New Millenium Program Serving Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Li, Fuk
1999-01-01
A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.
Space life sciences: A status report
NASA Technical Reports Server (NTRS)
1990-01-01
The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Science and Technology.
Congressional hearings held on October 8-10, 1985, were meant to characterize the attributes of past successes of the United States' efforts in the space sciences, and to project the direction of future research in that area. This report prepared by the subcommittee on space science and application includes recommendations of expert panels on…
Future prospects for space life sciences from a NASA perspective
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.
Powering the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Miley, Steven C.
2009-01-01
This viewgraph presentation reviews NASA's future of science and space exploration. The topics include: 1) NASA's strategic goals; 2) NASA around the Country; 3) Marshall's History; 4) Marshall's Missions; 5) Marshall Statistics: From Exploration to Opportunity; 6) Propulsion and Transportation Systems; 7) Life Support systems; 8) Earth Science; 9) Space Science; 10) NASA Innovation Creates New Jobs, Markets, and Technologies; 11) NASA Inspires Future Generations of Explorers; and 12) Why Explore?
Futures Scenario in Science Learning
ERIC Educational Resources Information Center
Lloyd, David; Vanderhout, Annastasia; Lloyd, Lisa; Atkins, David
2010-01-01
In this article we describe our experiences in developing futures scenarios in two science contexts, space science and atmospheric science/climate change. Futures scenario writing can develop scientific literacy by connecting science learning to students' lifeworlds--past, present and future. They also provide a synthesising mechanism for…
NASA Technical Reports Server (NTRS)
1995-01-01
In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.
2012-02-21
Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, moderates the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Science on the International Space Station: Stepping Stones for Exploration
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2007-01-01
This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.
Future space experiments on cosmic rays and radiation on Russian segments of ISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii
1999-01-22
The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
Space technology to meet future needs
NASA Technical Reports Server (NTRS)
1987-01-01
Key technologies were identified where contemporary investments might have large payoffs in technological options for the future. The future needs were considered for space transportation, space science, national security, and manned missions. Eight areas were selected as being vital for the national future in space. Findings regarding representative mission and the recommendations concerning high priority technologies are summarized.
Training the Future - Interns Harvesting & Testing Plant Experim
2017-07-19
In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is majoring in computer science and chemistry at Rocky Mountain College in Billings, Montana. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.
Visions of human futures in space and SETI
NASA Astrophysics Data System (ADS)
Wright, Jason T.; Oman-Reagan, Michael P.
2018-04-01
We discuss how visions for the futures of humanity in space and SETI are intertwined, and are shaped by prior work in the fields and by science fiction. This appears in the language used in the fields, and in the sometimes implicit assumptions made in discussions of them. We give examples from articulations of the so-called Fermi Paradox, discussions of the settlement of the Solar System (in the near future) and the Galaxy (in the far future), and METI. We argue that science fiction, especially the campy variety, is a significant contributor to the `giggle factor' that hinders serious discussion and funding for SETI and Solar System settlement projects. We argue that humanity's long-term future in space will be shaped by our short-term visions for who goes there and how. Because of the way they entered the fields, we recommend avoiding the term `colony' and its cognates when discussing the settlement of space, as well as other terms with similar pedigrees. We offer examples of science fiction and other writing that broaden and challenge our visions of human futures in space and SETI. In an appendix, we use an analogy with the well-funded and relatively uncontroversial searches for the dark matter particle to argue that SETI's lack of funding in the national science portfolio is primarily a problem of perception, not inherent merit.
NASA's Space Life Sciences Training Program.
Coulter, G; Lewis, L; Atchison, D
1994-01-01
The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.
NASA's Space Life Sciences Training Program
NASA Technical Reports Server (NTRS)
Coulter, G.; Lewis, L.; Atchison, D.
1994-01-01
The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgenthaler, G.W.; Koster, J.N.
1987-01-01
Papers are presented on rocket UV observations of Comet Halley, a space system for microgravity research, transitioning from Spacelab to Space Station science, and assemblers and future space hardware. Also considered are spatial and temporal scales of atmospheric disturbances, Doppler radar for prediction and warning, data management for the Columbus program, communications satellites of the future, and commercial launch vehicles. Other topics include space geodesy and earthquake predictions, inverted cellular radio satellite systems, material processing in space, and potential for earth observations from the manned Space Station.
NASA Earth Science Update with Information Science Technology
NASA Technical Reports Server (NTRS)
Halem, Milton
2000-01-01
This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.
Advances in Planetary Protection at the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.
2018-02-01
Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA Marshall Space Flight Center Annual Report is presented. A description of research and development projects is included. Topics covered include: space science; space systems; transportation systems; astronomy and astrophysics; earth sciences; solar terrestrial physics; microgravity science; diagnostic and inspection system; information, electronic, and optical systems; materials and manufacturing; propulsion; and structures and dynamics.
The Deep Space Gateway: The Next Stepping Stone to Mars
NASA Astrophysics Data System (ADS)
Cassady, R. J.; Carberry, C.; Cichan, T.
2018-02-01
Human missions to Mars will benefit from precursor missions such as the Deep Space Gateway (DSG) that achieve important science and human health and safety milestones. The DSG can perform lunar science and prepare for future Mars mission science.
Overview and Recent Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2)
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2015-01-01
AMTD uses a science-driven systems engineering approach to define & execute a long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Because we cannot predict the future, we are pursuing multiple technology paths including monolithic & segmented mirrors. Assembled outstanding team from academia, industry & government; experts in science & space telescope engineering. Derived engineering specifications from science measurement needs & implementation constraints. Maturing 6 critical technologies required to enable 4 to 8 meter UVOIR space telescope mirror assemblies for both general astrophysics & ultra-high contrast exoplanet imaging. AMTD achieving all its goals & accomplishing all its milestones.
Achievements and Challenges in the Science of Space Weather
NASA Astrophysics Data System (ADS)
Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf
2017-11-01
In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.
Science in orbit: The shuttle and spacelab experience, 1981-1986
NASA Technical Reports Server (NTRS)
1988-01-01
Significant achievements across all scientific disciplines and missions for the first six years of Shuttle flights are presented. Topics covered include science on the Space Shuttle and Spacelab, living and working in space, studying materials and processes in microgravity, observing the sun and earth, space plasma physics, atmospheric science, astronony and astrophysics, and testing new technology in space. Future research aboard the Shuttle/Spacelab is also briefly mentioned.
STEM Education as a Gateway to Future Astronomy: the Case of Ethiopian Universities
NASA Astrophysics Data System (ADS)
Adhana Teklr, Kelali
2015-08-01
Over last two decades education sector in Ethiopia has got due attention. To meet the education deficit of the nation number of universities has been increased from two to thirty eight and twelve more are coming soon. The proliferation has brought a spillover effect that universities have to compete for center excellence in research and education. Convincingly, government’s support is geared towards knowledge-based and innovation-driven system of education to back up the green economic development plan.In an effort to build inclusive economic development emphasis is given to innovative competency building through science and technology fields. The universities in the nation have establish laboratories to educate school boys and girls at early stage of their schooling in STEM (Science, Technology, Engineering and Mathematics) subjects as means to paving future destiny. Though most of the astronomy and space science labs are virtual ones; more and more student have been inspired and want astronomy and space science as their future career fields. Assessment study carried out in universities running STEM education showed that there is a mismatch between the capacity of the labs and number of students wanted to study astronomy and space sciences. The universities have endorsed that STEM education is the gateway to future astronomy and strongly advised concerned bodies and partnering institutions to collaboratively work to intensify the teaching-learning of STEM subjects.The assessment study compiled astronomic and space science exercises carried out by instructors and students and the document is ready to be disseminated to universities and middle and secondary schools to promote the science nationwide. The results have motivated university instructors, science and technology professionals, researchers and policy makers to be more involved in shaping future destiny of the young generation and have their shown determination to support the STEM education so that it will serve as a gateway for future astronomy education and research in the nation.
Space Technology 5 - A Successful Micro-Satellite Constellation Mission
NASA Technical Reports Server (NTRS)
Carlisle, Candace; Webb, Evan H.
2007-01-01
The Space Technology 5 (ST5) constellation of three micro-satellites was launched March 22, 2006. During the three-month flight demonstration phase, the ST5 team validated key technologies that will make future low-cost micro-sat constellations possible, demonstrated operability concepts for future micro-sat science constellation missions, and demonstrated the utility of a micro-satellite constellation to perform research-quality science. The ST5 mission was successfully completed in June 2006, demonstrating high-quality science and technology validation results.
Measuring the Value of AI in Space Science and Exploration
NASA Astrophysics Data System (ADS)
Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.
2017-10-01
FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.
Training the Future - Interns Harvesting & Testing Plant Experim
2017-07-19
In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Ayla Grandpre, left, and Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Grandpre is pursuing a degree in computer science and chemistry at Rocky Mountain College in Billings, Montana. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.
Higher Education: Teaching about the Colonization of Space.
ERIC Educational Resources Information Center
Huebner, Jay S.
1980-01-01
Describes an upper-division science course offered at the University of North Florida, Colonization of Space. The course presents several current issues in the areas of physical science and includes topics in science and technology likely to influence the future lives of present college students. (CS)
Vision for Micro Technology Space Missions. Chapter 2
NASA Technical Reports Server (NTRS)
Dennehy, Neil
2005-01-01
It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.
Engineering Education's Contribution to the Space Program.
ERIC Educational Resources Information Center
Stever, H. Guyford
1988-01-01
States that an expanding future in space requires new technology. Stresses that from engineering education, space requires people with a fundamental knowledge of modern science instruments, all engineering sciences, an appreciation and capability for detail and systems design, and an understanding of costs and competitiveness, machines, materials,…
Space sciences - Keynote address
NASA Technical Reports Server (NTRS)
Alexander, Joseph K.
1990-01-01
The present status and projected future developments of the NASA Space Science and Applications Program are addressed. Emphasis is given to biochemistry experiments that are planned for the Space Station. Projects for the late 1990s which will study the sun, the earth's magnetosphere, and the geosphere are briefly discussed.
NASA CONNECT(TradeMark): Space Suit Science in the Classroom
NASA Technical Reports Server (NTRS)
Williams, William B.; Giersch, Chris; Bensen, William E.; Holland, Susan M.
2003-01-01
NASA CONNECT's(TradeMark) program titled Functions and Statistics: Dressed for Space initially aired on Public Broadcasting Stations (PBS) nationwide on May 9, 2002. The program traces the evolution of past space suit technologies in the design of space suits for future flight. It serves as the stage to provide educators, parents, and students "space suit science" in the classroom.
21st Space Simulation Conference: The Future of Space Simulation Testing in the 21st Century
NASA Technical Reports Server (NTRS)
Stecher, Joseph L., III (Compiler)
2000-01-01
The Institute of Environmental Sciences and Technology's Twenty-first Space Simulation Conference, "The Future of Space Testing in the 21st Century" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, programs/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Future of Space Testing in the 21st Century."
Space radiation health program plan
NASA Technical Reports Server (NTRS)
1991-01-01
The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.
Realistic Goals and Processes for Future Space Astronomy Portfolio Planning
NASA Astrophysics Data System (ADS)
Morse, Jon
2015-08-01
It is generally recognized that international participation and coordination is highly valuable for maximizing the scientific impact of modern space science facilities, as well as for cost-sharing reasons. Indeed, all large space science missions, and most medium and small missions, are international, even if one country or space agency has a clear leadership role and bears most of the development costs. International coordination is a necessary aspect of future mission planning, but how that coordination is done remains debatable. I propose that the community's scientific vision is generally homogeneous enough to permit international coordination of decadal-scale strategic science goals. However, the timing and budget allocation/funding mechanisms of individual countries and/or space agencies are too disparate for effective long-term strategic portfolio planning via a single international process. Rather, I argue that coordinated space mission portfolio planning is a natural consequence of international collaboration on individual strategic missions. I review the process and outcomes of the U.S. 2010 decadal survey in astronomy & astrophysics from the perspective of a government official who helped craft the survey charter and transmitted guidance to the scientific community on behalf of a sponsoring agency (NASA), while continuing to manage the current portfolio that involved ongoing negotiations with other space agencies. I analyze the difficulties associated with projecting long-term budgets, obtaining realistic mission costs (including the additional cost burdens of international partnerships), and developing new (possibly transformational) technologies. Finally, I remark on the future role that privately funded space science missions can have in accomplishing international science community goals.
Senate Subcommittee on Space, Science, and Competitiveness Heari
2018-05-16
Sen. Ted Cruz, R-Texas, chairman of the Senate Subcommittee on Space, Science, and Competitiveness speaks during a hearing titled "Examining the Future of the International Space Station: Administration Perspectives," Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)
Senate Subcommittee on Space, Science, and Competitiveness Heari
2018-05-16
NASA Inspector General Paul Martin testifies during a Senate Subcommittee on Space, Science, and Competitiveness hearing titled "Examining the Future of the International Space Station: Administration Perspectives" held on Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)
Senate Subcommittee on Space, Science, and Competitiveness Heari
2018-05-16
NASA Inspector General Paul Martin is seen during a Senate Subcommittee on Space, Science, and Competitiveness hearing titled "Examining the Future of the International Space Station: Administration Perspectives" Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)
NASA Astrophysics Data System (ADS)
Sastradipradja, D.; Dwivany, F. M.; Swandjaja, L.
2016-11-01
Viewing astronomy objects from space is superior to that from Earth due to the absence of terrestrial atmospheric disturbances. Since decades ago, there has been an idea of building gigantic spaceships to live in, i.e., low earth orbit (LEO) settlement. In the context of solar eclipse, the presuming space settlements will accommodate future solar eclipse chasers (amateur or professional astronomers) to observe solar eclipse from space. Not only for scientific purpose, human personal observation from space is also needed for getting aesthetical mental impression. Furthermore, since space science indirectly aids solar eclipse observation, we will discuss the related history and development of Indonesian space experiments. Space science is an essential knowledge to be mastered by all nations.
The Hubble Spectroscopic Legacy Archive
NASA Astrophysics Data System (ADS)
Peeples, M.; Tumlinson, J.; Fox, A.; Aloisi, A.; Fleming, S.; Jedrzejewski, R.; Oliveira, C.; Ayres, T.; Danforth, C.; Keeney, B.; Jenkins, E.
2017-04-01
With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The goal of the Hubble Spectroscopic Legacy Archive(HSLA) is to provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS)and the Space Telescope Imaging Spectrograph (STIS). These data are packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability makes the data easy for users to quickly access, assess the quality of,and download for archival science. The first generation of these products for the far-ultraviolet (FUV) modes of COS was made available online via the Mikulski Archive for Space Telescopes (MAST) in early 2016 and updated in early 2017; future releases will include COS/NUV and STIS/UV data.
The new space and earth science information systems at NASA's archive
NASA Technical Reports Server (NTRS)
Green, James L.
1990-01-01
The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.
The new space and Earth science information systems at NASA's archive
NASA Technical Reports Server (NTRS)
Green, James L.
1990-01-01
The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, Total Ozone Mapping Spectrometer (TOMS) data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered.
Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)
NASA Astrophysics Data System (ADS)
Pierce, D. L.
2016-12-01
These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.
2012-02-21
Laurie Leshin, dean of the School of Science, Rensselaer Polytechnic Institute, left, Mason Peck, NASA Chief Technologist, 2nd from left, Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University, Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company, and, Jordan Hansell, chairman and CEO, NetJets Inc., right, participate in the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2003-04-30
KENNEDY SPACE CENTER, FLA. - Visitors stop at the Orbital Sciences booth during Space Congress Week, held April 29-May 2, 2003, in Cape Canaveral, Fla. The Space Congress is an international conference that gathers attendees from the scientific community, the space industry workforce, educators and local supporting industries. This year's event commemorated the 40th anniversary of the Kennedy Space Center and the Centennial of Flight. The theme for the Space Congress was "Linking the Past to the Future: A Celebration of Space."
NASA Technical Reports Server (NTRS)
Diaz, Alphonso V.
1993-01-01
A new vision has emerged within the Office of Space Science and Applications (OSSA), and within the agency as a whole, for how to design missions to be responsive to the changing budget environment of the 1990s. The overall space science and applications program had to be looked at, restructuring the most expensive and complex projects to bring down costs and ensure their place in the mission queue of the future. The recent restructuring of some of OSSA's largest programs in development and the work to improve efficiency for those in operation is part of OSSA's effort to free funds for more frequent space science missions in the future. Instead of more great observatories, we are looking toward a new vision encompassing a level of great activity through small, frequent missions. The strategy developed for attaining this vision was to lower costs by reducing size and complexity through new technology, while at the same time making progress in space science. The strategy comprises two interwoven parts: the flight program strategy of each of the science disciplines and OSSA's new-technology strategy. The overall purpose of all OSSA's efforts to date has been to free resources for maximizing the space science program in a tough fiscal environment.
Training the Future - Interns Harvesting & Testing Plant Experim
2017-07-19
In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns are joining agency scientists, contributing in the area of plant growth research for food production in space. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.
2012-02-21
Jordan Hansell, chairman and CEO, NetJets Inc. talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
Michael Donovan, technology consultant, New Services Development, Hewlett-Packard Company talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Space science and applications: Strategic plan 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The Office of Space Science and Applications (OSSA) 1991 Strategic Plan reflects a transitional year in which we respond to changes and focus on carrying out a vital space science program and strengthening our research base to reap the benefits of current and future missions. The Plan is built on interrelated, complementary strategies for the core space science program, for Mission to Planet Earth, and for Mission from Planet Earth. Each strategy has its own unique themes and mission priorities, but they share a common set of principles and a common goal - leadership through the achievement of excellence. Discussed here is the National Space Policy; an overview of OSSA activities, goals, and objectives; and the implications of the OSSA space science and applications strategy.
Dan Goldin Presentation: Pathway to the Future
NASA Technical Reports Server (NTRS)
1999-01-01
In the "Path to the Future" presentation held at NASA's Langley Center on March 31, 1999, NASA's Administrator Daniel S. Goldin outlined the future direction and strategies of NASA in relation to the general space exploration enterprise. NASA's Vision, Future System Characteristics, Evolutions of Engineering, and Revolutionary Changes are the four main topics of the presentation. In part one, the Administrator talks in detail about NASA's vision in relation to the NASA Strategic Activities that are Space Science, Earth Science, Human Exploration, and Aeronautics & Space Transportation. Topics discussed in this section include: space science for the 21st century, flying in mars atmosphere (mars plane), exploring new worlds, interplanetary internets, earth observation and measurements, distributed information-system-in-the-sky, science enabling understanding and application, space station, microgravity, science and exploration strategies, human mars mission, advance space transportation program, general aviation revitalization, and reusable launch vehicles. In part two, he briefly talks about the future system characteristics. He discusses major system characteristics like resiliencey, self-sufficiency, high distribution, ultra-efficiency, and autonomy and the necessity to overcome any distance, time, and extreme environment barriers. Part three of Mr. Goldin's talk deals with engineering evolution, mainly evolution in the Computer Aided Design (CAD)/Computer Aided Engineering (CAE) systems. These systems include computer aided drafting, computerized solid models, virtual product development (VPD) systems, networked VPD systems, and knowledge enriched networked VPD systems. In part four, the last part, the Administrator talks about the need for revolutionary changes in communication and networking areas of a system. According to the administrator, the four major areas that need cultural changes in the creativity process are human-centered computing, an infrastructure for distributed collaboration, rapid synthesis and simulation tools, and life-cycle integration and validation. Mr. Goldin concludes his presentation with the following maxim "Collaborate, Integrate, Innovate or Stagnate and Evaporate." He also answers some questions after the presentation.
NASA Astrophysics Data System (ADS)
Khan, Aafaque; Sridhar, Apoorva
2012-07-01
The previous decade saw the emergence of internet in the new avatar popularly known as Web 2.0. After its inception, Internet (also known as Web 1.0) remained centralized and propriety controlled; the information was displayed in form of static pages and users could only browse through these pages connected via URLs (Unique Resource Locator), links and search engines. Web 2.0, on the other hand, has features and tools that allow users to engage in dialogue, interact and contribute to the content on the World Wide Web. As a Result, Social Media has become the most widely accepted medium of interactive and participative dialogue around the world. Social Media is not just limited to Social Networking; it extends from podcasts, webcasts, blogs, micro-blogs, wikis, forums to crowd sourcing, cloud storage, cloud computing and Voice over Internet Protocol. World over, there is a rising trend of using Social Media for Space Education and Outreach. Governments, Space Agencies, Universities, Industry and Organizations have realized the power of Social Media to communicate advancement of space science and technology, updates on space missions and their findings to the common man as well as to the researchers, scientists and experts around the world. In this paper, the authors intend to discuss, the perspectives, of young students and professionals in the space industry on various present and future possibilities of using Social Media in space outreach and citizen science, especially in India and other developing countries. The authors share a vision for developing Social Media platforms to communicate space science and technology, along innovative ideas on participative citizen science projects for various space based applications such as earth observation and space science. Opinions of various young students and professionals in the space industry from different parts of the world are collected and reflected through a comprehensive survey. Besides, a detailed study and review with various examples of present existing projects such as Open NASA, Zooniverse, SETI, Google Earth etc. Support these perspectives. Further, the authors put light on how developing countries can benefit from Space outreach and citizen science through Social Media to connect with the society. The paper concludes with various innovative ideas that are derived from the survey and discussions with these prospective space leaders, along with the insights of the authors on future strategies for such approaches in India and other developing nations. Demographically, youth provides the largest user-base to the Social Media and these young future space leaders are expert at using Social Media in their daily life. Thus, it is important that their collective and shared opinion is presented to the present policymakers and leaders of space agencies and industry.
Senate Subcommittee on Space, Science, and Competitiveness Heari
2018-05-16
Sen. Bill Nelson, D-Fla., ranking member of the Senate Subcommittee on Space, Science, and Competitiveness speaks during a hearing titled "Examining the Future of the International Space Station: Administration Perspectives" held on Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)
Deep Space 1: Testing New Technologies for Future Small Bodies Missions
NASA Technical Reports Server (NTRS)
Rayman, Marc D.
2001-01-01
Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.
Alexander, Robert H.
1964-01-01
Space science has been called “the collection of scientific problems to which space vehicles can make some specific contributions not achievable by ground-based experiments.” Geography, the most spatial of the sciences, has now been marked as one of these “space sciences.” The National Aeronautics and Space Administration (NASA) is sponsoring an investigation to identify the Potential geographic benefits from the nation’s space program. This is part of NASA’s long-range inquiry to determine the kinds of scientific activities which might profitably be carried out on future space missions. Among such future activities which are now being planned by NASA are a series of manned earth orbital missions, many of which would be devoted to research. Experiments in physics, astronomy, geophysics, meteorology, and biology are being discussed for these long-range missions. The question which is being put to geographers is, essentially, what would it mean to geographic research to have an observation satellite (or many such satellites) orbiting the earth, gathering data about earth-surface features and environments?
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
User interfaces in space science instrumentation
NASA Astrophysics Data System (ADS)
McCalden, Alec John
This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.
2012-02-21
John Logsdon, professor emeritus of Political Science and International Affairs, Elliott School of International Affairs, George Washington University, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Space Research Institute (IKI) Exhibition as an Educational Project
NASA Astrophysics Data System (ADS)
Sadovski, Andrei; Antonenko, Elena
2016-07-01
The Exhibition "Space Science: Part and Future" in Space Research Institute (IKI) was opened in 2007 in commemoration of the 50th anniversary of the first man-made satellite launch. It covers the latest and the most important findings in space research, shows instruments which are used in space exploration, and presents past, current, and future Russian science missions. Prototypes of space instruments developed by Russian specialists and mockups of spacecraft and spaceships flown to space are displayed, together with information posters, describing space missions, their purposes and results. The Exhibition takes a great part in school space education. Its stuff actively works with schoolchildren, undergraduate students and also makes a great contribution in popularization of space researches. Moreover the possibility to learn about scientific space researches first-hand is priceless. We describe the main parts of the Exhibition and forms of it work and also describe the collaboration with other museums and educational organizations.
Oversight: Space Telescope, 1982
NASA Astrophysics Data System (ADS)
The oversight hearing of the House subcommittee on Space Science and Applications concerning the development of the Space Telescope is presented. Plans for future utilization of the telescope are discussed.
Developing STEM Leaders Through Space Science Education and Public Outreach
NASA Astrophysics Data System (ADS)
Gibbs, M. G.; Veenstra, D.
2012-08-01
Capitol College, located in Laurel, Maryland, established the Center for Space Science Education and Public Outreach with the mission to assist in educating future leaders in the science, technology, engineering and math (STEM). This presentation shares emerging best practices through innovative methods to create awareness regarding STEM outreach programs and activities related workforce development and career pathways.
A look towards the future in the handling of space science mission geometry
NASA Astrophysics Data System (ADS)
Acton, Charles; Bachman, Nathaniel; Semenov, Boris; Wright, Edward
2018-01-01
The "SPICE" system has been widely used since the days of the Magellan mission to Venus as the method for scientists and engineers to access a variety of space mission geometry such as positions, velocities, directions, orientations, sizes and shapes, and field-of-view projections (Acton, 1996). While originally focused on supporting NASA's planetary missions, the use of SPICE has slowly grown to include most worldwide planetary missions, and it has also been finding application in heliophysics and other space science disciplines. This paper peeks under the covers to see what new capabilities are being developed or planned at SPICE headquarters to better support the future of space science. The SPICE system is implemented and maintained by NASA's Navigation and Ancillary Information Facility (NAIF) located at the Jet Propulsion Laboratory in Pasadena, California (http://naif.jpl.nasa.gov).
Sustainability, the Next Generation Science Standards, and the Education of Future Teachers
ERIC Educational Resources Information Center
Egger, Anne E.; Kastens, Kim A.; Turrin, Margaret K.
2017-01-01
The Next Generation Science Standards (NGSS) emphasize how human activities affect the Earth and how Earth processes impact humans, placing the concept of sustainability within the Earth and Space Sciences. We ask: how prepared are future teachers to address sustainability and systems thinking as encoded in the NGSS? And how can geoscientists…
Senate Subcommittee on Space, Science, and Competitiveness Heari
2018-05-16
NASA Associate Administrator for the Human Exploration and Operations Mission Directorate William Gerstenmaier testifies during a Senate Subcommittee on Space, Science, and Competitiveness hearing titled "Examining the Future of the International Space Station: Administration Perspectives" held on Wednesday, May 16, 2018 in the Russell Senate Office Building on Capitol Hill in Washington. Photo Credit: (NASA/Joel Kowsky)
NASA Technical Reports Server (NTRS)
Helmreich, R.; Wilhelm, J.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S.
1978-01-01
A management study was conducted to specify activities and problems encountered during the development of procedures for documentation and crew training on experiments, as well as during the design, integration, and delivery of a life sciences experiment payload to Johnson Space Center for a 7 day simulation of a Spacelab mission. Conclusions and recommendations to project management for current and future Ames' life sciences projects are included. Broader issues relevant to the conduct of future scientific missions under the constraints imposed by the environment of space are also addressed.
2012-02-20
Ohio State University graduate student, biological sciences and NASA Student Ambassador, Monica Okon talks during the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Scowen, Paul A.; Tripp, Todd; Beasley, Matt; Ardila, David; Andersson, B.-G.; Maíz Apellániz, Jesús; Barstow, Martin; Bianchi, Luciana; Calzetti, Daniela; Clampin, Mark; Evans, Christopher J.; France, Kevin; García García, Miriam; Gomez de Castro, Ana; Harris, Walt; Hartigan, Patrick; Howk, J. Christopher; Hutchings, John; Larruquert, Juan; Lillie, Charles F.; Matthews, Gary; McCandliss, Stephan; Polidan, Ron; Perez, Mario R.; Rafelski, Marc; Roederer, Ian U.; Sana, Hugues; Sanders, Wilton T.; Schiminovich, David; Thronson, Harley; Tumlinson, Jason; Vallerga, John; Wofford, Aida
2017-07-01
We present the science cases and technological discussions that came from the workshop titled “Finding the ultraviolet (UV)-Visible Path Forward” held at NASA GSFC 2015 June 25-26. The material presented outlines the compelling science that can be enabled by a next generation space-based observatory dedicated for UV-visible science, the technologies that are available to include in that observatory design, and the range of possible alternative launch approaches that could also enable some of the science. The recommendations to the Cosmic Origins Program Analysis Group from the workshop attendees on possible future development directions are outlined.
Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike
2004-01-01
To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.
Space Internet Architectures and Technologies for NASA Enterprises
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Hayden, Jeffrey L.
2001-01-01
NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.
NASA Astrophysics Data System (ADS)
Moussas, Xenophon; Bampasidis, Georgios; Coustenis, Athena; Solomonidou, Anezina
2010-05-01
These days Outreach is an activity tightly related to success in science. The public with its great interest to space and astronomy in general, the solar system exploration and Saturn and Titan in particular, loves the scientific outcome of Cassini and Huygens. This love of the public gives a lot, as its known interest to space, persuades politicians and policy makers to support space and future Saturn and Titan explorations. We use the scientific results from Cassini and Huyghens together with a mosaic from ancient science concerning the history of solar system exploration, such as the oldest known complex astronomical device, the Antikyhtera Mechanism, in outreach activities to ensure future missions and continuous support to present ones. A future mission to the Saturnian System focusing on exotic Titan will broaden people's interest not only to Physics and Astronomy, but to Mechanics, Technology and even Philosophy as well, since, obviously, the roots of the vast contribution of Space Science and Astronomy to the contemporary society can be traced back to the first astronomers of Antiquity. As an example we use the Antikythera Mechanism, a favourite astronomical device for the public, which is the first geared astronomical device ever, constructed that combines the spirit of the ancient Astronomy and scientific accuracy. It is common belief that Astronomy and Astrophysics is a perfect tool to easily involve people in Science, as the public is always interested in space subjects, captivated by the beauty and the mystery of the Universe. Years after the successful entry, descent and landing of the Huygens probe on Titan's surface, the outstanding achievements of the Cassini-Huygens mission enhance the outreach potential of Space Science. Titan is an earth-like world, embedded in a dense nitrogen atmospheric envelop and a surface carved by rivers, mountains, dunes and lakes, its exploration will certainly empower the perspective of the society for space activities. We will show the different means of attracting people's interest in a future mission to Titan and the Saturnian system, by projecting from the past into future achievements. Our proposal consists of a worldwide campaign, which uses future space research on Titan and Enceladus to formulate an effective message to the layman public. In this framework, exhibitions, lectures, TV/radio/online broadcasts and publications will take place in schools, as well as social events or conferences, in collaboration with local communities. Outreach activities aim to enhance people's perspective of and participation in the exploration of Titan and the Saturnian System. In particular, future activities are planned to focus on: Education: include an attractive perspective of astronomy and TSSM science in school lessons, Competitions to name and design logos. Publications: Leaflets/fact sheets, Comic Books, articles for public CD/DVD productions, animations, trailers, TV/radio programs, Plastic cards and other constructions, Exhibitions, Participation in major astronomical events.
Opportunities for research in space life sciences aboard commercial suborbital flights.
Wagner, Erika B; Charles, John B; Cuttino, Charles Marsh
2009-11-01
The emergence of commercial suborbital spaceflight offers a wide range of new research and development opportunities for those in the space life sciences. Large numbers of diverse flyers, frequent re-flights, and flexible operations provide a fertile ground for both basic and applied science, as well as technology demonstrations. This commentary explores some of the unique features available to the space life science community and encourages engagement with commercial developers and operators during the design phase to help optimize platform designs and operations for future research.
NASA Technical Reports Server (NTRS)
Garshnek, V.; Davies, P.; Ballard, R.
1992-01-01
Current international capabilities in the space life sciences/technology areas are reviewed focusing on the cooperative potential of the international community as applied to advanced Shuttle/Spacelab flights. The review of the international experience base and mutual cooperative benefits of the United States and international partners presented in the paper provides a guide to the young professional in planning for a space life sciences career.
The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science
NASA Astrophysics Data System (ADS)
McPhee, J. C.
2017-12-01
How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.
Space life sciences strategic plan, 1991
NASA Technical Reports Server (NTRS)
1992-01-01
Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.
Establishing lunar resource viability
NASA Astrophysics Data System (ADS)
Carpenter, J.; Fisackerly, R.; Houdou, B.
2016-11-01
Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.
In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Jordan, Lee P.
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.
Issues Affecting the Future of the U.S. Space Science and Engineering Workforce: Interim Report
ERIC Educational Resources Information Center
National Academies Press, 2006
2006-01-01
In January 2006, the President announced a new civilian space policy focusing on exploration. As part of its preparations to implement that policy, NASA asked the NRC to explore long-range science and technology workforce needs to achieve the space exploration vision, identify obstacles to filling those needs, and put forward solutions to those…
The 1991 Marshall Space Flight Center research and technology
NASA Technical Reports Server (NTRS)
1991-01-01
A compilation of 194 articles addressing research and technology activities at the Marshall Space Flight Center (MSFC) is given. Activities are divided into three major areas: advanced studies addressing transportation systems, space systems, and space science activities conducted primarily in the Program Development Directorate; research tasks carried out in the Space Science Laboratory; and technology programs hosted by a wide array of organizations at the Center. The theme for this year's report is 'Building for the Future'.
1981-12-01
During 1980 and the first half of 1981, the Marshall Space Flight Center conducted studies concerned with a relatively low-cost, near-term, manned space platform to satisfy current user needs, yet capable of evolutionary growth to meet future needs. The Science and Application Manned Space Platform (SAMSP) studies were to serve as a test bed for developing scientific and operational capabilities required by later, more advanced manned platforms while accomplishing early science and operations. This concept illustrates a manned space platform.
The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stagg, Elizabeth
2004-01-01
In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations. Some initial results from the first three materials experiments are given.
The International Space Life Sciences Strategic Planning Working Group
NASA Technical Reports Server (NTRS)
White, Ronald J.; Rabin, Robert; Lujan, Barbara F.
1993-01-01
Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.
NASA Ames and Future of Space Exploration, Science, and Aeronautics
NASA Technical Reports Server (NTRS)
Cohen, Jacob
2015-01-01
Pushing the frontiers of aeronautics and space exploration presents multiple challenges. NASA Ames Research Center is at the forefront of tackling these issues, conducting cutting edge research in the fields of air traffic management, entry systems, advanced information technology, intelligent human and robotic systems, astrobiology, aeronautics, space, earth and life sciences and small satellites. Knowledge gained from this research helps ensure the success of NASA's missions, leading us closer to a world that was only imagined as science fiction just decades ago.
Space science in the 1990's and beyond
NASA Astrophysics Data System (ADS)
Huntress, Wesley T., Jr.; Kicza, Mary E.; Feeley, T. Jens
NASA's Office of Space Sciences is changing its approach to our missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at our role in the Federal Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires far less resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs.
Space science in the 1990's and beyond
NASA Technical Reports Server (NTRS)
Huntress, Wesley T., Jr.; Kicza, Mary E.; Feeley, T. Jens
1994-01-01
NASA's Office of Space Sciences is changing its approach to our missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at our role in the Federal Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires far less resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs.
Lidar Past, Present, and Future in NASA's Earth and Space Science Programs
NASA Technical Reports Server (NTRS)
Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.
2004-01-01
Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.
NASA Technical Reports Server (NTRS)
1995-01-01
This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.
Training the Future - Interns Harvesting & Testing Plant Experim
2017-07-19
In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Alex Litvin are joining agency scientists, contributing in the area of plant growth research for food production in space. Litvin is pursuing doctorate in horticulture at Iowa State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.
The ninth Dr. Albert Plesman memorial lecture: The Future of Space Flight
NASA Technical Reports Server (NTRS)
Moore, J. W.
1984-01-01
The history of space flight is reviewed and major NASA programs (Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz, Science and Applications, Space Shuttle, Space Station) are summarized. Developments into the early 21st century are predicted.
2012-02-21
Ron Sega, Vice president and enterprise executive for Energy and the Environment, The Ohio State University and Colorado State University talks during the NASA Future Forum panel titled "Importance of Technology, Science and Innovation for our Economic Future" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
2012-02-21
Yael Vodovotz, Associate Professor, Department of Food Science and Technology, Ohio State University, talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
Space transportation system biomedical operations support study
NASA Technical Reports Server (NTRS)
White, S. C.
1983-01-01
The shift of the Space Transportation System (STS) flight tests of the orbiter vehicle to the preparation and flight of the payloads is discussed. Part of this change is the transition of the medical and life sciences aspects of the STS flight operations to reflect the new state. The medical operations, the life sciences flight experiments support requirements and the intramural research program expected to be at KSC during the operational flight period of the STS and a future space station are analyzed. The adequacy of available facilities, plans, and resources against these future needs are compared; revisions and/or alternatives where appropriate are proposed.
NASA Astrophysics Data System (ADS)
Gohardani, Omid; Elola, Maialen Chapartegui; Elizetxea, Cristina
2014-10-01
Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.
Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.
2012-02-21
Dr. Caroline Wagner, associate professor, Ambassador Milton A. and Roslyn Z. Wolf Chair in International Affairs, and Director, Battelle Center for Science and Technology Policy, The Ohio State University moderates the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)
1994 Science Information Management and Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1994-01-01
This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.
The 1995 Science Information Management and Data Compression Workshop
NASA Technical Reports Server (NTRS)
Tilton, James C. (Editor)
1995-01-01
This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center.
History of nutrition in space flight: overview
NASA Technical Reports Server (NTRS)
Lane, Helen W.; Feeback, Daniel L.
2002-01-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
History of nutrition in space flight: overview.
Lane, Helen W; Feeback, Daniel L
2002-10-01
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
"Space, the Final Frontier"; Books on Space and Space Exploration.
ERIC Educational Resources Information Center
Jordan, Anne Devereaux
1997-01-01
Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)
Research and technology report, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
The Marshall Space Flight Center programs of research and technology for 1981 in various areas of aerospace science are reviewed. Each activity reviewed has a high probability of application to current or future programs or is an application of the results of current programs. Projects in atmospheric and magnetospheric science, solar physics, astronomy, and space technology are included.
Young Scientists Explore the Sun, Moon and Stars. Book 9 Primary Level.
ERIC Educational Resources Information Center
Penn, Linda
Designed to present interesting facts about science and to heighten the curiosity of primary age students, this book contains activities about the natural world and numerous black and white illustrations. The activities specifically focus on space science and allow the children to view themselves as future space scientists. Section one contains…
Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches
ERIC Educational Resources Information Center
Mills, Reece; Tomas, Louisa; Lewthwaite, Brian
2016-01-01
In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…
Training the Future - Interns Harvesting & Testing Plant Experim
2017-07-19
In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Payton Barnwell are joining agency scientists, contributing in the area of plant growth research for food production in space. Barnwell is a mechanical engineering and nanotechnology major at Florida Polytechnic University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.
Space Science Enterprise Strategy
NASA Technical Reports Server (NTRS)
2003-01-01
The 2003 Space Science Enterprise Strategy represents the efforts of hundreds of scientists, staff, and educators, as well as collaboration with the other NASA Enterprises. It reveals the progress we have made, our plans for the near future, and our opportunity to support the Agency's Mission to "explore the universe and search for life." Space science has made spectacular advances in the recent past, from the first baby pictures of the universe to the discovery of water ice on Mars. Each new discovery impels us to ask new questions or regard old ones in new ways. How did the universe begin? How did life arise? Are we alone? These questions continue to inspire all of us to keep exploring and searching. And, as we get closer to answers, we will continue to share our findings with the science community, educators, and the public as broadly and as rapidly as possible. In this Strategy, you will find science objectives that define NASA's quest for discovery. You will also find the framework of programs, such as flight missions and ground-based research, that will enable us to achieve these objectives. This Strategy is founded on recommendations from the community, as well as lessons learned from past programs, and maps the stepping-stones to the future of space science.
The Army and Space: Historic Perspectives on Future Prospects.
1986-06-06
of the U.S. Army Command and General Staff College In partial fulfillment of the requirements for the dsgrecy MASTER OF MILITARY ART AND SCIENCE by...By__________ DDistribution/_ tAAvailnb’ility codes jAvail anId/oIr jDist Ispocial ýý 6R-tW rM.,W-MMM HO E ý- M WMM-7 MASTER OF MILITARY ART AND SCIENCE...PACU: HISTORICAL. PERSPECTIVES ON FUTURE PROSPECTS: An arialy .iy.s ,t thi. Ar ry’s early involvement in space to tind historical lessons to help guide
A Possible Future for Space-Based Interferometry
NASA Technical Reports Server (NTRS)
Labadie, L.; Leger, A.; Malbet, F.; Danchi, William C.; Lopez, B.
2013-01-01
We address the question of space interferometry following the recent outcome of the science themes selection by ESA for the L2/L3 missions slots. We review the current context of exoplanetary sciences and its impact for an interferometric mission. We argue that space interferometry will make a major step forward when the scientific communities interested in this technique will merge their efforts into a coherent technology development plan.
Robotic lunar exploration: Architectures, issues and options
NASA Astrophysics Data System (ADS)
Mankins, John C.; Valerani, Ernesto; Della Torre, Alberto
2007-06-01
The US ‘vision for space exploration’ articulated at the beginning of 2004 encompasses a broad range of human and robotic space missions, including missions to the Moon, Mars and destinations beyond. It establishes clear goals and objectives, yet sets equally clear budgetary ‘boundaries’ by stating firm priorities, including ‘tough choices’ regarding current major NASA programs. The new vision establishes as policy the goals of pursuing commercial and international collaboration in realizing future space exploration missions. Also, the policy envisions that advances in human and robotic mission technologies will play a key role—both as enabling and as a major public benefit that will result from implementing that vision. In pursuing future international space exploration goals, the exploration of the Moon during the coming decades represents a particularly appealing objective. The Moon provides a unique venue for exploration and discovery—including the science of the Moon (e.g., geological studies), science from the Moon (e.g., astronomical observatories), and science on the Moon (including both basic research, such as biological laboratory science, and applied research and development, such as the use of the Moon as a test bed for later exploration). The Moon may also offer long-term opportunties for utilization—including Earth observing applications and commercial developments. During the coming decade, robotic lunar exploration missions will play a particularly important role, both in their own right and as precursors to later, more ambitious human and robotic exploration and development efforts. The following paper discusses some of the issues and opportunities that may arise in establishing plans for future robotic lunar exploration. Particular emphasis is placed on four specific elements of future robotic infrastructure: Earth Moon in-space transportation systems; lunar orbiters; lunar descent and landing systems; and systems for long-range transport on the Moon.
Inventing a Space Mission: The Story of the Herschel Space Observatory
NASA Astrophysics Data System (ADS)
Minier, Vincent; Bonnet, Roger-Maurice; Bontems, Vincent; de Graauw, Thijs; Griffin, Matt; Helmich, Frank; Pilbratt, Göran; Volonte, Sergio
This book describes prominent technological achievements within a very successful space science mission: the Herschel space observatory. Focusing on the various processes of innovation it offers an analysis and discussion of the social, technological and scientific context of the mission that paved the way to its development. It addresses the key question raised by these processes in our modern society, i.e.: how knowledge management of innovation set the conditions for inventing the future? In that respect the book is based on a transdisciplinary analysis of the programmatic complexity of Herschel, with inputs from space scientists, managers, philosophers, and engineers. This book is addressed to decision makers, not only in space science, but also in other industries and sciences using or building large machines. It is also addressed to space engineers and scientists as well as students in science and management.
AI in space: Past, present, and possible futures
NASA Technical Reports Server (NTRS)
Rose, Donald D.; Post, Jonathan V.
1992-01-01
While artificial intelligence (AI) has become increasingly present in recent space applications, new missions being planned will require even more incorporation of AI techniques. In this paper, we survey some of the progress made to date in implementing such programs, some current directions and issues, and speculate about the future of AI in space scenarios. We also provide examples of how thinkers from the realm of science fiction have envisioned AI's role in various aspects of space exploration.
Ares V Launch Capability Enables Future Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
NASA's Ares V cargo launch vehicle offers the potential to completely change the paradigm of future space science mission architectures. A major finding of the NASA Advanced Telescope and Observatory Capability Roadmap Study was that current launch vehicle mass and volume constraints severely limit future space science missions. And thus, that significant technology development is required to package increasingly larger collecting apertures into existing launch shrouds. The Ares V greatly relaxes these constraints. For example, while a Delta IV has the ability to launch approximate a 4.5 meter diameter payload with a mass of 13,000 kg to L2, the Ares V is projected to have the ability to launch an 8 to 12 meter diameter payload with a mass of 60,000 kg to L2 and 130,000 kg to Low Earth Orbit. This paper summarizes the Ares V payload launch capability and introduces how it might enable new classes of future space telescopes such as 6 to 8 meter class monolithic primary mirror observatories, 15 meter class segmented telescopes, 6 to 8 meter class x-ray telescopes or high-energy particle calorimeters.
2015-08-01
expressed interest in competing for national security launches, including ULA, Space Exploration Technologies, Inc. ( SpaceX ), and Orbital Sciences...launch offices, and launch service providers including ULA, SpaceX , and Orbital Sciences Corporation. We also reviewed past GAO reports on EELV...launch until 2019 at the earliest, and will still have to become certified. SpaceX earned certification for its Falcon 9 launch vehicle in May 2015, but
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-042] NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... topics: --Overview of Research in Space Life and Physical Sciences --Space Station and Future Exploration...
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) is given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
International programs - A growing trend
NASA Technical Reports Server (NTRS)
Bunner, A. N.
1990-01-01
The National Aeronautics and Space Administration has collaborated successfully in space science missions with a multiplicity of partners, including the European Space Agency, Federal Republic of Germany, the Netherlands, United Kingdom, Japan, and the Soviet Union, among others. These collaborations generally arise out of common scientific goals and in the interest of economizing to take advantage of skills and capabilities among the partners. A trend towards increased cooperation in space is expected to continue as the global scientific community works together to plan future space science missions and the missions become more sophisticated.
(abstract) Space Science with Commercial Funding
NASA Technical Reports Server (NTRS)
1994-01-01
The world-wide recession, and other factors, have led to reduced or flat budgets in real terms for space agencies around the world. Consequently space science projects and proposals have been under pressure and seemingly will continue to be pressured for some years into the future. A new concept for space science funding is underway at JPL. A partnership has been arranged with a commercial, for-profit, company that proposes to implement a (bandwidth-on-demand) information and telephone system through a network of low earth orbiting satellites (LEO). This network will consist of almost 1000 satellites operating in polar orbit at Ka-band. JPL has negotiated an agreement with this company that each satellite will also carry one or more science instruments for astrophysics, astronomy, and for earth observations. This paper discussed the details of the arrangement and the financial arrangements. It describes the technical parameters, such as the 60 GHz wideband inter-satellite links and the frequency, time, and position control, on which the science is based, and it also discusses the complementarity of this commercially funded space science with conventional space science.
Committee on solar and space physics
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
The Committee on Solar and Space Physics (CSSP) is the Committee of the Space Science Board (SSB) of the National Research Council that is responsible for providing scientific advice to NASA in areas of solar/solar-terrestrial/space-plasma physics. The committee, composed of members who serve 3-year terms, wishes to solicit comments from colleagues on topics of interest to them and related to issues in the field.Current subjects on which the committee is devoting considerable effort include the following: (a) considerations of data handling and data systems in solar-terrestrial research for the future (This is being carried out with the encouragement of the SSB and its Committee on Data Management. The activity is in collaboration with the Committee on Solar-Terrestrial Research (CSTR) of the Geophysics Research Board. The handling, integration, and dissemination of solar-terrestrial data obtained by all techniques will be addressed. Chairmen of the responsible subgroup are D. J. Williams (CSSP) and M. A. Shea (CSTR).); (b) consideration of the policies and issues associated with a revitalized Explorer satellite program responsive to the requirements of the solar-terrestrial physics community (Inputs of ideas for potential Explorer missions have been received from a wide range of the community and will be further elaborated upon by additional community participation. A number of these ideas and examples will form a portion of a report discussing solar-terrestrial science topics of high contemporary interest that could be well addressed with Explorerclass missions.); (c) inputs to a more comprehensive consideration of the requirements for theoretical research in all the space sciences (This is an overall task of the Space Science Board. The CSSP response relies heavily upon the Colgate committee report on space plasma physics.); (d) a future workshop, in collaboration with the Space Science Committee of the European Science foundation, on potential cooperative work in space plasma physics with European nations (Four major program items will be addressed, including reviews of several major scientific achievements within the field, a review of the status of solar and space plasma physics as academic subjects in the U.S. and in Western Europe, a review of future research programs, and a discussion of the forms of collaboration between the U.S. and European space plasma physics communities, with recommendations for the future. The workshop will be held in the U.S., tentatively during the 1982-83 academic year.); (e) continuing dialogue with NASA public relations officials and other knowledgeable individuals regarding the status of public knowledge of the results, importance, and applications of solar-terrestrial research.); (f) discussions with relevant officials concerning the issues of scientific funding in the United States, particularly as related to solar-terrestrial research.
The first meeting of the Advisory Committee on the Future of the US Space Program (C-FUSSP)
NASA Technical Reports Server (NTRS)
1990-01-01
These are minutes of the Advisory Committee on the Future of the U.S. Space Program (C-FUSSP). From September 13-15, 1990, presentations were made by the major leaders at NASA as well as industry leaders. The presentations draw on previous studies of the future of NASA space programs. Allowance was made for plenty of questions. The minutes reflect the views of governmental units such as the National Space Council, the NASA Administrators Office, Office of Space Science and Applications, Office of Space Flight, Office of Space Operations, Office of Aeronautics, Exploration, and Technology as well as other pertinent units and outside organizations. Members of the committee are listed at the conclusion of the minutes.
New FINESSE Faculty Institutes for NASA Earth and Space Science Education
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Slater, Stephanie; Marshall, Sunette Sophia; Stork, Debra; Pomeroy, J. Richard R
2014-06-01
In a systematic effort to improve the preparation of future science teachers, scholars coordinated by the CAPER Center for Astronomy & Physics Education Research are providing a series of high-quality, 2-day professional development workshops, with year-round follow-up support, for college and university professors who prepare future science teachers to work with highly diverse student populations. These workshops focus on reforming and revitalizing undergraduate science teaching methods courses and Earth and Space science content courses that future teachers most often take to reflect contemporary pedagogies and data-rich problem-based learning approaches steeped in authentic scientific inquiry, which consistently demonstrate effectiveness with diverse students. Participants themselves conduct science data-rich research projects during the institutes using highly regarded approaches to inquiry using proven models. In addition, the Institute allocates significant time to illustrating best practices for working with diverse students. Moreover, participants leave with a well-formulated action plan to reform their courses targeting future teachers to include more data-rich scientific inquiry lessons and to be better focused on improving science education for a wide diversity of students. Through these workshops faculty use a backwards faded scaffolding mechanism for working inquiry into a deeper understanding of science by using existing on-line data to develop and research astronomy, progressing from creating a valid and easily testable question, to simple data analysis, arriving at a conclusion, and finally presenting and supporting that conclusion in the classroom. An updated schedule is available at FINESSEProgram.org
Toward a global space exploration program: A stepping stone approach
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret
2012-01-01
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.
Space life sciences strategic plan
NASA Astrophysics Data System (ADS)
Nicogossian, Arnauld E.
1992-05-01
Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.
Space life sciences strategic plan
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld E.
1992-01-01
Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.
The influence of television and film on interest in space and science
NASA Astrophysics Data System (ADS)
Jackson, Katrina Marie
Entertainment media has the great potential to inspire interest in the topics it presents. The purpose of this study is to better understand how entertainment media contributes to people's interests in space and science. There is a huge variety of science communication topics in previous literature, some of which deals with television and film, but very little that specifically study how television and film can inspire interest. A historical review of pioneers in the space industry shows that many were inspired by entertainment media, which at the time consisted of science fiction novels and magazines. In order to explore the possible relationships among influences for scientists and non-scientists and to determine specific questions for future research, I created and distributed an anonymous, online survey. The survey is suggestive, exploratory research using a convenience sampling method and is not meant to provide scientifically accurate statistics. 251 participants completed the survey; 196 were scientists and 55 were non-scientists. The survey showed that the participants did identify entertainment media as a major influencing factor, on a comparable level as factors such as classes or family members. Participants in space-related fields were influenced by entertainment media more than the participants in other fields were. I identified several questions for future research, such as: Are people in space-related fields inspired by entertainment media more than other scientists are? Are non-space-related scientists often inspired by space-related media? Do people who regularly watch science fiction tend to be more scientifically literate than average?
2007-10-02
International Space Station (ISS) National Laboratory Workshop L-R Lynn Harper, Ames and Baruch Blumberg, Nobel Laureate, Fox Chase Cancer Center during talk on Science on the international Space Station, Past and Future.
JPL future missions and energy storage technology implications
NASA Technical Reports Server (NTRS)
Pawlik, Eugene V.
1987-01-01
The mission model for JPL future programs is presented. This model identifies mission areas where JPL is expected to have a major role and/or participate in a significant manner. These missions are focused on space science and applications missions, but they also include some participation in space station activities. The mission model is described in detail followed by a discussion on the needs for energy storage technology required to support these future activities.
Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.
NASA Technical Reports Server (NTRS)
Straughn, Amber
2011-01-01
Over the past 20 years the Hubble Space Telescope has revolutionized our understanding of the Universe. Most recently, the complete refurbishment of Hubble in 2009 has given new life to the telescope and the new science instruments have already produced groundbreaking science results, revealing some of the most distant galaxy candidates ever discovered. Despite the remarkable advances in astrophysics that Hubble has provided, the new questions that have arisen demand a new space telescope with new technologies and capabilities. I will present the exciting new technology development and science goals of NASA's James Webb Space Telescope, which is currently being built and tested and will be launched this decade.
Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor)
NASA Technical Reports Server (NTRS)
Pitman, Joe; Duncan, Alan; Stubbs, David; Sigler, Robert; Kendrick, Rick; Chilese, John; Lipps, Jere; Manga, Mike; Graham, James; dePater, Imke
2004-01-01
The science capabilities and features of an innovative and revolutionary approach to remote sensing imaging systems, aimed at increasing the return on future space science missions many fold, are described. Our concept, called Multiple Instrument Distributed Aperture Sensor (MIDAS), provides a large-aperture, wide-field, diffraction-limited telescope at a fraction of the cost, mass and volume of conventional telescopes, by integrating optical interferometry technologies into a mature multiple aperture array concept that addresses one of the highest needs for advancing future planetary science remote sensing.
Overview of NASA communications infrastructure
NASA Technical Reports Server (NTRS)
Arnold, Ray J.; Fuechsel, Charles
1991-01-01
The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.
Space Science in the Twenty-First Century: Imperatives for the Decades 1995 to 2015. Overview
NASA Technical Reports Server (NTRS)
1988-01-01
The opportunities for space science in the period from 1995 to 2015 are discussed. A perspective on progress in the six disciplines (the planet Earth; planetary and lunar exploration; solar system space physics; astronomy and astrophysics; fundamental physics and chemistry; and life sciences) of space science are reviewed. The prospectives for major achievements by 1995 from missions already underway or awaiting new starts are included. A set of long range goals for these disciplines are presented for the first two decades of the twenty-first century. Broad themes for future scientific pursuits are presented and some examples of high-priority missions for the turn of the century are highlighted. A few recommendations are cited for each discipline to suggest how these themes might be developed.
Panel summary of recommendations
NASA Technical Reports Server (NTRS)
Dunbar, Bonnie J.; Coleman, Martin E.; Mitchell, Kenneth L.
1990-01-01
The following Space Station internal contamination topics were addressed: past flight experience (Skylab and Spacelab missions); present flight activities (Spacelabs and Soviet Space Station Mir); future activities (materials science and life science experiments); Space Station capabilities (PPMS, FMS, ECLSS, and U.S. Laboratory overview); manned systems/crew safety; internal contamination detection; contamination control - stowage and handling; and contamination control - waste gas processing. Space Station design assumptions are discussed. Issues and concerns are discussed as they relate to (1) policy and management, (2) subsystem design, (3) experiment design, and (4) internal contamination detection and control. The recommendations generated are summarized.
Aerospace Communications at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2006-01-01
The Communications Division at the NASA Glenn Research Center in Cleveland Ohio has as its charter to provide NASA and the Nation with our expertise and services in innovative communications technologies that address future missions in Aerospace Technology, Spaceflight, Space Science, Earth Science, Life Science and Exploration.
Applications of Tethers in Space, Volume 1
NASA Technical Reports Server (NTRS)
Cron, A. C. (Compiler)
1985-01-01
The tethered satellite system is described including tether fundamentals. Applications of very long tethers in space to a broad spectrum of future space missions are explored. Topics covered include: science, transportation, constellations, artificial gravity, technology and test, and electrodynamic interactions. Recommendations to NASA are included.
The Challenge of Space Futures: Starcomber's Galactic Voyage to Xeranthemom.
ERIC Educational Resources Information Center
Shimonauff, Jacqueline
1998-01-01
Describes a curriculum enrichment activity for gifted middle school students. Students design a long-range space travel vehicle and plan for colonizing a discovered planet. Students contact people in science and industry and produce a handbook for space travel and colonization. (DB)
An overview of Korean astronaut’s space experiments
NASA Astrophysics Data System (ADS)
Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.
2010-10-01
The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.
Autonomous Science on the EO-1 Mission
NASA Technical Reports Server (NTRS)
Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.;
2003-01-01
In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.
Training the Future - Interns Harvesting & Testing Plant Experim
2017-07-19
In the Space Life Sciences Laboratory at NASA's Kennedy Space Center in Florida, student interns such as Emma Boehm, left, and Jessica Scotten are joining agency scientists, contributing in the area of plant growth research for food production in space. Boehm is pursuing a degree in ecology and evolution at the University of Minnesota. Scotten is majoring in microbiology at Oregon State University. The agency attracts its future workforce through the NASA Internship, Fellowships and Scholarships, or NIFS, Program.
NASA Technical Reports Server (NTRS)
Thronson, Harley A.
2008-01-01
This viewgraph presentation discusses the science that can be accomplished by returning humans to space, and to the moon. With modest modifications to the planned future Constellation vehicle (i.e., the Orion Crew Exploration Vehicle), astronomers, and other scientist can anticipate major scientific accomplishments that would not otherwise be possible. Much of this can be attributed to the experience gained from the International Space Station Construction and the Hubble Space Telescope servicing missions.
Advanced thermal control technologies for space science missions at JPL
NASA Technical Reports Server (NTRS)
Birur, G. C.; O'Donnell, T.
2000-01-01
A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.
NASA Technical Reports Server (NTRS)
Stenzel, Ch.
2012-01-01
Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.
Leading Practice in Space Education: Successful Approaches by Specialist Schools
ERIC Educational Resources Information Center
Schools Network, 2010
2010-01-01
The aim of the Government's Science, Technology, Engineering and Mathematics (STEM) programme is to ensure Britain's future success as a major centre for science, engineering and innovation. Specialist science, technology, engineering and maths & computing colleges help to drive this programme by becoming centres of excellence in STEM…
NASA Technical Reports Server (NTRS)
1988-01-01
Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.
The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research
NASA Astrophysics Data System (ADS)
Engebretson, Mark; Zesta, Eftyhia
2017-11-01
A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.
The NASA Goddard Space Flight Center Virtual Science Fair
NASA Technical Reports Server (NTRS)
Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.
Space Science is Alive with Art
NASA Astrophysics Data System (ADS)
Pell, Sarah Jane; Vermeulen, Angelo
2013-02-01
The history of human space flight and analogue and ground-based space science is alive with art. Artists, scientists and engineers working together build upon diverse frameworks of understanding, but also share tools and processes of investigation. By jointly stepping into new worlds and territories - with common purpose and mutual respect for curiosity - there emerge opportunities for encounters that offer an alternative viewpoint on things. Artists can introduce a meta perspective (taking a step back and inquiring into the practice of research), a historical, conceptual or aesthetic view, all of which can invite those who are researchers, engineers and inventors toward new insight and discovery. Scientist’s methods of inquiry and their particular ways of dealing with natural phenomena and technology can also be a great source of inspiration for artists. Often with technical curiosity, artists can also contribute to concrete R&D just as science can directly impact art and inform aesthetics. So combined, the different philosophies, the experiments and the field work can lead to collaborative outcomes that are positively contributing to research, exploration and advancement. Artist and biologist Angelo Vermeulen has been working together with the European Space Agency (ESA) MELiSSA research program since 2009. In response to the ESA invitation to reflect on the development of future space habitats, Vermeulen set up SEAD (Space Ecologies Art & Design), a platform for artistic research on the transfer of terrestrial ecosystems to space to facilitate space settlement. Artist and diver Sarah Jane Pell has been working with the underwater technology and biotechnology community since 2003. She joined NASA’s Luna Gaia team and the League of New World Explorers analogue space subsea habitat exploration mission Atlantica in 2006. Current and future work by these, and similar partnerships, illustrates a dynamic culture of fieldwork, lab protocols/studio practice, research and development, experimentation, demonstration/exhibition, publication and dissemination made possible by including artists in the fields of science and engineering. As ‘real’ collaborators, artists can truly move science and engineering forward; and by co-creating art works, they can improve science and technology communication. Collaboration between the arts and science should therefore be encouraged and fostered.
NASA Technical Reports Server (NTRS)
1986-01-01
The primary purpose of the report is to explore management approaches and technology developments for computation and data management systems designed to meet future needs in the space sciences.The report builds on work presented in previous reports on solar-terrestrial and planetary reports, broadening the outlook to all of the space sciences, and considering policy issues aspects related to coordiantion between data centers, missions, and ongoing research activities, because it is perceived that the rapid growth of data and the wide geographic distribution of relevant facilities will present especially troublesome problems for data archiving, distribution, and analysis.
NASA Astrophysics Data System (ADS)
Grefenstette, Brian
2017-08-01
Small satellites (<50 kg) have revolutionized the possibilities for inexpensive science from space-borne platforms. A number of scientific CubeSats have been recently launched or are under development, including some bound for interplanetary space. Recent miniaturization of technology for high-precision pointing, high efficiency solar power, high-powered on-board processing, and scientific detectors provide the capability for groundbreaking, focused science from these resource-limited spacecraft. Similar innovations in both radio frequency and optical/laser communications are poised to increase telemetry bandwidth to a gigabit per second (Gb/s) or more. This enhancement can allow real-time, global science measurements and/or ultra-high fidelity (resolution, cadence, etc.) observations from tens or hundreds of Earth-orbiting satellites, or permit high-bandwidth, direct-to-earth communications for (inter)planetary missions. Here we present the results of a recent Keck Institue for Space Science workshop that brought together scientists and engineers from academia and industry to showcase the breakthrough science enabled by optical communications on small satellites for future missions.
The Next Generation of Space Cells for Diverse Environments
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Landis, Geoffrey; Raffaelle, Ryne
2002-01-01
Future science, military and commercial space missions are incredibly diverse. Military and commercial missions range from large arrays of hundreds of kilowatt to small arrays of ten watts in various Earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near-sun missions and planetary exploration including orbiters, landers and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. These mission requirements demand cells for low intensity, low temperature applications, high intensity, high temperature applications, dusty environments and often high radiation environments. This paper discusses mission requirements, the current state of the art of space solar cells, and a variety of both evolving thin-film cells as well as new technologies that may impact the future choice of space solar cells for a specific mission application.
NASA Technical Reports Server (NTRS)
Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip;
2011-01-01
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.
With Eyes on the Future, Marshall Leads the Way to Deep Space in 2017
2017-12-27
NASA's Marshall Space Flight Center in Huntsville, Alabama, led the way in space exploration in 2017. Marshall's work is advancing how we explore space and preparing for deep-space missions to the Moon, Mars and beyond. Progress continued on NASA's Space Launch System that will enable missions beyond Earth's orbit, while flight controllers at "Science Central" for the International Space Station coordinated research and experiments with astronauts in orbit, learning how to live in space. At Marshall, 2017 was also marked with ground-breaking discoveries, innovations that will send us into deep space, and events that will inspire future generations of explorers. Follow along in 2018 as Marshall continues to advance space exploration: www.nasa.gov/marshall
Marshall Space Flight Center - Launching the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Shivers, Alisa; Shivers, Herbert
2010-01-01
Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field
In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.
2012-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.
LEGO "Build The Future" Activity
2010-11-01
NASA Officials, LEGO Group management, students, teachers and parents create their vision of the future in space with LEGO bricks and elements as part of a “Build the Future” activity inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
LEGO "Build The Future" Activity
2010-11-03
NASA Officials, LEGO Group management, students, teachers and parents create their vision of the future in space with LEGO bricks and elements as part of a “Build the Future” activity inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Wednesday, Nov. 3, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
LEGO "Build The Future" Activity
2010-11-03
Associate Administrator for Education and Astronaut Leland Melvin, 3rd from left, talks with school children during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
LEGO "Build The Future" Activity
2010-11-03
Associate Administrator for Education and Astronaut Leland Melvin talks with school children during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
High-Rate Laser Communications for Human Exploration and Science
NASA Astrophysics Data System (ADS)
Robinson, B. S.; Shih, T.; Khatri, F. I.; King, T.; Seas, A.
2018-02-01
Laser communication links has been successfully demonstrated on recent near-Earth and lunar missions. We present a status of this development work and its relevance to a future Deep Space Gateway supporting human exploration and science activities.
NASA Technical Reports Server (NTRS)
1985-01-01
From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.
Internet Technology for Future Space Missions
NASA Technical Reports Server (NTRS)
Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith
2002-01-01
Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Conti, Alberto; Atkinson, Charles
2017-01-01
Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This paper will discuss the origins of these new questions and the steps to their answers.
Space station: A step into the future
NASA Technical Reports Server (NTRS)
Stofan, Andrew J.
1989-01-01
The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.
Crew roles and interactions in scientific space exploration
NASA Astrophysics Data System (ADS)
Love, Stanley G.; Bleacher, Jacob E.
2013-10-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.
NASA Life Sciences Data Repositories: Tools for Retrospective Analysis and Future Planning
NASA Technical Reports Server (NTRS)
Thomas, D.; Wear, M.; VanBaalen, M.; Lee, L.; Fitts, M.
2011-01-01
As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future research studies.
2003-02-02
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., former astronaut Sally Ride talks to young women about their future. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- At the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla., former astronaut Sally Ride talks to young women about their future. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute.
The EO-1 autonomous sciencecraft and prospects for future autonomous space exploration
NASA Technical Reports Server (NTRS)
Chien, Steve A.
2005-01-01
This paper describes the revolutionary new science enabled by onboard autonomy as well as impact on extended missions such as the Mars Exploration Rovers and Mars Odyssey as well as future missions in development.
Earth benefits from NASA research and technology. Life sciences applications
NASA Technical Reports Server (NTRS)
1991-01-01
This document provides a representative sampling of examples of Earth benefits in life-sciences-related applications, primarily in the area of medicine and health care, but also in agricultural productivity, environmental monitoring and safety, and the environment. This brochure is not intended as an exhaustive listing, but as an overview to acquaint the reader with the breadth of areas in which the space life sciences have, in one way or another, contributed a unique perspective to the solution of problems on Earth. Most of the examples cited were derived directly from space life sciences research and technology. Some examples resulted from other space technologies, but have found important life sciences applications on Earth. And, finally, we have included several areas in which Earth benefits are anticipated from biomedical and biological research conducted in support of future human exploration missions.
The NASA Space Life Sciences Training Program: Accomplishments Since 2013
NASA Technical Reports Server (NTRS)
Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth
2017-01-01
The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.
The NASA Goddard Space Flight Center Virtual Science Fair
NASA Technical Reports Server (NTRS)
Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.
Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction
NASA Astrophysics Data System (ADS)
Pottinger, James E.
With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the Earth and Space sciences to determine if similar conclusions may be reached, (b) conduct a quantitative study looking at the available online technologies and their effectiveness in each area, and (c) utilize students that took online Earth and Space science classes and compare their perception of effectiveness to the instructor's perception of effectiveness in the online Earth and Space science classroom.
Multi-mission space science data processing systems - Past, present, and future
NASA Technical Reports Server (NTRS)
Stallings, William H.
1990-01-01
Packetized telemetry that is consistent with the international Consultative Committee for Space Data Systems (CCSDS) has been baselined for future NASA missions such as Space Station Freedom. Some experiences from past and present multimission systems are examined, including current experiences in implementing a CCSDS standard packetized data processing system, relative to the effectiveness of the multimission approach in lowering life cycle cost and the complexity of meeting new mission needs. It is shown that the continued effort toward standardization of telemetry and processing support will permit the development of multimission systems needed to meet the increased requirements of future NASA missions.
Human space exploration the next fifty years.
Williams, David R; Turnock, Matthew
2011-06-01
Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.
Mini-Satellites for Affordable Space Science
NASA Astrophysics Data System (ADS)
Phipps, Andy; da Silva Curiel, Alex; Gibbon, Dave; Richardson, Guy; Cropp, Alex; Sweeting, Martin, , Sir
Magnetospheric science missions are a key component of solar terrestrial physics programmes - charged with the unravelling of these fundamental processes. These missions require distributed science gathering in a wide variety of alternative orbits. Missions typically require constellations of high delta-v formation flying spacecraft - single launch vehicles are usually mandated. Typical missions baseline space standard technology and standard communication and operations architectures - all driving up programme cost. By trading on the requirements, applying prudent analysis of performance as well as selection of subsystems outside the traditional space range most of the mission objectives can be met for a reduced overall mission cost. This paper describes Surrey's platform solution which has been studied for a future NASA opportunity. It will emphasise SSTL's proven spacecraft engineering philosophies and the use of terrestrial commercial off-the-shelf technology in this demanding environment. This will lead to a cost-capped science mission, and extend the philosophy of affordable access to space beyond Low Earth Orbit.
Demographics of Investigators Involved in OSSA-Funded Research
NASA Technical Reports Server (NTRS)
Stern, S. Alan; Konkel, Ronald; Habegger, Jay; Byerly, Radford, Jr.
1991-01-01
The birth of the U.S. civil space program and the subsequent, dramatic growth in the ranks of the space science research population occurred in the 1950s and 1960s'. The large, post- Sputnik/ Apollo buildup in space program manpower is now approximately one career-lifetime in the past. It is therefore natural to anticipate that a large fraction of the space program engineers, scientists, and managers who pioneered the early exploration of space are approaching retirement. Such a "retirement wave" bodes both a loss of manpower and, more fundamentally, a loss of experience from the civil-space manpower base. Such losses could play a critical role constraining in NASA's ability to expand or maintain its technical capabilities. If this indeed applies to the NASA space science research population, then the potential for problems is exacerbated by the anticipated growth in flight rates, data volume, and data-set diversity which will accompany the planned expansion in the OSSA science effort during the 1990s and 2000s. The purpose of this study was to describe the OSSA PI/Co-I population and to determine the degree to which the OSSA space science investigator population faces a retirement wave, and to estimate the future population of PIs in the 1990-2010 era. To conduct such a study, we investigated the present demographics of the PI and Co-1 population contained in the NASA/OSSA Announcement of Opportunity (AO) mailing list. PIs represent the "leadership" class of the OSSA scientific researcher population, and Co-Is represent one important, oncoming component of the "replacement" generation. Using the PI population data, we then make projection estimates of the future PI population from 1991 through 2010, under various NASA growth/PI demand scenarios.
Teacher in Space Program - The challenge to education in the space age
NASA Technical Reports Server (NTRS)
Brown, R. W.; Morgan, B. R.
1986-01-01
An account is given of the significant events which occurred in the Teacher in Space Program following the Challenger Space Shuttle accident on January 28, 1986. The analysis indicates that the accident has not prevented the continuing effective implementation of the three educational goals of the Teacher in Space Program which are to: (1) raise the prestige of the teaching profession, (2) increase the awareness in the education community of the impact of technology and science on this country's future in preparing students for the future, and (3) use aeronautics and space as a catalyst to enhance all subject areas and grade levels of U.S. education systems.
Second Workshop on Spacecraft Glow
NASA Technical Reports Server (NTRS)
Waite, J. H., Jr. (Editor); Moorehead, T. W. (Editor)
1985-01-01
Various aspects of space glow were considered. Results of a workshop held on May 6 to 7, 1985, at the Space Science Laboratory of NASA/Marshall Space Flight Center, Huntsville, Alabama are presented. The topics of discussion are divided as follows: (1) in situ observations; (2) theoretical calculations; (3) laboratory measurements; and (4) future experiments.
The Hubble Spectroscopic Legacy Archive
NASA Astrophysics Data System (ADS)
Peeples, Molly S.; Tumlinson, Jason; Fox, Andrew; Aloisi, Alessandra; Ayres, Thomas R.; Danforth, Charles; Fleming, Scott W.; Jenkins, Edward B.; Jedrzejewski, Robert I.; Keeney, Brian A.; Oliveira, Cristina M.
2016-01-01
With no future space ultraviolet instruments currently planned, the data from the UV spectrographs aboard the Hubble Space Telescope have a legacy value beyond their initial science goals. The Hubble Spectroscopic Legacy Archive will provide to the community new science-grade combined spectra for all publicly available data obtained by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS). These data will be packaged into "smart archives" according to target type and scientific themes to facilitate the construction of archival samples for common science uses. A new "quick look" capability will make the data easy for users to quickly access, assess the quality of, and download for archival science starting in Cycle 24, with the first generation of these products for the FUV modes of COS available online via MAST in early 2016.
First International Microgravity Laboratory
NASA Technical Reports Server (NTRS)
Mcmahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise
1990-01-01
This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.
Life science experiments performed in space in the ISS/Kibo facility and future research plans
Ohnishi, Takeo
2016-01-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692
The New Millenium Program: Serving Earth and Space Sciences
NASA Technical Reports Server (NTRS)
Li, Fuk K.
2000-01-01
NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.
Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.
2006-01-01
Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.
Exploring the living universe: A strategy for space life sciences
NASA Technical Reports Server (NTRS)
1988-01-01
The knowledge obtained by space life sciences will play a pivotal role as humankind reaches out to explore the solar system. Information is needed concerning the existence of life beyond the Earth, the potential interactions between planets and living organisms, and the possibilities for humans to inhabit space safely and productively. Programs in the involved disciplines are an integral part of NASA's current and future missions. To realize their objectives, the development and operation of diverse ground and flight facilities and clost coordination with numerous scientific and governmental organizations in the U.S. and abroad are required. The status and goals of the life sciences programs are examined. Ways and means for attaining these goals are suggested.
NASA Technical Reports Server (NTRS)
Thomas, D.; Fitts, M.; Wear, M.; VanBaalen, M.
2011-01-01
As NASA transitions from the Space Shuttle era into the next phase of space exploration, the need to ensure the capture, analysis, and application of its research and medical data is of greater urgency than at any other previous time. In this era of limited resources and challenging schedules, the Human Research Program (HRP) based at NASA s Johnson Space Center (JSC) recognizes the need to extract the greatest possible amount of information from the data already captured, as well as focus current and future research funding on addressing the HRP goal to provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration. To this end, the Science Management Office and the Medical Informatics and Health Care Systems Branch within the HRP and the Space Medicine Division have been working to make both research data and clinical data more accessible to the user community. The Life Sciences Data Archive (LSDA), the research repository housing data and information regarding the physiologic effects of microgravity, and the Lifetime Surveillance of Astronaut Health Repository (LSAH-R), the clinical repository housing astronaut data, have joined forces to achieve this goal. The task of both repositories is to acquire, preserve, and distribute data and information both within the NASA community and to the science community at large. This is accomplished via the LSDA s public website (http://lsda.jsc.nasa.gov), which allows access to experiment descriptions including hardware, datasets, key personnel, mission descriptions and a mechanism for researchers to request additional data, research and clinical, that is not accessible from the public website. This will result in making the work of NASA and its partners available to the wider sciences community, both domestic and international. The desired outcome is the use of these data for knowledge discovery, retrospective analysis, and planning of future research studies.
Opportunities for Space Science Education Using Current and Future Solar System Missions
NASA Astrophysics Data System (ADS)
Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.
2010-12-01
The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a unique glimpse into the Space Department’s “end-to-end” approach to mission design and execution. College students - both undergraduate and graduate - are recruited from around the U.S. to work with APL scientists and engineers who act as mentors to the students. Many students are put on summer projects that allow them to work with existing spacecraft systems, while others participate in projects that investigate the operational and science objectives of future planned spacecraft systems. In many cases these interns have returned to APL as full-time staff after graduation.
Long-Term Preservation of NASA Heliophysics Data and Access: Where We Were and Where We're Going
NASA Technical Reports Server (NTRS)
McGuire, Robert E.
2011-01-01
The importance of ensuring preservation and useful access to the unique science potential of past, present and future NASA solar and space physics (i.e. heliophysics) data has been recognized since the inception of NASA but remains challenging. In this talk, I will briefly review the history of this topic and and then discuss the present NASA model for heliophysics science data management, including key current resources for finding and using data projects like the Space Physics Data Facility. I will highlight expected future directions, building on working elements of the present program and exploiting new technology, to further improve the data environment, address existing issues and anticipate emerging challenges.
Aurorasaurus: Citizen Scientists Experiencing Extremes of Space Weather
NASA Astrophysics Data System (ADS)
MacDonald, E.; Hall, M.; Tapia, A.
2013-12-01
Aurorasaurus is a new citizen science mapping platform to nowcast the visibility of the Northern Lights for the public in the current solar maximum, the first with social media. As a recently funded NSF INSPIRE program, we have joint goals among three research disciplines: space weather forecasting, the study of human-computer interactions, and informal science education. We will highlight results from the prototype www.aurorasaurus.org and outline future efforts to motivate online participants and crowdsource viable data. Our citizen science effort is unique among space programs as it includes both reporting observations and data analysis activities to engage the broadest participant network possible. In addition, our efforts to improve space weather nowcasting by including real-time mapping of ground truth observers for rare, sporadic events are a first in the field.
Astrobiology: A Roadmap for Charting Life in the Universe
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincezi, D. (Technical Monitor)
2002-01-01
Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.
Space Weather Products at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.
2010-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.
Educational benefits of ISY - NASA's perspective
NASA Technical Reports Server (NTRS)
Owens, Frank C.; Mcgee, A. S.
1992-01-01
Education is a key component of the International Space Year (ISY) and NASA has taken on several roles in the development of ISY educational activities. ISY presents a unique opportunity for international cooperation in education and the global importance of science, math and technology across the educational spectrum has been emphasized. NASA monitors the progress of educational projects, develops educational activities and facilitates the development of such activities in both the public and private sectors. The Space Agency Forum on ISY (SAFISY), the international space and education program, space science and space communications in education are discussed and several educational programs are described. Current activities, distribution of products and future evaluation plans are discussed.
LEGO "Build The Future" Activity
2010-11-03
Associate Administrator for Education and Astronaut Leland Melvin, left, and President of LEGO Education USA Stephan Turnipseed, right, talk with a student during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
LEGO "Build The Future" Activity
2010-11-03
Associate Administrator for Education and Astronaut Leland Melvin, left, and President of LEGO Education USA Stephan Turnipseed, right, help students during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
Thermodynamics of de Sitter Black Holes in Massive Gravity
NASA Astrophysics Data System (ADS)
Ma, Yu-Bo; Zhang, Si-Xuan; Wu, Yan; Ma, Li; Cao, Shuo
2018-05-01
In this paper, by taking de Sitter space-time as a thermodynamic system, we study the effective thermodynamic quantities of de Sitter black holes in massive gravity, and furthermore obtain the effective thermodynamic quantities of the space-time. Our results show that the entropy of this type of space-time takes the same form as that in Reissner-Nordström-de Sitter space-time, which lays a solid foundation for deeply understanding the universal thermodynamic characteristics of de Sitter space-time in the future. Moreover, our analysis indicates that the effective thermodynamic quantities and relevant parameters play a very important role in the investigation of the stability and evolution of de Sitter space-time. Supported by the Young Scientists Fund of the National Natural Science Foundation of China under Grant Nos. 11605107 and 11503001, the National Natural Science Foundation of China under Grant No. 11475108, Program for the Innovative Talents of Higher Learning Institutions of Shanxi, the Natural Science Foundation of Shanxi Province under Grant No. 201601D102004, the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No. 201601D021022, and the Natural Science Foundation of Datong City under Grant No. 20150110
2016-07-20
ISS048e041836 (07/20/2016) --- NASA astronauts Kate Rubins (left) and Jeff Williams (right) prepare to grapple the SpaceX Dragon supply spacecraft from aboard the International Space Station. The nearly 5,000 pounds of supplies and equipment includes science supplies and hardware, including instruments to perform the first-ever DNA sequencing in space, and the first of two identical international docking adapters (IDA.) The IDAs will provide a means for commercial crew spacecraft to dock to the station in the near future as part of NASA’s Commercial Crew Program. Dragon is scheduled to depart the space station Aug. 29 when it will return critical science research back to Earth.
New Paradigms for Ensuring the Enduring Viability of the Space Science Enterprise
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Conti, Alberto
2018-01-01
Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future large space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This poster will present our recent results on the origins of these new questions and the steps to their answers.
NASA Space Sciences Strategic Planning
NASA Technical Reports Server (NTRS)
Crane, Philippe
2004-01-01
The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.
Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration
NASA Technical Reports Server (NTRS)
Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita
2007-01-01
Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,
Advanced Information Technology Investments at the NASA Earth Science Technology Office
NASA Astrophysics Data System (ADS)
Clune, T.; Seablom, M. S.; Moe, K.
2012-12-01
The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground-based systems, increase the accessibility and utility of science data, and to enable new observation measurements and information products. We will discuss the ESTO investment strategy for information technology development, the methods used to assess stakeholder needs and technology advancements, and technology partnerships to enhance the infusion for the resulting technology. We also describe specific investments and their potential impact on enabling NASA missions and scientific discovery. [1] "Earth Science and Applications from Space: A Midterm Assessment of NASA's Implementation of the Decadal Survey", 2012: National Academies Press, http://www.nap.edu/catalog.php?record_id=13405 [2] "Responding to the Challenge of Climate and Environmental Change: NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space", 2010: NASA Tech Memo, http://science.nasa.gov/media/medialibrary/2010/07/01/Climate_Architecture_Final.pdf
Sustainable and Autonomic Space Exploration Missions
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter
2006-01-01
Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.
Manned Space Exploration Can Provide Great Scientific Benefits
NASA Astrophysics Data System (ADS)
Singer, S. Fred
2005-08-01
An AGU Council statement (NASA: Earth and space sciences at risk, available at http:// www.agu.org/sci_soc/policy/positions/ earthspace_risk.shtml) and an Eos editorial [Barron, 2005], addressing NASA's envisioned manned Moon-Mars initiative, implicitly assume a zero-sum situation between manned and unmanned space programs. They also imply that the NASA initiative will not contribute significantly to science but will ``impact on the current and future health of Earth and space science research.'' I wish to respond to these concerns. It is generally agreed that the International Space Station and shuttle program have limited value and need to be terminated. But one should not assume that funds freed up by elimination of manned programs will accrue to unmanned programs. On the contrary, without a manned component, NASA will probably cease to exist. Congress likely will not continue to fund unmanned planetary exploration over the long term, and Earth and space researchers will then have to compete for support with scientists using non-space techniques.
Explaining public support for space exploration funding in America: A multivariate analysis
NASA Astrophysics Data System (ADS)
Nadeau, François
2013-05-01
Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.
Cosmic Vision 2015-2025 media briefing - 19 April 2005
NASA Astrophysics Data System (ADS)
2005-04-01
On 19 April over 150 scientists from all ESA member states will convene at the European Space Research and Technology Centre in Noordwijk, the Netherlands, for a three-day symposium entitled "Trends in Space Science and Cosmic Vision 2015-2025". The conference will include a number of invited talks giving an overview of the scientific themes that will form the basis of future ESA missions. Topics to be addressed now will keep space scientists busy over the next 15-20 years. Amongst them are: the nature of planets beyond our solar system; a possible mission to Jupiter and its moon Europa, or perhaps back to Titan; spotting the first black holes; an interstellar probe powered by a solar sail; and many others. Open questions include the priority ESA should give to near-Earth objects and the threat they pose, or whether and when we should return to a comet after Rosetta. Members of the media are invited to a press conference at 10.00 CET on 19 April, at ESA's Visitor Centre (Space Expo) in Noordwijk, the Netherlands. The press briefing will provide an overview of the current ideas for new missions, the expected results and their implications for the advancement of science and human knowledge. Programme 09.30 - Arrival/Registration/Coffee in the Mars Corner at Space Expo 10.00 - Welcome 10.00 - Present and future of ESA's Science Programme - Prof. David Southwood (ESA Director of Science) 10.15 - Hubble: Fifteen years of discovery - Dr Duccio Macchetto (Head of ESA Space Telescope Division) 10.30 - Europe's space science in fifteen years’ time - Prof. Giovanni Bignami (Chairman of ESA Space Science Advisory Committee) 10.45 - Question and answer time 11.00 - End Members of the media interested in attending the briefing or listening to it via telephone should complete the form below and return it as soon as possible by fax as indicated. Instructions on how to listen in via the telephone line will be given to those that register. The presentation material will be made available to registered participants via the worldwide web shortly before the briefing.
NASA Technical Reports Server (NTRS)
Herren, B.
1992-01-01
In collaboration with a medical researcher at the University of Alabama at Birmingham, NASA's Marshall Space Flight Center in Huntsville, Alabama, under the sponsorship of the Microgravity Science and Applications Division (MSAD) at NASA Headquarters, is continuing a series of space experiments in protein crystal growth which could lead to innovative new drugs as well as basic science data on protein molecular structures. From 1985 through 1992, Protein Crystal Growth (PCG) experiments will have been flown on the Space Shuttle a total of 14 times. The first four hand-held experiments were used to test hardware concepts; later flights incorporated these concepts for vapor diffusion protein crystal growth with temperature control. This article provides an overview of the PCG program: its evolution, objectives, and plans for future experiments on NASA's Space Shuttle and Space Station Freedom.
Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities
NASA Technical Reports Server (NTRS)
Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald
2004-01-01
NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. Described here are the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
Creating the Future: Research and Technology
NASA Technical Reports Server (NTRS)
1998-01-01
With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.
Connecting Undergraduate Instruction to the 2017 Solar Eclipse
ERIC Educational Resources Information Center
Lopez, Ramon E.; Ambrose, Bradley S.; Bailey, Janelle M.; Cid, Ximena C.; Vieyra, Rebecca E.; Willoughby, Shannon D.
2017-01-01
Space science is perhaps the science topic that elicits the greatest interest in students in the United States and also worldwide. NASA has always endeavored to leverage that widespread interest to advance STEM education, not least because NASA requires a thriving STEM workforce for the future.
Connecting undergraduate instruction to the 2017 solar eclipse
NASA Astrophysics Data System (ADS)
Lopez, Ramon E.; Ambrose, Bradley S.; Bailey, Janelle M.; Cid, Ximena C.; Vieyra, Rebecca E.; Willoughby, Shannon D.
2017-04-01
Space science is perhaps the science topic that elicits the greatest interest in students in the United States and also worldwide. NASA has always endeavored to leverage that widespread interest to advance STEM education, not least because NASA requires a thriving STEM workforce for the future.
Telescience testbed pilot program, volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Leiner, Barry M.
1989-01-01
Space Station Freedom and its associated labs, coupled with the availability of new computing and communications technologies, have the potential for significantly enhancing scientific research. A Telescience Testbed Pilot Program (TTPP), aimed at developing the experience base to deal with issues in the design of the future information system of the Space Station era. The testbeds represented four scientific disciplines (astronomy and astrophysics, earth sciences, life sciences, and microgravity sciences) and studied issues in payload design, operation, and data analysis. This volume, of a 3 volume set, which all contain the results of the TTPP, is the executive summary.
Levitating Trains and Kamikaze Genes: Technological Literacy for the Future
NASA Astrophysics Data System (ADS)
Brennan, Richard P.
1994-08-01
A lively survey of the horizons of modern technology. Provides easy-to-read summaries of the state of the art in space science, biotechnology, computer science, exotic energy sources and materials engineering as well as life-enhancing medical advancements and environmental, transportation and defense/weapons technologies. Each chapter explains how a current or future technology works and provides an understanding of the underlying scientific concepts. Includes an extensive self-test to review your knowledge.
Goddard's Astrophysics Science Division Annual Report 2011
NASA Technical Reports Server (NTRS)
Centrella, Joan; Reddy, Francis; Tyler, Pat
2012-01-01
The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.
The Astrophysics Science Division Annual Report 2009
NASA Technical Reports Server (NTRS)
Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)
2010-01-01
The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.
Goddard's Astrophysics Science Division Annual Report 2013
NASA Technical Reports Server (NTRS)
Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)
2014-01-01
The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, an Orbital Sciences technician works with wiring on the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator, a spacecraft developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences workers remove the canister from the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator, a spacecraft developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians watch closely as the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is lowered onto a stand. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Vanhala, H. A. T.; Johnson, M.; Hulslander, M.
2012-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 42 experiments to space, on behalf of students from middle school through community college, on 3 missions: each of the last 2 Space Shuttle flights, and the first SpaceX resupply flight to the International Space Station (ISS). SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. Over 9000 students participated in the initial 3 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 2 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches (that also fly to space). Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Role of Lidar Technology in Future NASA Space Missions
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
2008-01-01
The past success of lidar instruments in space combined with potentials of laser remote sensing techniques in improving measurements traditionally performed by other instrument technologies and in enabling new measurements have expanded the role of lidar technology in future NASA missions. Compared with passive optical and active radar/microwave instruments, lidar systems produce substantially more accurate and precise data without reliance on natural light sources and with much greater spatial resolution. NASA pursues lidar technology not only as science instruments, providing atmospherics and surface topography data of Earth and other solar system bodies, but also as viable guidance and navigation sensors for space vehicles. This paper summarizes the current NASA lidar missions and describes the lidar systems being considered for deployment in space in the near future.
AGU Webinars: Leveraging 21st Century Technology to Level the Playing Field
NASA Astrophysics Data System (ADS)
Janick, N. G.; Harwell, D. E.; Hankin, E. R.; Asher, P. M.; Marasco, L.
2017-12-01
AGU Webinars offer weekly insights into topics in the Earth and space sciences presented by scientists and other experts every Thursday at 2:00 pm ET. Its monthly Professional Development series emphasizes essential soft skills, connections to experiential and learning opportunities, jobs outside of academia, and other career resources. Additional topics focus on science communication, science policy, special topics for Earth and space science department heads and chairs, technical highlights from AGU Meetings and Publications, among others. By offering these live sessions and recordings free of charge to all participants, AGU is removing barriers to entry and encouraging diversity in the global talent pool of Earth and space scientists. This presentation will look at the first year of the AGU Webinars program and explore its future goals and how we can achieve them together.
High Altitude Balloons as a Platform for Space Radiation Belt Science
NASA Astrophysics Data System (ADS)
Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)
2011-12-01
The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.
The Spitzer science operations system : how well are we really doing?
NASA Technical Reports Server (NTRS)
Dodd, Suzanne R.
2004-01-01
This paper will describe how the SIRTF Science Operation System has performed since launch, and how the system has been adapted based upon in-flight performance. It will also discuss lessons learned which can be applied to future science operation systems. This work was performed at the California Institute of Technology under contract to the National Aeronautics and Space Administration.
The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion
NASA Technical Reports Server (NTRS)
Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.
2008-01-01
NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.
Human space flight and future major space astrophysics missions: servicing and assembly
NASA Astrophysics Data System (ADS)
Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao
2017-09-01
Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.
Class Explorations in Space: From the Blackboard and History to the Outdoors and Future
NASA Astrophysics Data System (ADS)
Cavicchi, Elizabeth
2011-11-01
Our everyday activities occur so seamlessly in the space around us as to leave us unawares of space, its properties, and our use of it. What might we notice, wonder about and learn through interacting with space exploratively? My seminar class took on that question as an opening for personal and group experiences during this semester. In the process, they observe space locally and in the sky, read historical works of science involving space, and invent and construct forms in space. All these actions arise responsively, as we respond to: physical materials and space; historical resources; our seminar participants, and future learners. Checks, revisions and further developments -- on our findings, geometrical constructions, shared or personal inferences---come about observationally and collaboratively. I teach this seminar as an expression of the research pedagogy of critical exploration, developed by Eleanor Duckworth from the work of Jean Piaget, B"arbel Inhelder and the Elementary Science Study. This practice applies the quest for understanding of a researcher to spontaneous interactions evolving within a classroom. The teacher supports students in satisfying and developing their curiosities, which often results in exploring the subject matter by routes that are novel to both teacher and student. As my students ``mess about'' with geometry, string and chalk at the blackboard, in their notebooks, and in response to propositions in Euclid's Elements, they continually imagine further novel venues for using geometry to explore space. Where might their explorations go in the future? I invite you to hear from them directly!
NASA's astrophysics archives at the National Space Science Data Center
NASA Technical Reports Server (NTRS)
Vansteenberg, M. E.
1992-01-01
NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.
The earth in technological balance
NASA Astrophysics Data System (ADS)
Stout, Dorothy L.
1998-08-01
The K-12 National Science Education Standards have been developed and published by the National Research Council (1995)to "improve scientific literacy across the nation to prepare our students to be scientifically literate". The Standards stress that a quality science education requires an "active learning" approach to science inquiry within the areas of science teaching, professional development, assessment, science content, science education programs and science education systems. In this time of increasing technological advance, the equal treatment of earth and space science alongside biology, physics and chemistry bodes well for the future.
Space science at NASA - Retrospect and prospect
NASA Technical Reports Server (NTRS)
Rosendhal, Jeffrey D.
1988-01-01
Following a brief overview of past accomplishments in space science, a status report is given concerning progress toward recovering from the Challenger accident and a number of trends are described which are likely to have a major influence on the future of the NASA Space Science program. Key changes in process include a trend toward a program centered on the use of large, long-lived facilities, the emergence of strong space capabilities outside the U.S., and steps being taken toward the diversification of NASA's launch capability. A number of recent planning activities are also discussed. Major considerations which will specifically need to be taken into account in NASA's prgram planning include the need for provision of a spectrum of flight activities and the need to recognize likely resource limitations and to do more realistic program planning.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
AMTD is using a Science Driven Systems Engineering approach to develop Engineering Specifications based on Science Measurement Requirements and Implementation Constraints. Science requirements meet the needs of both Exoplanet and General Astrophysics science. Engineering Specifications are guiding our effort to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review.
NASA Technical Reports Server (NTRS)
Mckee, J. W.
1974-01-01
Experiments are performed during manned space flights in an attempt to acquire knowledge that can advance science and technology or that can be applied to operational techniques for future space flights. A description is given of the procedures that the personnel who are directly assigned to the function of crew support at the NASA Lyndon B. Johnson Space Center use to prepare for and to conduct experiments during space flight.
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane settles the Columbus module onto a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane lowers the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Pearson, V. K.; Greenwood, R. C.; Bridges, J.; Watson, J.; Brooks, V.
The Rocks From Space outreach initiative and The Space Safari: the development of virtual learning environments for planetary science outreach in the UK. V.K. Pearson (1), R.C. Greenwood (1), J. Bridges (1), J. Watson (2) and V. Brooks (2) (1) Plantetary and Space Sciences Research Institute (PSSRI), The Open University, Milton Keynes, MK7 6AA. (2) Stockton-on-Tees City Learning Centre, Marsh House Avenue, Billingham, TS23 3QJ. (v.k.pearson@open.ac.uk Fax: +44 (0) 858022 Phone: +44 (0) 1908652814 The Rocks From Space (RFS) project is a PPARC and Open University supported planetary science outreach initiative. It capitalises on the successes of Open University involvement in recent space missions such as Genesis and Stardust which have brought planetary science to the forefront of public attention.Our traditional methods of planetary science outreach have focussed on activities such as informal school visits and public presentations. However, these traditional methods are often limited to a local area to fit within time and budget constraints and therefore RFS looks to new technologies to reach geographically dispersed audiences. In collaboration with Stockton-on-Tees City Learning Centre, we have conducted a pilot study into the use of Virtual Learning Environments (VLEs) for planetary science outreach. The pilot study was undertaken under the guise of a "Space Safari" in which pupils dispersed across the Teesside region of the UK could collaboratively explore the Solar System. Over 300 students took part in the pilot from 11 primary schools (ages 6-10). Resources for their exploration were provided by Open University scientists in Milton Keynes and hosted on the VLE. Students were encouraged to post their findings, ideas and questions via wikis and a VLE forum. This combination of contributions from students, teachers and scientists encouraged a collaborative learning environment. These asynchronous activities were complemented by synchronous virtual classroom activities using Elluminate Live! facilities where students could attend "drop-in" sessions with scientists to discuss their exploration. Following these activities, schools were asked to produce a collaborative piece of work about their exploration that could be hosted on the Rocks From Space website (www.rocksfromspace.open.ac.uk; designed by Milton Keynes HE college students) as a resource for future projects and wider public access. Submissions included powerpoint presentations, animations, poems and murals and illustrates the cross curriculum nature of this project. We present the outcomes and evaluation of this pilot study with recommendations for the future use of VLEs in planetary science outreach.
NASA Technical Reports Server (NTRS)
Meyer, J. D.
1977-01-01
Space technology transfer is discussed as applied to the field of materials science. Advances made in processing include improved computer techniques, and structural analysis. Technology transfer is shown to have an important impact potential in the overall productivity of the United States.
ART-SCIENCE OF THE SPACE AGE: towards a platform for art-science collaborations at ESTEC
NASA Astrophysics Data System (ADS)
Domnitch, E.; Gelfand, D.
2015-10-01
In 2013, in collaboration with ESTEC scientist Bernard Foing and the ArtScience Interfaculty (Royal Academy of the Arts, The Hague), Synergetica Lab (Amsterdam) developed a course, which was repeated in 2015, for bachelor's and master's students aimed at seeding interactions with ESA researchers. The participants created artworks investigating space travel, radio astronomy, microgravity, ecosynthesis as well as extraterrestrial physics and architecture [1] [2]. After their initial presentation at the Royal Academy, these artworks were shown at ESTEC, TodaysArt Festival (The Hague), and TEC ART (Rotterdam). These presentations prompted diverse future collaborations and outreach opportunities, including the European Planetary Science Congress 2014 (Cascais) and the AxS Festival (Los Angeles).
NASA Technical Reports Server (NTRS)
1999-01-01
The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.
Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)
NASA Astrophysics Data System (ADS)
Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.
2012-04-01
Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021 dd. 30.11.10)
Life Sciences Centrifuge Facility assessment
NASA Technical Reports Server (NTRS)
Benson, Robert H.
1994-01-01
This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.
Report of the Terrestrial Bodies Science Working Group. Volume 3: Venus
NASA Technical Reports Server (NTRS)
Kaula, W. M.; Malin, M. C.; Masursky, H.; Pettengill, G.; Prinn, R.; Young, R. E.
1977-01-01
The science objectives of Pioneer Venus and future investigations of the planet are discussed. Concepts and payloads for proposed missions and the supporting research and technology required to obtain the desired measurements from space and Earth-based observations are examined, as well as mission priorities and schedules.
Utilizing Local Partnerships to Enhance Workforce Development
ERIC Educational Resources Information Center
Whikehart, John
2009-01-01
The Indiana Center for the Life Sciences, an award-winning partnership between education, government, and the private sector, houses state-of-the-art science labs, classrooms, and industry training space for community college students and local employers. This innovative partnership prepares both the current and future workforce for careers in the…
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1980-01-01
The scientific aspects of the Materials Processing in Space program are described with emphasis on the major categories of interest: (1) crystal growth; (2) solidification of metals, alloys, and composites; (3) fluids and chemical processes; (4) containerless processing, glasses, and refractories; (5) ultrahigh vacuum processes; and (6) bioprocessing. An index is provided for each of these areas. The possible contributions that materials science experiments in space can make to the various disciplines are summarized, and the necessity for performing experiments in space is justified. What has been learned from previous experiments relating to space processing, current investigations, and remaining issues that require resolution are discussed. Recommendations for the future direction of the program are included.
1992-01-01
The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research with the international partners. The participating space agencies included: NASA, the 14-nation European Space Agency (ESA), the Canadian Space Agency (CSA), the French National Center of Space Studies (CNES), the German Space Agency and the German Aerospace Research Establishment (DAR/DLR), and the National Space Development Agency of Japan (NASDA). Dedicated to the study of life and materials sciences in microgravity, the IML missions explored how life forms adapt to weightlessness and investigated how materials behave when processed in space. Both life and materials sciences benefited from the extended periods of microgravity available inside the Spacelab science module in the cargo bay of the Space Shuttle Orbiter. In this photograph, Commander Ronald J. Grabe works with the Mental Workload and Performance Evaluation Experiment (MWPE) in the IML-1 module. This experiment was designed as a result of difficulty experienced by crewmembers working at a computer station on a previous Space Shuttle mission. The problem was due to the workstation's design being based on Earthbound conditions with the operator in a typical one-G standing position. Information gained from this experiment was used to design workstations for future Spacelab missions and the International Space Station. Managed by the Marshall Space Flight Center, IML-1 was launched on January 22, 1992 aboard the Space Shuttle Orbiter Discovery (STS-42 mission).
Using Virtual Simulations in the Design of 21st Century Space Science Environments
NASA Technical Reports Server (NTRS)
Hutchinson, Sonya L.; Alves, Jeffery R.
1996-01-01
Space Technology has been rapidly increasing in the past decade. This can be attributed to the future construction of the International Space Station (ISS). New innovations must constantly be engineered to make ISS the safest, quality, research facility in space. Since space science must often be gathered by crew members, more attention must be geared to the human's safety and comfort. Virtual simulations are now being used to design environments that crew members can live in for long periods of time without harmful effects to their bodies. This paper gives a few examples of the ergonomic design problems that arise on manned space flights, and design solutions that follow NASA's strategic commitment to customer satisfaction. The conclusions show that virtual simulations are a great asset to 21st century design.
Crystal Growth and Other Materials Physical Researches in Space Environment
NASA Astrophysics Data System (ADS)
Pan, Mingxiang
Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.
Early space experiments in materials processing
NASA Technical Reports Server (NTRS)
Naumann, R. J.
1979-01-01
A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se.
Bossert, Thomas J
2016-05-08
The study of decentralization in Fiji shows that increasing capacities is not necessarily related to increasing decision space of local officials, which is in contrast with earlier studies in Pakistan. Future studies should address the relationship among decision space, capacities, and health system performance. © 2016 by Kerman University of Medical Sciences.
Southeast Regional Clearinghouse(SERCH)Mini-grants:Big Impacts on Future Explorers
NASA Astrophysics Data System (ADS)
Runyon, C.; Guimond, K.
2004-12-01
SERCH is one of seven regional Broker/Facilitator programs funded by NASA's Space Science Mission Directorate. Our purpose is to promote space science awareness and to enhance interest in science, math, and technology through the use of NASA's mission data, information, and educational products. We work closely with educators and NASA-funded scientists in 14 states (AL, AR, DC, FL, GA, KY, LA, MD, MS, NC, PR, SC/VI, TN, and VA) throughout the southeastern U.S. to share what NASA is doing in space science. Every year SERCH dedicates money from its budget to support education/outreach initiatives that increase the awareness and understanding of the four major scientific themes, or forums from NASA's space science program: 1) Sun-Earth Connection, 2) Solar System Exploration, 3) Structure and Evolution of the Universe, and 4) Astronomical Search for Origins and Planetary Systems. SERCH is particularly interested in proposals for education/outreach efforts that establish strong and lasting partnerships between the space science and education communities and that support the NASA's education mission. We encourage innovative, inter-disciplinary teams involving both scientists and educators to apply. These peer-reviewed grants are awarded for a period of one year in amounts usually ranging from 5,000 to 10,000. Three examples of highly successful previous grant awards include: 1) Teaching Astronomy and Space Science in Kentucky (KY): Designed to improve knowledge of science core concepts and teaching skills in astronomy and space science and increased expertise in achieving current Kentucky academic expectations; 2) Development of Multi-media Space Science Education/Tutorial Modules (MD): The objective is the production of three "turn-key" internet-based multi-media student tutorial modules to enable the mostly part-time professors/instructors teaching introductory astronomy in community colleges to add exciting and cutting-edge topics to their existing astronomy courses; and 3) Space Science the Special Way (SSS Way) (VA): This conference focused on solutions to the challenges faced when accommodating inclusive earth/space science instruction to students from the following special needs groups: blind and visually impaired, deaf and hard of hearing and the learning disabled.
Growing Beyond Earth; Students Exploring Plant Varieties for Future Space Exploration
NASA Technical Reports Server (NTRS)
Litzinger, Marion; Massa, Gioia
2017-01-01
Future space exploration and long duration space flight will pose an array of challenges to the health and wellbeing of astronauts. Since 2015, Fairchild Tropical Botanic Garden (FTBG), in partnership with NASA's Veggie team, has been testing edible crops for space flight potential through a series of citizen science experiments. FTBG's interest in classroom-based science projects, along with NASA's successful operation of the Veggie system aboard the International Space Station (ISS), led to a NASA-FTBG partnership that gave rise to the Growing Beyond Earth STEM Initiative (GBE). Established in 2015, GBE now involves 131 middle and high school classrooms in South Florida, all conducting simultaneous plant science experiments. The results of those experiments (both numeric and visual) are directly shared with the space food production researchers at KSC. Through this session, we will explore the successful classroom implementation and integration into the curriculum, how the data is being used and the impact of the project on participating researchers, teachers, and students. Participating schools were supplied with specialized LED-lit growth chambers, mimicking the Veggie system on ISS, for growing edible plants under similar physical and environmental constraints. Research protocols were provided by KSC scientists, while edible plant varieties were selected mainly by the botanists at FTBG. In a jointly-led professional development workshop, participating teachers were trained to conduct GBE experiments in their classrooms. Teachers were instructed to not only teach basic botany concepts, but to also demonstrate practical applications of math, physics and chemistry. As experiments were underway, students shared data on plant germination, growth, and health in an online spreadsheet. Results from the students research show a promising selection of new plant candidates for possible further testing. Over a two year period, more than 5000 South Florida students, ages 11 to 18, participated in GBE. Evaluation of the program shows an increased knowledge of and interest in science and science careers among students. The program has also boosted the demand for summer high school internships at FTBG, further developing expertise in plant research and science related to space exploration. Supported by a grant from NASA (NNX16AM32G) to Fairchild Tropical Botanic Garden.
The National Space Science Data Center
NASA Technical Reports Server (NTRS)
1989-01-01
An overview is presented of the services offered by the National Space Science Data Center (NSSDC). The NSSDC was established by the National Aeronautics and Space Administration (NASA) over 20 years ago to be the long-term archive for data from its space missions. NSSDC's goal is to provide the research community with data and attendant services in the most efficient, economical, and useful manner possible now and in the future. The organization is dedicated to getting the most scientific value out of NASA's initial investment in its missions. Each service available to scientists through the world is discussed. Also a contact person is identified for each service in case more information in needed.
Improving NASA's technology for space science
NASA Technical Reports Server (NTRS)
1993-01-01
The continued advance of the nation's space program is directly dependent upon the development and use of new technology. Technology is the foundation for every aspect of space missions and ground operations. The improvements in technology that will enable future advances are not only in device and system performance, but also in permitting missions to be carried out more rapidly and at lower cost. Although more can be done with current technology, NASA's recent call for new and innovative approaches should not be answered by employing only today's technologies; new technologies with revolutionary potential should be sought. The study reported here was performed to identify means to enhance the development of technologies for the space sciences and applications.
Space physics strategy: Implementation study. Volume 2: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
In June, 1989, the Space Science and Applications Advisory Committee (SSAAC) authorized its Space Physics Subcommittee (SPS) to prepare a plan specifying the future missions, launch sequence, and encompassing themes of the Space Physics Division. The plan, now complete, is the product of a year-long study comprising two week-long workshops - in January and June 1990 - assisted by pre-workshop, inter-workshop, and post-workshop preparation and assessment activities. The workshops engaged about seventy participants, drawn equally from the Division's four science disciplines: cosmic and heliospheric physics, solar physics, magnetosphere physics, and ionosphere-thermosphere-mesospheric physics. An earlier report records the outcome of the first workshop; this is the report of the final workshop.
Commerce Lab: Mission analysis payload integration study. Appendix A: Data bases
NASA Technical Reports Server (NTRS)
1985-01-01
The development of Commerce Lab is detailed. Its objectives are to support the space program in these areas: (1) the expedition of space commercialization; (2) the advancement of microgravity science and applications; and (3) as a precursor to future missions in the space program. Ways and means of involving private industry and academia in this commercialization is outlined.
NASA Technical Reports Server (NTRS)
Weisbin, C. R. (Editor)
2004-01-01
A workshop entitled, "Outstanding Research Issues in Systematic Technology Prioritization for New Space Missions," was convened on April 21-22, 2004 in San Diego, California to review the status of methods for objective resource allocation, to discuss the research barriers remaining, and to formulate recommendations for future development and application. The workshop explored the state-of-the-art in decision analysis in the context of being able to objectively allocate constrained technical resources to enable future space missions and optimize science return. This article summarizes the highlights of the meeting results.
LEGO "Build The Future" Activity
2010-11-01
Actress Nichelle Nichols, known for her most famous role as communications officer Lieutenant Uhura aboard the USS Enterprise in the popular Star Trek television series, displays her Lego astronaut ring while visiting the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
LEGO "Build The Future" Activity
2010-11-03
President of LEGO Education USA Stephan Turnipseed, back left, and Associate Administrator for Education and Astronaut Leland Melvin, 2nd from right, talk with a student during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
LEGO "Build The Future" Activity
2010-11-01
Actress Nichelle Nichols, known for her most famous role as communications officer Lieutenant Uhura aboard the USS Enterprise in the popular Star Trek television series, talks with school children during the “Build the Future” activity where students created their vision of the future in space with LEGO bricks and elements inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Monday, Nov. 1, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
Enabling Exploration: NASA's Technology Needs
NASA Technical Reports Server (NTRS)
Carroll, Carol W.
2012-01-01
Deputy Director of Science, Carol W. Carroll has been invited by University of Oregon's Materials Science Institute to give a presentation. Carol's Speech explains NASA's Technologies that are needed where NASA was, what NASA's current capabilities are. Carol will highlight many of NASA's high profile projects and she will explain what NASA needs for its future by focusing on the next steps in space exploration. Carol's audience will be University of Oregon's future scientists and engineer's and their professor's along with various other faculty members.
NASA Technical Reports Server (NTRS)
Helmreich, R. L.; Wilhelm, J. M.; Tanner, T. A.; Sieber, J. E.; Burgenbauch, S. F.
1979-01-01
A management study was initiated by ARC (Ames Research Center) to specify Spacelab Mission Development Test 3 activities and problems. This report documents the problems encountered and provides conclusions and recommendations to project management for current and future ARC life sciences projects. An executive summary of the conclusions and recommendations is provided. The report also addresses broader issues relevant to the conduct of future scientific missions under the constraints imposed by the space environment.
Launching the Future of Science and Exploration
NASA Technical Reports Server (NTRS)
Shivers, Charles H.
2009-01-01
This slide presentation reviews the impact that NASA and more specifically the Marshall Space Flight Center (MSFC) has had in science and exploration of Earth. the moon, the solar system and the universe. Some of the contributions that MSFC has made to NASA's missions and the plans for future explorations are reviewed. Also there are views of the contributions to improvement of human life on earth and the impact of the understanding of some natural phenomena made possible by the technology and scientific discoveries of MSFC.
The N.E.X.T. Thing for Space Travel
2013-07-26
The NASA Evolutionary Xenon Thruster or NEXT is an advanced Ion propulsion system developed at Glenn Research Center. Its unmatched fuel efficiency could give a real boost to future deep space exploration missions -- extending the reach of NASA science missions and yielding a higher return on scientific research.
Science Opportunities Enabled by NASA's Constellation System: Interim Report
NASA Astrophysics Data System (ADS)
Committee On Science Opportunities Enabled By Nasa'S Constellation System, National Research Council
To begin implementation of the Vision for Space Exploration (recently renamed "United States Space Exploration Policy"), NASA has begun development of new launch vehicles and a human-carrying spacecraft that are collectively called the Constellation System. In November 2007, NASA asked the NRC to evaluate the potential for the Constellation System to enable new space science opportunities. For this interim report, 11 existing "Vision Mission" studies of advanced space science mission concepts inspired by earlier NASA forward-looking studies were evaluated. The focus was to assess the concepts and group them into two categories: more-deserving or less deserving of future study. This report presents a description of the Constellation System and its opportunities for enabling new space science opportunities, and a systematic analysis of the 11 Vision Mission studies. For the final report, the NRC issued a request for information to the relevant communities to obtain ideas for other mission concepts that will be assessed by the study committee, and several issues addressed only briefly in the interim report will be explored more fully.
The Laboratory for Terrestrial Physics
NASA Technical Reports Server (NTRS)
2003-01-01
The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor)
1987-01-01
The present conference on U.S. space transportation systems development discusses opportunities for aerospace students in prospective military, civil, industrial, and scientific programs, current strategic conceptualization and program planning for future U.S. space transportation, the DOD space transportation plan, NASA space transportation plans, medium launch vehicle and commercial space launch services, the capabilities and availability of foreign launch vehicles, and the role of commercial space launch systems. Also discussed are available upper stage systems, future space transportation needs for space science and applications, the trajectory analysis of a low lift/drag-aeroassisted orbit transfer vehicle, possible replacements for the Space Shuttle, LEO to GEO with combined electric/beamed-microwave power from earth, the National Aerospace Plane, laser propulsion to earth orbit, and a performance analysis for a laser-powered SSTO vehicle.
NASA Technical Reports Server (NTRS)
Campana, Sharon
2010-01-01
The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.
Robotics research at Canadian Space Agency
NASA Technical Reports Server (NTRS)
Hui, Raymond
1994-01-01
In addition to major crown projects such as the Mobile Servicing System for Space Station, the Canadian Space Agency is also engaged in internal, industrial and academic research and development activities in robotics and other space-related areas of science and technology. These activities support current and future space projects, and lead to technology development which can be spun off to terrestrial applications, thus satisfying the Agency's objective of providing economic benefits to the public at large through its space-related work.
Highlights of Science Launching on SpaceX CRS-15
2018-06-24
A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. Among the research being delivered is science that studies the use of artificial intelligence for crew support, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. The International Space Station is a convergence of science, technology and human innovation that demonstrates new technologies and enables research not possible on Earth. The space station has been occupied continuously since November 2000. In that time, more than 230 people and a variety of international and commercial spacecraft have visited the orbiting laboratory. The space station remains the springboard to NASA's next great leap in exploration, including future human missions to the Moon and eventually to Mars. Highlighted investigations shown: Mobile Companion/CIMON: https://go.nasa.gov/2JCgPRf ECOSTRESS: https://go.nasa.gov/2sT87DV Angiex Cancer Therapy: https://go.nasa.gov/2LA1Cgc Rodent Research-7: https://go.nasa.gov/2JlVQlC Chemical Gardens: https://go.nasa.gov/2JDCYie Follow updates on the science conducted aboard the space station on Twitter: https://twitter.com/iss_research For more information on how you can conduct your research in microgravity, visit https://go.nasa.gov/2q84LJj HD Download: https://archive.org/details/jsc2018m000428_Highlights_of_Science_Launching_on_SpaceX_CRS-15
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.
Internet Data Delivery for Future Space Missions
NASA Technical Reports Server (NTRS)
Rash, James; Casasanta, Ralph; Hogie, Keith; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and as the need increases for more network-oriented mission operations. Another element of increasing significance will be the increased cost effectiveness of designing, building, integrating, and operating instruments and spacecraft that will come to the fore as more missions take up the approach of using commodity-level standard communications technologies. This paper describes how an IP (Internet Protocol)-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.
Life science experiments performed in space in the ISS/Kibo facility and future research plans.
Ohnishi, Takeo
2016-08-01
Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Propulsion Investments for Exploration and Science
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.
2008-01-01
The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science.
Experimental gravitation in space - Is there a future?
NASA Astrophysics Data System (ADS)
Wharton, R. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M.
Experimental gravitation enters the 1990s with a past full of successes, but with a future full of uncertainties. Intellectually, the field is as vigorous as ever, with major thrusts in three main areas: the search for gravitational radiation, the study of post and post-post Newtonian effects, and the detection of hypothetical feeble new interactions. It is the only branch of space research involved in fundamental physics. But politically and financially, the future is uncertain. Competition for funding and for flight opportunities will be stiff for the foreseeable future, both with other disciplines such as astrophysics, planetary science and the military, and within experimental gravitation itself. Difficult choices lie ahead. This paper reviews the current state of the field and attempts to peer into the future.
Use of Hawaii Analog Sites for Lunar Science and In-Situ Resource Utilization
NASA Astrophysics Data System (ADS)
Sanders, G. B.; Larson, W. E.; Picard, M.; Hamilton, J. C.
2011-10-01
In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.
Use of Hawaii Analog Sites for Lunar Science and In-Situ Resource Utilization
NASA Technical Reports Server (NTRS)
Sanders, G. B.; Larson, W. E.; Picard, M.; Hamilton, J. C.
2011-01-01
In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.
NASA's Applied Sciences for Water Resources
NASA Technical Reports Server (NTRS)
Doorn, Bradley; Toll, David; Engman, Ted
2011-01-01
The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.
Space station systems analysis study. Part 1, volume 1: Executive study
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.
FIR/THz Space Interferometry: Science Opportunities, Mission Concepts, and Technical Challenges
NASA Technical Reports Server (NTRS)
Leisawitz, David
2007-01-01
Sensitive far-IR imaging and spectroscopic measurements of astronomical objects on sub-arcsecond angular scales are essential to our understanding of star and planet formation, the formation and evolution of galaxies, and to the detection and characterization of extrasolar planets. Cold single-aperture telescopes in space, such as the Spitzer Space Telescope and the Herschel Space Observatory, are very sensitive, but they lack the necessary angular resolution by two or more orders of magnitude. Far-IR space interferometers will address this need in the coming decades. Several mission concepts have already been studied, including in the US the Space Infrared Interferometric Telescope (SPIRIT) and the more ambitious Submillimeter Probe of the Evolution of Cosmic Structure (SPECS). This talk will describe science goals and summarize alternative concepts for future FIR/THz space interferometry missions. Small arrays of sensitive, fast, direct detectors are a key enabling technology for SPIRIT and SPECS. I will describe the technology requirements for far-IR interferometry, including the detector requirements, and their derivation from the mission science goals and instrument concepts.
A shared-world conceptual model for integrating space station life sciences telescience operations
NASA Technical Reports Server (NTRS)
Johnson, Vicki; Bosley, John
1988-01-01
Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.
Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.
2003-01-01
Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.
Commerce Lab: Mission analysis and payload integration study
NASA Technical Reports Server (NTRS)
1984-01-01
The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.
Moving Beyond Earth Gallery Opening
2009-11-18
David H. DeVorkin, Senior Curator, Astronomy and the Space Sciences Division of Space History, at the Smithsonian's National Air and Space Museum, speaks during a press briefing at the new "Moving Beyond Earth," exhibition at the museum in Washingon, Wednesday, Nov. 18, 2009. Moving Beyond Earth is an immersive exhibition that places visitors "in orbit" in the shuttle and space-station era to explore recent human spaceflight and future possibilities. Photo Credit: (NASA/Paul E. Alers)
NASA Technical Reports Server (NTRS)
1988-01-01
A compilation of papers presented at this conference is given. The science dealing with materials and fluids and with fundamental studies in physics and chemistry in a low gravity environment is examined. Program assessments are made along with directions for progress in the future use of the space shuttle program.
Overview and Summary of the Advanced Mirror Technology Development Project
NASA Astrophysics Data System (ADS)
Stahl, H. P.
2014-01-01
Advanced Mirror Technology Development (AMTD) is a NASA Strategic Astrophysics Technology project to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. The developed mirror technology must enable missions capable of both general astrophysics & ultra-high contrast observations of exoplanets. Just as JWST’s architecture was driven by launch vehicle, a future UVOIR mission’s architectures (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, to provide the science community with options, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We derived engineering specifications for potential future monolithic or segmented space telescopes based on science needs and implement constraints. And we are maturing six inter-linked critical technologies to enable potential future large aperture UVOIR space telescope: 1) Large-Aperture, Low Areal Density, High Stiffness Mirrors, 2) Support Systems, 3) Mid/High Spatial Frequency Figure Error, 4) Segment Edges, 5) Segment-to-Segment Gap Phasing, and 6) Integrated Model Validation Science Advisory Team and a Systems Engineering Team. We are maturing all six technologies simultaneously because all are required to make a primary mirror assembly (PMA); and, it is the PMA’s on-orbit performance which determines science return. PMA stiffness depends on substrate and support stiffness. Ability to cost-effectively eliminate mid/high spatial figure errors and polishing edges depends on substrate stiffness. On-orbit thermal and mechanical performance depends on substrate stiffness, the coefficient of thermal expansion (CTE) and thermal mass. And, segment-to-segment phasing depends on substrate & structure stiffness. This presentation will introduce the goals and objectives of the AMTD project and summarize its recent accomplishments.
Exploration-Related Research on ISS: Connecting Science Results to Future Missions
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.
2005-01-01
In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.
NASA Technical Reports Server (NTRS)
Bilitza, D.; King, J. H.
1988-01-01
The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.
NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability
NASA Astrophysics Data System (ADS)
Dankanich, John
2009-01-01
The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.
Miniature Loop Heat Pipe (MLHP) Thermal Management System
NASA Technical Reports Server (NTRS)
Ku, Jentung
2004-01-01
The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.
One institution's experience in transforming the health sciences library of the future.
Allee, Nancy J; Blumenthal, Jane; Jordan, Karen; Lalla, Nadia; Lauseng, Deborah; Rana, Gurpreet; Saylor, Kate; Song, Jean
2014-01-01
Recognizing a need to be more relevant to its constituents, and aligned with institutional priorities, the Taubman Health Sciences Library redefined its mission, roles, and space. This transformation facilitated innovative, team-based collaborations within the health sciences community and the addition of new roles and responsibilities in academic and clinical engagement, research and informatics, enabling technologies, community outreach, and global health. Library space is being redesigned, and a branch library dedicated to interdisciplinary partnerships has been established. Information gained from this experience will be useful to other libraries faced with budget, resource, and staffing challenges and will offer practical ideas for becoming more integrated into the academic, research, and clinical work of the health sciences enterprise.
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane carries the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. Once on the work stand , it will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane carries the Columbus module away from its transportation canister. Columbus is the European Space Agency's research laboratory for the International Space Station. The module is being moved to a work stand to prepare it for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
The Space Shuttle - A future space transportation system
NASA Technical Reports Server (NTRS)
Thompson, R. F.
1974-01-01
The objective of the Space Shuttle Program is to achieve an economical space transportation system. This paper provides an introductory review of the considerations which led to the Government decisions to develop the Space Shuttle. The role of a space transportation system is then considered within the context of historical developments in the general field of transportation, followed by a review of the Shuttle system, mission profile, payload categories, and payload accommodations which the Shuttle system will provide, and concludes with a forecast of the systems utilization for space science research and payload planning activity.
The space telescope: A study of NASA, science, technology, and politics
NASA Technical Reports Server (NTRS)
Smith, Robert William
1989-01-01
Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.
Building the future of mankind in the classroom
NASA Astrophysics Data System (ADS)
Doran, R.
2013-09-01
Rethinking education and how we engage future generations in the pursue of science literacy is much more than creating the future generation of planetary scientists or space exploration engineers, it is the guarantee of the survival of our specie. Training teachers to the use of cutting edge science tools and resources in class room is a very important task and is being embraced by one of the largest astronomy education efforts worldwide, the Galileo Teacher Training Program. GTTP is partnering with several important research projects in education by providing support in the construction of a strong support network for educators willing to introduce the scientific method in classroom.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., makes its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2006-05-30
KENNEDY SPACE CENTER, FLA. - A Beluga aircraft taxis on the runway at the Shuttle Landing Facility on NASA's Kennedy Space Center. The Beluga carries the European Space Agency's research laboratory, designated Columbus, flown to Kennedy from its manufacturer in Germany. The module will be prepared for delivery to the International Space Station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., makes its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2006-05-30
KENNEDY SPACE CENTER, FLA. - A Beluga aircraft arrives at the Shuttle Landing Facility on NASA's Kennedy Space Center. The Beluga carries the European Space Agency's research laboratory, designated Columbus, flown to Kennedy from its manufacturer in Germany. The module will be prepared for delivery to the International Space Station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., arrives at Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
The definition of ESA's scientific programme for the 1980's.
NASA Astrophysics Data System (ADS)
Russo, A.
1997-09-01
The following topics were dealt with: discussing a long-term strategy for ESA's scientific activities; the SAC's (Science Advisory Committee) vision of European space science in the 1980s; the role of Spacelab (and Ariane); more money for science?; studying future scientific projects (the comets and the Moon); the selection of ESA's next scientific mission (the comet and the stars, the SPC decision, Giotto and Hipparcos adopted).
NASA Technical Reports Server (NTRS)
Palguta, T.; Bradley, W.; Stockton, T.
1988-01-01
The purpose is to describe the logistics study background and approach to providing estimates of of logistics support requirements for Office of Space Science and Applications' payloads in the Space Station era. A concise summary is given of the study results. Future logistics support analysis tasks are identified.
Space physics missions handbook
NASA Technical Reports Server (NTRS)
Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)
1991-01-01
The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.
NASA Technical Reports Server (NTRS)
Fischer, James R.; Grosch, Chester; Mcanulty, Michael; Odonnell, John; Storey, Owen
1987-01-01
NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era.
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.
1991-01-01
The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.
2008-02-01
KENNEDY SPACE CENTER, FLA. -- At the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair show their pleasure after signing a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
2008-02-01
KENNEDY SPACE CENTER, FLA. -- At a ceremony at the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair sign a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1987-01-01
Three broad goals were presented by NASA as a guide to meet the challenges of the future: to advance scientific knowledge of the planet Earth, the solar system, and the universe; to expand human presence beyond the Earth into the solar system; and to strengthen aeronautics research and technology. Near-term and new-generation space transportation and propulsion systems are being analyzed that will assure the nation access to and presence in space. Other key advanced studies include large astronomical observatories, space platforms, scientific and commercial payloads, and systems to enhance operations in Earth orbit. Longer-range studies include systems that would allow humans to explore the Moon and Mars during the next century. Research programs, both to support the many space missions studied or managed by the Center and to advance scientific knowledge in selected areas, involve work in the areas of atmospheric science, earth science, space science (including astrophysics and solar, magnetospheric, and atomic physics), and low-gravity science. Programs and experiment design for flights on the Space Station, free-flying satellites, and the Space Shuttle are being planned. To maintain a leadership position in technology, continued advances in liquid and solid propellant engines, materials and processes; electronic, structural, and thermal investigations; and environmental control are required. Progress during the fiscal year 1987 is discussed.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians check the bottom of the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator as it is raised of its platform. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians check the bottom of the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator as it is raised off its platform. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians observe closely the movement of the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator as it is lowered onto a stand. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
The ISECG Science White Paper - A Scientific Perspective on the Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Bussey, David B.; Worms, Jean-Claude; Spiero, Francois; Schlutz, Juergen; Ehrenfreund, Pascale
2016-07-01
Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As an element of this continued road mapping effort, the ISECG agencies are therefore soliciting input and coordinated discussion with the scientific community to better articulate and promote the scientific opportunities of the proposed mission themes. An improved understanding of the scientific drivers and the requirements to address priority science questions associated with the exploration destinations (Moon, Near Earth Asteroids, Mars and its moons) as well as the preparatory activities in cis-lunar space is beneficial to optimize the partnership of robotic assets and human presence beyond low Earth orbit. The interaction has resulted in the development of a Science White Paper to: • Identify and highlight the scientific opportunities in early exploration missions as the GER reference architecture matures, • Communicate overarching science themes and their relevance in the GER destinations, • Ensure international science communities' perspectives inform the future evolution of mission concepts considered in the GER The paper aims to capture the opportunities offered by the missions in the GER for a broad range of scientific disciplines. These include planetary and space sciences, astrobiology, life sciences, physical sciences, astronomy and Earth science. The paper is structured around grand science themes that draw together and connect research in the various disciplines, and it will focus on opportunities created by the near-term mission themes in the GER centred around 1) extended duration crew missions to an exploration habitat in cis-lunar space, 2) crew mission(s) to an asteroid, and 3) crew missions to the lunar surface. The preparation of that Science White Paper has been coordinated and led by an external Science Advisory Group composed of scientists form a variety of nations. The first draft of this White Paper has been discussed on the occasion of a COSPAR-ISECG-ESF workshop organised in Paris on 10-11 February 2016. The recommendations developed at the workshop provide further input that is incorporated in the final version of the ISECG Science White Paper, expected to be published in the fall of 2016. The authors aim to present the rationale and contents of this White Paper on the occasion of the COSPAR Assembly.
Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1
NASA Technical Reports Server (NTRS)
Cutts, James (Editor); Ng, Edward (Editor)
1991-01-01
The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization.
Flight project data book, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The Office of Space Science and Applications (OSSA) is responsible for planning, directing, executing, and evaluating that part of the overall NASA program that has as its goal the use of the unique characteristics of the space environment to conduct a scientific study of the universe, to solve practical problems on Earth, and to provide the scientific research foundation for expanding human presence beyond Earth into the solar system. OSSA manages the development of NASA's flight instrumentation for space science and applications including free flying spacecraft, Shuttle and Space Station payloads, and the suborbital sounding rockets, balloons, and aircraft programs. A summary is provided of future flight missions, including those approved and currently under development and those which appear in the OSSA strategic plan.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Dr. Oscar Monje, (far right) a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Assisting him is Jeffrey Richards, project science coordinator with SGT on the Engineering Services Contract (ESC). Seated in the foreground is Susan Manning-Roach, a quality assurance specialist, also with ESC. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-10-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.
Proceedings of the First Workshop on Containerless Experimentation in Microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H. (Editor)
1990-01-01
The goals of the workshop were first to provide scientists an opportunity to acquaint themselves with the past, current, and future scientific investigations carried out in the Containerless Science programs of the Microgravity Science and Applications Div. of NASA, as well as ESA and Japanese Space Agencies. The second goal was to assess the technological development program for low gravity containerless experimentation instruments. The third goal was to obtain recommendations concerning rigorous but feasible new scientific and technological initiative for space experiments using noncontact sample positioning and diagnostic techniques.
DSN radio science system design and testing for Voyager-Neptune encounter
NASA Technical Reports Server (NTRS)
Ham, N. C.; Rebold, T. A.; Weese, J. F.
1989-01-01
The Deep Space Network (DSN) Radio Science System presently implemented within the Deep Space Network was designed to meet stringent requirements imposed by the demands of the Voyager-Neptune encounter and future missions. One of the initial parameters related to frequency stability is discussed. The requirement, specification, design, and methodology for measuring this parameter are described. A description of special instrumentation that was developed for the test measurements and initial test data resulting from the system tests performed at Canberra, Australia and Usuda, Japan are given.
NASA Astrophysics Data System (ADS)
Hoffman, Jascha
2011-11-01
Tracy K. Smith has her head in the stars. Thanks to her late father's job as an engineer on the Hubble Space Telescope, the US poet gathers inspiration from astrophysics and cosmology. Published this year, her third collection, Life on Mars, explores the future of human life, the great beyond and her father's death. As she prepares for a poetry reading at the Space Telescope Science Institute in Baltimore, Maryland, Smith talks about the limits of space and time.
Army Science Board Ad Hoc Study Group Report on Human Issues.
1980-03-01
top level attention on human issues research and to formulate human issues programs to meet future needs. A concept paper was presented to the Army...the Army (Operations Research), 10 spaces were allo- cated to provide in-house research/study capability under the ADCSPER. These 10 spaces should be...combined with the present three- space study and analysis section, thus providing a 13- space group which could support the PPRC, APSC, and DCSPER. In
Space Station Freedom Gateway to the Future
NASA Technical Reports Server (NTRS)
1992-01-01
The first inhabited outpost on the frontier of space will be a place to live, work, and discover. Experiments conducted on Freedom will advance scientific knowledge about our world, our environment, and ourselves. We will learn how to adapt to the space environment and to build and operate new spacecraft with destinations far beyond Earth, continuing the tradition of exploration that began with a journey to the Moon. What we learn from living and working on Freedom will strengthen our expertise in science and engineering, promote national research and development initiatives and inspire another generation of Americans to push forward and onward. On the eve of the 21st century, Space Station Freedom will be our gateway to the future. This material covers gateways to space, research, discovery, utilization, benefits, and NASA.
NASA's Future Active Remote Sensing Missing for Earth Science
NASA Technical Reports Server (NTRS)
Hartley, Jonathan B.
2000-01-01
Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.
International Space Station (ISS)
2007-02-09
The STS-120 patch reflects the role of the mission in the future of the space program. The shuttle payload bay carries Node 2, Harmony, the doorway to the future international laboratory elements on the International Space Station (ISS). The star on the left represents the ISS; the red colored points represent the current location of the P6 solar array, furled and awaiting relocation when the crew arrives. During the mission, the crew will move P6 to its final home at the end of the port truss. The gold points represent the P6 solar array in its new location, unfurled and producing power for science and life support. On the right, the moon and Mars can be seen representing the future of NASA. The constellation Orion rises in the background, symbolizing NASA's new exploration vehicle. Through all, the shuttle rises up and away, leading the way to the future.
NASA Astrophysics Data System (ADS)
Lesinski-Roscoe, Rachel A.
This qualitative study sought to gain an understanding of science teachers' perceptions of reform and their role in implementing reform and science-based literacy practices in the classroom, as well as gain an understanding of science teachers' knowledge of disciplinary literacy as the implied framework of reform (i.e., the Next Generation Science Standards). Four focal participants from a suburban, middle-class high school district comprised of two high schools participated in semi-structured interviews, observations, and a stimulated recall task and interview. Data analysis revealed some of the Discourse memberships in which participants claimed membership and the tensions that resulted from those memberships. From this data, a theory emerged of the role of third space in navigating these tensions, and a model for developing a third space is presented, which literacy professionals can reference when working to develop collaborative relationships with science teachers in order to scaffold science-specific literacy practices for student engagement. The information in this study prompts future research regarding the ability of science teachers and literacy professionals to navigate Discourses in a Field Code Changed third space using a disciplinary literacy approach to developing curriculum in order to apprentice students into the discipline of science and develop a citizenry of scientifically literate individuals.
Propellantless Propulsion Technologies for In-Space Transportation
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 or 3 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will be described. Results of recent earth-based technology demonstrations and space tests will also be discussed.
NASA'S Water Resources Element Within the Applied Sciences Program
NASA Technical Reports Server (NTRS)
Toll, David; Doorn, Bradley; Engman, Edwin
2011-01-01
The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.
NASA Technical Reports Server (NTRS)
Hartman, Kathy; Weidow, David; Hadaegh, Fred
1999-01-01
Breakthrough technology development is critical to securing the future of our space industry. The National Aeronautics and Space Administration (NASA) Cross-Enterprise Technology Development Program (CETDP) is developing critical space technologies that enable innovative and less costly missions, and spawn new mission opportunities through revolutionary, long-term, high-risk, high-payoff technology advances. The CETDP is a NASA-wide activity managed by the Advanced Technology and Mission Studies Division (AT&MS) at Headquarters Office of Space Science. Program management for CETDP is distributed across the multiple NASA Centers and draws on expertise throughout the Agency. The technology research activities are organized along Project-level divisions called thrust areas that are directly linked to the Agency's goals and objectives of the Enterprises: Earth Science, Space Science, Human Exploration and Development of Space; and the Office of the Chief Technologist's (OCT) strategic technology areas. Cross-Enterprise technology is defined as long-range strategic technologies that have broad potential to span the needs of more than one Enterprise. Technology needs are identified and prioritized by each of the primary customers. The thrust area manager (TAM) for each division is responsible for the ultimate success of technologies within their area, and can draw from industry, academia, other government agencies, other CETDP thrust areas, and other NASA Centers to accomplish the goals of the thrust area. An overview of the CETDP and description of the future directions of the thrust area called Distributed Spacecraft are presented in this paper. Revolutionary technologies developed within this thrust area will enable the implementation of a spatially distributed network of individual vehicles, or assets, collaborating as a single collective unit, and exhibiting a common system-wide capability to accomplish a shared objective. With such a capability, new Earth and space science measurement concepts become a reality.
NASA Technical Reports Server (NTRS)
Hartman, Kathy; Weidow, David; Hadaegh, Fred
1999-01-01
Breakthrough technology development is critical to securing the future of our space industry. The National Aeronautics and Space Administration (NASA) Cross-Enterprise Technology Development Program (CETDP) is developing critical space technologies that enable innovative and less costly missions, and spawn new mission opportunities through revolutionary, long-term, high-risk, high-payoff technology advances. The CETDP is a NASA-wide activity managed by the Advanced Technology and Mission Studies Division (AT&MS) at Headquarters Office of Space Science. Program management for CETDP is distributed across the multiple NASA Centers and draws on expertise throughout the Agency. The technology research activities are organized along Project-level divisions called thrust areas that are directly linked to the Agency's goals and objectives of the Enterprises: Earth Science, Space Science, Human Exploration and Development of Space; and the Office of the Chief Technologist's (OCT) strategic technology areas. Cross-Enterprise technology is defined as long-range strategic technologies that have broad potential to span the needs of more than one Enterprise. Technology needs are identified and prioritized by each of the primary customers. The thrust area manager (TAM) for each division is responsible for the ultimate success of technologies within their area, and can draw from industry, academia, other government agencies, other CETDP thrust areas, and other NASA Centers to accomplish the goals of the thrust area. An overview of the CETDP and description of the future directions of the thrust area called Distributed Spacecraft are presented in this paper. Revolutionary technologies developed within this thrust area will enable the implementation of a spatially distributed network of individual vehicles, or assets, collaborating as a single collective unit, and exhibiting a common system-wide capability to accomplish a shared objective. With such a capability, new Earth and space science measurement concepts become a reality.
The Art and Science of Long-Range Space Weather Forecasting
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Wilson, Robert M.
2006-01-01
Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.
Enabling Laser and Lidar Technologies for NASA's Science and Exploration Mission's Applications
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Kavaya, Michael J.
2005-01-01
NASA s Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.
Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Kavaya, Michael J.
2005-01-01
NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.
2014-06-17
ISS040-E-012309 (16 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts two flame tests for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083576 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083578 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
NASA Technical Reports Server (NTRS)
1989-01-01
The responses to issues and questions raised at the Space Station Freedom Workshops are compiled. The findings are presented under broad divisions of general, materials processing in space, commercial earth and ocean observations, life sciences, infrastructure services, and infrastructure policy. The responses represent the best answers available at this time and future modifications may be expected. Contact names, telephone numbers, and organizations are included.
Study on various elements of the geosciences with respect to space technology
NASA Technical Reports Server (NTRS)
Head, J. W., III
1981-01-01
The utility of data acquired in space for both basic and applied studies of the geology of the Earth was evaluated. Focus was placed upon the gaps in the current ability to make effective use of remote sensing technology within the Earth sciences. A long range plan is presented for future research that involves an appropriate balance between the development and application of space techniques.
NASA Marshall Space Flight Center Barrel-Shaped Asymmetrical Capacitor
NASA Technical Reports Server (NTRS)
Campbell, J. W.; Carruth, M. R.; Edwards, D. L.; Finchum, A.; Maxwell, G.; Nabors, S.; Smalley, L.; Huston, D.; Ila, D.; Zimmerman, R.
2004-01-01
The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.
Moving Beyond Earth Gallery Opening
2009-11-18
David DeVorkin, Senior Curator, Collection: Astronomy and space sciences speaks during a press briefing at the new "Moving Beyond Earth," exhibition at the National Air and Space Museum in Washingon, Wednesday, Nov. 18, 2009. Moving Beyond Earth is an immersive exhibition that places visitors “in orbit” in the shuttle and space-station era to explore recent human spaceflight and future possibilities. Photo Credit: (NASA/Paul E. Alers)
The TWINS Science Data System after the launch of TWINS 1
NASA Astrophysics Data System (ADS)
Goldstein, J.; Valek, P.; Skoug, R.; Delapp, D.; Redfern, J.; Carruth, B.; McComas, D.
2007-05-01
The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) 1 satellite is in orbit and science data are expected to commence in the near future. TWINS-1 comprises half of the TWINS stereoscopic neutral atom imaging system that will advance our knowledge of the Earth's ring current. To support the expected data return, we have developed a Science Data System (SDS) for the TWINS mission. The TWINS SDS is an IDL- and Java- driven data interface that operates primarily via a web browser, and has as its spine an SQL-queryable database. Through this interface, TWINS science data will be provided to the TWINS team, the space science community, and the public. In this paper we present the current and future capabilities of the TWINS SDS, as well as how the SDS fits into virtual observatory infrastructure.
Annual program analysis of the NASA Space Life Sciences Research and Education Support Program
NASA Technical Reports Server (NTRS)
1994-01-01
The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
Enabling Communication and Navigation Technologies for Future Near Earth Science Missions
NASA Technical Reports Server (NTRS)
Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald
2016-01-01
In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.
Life sciences experiments in the first Spacelab mission
NASA Technical Reports Server (NTRS)
Huffstetler, W. J.; Rummel, J. A.
1978-01-01
The development of the Shuttle Transportation System (STS) by the United States and the Spacelab pressurized modules and pallets by the European Space Agency (ESA) presents a unique multi-mission space experimentation capability to scientists and researchers of all disciplines. This capability is especially pertinent to life scientists involved in all areas of biological and behavioral research. This paper explains the solicitation, evaluation, and selection process involved in establishing life sciences experiment payloads. Explanations relative to experiment hardware development, experiment support hardware (CORE) concepts, hardware integration and test, and concepts of direct Principal Investigator involvement in the missions are presented as they are being accomplished for the first Spacelab mission. Additionally, discussions of future plans for life sciences dedicated Spacelab missions are included in an attempt to define projected capabilities for space research in the 1980s utilizing the STS.
Mars mission effects on Space Station evolution
NASA Technical Reports Server (NTRS)
Askins, Barbara S.; Cook, Stephen G.
1989-01-01
The permanently manned Space Station scheduled to be operational in low earth by the mid 1990's, will provide accommodations for science, applications, technology, and commercial users, and will develop enabling capabilities for future missions. A major aspect of the baseline Space Station design is that provisions for evolution to greater capabilities are included in the systems and subsystems designs. User requirements are the basis for conceptual evolution modes or infrastructure to support the paths. Four such modes are discussed in support of a Human to Mars mission, along with some of the near term actions protecting the future of supporting Mars missions on the Space Station. The evolution modes include crew and payload transfer, storage, checkout, assembly, maintenance, repair, and fueling.
Compact Holographic Data Storage
NASA Technical Reports Server (NTRS)
Chao, T. H.; Reyes, G. F.; Zhou, H.
2001-01-01
NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.
Library as place: results of a delphi study
Ludwig, Logan; Starr, Susan
2005-01-01
Objective: An expert consensus on the future of the library as place was developed to assist health sciences librarians in designing new library spaces. Method: An expert panel of health sciences librarians, building consultants, architects, and information technologists was asked to reflect on the likelihood, desirability, timing, and impact on building design of more than seventy possible changes in the use of library space. Results: An expert consensus predicted that the roles librarians play and the way libraries are used will substantially change. These changes come in response to changes in technology, scholarly communication, learning environments, and the health care economy. Conclusions: How health sciences library space is used will be far less consistent by 2015, as space becomes more tailored to institutional needs. However, the manner in which health sciences libraries develop and deliver services and collections will drastically change in the next decade. Libraries will continue to exist and will provide support for knowledge management and clinical trials, provide access to digital materials, and play a host of other roles that will enable libraries to emerge as institutional change agents. PMID:16059421
1981-01-01
The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew did research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new mini-labs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. The instruments requiring direct exposure to space were mounted outside in the open payload bay of the Shuttle. Spacelab represented the merger of science and marned spaceflight. It opened remarkable opportunities to push the frontiers of knowledge beyond the limits of research on Earth. Scientists in space performed experiments in close collaboration with their colleagues on the ground. On the Spacelab-3 mission, managed by the Marshall Space Flight Center, this versatile laboratory entered routine operation service for the next two decades. Spacelab-3 (STS-51B mission) was launched aboard Space Shuttle Orbiter Challenger on April 29, 1985.
Doctors in space (ships): biomedical uncertainties and medical authority in imagined futures
Henderson, Lesley; Carter, Simon
2016-01-01
There has been considerable interest in images of medicine in popular science fiction and in representations of doctors in television fiction. Surprisingly little attention has been paid to doctors administering space medicine in science fiction. This article redresses this gap. We analyse the evolving figure of ‘the doctor’ in different popular science fiction television series. Building upon debates within Medical Sociology, Cultural Studies and Media Studies we argue that the figure of ‘the doctor’ is discursively deployed to act as the moral compass at the centre of the programme narrative. Our analysis highlights that the qualities, norms and ethics represented by doctors in space (ships) are intertwined with issues of gender equality, speciesism and posthuman ethics. We explore the signifying practices and political articulations that are played out through these cultural imaginaries. For example, the ways in which ‘the simple country doctor’ is deployed to help establish hegemonic formations concerning potentially destabilising technoscientific futures involving alternative sexualities, or military dystopia. Doctors mostly function to provide the ethical point of narrative stability within a world in flux, referencing a nostalgia for the traditional, attentive, humanistic family physician. The science fiction doctor facilitates the personalisation of technological change and thus becomes a useful conduit through which societal fears and anxieties concerning medicine, bioethics and morality in a ‘post 9/11’ world can be expressed and explored. PMID:27694600
NASA Astrophysics Data System (ADS)
Al-Naimiy, Hamid M. K.; Al-Douri, Ala A. J.
2008-12-01
This paper summarizes International Heliophysical Year (IHY), astronomy and space sciences (ASS) activities in many Arab countries with the concentration on Iraq and UAE. The level and type of these activities differ in each country. -The paper shows also the current activities on topics related to IHY in different countries, following are suggested future Astronomy and Space Science (ASS) plans in some of these countries: -UAE Research Centre for Solar Physics, Astronomy and Space Sciences: A proposal under consideration for building a Solar Physics and Space Research Centre that may contain: Solar, radio and optical observatories, and Very Low Frequency (VLF) Receiver for remote sensing the Ionosphere on UAE region. The proposed research project will facilitate the establishment and conduct of VLF observations in the United Arab Emirate (UAE) as a part of Asia sector, thus providing a basis for comparison to facilitate global extrapolations and conclusions. -Iraqi National Astronomical Observatory (INAO): The Kurdistan Government/Universities planning to rebuilt INAO which has been destroyed during the two wars. Proposed suggestion is to build a 5-6 meters optical telescope and small solar telescope on the tope of Korek Mountain, which has excellent observing conditions.
NASA Technical Reports Server (NTRS)
Thieman, J. R.
1994-01-01
Many researchers are becoming aware of the International Directory Network (IDN), an interconnected federation of international directories to Earth and space science data. Are you aware, however, of the many Earth-science-relevant information systems which can be accessed automatically from the directories? After determining potentially useful data sets in various disciplines through directories such as the Global Change Master Directory, it is becoming increasingly possible to get detailed information about the correlative possibilities of these data sets through the connected guide/catalog and inventory systems. Such capabilities as data set browse, subsetting, analysis, etc. are available now and will be improving in the future.
The New Millennium Program Space Technology 5 (ST-5) Mission
NASA Technical Reports Server (NTRS)
Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.
2005-01-01
The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth; Brewer, Dana; Withbroe, George; Kauffman, Billy
2001-01-01
NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. A pre-formulation study determined the optimum combination of science missions, modeling, and technology infusion elements to accomplish this goal. The results of the study are described.
The Director's Discretionary Early Release Science Program for JWST
NASA Astrophysics Data System (ADS)
Levenson, Nancy A.; Sembach, Kenneth
2018-06-01
We will introduce the Director's Discretionary Early Release Science (DD-ERS) Program for the James Webb Space Telescope (JWST). These programs will educate and inform the community about JWST's instruments and capabilities, providing open access to early observations, and science-enabling products that the DD-ERS teams produce. During this session, we will provide updates on JWST status, and the 13 selected teams will give an overview of their planned observations and future work.
The science of exoplanets and their systems.
Lammer, Helmut; Blanc, Michel; Benz, Willy; Fridlund, Malcolm; Foresto, Vincent Coudé du; Güdel, Manuel; Rauer, Heike; Udry, Stephane; Bonnet, Roger-Maurice; Falanga, Maurizio; Charbonneau, David; Helled, Ravit; Kley, Willy; Linsky, Jeffrey; Elkins-Tanton, Linda T; Alibert, Yann; Chassefière, Eric; Encrenaz, Therese; Hatzes, Artie P; Lin, Douglas; Liseau, Rene; Lorenzen, Winfried; Raymond, Sean N
2013-09-01
A scientific forum on "The Future Science of Exoplanets and Their Systems," sponsored by Europlanet and the International Space Science Institute (ISSI) and co-organized by the Center for Space and Habitability (CSH) of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2-3 years.
A novel x-ray circularly polarized ranging method
NASA Astrophysics Data System (ADS)
Song, Shi-Bin; Xu, Lu-Ping; Zhang, Hua; Gao, Na; Shen, Yang-He
2015-05-01
Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. Projects supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014 CXJJ-DH 12), the Xi’an Science and Technology Plan, China (Grant No. CXY1350(4)), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 201413B, 201412B, and JB141303), and the Open Fund of Key Laboratory of Precision Navigation and Timing Technology, National Time Service Center, Chinese Academy of Sciences (Grant Nos. 2014PNTT01, 2014PNTT07, and 2014PNTT08).
Scientist-Educator Partnerships: the Cornerstone of Astrophysics E/PO
NASA Astrophysics Data System (ADS)
Meinke, Bonnie K.; Smith, Denise A.; Lawton, Brandon; Eisenhamer, Bonnie; Jirdeh, Hussein
2015-11-01
For nearly two decades, NASA has partnered scientists and educators by embedding Education and Public Outreach (E/PO) programs and funding in its science missions and research activities. This enables scientist and educators to work side-by-side in translating cutting-edge NASA science and technology for classrooms, museums, and public venues.The Office of Public Outreach at the Space Telescope Science Institute (STScI) is uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As home to both Hubble Space Telescope and the future James Webb Space Telescope, STScI leverages the expertise of its scientists to create partnerships with its collocated Education Team to translate cutting-edge NASA science into new and effective learning tools. In addition, STScI is home of the NASA Science Mission Directorate (SMD) Astrophysics Science E/PO Forum, which facilitates connections both within the SMD E/PO community and beyond to scientists and educators across all NASA Astrophysics missions. These collaborations strengthen partnerships, build best practices, and enhance coherence for NASA SMD-funded E/PO missions and programs.We will present examples of astronomers’ engagement in our E/PO efforts, such as NASA Science4Girls.
NASA Astrophysics Data System (ADS)
Strolger, Louis-Gregory; Porter, Sophia; Lagerstrom, Jill; Weissman, Sarah; Reid, I. Neill; Garcia, Michael
2017-04-01
The Proposal Auto-Categorizer and Manager (PACMan) tool was written to respond to concerns about subjective flaws and potential biases in some aspects of the proposal review process for time allocation for the Hubble Space Telescope (HST), and to partially alleviate some of the anticipated additional workload from the James Webb Space Telescope (JWST) proposal review. PACMan is essentially a mixed-method Naive Bayesian spam filtering routine, with multiple pools representing scientific categories, that utilizes the Robinson method for combining token (or word) probabilities. PACMan was trained to make similar programmatic decisions in science category sorting, panelist selection, and proposal-to-panelists assignments to those made by individuals and committees in the Science Policies Group (SPG) at the Space Telescope Science Institute. Based on training from the previous cycle’s proposals, at an average of 87%, PACMan made the same science category assignments for proposals in Cycle 24 as the SPG. Tests for similar science categorizations, based on training using proposals from additional cycles, show that this accuracy can be further improved, to the > 95 % level. This tool will be used to augment or replace key functions in the Time Allocation Committee review processes in future HST and JWST cycles.
Impact of the Columbia Supercomputer on NASA Space and Exploration Mission
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Kwak, Dochan; Kiris, Cetin; Lawrence, Scott
2006-01-01
NASA's 10,240-processor Columbia supercomputer gained worldwide recognition in 2004 for increasing the space agency's computing capability ten-fold, and enabling U.S. scientists and engineers to perform significant, breakthrough simulations. Columbia has amply demonstrated its capability to accelerate NASA's key missions, including space operations, exploration systems, science, and aeronautics. Columbia is part of an integrated high-end computing (HEC) environment comprised of massive storage and archive systems, high-speed networking, high-fidelity modeling and simulation tools, application performance optimization, and advanced data analysis and visualization. In this paper, we illustrate the impact Columbia is having on NASA's numerous space and exploration applications, such as the development of the Crew Exploration and Launch Vehicles (CEV/CLV), effects of long-duration human presence in space, and damage assessment and repair recommendations for remaining shuttle flights. We conclude by discussing HEC challenges that must be overcome to solve space-related science problems in the future.
The development of a cislunar space infrastructure
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective of the University of Colorado Advanced Mission Design Program is to define the characteristics and evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, an L1 space station, and a transportation system that anchors these elements to a low Earth orbit (LEO) station. The motivation of this project was based on the idea that a near-Earth space infrastructure is not an end but an important step in a larger plan to expand man's capabilities in space science and technology. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as facilitating the full exploration of the potential for science and industry on the lunar surface. This paper will provide a sound rationale and a detailed scenario in support of the cislunar infrastructure design.
NASA Technical Reports Server (NTRS)
Patrick, Marshall C.; Cooper, Anita E.; Powers, W. T.
2003-01-01
Flow-field analysis techniques under continuing development at NASA's Marshall Space Flight Center are the foundation for a new type of health monitoring instrumentation for propulsion systems and a vast range of other applications. Physics, spectroscopy, mechanics, optics, and cutting-edge computer sciences merge to make recent developments in such instrumentation possible. Issues encountered in adaptation of such a system to future space vehicles, or retrofit in existing hardware, are central to the work. This paper is an overview of the collaborative efforts results, current efforts, and future plans.
NASA Technical Reports Server (NTRS)
Love, Stan
2013-01-01
NASA astronaut Stan Love shared his experiences with the Antarctic Search for Meteorites (ANSMET), an annual expedition to the southern continent to collect valuable samples for research in planetary science. ANSMET teams operate from isolated, remote field camps on the polar plateau, where windchill factors often reach -40 F. Several astronaut participants have noted ANSMET's similarity to a space mission. Some of the operational concepts, tools, and equipment employed by ANSMET teams may offer valuable insights to designers of future planetary surface exploration hardware.
Global Snow from Space: Development of a Satellite-based, Terrestrial Snow Mission Planning Tool
NASA Astrophysics Data System (ADS)
Forman, B. A.; Kumar, S.; LeMoigne, J.; Nag, S.
2017-12-01
A global, satellite-based, terrestrial snow mission planning tool is proposed to help inform experimental mission design with relevance to snow depth and snow water equivalent (SWE). The idea leverages the capabilities of NASA's Land Information System (LIS) and the Tradespace Analysis Tool for Constellations (TAT-C) to harness the information content of Earth science mission data across a suite of hypothetical sensor designs, orbital configurations, data assimilation algorithms, and optimization and uncertainty techniques, including cost estimates and risk assessments of each hypothetical permutation. One objective of the proposed observing system simulation experiment (OSSE) is to assess the complementary - or perhaps contradictory - information content derived from the simultaneous collection of passive microwave (radiometer), active microwave (radar), and LIDAR observations from space-based platforms. The integrated system will enable a true end-to-end OSSE that can help quantify the value of observations based on their utility towards both scientific research and applications as well as to better guide future mission design. Science and mission planning questions addressed as part of this concept include: What observational records are needed (in space and time) to maximize terrestrial snow experimental utility? How might observations be coordinated (in space and time) to maximize this utility? What is the additional utility associated with an additional observation? How can future mission costs be minimized while ensuring Science requirements are fulfilled?
17th International Microgravity Measurements Group Meeting
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1998-01-01
The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.
NASA Technical Reports Server (NTRS)
Burns, Jack O.; Kring, David; Norris, Scott; Hopkins, Josh; Lazio, Joseph; Kasper, Justin
2012-01-01
A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such missions would validate the Orion MPCV's life support systems, would demonstrate the high-speed re-entry capability needed for return from deep space, and would measure astronauts' radiation dose from cosmic rays and solar flares to verify that Orion would provide sufficient protection, as it is designed to do. On this proposed mission, the astronauts would teleoperate landers and rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitkin basin (one of the oldest impact basins in the solar system) is a key science objective of the 2011 Planetary Science Decadal Survey. Observations of the Universe's first stars/galaxies at low radio frequencies are a priority of the 2010 Astronomy & Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions.
Earth in Space: A CD-ROM Version for Pre-College Teachers
NASA Astrophysics Data System (ADS)
Pedigo, P.
2003-12-01
Earth in Space, a magazine about the Earth and space sciences for pre-college science teachers, was published by AGU between 1987 and 2001 (9 issues each year). The goal of Earth in Space was to make research at the frontiers of the geosciences accessible to teachers and students and engage them in thinking about scientific careers. Each issue contained two or three recent research articles, rewritten for a high school level audience from the original version published in peer-reviewed AGU journals, which were supplemented with short news items and biographic information about the authors. As part of a 2003 summer internship with AGU, sponsored by the AGU Committee on Education and Human Resources (CEHR) and the American Institute of Physics, this collection of Earth in Space magazines was converted into an easily accessible electronic resource for K-12 teachers and students. Every issue was scanned into a PDF file. The entire collection of articles was cataloged in a database indexed to key topic terms (e.g., volcanoes, global climate change, space weather). A front-page was designed in order to facilitate rapid access to articles concerning specific topics within the Earth and space sciences of particular interest to high school students. A compact CD-ROM version of this resource will be distributed to science teachers at future meetings of the National Science Teachers Association and will be made available through AGU's Outreach and Research Support program.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra
2011-01-01
In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.
An introduction to the special issue on Geoscience Papers of the Future
NASA Astrophysics Data System (ADS)
David, Cédric H.; Gil, Yolanda; Duffy, Christopher J.; Peckham, Scott D.; Venayagamoorthy, S. Karan
2016-10-01
Advocates of enhanced quality for published scientific results are increasingly voicing the need for further transparency of data and software for scientific reproducibility. However, such advanced digital scholarship can appear perplexing to geoscientists that are seduced by the concept of open science yet wonder about the exact mechanics and implications of the associated efforts. This special issue of Earth and Space Science entitled "Geoscience Papers of the Future" includes a review of existing best practices for digital scholarship and bundles a set of example articles that share their digital research products and reflect on the process of opening their scientific approach in a common quest for reproducible science.
NASA Technical Reports Server (NTRS)
Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie
2012-01-01
The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.
Deep space 1 mission and observation of comet Borrellly
Lee, M.; Weidner, R.J.; Soderblom, L.A.
2002-01-01
The NASA's new millennium program (NMP) focuses on testing high-risk, advanced technologies in space with low-cost flights. The objective of the NMP technology validation missions is to enable future science missions. The NMP missions are technology-driven, with the principal requirements coming from the needs of the advanced technologies that form the 'payload'.
New NASA Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2015-01-01
NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.
Robotics Technology for Planetary Missions into the 21st Century
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Lavery, D.; Rodriguez, G.
1997-01-01
This paper summarizes the objectives, current status and future thrusts of technolgy development in planetary robitics at the Jet Propulsion Laboratory, under sponsorship by the NASA Office of Space Science.
Common In-Situ Consumable Production Plant for Robotic Mars Exploration
NASA Technical Reports Server (NTRS)
Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.
2000-01-01
Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.
Common In-Situ Consumable Production Plant for Robotic Mars Exploration
NASA Astrophysics Data System (ADS)
Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.
2000-07-01
Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2013-01-01
NASA currently has a program called the Space Synthetic Biology Project. Synthetic Biology or SynBio is the design and construction of new biological functions and systems not found in nature. Four NASA field centers, along with experts from industry and academia, have been partnering on the Space Synthetic Biology Project and are working on new breakthroughs in this increasingly useful pursuit, which is part a science discipline and part engineering. Led by researchers at NASA s Ames Research Center, the team is studying how this powerful new tool can help NASA now and in the future. The project was created to harness biology in reliable, robust, engineered systems to support the agency s exploration and science missions, to improve life on Earth and to help shape NASA's future. The program also is intended to contribute foundational tools to the synthetic biology research community.
One year old and growing: a status report of the International Space Station and its partners
NASA Technical Reports Server (NTRS)
Bartoe, J. D.; Fortenberry, L.
2000-01-01
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future. Published by Elsevier Science Ltd.
Robotic Assembly of Truss Structures for Space Systems and Future Research Plans
NASA Technical Reports Server (NTRS)
Doggett, William
2002-01-01
Many initiatives under study by both the space science and earth science communities require large space systems, i.e. with apertures greater than 15 m or dimensions greater than 20 m. This paper reviews the effort in NASA Langley Research Center's Automated Structural Assembly Laboratory which laid the foundations for robotic construction of these systems. In the Automated Structural Assembly Laboratory reliable autonomous assembly and disassembly of an 8 meter planar structure composed of 102 truss elements covered by 12 panels was demonstrated. The paper reviews the hardware and software design philosophy which led to reliable operation during weeks of near continuous testing. Special attention is given to highlight the features enhancing assembly reliability.
2006-06-02
KENNEDY SPACE CENTER, FLA. - The European Space Agency's Columbus module rests on a work stand in view of media representatives and invited guests following a ceremony to welcome the module into the Space Station Processing Facility (SSPF). Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be prepared in the SSPF for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the life, physical and materials sciences. Photo credit: NASA/Amanda Diller
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, the Columbus module waits to be lifted out of its transportation canister. An overhead crane is being lowered toward the module, which is the European Space Agency's research laboratory for the International Space Station. The module will be moved to a work stand and prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2006-06-01
KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane is lowered onto the Columbus module to lift it out of its transportation canister. Columbus is the European Space Agency's research laboratory for the International Space Station. The module will be moved to a work stand and prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2004-06-08
KENNEDY SPACE CENTER, FLA. - Paul Curto (left), chief technologist with NASA’s Inventions and Contributions Board, learns about research being done in the Space Life Sciences Lab from Jessica Prenger, senior agricultural engineer. Curto is visiting KSC to talk to innovators and encourage workers to submit technologies for future Space Act Awards. The Inventions and Contributions Board, established in 1958, is a major contributor in rewarding outstanding scientific or technical contributions sponsored, adopted, supported or used by NASA that are significant to aeronautics and space activities.
2004-06-08
KENNEDY SPACE CENTER, FLA. - Paul Curto (left), chief technologist with NASA’s Inventions and Contributions Board, learns from bioengineer Tony Rector (right) about a wastewater processing project Rector is working on in the Space Life Sciences Lab. Curto is visiting KSC to talk to innovators and encourage workers to submit technologies for future Space Act Awards. The Inventions and Contributions Board, established in 1958, is a major contributor in rewarding outstanding scientific or technical contributions sponsored, adopted, supported or used by NASA that are significant to aeronautics and space activities.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Paul Curto (left), chief technologist with NASAs Inventions and Contributions Board, learns from bioengineer Tony Rector (right) about a wastewater processing project Rector is working on in the Space Life Sciences Lab. Curto is visiting KSC to talk to innovators and encourage workers to submit technologies for future Space Act Awards. The Inventions and Contributions Board, established in 1958, is a major contributor in rewarding outstanding scientific or technical contributions sponsored, adopted, supported or used by NASA that are significant to aeronautics and space activities.
Workshop on advanced technologies for planetary instruments
NASA Technical Reports Server (NTRS)
Appleby, J. (Editor)
1993-01-01
NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.
Sixth Annual NASA Ames Space Science and Astrobiology Jamboree
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.
2018-01-01
Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such disciplines. This year we are pleased to honor Amanda Cook. We hope that you will make time to join us for the day in meeting fellow Division members, expanding knowledge of our activities, and creating new collaborations within the Space Science and Astrobiology Division.
CASH 2021: commercial access and space habitation.
Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Feretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frederic; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria
2002-01-01
Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
CCMC: bringing space weather awareness to the next generation
NASA Astrophysics Data System (ADS)
Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.
2017-12-01
Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.
Lunar exploration and the advancement of biomedical research: a physiologist's view.
Piantadosi, Claude A
2006-10-01
Over the next few years, it will become apparent just how important lunar exploration is to biomedical research and vice versa, and how critical both are to the future of human spaceflight. NASA's Project Constellation should put a new lunar-capable vehicle into service by 2014 that will rely on proven Space Shuttle components and allow four astronauts to spend 7 d on the lunar surface. A modern space transportation system opens up a unique opportunity in the space sciences--the establishment of a permanent lunar laboratory for the physical and life sciences. This commentary presents a rationale for focusing American efforts in space on such a Moon base in order to promote understanding of the long-term physiological effects of living on a planetary body outside the Van Allen belts.
2006-05-30
KENNEDY SPACE CENTER, FLA. - A Beluga aircraft parks near the mate/demate device at the Shuttle Landing Facility on NASA's Kennedy Space Center. The Beluga carries the European Space Agency's research laboratory, designated Columbus, flown to Kennedy from its manufacturer in Germany. The module will be prepared for delivery to the International Space Station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., passes the Astronaut Hall of Fame on its way to Kennedy Space Center. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the Shuttle Landing Facility and during transport of the payloads to other facilities.
2014-08-05
ISS040-E-088798 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088800 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088801 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
The organizations for space education and outreach programs in the Republic of Korea
NASA Astrophysics Data System (ADS)
Lee, Jeongwon; Jo, Hyun-Jung; Choi, Jae Dong
2011-09-01
Korea has a short history in space development compared to neighboring countries like Japan, China, India and Russia. During the past 20 years, Korea has focused on developing satellite and rocket space technology under the national space development plan. KOMPSAT-1 and 2, and KSLV-1 are the results of the selection and concentration policy of the Korean government. Due to the arduous mission of developing hardware oriented space technology, the topic of space education and outreach for the general public has not received much in the national space program. But recently, the Korean government has begun planning a space science outreach program in the detailed action plan of the mid-long term national space development plan. This paper introduces and analyzes the organizations performing space education and outreach programs for primary and secondary schools in the Republic of Korea. "Young Astronaut Korea (YAK)" is one such program. This is a non-profit organization established to provide space education for students in 1989 when Korea just started its space development program. "YAK" is a unique group in Korea for space education and outreach activities because it is organized by branches at each school in the nation and it is much like the Boy Scout and Girl Scout programs. Space Science Museum and National Youth Space Center (NYSC), which are located near NARO space center in the southernmost part of the Korean peninsula are other examples of space education and outreach programs. NARO space center, which is the only launch site in Korea became the center of public interest by showing the KSLV-1 launch in 2009 and will be expected to play a key role for the space education of students in the Republic of Korea. The NYSC will perform many mission oriented space education programs for students as Space Camp in the USA does. This paper introduces the status of the space education and outreach programs of each organization and presents the future direction of space education and outreach for the Korean public and students. If these three organizations cooperate with each other and develop systematic programs of space education and outreach for the people, they will prepare a base for growth and progress in future space science and technology in Korea.
NASA Technical Reports Server (NTRS)
Spivey, Reggie; Spearing, Scott; Jordan, Lee
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of the facility enhancements that will shortly be available for use by future investigators.
Space Station Freedom - A resource for aerospace education
NASA Technical Reports Server (NTRS)
Brown, Robert W.
1988-01-01
The role of the International Space Station in future U.S. aerospace education efforts is discussed from a NASA perspective. The overall design concept and scientific and technological goals of the Space Station are reviewed, and particular attention is given to education projects such as the Davis Planetarium Student Space Station, the Starship McCullough, the Space Habitat, the working Space Station model in Austin, TX, the Challenger Center for Space Life Education, Space M+A+X, and the Space Science Student Involvement Program. Also examined are learning-theory aspects of aerospace education: child vs adult learners, educational objectives, teaching methods, and instructional materials.
Research progress and accomplishments on International Space Station
NASA Technical Reports Server (NTRS)
Roe, Lesa B.; Uri, John J.
2003-01-01
The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Research progress and accomplishments on International Space Station.
Roe, Lesa B; Uri, John J
2003-01-01
The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.
Energy Systems - Present, Future: Extra Terrestrials, Grades 7, 8, 9,/Science.
ERIC Educational Resources Information Center
National Science Teachers Association, Washington, DC.
The 12 lessons presented in this guide are structured so that they may be integrated into science lessons in 7th-, 8th-, or 9th-grades. Suggestions are made for extension of study. Lessons are approached through classroom role-playing of outer space visitors who seek to understand energy conversion principles used on Earth. Major emphasis is…
ERIC Educational Resources Information Center
Walker, Susan K.
2016-01-01
Without a doubt, the Digital Age is revolutionizing the field of family and consumer sciences (FCS). New methods and spaces for human interaction and learning, mobile platforms that encourage anytime, anywhere connections, and a global economy increasingly shaped by virtual transactions demand that our research investigates the impact on family…
2017-03-08
NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.
2017-03-08
NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.
Innovative Space Sciences Education Programs for Young People
NASA Astrophysics Data System (ADS)
Inbar, T.
2002-01-01
The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4 telescopes and special "mobile science" project, which travel to hundreds of school annually, and bring to them mini exhibitions, scientific activities and lectures. Special events are held when something unique happened: in the last years we have had the Galileo special event when the spacecraft arrived at Jupiter; SL-9 event; Mars Pathfinder special event; Mir re- entry event - to name a few. For 11 years, on July 20 we have the Apollo memorial lecture, and a meteors observation night on August 11. The 12 years of experience I have in teaching space sciences subjects to k-12 students, university students and adults, combines with three years as a director of interactive science museum, allowed me to implement my vision of promoting the general knowledge about space and to move a little more in the direction of creating a space oriented, open and globally interacted society in Israel.
The futures of climate engineering
NASA Astrophysics Data System (ADS)
Low, Sean
2017-01-01
This piece examines the need to interrogate the role of the conceptions of the future, as embedded in academic papers, policy documents, climate models, and other artifacts that serve as currencies of the science-society interface, in shaping scientific and policy agendas in climate engineering. Growing bodies of work on framings, metaphors, and models in the past decade serve as valuable starting points, but can benefit from integration with science and technology studies work on the sociology of expectations, imaginaries, and visions. Potentially valuable branches of work to come might be the anticipatory use of the future: the design of experimental spaces for exploring the future of an engineered climate in service of responsible research and innovation, and the integration of this work within the unfolding context of the Paris Agreement.
Veggie and the VEG-01 Hardware Validation Test
NASA Technical Reports Server (NTRS)
Massa, Gioia; wheeler, Ray; Smith, Trent
2015-01-01
This presentation presents a brief overview of KSC plant science hardware for space and then details the Veggie hardware and the VEG-01 hardware validation test. The test results and future plans are discussed.
2009-07-30
CAPE CANAVERAL, Fla. – Spectators interested in the future of the Space Program discuss statements made during the public meeting of the Augustine Commission in Cocoa Beach, Fla. At the request of the Office of Science and Technology Policy, NASA established the Review of U.S. Human Space Flight Plans Committee, known as the Augustine Commission. Chaired by Norman R. Augustine, retired chairman and CEO of Lockheed Martin Corp., the committee is conducting an independent review of ongoing U.S. human spaceflight plans and programs, as well as alternatives, to ensure the nation is pursuing the best trajectory for the future of human space flight - one that is safe, innovative, affordable, and sustainable. Photo credit: NASA/Jim Grossmann
LISA Pathfinder: A Mission Status
NASA Astrophysics Data System (ADS)
Hewitson, Martin; LISA Pathfinder Team Team
2016-03-01
On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.
NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA
NASA Technical Reports Server (NTRS)
Graff, Trevor
2016-01-01
The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.
NASA Astrophysics Data System (ADS)
Eliasson, Nina; Sørensen, Helene; Göran Karlsson, Karl
2016-07-01
We show that boys still have a greater access to the space for interaction in science classrooms, which is unexpected since in Sweden today girls perform better in these subjects than boys. Results from video-recorded verbal communication, referred to here as interaction, show that the distribution of teacher-student interaction in the final year of lower secondary school follows the same patterns as in the 1980s. The interaction space for all kinds of talk continues to be distributed according to the two-thirds rule for communication in science classrooms as described by previous research. We also show that the overall interaction space in science classrooms has increased for both boys and girls when talk about science alone is considered. Another finding which follows old patterns is that male teachers still address boys more often than girls. This holds true both for general talk and for talk about science. If a more even distribution of teacher-student interaction is desirable, these results once again need to be considered. More research needs to be undertaken before the association between girls' attitudes and interest in science in terms of future career choice and the opportunity to participate in teacher-student interaction is more clearly understood. Research conducted at Mid Sweden University, Department of Science Education and Mathematics.
NASA's strategy for Mars exploration in the 1990s and beyond
NASA Astrophysics Data System (ADS)
Huntress, W. T.; Feeley, T. J.; Boyce, J. M.
NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.
2010-01-01
A major goal of NASA s human exploration program is to learn how to use the resources of space, known as In-Situ Resource Utilization (ISRU), to lower the cost and risk of human space exploration. Successful implementation of ISRU requires detailed knowledge of surface and subsurface materials, minerals, and volatiles that may be present. This same information is required to better understand the physical and geologic composition, structure, origin, and evolution of the Moon, Mars, and other extraterrestrial bodies of interest. It is also important to recognize that while ISRU and science objectives may be similar, the desired method or hardware to achieve the information desired may be drastically different. One method to promote understanding, coordination, and joint development of instruments and operations between Science and ISRU is the use of analog field demonstrations.
The Space Science Enterprise Strategic Plan
NASA Technical Reports Server (NTRS)
2000-01-01
It is a pleasure to present our new Space Science Strategic Plan. It represents contributions by hundreds of members of the space science community, including researchers, technologists, and educators, working with staff at NASA, over a period of nearly two years. Our time is an exciting one for space science. Dramatic advances in cosmology, planetary research, and solar-terrestrial science form a backdrop for this ambitious plan. Our program boldly addresses the most fundamental questions that science can ask: (1) how the universe began and is changing, (2) what are the past and future of humanity, and (3) whether we are alone. In taking up these questions, researchers and the general public--for we are all seekers in this quest--will draw upon all areas of science and the technical arts. Our Plan outlines how we will communicate our findings to interested young people and adults. The program that you will read about in this Plan includes forefront research and technology development on the ground as well as development and operation of the most complex spacecraft conceived. The proposed flight program is a balanced portfolio of small missions and larger spacecraft. Our goal is to obtain the best science at the lowest cost, taking advantage of the most advanced technology that can meet our standards for expected mission success. In driving hard to achieve this goal, we experienced some very disappointing failures in 1999. But NASA, as a research and development agency, makes progress by learning also from mistakes, and we have learned from these.
NSSDC and WDC-A-R/S document availability and distribution services
NASA Technical Reports Server (NTRS)
1980-01-01
Documents available from the National Space Science Data Center (NSSDC) and the World Data Center A for Rockets Satellites are described. The availability, costs, ordering procedures for documents presently available, and the procedures for obtaining future documents are given. NSSDC, established by NASA to further the widest practicable use of reduced data obtained from space science investigations and to provide investigators with an active repository for such data, is responsible for the active collection, organization, storage, announcement, retrieval, dissemination, and exchange of data received from satellite experiments. Information on sounding rocket investigations is also collected.
A Technology Plan for Enabling Commercial Space Business
NASA Technical Reports Server (NTRS)
Lyles, Garry M.
1997-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.
Legacy of Operational Space Medicine During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Stepaniakm, P.; Gilmore, S.; Johnston, S.; Chandler, M.; Beven, G.
2011-01-01
The Johnson Space Center s Medical Science Division branches were involved in preparing astronauts for space flight during the 30 year period of the Space Shuttle Program. These branches included the Flight Medicine Clinic, Medical Operations and the Behavioral Health Program. The components of each facet of these support services were: the Flight Medicine Clinic s medical selection process and medical care; the Medical Operations equipment, training, procedures and emergency medical services; and the Behavioral Health and Performance operations. Each presenter will discuss the evolution of its operations, implementations, lessons learned and recommendations for future vehicles and short duration space missions.
NASA Technical Reports Server (NTRS)
Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)
2002-01-01
Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.
Summary results of the Industry Conference on the Commercial Use of Space
NASA Technical Reports Server (NTRS)
REUSE; Thuerbach, R. P.
1985-01-01
The future intentions of the Federal Republic of Germany in the area of the commercialization of space are presented. It is shown that significant advances in microgravity research, particulary in the areas of materials science, composite materials, physical chemistry, crystal growth, biology, and process engineering will have an effect on future plans for establishing sponsoring organizations to guide commercial interests in German space research. An organizational and functional outline of a proposed sponsoring organization to promote space commercialization under German supervision, including the objectives, the target group to be served, and the administrative structure, is presented. The role of the DFVLR (German Aerospace Research Establishment) and the BMFT (German Ministry for Research and Technology) as sponsoring organizations representing the interests of the German government is shown.
The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions
NASA Technical Reports Server (NTRS)
Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter
2010-01-01
NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.
Telescience Testbed Pilot Program
NASA Technical Reports Server (NTRS)
Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)
1988-01-01
The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.
2005-01-01
In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.
Planning for future X-ray astronomy missions .
NASA Astrophysics Data System (ADS)
Urry, C. M.
Space science has become an international business. Cutting-edge missions are too expensive and too complex for any one country to have the means and expertise to construct. The next big X-ray mission, Astro-H, led by Japan, has significant participation by Europe and the U.S. The two premier missions currently operating, Chandra and XMM-Newton, led by NASA and ESA, respectively, are thoroughly international. The science teams are international and the user community is International. It makes sense that planning for future X-ray astronomy missions -- and the eventual missions themselves -- be fully integrated on an international level.
2010-11-02
CAPE CANAVERAL, Fla. -- Space shuttle and rover models built of LEGO bricks are on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- A space shuttle model built of LEGO bricks is on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- Space shuttle and rover models built of LEGO bricks are on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- A space shuttle model built of LEGO bricks is on display at NASA's Kennedy Space Center in Florida, marking a new partnership between the U.S. space agency and The LEGO Group. The three-year Space Act Agreement is meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2000-07-01
KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
Space technology and robotics in school projects
NASA Astrophysics Data System (ADS)
Villias, Georgios
2016-04-01
Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics experiments (propulsion, comet's compositions and trajectories, gravitational forces, etc.) using educational resourses from ESA's website (http://www.esa.int/Education) and small theoretical researches related with subjects of Astrobiology, Mars & Moon Exploration and Space Science, trying to shed some light over some of the big questions related with: - the origin of life in the universe. - the requirements/conditions/possibilities for the existence of life elsewhere. - whether terraforming is possible or not. - the existing reasons/benefits/problems for the colonization of the moon/mars. - the quest for earth-like exoplanets, etc.
FASAC Technical Assessment Report: Soviet Space Science Research
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Henry, Richard C.; Klein, Harold P.; Masursky, Harold; Paulikas, George A.; Scaf, Frederick L.; Soffen, Gerald A.; Terzian, Yervant
1986-01-01
This report is the work of a panel of eight US scientists who surveyed and assessed Soviet research in the spare sciences. All of the panelists were very familiar with Soviet research through their knowledge of the published scientific literature and personal contacts with Soviet and other foreign colleagues. In addition, all of the panelists reviewed considerable additional open literature--scientific, and popular, including news releases. The specific disciplines of Soviet space science research examined in detail for the report were: solar-terrestrial research, lunar and planetary research, space astronomy and astrophysics, and, life sciences. The Soviet Union has in the past carried out an ambitious program in lunar exploration and, more recently, in studies of the inner planets, Mars and especially Venus. The Soviets have provided scientific data about the latter planet which has been crucial for studies of the planet's evolution. Future programs envision an encounter with Halley's Comet, in March 1986, and missions to Mars and asteroids. The Soviet programs in the life sciences and solar-terrestrial research have been long-lasting and systematically pursued. Much of the ground-based and space-based research in these two disciplines appears to be motivated by the requirement to establish long-term human habitation in near-Earth space. The Soviet contributions to new discoveries and understanding in observational space astronomy and astrophysics have been few. This is in significant contrast to the very excellent theoretical work contributed by Soviet scientists in this discipline.
The development of a cislunar space infrastructure
NASA Technical Reports Server (NTRS)
Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.
1989-01-01
The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.
Future Missions to Study Signposts of Planets
NASA Technical Reports Server (NTRS)
Traub, Wesley A.
2011-01-01
This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.
3rd Annual NASA Ames Space Science and Astrobiology Jamboree
NASA Technical Reports Server (NTRS)
Dotson, Jessie
2015-01-01
The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co--ops, post--docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year
The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students
NASA Astrophysics Data System (ADS)
Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.
2013-12-01
The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory. 2012 Oct 06 - Astronaut Sunita Williams operating a Fluid Mixing Enclosure during SSEP Mission 2 on the International Space Station.
ESA and the arts: A programme in the making
NASA Astrophysics Data System (ADS)
Raitt, David
2007-01-01
Space exploration is arguably the greatest voyage of discovery ever undertaken and just as artists have traditionally accompanied the great ocean and land voyages of the past, so artists have been and are at the forefront of space voyages of the future. Increasingly, the European Space Agency (ESA) is being asked to support or participate in artistic and cultural events, largely as a result of its study into science fiction literature and artwork. The paper first gives an overview of the relationship between space and art by discussing art that has been sent into space, orbital sculptures, art on Earth seen from space, and performance art and dance in zero gravity. The paper then provides an update on ESA's involvement in some activities in this domain including the organization of science fiction and space art exhibitions, workshops and competitions, and a recently launched study into how ESA might use the European components of the International Space Station for artistic and cultural events to enable the public to better share the human experience of space missions and interact with the sights and sounds of space.
Popularizing Space Education in Indian Context
NASA Astrophysics Data System (ADS)
Yalagi, Amrut
Indians have many mythological stories about many constellations and stars. Hindu months are based on MOON and 27 stars on Zodiac. They are very important for many Indians in ritual, religious functions. By prompting them to identify their birth star, really makes them elevated. Similarly conveying them the importance of star gazing with respect to their day today life makes them to take interest and active participation in Space Activities. Space activities should be driven by public; their requirements; their dreams and imaginations. Their active participation definitely gives valuable inputs to space scientists. Hence, there is a need of involving common man or public mass by appropriate motivation by organising sky gazing sessions, exhibitions, workshops, etc. In this connection, even if the some organisation are able to attract a small percent of qualified engineers/scientists,, enthusiastic students, it would result in the creation of a sizable pool of talent in space sciences,which may well determine the future mankind on this planet. Some simple motivation acts have made the people to take interest in space. we have been using certain methodologies to popularize space science - 1] Conducting theory sessions on basics of star gazing and conveying importance of sky gazing with respect to day-today life. 2] Organising seminars, workshops, lectures and other academic/popular science activities with special reference to space science 3] Projects - a] Cubsat Missions b] Automatic Weather Station Facility c] Model making d] Creating and simulating space models and rover making competitions. The 50 year's of Exploration has left tremendous impact on many society's working towards space education and exploration.
SNOOPY: Student Nanoexperiments for Outreach and Observational Planetary Inquiry
NASA Technical Reports Server (NTRS)
Kuhlma, K. R.; Hecht, M. H.; Brinza, D. E.; Feldman, J. E.; Fuerstenau, S. D.; Friedman, L.; Kelly, L.; Oslick, J.; Polk, K.; Moeller, L. E.
2001-01-01
As scientists and engineers primarily employed by the public, we have a responsibility to "communicate the results of our research so that the average American could understand that NASA is an investment in our future...". Not only are we employed by the public, but they are also the source of future generations of scientists and engineers. Teachers typically don't have the time or expertise to research recent advances in space science and reduce them to a form that students can absorb. Teachers are also often intimidated by both the subject and the researchers themselves. Therefore, the burden falls on us - the space scientists and engineers of the world - to communicate our findings in ways both teachers and students can understand. Student Nanoexperiments for Outreach and Observational Planetary InquirY (SNOOPY) provides just such an opportunity to directly involve our customers in planetary science missions.
Geolab Results from Three Years of Analog Mission Tests
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Bell, M. S.; Calaway, M. J.
2013-01-01
GeoLab is a prototype glovebox for geological sample examination that was, until November 2012, fully integrated into NASA's Deep Space Habitat Analog Testbed [1,2]. GeoLab allowed us to test science operations related to contained sample examination during simulated exploration missions. The facility, shown in Figure 1 and described elsewhere [1-4], was designed for fostering the development of both instrument technology and operational concepts for sample handling and examination during future missions [3-5]. Even though we recently deintegrated the glovebox from the Deep Space Habitat (Fig. 2), it continues to provide a high-fidelity workspace for testing instruments that could be used for sample characterization. As a testbed, GeoLab supports the development of future science operations that will enhance the early scientific returns from exploration missions, and will help ensure selection of the best samples for Earth return.
An Efficient and Versatile Means for Assembling and Manufacturing Systems in Space
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Doggett, William R.; Hafley, Robert A.; Komendera, Erik; Correll, Nikolaus; King, Bruce
2012-01-01
Within NASA Space Science, Exploration and the Office of Chief Technologist, there are Grand Challenges and advanced future exploration, science and commercial mission applications that could benefit significantly from large-span and large-area structural systems. Of particular and persistent interest to the Space Science community is the desire for large (in the 10- 50 meter range for main aperture diameter) space telescopes that would revolutionize space astronomy. Achieving these systems will likely require on-orbit assembly, but previous approaches for assembling large-scale telescope truss structures and systems in space have been perceived as very costly because they require high precision and custom components. These components rely on a large number of mechanical connections and supporting infrastructure that are unique to each application. In this paper, a new assembly paradigm that mitigates these concerns is proposed and described. A new assembly approach, developed to implement the paradigm, is developed incorporating: Intelligent Precision Jigging Robots, Electron-Beam welding, robotic handling/manipulation, operations assembly sequence and path planning, and low precision weldable structural elements. Key advantages of the new assembly paradigm, as well as concept descriptions and ongoing research and technology development efforts for each of the major elements are summarized.
NASA Technical Reports Server (NTRS)
Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer
2009-01-01
This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
NASA Technical Reports Server (NTRS)
2005-01-01
This is a Roadmap to understanding the environment of our Earth, from its life-sustaining Sun out past the frontiers of the solar system. A collection of spacecraft now patrols this space, revealing not a placid star and isolated planets, but an immense, dynamic, interconnected system within which our home planet is embedded and through which space explorers must journey. These spacecraft already form a great observatory with which the Heliophysics program can study the Sun, the heliosphere, the Earth, and other planetary environments as elements of a system--one that contains dynamic space weather and evolves in response to solar, planetary, and interstellar variability. NASA continually evolves the Heliophysics Great Observatory by adding new missions and instruments in order to answer the challenging questions confronting us now and in the future as humans explore the solar system. The three heliophysics science objectives: opening the frontier to space environment prediction; understanding the nature of our home in space, and safeguarding the journey of exploration, require sustained research programs that depend on combining new data, theory, analysis, simulation, and modeling. Our program pursues a deeper understanding of the fundamental physical processes that underlie the exotic phenomena of space.
Crew Roles and Interactions in Scientific Space Exploration
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Bleacher, Jacob E.
2013-01-01
Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.
NASA information sciences and human factors program
NASA Technical Reports Server (NTRS)
1991-01-01
The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.
The Future of New Discoveries on the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian
2000-01-01
The Materials Science program is one of the five Microgravity research disciplines in NASA's Human Exploration and Development of Space (HEDS). This research uses the low gravity environment to obtain the fundamental understanding of various phenomena effects and it's relationship to structure, processing, and properties of materials. The International Space Station (ISS) will complete the first major assembly phase within the next year thus providing the opportunity for on-orbit research and scientific utilization in early 2001. Research will become routine as the final Space Station configuration is completed. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules. This paper addresses the current scope of the flight investigator program that will utilize the various capabilities on ISS. The type of research and classification of materials that are addressed using multiple types of flight apparatus will be explained. The various flight and ground facilities that are used to support the NASA program are described. The early utilization schedule for the materials science payloads with associated hardware will be covered. The Materials Science Research Facility and related international experiment modules serves as the foundation for this capability. The potential applications and technologies obtained from the Materials Science program are described.
Story Time From Space — Astronomy and Astronauts Together in the Classroom
NASA Astrophysics Data System (ADS)
Bennett, Jeffrey
2015-08-01
Story Time From Space is an exciting new program in which astronauts aboard the International Space Station combine two key educational activities: (1) reading aloud science-based stories for children and (2) conducting specially built science demonstrations designed to reinforce science lessons from the stories. Both activity types are videotaped, with the videos to be posted freely on the web for access by classrooms (and individuals) around the world. Longer term plans include the creation of downloadable activities to take the lessons further. While the stories tend to focus on elementary ages, the demos are more sophisticated and can be used for middle school, high school, and even college. The first set of five books has been aboard the ISS since January 2014, with readings videotaped so far for all books in English and selected books in German and Japanese; the science demos are scheduled for launch this summer, followed by a second set of books in the fall. The first set of books, written by the presenter, focus heavily on astronomy and space science. In this presentation, I will introduce the program, how it can be used in classrooms around the world, and plans for its future development. The in-progress web site is www.storytimefromspace.com.
2011-11-23
CAPE CANAVERAL, Fla. – Families visiting the Kennedy Space Center Visitor Complex in Florida participate in a LEGO "Build the Future" event. The festivities coincide with the launch of NASA's Mars Science Laboratory (MSL), carrying a compact car-sized rover, Curiosity, to the red planet. Part of the Space Act Agreement between NASA and LEGO A/S, the activities are designed to inspire students of every age to consider an education and careers in the science, technology, engineering and mathematics, or STEM, disciplines. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/audience/foreducators/nasa-lego-partnership.html. Photo credit: NASA/Kim Shiflett
NASA Advanced Computing Environment for Science and Engineering
NASA Technical Reports Server (NTRS)
Biswas, Rupak
2017-01-01
Vision: To reach for new heights and reveal the unknown so that what we do and learn will benefit all humankind. Mission: To pioneer the future in space exploration, scientific discovery, and aeronautics research. Aeronautics Research (ARMD): Pioneer and prove new flight technologies for safer, more secure, efficient, and environmental friendly air transportation. Human Exploration and Operations (HEOMD): Focus on ISS operations; and develop new spacecraft and other capabilities for affordable, sustainable exploration beyond low Earth orbit. Science (SCMD): Explore the Earth, solar system, and universe beyond; chart best route for discovery; and reap the benefits of Earth and space exploration for society. Space Technology (STMD): Rapidly develop, demonstrate, and infuse revolutionary, high-payoff technologies through collaborative partnerships, expanding the boundaries of aerospace enterprise.
Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson
2010-01-01
IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.
Seeing the Light (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunger, Axel; Segalman, Rachel; Westphal, Andrew
2011-09-12
Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger:more » Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source« less
Common Data Format: New XML and Conversion Tools
NASA Astrophysics Data System (ADS)
Han, D. B.; Liu, M. H.; McGuire, R. E.
2002-12-01
Common Data Format (CDF) is a self-describing platform-independent data format for storing, accessing, and manipulating scalar and multidimensional scientific data sets. Significant benefit has accrued to specific science communities from their use of standard formats within those communities. Examples include the International Solar Terrestrial Physics (ISTP) community in using CDF for traditional space physics data (fields, particles and plasma, waves, and images), the worldwide astronomical community in using FITS (Flexible Image Transport System) for solar data (primarily spectral images), the NASA Planetary community in using Planetary Data System (PDS) Labels, and the earth science community in using Hierarchical Data Format (HDF). Scientific progress in solar-terrestrial physics continues to be impeded by the multiplicity of available standards for data formats and dearth of general data format translators. As a result, scientists today spend a significant amount of time translating data into the format they are familiar with for their research. To minimize this unnecessary data translation time and to allow more research time, the CDF office located at GSFC National Space Science Data Center (NSSDC) has developed HDF-to-CDF and FITS-to-CDF translators, and employed the eXtensible Markup Language (XML) technology to facilitate and promote data interoperability within the space science community. We will present the current status of the CDF work including the conversion tools that have been recently developed, conversion tools that are planned in the near future, share some of the XML experiences, and use the discussion to gain community feedback to our planned future work.
Science Operations During Planetary Surface Exploration: Desert-RATS Tests 2009-2011
NASA Technical Reports Server (NTRS)
Cohen, Barbara
2012-01-01
NASA s Research and Technology Studies (RATS) team evaluates technology, human-robotic systems and extravehicular equipment for use in future human space exploration missions. Tests are conducted in simulated space environments, or analog tests, using prototype instruments, vehicles, and systems. NASA engineers, scientists and technicians from across the country gather annually with representatives from industry and academia to perform the tests. Test scenarios include future missions to near-Earth asteroids (NEA), the moon and Mars.. Mission simulations help determine system requirements for exploring distant locations while developing the technical skills required of the next generation of explorers.
2003-02-02
KENNEDY SPACE CENTER, FLA. - Former astronaut Sally Ride talks to young women at the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute..
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - Former astronaut Sally Ride talks to young women at the Sally Ride Science Festival, held at the University of Central Florida, Orlando, Fla. The event promotes science, math and technology as future career paths for girls. Breakout sessions afforded closer interaction between Ride and festival attendees. Since it followed the tragic loss of the Columbia astronauts, a large poster was presented which attendees could sign as tribute..
2017-03-08
NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.
2017-03-08
NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.
2017-03-08
NASA Chief Technologist Douglas Terrier moderated the discussion “NASA Leadership in the Future of Science and Technology" during the AAS 55th Robert H. Goddard Memorial Symposium on March 8, 2017. Terrier was joined by Associate Administrator for Space Technology Steve Jurczyk, Chief Scientist Gale Allen and Associate Administrator for Science Thomas Zurbuchen.
Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era
NASA Technical Reports Server (NTRS)
Norton, Charles D.; Moe, Karen
2011-01-01
This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.
1998-02-27
NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
1999-05-26
NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Abell, Paul A.
2011-01-01
Human exploration of near-Earth objects (NEOs) beginning in 2025 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. As such, mission concepts have received much interest from the exploration, science, and planetary defense communities. One particular system that has been suggested by all three of these communities is a space-based NEO survey telescope. Such an asset is crucial for enabling affordable human missions to NEOs circa 2025 and learning about the primordial population of objects that could present a hazard to the Earth in the future.
Servicing Mission 4 and the Extraordinary Science of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Wiseman, Jennifer J.
2012-01-01
Just two years ago, NASA astronauts performed a challenging and flawless final Space Shuttle servicing mission to the orbiting Hubble Space Telescope. With science instruments repaired on board and two new ones installed, the observatory. is more powerful now than ever before. I will show the dramatic highlights of the servicing mission and present some of the early scientific results from the refurbished telescope. Its high sensitivity and multi-wavelength capabilities are revealing the highest redshift galaxies ever seen, as well as details of the cosmic web of intergalactic medium, large scale structure formation, solar system bodies, and stellar evolution. Enlightening studies of dark matter, dark energy, and exoplanet atmospheres add to the profound contributions to astrophysics that are being made with Hubble, setting a critical stage for future observatories such as the James Webb Space Telescope.
2012-01-12
CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a technician oversees the closure of a transportation canister containing a Pratt Whitney Rocketdyne space shuttle main engine (SSME). This is the second of the 15 engines used during the Space Shuttle Program to be prepared for transfer to NASA's Stennis Space Center in Mississippi. The engines will be stored at Stennis for future use on NASA's new heavy-lift rocket, the Space Launch System (SLS), which will carry NASA's new Orion spacecraft, cargo, equipment and science experiments to space. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Gianni Woods
A Future-Based Risk Assessment for the Survivability of Long Range Strike Systems
2007-03-01
Aeronautics and Space Administration ( NASA ) investigated alternative futures to help generate a viable science strategy to address the future aerospace...World American World View ΔTeK World Power Grid Name 1 Global Exponential Dispersed DIGITAL CACOPHONY 2 Global Exponential Concentrated STAR TREK ...The United States has become the “United Kingdom of the Twenty-first Century.” 2.2.3. NASA Study (1997) In the NASA study, the National Research
Building a future full of opportunity for blind youths in science
NASA Astrophysics Data System (ADS)
Beck-Winchatz, B.; Riccobono, M. A.
Like their sighted peers many blind students in elementary middle and high school are naturally interested in space This interest can motivate them to learn fundamental scientific quantitative and critical thinking skills and sometimes even lead to careers in SMET disciplines However these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats the unfamiliarity of teachers with non-visual teaching methods lack of access to blind role models and the low expectations of their teachers and parents In this presentation we will describe joint efforts by NASA and the National Federation of the Blind s NFB Center for Blind Youth in Science to develop and implement strategies to promote opportunities for blind youth in science These include the development of tactile space science books and curriculum materials science academies for blind middle school and high school students internship and mentoring programs as well as research on non-visual learning techniques This partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals Session participants will also have the opportunity to examine some of the recently developed tactile space science education materials themselves
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is revealed after its protective cover has been removed. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is revealed after its protective cover has been removed. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is revealed after its protective cover has been removed. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbitals Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
Research and technology, fiscal year 1986, Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
1986-01-01
The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.
2010-11-02
CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
2010-11-02
CAPE CANAVERAL, Fla. -- NASA and The LEGO Group announce a three-year Space Act Agreement meant to spark the interest of children in science, technology, engineering and mathematics (STEM) with the future release of four NASA-inspired products in the toy company's LEGO CITY line. From left, are Stephan Turnipseed, president of LEGO Education North America, and Leland Melvin, NASA's associate administrator for Education. To commemorate the beginning of the partnership, two small LEGO space shuttles will launch aboard space shuttle Discovery's STS-133 mission to the International Space Station. A 40- by 70-foot activity tent will be set up at Kennedy on Nov. 3 for children of all ages to build their vision of the future with LEGO bricks. LEGO sets also will fly to the space station aboard Endeavour's STS-134 mission, and will be put together on orbit to demonstrate the challenges faced while building things in microgravity. Photo credit: NASA/Jack Pfaller
Failure Analysis at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Salazar, Victoria L.; Wright, M. Clara
2010-01-01
History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.
Curriculum in aerospace science and technology in cooperation with NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Garner-Gilchrist, Cathine
1988-01-01
A curriculum was written to show teachers how to best use the many resources that are available at the Teacher Resource Center (TRC). This curriculum packet was written using teaching units that teachers in both the elementary and middle schools can use to help students better understand some of the research that has been conducted at NASA and will be conducted in the future. The units are written with certain standards. Each unit contains: (1) specific objectives, using the Virginia standards of learning; (2) the materials that are available from the TRC; (3) many activities that teachers can use in a variety of ways; and (4) specific strategies for measuring the objectives to determine if the students mastered the knowledge, concepts or skills that were taught. The curriculum packet contains specific units on several topics. They are: (1) Careers in Aerospece Science and Technology; (2) The History of Flight; (3) The History of Satellites; (4) The History of the Manned Space Projects and the Future of the Future of the Space Program; (5) The Solar System; and (6) The History of Rockets.
The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update
NASA Astrophysics Data System (ADS)
Flatley, T.
2012-12-01
SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;
Taking Risks for the Future of Space Weather Forecasting, Research, and Operations
NASA Astrophysics Data System (ADS)
Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.
2017-12-01
Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.
NASA' s life sciences and space radiation biology.
Rambaut, P; Nicogossian, A
1984-01-01
Plans for the various missions in which men and women are expected to participate during the next 10 years are outlined. Such missions include flights of up to three months duration in low earth orbit as well as possible short excursions to geosynchronous orbit. Research activities are described which cover the full spectrum of physiological and psychological responses to space flight. These activities are shown to contribute to the ongoing Shuttle program and the future Space Station. The paper includes a summary of the major technical thrusts needed to support extended habitation in space.
2012-09-21
Space shuttle Endeavour, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) performs a low flyby at Los Angeles International Airport, Friday, Sept. 21, 2012. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Beginning Oct. 30, the shuttle will be on display in the California Science center's Samuel Oschin Space Shuttle Endeavour Display Pavilion, embarking on its new mission to commemorate past achievements in space and educate and inspire future generations of explorers.Photo Credit: (NASA/Bill Ingalls)
2012-09-21
Space shuttle Endeavour, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) lands at Los Angeles International Airport, Friday, Sept. 21, 2012. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Beginning Oct. 30, the shuttle will be on display in the California Science center's Samuel Oschin Space Shuttle Endeavour Display Pavilion, embarking on its new mission to commemorate past achievements in space and educate and inspire future generations of explorers.Photo Credit: (NASA/Bill Ingalls)
Lights Out Operations of a Space, Ground, Sensorweb
NASA Technical Reports Server (NTRS)
Chien, Steve; Tran, Daniel; Johnston, Mark; Davies, Ashley Gerard; Castano, Rebecca; Rabideau, Gregg; Cichy, Benjamin; Doubleday, Joshua; Pieri, David; Scharenbroich, Lucas;
2008-01-01
We have been operating an autonomous, integrated sensorweb linking numerous space and ground sensors in 24/7 operations since 2004. This sensorweb includes elements of space data acquisition (MODIS, GOES, and EO-1), space asset retasking (EO-1), integration of data acquired from ground sensor networks with on-demand ground processing of data into science products. These assets are being integrated using web service standards from the Open Geospatial Consortium. Future plans include extension to fixed and mobile surface and subsurface sea assets as part of the NSF's ORION Program.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
Advanced Plant Habitat - Packing and Planting Seeds
2017-02-15
Dr. Oscar Monje, a research scientist, pours a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Dr. Gary Stutte explains to Paul Curto (right), chief technologist with NASAs Inventions and Contributions Board, the research being done in this plant growth chamber in the Space Life Sciences Lab. Stutte is a senior research scientist with Dynamac Corp. Curto is visiting KSC to talk to innovators and encourage workers to submit technologies for future Space Act Awards. The Inventions and Contributions Board, established in 1958, is a major contributor in rewarding outstanding scientific or technical contributions sponsored, adopted, supported or used by NASA that are significant to aeronautics and space activities.
2004-03-18
KENNEDY SPACE CENTER, FLA. - All of the workers involved in the arrival of the Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., gather for a photo. Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
2004-03-18
KENNEDY SPACE CENTER, FLA. - A Universal Coolant Transporter (UCT), manufactured in Sharpes, Fla., arrives at the hangar at the KSC Shuttle Landing Facility (SLF). Replacing the existing ground cooling unit, the UCT is designed to service payloads for the Space Shuttle and International Space Station, and may be capable of servicing space exploration vehicles of the future. It will provide ground cooling to the orbiter and returning payloads, such as science experiments requiring cold or freezing temperatures, during post-landing activities at the SLF and during transport of the payloads to other facilities.
The Future Medical Science and Colorectal Surgeons
2017-01-01
Future medical technology breakthroughs will build from the incredible progress made in computers, biotechnology, and nanotechnology and from the information learned from the human genome. With such technology and information, computer-aided diagnoses, organ replacement, gene therapy, personalized drugs, and even age reversal will become possible. True 3-dimensional system technology will enable surgeons to envision key clinical features and will help them in planning complex surgery. Surgeons will enter surgical instructions in a virtual space from a remote medical center, order a medical robot to perform the operation, and review the operation in real time on a monitor. Surgeons will be better than artificial intelligence or automated robots when surgeons (or we) love patients and ask questions for a better future. The purpose of this paper is looking at the future medical science and the changes of colorectal surgeons. PMID:29354602
The Future Medical Science and Colorectal Surgeons.
Kim, Young Jin
2017-12-01
Future medical technology breakthroughs will build from the incredible progress made in computers, biotechnology, and nanotechnology and from the information learned from the human genome. With such technology and information, computer-aided diagnoses, organ replacement, gene therapy, personalized drugs, and even age reversal will become possible. True 3-dimensional system technology will enable surgeons to envision key clinical features and will help them in planning complex surgery. Surgeons will enter surgical instructions in a virtual space from a remote medical center, order a medical robot to perform the operation, and review the operation in real time on a monitor. Surgeons will be better than artificial intelligence or automated robots when surgeons (or we) love patients and ask questions for a better future. The purpose of this paper is looking at the future medical science and the changes of colorectal surgeons.
NASA Astrophysics Data System (ADS)
Race, Margaret
2012-07-01
As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.
NASA Astrophysics Data System (ADS)
Briois, Christelle; Lebreton, Jean-Pierre; Szopa, Cyril; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Kukui, Alexandre; Pennanech, Cyril; Thissen, Roland; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander
2014-05-01
Mass spectrometry has been used for years in space exploration to characterise the chemical composition of solar system bodies and their environment. Because of the harsh constraints imposed to the space probe instruments, their mass resolution is quite limited compared to laboratory instruments, sometimes leading to significant limitations in the treatment of the data collected with this type of instrumentation. Future in situ solar system exploration missions would significantly benefit from High Resolution Mass Spectrometry (HRMS). For a few years, 5 French laboratories (LPC2E, IPAG, LATMOS, LISA, CSNSM) involved in the chemical investigation of solar system bodies formed a Consortium to develop HRMS for future space exploration, based on the use of the Orbitrap technology (C. Briois et al., 2014, to be submitted). This development is carried out in the frame of a Research and Technology (R&T) development programme partly funded by the French Space Agency (CNES). The work is undertaken in close collaboration with the Thermo Fisher Scientific Company, which commercialises Orbitrap-based laboratory instruments. The R&T activities are currently concentrating on the core elements of the Orbitrap analyser that are required to reach a sufficient maturity level for allowing design studies of future space instruments. We are indeed pursuing, within international collaborations, the definition of several instrument concepts based on the core elements that are subject of our R&T programme. In this talk, we briefly discuss science applications for future orbitrap-based HRMS space instruments. We highlight present results of our R&T programme.
Cells in Spaceflight: Past, Present and Future
NASA Technical Reports Server (NTRS)
1999-01-01
The center for advanced studies in the Space Life Sciences provides a forum for scientist to think and discuss, often for the first time, the role that gravity and aspects of spaceflight may play in fundamental cellular and physiologic processes.
2012-10-12
Spectators watch space shuttle Endeavour as it passes by on its way to its new home at the California Science Center in Los Angeles, Friday, Oct. 12, 2012. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Beginning Oct. 30, the shuttle will be on display in the CSC's Samuel Oschin Space Shuttle Endeavour Display Pavilion, embarking on its new mission to commemorate past achievements in space and educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)
2012-10-12
The space shuttle Endeavour is seen as it traverses through the streest of Los Angeles on its way to its new home at the California Science Center, Friday, Oct. 12, 2012. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Beginning Oct. 30, the shuttle will be on display in the CSC's Samuel Oschin Space Shuttle Endeavour Display Pavilion, embarking on its new mission to commemorate past achievements in space and educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)
2012-10-12
Spectators are seen as they watch space shuttle Endeavour as it passes by on its way to its new home at the California Science Center in Los Angeles, Friday, Oct. 12, 2012. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Beginning Oct. 30, the shuttle will be on display in the CSC's Samuel Oschin Space Shuttle Endeavour Display Pavilion, embarking on its new mission to commemorate past achievements in space and educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)
2012-10-12
A spectator photographs the space shuttle Endeavour as it passes by on its way to its new home at the California Science Center in Los Angeles, Friday, Oct. 12, 2012. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Beginning Oct. 30, the shuttle will be on display in the CSC's Samuel Oschin Space Shuttle Endeavour Display Pavilion, embarking on its new mission to commemorate past achievements in space and educate and inspire future generations of explorers. Photo Credit: (NASA/Carla Cioffi)
2012-10-12
A spectator is seen photographing the space shuttle Endeavour as it is moved to its new home at the California Science Center in Los Angeles, Friday, Oct. 12, 2012. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Beginning Oct. 30, the shuttle will be on display in the CSC’s Samuel Oschin Space Shuttle Endeavour Display Pavilion, embarking on its new mission to commemorate past achievements in space and educate and inspire future generations of explorers. Photo Credit: (NASA/Bill Ingalls)
Space Launch System: Building the Future of Space Exploration
NASA Technical Reports Server (NTRS)
Morgan, Markeeva
2016-01-01
NASA has begun a new era of human space exploration, with the goal of landing humans on Mars. To carry out that mission, NASA is building the Space Launch System, the world's most powerful rocket. Space Launch System is currently under construction, with substantial amounts of hardware already created and testing well underway. Because of its unrivaled power, SLS can perform missions no other rocket can, like game-changing science and human landings on Mars. The Journey to Mars has begun; NASA has begun a series of missions that will result in astronauts taking the first steps on the Red Planet.
2012-12-04
CAPE CANAVERAL, Fla. – At the Kennedy Space Center Visitor Complex in Florida sixth-grade students watch a video presentation about a future rocket launch. Between Nov. 26 and Dec. 7, 2012, about 5,300 sixth-graders in Brevard County, Florida were bused to Kennedy's Visitor Complex for Brevard Space Week, an educational program designed to encourage interest in science, technology, engineering and mathematics STEM careers. Photo credit: NASA/Tim Jacobs
LEGO "Build The Future" Activity
2010-11-03
LEGOs are seen assembled by students as part of a “Build the Future” activity inside a tent that was set up on the launch viewing area at NASA's Kennedy Space Center in Cape Canaveral, Fla. on Wednesday, Nov. 3, 2010. NASA and The LEGO Group signed a Space Act Agreement to spark children's interest in science, technology, engineering and math (STEM). Photo Credit: (NASA/Bill Ingalls)
Zahmatkesh, Maryam; Exworthy, Mark
2016-06-18
Decentralisation continues to re-appear in health system reform across the world. Evaluation of these reforms reveals how research on decentralisation continues to evolve. In this paper, we examine the theoretical foundations and empirical references which underpin current approaches to studying decentralisation in health systems. © 2016 by Kerman University of Medical Sciences.
2017-09-25
From Marshall’s science command center, Vice President Pence called the NASA astronauts aboard the space station and spoke with Expedition 53 commander Randy Bresnik, and flight engineers Mark Vande Hei and Joe Acaba. He also met with the ground controllers that provide around-the-clock support of the crew’s scientific activities on the orbiting laboratory, paving the way for future deep space exploration missions.