and propulsion for future space missions are identified along with candidate space flight experiments. Most requirements are mission driven, only four (all relating to space processing of materials) are considered to be opportunity driven. Exploitation of the space environment in performing basic research to improve the understanding of materials phenomena (such as solidification) and manufacturing and assembly in space to support missions such as solar energy stations which require the forming, erection, joining, and repair of structures in space are among the topics discussed.

  2. The U.S. Lab is moved to payload canister

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The U.S. Laboratory Destiny, a component of the International Space Station, glides above two Multi-Purpose Logistics Modules (MPLMs), Raffaello (far left) and Leonardo, in the Space Station Processing Facility. Destiny is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  3. The U.S. Lab is moved to payload canister

    NASA Technical Reports Server (NTRS)

    2000-01-01

    - The U.S. Laboratory Destiny, a component of the International Space Station, is lifted off a weigh stand (below) in the Space Station Processing Facility. The module is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.

  4. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  5. A methodology for selecting optimum organizations for space communities

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1978-01-01

    This paper suggests that a methodology exists for selecting optimum organizations for future space communities of various sizes and purposes. Results of an exploratory study to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists are presented. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The principal finding of this research was that a four-level project type 'total matrix' model will optimize the effectiveness of Space Base technologists. An overall conclusion which can be reached from the research is that application of this methodology, or portions of it, may provide planning insights for the formal organizations which will be needed during the Space Industrialization Age.

  6. Status of NASA's Stirling Space Power Converter Program

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.

    1991-01-01

    An overview is presented of the NASA-Lewis Free-Piston Stirling Space Power Convertor Technology Program. The goal is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. Stirling experience in space and progress toward 1050 and 1300 K Stirling Space Power Converters is discussed. Fabrication is nearly completed for the 1050 K Component Test Power Converters (CTPC); results of motoring tests of cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. An update is provided of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space.

  7. Spacelab

    NASA Image and Video Library

    1996-05-05

    Launched on June 20, 1996, the STS-78 mission’s primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  8. Medaka Fish Embryo Developed for STS-78 Life and Microgravity Spacelab (LMS)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents the development of Medaka Fish Embryos, one of the many studies of the LMS mission.

  9. Space Weather Models at the CCMC And Their Capabilities

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  10. The TERESA project: from space research to ground tele-echography

    NASA Technical Reports Server (NTRS)

    Vieyres, Pierre; Poisson, Gerard; Courreges, Fabien; Merigeaux, Olivier; Arbeille, Philippe

    2003-01-01

    Ultrasound examinations represent one of the major diagnostic modalities of future healthcare. They are currently used to support medical space research but require a high skilled operator for both probe positioning on the patient's skin and image interpretation. TERESA is a tele-echography project that proposes a solution to bring astronauts and remotely located patients on ground quality ultrasound examinations despite the lack of a specialist at the location of the wanted medical act.

  11. The Neurolab mission and biomedical engineering: a partnership for the future.

    PubMed

    Liskowsky, D R; Frey, M A; Sulzman, F M; White, R J; Likowsky, D R

    1996-01-01

    Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.

  12. The Neurolab mission and biomedical engineering: a partnership for the future

    NASA Technical Reports Server (NTRS)

    Liskowsky, D. R.; Frey, M. A.; Sulzman, F. M.; White, R. J.; Likowsky, D. R.

    1996-01-01

    Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.

  13. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  14. Overview and future direction for blackbody solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1988-01-01

    A review of solar-pumped blackbody lasers is given which addresses their present status and suggests future research directions. The blackbody laser concept is one system proposed to scale to multimegawatt power levels for space-to-space power transmissions for such applications as onboard spacecraft electrical or propulsion needs. Among the critical technical issues are the scalability to high powers and the laser wavelength which impacts the transmission optics size as well as the laser-to-electric converter at the receiver. Because present blackbody solar-pumped lasers will have laser wavelengths longer than 4 microns, simple photovoltaic converters cannot be used, and transmission optics will be large. Thus, future blackbody laser systems should emphasize near visible laser wavelengths.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabisch, Nadja, E-mail: nadja.kabisch@geo.hu-berlin.de; Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research — UFZ, 04318 Leipzig; Qureshi, Salman

    Scientific papers on landscape planning underline the importance of maintaining and developing green spaces because of their multiple environmental and social benefits for city residents. However, a general understanding of contemporary human–environment interaction issues in urban green space is still incomplete and lacks orientation for urban planners. This review examines 219 publications to (1) provide an overview of the current state of research on the relationship between humans and urban green space, (2) group the different research approaches by identifying the main research areas, methods, and target groups, and (3) highlight important future prospects in urban green space research. -more » Highlights: • Reviewed literature on urban green pins down a dearth of comparative studies. • Case studies in Africa and Russia are marginalized – the Europe and US dominate. • Questionnaires are used as major tool followed by GIS and quantitative approaches. • Developing countries should contribute in building an urban green space agenda. • Interdisciplinary, adaptable and pluralistic approaches can satiate a knowledge gap.« less

  16. Virtual Learning Spaces in the Web: An Agent-Based Architecture of Personalized Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Nunez Esquer, Gustavo; Sheremetov, Leonid

    This paper reports on the results and future research work within the paradigm of Configurable Collaborative Distance Learning, called Espacios Virtuales de Apredizaje (EVA). The paper focuses on: (1) description of the main concepts, including virtual learning spaces for knowledge, collaboration, consulting, and experimentation, a…

  17. Analysis of Shadowing Effects on Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As part of an ongoing effort within the NASA Lewis Research Center's Power Systems Project Office to assist in the design and characterization of future space-based power systems, analyses have been performed to assess the effects of shadowing on the capabilities of various power systems on the International Space Station and the Russian MIR.

  18. Experimental uncertainty survey and assessment. [Space Shuttle Main Engine testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.

    1992-01-01

    An uncertainty analysis and assessment of the specific impulse determination during Space Shuttle Main Engine testing is reported. It is concluded that in planning and designing tests and in interpreting the results of tests, the bias and precision components of experimental uncertainty should be considered separately. Recommendations for future research efforts are presented.

  19. Atmospheric Turbulence Relative to Aviation, Missile, and Space Programs

    NASA Technical Reports Server (NTRS)

    Camp, Dennis W. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to bring together various disciplines of the aviation, missile, and space programs involved in predicting, measuring, modeling, and understanding the processes of atmospheric turbulence. Working committees re-examined the current state of knowledge, identified present and future needs, and documented and prioritized integrated and cooperative research programs.

  20. The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research

    NASA Astrophysics Data System (ADS)

    Engebretson, Mark; Zesta, Eftyhia

    2017-11-01

    A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.

  1. Ultrashort pulse energy distribution for propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  2. The influence of television and film on interest in space and science

    NASA Astrophysics Data System (ADS)

    Jackson, Katrina Marie

    Entertainment media has the great potential to inspire interest in the topics it presents. The purpose of this study is to better understand how entertainment media contributes to people's interests in space and science. There is a huge variety of science communication topics in previous literature, some of which deals with television and film, but very little that specifically study how television and film can inspire interest. A historical review of pioneers in the space industry shows that many were inspired by entertainment media, which at the time consisted of science fiction novels and magazines. In order to explore the possible relationships among influences for scientists and non-scientists and to determine specific questions for future research, I created and distributed an anonymous, online survey. The survey is suggestive, exploratory research using a convenience sampling method and is not meant to provide scientifically accurate statistics. 251 participants completed the survey; 196 were scientists and 55 were non-scientists. The survey showed that the participants did identify entertainment media as a major influencing factor, on a comparable level as factors such as classes or family members. Participants in space-related fields were influenced by entertainment media more than the participants in other fields were. I identified several questions for future research, such as: Are people in space-related fields inspired by entertainment media more than other scientists are? Are non-space-related scientists often inspired by space-related media? Do people who regularly watch science fiction tend to be more scientifically literate than average?

  3. Study on various elements of the geosciences with respect to space technology

    NASA Technical Reports Server (NTRS)

    Head, J. W., III

    1981-01-01

    The utility of data acquired in space for both basic and applied studies of the geology of the Earth was evaluated. Focus was placed upon the gaps in the current ability to make effective use of remote sensing technology within the Earth sciences. A long range plan is presented for future research that involves an appropriate balance between the development and application of space techniques.

  4. Defense Advanced Research Projects Agency Technology Transition

    DTIC Science & Technology

    1997-01-01

    detection of nuclear testing in space , navigation, meteo- rological monitoring, and communication. These early activities were transferred to the Military...used to detect nuclear tests in space and in the atmosphere as part of the overall basis for verification of a future nuclear test ban treaty. The first...background data to detect nuclear explosions taking place in space , and eventually also in the earth’s atmosphere. The program developed x-ray, neutron

  5. SNOOPY: Student Nanoexperiments for Outreach and Observational Planetary Inquiry

    NASA Technical Reports Server (NTRS)

    Kuhlma, K. R.; Hecht, M. H.; Brinza, D. E.; Feldman, J. E.; Fuerstenau, S. D.; Friedman, L.; Kelly, L.; Oslick, J.; Polk, K.; Moeller, L. E.

    2001-01-01

    As scientists and engineers primarily employed by the public, we have a responsibility to "communicate the results of our research so that the average American could understand that NASA is an investment in our future...". Not only are we employed by the public, but they are also the source of future generations of scientists and engineers. Teachers typically don't have the time or expertise to research recent advances in space science and reduce them to a form that students can absorb. Teachers are also often intimidated by both the subject and the researchers themselves. Therefore, the burden falls on us - the space scientists and engineers of the world - to communicate our findings in ways both teachers and students can understand. Student Nanoexperiments for Outreach and Observational Planetary InquirY (SNOOPY) provides just such an opportunity to directly involve our customers in planetary science missions.

  6. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  7. Research on International Space Station - Building a Partnership for the Future

    NASA Technical Reports Server (NTRS)

    Gindl, Heinz; Scheimann, Jens; Shirakawa, Masaki; Suvorov, Vadim; Uri, John J.

    2004-01-01

    As its name implies, the International Space Station is a platform where the research programs of 16 partner nations are conducted. While each partner pursues its own research priorities, cooperation and coordination of the various national and agency research programs occurs at multiple levels, from strategic through tactical planning to experiment operations. Since 2000, a significant number of experiments have been carried out in the Russian ISS utilization program, which consists of the Russian national program of fundamental and applied research in 11 research areas and international cooperative programs and contract activities. The US research program began with simple payloads in 2000 and was significantly expanded with the addition of the US Laboratory module Destiny in 2001, and its outfitting with seven research racks to date. The Canadian Space Agency (CSA), the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) have made use of international cooperative arrangements with both the US and Russia to implement a variety of investigations in diverse research areas, and in the case of ESA included the flights of crewmembers to ISS as part of Soyuz Science Missions. In the future, ESA and JAXA will add their own research modules, Columbus and Kibo, respectively, to expand research capabilities both inside and outside ISS. In the aftermath of the Columbia accident and the temporary grounding of the Space Shuttle fleet, all ISS logistics have relied on Russian Progress and Sopz vehicles. The Russian national program has continued as before the Shuttle accident, as have international cooperative programs and contract activities, both during long-duration expeditions and visiting taxi missions. In several instances, Russian international cooperative activities with JAXA and ESA have also involved the use of US facilities and crewmembers in successful truly multilateral efforts. The US research program was rapidly refocused after the Shuttle accident to rely on greatly reduced upmass, and for the first time in the ISS program, US research hardware was launched on Progress vehicles and returned with crews on Soyuz spacecraft. It is hoped that these small but significant steps in international cooperation will lead to even greater endeavors once the remaining research modules are added to ISS.

  8. Research Technology

    NASA Image and Video Library

    2002-07-01

    Dr. Tom Markusic, a propulsion research engineer at the Marshall Space Flight Center (MSFC), adjusts a diagnostic laser while a pulsed plasma thruster (PPT) fires in a vacuum chamber in the background. NASA/MSFC's Propulsion Research Center (PRC) is presently investigating plasma propulsion for potential use on future nuclear-powered spacecraft missions, such as human exploration of Mars.

  9. War-gaming application for future space systems acquisition

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.

  10. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.

    2013-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

  11. Outlook for space

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Future space activities within the context of national needs were examined, and directions that the United States should take in the civilian use and exploration of space for the time period from 1980 to 2000 were identified. It was decided that the following activities should be pursued: (1) those related to the continuing struggle to improve the quality of life (food production and distribution, new energy sources, etc., (2) those meeting the need for intellectual challenge, for exploration, and for the knowledge by which man can better understand the universe and his relationship to it, (3) those related to research and development in areas applicable to future space systems and missions. A continuing emphasis should be placed on orienting the space program to the physical needs of mankind, to the quest of the mind and spirit, to the vitality of the nation and to the relationship between this nation and other nations of the world.

  12. Psychosocial issues in space: future challenges.

    PubMed

    Sandal, G M

    2001-06-01

    As the duration of space flights increases and crews become more heterogeneous, psychosocial factors are likely to play an increasingly important role in determining mission success. The operations of the International Space Station and planning of interplanetary missions represent important future challenges for how to select, train and monitor crews. So far, empirical evidence about psychological factors in space is based on simulations and personnel in analog environments (i.e. polar expeditions, submarines). It is apparent that attempts to transfer from these environments to space requires a thorough analysis of the human behavior specific to the fields. Recommendations for research include the effects of multi-nationality on crew interaction, development of tension within crews and between Mission Control, and prediction of critical phases in adaptation over time. Selection of interpersonally compatible crews, pre-mission team training and implementation of tools for self-monitoring of psychological parameters ensure that changes in mission requirements maximize crew performance.

  13. Launch Vehicle Propulsion Life Cycle Cost Lessons Learned

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Rhodes, Russell E.; Robinson, John W.

    2010-01-01

    This paper will review lessons learned for space transportation systems from the viewpoint of the NASA, Industry and academia Space Propulsion Synergy Team (SPST). The paper provides the basic idea and history of "lessons learned". Recommendations that are extremely relevant to NASA's future investments in research, program development and operations are"'provided. Lastly, a novel and useful approach to documenting lessons learned is recommended, so as to most effectively guide future NASA investments. Applying lessons learned can significantly improve access to space for cargo or people by focusing limited funds on the right areas and needs for improvement. Many NASA human space flight initiatives have faltered, been re-directed or been outright canceled since the birth of the Space Shuttle program. The reasons given at the time have been seemingly unique. It will be shown that there are common threads as lessons learned in many a past initiative.

  14. The Future of Operational Space Weather Observations

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2015-12-01

    We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.

  15. Around Marshall

    NASA Image and Video Library

    2004-07-28

    The grand opening of NASA’s new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  16. The search for life's origins: Progress and future directions in planetary biology and chemical evolution

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The current state is reviewed of the study of chemical evolution and planetary biology and the probable future is discussed of the field, at least for the near term. To this end, the report lists the goals and objectives of future research and makes detailed, comprehensive recommendations for accomplishing them, emphasizing those issues that were inadequately discussed in earlier Space Studies Board reports.

  17. Effects of sex and gender on adaptations to space: reproductive health.

    PubMed

    Ronca, April E; Baker, Ellen S; Bavendam, Tamara G; Beck, Kevin D; Miller, Virginia M; Tash, Joseph S; Jenkins, Marjorie

    2014-11-01

    In this report, sex/gender research relevant to reproduction on Earth, in conjunction with the extant human and animal observations in space, was used to identify knowledge gaps and prioritize recommendations for future sex- and gender-specific surveillance and monitoring of male and female astronauts. With overall increased durations of contemporary space missions, a deeper understanding of sex/gender effects on reproduction-related responses and adaptations to the space environment is warranted to minimize risks and insure healthy aging of the men and women who travel into space.

  18. Effects of Sex and Gender on Adaptations to Space: Reproductive Health

    PubMed Central

    Baker, Ellen S.; Bavendam, Tamara G.; Beck, Kevin D.; Miller, Virginia M.; Tash, Joseph S.; Jenkins, Marjorie

    2014-01-01

    Abstract In this report, sex/gender research relevant to reproduction on Earth, in conjunction with the extant human and animal observations in space, was used to identify knowledge gaps and prioritize recommendations for future sex- and gender-specific surveillance and monitoring of male and female astronauts. With overall increased durations of contemporary space missions, a deeper understanding of sex/gender effects on reproduction-related responses and adaptations to the space environment is warranted to minimize risks and insure healthy aging of the men and women who travel into space. PMID:25401943

  19. Improving Safety and Reliability of Space Auxiliary Power Units

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1998-01-01

    Auxiliary Power Units (APU's) play a critical role in space vehicles. On the space shuttle, APU's provide the hydraulic power for the aerodynamic control surfaces, rocket engine gimballing, landing gear, and brakes. Future space vehicles, such as the Reusable Launch Vehicle, will also need APU's to provide electrical power for flight control actuators and other vehicle subsystems. Vehicle designers and mission managers have identified safety, reliability, and maintenance as the primary concerns for space APU's. In 1997, the NASA Lewis Research Center initiated an advanced technology development program to address these concerns.

  20. NASA/SDIO Space Environmental Effects on Materials Workshop, part 1

    NASA Technical Reports Server (NTRS)

    Teichman, Louis A. (Compiler); Stein, Bland A. (Compiler)

    1989-01-01

    The present state of knowledge regarding space environmental effects on materials is described and the knowledge gaps that prevent informed decisions on the best use of advanced materials in space for long-duration NASA and Strategic Defense Initiative Organization (SDIO) missions are identified. Establishing priorities for future ground-based and space-based materials research was a major goal. The end product was an assessment of the current state-of-the-art in space environmental effects on materials in order to develop a national plan for spaceflight experiments.

  1. Space industrialization. Volume 1: An overview. [Marekt research, technology assessment, and economic impact

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Benefits accruing to the United States from the investment of public and private resources in space industralization are projected. The future was examined to characterize resource pressures, requirements and supply (population, energy, materials, food). The backdrop of probable events, attitudes, and trends against which space industralization will evolve were postulated. The opportunities for space industry that would benefit earth were compiled and screened against terrestrial alternatives. A cursory market survey was conducted for the selected services and products provided by these initiatives.

  2. KSC-04pd1292

    NASA Image and Video Library

    2004-06-08

    KENNEDY SPACE CENTER, FLA. - Paul Curto (left), chief technologist with NASA’s Inventions and Contributions Board, learns about research being done in the Space Life Sciences Lab from Jessica Prenger, senior agricultural engineer. Curto is visiting KSC to talk to innovators and encourage workers to submit technologies for future Space Act Awards. The Inventions and Contributions Board, established in 1958, is a major contributor in rewarding outstanding scientific or technical contributions sponsored, adopted, supported or used by NASA that are significant to aeronautics and space activities.

  3. Enabling Sustainable Exploration through the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  4. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  5. NASA Space Sciences Strategic Planning

    NASA Technical Reports Server (NTRS)

    Crane, Philippe

    2004-01-01

    The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.

  6. KSC Weather and Research

    NASA Technical Reports Server (NTRS)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  7. Weaving Together Space Biology and the Human Research Program: Selecting Crops and Manipulating Plant Physiology to Produce High Quality Food for ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond

    2015-01-01

    Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.

  8. Liminality and the Limits of Law in Health Research Regulation: What are we Missing in the Spaces in-Between?

    PubMed Central

    2017-01-01

    Abstract This article fundamentally challenges the way in which law currently regulates human health research. It invokes the anthropological concept of liminality—the quality of in-between-ness—to suggest deeper ways of understanding ongoing challenges in delivering acceptable and effective regulation of research involving human participants. In stark contrast to the structural regulatory spaces constructed by law, the metaphor of the liminal space is explored to explain what is lost through our failure to see health research regulation as an inherently human experiential process, involving potentially profound transformative events for participants and researchers alike. The implications for the future of health research regulation are then examined. In particular, the analysis calls into question key features of the current regulatory paradigm, and demands that we reconsider our own demands of law in this context. The argument is made that health research is a liminal process and that we fail to treat it as such. This requires a rethink of corollary regulation also in processual terms. Ultimately, the charge is to undertake a radical reimagining of regulatory space to accommodate and promote liminal regulatory spaces. PMID:27940525

  9. Liminality and the Limits of Law in Health Research Regulation: What are we Missing in the Spaces in-Between?

    PubMed

    Laurie, Graeme

    2017-02-01

    This article fundamentally challenges the way in which law currently regulates human health research. It invokes the anthropological concept of liminality-the quality of in-between-ness-to suggest deeper ways of understanding ongoing challenges in delivering acceptable and effective regulation of research involving human participants. In stark contrast to the structural regulatory spaces constructed by law, the metaphor of the liminal space is explored to explain what is lost through our failure to see health research regulation as an inherently human experiential process, involving potentially profound transformative events for participants and researchers alike. The implications for the future of health research regulation are then examined. In particular, the analysis calls into question key features of the current regulatory paradigm, and demands that we reconsider our own demands of law in this context. The argument is made that health research is a liminal process and that we fail to treat it as such. This requires a rethink of corollary regulation also in processual terms. Ultimately, the charge is to undertake a radical reimagining of regulatory space to accommodate and promote liminal regulatory spaces. © The Author 2016. Published by Oxford University Press.

  10. Future Challenges in Managing Human Health and Performance Risks for Space Flight

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Barratt, Michael

    2013-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. To enable safe, reliable, and productive human space exploration, we must pool global resources to understand and mitigate human health & performance risks prior to embarking on human exploration of deep space destinations. Consensus on the largest risks to humans during exploration is required to develop an integrated approach to mitigating risks. International collaboration in human space flight research will focus research on characterizing the effects of spaceflight on humans and the development of countermeasures or systems. Sharing existing data internationally will facilitate high quality research and sufficient power to make sound recommendations. Efficient utilization of ISS and unique ground-based analog facilities allows greater progress. Finally, a means to share results of human research in time to influence decisions for follow-on research, system design, new countermeasures and medical practices should be developed. Although formidable barriers to overcome, International working groups are working to define the risks, establish international research opportunities, share data among partners, share flight hardware and unique analog facilities, and establish forums for timely exchange of results. Representatives from the ISS partnership research and medical communities developed a list of the top ten human health & performance risks and their impact on exploration missions. They also drafted a multilateral data sharing plan to establish guidelines and principles for sharing human spaceflight data. Other working groups are also developing methods to promote international research solicitations. Collaborative use of analog facilities and shared development of space flight research and medical hardware continues. Establishing a forum for exchange of results between researchers, aerospace physicians and program managers takes careful consideration of researcher concerns and decision maker needs. Active participation by researchers in the development of this forum is essential, and the benefit can be tremendous. The ability to rapidly respond to research results without compromising publication rights and intellectual property will facilitate timely reduction in human health and performance risks in support of international exploration missions.

  11. Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented, which may be enabling to future space missions never before attempted like a crewed mission to Mars.

  12. KSC00pp0863

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  13. KSC-00pp0863

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  14. KSC-00pp0867

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  15. KSC-00pp0868

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  16. KSC00pp0867

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  17. KSC00pp0869

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  18. KSC-00pp0866

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  19. KSC-00pp0865

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  20. KSC00pp0865

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  1. KSC00pp0866

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  2. KSC00pp0870

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  3. KSC00pp0868

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  4. KSC-00pp0869

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  5. KSC-00pp0870

    NASA Image and Video Library

    2000-07-07

    KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research

  6. Impact of Demographic Trends on Future Development Patterns and the Loss of Open Space in the California Mojave Desert

    NASA Astrophysics Data System (ADS)

    Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel

    2012-02-01

    During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.

  7. Impact of demographic trends on future development patterns and the loss of open space in the California Mojave Desert.

    PubMed

    Gomben, Peter; Lilieholm, Robert; Gonzalez-Guillen, Manuel

    2012-02-01

    During the post-World War II era, the Mojave Desert Region of San Bernardino County, California, has experienced rapid levels of population growth. Over the past several decades, growth has accelerated, accompanied by significant shifts in ethnic composition, most notably from predominantly White non-Hispanic to Hispanic. This study explores the impacts of changing ethnicity on future development and the loss of open space by modeling ethnic propensities regarding family size and settlement preferences reflected by U.S. Census Bureau data. Demographic trends and land conversion data were obtained for seven Mojave Desert communities for the period between 1990 and 2001. Using a spatially explicit, logistic regression-based urban growth model, these data and trends were used to project community-specific future growth patterns from 2000 to 2020 under three future settlement scenarios: (1) an "historic" scenario reported in earlier research that uses a Mojave-wide average settlement density of 3.76 persons/ha; (2) an "existing" scenario based on community-specific settlement densities as of 2001; and (3) a "demographic futures" scenario based on community-specific settlement densities that explicitly model the Region's changing ethnicity. Results found that under the demographic futures scenario, by 2020 roughly 53% of within-community open space would remain, under the existing scenario only 40% would remain, and under the historic scenario model the communities would have what amounts to a deficit of open space. Differences in the loss of open space across the scenarios demonstrate the importance of considering demographic trends that are reflective of the residential needs and preferences of projected future populations.

  8. The International Space Life Sciences Strategic Planning Working Group

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  9. NASA's New Astronauts to Conduct Research Off the Earth , For the Earth and Deep Space Missions

    NASA Image and Video Library

    2017-06-07

    After receiving a record-breaking number of applications to join an exciting future of space exploration, NASA has selected its largest astronaut class since 2000. Rising to the top of more than 18,300 applicants, NASA chose 12 women and men as the agency’s new astronaut candidates. Vice President Mike Pence joined Acting NASA Administrator Robert Lightfoot, Johnson Space Center Director Ellen Ochoa, and Flight Operations Director Brian Kelly to welcome the new astronaut candidates during an event June 7 at the agency’s Johnson Space Center in Houston. The astronaut candidates will return to Johnson in August to begin two years of training. Then they could be assigned to any of a variety of missions: performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and departing for deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket.

  10. KSC-08pd0149

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- At the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair show their pleasure after signing a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd0148

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- At a ceremony at the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair sign a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  12. Research on the Legislation of Chinese Space Laws

    NASA Astrophysics Data System (ADS)

    Yang, Dongwen

    2002-01-01

    1 Need and necessity for the legislation of Chinese space activities --Complying with UN treaties and principles on outer space --Adapting to the requirements of market economy --Promoting the further development of Chinese space activities --Developing international space cooperation 2 Research method for legislation of Chinese space activities The research method is ROCCIPI. This method was introduced into China with the project "Legislation Supports Economy Reform" supported by the UN Office of Development Planning - By analyzing the correlations among the seven factors: Rule, Opportunity, Capacity, Communication, Interest, Process and Ideology, the optimal legal measures can be found . Such analysis and research works on the master law of Chinese space activities have been made in the paper. 3 Research of international treaties &principles on outer space, and of national space laws of other countries. Studies have been made in this paper on many aspects of international outer space laws, such as framework, development stage, current characteristics, new problems will be faced with in new century, and development tendency in the future, etc. Based on the investigation and study of national space laws of other countries, analyses and researches on national space law have been made in the paper from some aspects, such as legislative purpose, legislative aim, legislative form, legislative content and etc, and some enlightenments, which can be used for reference in the legislation of Chinese Space Laws, are found. 4 Framework of Chinese Space Laws The jurisdiction of Chinese Space Laws lies in three areas: space technology - space applications and space science. Chinese Space Laws are divided into 3 levels: Master law, Administration Regulations of the State Council of the P.R.C, Rules of governmental sectors. 5 Conclusions and Suggestions --The legislation of Chinese Space Activities should be strengthened --More attentions should be paid to the research work in the policies &laws of Chinese space --The international exchanges and cooperation in the research work of space laws should be --The system of Chinese Space Laws should be constructed by the master law of Chinese space

  13. Development of Advanced Plant Habitat Flight Unit

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis J., Jr

    2013-01-01

    With NASA's current goals and resources moving forward to bring the idea of Manned Deep-Space missions from a long-thought concept to a reality, innovative research methods and expertise are being utilized for studies that integrate human needs with that of technology to make for the most efficient operations possible. Through the capability to supply food, provide oxygen from what was once carbon dioxide, and various others which help to make plant research one of the prime factors of future long-duration mission, the Advanced Plant Habitat will be the largest microgravity plant growth chamber on the International Space Station when it is launched in the near future (2014- 2015). Soon, the Advanced Plant Habitat unit will continue on and enrich the discoveries and studies on the long-term effects of microgravity on plants.

  14. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  15. Biomedical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Biomedical problems encountered by man in space which have been identified as a result of previous experience in simulated or actual spaceflight include cardiovascular deconditioning, motion sickness, bone loss, muscle atrophy, red cell alterations, fluid and electrolyte loss, radiation effects, radiation protection, behavior, and performance. The investigations and the findings in each of these areas were reviewed. A description of how biomedical research is organized within NASA, how it is funded, and how it is being reoriented to meet the needs of future manned space missions is also provided.

  16. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  17. The progress of sub-pixel imaging methods

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Wen, Desheng

    2014-02-01

    This paper reviews the Sub-pixel imaging technology principles, characteristics, the current development status at home and abroad and the latest research developments. As Sub-pixel imaging technology has achieved the advantages of high resolution of optical remote sensor, flexible working ways and being miniaturized with no moving parts. The imaging system is suitable for the application of space remote sensor. Its application prospect is very extensive. It is quite possible to be the research development direction of future space optical remote sensing technology.

  18. OAST Technology for the Future. Volume 2 - Critical Technologies, Themes 1-4

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which. require validation in the space environment. A secondary objective was to review the current NASA (InReach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  19. NASA's Chemical Transfer Propulsion Program for Pathfinder

    NASA Technical Reports Server (NTRS)

    Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.

    1989-01-01

    Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.

  20. A critical review of the life sciences project management at Ames Research Center for the Spacelab Mission development test 3

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Wilhelm, J. M.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S. F.

    1979-01-01

    A management study was initiated by ARC (Ames Research Center) to specify Spacelab Mission Development Test 3 activities and problems. This report documents the problems encountered and provides conclusions and recommendations to project management for current and future ARC life sciences projects. An executive summary of the conclusions and recommendations is provided. The report also addresses broader issues relevant to the conduct of future scientific missions under the constraints imposed by the space environment.

  1. Implementation of input command shaping to reduce vibration in flexible space structures

    NASA Technical Reports Server (NTRS)

    Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney

    1992-01-01

    Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.

  2. Assessment of the efficacy of medical countermeasures in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Sulzman, F.; Radtke, M.; Bungo, M.

    1989-01-01

    Changes in body fluids, electrolytes, and muscle mass are manifestations of adaptation to space flight and readaptation to the 1-g environment. The purposes of this paper are to review the current knowledge of biomedical responses to short- and long-duration space missions and to assess the efficacy of countermeasures to 1-g conditioning. Exercise protocols, fluid hydration, dietary and potential pharmacologic measures are evaluated, and directions for future research activities are recommended.

  3. Assessment of the efficacy of medical countermeasures in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A.; Sulzman, F.; Radtke, M.; Bungo, M.

    1988-01-01

    Changes in body fluids, electrolytes, and muscle mass are manifestations of adaptation to space flight and readaptation to the 1-g environment. The purposes of this paper are to review the current knowledge of biomedical responses to short- and long-duration space missions and to assess the efficacy of countermeasures to 1-g conditioning. Exercise protocols, fluid hydration, dietary and potential pharmacologic measures are evaluated, and directions for future research activities are recommended.

  4. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  5. Previous experience in manned space flight: A survey of human factors lessons learned

    NASA Technical Reports Server (NTRS)

    Chandlee, George O.; Woolford, Barbara

    1993-01-01

    Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.

  6. Alexander Hegedus Lightning Talk: Integrating Measurements to Optimize Space Weather Strategies

    NASA Astrophysics Data System (ADS)

    Hegedus, A. M.

    2017-12-01

    Alexander Hegedus is a PhD Candidate at the University of Michigan, and won an Outstanding Student Paper Award at the AGU 2016 Fall Meeting for his poster "Simulating 3D Spacecraft Constellations for Low Frequency Radio Imaging." In this short talk, Alex outlines his current research of analyzing data from both real and simulated instruments to answer Heliophysical questions. He then sketches out future plans to simulate science pipelines in a real-time data assimilation model that uses a Bayesian framework to integrate information from different instruments to determine the efficacy of future Space Weather Alert systems. MHD simulations made with Michigan's own Space Weather Model Framework will provide input to simulated instruments, acting as an Observing System Simulation Experiment to verify that a certain set of measurements can accurately predict different classes of Space Weather events.

  7. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  8. Mathematical, Logical, and Formal Methods in Information Retrieval: An Introduction to the Special Issue.

    ERIC Educational Resources Information Center

    Crestani, Fabio; Dominich, Sandor; Lalmas, Mounia; van Rijsbergen, Cornelis Joost

    2003-01-01

    Discusses the importance of research on the use of mathematical, logical, and formal methods in information retrieval to help enhance retrieval effectiveness and clarify underlying concepts of information retrieval. Highlights include logic; probability; spaces; and future research needs. (Author/LRW)

  9. Research opportunities in muscle atrophy

    NASA Technical Reports Server (NTRS)

    Herbison, G. J. (Editor); Talbot, J. M. (Editor)

    1984-01-01

    Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.

  10. Aerospace Communications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    The Communications Division at the NASA Glenn Research Center in Cleveland Ohio has as its charter to provide NASA and the Nation with our expertise and services in innovative communications technologies that address future missions in Aerospace Technology, Spaceflight, Space Science, Earth Science, Life Science and Exploration.

  11. From Libraries to Learning "Libratories:" The New ABC's of 21st-Century School Libraries

    ERIC Educational Resources Information Center

    Trilling, Bernie

    2010-01-01

    Libraries are evolving into learning laboratories or "libratories"--environments where a wide variety of learning activities and projects can take place. Part project space, part design studio, part community meeting and presentation space, and part research and development lab, libraries of the future will have a new alphabet of services--the new…

  12. NASA-OAST program in photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  13. KSC-07pd3316

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians help lift the first of the Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd3317

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove another Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  15. KSC-07pd3315

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove one of two Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd3318

    NASA Image and Video Library

    2007-11-14

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is moved across facility toward space shuttle Endeavour. The MISSE is part of the payload onboard Endeavour for mission STS-123 and will be installed in the payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett

  17. MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing

    NASA Technical Reports Server (NTRS)

    Gates, Thomas G.

    1988-01-01

    The Marshall Space Flight Center maintains an active history program to assure that the foundation of the Center's history is captured and preserved for current and future generations. As part of that overall effort, the Center began a project in 1987 to capture historical information and documentation on the Marshall Center's roles regarding Space Shuttle and Space Station. This document is MSFC Space Station Program Commonly Used Acronyms and Abbreviations Listing. It contains acronyms and abbreviations used in Space Station documentation and in the Historian Annotated Bibliography of Space Station Program. The information may be used by the researcher as a reference tool.

  18. Space Station Freedom (SSF) Data Management System (DMS) performance model data base

    NASA Technical Reports Server (NTRS)

    Stovall, John R.

    1993-01-01

    The purpose of this document was originally to be a working document summarizing Space Station Freedom (SSF) Data Management System (DMS) hardware and software design, configuration, performance and estimated loading data from a myriad of source documents such that the parameters provided could be used to build a dynamic performance model of the DMS. The document is published at this time as a close-out of the DMS performance modeling effort resulting from the Clinton Administration mandated Space Station Redesign. The DMS as documented in this report is no longer a part of the redesigned Space Station. The performance modeling effort was a joint undertaking between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) Flight Data Systems Division (FDSD) and the NASA Ames Research Center (ARC) Spacecraft Data Systems Research Branch. The scope of this document is limited to the DMS core network through the Man Tended Configuration (MTC) as it existed prior to the 1993 Clinton Administration mandated Space Station Redesign. Data is provided for the Standard Data Processors (SDP's), Multiplexer/Demultiplexers (MDM's) and Mass Storage Units (MSU's). Planned future releases would have added the additional hardware and software descriptions needed to describe the complete DMS. Performance and loading data through the Permanent Manned Configuration (PMC) was to have been included as it became available. No future releases of this document are presently planned pending completion of the present Space Station Redesign activities and task reassessment.

  19. Computational aerodynamics development and outlook /Dryden Lecture in Research for 1979/

    NASA Technical Reports Server (NTRS)

    Chapman, D. R.

    1979-01-01

    Some past developments and current examples of computational aerodynamics are briefly reviewed. An assessment is made of the requirements on future computer memory and speed imposed by advanced numerical simulations, giving emphasis to the Reynolds averaged Navier-Stokes equations and to turbulent eddy simulations. Experimental scales of turbulence structure are used to determine the mesh spacings required to adequately resolve turbulent energy and shear. Assessment also is made of the changing market environment for developing future large computers, and of the projections of micro-electronics memory and logic technology that affect future computer capability. From the two assessments, estimates are formed of the future time scale in which various advanced types of aerodynamic flow simulations could become feasible. Areas of research judged especially relevant to future developments are noted.

  20. The scientific challenges to forecasting and nowcasting the magnetospheric response to space weather (Invited)

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Kuznetsova, M. M.; Birn, J.; Pulkkinen, A. A.

    2013-12-01

    Space weather is different from terrestrial weather in an essential way. Terrestrial weather has benefitted from a long history of research, which has led to a deep and detailed level of understanding. In comparison, space weather is scientifically in its infancy. Many key processes in the causal chains from processes on the Sun to space weather effects in various locations in the heliosphere remain either poorly understood or not understood at all. Space weather is therefore, and will remain in the foreseeable future, primarily a research field. Extensive further research efforts are needed before we can reasonably expect the precision and fidelity of weather forecasts. For space weather within the Earth's magnetosphere, the coupling between solar wind and magnetosphere is of crucial importance. While past research has provided answers, often on qualitative levels, to some of the most fundamental questions, answers to some of the latter and the ability to predict quantitatively remain elusive. This presentation will provide an overview of pertinent aspects of solar wind-magnetospheric coupling, its importance for space weather near the Earth, and it will analyze the state of our ability to describe and predict its efficiency. It will conclude with a discussion of research activities, which are aimed at improving our ability to quantitatively forecast coupling processes.

Top