Science.gov

Sample records for future stratospheric ozone

  1. The Future of the Stratosphere and the Ozone Layer

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Oman, L.; Pawson, S.; Fleming, E. L.; Li, F.; Jackman, C. H.

    2014-12-01

    Stratospheric ozone has been slightly depleted (2-4 % globally) by emissions of ozone depleting substances (ODSs). The landmark 1987 Montreal Protocol led to the end of most these ODS emissions, and total levels of ODSs have been declining since the late 1990s. The interim replacements for these ODSs were hydroclorofluorocarbons (HCFCs), but these HCFCs have also now been regulated. The period in which stratospheric change has been dominated by CFC-induced ozone loss (the "CFC era") is now coming to an end, as a period begins when the impacts of stratospheric circulation and chemistry changes induced by Greenhouse Gas increases (the "GHG era"). The stratosphere GHG-era will be characterized by continued decreases of ODSs and increases of CO2, N2O, and CH4. In this talk, we will describe how these factors will modify stratospheric ozone levels and the basic stratospheric climatology: CO2 and CH4 increases will increase stratospheric ozone, while N2O increases will decrease stratospheric ozone. In particular, GHG increases and the associated warming of the troposphere will modify stratospheric transport and cool the upper stratosphere. We will quantitatively show the contributions by various GHGs to these changes and the specifics of the chemical, dynamical, and radiative changes. Further, we will show how the stratosphere evolves under future GHG projections from the various Representative Concentration Pathways, illustrating the different changes in stratospheric ozone caused by the concurrent radiative, chemical and dynamical impacts of GHG changes.

  2. The contribution of ozone to future stratospheric temperature trends

    NASA Astrophysics Data System (ADS)

    Maycock, A. C.

    2016-05-01

    The projected recovery of ozone from the effects of ozone depleting substances this century will modulate the stratospheric cooling due to CO2, thereby affecting the detection and attribution of stratospheric temperature trends. Here the impact of future ozone changes on stratospheric temperatures is quantified for three representative concentration pathways (RCPs) using simulations from the Fifth Coupled Model Intercomparison Project (CMIP5). For models with interactive chemistry, ozone trends offset ~50% of the global annual mean upper stratospheric cooling due to CO2 for RCP4.5 and 20% for RCP8.5 between 2006-2015 and 2090-2099. For RCP2.6, ozone trends cause a net warming of the upper and lower stratosphere. The misspecification of ozone trends for RCP2.6/RCP4.5 in models that used the International Global Atmospheric Chemistry (IGAC)/Stratosphere-troposphere Processes and their Role in Climate (SPARC) Ozone Database causes anomalous warming (cooling) of the upper (lower) stratosphere compared to chemistry-climate models. The dependence of ozone chemistry on greenhouse gas concentrations should therefore be better represented in CMIP6.

  3. Future aircraft and potential effects on stratospheric ozone and climate

    SciTech Connect

    Kinnison, D.E.; Wuebbles, D.J.

    1991-10-01

    The purpose of this study is to extend the recent research examining the global environmental effects from potential fleets of subsonic and supersonic commercial aircraft. Initial studies with LLNL models of global atmospheric chemical, radiative, and transport processes have indicated that substantial decreases in stratospheric ozone concentrations could result from emissions of NO{sub x} from aircraft flying in the stratosphere, depending on fleet size and magnitude of the engine emissions. These studies used homogeneous chemical reaction rates (e.g. gas-phase chemistry). Recent evidence indicates that reactions on particles in the stratosphere may be important. Heterogeneous chemical reactions, for instance, N{sub 2}O{sub 5}and ClONO{sub 2} on background sulfuric acid aerosols, convert NO{sub x}(NO and NO{sub 2}) molecules to HNO{sub 3}. This decreases the odd oxygen loss from the NO{sub x} catalytic cycle and increases the odd oxygen loss from the Cl{sub x} catalytic cycle. By including these heterogeneous reactions in the LLNL model, the relative partitioning of odd oxygen loss between these two families changes, with the result that emissions of NO{sub x} from proposed aircraft fleets flying in the stratosphere now increase zone. Having these heterogeneous processes present also increases ozone concentration in the troposphere relative to gas-phase only chemistry calculations for emissions of NO{sub x} from subsonic aircraft. 26 refs., 5 figs., 3 tabs.

  4. Impact on ozone attainment of CFC (chlorofluorocarbon) controls used to prevent future depletion of stratospheric ozone

    SciTech Connect

    Harmon, D.L.; Smith, N.D.

    1988-04-01

    This paper discusses the impact on ozone attainment of chlorofluorocarbon (CFC) controls used to prevent future depletion of stratospheric ozone. It has been decided that allocated quotas offer the most-attractive approach to limiting the use of CFCs and brominated compounds (halons). This approach should provide for economically efficient reductions. It involves a minimum of administrative costs, is the most easily enforced option, and does not raise any potential legal issues that might result from other options. Control options that might be used by industry to achieve the necessary CFC reductions are evaluated in the Regulatory Impact Analysis (RIA). The most likely long-term control option which may be adopted by most application areas is a chemical substitute. With this option, it may be possible to eliminate 90% or more of the ozone-depleting CFC emissions. A variety of control options hold promise for short-term applicability. Some of the engineering controls may still be applied even after new chemical substitutes (e.g., HFC-134a and HCFC-123) are in use, since the higher cost of these substitutes may justify recovery. EPA is also considering the development of specific regulations limiting CFC and halon use for particular industries to supplement allocated quotas.

  5. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  6. Stratospheric ozone is decreasing

    NASA Astrophysics Data System (ADS)

    Kerr, Richard A.

    1988-03-01

    The recent discovery that chlorofluorocarbons create the Antarctic ozone hole every October through reactions mediated by ice particles formed at the lowest temperatures of the stratosphere is discussed. A large-scale reanalysis of measurements reveals that protective stratospheric ozone has decreased during the past 17 yrs with some decreases greatly exceeding predictions. It is noted that standard models did not, and still do not, include the ice in their reaction schemes. A tendency toward larger losses at higher colder latitudes is seen.

  7. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  8. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.

  9. Sensitivity of stratospheric ozone to present and possible future aircraft emissions

    SciTech Connect

    Wuebbles, D.J.; Kinnison, D.E.

    1990-08-01

    The aircraft industry is showing renewed interest in the development of supersonic, high flying aircraft for intercontinental passenger flights. There appears to be confidence that such high-speed civil transports can be designed, and that aircraft will be economically viable as long as they are also environmentally acceptable. As such, it is important to establish the potential for such environmental problems early in the aircraft design. Initial studies with LLNL models of global atmospheric chemical, radiative, and transport processes have indicated that substantial decreases in stratospheric ozone concentrations could result from emissions of NO{sub x} from aircraft flying the stratosphere, depending on the fleet size and magnitude of the engine emissions. The purpose of this study is to build on previous analyses of potential aircraft emission effects on ozone in order to better define the sensitivity of ozone to such emissions. In addition to NO{sub x}, the effects of potential emissions of carbon monoxide and water vapor are also examined. More realistic scenarios for the emissions as a function of altitude, latitude, and season are examined in comparison to prior analyses. These studies indicate that the effects on ozone are sensitive to the altitude and latitude, as well as the magnitude, of the emissions.

  10. Issues in Stratospheric Ozone Depletion.

    NASA Astrophysics Data System (ADS)

    Lloyd, Steven Andrew

    measurements. Therefore a laboratory prototype of an instrument to measure ClONO _2 concentrations in situ was developed, adapting techniques recently developed in this research group to measure ClO concentrations at the part-per-trillion level. The detection scheme involves heating a flowing air sample to almost 500K, thermally dissociating ClONO _2 into ClO and NO_2 , and measuring the resulting ClO concentration by titrating with NO to produce Cl atoms, which are detected by resonance fluoresence. The calibration of this technique is very sensitive to flow parameters (temperature, pressure, flow velocity, added NO concentration, and homogeneity of flow). The issues developed in this thesis contribute to our understanding of the mechanisms of stratospheric ozone depletion and its potential global impact. It is becoming increasingly apparent that our ability to predict the future course of global ozone depletion is critically dependent on our ability to reproduce in situ and remote measurements with numerical models.

  11. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 2: Stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-07-01

    The prospective future adoption of molecular hydrogen (H2) to power the road transportation sector could greatly improve tropospheric air quality but also raises the question of whether the adoption would have adverse effects on the stratospheric ozone. The possibility of undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050) H2-based road transportation sector on stratospheric composition and chemistry, especially on the stratospheric ozone, with the MOZART (Model for OZone And Related chemical Tracers) model. Since future growth is highly uncertain, we evaluate the impact of two world evolution scenarios, one based on an IPCC (Intergovernmental Panel on Climate Change) high-emitting scenario (A1FI) and the other on an IPCC low-emitting scenario (B1), as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario evolves and which H2 technology option is applied. For the evolution growth scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two scenarios fall

  12. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 2: Stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2012-08-01

    The prospective future adoption of hydrogen to power the road transportation sector could greatly improve tropospheric air quality but also raises the question whether the adoption would have adverse effects on stratospheric ozone. The possibility of these undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050) H2-based road transportation sector on stratospheric composition and chemistry, especially on stratospheric ozone, with the MOZART chemical transport model. Since future growth is highly uncertain we evaluate the impact for two world evolution scenarios, one based on a high emitting scenario (IPCC A1FI) and the other on a low emitting scenario (IPCC B1), as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario the world evolves and which H2 technology option is applied. For the same world evolution scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two scenarios fall between the above two bounding scenarios. However, the magnitude of these changes is

  13. Ultraviolet Radiation and Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, R.

    2003-01-01

    Ultraviolet radiation from the sun produces ozone in the stratosphere and it participates in the destruction of ozone. Absorption of solar ultraviolet radiation by ozone is the primary heating mechanism leading to the maximum in temperature at the stratopause. Variations of solar ultraviolet radiation on both the 27-day solar rotation period and the 11-year solar cycle affect ozone by several mechanisms. The temperature and ozone in the upper stratosphere respond to solar uv variations as a coupled system. An increase in uv leads to an increase in the production of ozone through the photolysis of molecular oxygen. An increase in uv leads to an increase in temperature through the heating by ozone photolysis. The increase in temperature leads to a partially-offsetting decrease in ozone through temperature-dependent reaction rate coefficients. The ozone variation modulates the heating by ozone photolysis. The increase in ozone at solar maximum enhances the uv heating. The processes are understood and supported by long-term data sets. Variation in the upper stratospheric temperatures will lead to a change in the behavior of waves propagating upward from the troposphere. Changes in the pattern of wave dissipation will lead to acceleration or deceleration of the mean flow and changes in the residual or transport circulation. This mechanism could lead to the propagation of the solar cycle uv variation from the upper stratosphere downward to the lower stratosphere. This process is not well-understood and has been the subject of an increasing number of model studies. I will review the data analyses for solar cycle and their comparison to model results.

  14. Total Ozone Prediction: Stratospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Kawa, S. Ramdy; Douglass, Anne R.

    2003-01-01

    The correct prediction of total ozone as a function of latitude and season is extremely important for global models. This exercise tests the ability of a particular model to simulate ozone. The ozone production (P) and loss (L) will be specified from a well- established global model and will be used in all GCMs for subsequent prediction of ozone. This is the "B-3 Constrained Run" from M&MII. The exercise mostly tests a model stratospheric dynamics in the prediction of total ozone. The GCM predictions will be compared and contrasted with TOMS measurements.

  15. Chlorine compounds and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Cicerone, R. J.; Walters, S.; Stolarski, R. S.

    1975-01-01

    A report by Cicerone et al. (1974) concerned with the potential size of the atmospheric perturbation produced by man-made chlorofluoromethanes is considered, giving attention to a number of errors made in the first investigation and their correction. However, the corrections do not significantly change the results reported. It had been found that chlorine oxides which arise from chlorofluoromethane usage will within 10 or 15 years provide a sink for stratospheric ozone which will dominate the natural sinks for ozone.

  16. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  17. Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Watson, Robert T.

    1990-01-01

    The rise in atmospheric chlorine levels caused by the emission of chlorofluorocarbons and other halocarbons is thought to be the main cause of the appearance of the Antarctic ozone 'hole' in the late 1970s, and the more modest ozone depletion observed over parts of the Northern Hemisphere. Atmospheric bromine, also associated with halocarbon emissions, is believed to contribute to ozone depletion. Over the next decade, further increases in these compounds are inevitable. Model calculations show that by the end of the next century, atmospheric chlorine and bromine levels may return to those prevalent before the onset of the ozone hole, but only if more stringent regulations are applied to halocarbon production than those currently proposed.

  18. Understanding differences in chemistry climate model projections of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-04-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change ΔO3/ΔCly is a near-linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in ΔO3/ΔCly contribute little to the spread in CCM projections as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change ΔO3/ΔT due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  19. Mechanisms of Stratospheric Ozone Transport.

    DTIC Science & Technology

    1982-12-03

    amounts orcur too fat south and about 1 month too late. 92 CHANGE IN (740) (PPM) DIABATIC. cos ( LAT ) 70 50 ~40 (D 30_ _ _ _ _ ) 1 5 Ŗ 2.5 Z. 20 10 0 D...AD-A122 609 MECHANISMS OF STRATOSPHERIC OZONE BRANSPOR(U) NAVAL RESEARCH LAB WASHINGTON DC R B ROOD ET AL 03 DEC 82 UNCLASSIFIED F/G 4/ 1 ...NLIEIIIIEIIII EIIIIIIIIIIIIl IIIEIIIIIEEEEE IIIIIIIIIIIIIl EIIIIIIIIIIIIl EIIIIIIIIIIIIl 1111.0 112 M *0 MIt ROCLt RLS’OLU7ION TLST CHART - - - ,T 1 m -N ;’ V

  20. Raman-Augmented Stratospheric-Ozone Lidar

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart

    1994-01-01

    Differential-absorption lidar (DIAL) system measures concentration of ozone in stratosphere augmented with subsystem measuring Raman scattering from nitrogen. One of number of DIAL systems used in long-term monitoring of stratospheric ozone. Raman scattering from nitrogen provides data to correct for effects of aerosols. Channels at wavelengths of 332 and 385 nm added to DIAL receiver to measure Raman backscattering from nitrogen molecules in stratosphere. Data-acquisition electronics sample photon counts at a rate of 250 MHz.

  1. Attribution of Recovery in Lower-stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Yang, Eun-Su; Cunnold, Derek M.; Salawitch, Ross J.; McCormick, M. Patrick; Russell, James, III; Zawodny, Joseph M.; Oltmans, Samuel; Newchurch, Michael J.

    2006-01-01

    Multiple satellite and ground-based observations provide consistent evidence that the thickness of Earth's protective ozone layer has stopped declining since 1997, close to the time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent Stratospheric Chlorine (EESC) in conjunction with further analyses using more sophisticated photochemical model calculations constrained by satellite data demonstrate that the cessation of ozone depletion between 18-25 km altitude is consistent with a leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal Protocol and its amendments. However, ozone increases in the lowest part of the stratosphere, from the tropopause to 18 km, account for about half of the improvement in total column ozone during the past 9 years at northern hemisphere mid-latitudes. The increase in ozone for altitudes below 18 km is most likely driven by changes in transport, rather than driven by declining chlorine and bromine. Even with this evidence that the Montreal Protocol and its amendments are having the desired, positive effect on ozone above 18 km, total column ozone is recovering faster than expected due to the apparent transport driven changes at lower altitudes. Accurate prediction of future levels of stratospheric ozone will require comprehensive understanding of the factors that drive temporal changes at various altitudes, and partitioning of the recent transport-driven increases between natural variability and changes in atmospheric structure perhaps related to anthropogenic climate change.

  2. Attribution of Recovery in Lower-Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Yang, Eun-Su; Cunnold, Derek M.; Salawitch, Ross J.; McCormick, M. Patrick; Russell, James, III; Zawodny, Joseph M.; Oltmans, Samuel; Newchurch, Michael J.

    2005-01-01

    Multiple satellite and ground-based observations provide consistent evidence that the thickness of Earth's protective ozone layer has stopped declining since 1997, close to the time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent Stratospheric Chlorine (EESC) in conjunction with further analyses using more sophisticated photochemical model calculations constrained by satellite data demonstrate that the cessation of ozone depletion between 18-25 km altitude is consistent with a leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal Protocol and its amendments. However, ozone increases in the lowest part of the stratosphere, from the tropopause to 18 km, account for about half of the improvement in total column ozone during the past 9 years at northern hemisphere mid-latitudes. The increase in ozone for altitudes below 18 km is most likely driven by changes in transport, rather than driven by declining chlorine and bromine. Even with this evidence that the Montreal Protocol and its amendments are having the desired, positive effect on ozone above 18 km, total column ozone is recovering faster than expected due to the apparent transport driven changes at lower altitudes. Accurate prediction of future levels of stratospheric ozone will require comprehensive understanding of the factors that drive temporal changes at various altitudes, and partitioning of the recent transport-driven increases between natural variability and changes in atmospheric structure perhaps related to anthropogenic climate change.

  3. The Chemistry and Physics of Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Friedl, Randall R.

    Perhaps no other environmental issue has captured as much widespread public interest and concern as stratospheric ozone depletion due to man-made chlorofluorocarbons (CFCs). Increasing scientific understanding of the connections between CFCs and global-scale ozone changes, highlighted by observations of dramatic ozone loss in the Antarctic, has led to a landmark international treaty and subsequent treaty amendments. As outgrowths of these developments, stratospheric ozone depletion has found its way into science fiction fare and the term “ozone hole” has become part of the English lexicon.

  4. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  5. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  6. The stratosphere: Present and future

    NASA Technical Reports Server (NTRS)

    Hudson, R. D. (Editor); Reed, E. I. (Editor)

    1979-01-01

    The present status of stratospheric science is discussed. The three basic elements of stratospheric science-laboratory measurements, atmospheric observations, and theoretical studies are presented along with an attempt to predict, with reasonable confidence, the effect on ozone of particular anthropogenic sources of pollution.

  7. Y-12 Plant Stratospheric Ozone Protection plan

    SciTech Connect

    1995-09-01

    The Y-12 Plant staff is required by Lockheed Martin Energy Systems (Energy Systems) (formerly Martin Marietta Energy Systems) standard ESS-EP-129 to develop and implement a Stratospheric Ozone Protection Program which will minimize emissions of ozone-depleting substances to the environment and maximize the use of ozone-safe alternatives in order to comply with Title VI of the 1990 Clean Air Act (CAA) Amendments and the implementing regulations promulgated by the Environmental Protection Agency (EPA). This plan describes the requirements, initiatives, and accomplishments of the Y-12 Plant Stratospheric Ozone Protection Program.

  8. The chemistry of stratospheric ozone depletion

    SciTech Connect

    Tuck, A.

    1997-01-01

    In the early 1980`s the Antarctic ozone hole was discovered. The ozone loss was 50 percent in the lower stratosphere during springtime, which is made possible by the conditions over Antarctica in winter. The absence of sunlight in the stratosphere during polar winter causes the stratospheric air column there to cool and sink, drawing air from lower latitudes into the upper stratosphere. This lower-latitude air gets closer to the Earth`s axis of rotation as it moves poleward and is accelerated by the need to conserve angular momentum to greater and greater westerly wind speeds forming a vortex bounded by the polar night jet stream. The air entering the vortex contains reactive ozone-destroying species. The observed ozone losses occurred concurrently with increases of chlorofluorocarbon increases.

  9. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere

    NASA Astrophysics Data System (ADS)

    Hu, Dingzhu; Tian, Wenshou; Xie, Fei; Wang, Chunxiao; Zhang, Jiankai

    2015-08-01

    This paper uses a state-of-the-art general circulation model to study the impacts of the stratospheric ozone depletion from 1980 to 2000 and the expected partial ozone recovery from 2000 to 2020 on the propagation of planetary waves in December, January, and February. In the Southern Hemisphere (SH), the stratospheric ozone depletion leads to a cooler and stronger Antarctic stratosphere, while the stratospheric ozone recovery has the opposite effects. In the Northern Hemisphere (NH), the impacts of the stratospheric ozone depletion on polar stratospheric temperature are not opposite to that of the stratospheric ozone recovery; i.e., the stratospheric ozone depletion causes a weak cooling and the stratospheric ozone recovery causes a statistically significant cooling. The stratospheric ozone depletion leads to a weakening of the Arctic polar vortex, while the stratospheric ozone recovery leads to a strengthening of the Arctic polar vortex. The cooling of the Arctic polar vortex is found to be dynamically induced via modulating the planetary wave activity by stratospheric ozone increases. Particularly interesting is that stratospheric ozone changes have opposite effects on the stationary and transient wave fluxes in the NH stratosphere. The analysis of the wave refractive index and Eliassen-Palm flux in the NH indicates (1) that the wave refraction in the stratosphere cannot fully explain wave flux changes in the Arctic stratosphere and (2) that stratospheric ozone changes can cause changes in wave propagation in the northern midlatitude troposphere which in turn affect wave fluxes in the NH stratosphere. In the SH, the radiative cooling (warming) caused by stratospheric ozone depletion (recovery) produces a larger (smaller) meridional temperature gradient in the midlatitude upper troposphere, accompanied by larger (smaller) zonal wind vertical shear and larger (smaller) vertical gradients of buoyancy frequency. Hence, there are more (fewer) transient waves

  10. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  11. Arctic "ozone hole" in a cold volcanic stratosphere.

    PubMed

    Tabazadeh, A; Drdla, K; Schoeberl, M R; Hamill, P; Toon, O B

    2002-03-05

    Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud-chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss processes, such as chlorine activation and denitrification, in a cold winter within the current range of natural variability. Several studies indicate that severe denitrification can increase Arctic ozone loss by up to 30%. We show large PSC particles that cause denitrification in a nonvolcanic stratosphere cannot efficiently form in a volcanic environment. However, volcanic aerosols, when present at low altitudes, where Arctic PSCs cannot form, can extend the vertical range of chemical ozone loss in the lower stratosphere. Chemical processing on volcanic aerosols over a 10-km altitude range could increase the current levels of springtime column ozone loss by up to 70% independent of denitrification. Climate models predict that the lower stratosphere is cooling as a result of greenhouse gas built-up in the troposphere. The magnitude of column ozone loss calculated here for the 1999--2000 Arctic winter, in an assumed volcanic state, is similar to that projected for a colder future nonvolcanic stratosphere in the 2010 decade.

  12. Nitrogen fertiliser and stratospheric ozone - Latitudinal effects

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Capone, L. A.; Riegel, C. A.; Turco, R. P.

    1980-01-01

    Substantial increases in atmospheric N2O resulting from the increased use of nitrogen fertilizers might cause large (to 10%) decreases in the stratospheric ozone content. Such ozone decreases would be caused by catalytic reaction cycles involving odd-nitrogen that is formed by N2O decomposition in the upper stratosphere. Turco et al. (1978), using a background chlorine level of 2 ppbv, have shown that if the measured values of specified reactions are used a 50% increase in N2O would lead to a 2.7% increase in the stratospheric column density, although the ozone content above 30 km would be reduced by more than 5%; they also estimated (unpublished data) that the change in the ozone column density caused by doubling the N2O abundance would be very close to zero (within about 0.1%). The present paper extends these calculations of N2O/ozone effects to two dimensions, thereby identifying the latitude dependence expected for such ozone perturbations. The effects of changes in stratospheric chlorine levels on predicted ozone changes are also discussed.

  13. Stratospheric Ozone Predictions For The Late 21st Century

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Olsen, M. A.; Stolarski, R. S.; Strahan, S. E.; Oman, L.

    2013-12-01

    temperature change contribute to lower stratospheric variation among CCMs. Simulated fields of long-lived gases and comparisons with observed quantities such as the annual cycle of the middle latitude HCl column evolve as circulation changes in a future atmosphere, giving insight into the differences among simulated predictions. By 2080 predictions for the ozone change since 1980 range from ~0 to +11 DU, comparable to the observed change due to chlorine increase between 1980 and present. Understanding the differences in the CCM responses to climate change is a necessary step towards decreasing uncertainty in prediction.

  14. Human Health Effects of Ozone Depletion From Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor)

    2001-01-01

    This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.

  15. Polar stratospheric clouds and ozone depletion

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  16. Stratospheric solar geoengineering without ozone loss.

    PubMed

    Keith, David W; Weisenstein, Debra K; Dykema, John A; Keutsch, Frank N

    2016-12-27

    Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of -1 W⋅m(-2), for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y(-1) of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

  17. Stratospheric solar geoengineering without ozone loss

    PubMed Central

    Weisenstein, Debra K.; Dykema, John A.; Keutsch, Frank N.

    2016-01-01

    Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of −1 W⋅m−2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y−1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods. PMID:27956628

  18. Stratospheric solar geoengineering without ozone loss

    NASA Astrophysics Data System (ADS)

    Keith, David W.; Weisenstein, Debra K.; Dykema, John A.; Keutsch, Frank N.

    2016-12-01

    Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of ‑1 Wṡm‑2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tgṡy‑1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

  19. Intraseasonal oscillations of stratospheric ozone above Switzerland

    NASA Astrophysics Data System (ADS)

    Studer, Simone; Hocke, Klemens; Kämpfer, Niklaus

    2012-01-01

    GROMOS, the ground-based millimeter-wave ozone spectrometer, continuously measures the stratospheric ozone profile between the altitudes of 20 and 65 km above Bern (46°57‧N, 7°27‧E) since November 1994. Characteristics of intraseasonal oscillations of stratospheric ozone are derived from the long-term data set. Spectral analysis gives evidence for a dominant oscillation period of about 20 days in the lower and middle stratosphere during winter time. A strong 20-day wave is also found in collocated geopotential height measurements of the microwave limb sounder onboard the Aura satellite (Aura/MLS) confirming the ground-based observations of GROMOS and underlining the link between ozone and dynamics. Remarkably, the ozone series of GROMOS show an interannual variability of the strength of intraseasonal oscillations of stratospheric ozone. The interannual variability of ozone fluctuations is possibly due to influences of planetary wave forcing and the quasi-biennial oscillation (QBO) on the meridional Brewer-Dobson circulation of the middle atmosphere. In detail, time series of the mean amplitude of ozone fluctuations with periods ranging from 10 to 60 days are derived at fixed pressure levels. The mean amplitude series are regarded as a measure of the strength of intraseasonal oscillations of stratospheric ozone above Bern. After deseasonalizing the mean amplitude series, we find QBO-like amplitude modulations of the intraseasonal oscillations of ozone. The amplitudes of the intraseasonal oscillations are enhanced by a factor of 2 in 1997, 2001, 2003, and 2005. QBO-like variations of intraseasonal oscillations are also present in wind, temperature and other parameters above Bern as indicated by meteorological reanalyses of the European Centre for Medium-range Weather Forecasts (ECMWF). Further, intercomparisons of interannual variability of intraseasonal tropospheric and stratospheric oscillations are performed where the NAO index (North-Atlantic oscillation

  20. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  1. Atmospheric bromine and ozone perturbations in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Pinto, J. P.; Watson, R. T.; Sander, S. P.

    1980-01-01

    The role of bromine compounds in the photochemistry of the natural and perturbed stratosphere has been reexamined using an expanded reaction scheme and the results of recent laboratory studies of several key reactions. The most important finding is that through the reaction BrO + ClO yielding Br + Cl + O2 there is a synergistic effect between bromine and chlorine which results in an efficient catalytic destruction of ozone in the lower stratosphere. One-dimensional photochemical model results indicate that BrO is the major bromine species throughout the stratosphere, followed by BrONO2, HBr, HOBr and Br. It is shown from the foregoing that bromine is more efficient than chlorine as a catalyst for destroying ozone, and the implications for stratospheric ozone of possible future growth in the industrial and agricultural use of bromine are discussed. Bromine concentrations of 20 pptv (2 x 10 to the -11th power), as suggested by recent observations, can decrease the present-day integrated ozone column density by 2.4%, and can enhance ozone depletion from steady-state chlorofluoromethane release at 1973 rates by a factor of 1.1-1.2.

  2. Achievements in Stratospheric Ozone Protection

    EPA Pesticide Factsheets

    This report describes achievements in protecting the ozone layer, the benefits of these achievements, and strategies involved (e.g., using alternatives to ozone-depleting substances, phasing out harmful substances, and creating partnerships).

  3. Stratospheric Ozone: Transport, Photochemical Production and Loss

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Kawa, S. R.; Jackman, C. H.

    2003-01-01

    Observations from various satellite instruments (e.g., Total Ozone Mapping Spectrometer (TOMS), Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)) specify the latitude and seasonal variations of total ozone and ozone as a function of altitude. These seasonal variations change with latitude and altitude partly due to seasonal variation in transport and temperature, partly due to differences in the balance between photochemical production and loss processes, and partly due to differences in the relative importance of the various ozone loss processes. Comparisons of modeled seasonal ozone behavior with observations test the following: the seasonal dependence of dynamical processes where these dominate the ozone tendency; the seasonal dependence of photochemical processes in the upper stratosphere; and the seasonal change in the balance between photochemical and dynamical processes.

  4. Potential changes to stratospheric ozone from possible chlorofluorocarbon production

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.

    1980-03-17

    The Environmental Protection Agency has derived a series of scenarios for future atmospheric emission rates of the chlorofluorocarbons CFCl/sub 3/. These scenarios are based on potential industrial production and commercial applications, and the eventual release of these chemicals into the atmosphere. In this study, the potential effect on stratospheric ozone resulting from future chlorofluorocarbon emissions as suggested by these scenarios are examined. Assessments are based upon model calculations using the one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere developed at Lawrence Livermore Laboratory (LLL).

  5. STRATOSPHERIC OZONE PROTECTION: AN EPA ENGINEERING PERSPECTIVE

    EPA Science Inventory

    Chlorine released into the atmosphere is a major factor in the depletion of the protective stratospheric ozone layer. The Montreal Protocol, as amended in 1990, and the Clean Air Act Amendments of 1990, address the limits and reduction schedules to be placed on chlorine- and brom...

  6. Stratospheric ozone measurements at the equator

    NASA Technical Reports Server (NTRS)

    Ilyas, Mohammad

    1994-01-01

    A balloon-borne project for ozone layer measurements was undertaken using the MAST ozone sondes and ASTOR radiosondes. Previously published data on this series (Ilyas, 1984) was recently re-analyzed using a rigorous technique to evaluate correction factors (ranging between 1.2 to 1.4). The revised data presented here, show that at the tropospheric and lower stratospheric levels, the ozone concentrations at the equator are much lower than the mid-latitude concentrations. The layer of peak concentration is found to be shifted upward compared to the mid-latitude profile and above this the two profiles get closer.

  7. Predicted aircraft effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Wofsy, Steve; Kley, Dieter; Zhadin, Evgeny A.; Johnson, Colin; Weisenstein, Debra; Prather, Michael J.; Wuebbles, Donald J.

    1991-01-01

    The possibility that the current fleet of subsonic aircraft may already have caused detectable changes in both the troposphere and stratosphere has raised concerns about the impact of such operations on stratospheric ozone and climate. Recent interest in the operation of supersonic aircraft in the lower stratosphere has heightened such concerns. Previous assessments of impacts from proposed supersonic aircraft were based mostly on one-dimensional model results although a limited number of multidimensional models were used. In the past 15 years, our understanding of the processes that control the atmospheric concentrations of trace gases has changed dramatically. This better understanding was achieved through accumulation of kinetic data and field observations as well as development of new models. It would be beneficial to start examining the impact of subsonic aircraft to identify opportunities to study and validate the mechanisms that were proposed to explain the ozone responses. The two major concerns are the potential for a decrease in the column abundance of ozone leading to an increase in ultraviolet radiation at the ground, and redistribution of ozone in the lower stratosphere and upper troposphere leading to changes in the Earth's climate. Two-dimensional models were used extensively for ozone assessment studies, with a focus on responses to chlorine perturbations. There are problems specific to the aircraft issues that are not adequately addressed by the current models. This chapter reviews the current status of the research on aircraft impact on ozone with emphasis on immediate model improvements necessary for extending our understanding. The discussion will be limited to current and projected commercial aircraft that are equipped with air-breathing engines using conventional jet fuel. The impacts are discussed in terms of the anticipated fuel use at cruise altitude.

  8. Scientific assessment of stratospheric ozone: 1989, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A scientific review is presented of the current understanding of stratospheric ozone. There have been highly significant advances in the understanding of the impact of human activities on the Earth's protective ozone layer. There are four major findings that each heighten the concern that chlorine and bromine containing chemicals can lead to a significant depletion of stratospheric ozone: (1) Antarctic ozone hole (the weight of evidence indicates that chlorinated and brominated chemicals are responsible for the ozone hole; (2) Perturbed arctic chemistry (the same potentially ozone destroying processes were identified in the Arctic stratosphere); (3) Long term ozone decreases; and (4) Model limitations (gaps in theoretical models used for assessment studies).

  9. Quantifying Uncertainty in Projections of Stratospheric Ozone Over the 21st Century

    NASA Technical Reports Server (NTRS)

    Charlton-Perez, A. J.; Hawkins, E.; Eyring, V.; Cionni, I.; Bodeker, G. E.; Kinnison, D. E.; Akiyoshi, H.; Frith, S. M.; Garcia, R.; Gettelman, A.; Lamarque, J. F.; Nakamura, T.; Pawson, S.; Yamashita, Y.; Bekki, S.; Braesicke, P.; Chipperfield, M. P.; Dhomse, S.; Marchand, M.; Mancini, E.; Morgenstern, O.; Pitari, G.; Plummer, D.; Pyle, J. A.; Rozanov, E.

    2010-01-01

    Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an ensemble of opportunity of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for 10 ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21 st century, up-to and after the time when ozone concentrations 15 return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.

  10. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  11. Stratospheric ozone intercomparison campaign (STOIC) 1989: Overview

    SciTech Connect

    Margitan, J.J.; McDermid, I.S.; Walsh, T.D.

    1995-05-20

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric aerosol and Gas Experiment (SAGE II) aboard the Earth Radiation Budget Satellite and the total ozone mapping spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. 37 refs., 5 figs., 3 tabs.

  12. Ozone density measurements in the troposphere and stratosphere of Natal

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Motta, A. G.

    1983-01-01

    Ozone densitities were measured in the troposphere and stratosphere of Natal using ECC sondes launches on balloons. The data analyzed so far show tropospheric densities and total ozone contents larger than expected.

  13. The potential for ozone depletion in the Arctic polar stratosphere

    NASA Technical Reports Server (NTRS)

    Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W.; Kawa, S. R.; Poole, L. R.

    1991-01-01

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (CHl and ClONO2) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl2O2 thoroughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO3, and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15 percent at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8 percent losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50 percent over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  14. The potential for ozone depletion in the arctic polar stratosphere.

    PubMed

    Brune, W H; Anderson, J G; Toohey, D W; Fahey, D W; Kawa, S R; Jones, R L; McKenna, D S; Poole, L R

    1991-05-31

    The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.

  15. Modulations of stratospheric ozone by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  16. Tropospheric and Stratospheric Ozone From Assimilation of Aura Data

    NASA Astrophysics Data System (ADS)

    Stajner, I.; Wargan, K.; Chang, L.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.; Bowman, K.

    2006-05-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and ozone may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from the EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data provides a good representation of ozone gradients and variability in the lower stratosphere. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. We discuss the impacts of Aura data and their role in the representation of ozone variability in the lower stratosphere and troposphere.

  17. Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.; Rind, David; Lonergan, Patrick

    1998-04-01

    The chemical reactions responsible for stratospheric ozone depletion are extremely sensitive to temperature. Greenhouse gases warm the Earth's surface but cool the stratosphere radiatively and therefore affect ozone depletion. Here we investigate the interplay between projected future emissions of greenhouse gases and levels of ozone-depleting halogen species using a global climate model that incorporates simplified ozone-depletion chemistry. Temperature and wind changes induced by the increasing greenhouse-gas concentrations alter planetary-wave propagation in our model, reducing the frequency of sudden stratospheric warmings in the Northern Hemisphere. This results in a more stable Arctic polar vortex, with significantly colder temperatures in the lower stratosphere and concomitantly increased ozone depletion. Increased concentrations of greenhouse gases might therefore be at least partly responsible for the very large Arctic ozone losses observed in recent winters. Arctic losses reach a maximum in the decade 2010 to 2019 in our model, roughly a decade after the maximum in stratospheric chlorine abundance. The mean losses are about the same as those over the Antarctic during the early 1990s, with geographically localized losses of up to two-thirds of the Arctic ozone column in the worst years. The severity and the duration of the Antarctic ozone hole are also predicted to increase because of greenhouse-gas-induced stratospheric cooling over the coming decades.

  18. Tropospheric and stratospheric ozone from assimilation of Aura data

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawwson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data reproduces ozone gradients and variability in the lower stratosphere well. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. The impacts of Aura data are illustrated and their role in the representation of ozone variability in the lower stratosphere and troposphere is shown.

  19. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    NASA Technical Reports Server (NTRS)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Thomason, L. W.; Peter, T.

    2011-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model. to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will he significantly reduced.

  20. The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone

    NASA Technical Reports Server (NTRS)

    Heckendorn, P.; Weisenstein, D.; Fueglistaler, S.; Luo, B. P.; Rozanov, E.; Schraner, M.; Peter, T.; Thomason, L. W.

    2009-01-01

    Anthropogenic greenhouse gas emissions are warming the global climate at an unprecedented rate. Significant emission reductions will be required soon to avoid a rapid temperature rise. As a potential interim measure to avoid extreme temperature increase, it has been suggested that Earth's albedo be increased by artificially enhancing stratospheric sulfate aerosols. We use a 3D chemistry climate model, fed by aerosol size distributions from a zonal mean aerosol model, to simulate continuous injection of 1-10 Mt/a into the lower tropical stratosphere. In contrast to the case for all previous work, the particles are predicted to grow to larger sizes than are observed after volcanic eruptions. The reason is the continuous supply of sulfuric acid and hence freshly formed small aerosol particles, which enhance the formation of large aerosol particles by coagulation and, to a lesser extent, by condensation. Owing to their large size, these particles have a reduced albedo. Furthermore, their sedimentation results in a non-linear relationship between stratospheric aerosol burden and annual injection, leading to a reduction of the targeted cooling. More importantly, the sedimenting particles heat the tropical cold point tropopause and, hence, the stratospheric entry mixing ratio of H2O increases. Therefore, geoengineering by means of sulfate aerosols is predicted to accelerate the hydroxyl catalyzed ozone destruction cycles and cause a significant depletion of the ozone layer even though future halogen concentrations will be significantly reduced.

  1. Ozone in the upper stratosphere and mesosphere

    SciTech Connect

    Prather, M.J.

    1981-06-20

    A detailed photochemical model of the upper stratosphere and mesosphere is compared with three extensive sets of ozone observations: Atmospheric Explorer-E backscattered ultraviolet experiment (BUV), Nimbus-4 BUV, and rocket flights from Wallops Flight Center (ROCOZ). The Nimbus-4 and rocket observations are most sensitive to ozone between 30 and 50 km, whereas observations from AE-E measure the abundance of ozone up to 70 km. The photochemical model accurately reproduces the observed relationship between BUV intensity and local solar zenith angle, although the absolute calibration on AE-E appears to be in error. The AE-E observations and the model both exhibit a morning-afternoon asymmetry, with more ozone in the morning owing to the build up of HO/sub x/ species in the afternoon. Seasonal changes in atmospheric temperature produce an annual maximum in tropical mesospheric ozone during June-July-August. The amplitude of the observed effect is somewhat larger than calculated by the model. Some problems appear to remain with the presently accepted kinetic rates for HO/sub x/ species in the atmosphere. 71 references, 19 figures, 6 tables.

  2. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  3. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  4. The validation of ozone measurements from the improved stratospheric and mesospheric sounder

    NASA Technical Reports Server (NTRS)

    Connor, Brian J.; Scheuer, Christopher J.; Chu, D. A.; Remedios, John J.; Marks, C. J.; Rodgers, Clive D.; Taylor, Fredric W.

    1994-01-01

    We present preliminary results of the validation of ozone measurements from the Improved Stratospheric and Mesospheric Sounder (ISAMS). The indications are that the ISAMS provides ozone data which generally agrees with other experiments and climatological values, except in regions of large thermal gradients or high aerosol loading. Corrections for these effects will be included in future reprocessing of the data.

  5. Stratospheric Ozone Intercomparison Campaign (STOIC) 1989: Overview

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.; Barnes, R. A.; Brothers, G. B.; Butler, J.; Burris, J.; Connor, B. J.; Ferrare, R. A.; Kerr, J. B.; Komhyr, W. D.; McCormick, M. P.; McDermid, I. S.; McElroy, C. T.; McGee, T. J.; Miller, A. J.; Owens, M.; Parrish, A. D.; Parsons, C. L.; Torres, A. L.; Tsou, J. J.; Walsh, T. D.

    1995-01-01

    The NASA Upper Atmosphere Research Program organized a Stratospheric Ozone Intercomparison Campaign (STOIC) held in July-August 1989 at the Table Mountain Facility (TMF) of the Jet Propulsion Laboratory (JPL). The primary instruments participating in this campaign were several that had been developed by NASA for the Network for the Detection of Stratospheric Change: the JPL ozone lidar at TMF, the Goddard Space Flight Center trailer-mounted ozone lidar which was moved to TMF for this comparison, and the Millitech/LaRC microwave radiometer. To assess the performance of these new instruments, a validation/intercomparison campaign was undertaken using established techniques: balloon ozonesondes launched by personnel from the Wallops Flight Facility and from NOAA Geophysical Monitoring for Climate Change (GMCC) (now Climate Monitoring and Diagnostics Laboratory), a NOAA GMCC Dobson spectrophotometer, and a Brewer spectrometer from the Atmospheric Environment Service of Canada, both being used for column as well as Umkehr profile retrievals. All of these instruments were located at TMF and measurements were made as close together in time as possible to minimize atmospheric variability as a factor in the comparisons. Daytime rocket measurements of ozone were made by Wallops Flight Facility personnel using ROCOZ-A instruments launched from San Nicholas Island. The entire campaign was conducted as a blind intercomparison, with the investigators not seeing each others data until all data had been submitted to a referee and archived at the end of the 2-week period (July 20 to August 2, 1989). Satellite data were also obtained from the Stratospheric Aerosol and Gas Experiment (SAGE 2) aboard the Earth Radiation Budget Satellite and the Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus 7. An examination of the data has found excellent agreement among the techniques, especially in the 20- to 40-km range. As expected, there was little atmospheric variability during the

  6. About ozone depletion in stratosphere over Brazil in last decade

    NASA Astrophysics Data System (ADS)

    Martin, Inácio M.; Imai, Takeshi; Seguchi, Tomio

    The depletion of stratospheric ozone, resulting from the emission of chlorofluorocarbons (CFCs), has become a major issue since 1980. The decrease in stratospheric ozone over the polar regions has been pronounced at the South Pole than at the North Pole. In mid-latitude and equatorial regions, ozone depletion becomes less important; it depends on seasonal effects and on the characteristics of a particular region. The detailed mechanism by which the polar ozone holes form is different from that for the mid-latitude thinning, but the most important process in both trends is the catalytic destruction of ozone by atomic chlorine and bromine. The main source of these halogen atoms in the stratosphere is photodissociation of CFC compounds, commonly called freons, and of bromofluorocarbon compounds known as halons. These compounds are transported into the stratosphere after being emitted at the surface. Both ozone depletion mechanisms strengthened as emissions of CFCs and halons increased [1]. Measurements of stratospheric ozone carried out on several locations in Brazil and on the South Pole in the last decade (1996-2005), using detectors placed on ground, stratospheric balloons and Earth Probe TOMS satellites, are presented here. Detailed series analysis from 1980 up to the present describes a mean ozone depletion of 4[1] http://en.wikipedia.org/wiki/Ozone/depletion.

  7. Predicted rocket and shuttle effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Harwood, Robert S.; Karol, Igor L.; Jackman, Charles H.; Qiu, Lian-Xiong; Prather, Michael J.; Pyle, John A.

    1991-01-01

    The major chemical effluents of either solid- or liquid-fueled rockets that can potentially perturb stratospheric ozone include chlorine compounds (HCl), nitrogen compounds (NO(x)), and hydrogen compounds (H2 and H2O). Radicals (Cl, ClO, H, OH, HO2, NO, and NO2) formed directly or indirectly from rocket exhaust can cause the catalytic destruction of ozone. Other exhaust compounds that could presumably lead to ozone destruction either by direct reaction with ozone or by providing a surface for heterogeneous processes include the particulates Al2O3, ice, and soot. These topics are discussed in terms of the possible effects of rocket exhausts on stratospheric ozone.

  8. Stratospheric Cooling and Arctic Ozone Recovery. Appendix L

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriguez, Jose M.; Tabazadeh, Azadeh

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4 - 0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  9. Stratospheric Ozone in the Post-CFC Era

    NASA Technical Reports Server (NTRS)

    Li, F.; Stolarski, R. S.; Newman, P. A.

    2009-01-01

    Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975-1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post-CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.

  10. Stratospheric ozone in the post-CFC era

    NASA Astrophysics Data System (ADS)

    Li, F.; Stolarski, R. S.; Newman, P. A.

    2009-03-01

    Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975-1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post-CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.

  11. Stratospheric Ozone in the Post-CFC Era

    NASA Technical Reports Server (NTRS)

    Li, Feng; Solarski, Richard S.; Newman, Paul A.

    2008-01-01

    Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975-1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post- CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.

  12. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  13. Natural and anthropogenic perturbations of the stratospheric ozone layer

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy P.

    1992-01-01

    The paper reviews potential causes for reduction in the ozone abundance. The response of stratospheric ozone to solar activity is discussed. Ozone changes are simulated in relation with the potential development of a fleet of high-speed stratospheric aircraft and the release in the atmosphere of chlorofluorocarbons. The calculations are performed by a two-dimensional chemical-radiative-dynamical model. The importance of heterogeneous chemistry in polar stratospheric clouds and in the Junge layer (sulfate aerosol) is emphasized. The recently reported ozone trend over the last decade is shown to have been largely caused by the simultaneous effects of increasing concentrations of chlorofluorocarbons and heterogeneous chemistry. The possibility for a reduction in stratospheric ozone following a large volcanic eruption such as that of Mount Pinatubo in 1991 is discussed.

  14. Mass and Ozone Fluxes from the Lowermost Stratosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Olsen, Mark A.

    2004-01-01

    Net mass flux from the stratosphere to the troposphere can be computed from the heating rate along the 380K isentropic surface and the time rate of change of the mass of the lowermost stratosphere (the region between the tropopause and the 380K isentrope). Given this net mass flux and the cross tropopause diabatic mass flux, the residual adiabatic mass flux across the tropopause can also be estimated. These fluxes have been computed using meteorological fields from a free-running general circulation model (FVGCM) and two assimilation data sets, FVDAS, and UKMO. The data sets tend to agree that the annual average net mass flux for the Northern Hemisphere is about 1P10 kg/s. There is less agreement on the southern Hemisphere flux that might be half as large. For all three data sets, the adiabatic mass flux is computed to be from the upper troposphere into the lowermost stratosphere. This flux will dilute air entering from higher stratospheric altitudes. The mass fluxes are convolved with ozone mixing ratios from the Goddard 3D CTM (which uses the FVGCM) to estimate the cross-tropopause transport of ozone. A relatively large adiabatic flux of tropospheric ozone from the tropical upper troposphere into the extratropical lowermost stratosphere dilutes the stratospheric air in the lowermost stratosphere. Thus, a significant fraction of any measured ozone STE may not be ozone produced in the higher Stratosphere. The results also illustrate that the annual cycle of ozone concentration in the lowermost stratosphere has as much of a role as the transport in the seasonal ozone flux cycle. This implies that a simplified calculation of ozone STE mass from air mass and a mean ozone mixing ratio may have a large uncertainty.

  15. Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece).

    PubMed

    Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H

    2015-07-24

    The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age 'Minoan' eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth's ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions.

  16. Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece)

    PubMed Central

    Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H.

    2015-01-01

    The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age ‘Minoan’ eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth’s ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions. PMID:26206616

  17. Stratospheric Ozone destruction by the Bronze-Age Minoan eruption (Santorini Volcano, Greece)

    NASA Astrophysics Data System (ADS)

    Cadoux, Anita; Scaillet, Bruno; Bekki, Slimane; Oppenheimer, Clive; Druitt, Timothy H.

    2015-07-01

    The role of volcanogenic halogen-bearing (i.e. chlorine and bromine) compounds in stratospheric ozone chemistry and climate forcing is poorly constrained. While the 1991 eruption of Pinatubo resulted in stratospheric ozone loss, it was due to heterogeneous chemistry on volcanic sulfate aerosols involving chlorine of anthropogenic rather than volcanogenic origin, since co-erupted chlorine was scavenged within the plume. Therefore, it is not known what effect volcanism had on ozone in pre-industrial times, nor what will be its role on future atmospheres with reduced anthropogenic halogens present. By combining petrologic constraints on eruption volatile yields with a global atmospheric chemistry-transport model, we show here that the Bronze-Age ‘Minoan’ eruption of Santorini Volcano released far more halogens than sulfur and that, even if only 2% of these halogens reached the stratosphere, it would have resulted in strong global ozone depletion. The model predicts reductions in ozone columns of 20 to >90% at Northern high latitudes and an ozone recovery taking up to a decade. Our findings emphasise the significance of volcanic halogens for stratosphere chemistry and suggest that modelling of past and future volcanic impacts on Earth’s ozone, climate and ecosystems should systematically consider volcanic halogen emissions in addition to sulfur emissions.

  18. How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?

    NASA Astrophysics Data System (ADS)

    Lubis, Sandro W.; Silverman, Vered; Matthes, Katja; Harnik, Nili; Omrani, Nour-Eddine; Wahl, Sebastian

    2017-02-01

    It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry-climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.

  19. Potential Effects of Methane and Nitrous Oxide on the Recovery of Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wuebbles, D. J.

    2005-05-01

    Stratospheric ozone concentrations have been significantly reduced in recent decades as a result of human activities. The international agreement to protect stratospheric ozone, the Montreal Protocol, has effectively reduced the human-related emissions of halocarbons containing chlorine and bromine. Since the implementation of the international controls on ozone depleting chemicals, an important focus in studies of stratospheric ozone has been on the detection of a turnaround in the downward trend and determination of when a recovery will occur, where a recovery is defined as a return to levels of ozone in the 1970s before the existence of the Antarctica ozone "hole". If halocarbons remained the only relevant human-related factor affecting ozone, the ozone layer would be expected to recover by roughly 2040-2045. However, there are a number of other factors, including non-CO2 greenhouse gas emissions, affecting the future recovery of ozone. In this study, we considered a range of scenarios for future trace gases emissions developed by IPCC (2001) using the UIUC two-dimensional Chemical-Transport Model (UIUC 2D CTM). We found that the future recovery depended greatly on future emissions of two major greenhouse gases, methane (CH4) and nitrous oxide (N2O). Evaluation of the effects of scenarios developed by the IPCC (Intergovernmental Panel on Climate Change, 2001) for future emissions of methane, nitrous oxide, and other gases suggests that these gases could greatly affect ozone recovery, including the possibility of ozone not recovering in this century. In addition, under all cases, the ozone distribution is always greatly different than that in the pre-1980 atmosphere.

  20. The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate

    NASA Astrophysics Data System (ADS)

    Keeble, J.; Braesicke, P.; Abraham, N. L.; Roscoe, H. K.; Pyle, J. A.

    2014-12-01

    The impact of polar stratospheric ozone loss resulting from chlorine activation on polar stratospheric clouds is examined using a pair of model integrations run with the fully coupled chemistry climate model UM-UKCA. Suppressing chlorine activation through heterogeneous reactions is found to produce modelled ozone differences consistent with observed ozone differences between the present and pre-ozone hole period. Statistically significant high-latitude Southern Hemisphere (SH) ozone loss begins in August and peaks in October-November, with > 75% of ozone destroyed at 50 hPa. Associated with this ozone destruction is a > 12 K decrease of the lower polar stratospheric temperatures and an increase of > 6 K in the upper stratosphere. The heating components of this temperature change are diagnosed and it is found that the temperature dipole is the result of decreased short-wave heating in the lower stratosphere and increased dynamical heating in the upper stratosphere. The cooling of the polar lower stratosphere leads, through thermal wind balance, to an acceleration of the polar vortex and delays its breakdown by ~ 2 weeks. A link between lower stratospheric zonal wind speed, the vertical component of the Eliassen-Palm (EP) flux, Fz and the residual mean vertical circulation, w*, is identified. In November and December, increased westerly winds and a delay in the breakup of the polar vortex lead to increases in Fz, indicating increased wave activity entering the stratosphere and propagating to higher altitudes. The resulting increase in wave breaking, diagnosed by decreases to the EP flux divergence, drives enhanced downwelling over the polar cap. Many of the stratospheric signals modelled in this study propagate down to the troposphere, and lead to significant surface changes in December.

  1. Chlorofluorocarbon production scenarios: possible changes to stratospheric ozone

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.; Nold, A.; Wood, W.P.

    1981-01-01

    As one aspect of the regulatory process, the Environmental Protection Agency has derived a series of scenarios for future atmospheric emission rates of the chlorofluorocarbons CFCl/sub 3/ (also referred to as F-11), CF/sub 2/Cl/sub 2/ (F-12), CCl/sub 2/FCClF/sub 2/(F-113), CClF/sub 2/CClF/sub 2/(F-114), and CClF/sub 2/CF/sub 3/ (F-115). These scenarios are based on potential industrial production and commercial applications, and the eventual release of these chemicals into the atmosphere. In this study, the potential effect on stratospheric ozone resulting from future chlorofluorocarbon emissions as suggested by these scenarios is examined. Assessments are based upon model calculations using the one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere developed at Lawrence Livermore National Laboratory. The change in total ozone column calculated for the seven scenarios as a function of time is given. (JGB)

  2. A New Connection Between Greenhouse Warming and Stratospheric Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Salawitch, R.

    1998-01-01

    The direct radiative effects of the build-up of carbon dioxide and other greenhouse gases have led to a gradual cooling of the stratosphere with largest changes in temperature occurring in the upper stratosphere, well above the region of peak ozone concentration.

  3. The impact of polar stratospheric ozone loss on Southern Hemisphere stratospheric circulation and climate

    NASA Astrophysics Data System (ADS)

    Keeble, J.; Braesicke, P.; Abraham, N. L.; Roscoe, H. K.; Pyle, J. A.

    2014-07-01

    The impact of polar stratospheric ozone loss resulting from chlorine activation on polar stratospheric clouds is examined using a pair of model integrations run with the fully coupled chemistry climate model UM-UKCA. Suppressing chlorine activation through heterogeneous reactions is found to produce modelled ozone differences consistent with observed ozone differences between the present and pre-ozone hole period. Statistically significant high latitude Southern Hemisphere (SH) ozone loss begins in August and peaks in October-November, with >75% of ozone destroyed at 50 hPa. Associated with this ozone destruction is a >12 K decrease of the lower polar stratospheric temperatures and an increase of >6 K in the upper stratosphere. The heating components of this temperature change are diagnosed and it is found that the temperature dipole is the result of decreased shortwave heating in the lower stratosphere and increased dynamical heating in the upper stratosphere. The cooling of the polar lower stratosphere leads, through thermal wind balance, to an acceleration of the polar vortex and delays its breakdown by ~2 weeks. A link between lower stratospheric zonal wind speed, the vertical component of the EP flux, Fz, and the residual mean vertical circulation, w*, is identified. In December and January, increased westerly winds lead to increases in Fz, associated with an increase in tropopause height. The resulting increase in wavebreaking leads to enhanced downwelling/reduced upwelling over the polar cap. Many of the stratospheric signals modelled in this study propagate down to the troposphere, and lead to significant surface changes in December.

  4. Measurements of stratospheric ozone and aerosols above Spitsbergen

    NASA Technical Reports Server (NTRS)

    Neuber, Roland; Beyerle, Georg; Schrems, Otto; Fabian, Rolf; Vondergathen, Peter; Krueger, Bernd C.

    1994-01-01

    Stratospheric ozone and aerosol data recorded at Spitsbergen (79 deg N, 12 deg E) from 1988 to 1992 are presented. Strong dynamical influences like seasonal variations and annual cycles in the ozone concentrations are described. Polar Stratospheric Clouds were detected above Spitsbergen in January 1989 and 1990, but not in the next two years. Volcanic aerosols, attributed to the Mt. Pinatubo eruption, appeared as early as August 1991 above Spitsbergen and were a constant feature of the lower Arctic stratosphere in winter 1991/92.

  5. Examination of stratospheric ozone photochemistry in light of recent data

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Callis, Linwood B.

    1989-01-01

    The consistency of stratospheric ozone photochemistry is examined using data from the Atmospheric Trace Molecule Spectroscopy (ATMOS) and LIMS experiments. The ATMOS experiment measured vertical profiles of important trace constituents and temperature in the stratosphere during 1985. These observations have been used to constrain the levels of odd nitrogen and odd chlorine in a photochemical model. This model yields O3 mixing ratios that are in good agreement with the observations. The deviation in ozone is less than 20 percent except near 52 km. The updated model has also been used in conjunction with the LIMS data to simulate the stratospheric photochemistry corresponding to the 1979 time period.

  6. Examination of stratospheric ozone photochemistry in light of recent data

    NASA Astrophysics Data System (ADS)

    Natarajan, Murali; Callis, Linwood B.

    1989-05-01

    The consistency of stratospheric ozone photochemistry is examined using data from the Atmospheric Trace Molecule Spectroscopy (ATMOS) and LIMS experiments. The ATMOS experiment measured vertical profiles of important trace constituents and temperature in the stratosphere during 1985. These observations have been used to constrain the levels of odd nitrogen and odd chlorine in a photochemical model. This model yields O3 mixing ratios that are in good agreement with the observations. The deviation in ozone is less than 20 percent except near 52 km. The updated model has also been used in conjunction with the LIMS data to simulate the stratospheric photochemistry corresponding to the 1979 time period.

  7. Fluorine photochemistry in the stratosphere. [effect on ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Rundel, R. D.

    1975-01-01

    The photochemistry of fluorine in the stratosphere is surveyed in order to estimate the effect on ozone of fluorine atoms released by the breakdown of chlorofluoromethanes. The catalytic efficiency for ozone destruction by fluorine is found to be less than .0001 that of chlorine in the altitude range from 25 to 50 km.

  8. 77 FR 58081 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... because their emissions into the atmosphere are highly destructive to the stratospheric ozone layer. This... would assist in restoring the stratospheric ozone layer, avoiding adverse climate impacts, and result in... AGENCY 40 CFR Part 82 RIN-2060-AQ84 Protection of Stratospheric Ozone: Listing of Substitutes for...

  9. Stratospheric ozone, solar activity and volcanism

    NASA Astrophysics Data System (ADS)

    Komitov, Boris; Stoychev, Konstantin

    The aim of this study is to investigate the long-term (multiannual) variations of the total ozone content (TOC) on the base of TOMS instrument measurements on the board of Nimbus-7 satellite for the period 1979 -- 1993 AD. The total effects of the solar activity influence over stratosphere ozone has been investigated by using multiple regression analysis. The monthly radio-index F10.7, the cosmic rays neutron flux, the geomagnetic index Ap and the number of GOES x-ray X-class flares have been used as solar or solar-modulated parameters as predictors in the model. The global mean-monthly TOC-parameter has been used as a predictant. It has been found that the coefficient of correlation of the model between TOC and above-mentioned solar and geomagnetic factors is about 0.544. Thus the corresponding factor variance is about 37%. The results calculated by the model have been removed from the original TOC data. It has been found out that during the first 12 years since 1979 the downward trend is predominantly caused by the solar and solar-modulated processes. However during the remaining 3 years after 1990 the slope of the negative trend has been essentially increased. This phenomenon could only be explained by some catastrophic event. Most probably such one is the Pinatubo volcano eruption in June, 1991. An evidence for the possibility that the last one is caused by trigger effect from the extremely high solar flare activity in May -- June 1991, is given.

  10. Influence of Stratospheric Ozone Distribution on Tropospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady

    2015-04-01

    In the present study we investigate the cause-and-effect relationship between the stratospheric ozone distribution and tropospheric circulation, focusing our attention mainly on the possible "top-down" side of this interaction: the impact of the stratosphere on tropospheric circulation patterns and the associated weather and climate conditions. Proceeding from analysis of several decades of observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggests a clear relation between the stratospheric ozone distribution, temperature field of the lower stratosphere and air-masses boundaries in the upper troposphere, we combine atmospheric reanalyzes and ground-based observations with numerical simulations to identify features of the general circulation that can be traced back to anomalies in the stratospheric ozone field. Specifically, we analyze the time evolution of instantaneous position of the stationary upper-level atmospheric fronts, defining the boundaries of global tropospheric air masses associated with basic cells of general circulation. We assume that stratospheric heating in ozone-related processes can exert its influence on the location of stationary fronts and characteristics of general circulation cells by displacing the tropopause, which itself is defined by a dynamical equilibrium between tropospheric vertical convection and stratospheric radiative heating. As an example, we consider the Spring season of 2013. Unusually high total ozone column (TOC) values observed in Northern Hemisphere (NH) at the beginning of 2013 induced low tropopause level in the Atlantic region and southward displacement of the polar front, leading to an anomalously cold Spring in Europe. Furthermore, we study manifestations of this mechanism in the aftermath of sudden stratospheric warming (SSW) events. In particular, the November 2013 SSW over Eastern Siberia, which is characterized by abrupt stratospheric temperatures change in the course of one day

  11. Investigating the influence of stratospheric ozone trends on Southern Hemisphere hydrological climate change

    NASA Astrophysics Data System (ADS)

    Purich, Ariaan

    Changes in stratospheric ozone have previously been linked to Southern Hemisphere (SH) circulation changes. This study examines output from coupled climate models participating in the Climate Model Intercomparison Project 3 (CMIP3) for trends in precipitation and evaporation in the 20th and 21st centuries to assess whether stratospheric ozone influences the hydrological cycle and extreme precipitation in the SH extratropics, particularly during austral summer. Nineteen models are used, of which 10 incorporated ozone depletion (recovery) in the 20th (21st) century, whilst nine simply prescribed climatological ozone in both past and future climates. Trends in seasonal-mean precipitation are found to dominate overall changes in precipitation minus evaporation. For the 20th century, models with ozone depletion show a significant increase (decrease) in summer precipitation in high latitudes (mid-latitudes) compared to models without ozone depletion. In contrast, for the 21st century, models without ozone recovery show significantly larger changes in summer precipitation in these regions compared to models with ozone recovery. No significant differences, however, are found in the two sets of models during austral winter when stratospheric ozone is inactive. These results suggest that Antarctic ozone depletion and recovery significantly modulates hydrological climate change in the SH extratropics, in agreement with findings of previous studies. It is further found that stratospheric ozone primarily affects the frequency of light precipitation events (1--10 mm day--1 ), indicating that an increase in mean precipitation over the Southern Ocean corresponds to an increase in the number of light precipitation days rather than extreme events. Implications of this finding to the SH surface climate and Southern Ocean circulation changes are discussed.

  12. An Ozone Increase in the Antarctic Summer Stratosphere: A Dynamical Response to the Ozone Hole

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Douglass, A. R.; Gupta, M.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.; Nielsen, J. E.

    2007-01-01

    Profiles of ozone concentration retrieved from the SBUV series of satellites show an increase between 1979 and 1997 in the summertime Antarctic middle stratosphere (approx. 25-10 hPa). Data over the South Pole from ozone sondes confirm the increase. A similar ozone increase is produced in a chemistry climate model that allows feedback between constituent changes and the stratospheric circulation through radiative heating. A simulation that excludes the radiative coupling between predicted ozone and the circulation does not capture this ozone increase. We show that the ozone increase in our model simulations is caused by a dynamical feedback in response to the changes in the stratospheric wind fields forced by the radiative perturbation associated with the Antarctic ozone hole.

  13. Model Simulations of Ozone in the Summer Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Kawa, S. R.

    1998-01-01

    The Goddard 3D chemistry and transport model (CTM) uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System (GEOS DAS); thus CTM simulations can be compared directly with observations from satellite, balloon and aircraft. In general, aspects of these comparisons show remarkable agreement between observation and model. One significant difference is that the model ozone is high biased below the ozone peak. The bias is apparently largest at high latitudes during the summer months. At the same time, comparisons with HALOE observations show that at mid to high latitudes, the ozone mixing ratio peak appears persistently at a lower altitude than observed by HALOE; the peak mixing ratio is also overestimated by the model. Both transport and photochemistry are possible contributors to the biased ozone in the lower stratosphere - excessive downward motion would increase lower stratospheric ozone, as would a too large vertical gradient in ozone. On the other hand, comparisons of model N2O and NOy with observations suggest transport deficiencies in the opposite sense, i.e., model N2O can be high relative to observations (particularly during winter), suggesting the need for stronger downward transport. Sensitivity studies have been carried out using parameterizations for ozone production and loss, NOy production and loss, and N2O loss. The goal of these studies is to clarify how problems in the photochemical scheme at and above the ozone peak influence the lower stratospheric ozone.

  14. Evidence for slowdown in stratospheric ozone loss: First stage of ozone recovery

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Yang, Eun-Su; Cunnold, D. M.; Reinsel, C.; Zawodny, J. M.; Russell, James M., III

    2003-01-01

    Global ozone trends derived from the Stratospheric Aerosol and Gas Experiment I and II (SAGE I/II) combined with the more recent Halogen Occultation Experiment (HALOE) observations provide evidence of a slowdown in stratospheric ozone losses since 1997. This evidence is quantified by the cumulative sum of residual differences from the predicted linear trend. The cumulative residuals indicate that the rate of ozone loss at 35- 45 km altitudes globally has diminished. These changes in loss rates are consistent with the slowdown of total stratospheric chlorine increases characterized by HALOE HCI measurements. These changes in the ozone loss rates in the upper stratosphere are significant and constitute the first stage of a recovery of the ozone layer.

  15. Impact of Stratospheric Ozone Distribution on Features of Tropospheric Circulation

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady

    2016-04-01

    In this work we study connections between stratospheric ozone distribution and general circulation patterns in the troposphere and aim to investigate the causal relationship between them, including the practical side of the influence of stratospheric ozone on tropospheric medium-range weather and regional climate. Analysis of several decades of observational data, which has been performed at the A.I. Voeikov Main Geophysical Observatory, suggests a clear relation between the stratospheric ozone distribution, upper stratospheric temperature field and planetary-scale air-masses boundaries in the troposphere [1]. Furthermore, it has been shown that each global air-mass, which can be attributed to the corresponding circulation cell in a conceptual model of tropospheric general circulation, has a distinct "regime" of ozone vertical distribution in the stratosphere [1-3]. Proceeding from atmospheric reanalyses combined with satellite and ground-based observations, we study time evolution of the upper-level frontal zones (stationary fronts) with the relevant jet streams, which can be treated as boundaries of global air-masses, in connection with the tropopause height and distribution of ozone in the stratosphere. For that, we develop an algorithm for automated identification of jet streams, stationary fronts and tropopause surface from gridded data (reanalyses or modelling results), and apply it for several cases associated with rapid changes in the stratospheric temperature and ozone fields, including SSW events over Eastern Siberia. Aiming to study the causal relationship between the features of tropospheric circulation and changes in the stratospheric ozone field, we estimate the time lag between these categories of processes on different time scales. Finally, we discuss the possibility to use the elementary circulation mechanisms classification (by B.L. Dzerdzeevski) in connection with analysis of the stratospheric ozone field and the relevant stratosphere

  16. Stratospheric temperature-ozone relationships 1978-1986

    NASA Technical Reports Server (NTRS)

    Gelman, M. E.; Nagatani, R. M.; Miller, A. J.; Johnson, K. W.

    1989-01-01

    Global stratospheric temperature and geopotential height at eight pressure levels (70, 50, 30, 10, 5, 2, 1, and 0.4 hPa) were derived at NMC daily since October 1978. These fields are based on NOAA operational satellite sounder information. Comparable daily global fields of stratospheric ozone (30 to 0.4 hPa and total ozone) were derived from the SBUV instrument on Nimbus 7 and are now derived from the operational NOAA SBUV/2 instrument. The ozone and meteorological fields are verified against ground based measurements (Umkehr, balloon, rocket, lidar) to determine fields of temperature and ozone was assembled. Some of the interesting features of correlation between the synoptic patterns of the two data sets as well as their change with time are discussed. Seasonal as well as interannual variations in the patterns of correlation are compared in the Northern and Southern Hemisphere polar regions. Other outstanding features in both the temperature and ozone fields are highlighted.

  17. The 2010 Antarctic ozone hole: observed reduction in ozone destruction by minor sudden stratospheric warmings.

    PubMed

    de Laat, A T J; van Weele, M

    2011-01-01

    Satellite observations show that the 2010 Antarctic ozone hole is characterized by anomalously small amounts of photochemical ozone destruction (40-60% less than the 2005-2009 average). Observations from the MLS instrument show that this is mainly related to reduced photochemical ozone destruction between 20-25 km altitude. Lower down between 15-20 km the atmospheric chemical composition and photochemical ozone destruction is unaffected. The modified chemical composition and chemistry between 20-25 km altitude in 2010 is related to the occurrence of a mid-winter minor Antarctic Sudden Stratospheric Warming (SSW). The measurements indicate that the changes in chemical composition are related to downward motion of air masses rather than horizontal mixing, and affect stratospheric chemistry for several months. Since 1979, years with similar anomalously small amounts of ozone destruction are all characterized by either minor or major SSWs, illustrating that their presence has been a necessary pre-condition for reduced Antarctic stratospheric ozone destruction.

  18. Millimeter-wave ozone measurements for the network for the detection of stratospheric change

    NASA Technical Reports Server (NTRS)

    Connor, Brian J.; Parrish, Alan

    1990-01-01

    The primary research objective is to initiate long-term monitoring of stratospheric ozone with a ground-based millimeter-wave spectrometer, the first of several such instruments projected to be part of the Network for the Detection of Stratospheric Change. The ultimate goal of this monitoring is twofold. First, to detect any secular trend in stratospheric ozone abundance, whether of natural or anthropogenic origin and, second, to provide ground-truth validation for existing and future satellite measurements of ozone. With this goal in mind, a more immediate objective is to validate the millimeter-wave measurements by tests of the instrument, internal consistency tests on the data, and most importantly, by intercomparison with all other available ozone measurements. The validation process is expected to lead to refinements in the instrument and its operating procedures and in the data analysis. The final objective is to perform short-term scientific studies with the data, including studies of the ozone diurnal and seasonal variations, and comparison of ozone variations with changes in other geophysical parameters, notably temperature and water vapor. Routine observations are now ongoing; these will allow continuing intercomparisons with the Stratospheric Aerosol and Gas Experiment (SAGE II) and one of the lidars, which is permanently on site. The experience gained during the Stratospheric Ozone Intercomparison (STOIC) caused us to refine our calibration procedures and identify the need for internal shielding of the millimeter receiver from radio frequency interference. Installation of this shielding is planned for the near future and should allow improvements in the instrument calibration and a higher signal-to-noise ratio, both of which will result in improved measurement precision.

  19. Effect of Lower Stratospheric Ozone on Trends and Interannual Variability in Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Terao, Y.; Logan, J. A.

    2006-12-01

    Increased emissions of ozone precursors may cause increases in tropospheric ozone. Ozonesonde measurements show that tropospheric ozone increased over Europe and Japan, but did not increase over the U.S., and decreased over Canada from 1970 to 1996 [Logan et al., 1999]. Regional differences in the amount of stratospheric ozone input to the troposphere may have contributed to the spatially inhomogeneous trends in tropospheric ozone. We investigate the effect of input of stratospheric ozone on tropospheric ozone using ozonesonde data and simulations for 1975-2025 by the NASA/Goddard Space Flight Center (GFSC) Chemistry Transport Model (CTM) driven by Finite-Volume General Circulation Model (FVGCM) output [Stolarski et al., 2006]. In the GSFC-CTM simulations, tropospheric ozone and stratospheric ozone are treated as separate tracers (O3-trop and O3-strat, below). The seasonal cycle of lower stratospheric and tropospheric ozone in the GSFC-CTM simulations generally agrees well with ozonesonde measurements but the model has a larger spring maximum than the observations. We found a significant correlation between time series of monthly ozone anomalies in the lower stratosphere (200 hPa) and in the mid-troposphere (500 hPa) over the U.S., Atlantic, and Europe, but lower correlations over Asia, in both the observations and the simulations. There are also inhomogeneous patterns for trends in the O3-strat tracer in the mid-troposphere. These analyses support the idea that variations in stratospheric input may be affecting interannual variability and trends in tropospheric ozone.

  20. Antarctic Stratospheric Ozone from the Assimilation of Occultation Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Wargan, Krzysztof

    2004-01-01

    Ozone data from the solar occultation Polar Ozone and Aerosol Measurement (POAM) III instrument are included in the ozone assimilation system at NASA's Global Modeling and Assimilation Office, which uses Solar Backscatter UItraViolet/2 (SBUV/2) instrument data. Even though POAM data are available at only one latitude in the southern hemisphere on each day, their assimilation leads to more realistic ozone distribution throughout the Antarctic region, especially inside the polar vortex. Impacts of POAM data were evaluated by comparisons of assimilated ozone profiles with independent ozone sondes. Major improvements in ozone representation are seen in the Antarctic lower stratosphere during austral Winter and spring in 1998. Limitations of assimilation of sparse occultation data are illustrated by an example.

  1. Wintertime Polar Ozone Evolution during Stratospheric Vortex Break-Down

    NASA Astrophysics Data System (ADS)

    Tweedy, O.; Limpasuvan, V.; Smith, A. K.; Richter, J. H.; Orsolini, Y.; Stordal, F.; Kvissel, O.

    2011-12-01

    Stratospheric Sudden Warming (SSW) is characterized by the rapid warming of the winter polar stratosphere and the weakening of the circumpolar flow. During the onset of a major SSW (when the circumpolar flow reverses direction), the warm stratopause layer (SL) descends from its climatological position to the mid-stratosphere level. As the vortex recovers from SSW, a "new" SL forms in the mid-mesosphere region before returning to its typical level. This SL discontinuity appears in conjunction with enhanced downward intrusion of chemical species from the lower thermosphere/upper mesosphere to the stratosphere. The descended species can potentially impact polar ozone. In this study, the NCAR's Whole Atmosphere Community Climate Model (WACCM) is used to investigate the behavior of polar ozone related to major SSWs. Specifically, dynamical evolution and chemistry of NOx, CO, and O3 are examined during three realistic major SSWs and compared with a non-SSW winter season. The simulated (zonal-mean) polar ozone distribution exhibits a "primary" maximum near 40 km, a "secondary" maximum between 90-105 km, and a "tertiary" maximum near 70 km. The concentration of the secondary maximum reduces by ~1.5 parts per million by volume (ppmv) as the vortex recovers and the upper mesospheric polar easterlies return. Enhanced downwelling above the newly formed SL extends up to just above this secondary maximum (~110 km). With an averaged concentration of 2 ppmv, the tertiary ozone maximum layer displaces upward with enhanced upwelling during SSW in conjunction with the lower mesospheric cooling. The downward propagation of the stratospheric wind reversal is accompanied by CO intrusion toward the lowermost stratosphere and anomalous behavior in the primary ozone maximum. Overall, the major SSW, SL, and polar ozone evolution mimic recently reported satellite observations.

  2. Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke

    2015-01-01

    The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.

  3. ENSO effects on stratospheric ozone: A nudged model perspective

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kirner, Oliver; Versick, Stefan; Joeckel, Patrick

    2015-04-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is an important pacemaker for interannual variability in the Earth's atmosphere. ENSO impacts on ozone have been observed and modelled for the stratosphere and the troposphere. It is well recognized that attribution of ENSO variability is important for trend detection. ENSO impacts in low latitudes are easier to detect, because the response emerges close (temporally and spatially) to the forcing. Moving from low to high latitudes it becomes increasingly difficult to isolate ENSO driven variability, due to time-lags involved and many other modes of variability playing a role as well. Here, we use a nudged version of the EMAC chemistry-climate model to evaluate ENSO impacts on ozone over the last 35 years. In the nudged mode configuration EMAC is not entirely free running. The tropospheric meteorology is constrained using ERA-Interim data. Only the upper stratosphere and the composition (including ozone) are calculated without additional observational constraints. Using lagged correlations and supported by additional idealised modelling, we describe the ENSO impact on tropospheric and stratospheric ozone in the EMAC system. We trace the ENSO signal from the tropical lower troposphere to the polar lower and middle stratosphere. Instead of distinguishing tropospheric and stratospheric responses, we present a coherent approach detecting the ENSO signal as a function of altitude, latitude and time, and demonstrate how a concise characterisation of the ENSO impact aids improved trend detection.

  4. The impact of the stratospheric ozone distribution on large-scale tropospheric systems over South America

    NASA Astrophysics Data System (ADS)

    Da Silva, L. A.; Vieira, L. A.; Prestes, A.; Pacini, A. A.; Rigozo, N. R.

    2013-12-01

    Most of the large-scale changes of the climate can be attributed to the cumulative impact of the human activities since the beginning of the industrial revolution. However, the impact of natural drivers to the present climate change is still under debate, especially on regional scale. These regional changes over South America can potentially affect large vulnerable populations in the near future. Here, we show that the distribution of the stratospheric ozone can affect the climate patterns over South America and adjoin oceans. The impact of the stratospheric ozone distribution was evaluated employing the Global Atmospheric-Ocean Model developed by the Goddard Institute for Space Studies (GISS Model E). We conducted two numerical experiments. In the first experiment we used a realistic distribution of the stratospheric ozone, while in the second experiment we employed a uniform longitudinal distribution. We have integrated each model over 60 years. We find that the distribution of stratospheric ozone has a strong influence on the Intertropical Convergence Zone (ITCZ) and South Atlantic Convergence Zone (SACZ). However, the Upper Tropospheric Cyclonic Vortex (UTCV) is not affected by the ozone's distribution.

  5. Climate change and atmospheric chemistry: how will the stratospheric ozone layer develop?

    PubMed

    Dameris, Martin

    2010-10-25

    The discovery of the ozone hole over Antarctica in 1985 was a surprise for science. For a few years the reasons of the ozone hole was speculated about. Soon it was obvious that predominant meteorological conditions led to a specific situation developing in this part of the atmosphere: Very low temperatures initiate chemical processes that at the end cause extreme ozone depletion at altitudes of between about 15 and 30 km. So-called polar stratospheric clouds play a key role. Such clouds develop at temperatures below about 195 K. Heterogeneous chemical reactions on cloud particles initiate the destruction of ozone molecules. The future evolution of the ozone layer will not only depend on the further development of concentrations of ozone-depleting substances, but also significantly on climate change.

  6. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    PubMed

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the

  7. How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short-lived bromocarbons?

    NASA Astrophysics Data System (ADS)

    Yang, X.; Abraham, N. L.; Archibald, A. T.; Braesicke, P.; Keeble, J.; Telford, P. J.; Warwick, N. J.; Pyle, J. A.

    2014-10-01

    Naturally produced very short-lived substances (VSLS) account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here, by using a chemistry-climate model, UM-UKCA, we investigate the impact of a hypothetical doubling (an increase of 5 ppt Bry) of VSLS bromocarbons on ozone and how the resulting ozone changes depend on the background concentrations of chlorine and bromine. Our model experiments indicate that for the 5 ppt increase in Bry from VSLS, the ozone decrease in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone decrease in the Northern Hemisphere (NH) is smaller (4-6%). The largest impact on the ozone column is found in the Antarctic spring. There is a significantly larger ozone decrease following the doubling of the VSLS burden under a high stratospheric chlorine background than under a low chlorine background, indicating the importance of the inter-halogen reactions. For example, the decline in the high-latitude, lower-stratospheric ozone concentration as a function of Bry is higher by about 30-40% when stratospheric Cly is ~ 3 ppb (present day), compared with Cly of ~ 0.8 ppb (a pre-industrial or projected future situation). Bromine will play an important role in the future ozone layer. However, even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will likely be dominated by the decrease in anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recovery date could be delayed by approximately 6-8 years, depending on Cly

  8. Ozone in the troposphere and stratosphere, part 2

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D. (Editor)

    1994-01-01

    This is the second of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  9. Ozone in the Troposphere and Stratosphere, part 1

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D.

    1994-01-01

    This is the first part of a 2-part Conference Publication. This document contains papers presented at the 1992 Quadrennial Ozone Symposium held at the Charlottesville, Virginia, from June 4-13, 1992. The papers cover topics in both Tropospheric and Stratospheric research. These topics include ozone trends and climatology, ground based, aircraft, balloon, rocket and satellite measurements, Arctic and Antarctic research, global and regional modeling, and volcanic effects.

  10. Monitoring of the stratospheric ozone layer by laser radar

    NASA Astrophysics Data System (ADS)

    Werner, J.; Rothe, K. W.; Walther, H.

    1983-11-01

    Monitoring of the height distribution of atmospheric ozone up to 50 km is being performed with a ground-based lidar system, which has been in operation since October 1982 on the summit of Zugspitze in the German Alps. Daily and monthly averages of the ozone profile are being obtained with high precision. Furthermore, stratospheric aerosol layers, originating from the eruption of El Chichon volcano in Mexico in sping 1982 are being recorded.

  11. Ozone Production and Loss Rate Measurements in the Middle Stratosphere

    NASA Technical Reports Server (NTRS)

    Jucks, Kenneth W.; Johnson, David G.; Chance, K. V.; Traub, Wesley A.; Salawitch, R. J.; Stachnik, R. A.

    1996-01-01

    The first simultaneous measurements of HO(x), NO(x), and Cl(x) radicals in the middle stratosphere show that NO(x) catalytic cycles dominate loss of ozone (O3) for altitudes between 24 and 38 km; Cl(x) catalytic cycles are measured to be less effective than previously expected; and there is no 'ozone deficit' in the photochemically dominated altitude range from 31 and 38 km, contrary to some previous theoretical studies.

  12. Tunguska meteor fall of 1908: effects on stratospheric ozone.

    PubMed

    Turco, R P; Toon, O B; Park, C; Whitten, R C; Pollack, J B; Noerdlinger, P

    1981-10-02

    In 1908, when the giant Tunguska meteor disintegrated in the earth's atmosphere over Siberia, it may have generated as much as 30 million metric tons of nitric oxide (NO) in the stratosphere and mesosphere. The photochemical aftereffects of the event have been simulated using a comprehensive model of atmospheric trace composition. Calculations indicate that up to 45 percent of the ozone in the Northern Hemisphere may have been depleted by Tunguska's nitric oxide cloud early in 1909 and large ozone reductions may have persisted until 1912. Measurements of atmospheric transparentiy by the Smithsonian Astrophysical Observatory for the years 1909 to 1911 show evidence of a steady ozone recovery from unusually low levels in early 1909, implying a total ozone deficit of 30 +/- 15 percent. The coincidence in time between the observed ozone recovery and the Tunguska meteor fall indicates that the event may provide a test of current ozone depletion theories.

  13. Tunguska meteor fall of 1908 - Effects on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Park, C.; Whitten, R. C.; Pollack, J. B.; Noerdlinger, P.

    1981-01-01

    The Tunguska meteor, whose disintegration over Siberia in 1908 may have generated as much as 30 million metric tons of nitric oxide (NO) in the stratosphere and mesosphere, is discussed. The photochemical aftereffects of the event are simulated using a comprehensive model of atmospheric trace composition. Calculations are made which indicate that up to 45% of the ozone in the Northern Hemisphere may have been depleted by the meteor's nitric oxide cloud early in 1909 and that large ozone reductions may have persisted until 1912. Measurements of atmospheric transparency by the Smithsonian Astrophysical Observatory for the years 1909-1911 reveal evidence of a steady ozone recovery from unusually low levels in early 1909, implying a total ozone deficit of 30 + or - 15%. The coincidence in time between the observed ozone recovery and the Tunguska meteor fall suggests that the event may provide a test of current ozone depletion theories.

  14. Tunguska meteor fall of 1908: effects on stratospheric ozone

    SciTech Connect

    Turco, R.P.; Toon, O.B.; Park, C.; Whitten, R.C.; Pollack, J.B.; Noerdlinger, P.

    1981-10-02

    In 1908, when the giant Tunguska meteor disintegrated in the earth's atmosphere over Siberia, it may have generated as much as 30 million metric tons of nitric oxide (NO) in the stratosphere and mesosphere. The photochemical aftereffects of the event have been simulated using a comprehensive model of atmospheric trace composition. Calculations indicate that up to 45 percent of the ozone in the Northern Hemisphere may have been depleted by Tunguska's nitric oxide cloud early in 1909 and large ozone reductions may have persisted until 1912. Measurements of atmospheric transparency by the Smithsonian Astrophysical Observatory for the years 1909 to 1911 show evidence of a steady ozone recovery from unusually low levels in early 1909, implying a total ozone deficit of 30 +- 15 percent. The coincidence in time between the observed ozone recovery and the Tungska meteor fall indicates that the event may provide a test of current ozone depletion theories.

  15. Distribution of total ozone and stratospheric ozone in the tropics - Implications for the distribution of tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Larsen, Jack C.

    1987-01-01

    Climatologies of total columnar ozone and integrated stratospheric ozone amounts at low latitudes (15 deg N to 15 deg S), derived from satellite observations, are presented. A significant longitudinal variability in total ozone is present, with highest values generally located between 60 deg W and 60 deg E. The integrated stratospheric component of total ozone, on the other hand, does not exhibit a longitudinal preference for high values. Therefore it is hypothesized that the climatological longitudinal distribution of total ozone reflects the variability of the abundance of tropospheric ozone at low latitudes. Furthermore, it is speculated that in situ photochemical production of ozone resulting from biomass burning may be responsible for the observed enhancement of total ozone at these longitudes.

  16. Effects of stratospheric ozone recovery on tropospheric chemistry and air quality

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Wang, Y.

    2013-08-01

    The stratospheric ozone has decreased greatly since 1980 due to ozone depleting substances (ODSs). As a result of the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. We examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. Increases in ozone lifetime by up to 7% are calculated in the troposphere. The global average OH decreases by 1.74% and the global burden of tropospheric ozone increases by 0.78%. The perturbations to tropospheirc ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 5% for some regions.

  17. Vapor Measurements from the GSFC Stratospheric Ozone Lidar

    NASA Technical Reports Server (NTRS)

    McGee, T.

    2003-01-01

    Water vapor measurements from the GSFC Stratospheric Ozone Lidar were made for the first time during a campaign at NOAA's Mauna Loa Observatory. Comparisons were made among the GSFC lidar, the NOAA Lidar and water vapor sondes which were flown from the observatory at times coincident with the lidar measurements.

  18. Contribution of stratospheric ozone to the interannual variability of tropospheric ozone in the northern extratropics

    NASA Astrophysics Data System (ADS)

    Terao, Yukio; Logan, Jennifer A.; Douglass, Anne R.; Stolarski, Richard S.

    2008-09-01

    We examined the role of variability in the input of stratospheric ozone on the interannual variability of tropospheric ozone in the northern extratropics using correlations of monthly ozone anomalies for the lower stratosphere and the troposphere. We used output from a multiyear simulation of the NASA Goddard Space Flight Center (GSFC) Chemistry and Transport Model (CTM), and evaluated model results using ozonesonde data. The GSFC CTM explicitly calculates stratospheric ozone and simulates separate tracers of stratospheric and tropospheric ozone (O3-strat and O3-trop, respectively). The climatological seasonal cycle of ozone shows that O3-strat contributes significantly to the spring maximum of ozone at 500 hPa, ˜40% at high latitudes and ˜30% at midlatitudes. We find large regional differences in the correlation of ozone in the lower stratosphere and troposphere in the model that are supported by the ozonesonde data. Highest correlations are found from the eastern Atlantic to Europe, from the eastern Pacific to the western United States, and over the polar regions, in winter-spring. This spatial pattern is due to the input of O3-strat into the troposphere. The distribution and time lag of the correlations (highest with no lag for midlatitudes and a 1-2 month lag for polar regions) are consistent with the dynamical indicators of stratosphere-troposphere exchange (STE), such as storm tracks in the midlatitudes and slow descending motion in the polar region. Our simple approach can be widely applied to diagnose the effect of STE on tropospheric ozone.

  19. Measurements of stratospheric ozone by rocket ozonesondes in Japan

    NASA Technical Reports Server (NTRS)

    Watanabe, Takashi; Ogawa, Toshihiro

    1994-01-01

    A small optical ozone instrument has been developed for a rocket-borne dropsonde to measure the altitude profile of stratospheric ozone. It consists of a four-color filter photometer that measures the attenuation of sunlight as a function of altitude at four wavelengths in the middle ultraviolet. The ozone dropsonde is launched aboard a meteorological rocket MT-135, providing the altitude profiles of ozone as well as atmospheric temperature and wind. The rocket launchings have been carried out five times since August 1990 at Uchinoura (31 deg N, 131 deg E), Japan to measure ozone concentration from 52 to 20 km altitudes during the slow fall of the dropsonde. The ozone profiles measured in summer (August 27, 1990; Sep. 11 and 12, 1991) were very stable above an altitude of 28km. where as those measured in winter (Feb. 9, and 11, 1991) showed considerable day-to-day variations at the stratospheric altitudes. Ozone, temperature and wind profiles measured simultaneously by both rocket and balloon ozonsondes are compared with CIRA 1986 model atmosphere.

  20. Stratospheric ozone in the 21st Century: The chlorofluorocarbon problem

    SciTech Connect

    Rowland, F.S. )

    1991-04-01

    Ozone (O{sub 3}) exists in a dynamic equilibrium in the stratosphere, balanced between formation by solar ultraviolet photolysis ({lambda} < 242 nm) of molecular O{sub 2} (O + O{sub 2} {yields} O{sub 3}) and destruction by various chemical processes including several chain reaction sequences triggered by HO{sub x}, NO{sub x}, and ClO{sub x} radicals. The ozone dissipates over Antarctica by November through northward mixing, only to begin reappearing in late August of the following year. Substantial ozone losses have also appeared, although not as spectacularly as over Antarctica, in the Northern Hemisphere's temperate and polar regions. The primary cause for the Antarctic ozone loss, and the probable cause for the northern losses, is the increasing concentration in the stratosphere of anthropogenic chlorine, especially chlorine released by solar UV photolysis from chlorofluorocarbon (CFC) compounds such as CCl{sub 2}F{sub 2} (CFC-12), CCl{sub 3}F (CFC-11) and CCl{sub 2}FCClF{sub 2} (CFC-113). Because these molecules have average atmospheric lifetimes of many decades, excess anthropogenic chlorine will persist in the stratosphere for comparable time periods, and the Antarctic ozone hole will be an important atmospheric phenomenon throughout the 21st century.

  1. The uncertainty in ozone calculations by a stratospheric photochemistry model

    NASA Technical Reports Server (NTRS)

    Butler, D. M.

    1978-01-01

    At present, there is an apparent conflict between one-dimensional stratospheric photochemistry models used in predicting ozone depletion and average data for stratospheric ozone. This conflict is in three particulars - column density of O3 and ozone density in the regions around 30 km and 50 km altitude. A study of the sensitivity of one such model to the values of reaction rates, boundary conditions, solar intensities, photolysis cross sections, and O(1D) yield parameters reveals that even at the 2-sigma uncertainty limit due to these input parameters, the model does not overlap the data for O3 density at 30 km and 50 km. The data is outside the 1-sigma model uncertainty limit for O3 column density. The study also shows the relative contribution of the various parameters studied to the imprecision in these model results.

  2. Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.

  3. Stratospheric ozone depletion due to nitrous oxide: influences of other gases.

    PubMed

    Portmann, R W; Daniel, J S; Ravishankara, A R

    2012-05-05

    The effects of anthropogenic emissions of nitrous oxide (N(2)O), carbon dioxide (CO(2)), methane (CH(4)) and the halocarbons on stratospheric ozone (O(3)) over the twentieth and twenty-first centuries are isolated using a chemical model of the stratosphere. The future evolution of ozone will depend on each of these gases, with N(2)O and CO(2) probably playing the dominant roles as halocarbons return towards pre-industrial levels. There are nonlinear interactions between these gases that preclude unambiguously separating their effect on ozone. For example, the CH(4) increase during the twentieth century reduced the ozone losses owing to halocarbon increases, and the N(2)O chemical destruction of O(3) is buffered by CO(2) thermal effects in the middle stratosphere (by approx. 20% for the IPCC A1B/WMO A1 scenario over the time period 1900-2100). Nonetheless, N(2)O is expected to continue to be the largest anthropogenic emission of an O(3)-destroying compound in the foreseeable future. Reductions in anthropogenic N(2)O emissions provide a larger opportunity for reduction in future O(3) depletion than any of the remaining uncontrolled halocarbon emissions. It is also shown that 1980 levels of O(3) were affected by halocarbons, N(2)O, CO(2) and CH(4), and thus may not be a good choice of a benchmark of O(3) recovery.

  4. Stratospheric ozone intrusions into the troposphere over Central Europe

    NASA Astrophysics Data System (ADS)

    Kois, B.; Litynska, Z.; Jaczewski, A.

    The budget of ozone water vapour and other substances in the UTLS region is influenced by the transport and mixing across the tropopause The research is based mainly on regular ozonesoundings performed in Legionowo Poland 52 40 N 20 97 E since 1979 Until May 1993 the OSE ozone sensor of Brewer Mast type has been used and since June 1993 the ozonesoundings are continued with the ECC sensors Special attention was paid to the ozonopause defined as the bottom layer of ozone rich stratospheric air In most cases the ozonopause can be found easily by visual inspection but in some cases the wavy structure of ozone profile or weak ozone gradient in the UTLS region make some difficulties Profiles of temperature and relative humidity can give additional information The analysis of mutual location of tropopause and ozonopause show cases of tropical advection high tropopause and cases of ozone intrusions into the troposphere low ozonopause For some episodes dispersed throughout the year the ozonopause descended down to the altitude of 4-6 km For studying the origin of the air masses coming over Poland the 3-D backward and forward trajectories are used A unique episode of deep stratospheric intrusion into the troposphere occurred on the 11 th October 2005 The ozone sonde launched at Legionowo on that day revealed record ozone amount in the troposphere 78 D and record ozone mixing ratio near 4km 160 ppbv During earlier episode on the 4 th August 1993 very high ozone values of 100-110 ppbv were observed at Legionowo in the layer

  5. Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Chipperfield, M. P.; Montzka, S. A.; Rap, A.; Dhomse, S.; Feng, W.

    2015-03-01

    Halogens released from long-lived anthropogenic substances, such as chlorofluorocarbons, are the principal cause of recent depletion of stratospheric ozone, a greenhouse gas. Recent observations show that very short-lived substances, with lifetimes generally under six months, are also an important source of stratospheric halogens. Short-lived bromine substances are produced naturally by seaweed and phytoplankton, whereas short-lived chlorine substances are primarily anthropogenic. Here we used a chemical transport model to quantify the depletion of ozone in the lower stratosphere from short-lived halogen substances, and a radiative transfer model to quantify the radiative effects of that ozone depletion. According to our simulations, ozone loss from short-lived substances had a radiative effect nearly half that from long-lived halocarbons in 2011 and, since pre-industrial times, has contributed a total of about -0.02 W m-2 to global radiative forcing. We find natural short-lived bromine substances exert a 3.6 times larger ozone radiative effect than long-lived halocarbons, normalized by halogen content, and show atmospheric levels of dichloromethane, a short-lived chlorine substance not controlled by the Montreal Protocol, are rapidly increasing. We conclude that potential further significant increases in the atmospheric abundance of short-lived halogen substances, through changing natural processes or continued anthropogenic emissions, could be important for future climate.

  6. Ozone Temperature Correlations in the Upper Stratosphere as a Measure of Chlorine Content

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Ann R.; Remsberg, Ellis E.; Livesey, Nathaniel J.; Gille, John C.

    2012-01-01

    We use data from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) for the 1978-1979 period together with data from the Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS MLS) for the years 1993 to 1999, the Aura MLS for the years 2004 to 2011, and the Aura High Resolution Infrared Limb Sounder (HIRDLS) for the years 2005 to 2007 to examine ozone-temperature correlations in the upper stratosphere. Our model simulations indicate that the sensitivity coefficient of the ozone response to temperature (Delta ln(O3)/Delta.(l/T)) decreases as chlorine has increased in the stratosphere and should increase in the future as chlorine decreases. The data are in agreement with our simulation of the past. We also find that the sensitivity coefficient does not change in a constant-chlorine simulation. Thus the change in the sensitivity coefficient depends on the change in chlorine, but not on the change in greenhouse gases. We suggest that these and future data can be used to track the impact of chlorine added to the stratosphere and also to track the recovery of the stratosphere as chlorine is removed under the provisions of the Montreal Protocol.

  7. Ozone temperature correlations in the upper stratosphere as a measure of chlorine content

    NASA Astrophysics Data System (ADS)

    Stolarski, Richard S.; Douglass, Anne R.; Remsberg, Ellis E.; Livesey, Nathaniel J.; Gille, John C.

    2012-05-01

    We use data from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) for the 1978-1979 period together with data from the Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS MLS) for the years 1993 to 1999, the Aura MLS for the years 2004 to 2011, and the Aura High Resolution Infrared Limb Sounder (HIRDLS) for the years 2005 to 2007 to examine ozone-temperature correlations in the upper stratosphere. Our model simulations indicate that the sensitivity coefficient of the ozone response to temperature (Δln(O3)/Δ(1/T)) decreases as chlorine has increased in the stratosphere and should increase in the future as chlorine decreases. The data are in agreement with our simulation of the past. We also find that the sensitivity coefficient does not change in a constant-chlorine simulation. Thus the change in the sensitivity coefficient depends on the change in chlorine, but not on the change in greenhouse gases. We suggest that these and future data can be used to track the impact of chlorine added to the stratosphere and also to track the recovery of the stratosphere as chlorine is removed under the provisions of the Montreal Protocol.

  8. Prediction of Dynamical Impact of Changes in Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Cunnold, Derek M.

    1998-01-01

    Under this grant one paper by Lou et al and a second paper by Kindler et al is in journal. These papers both describe N2O simulations using UKMO and Goddard assimilated wind fields and comparisons of the results against CLAES N2O observations. The results of these studies indicate some of the difficulties of using the assimilated wind fields, and the vertical motions in particular, in simulating long term variations in trace gases in the stratosphere. On the other hand, qualitatively the results possess a number of features of the observations even on time scales longer than a month or two. More recently we have started to examine results obtained using NCAR models a 3D version of which also uses the UKMO assimilated wind fields. Calculations have already been made with their 2D model with emphasis on the seasonal cycle in ozone at high latitudes in the upper stratosphere. Simultaneously trends in stratospheric ozone have been studied in detail from SAGE and UARS observations. Moreover, observations of the trends since 1984 do not show a significant interhemispheric asymmetry in upper stratospheric ozone. Therefore any asymmetry in the trends must have occurred prior to the mid-eighties and would most likely have been related to interhemispheric differences in upper stratospheric temperature trends. Another activity has been to compile an ozone climatology from UARS and SAGE observations. This effort has been performed as part of a UARS team activity to assemble a climatology of all the UARS long-lived trace gases for 1992-1993.

  9. Validation of GOMOS ozone precision estimates in the stratosphere

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Tamminen, J.; Kyrölä, E.; Laeng, A.; von Clarmann, T.; Dalaudier, F.; Hauchecorne, A.; Bertaux, J.-L.; Barrot, G.; Blanot, L.; Fussen, D.; Vanhellemont, F.

    2014-07-01

    Accurate information about uncertainties is required in nearly all data analyses, e.g., inter-comparisons, data assimilation, combined use. Validation of precision estimates (viz., the random component of estimated uncertainty) is important for remote sensing measurements, which provide the information about atmospheric parameters by solving an inverse problem. For the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, this is a real challenge, due to the dependence of the signal-to-noise ratio (and thus precision estimates) on stellar properties, small number of self-collocated measurements, and growing noise as a function of time due to instrument aging. The estimated ozone uncertainties are small in the stratosphere for bright star occultations, which complicates validation of precision values, given the natural ozone variability. In this paper, we discuss different methods for geophysical validation of precision estimates and their applicability to GOMOS data. We propose a simple method for validation of GOMOS precision estimates for ozone in the stratosphere. This method is based on comparisons of differences in sample variance with differences in uncertainty estimates for measurements from different stars selected in a region of small natural variability. For GOMOS, the difference in sample variances for different stars at tangent altitudes 25-45 km is well explained by the difference in squared precisions, if the stars are not dim. Since this is observed for several stars, and since normalized χ2 is close to 1 for these occultations in the stratosphere, we conclude that the GOMOS precision estimates are realistic in occultations of sufficiently bright stars. For dim stars, errors are overestimated due to improper accounting of the dark charge correction uncertainty in the error budget. The proposed method can also be applied to stratospheric ozone data from other instruments, including multi-instrument analyses.

  10. How sensitive is the recovery of stratospheric ozone to changes in concentrations of very short lived bromocarbons?

    NASA Astrophysics Data System (ADS)

    Yang, X.; Abraham, N. L.; Archibald, A. T.; Braesicke, P.; Keeble, J.; Telford, P.; Warwick, N. J.; Pyle, J. A.

    2014-04-01

    Naturally produced very short-lived substances (VSLS), like bromocarbons, account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here by using a chemistry-climate model, UM-UKCA, we investigate the impact of a hypothetical increase in VSLS on ozone and how that impact depends on the background concentrations of chlorine and bromine. Our model experiments indicate that for a ~5 ppt increase in Bry from VSLS, the local ozone loss in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone loss in the Northern Hemisphere (NH) is smaller (4-6%). There is more ozone loss following an increase in VSLS burden under a high stratospheric chlorine background than under a low chlorine background indicating the importance of the inter-halogen reactions. For example, the rate of decline of the stratospheric ozone concentration as a function of Bry is higher by about 30-40% when stratospheric Cly is ~3 ppb (present day) compared with Cly of ~0.8 ppb (apre-industrial or projected future situation). Although bromine plays an important role in destroying ozone, inorganic chlorine is the dominant halogen compound. Even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will be dominated by the recovery of anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recover date could be delayed by approximately 7 years.

  11. 76 FR 34700 - Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... AGENCY Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications... FURTHER INFORMATION CONTACT: General Information: U.S. EPA Stratospheric Ozone Information Hotline, 1-800-296-1996; also http://www.epa.gov/ozone/mbr . Technical Information: Bill Chism, U.S....

  12. 77 FR 33315 - Protection of Stratospheric Ozone: Alternative for the Motor Vehicle Air Conditioning Sector...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... AGENCY 40 CFR Part 82 RIN 2060-AM54 Protection of Stratospheric Ozone: Alternative for the Motor Vehicle... MVAC systems designed specifically for the use of CO 2 refrigerant. The substitute is non-ozone-depleting and therefore does not contribute to stratospheric ozone depletion. DATES: This final rule...

  13. 78 FR 32646 - Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... on Substances that Deplete the Ozone Layer for industrialized countries and to allow EPA to provide a... AGENCY Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications... FURTHER INFORMATION CONTACT: General Information: U.S. EPA Stratospheric Ozone Information Hotline,...

  14. 77 FR 29341 - Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... to the provisions of the Montreal Protocol on Substances that Deplete the Ozone Layer for... AGENCY Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications... FURTHER INFORMATION CONTACT: General Information: U.S. EPA Stratospheric Ozone Information Hotline,...

  15. Reductions in ozone at high concentrations of stratospheric halogens

    NASA Technical Reports Server (NTRS)

    Prather, M. J.; Mcelroy, M. B.; Wofsy, S. C.

    1984-01-01

    An increase in the concentration of inorganic chlorine to levels comparable to that of oxidized reactive nitrogen could cause a significant change in the chemistry of the lower stratosphere leading to a reduction potentially larger than 15 percent in the column density of ozone. This could occur, for example by the middle of the next century, if emissions of man-made chlorocarbons were to grow at a rate of 3 percent per year. Ozone could be further depressed by release of industrial bromocarbon.

  16. Modelling stratospheric polar ozone using objective analysis

    NASA Technical Reports Server (NTRS)

    Sandilands, J. W.; Kaminski, J. W.; Mcconnell, J. C.; Beagley, S. R.; Mcfarlane, N.

    1994-01-01

    We have studied the development of the austral ozone hole using a 3-D spectral chemical transport model at R15 resolution for the period 15th September to 15th October, 1991. The model is driven by objectively analyzed wind fields obtained from the Canadian Meteorological Center and uses the chemical module developed by Kaminski (1992). Although extensive processing of NO(y) and Cl(x) occurs within the model, the ozone hole that develops appears shallow and ephemeral. Analysis of the results indicate that the meridional transport of ozone is sufficient to overwhelm the substantial chemical depletion that does occur. We suggest that the low resolution objectively analyzed data used is unable to capture the essential isolated nature of the vortex.

  17. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    A stratospheric ozone absorption line in the 10 microns band was measured and resolved completely, using an infrared heterodyne spectrometer with spectral resolution of 5 MHz (0.000167 cm to -1 power). The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectral line profile. The absolute total column density was 0.34 cm atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) to (7,1,7) O3 line center frequency was found to be 1043.1775 + or - 0.00033 cm to toe -1 power, or 430 + or - 10 MHz higher than the P(24) CO2 laser line frequency.

  18. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.; Spears, D.

    1978-01-01

    A stratospheric ozone absorption line in the 10 micron band was measured and resolved completely, using an infrared heterodyne spectrometer with a spectral resolution of 5 MHz. The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectra line profile. The absolute total column density was 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) - (7,1,7) O3 line center frequency was found to be 1043.1772 plus or minus 0.00033 cm/1 or 420 plus or minus 10 MHz higher than the P(24) CO2 laser line frequency.

  19. Airborne lidar observations in the wintertime Arctic stratosphere - Ozone

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Carter, A. F.; Butler, C. F.; Fenn, M. A.; Kooi, S. A.; Tuck, A. F.; Toon, O. B.; Loewenstein, M.; Schoeberl, M. R.

    1990-01-01

    Large-scale distributions of ozone (O3) were measured with an airborne lidar system as part of the 1989 Airborne Arctic Stratospheric Expedition. Measurements of O3 distributions were obtained between January 6 and February 15, 1989, on 15 long-range flights into the polar vortex from the Solar Air Station, Norway. The observed O3 distribution was found to clearly indicate the edge of the polar vortex and to be an effective tracer of dynamical processes in the lower stratosphere. On the last two flights of the expedition, large regions with reduced O3 levels were observed by the lidar inside the polar vortex. Ozone had decreased by as much as 17 percent in the center of these areas, and using the in situ measurements made on the ER-2 aircraft, it was concluded that this decline was due to chemical O3 destruction.

  20. 77 FR 58035 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... the atmosphere are highly destructive to the stratospheric ozone layer. This action will provide users... Ozone Layer Protection Web site at www.epa.gov/ozone/snap/index.html . For more information on the... on the ozone layer or climate. All manufacturing occurs in a facility with strict controls on all...

  1. 78 FR 24997 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... stratospheric ozone layer. This action will provide users that need specialized fire protection applications... information on SNAP, refer to EPA's Ozone Layer Protection Web site at www.epa.gov/ozone/snap/index.html . For... impact on the ozone layer or climate. The physicochemical properties of the majority of halon...

  2. Airborne Arctic Stratospheric Expedition Preparation: Ozone

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This video shows the rollout of the ER-2 and DC-8 at Ames, takeoffs and landings, and operations aboard the DC-8 and ER-2 in Puntas Arenas, Chile. Animation of the north polar regions showing the ozone hole is also included.

  3. An analysis of the annual cycle in upper stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Serafino, G. N.; Douglass, A. R.

    1984-01-01

    The mid-latitude upper stratospheric ozone profiles obtained by the solar backscatter ultraviolet instrument on the Nimbus 7 satellite show a clear annual cycle both in the absolute ozone amounts between 0.98 and 15.6 mbar and in the magnitude of disturbances that reveal themselves as longitudinal structure. At the lowest pressure analyzed a winter maximum in ozone exists, but as one progresses downward in altitude a shift in the temporal phase of the annual cycle occurs in the vicinity of 3 to 4 mbar. Comparison of the observed behavior with the predictions of a one-dimensional photochemical model shows a systematic tendency for calculated ozone amount to be 20-27 percent below the data for pressures less than 7.8 mbar. The chemical model successfully predicts the change in phase of the annual cycle, although at a pressure greater than observed. Diagnosis of model results shows the observed shift to be closely coupled to the magnitude of the ozone column density near 3-4 mbar. The wavelength-dependent attenuation of the solar radiation field by ozone alters the relative magnitude of the molecular oxygen and ozone dissociation rates, leading to a change in the temporal phase of the annual cycle.

  4. Impact of ozone mini-holes on the heterogeneous destruction of stratospheric ozone.

    PubMed

    Stenke, A; Grewe, V

    2003-01-01

    A comprehensive study of ozone mini-holes over the mid-latitudes of both hemispheres is presented, based on model simulations with the coupled climate-chemistry model ECHAM4.L39(DLR)/CHEM representing atmospheric conditions in 1960, 1980, 1990 and 2015. Ozone mini-holes are synoptic-scale regions of strongly reduced total ozone, directly associated with tropospheric weather systems. Mini-holes are supposed to have chemical and dynamical impacts on ozone levels. Since ozone levels over northern mid-latitudes show a negative trend of approximately -4%/decade and since it exists a negative correlation between total column ozone and erythemally active solar UV-radiation reaching the surface it is important to understand and assess the processes leading to the observed ozone decline. The simulated mini-hole events are validated with a mini-hole climatology based on daily ozone measurements with the TOMS (total ozone mapping spectrometer) instrument on the satellite Nimbus-7 between 1979 and 1993. Furthermore, possible trends in the event frequency and intensity over the simulation period are assessed. In the northern hemisphere the number of mini-hole events in early winter decreases between 1960 and 1990 and increases towards 2015. In the southern hemisphere a positive trend in mini-hole event frequency is detected between 1960 and 2015 in spring associated with the increasing Antarctic Ozone Hole. Finally, the impact of mini-holes on the stratospheric heterogeneous ozone chemistry is investigated. For this purpose, a computer-based detection routine for mini-holes was developed for the use in ECHAM4.L39(DLR)/CHEM. This method prevents polar stratospheric cloud formation and therefore heterogeneous ozone depletion inside mini-holes. Heterogeneous processes inside mini-holes amount to one third of heterogeneous ozone destruction in general over northern mid- and high-latitudes during winter (January-April) in the simulation.

  5. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    NASA Technical Reports Server (NTRS)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  6. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  7. The impact of tropospheric planetary wave variability on stratospheric ozone

    SciTech Connect

    McElroy, Michael B.; Schneider, Hans R.

    2002-06-25

    The goal of this project was to improve understanding of the role of the stratosphere in inducing long-term variations of the chemical composition of the troposphere. Changes in stratospheric transport occur on decadel timescales in response to changes in the structure of planetary wave patterns, forced in the troposphere. For many important tracers, such as column amounts of ozone, this variability of the transport leads to changes with signatures very similar to those induced by anthropogenic releases of chemicals into the atmosphere. During this project, a new interactive two-dimensional model of the dynamics, chemistry and radiation of the stratosphere was developed. The model was used to interpret available data of tracers. It was found that a fairly coherent picture of tracer distributions is obtained when a layer of reduced gravity wave drag is assumed for the lower stratosphere. The results suggest that the power of models to predict variability in tracer transport in the upper troposphere and lower stratosphere is limited until current theories of gravity wave breaking have been refined.

  8. Stratospheric ozone depletion and animal health.

    PubMed

    Mayer, S J

    1992-08-08

    There is an increasing concern over ozone depletion and its effects on the environment and human health. However, the increase in ultraviolet-B radiation (UV-B) that would result from significant losses of ozone is also potentially harmful to animals. Any increase in disease in domestic species would not only have serious animal welfare implications but may also be economically important. The diseases which are likely to increase if ozone depletion continues include the squamous cell carcinomas of the exposed, non-pigmented areas of cats, cattle, sheep and horses. Uberreiter's syndrome in dogs is also associated with exposure to UV-B and may be expected to increase, as may the severity of conditions such as infectious keratoconjunctivitis (New Forest eye) in cattle. Aquaculture systems in which fish often have little or no protection by shading may also be at risk. Cataracts and skin lesions have been associated with the exposure of farmed fish to ultraviolet radiation and have resulted in significant losses.

  9. [Biomedical and economic consequences of stratosphere ozone depletion].

    PubMed

    Strzhizhovskiĭ, A D

    1998-01-01

    Information on possible human health-changes associated with stratosphere ozone depletion and amplification factor (% increase of the stick rate by 1% decrease of ozone) values for acute (erythema, keratitis, cataract, immunosuppression) and chronic (skin cancer, cataract) effects of natural UV-radiation was analysed. Amplification factor (AF) values for acute UV-effects increase with degree of ozone depletion. For degrees less than 12.5% they are independent of latitude and equal to 1.9 for erythema, 1.3-1.5 for keratitis, 1.7-2.3 for cataract and 0.9-1.1 for immunosuppression. AF values for incidence of non-melanoma skin cancer are independent of age, higher in males than females, and higher for squamous cell carcinoma, than for basal cell carcinoma. Their optimal estimations for whites equal to 2.7 for basal cell and 4.6 for squamous cell carcinoma. AF values for incidence of cutaneous malignant melanoma range between 1 and 2, for melanoma mortality--between 0.3 and 2. AF values for incidence of cataract range between 0.3 and 1.2 with optimal estimations between 0.6 and 0.8. Prognosis of non-melanoma skin cancer and cataract incidences, melanoma mortality and economic loss for different scenarios of stratosphere ozone depletion are presented.

  10. Future chlorine-bromine loading and ozone depletion

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Ibrahim, Abdel Moneim; Sasaki, Toru; Stordal, Frode; Visconti, Guido

    1991-01-01

    The prediction of future ozone requires three elements: (1) a scenario for the net emissions of chemically and radiatively active trace gases from the land and oceans; (2) a global atmospheric model that projects the accumulation of these gases; and (3) a chemical transport model that describes the distribution of ozone for a prescribed atmospheric composition and climate. This chapter, of necessity, presents models for all three elements and focuses on the following: (1) atmospheric abundance of chlorine and bromine in the form of halocarbons; and (2) the associated perturbations to stratospheric ozone.

  11. Stratospheric Ozone Trends Inferred from the OSIRIS Data Record

    NASA Astrophysics Data System (ADS)

    Degenstein, Doug; Bourassa, Adam; Roth, Chris

    2016-04-01

    The OSIRIS instrument onboard the Odin platform has been making high quality, vertically resolved ozone measurements since the autumn of 2001. These measurements, that span an altitude range that covers the cloud tops to 60 km, have been used within multiple studies to determine stratospheric ozone trends. In particular the OSIRIS measurements are an important component of the HARMOZ data set produced within the ESA ozone_cci program and the OSIRIS measurements have been merged with similar SAGE II measurements to produce ozone trend results that cover the period from the launch of SAGE II up to the present. As OSIRIS is the longest lived instrument that currently measures vertical ozone profiles, as long as the results remain of sufficiently high quality, its data products become exponentially more important every year. This paper will detail recent advancements in the OSIRIS ozone retrieval algorithm that have made the results more robust. A recent pointing correction will also be discussed. This correction has resulted in a reduction in magnitude of the positive trends reported recently by groups using the OSIRIS data record. These new results will be verified through comparison with trends derived using MLS measurements merged with SAGE II data where the merging process for the SAGE II - OSIRIS and SAGE II - MLS data sets was done in an identical fashion.

  12. Sensitivity of Ozone to Bromine in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Salawitch, R. J.; Weisenstein, D. K.; Kovalenko, L. J.; Sioris, C. E.; Wennberg, P. O.; Chance, K.; Ko, M. K. W.; McLinden, C. A.

    2005-01-01

    Measurements of BrO suggest that inorganic bromine (Br(sub y)) at and above the tropopause is 4 to 8 ppt greater than assumed in models used in past ozone trend assessment studies. This additional bromine is likely carried to the stratosphere by short-lived biogenic compounds and their decomposition products, including tropospheric BrO. Including this additional bromine in an ozone trend simulation increases the computed ozone depletion over the past approx.25 years, leading to better agreement between measured and modeled ozone trends. This additional Br(sub y) (assumed constant over time) causes more ozone depletion because associated BrO provides a reaction partner for ClO, which increases due to anthropogenic sources. Enhanced Br(sub y) causes photochemical loss of ozone below approx.14 km to change from being controlled by HO(sub x) catalytic cycles (primarily HO2+O3) to a situation where loss by the BrO+HO2 cycle is also important.

  13. 76 FR 78832 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... explosion protection; sterilants; aerosols; adhesives, coatings and inks; and tobacco expansion--are the... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 82 RIN 2060-AP54 Protection of Stratospheric Ozone: Listing of Substitutes for...

  14. Simultaneous lidar observations of the water vapor and ozone signatures of a stratospheric intrusion during the MOHAVE-2009 campaign

    NASA Astrophysics Data System (ADS)

    Leblanc, T.; McDermid, I. S.; Pérot, K.

    2010-12-01

    Ozone and water vapor signatures of a stratospheric intrusion were simultaneously observed by the Jet Propulsion Laboratory lidars located at Table Mountain Facility, California (TMF, 34.4N, 117.7W) during the Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE-2009) campaign in October 2009. These observations are placed in the context of the meridional displacement and folding of the tropopause, and resulting contrast in the properties of the air masses sampled by lidar. The lidar observations are supported by model data, specifically potential vorticity fields advected by the high-resolution transport model MIMOSA, and by 10-day backward isentropic trajectories. The ozone and water vapor anomalies measured by lidar were largely anti-correlated, and consistent with the assumption of a wet and ozone-poor subtropical upper troposphere, and a dry and ozone-rich extra-tropical lowermost stratosphere. However, it is shown that this anti-correlation relation collapsed just after the stratospheric intrusion event of October 20, suggesting mixed air embedded along the subtropical jet stream and sampled by lidar during its displacement south of TMF (tropopause fold). The ozone-PV expected positive correlation relation held strongly throughout the measurement period, including when a lower polar stratospheric filament passed over TMF just after the stratospheric intrusion. The numerous highly-correlated signatures observed during this event demonstrate the strong capability of the water vapor and ozone lidars at TMF, and provide new confidence in the future detection by lidar of long-term variability of water vapor and ozone in the Upper Troposphere-Lower Stratosphere (UTLS).

  15. 76 FR 41747 - Protection of Stratospheric Ozone: Extension of Global Laboratory and Analytical Use Exemption...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... that Deplete the Ozone Layer. The exemption allows persons in the United States to produce and import... further information about EPA's Stratospheric Ozone Protection regulations, the science of ozone layer... Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) is the international agreement...

  16. 77 FR 47768 - Protection of Stratospheric Ozone: Determination 27 for Significant New Alternatives Policy Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... ozone-depleting substances (ODSs) in all industrial sectors, visit EPA's Ozone Layer Protection Web site... AGENCY 40 CFR Part 82 RIN 2060-AG12 Protection of Stratospheric Ozone: Determination 27 for Significant... substitutes for ozone-depleting substances under the U.S. Environmental Protection Agency's (EPA)...

  17. 76 FR 47451 - Protection of Stratospheric Ozone: Adjustments to the Allowance System for Controlling HCFC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... information about EPA's Stratospheric Ozone Protection regulations, the science of ozone layer depletion, and... Conditioning; Montreal Protocol--Montreal Protocol on Substances that Deplete the Ozone Layer; MOP--Meeting of... Protocol on Substances that Deplete the Ozone Layer. Organization of This Document. The following...

  18. 78 FR 21871 - Protection of Stratospheric Ozone: Revision of the Venting Prohibition for Specific Refrigerant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... AGENCY 40 CFR Part 82 RIN 2060-AM09 Protection of Stratospheric Ozone: Revision of the Venting... will post a notice in our Web site, http://www.epa.gov/ozone/strathome.html , announcing further... Transfer and Advancement Act ODP--ozone depletion potential ODS--ozone-depleting substance...

  19. 78 FR 78071 - Protection of Stratospheric Ozone: Adjustments to the Allowance System for Controlling HCFC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Deplete the Ozone Layer (Protocol). Under the Protocol and the Clean Air Act, total United States HCFC... about EPA's Stratospheric Ozone Protection regulations, the science of ozone layer depletion, and... Conditioning and Refrigeration Montreal Protocol Montreal Protocol on Substances That Deplete the Ozone...

  20. Parametric Analyses of Potential Effects on Upper Tropospheric/Lower Stratospheric Ozone Chemistry by a Future Fleet of High Speed Civil Transport (HSCT) Type Aircraft

    NASA Technical Reports Server (NTRS)

    Dutta, Mayurakshi; Patten, Kenneth O.; Wuebbles,Donald J.

    2005-01-01

    This report analyzed the potential impact of projected fleets of HSCT aircraft (currently not under development) through a series of parametric analyses that examine the envelope of potential effects on ozone over a range of total fuel burns, emission indices of nitrogen oxides, and cruise altitudes.

  1. Development of a Climate Record of Tropospheric and Stratospheric Column Ozone from Satellite Remote Sensing: Evidence of an Early Recovery of Global Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil

    2012-01-01

    Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979-2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30- 40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.

  2. Observations of Ozone-aerosol Correlated Behaviour in the Lower Stratosphere During the EASOE Campaign

    NASA Technical Reports Server (NTRS)

    Digirolamo, P.; Cacciani, M.; Disarra, A.; Fiocco, G.; Fua, D.; Joergensen, T. S.; Knudsen, B.; Larsen, N.

    1992-01-01

    The question of possible interactions between ozone and stratospheric aerosol has been open for a long time. Measurements carried out after the Mt. Agung and El Chicon eruptions showed evidence of negative correlations between the presence of volcanic stratospheric aerosols and ozone concentration. Evidence for negative correlations in the polar winter has been also found. It is only after the discovery of the Antarctic ozone hole that catalytic effects related to low temperature heterogeneous chemistry have become the object of much investigation, now extended to the role of volcanic aerosol in the ozone reduction. These phenomena can be the object of various interpretations, not mutually exclusive, including the effect of transport, diffuse radiation as well as heterogeneous chemistry. The present paper provides preliminary results of simultaneous measurements of ozone and aerosol, carried out at Thule, Greenland, during the winter 1991-92. The European Stratospheric Ozone Experiment (EASOE) was aimed at monitoring the winter Arctic stratosphere in order to obtain a deeper insight of the ozone destruction processes taking place in the polar regions. A large amount of aerosol was injected into the lower stratosphere by the recent eruption of Volcano Pinatubo. A lidar system, already operational in Thule since November 1990, has provided detailed measurements of the stratospheric aerosol concentration during EASOE. In the same period, a large number of ozonesondes were launched. Although no PSC formation was detected over Thule, the simultaneous measurement of the stratospheric aerosol and ozone profiles give the possibility to study interactions occurring in the stratosphere between these two constituents.

  3. Analysis of stratospheric ozone, temperature, and minor constituent data

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Jackman, Charles H.; Kaye, Jack A.; Rood, Richard B.

    1990-01-01

    The objective of this research is to use available satellite measurements of temperature and constituent concentrations to test the conceptual picture of stratospheric chemistry and transport. This was originally broken down into two sub-goals: first, to use the constituent data to search for critical tests of our understanding of stratospheric chemistry and second, to examine constituent transport processes emphasizing interactions with chemistry on various time scales. A third important goal which has evolved is to use the available solar backscattered ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) data from Nimbus 7 to describe the morphology of recent changes in Antarctic and global ozone with emphasis on searching for constraints to theories. The major effort now being pursued relative to the two original goals is our effort as a theoretical team for the Arctic Airborne Stratospheric Expedition (AASE). Our effort for the AASE is based on the 3D transport and chemistry model at Goddard. Our goal is to use this model to place the results from the mission data in a regional and global context. Specifically, we set out to make model runs starting in late December and running through March of 1989, both with and without heterogeneous chemistry. The transport is to be carried out using dynamical fields from a 4D data assimilation model being developed under separate funding from this task. We have successfully carried out a series of single constituent transport experiments. One of the things demonstrated by these runs was the difficulty in obtaining observed low N2O abundances in the vortex without simultaneously obtaining very high ozone values. Because the runs start in late December, this difficulty arises in the attempt to define consistent initial conditions for the 3D model. To accomplish a consistent set of initial conditions, we are using the 2D photochemistry-transport model of Jackman and Douglass and mapping in potential temperature

  4. The Effect of Transport and Circulation Differences on Stratospheric Ozone Recovery in Two 35-year Three-dimensional Simulations

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Strahan, Susan; Douglass, Anne

    2002-01-01

    The NASA Global Modeling Initiative (GMI) has completed two 35-year simulations with WMO future baseline boundary conditions that simulate increasing N2O and CH4 emissions and decreasing organic chlorine and bromine emissions. Simulations were done with the GMI offline chemistry and transport model using 1) 1 year of winds from the Finite-Volume General Circulation Model (FV-GCM), repeated for the 35 years, and 2) 1 year of winds from the Finite-Volume Data Assimilation System (FV-DAS), repeated for 35-years. The simulations have full stratospheric chemistry. To understand differences in simulated ozone recoveries, basic transport and circulation differences between these models are evaluated. The distribution of mean age of stratospheric air in the FV-GCM run agrees well with observations in the lower stratosphere but the FV-DAS ages are generally too low. This implies circulation and mixing differences that will affect the distributions of other trace species such as CH4, NO, and the organic halogens, all of which are responding to changing boundary conditions and are involved in ozone loss. Realism of model transport is evaluated, with particular attention given to regions and seasons where ozone recovery is expected. Preliminary results indicate increasing ozone trends in the lowermost stratosphere in summer and in the Antarctic and Arctic lower stratosphere in winter and spring.

  5. Can Assimilation of Satellite Ozone Data Contribute to the Understanding of the Lower Stratospheric Ozone?

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Rood, R.

    2004-01-01

    We study the quality of lower stratospheric ozone fields from a three- dimensional global ozone assimilation system. Ozone in this region is important for the forcing of climate, but its global distribution is not fully known because of its large temporal and vertical variability. Modeled fields often have biases due to the inaccurate representation of transport processes in this region with strong gradients. Accurate ozonesonde or satellite occultation measurements have very limited coverage. Nadir measurements, such as those from the Solar Backscatter Ultraviolet/2 (SBUV/2) instrument that provide wide latitudinal coverage, lack the vertical resolution needed to represent sharp vertical features. Limb measurements, such as those from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), provide a finer vertical resolution. We show that assimilation of MIPAS data in addition to SBUV/2 data leads to better estimates of ozone in comparison with independent high quality satellite, aircraft, and ozone sonde measurements. Other modifications to the statistical analysis that have an impact on the lower stratospheric ozone will be mentioned: error covariance modeling and data selection. Direct and indirect impacts of transport and chemistry models will be discussed. Implications for multi-year analyses and short-tern prediction will be addressed.

  6. Chlorine monoxide radical, ozone, and hydrogen peroxide - Stratospheric measurements by microwave limb sounding

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Hardy, J. C.; Jarnot, R. F.; Pickett, H. M.

    1981-01-01

    Profiles of stratospheric ozone and chlorine monoxide radical (ClO) have been obtained from balloon measurements of atmospheric limb thermal emission at millimeter wavelengths. The ClO measurements, important for assessing the predicted depletion of stratospheric ozone by chlorine from industrial sources, are in close agreement with present theory. The predicted decrease of ClO at sunset was measured. A tentative value for the stratospheric abundance of hydrogen peroxide was also determined.

  7. Delayed climate change in the Southern Hemisphere induced by stratospheric ozone recovery, as projected by the CMIP5 models (Invited)

    NASA Astrophysics Data System (ADS)

    Polvani, L. M.; Barnes, E. A.

    2013-12-01

    Stratospheric ozone is expected to recover in the second half of this century, due to the regulation of ozone depleting substances by the Montreal Protocol. Targeted modeling studies have suggested that the climate response to ozone recovery will greatly oppose the climate response to increasing greenhouse-gases (GHG); owever, the extent of this cancellation remains unclear, as few such studies are available. Here, we analyze the much larger set of models participating in the Coupled Model Intercomparison Project, phase 5 (CMIP5), all of which include stratospheric ozone depletion and recovery. We show that the closing of the ozone hole will cause a delay in summer-time (DJF) Southern Hemisphere climate change, between now and mid-century. Specifically, we find that the position of the jet stream, the width of the subtropical dry-zones, the seasonality of surface temperatures, and sea ice concentrations all exhibit significantly reduced summer-time trends over the first half of the 21st Century as a consequence of ozone recovery. Beyond mid-century, forcing from GHG emissions begins to dominate the climate response. We also compare the relative influences of future GHG emissions and historic ozone depletion, and find that the simulated DJF tropospheric circulation changes in the Southern Hemisphere between 1965-2005 -- driven primarily by ozone depletion -- are larger than the projected changes in any future scenario over the entire 21st Century.

  8. Visualization of stratospheric ozone depletion and the polar vortex

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.

    1995-01-01

    Direct analysis of spacecraft observations of stratospheric ozone yields information about the morphology of annual austral depletion. Visual correlation of ozone with other atmospheric data illustrates the diurnal dynamics of the polar vortex and contributions from the upper troposphere, including the formation and breakup of the depletion region each spring. These data require care in their presentation to minimize the introduction of visualization artifacts that are erroneously interpreted as data features. Non geographically registered data of differing mesh structures can be visually correlated via cartographic warping of base geometries without interpolation. Because this approach is independent of the realization technique, it provides a framework for experimenting with many visualization strategies. This methodology preserves the fidelity of the original data sets in a coordinate system suitable for three-dimensional, dynamic examination of atmospheric phenomena.

  9. Multimodel Assessment of the Factors Driving Stratospheric Ozone Evolution over the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J. F.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; Eyring, V.; Frith, S.; Hardiman, S. C.; Kinnison, D. E.; Lamarque, J.-F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Nakamura, T.

    2010-01-01

    The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry-climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.

  10. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-04-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chemistry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chemistry model, focuses on the major reaction mechanisms of ozone production and loss in order to reduce the computational costs. SWIFT consists of two sub-models. 1) Inside the polar vortex, the model calculates polar vortex averaged ozone loss by solving a set of coupled differential equations for the key species in polar ozone chemistry. 2) The extra-polar regime, which this poster is going to focus on. Outside the polar vortex, the complex system of differential equations of a full stratospheric chemistry model is replaced by an explicit algebraic polynomial, which can be solved in a fraction of the time needed by the full scale model. The approach, which is used to construct the polynomial, is also referred to as repro-modeling and has been successfully applied to chemical models (Turanyi (1993), Lowe & Tomlin (2000)). The procedure uses data from the Lagrangian stratospheric chemistry and transport model ATLAS and yields one high-order polynomial for global ozone loss and production rates over 24h per month. The stratospheric ozone change rates can be sufficiently described by 9 variables. Latitude, altitude, temperature, the overhead ozone abundance, 4 mixing ratios of ozone depleting chemical families (chlorine, bromine, nitrogen-oxides and hydrogen-oxides) and the ozone concentrations itself. The ozone change rates in the lower stratosphere as a function of these 9 variables yield a sufficiently compact 9-D hyper-surface, which we can approximate with a polynomial. In the upper

  11. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  12. Robust response of the Amundsen Sea Low to stratospheric ozone depletion

    NASA Astrophysics Data System (ADS)

    England, Mark R.; Polvani, Lorenzo M.; Smith, Karen L.; Landrum, Laura; Holland, Marika M.

    2016-08-01

    The effect of stratospheric ozone depletion on the Amundsen Sea Low (ASL), a climatological low-pressure center important for the climate of West Antarctica, remains uncertain. Using state-of-the-art climate models, we here show that stratospheric ozone depletion can cause a statistically significant deepening of the ASL in summer with an amplitude of approximately 1 hPa per decade. We are able to attribute the modeled changes in the ASL to stratospheric ozone depletion by contrasting ensembles of historical integrations with and without a realistic ozone hole. In the presence of very large natural variability, the robustness of the ozone impact on the ASL is established by (1) examining ensembles of model runs to isolate the forced response, (2) repeating the analysis with two different climate models, and (3) considering the entire period of stratospheric ozone depletion, the beginning of which predates the satellite era by a couple of decades.

  13. Modeling and Observational Study of the Stratospheric Ozone Influences on the Tropospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Barodka, S.; Krasouski, A.; Shalamyansky, A.

    2013-12-01

    It seems to be universally recognized that stratospheric ozone distribution and tropospheric dynamical formations are interconnected and both affect each other in manifold processes of stratosphere-troposphere interactions. In particular, numerous observational studies suggest a clear relation between the total ozone column (TOC) field and the distribution of air-masses in both the stratosphere and the troposphere. The tropopause height being a result of two rival categories of processes (the tropospheric vertical convection and the radiative heating of the stratosphere resulting from the ozone cycle), it is natural that tropospheric and stratospheric phenomena can have an effect on each other. Indeed, it has been shown that virtually all local ozone anomalies (synoptic-scale deviations in the TOC field) correspond to local uplifts of the tropopause level, and a significant amount of research was dedicated to identification of local patterns in the stratospheric ozone distribution as the outcome of tropospheric synoptic formations and weather systems. However, in the present study we focus our attention to the opposite side of the interaction: the impact of stratospheric ozone distribution on the features of tropospheric circulation and the associated weather and regional climate conditions. For that purpose, we proceed from analyzes of the observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggest a distinct correlation between stratospheric ozone distribution, synoptic formations and air-masses boundaries in the upper troposphere and the temperature field of the lower stratosphere. Furthermore, we perform a series of numerical simulations of formation, evolution and decay of ozone anomalies of different spatial and temporal scales, introducing disturbances to the stratospheric ozone and temperature variable fields and tracing the propagation of this perturbation to tropospheric model levels. Aiming to simulate dynamical processes

  14. Influence of Stratosphere Troposphere Exchange on the Ozone Levels in India

    NASA Astrophysics Data System (ADS)

    Ganguly, Nandita; Tzanis, Chris

    2012-07-01

    Decrease in stratospheric ozone will result in an amplification of the solar ultraviolet B radiation reaching the ground, which is a threat to the human society. On the other hand, ozone being toxic to the living system and an important contributor to anthropogenic global warming, high levels of tropospheric ozone will have adverse effects on the air quality and climate. Transport of ozone from the stratosphere to the troposphere will cause stratospheric ozone to decrease and tropospheric ozone to increase, which can in turn have serious consequences for life on earth. Stratosphere-Troposphere Exchange (STE) is regarded as an important factor controlling the budget of ozone in the troposphere and lower stratosphere. Study of STE events in India are so far restricted to coordinated campaigns and measurements over longer periods are relatively scarce. In the light of this observation, the paper is aimed to identify the Indian latitudes, which are most likely to be affected by STE, the frequency of occurrence of shallow and deep STE events and the depth up to which stratospheric ozone descends into the troposphere during these events over the period of 24 years. In addition, the contribution of STE events to the observed high surface ozone levels for cities covering from north to south of India will be presented.

  15. A probabilistic study of the return of stratospheric ozone to 1960 levels

    NASA Astrophysics Data System (ADS)

    Södergren, A. Helena; Bodeker, Gregory E.; Kremser, Stefanie; Meinshausen, Malte; McDonald, Adrian J.

    2016-09-01

    Anthropogenic emissions of greenhouse gases and ozone-depleting substances are expected to continue to affect concentrations of ozone in the stratosphere through the 21st century. While a range of estimates for when stratospheric ozone is expected to return to unperturbed levels is available in the literature, quantification of the spread in results is sparse. Here we present the first probabilistic study of latitudinally resolved years of return of stratospheric ozone to 1960 levels. Results from our 180-member ensemble, simulated with a newly developed simple climate model, suggest that the spread in return years of ozone is largest around 40°N/S and in the southern high latitudes and decreases with increasing greenhouse gas emissions. The spread in projections of ozone is larger for higher greenhouse gas scenarios and is larger in the polar regions than in the midlatitudes, while the spread in ozone radiative forcing is smallest in the polar regions.

  16. Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere

    NASA Astrophysics Data System (ADS)

    Damiani, Alessandro; Funke, Bernd; Santee, Michelle L.; Cordero, Raul R.; Watanabe, Shingo

    2016-04-01

    Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.

  17. Stratospheric ozone change and related climate impacts over 1850-2100 as modelled by the ACCMIP ensemble

    NASA Astrophysics Data System (ADS)

    Iglesias-Suarez, F.; Young, P. J.; Wild, O.

    2016-01-01

    Stratospheric ozone and associated climate impacts in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) simulations are evaluated in the recent past (1980-2000), and examined in the long-term (1850-2100) using the Representative Concentration Pathways (RCPs) low- and high-emission scenarios (RCP2.6 and RCP8.5, respectively) for the period 2000-2100. ACCMIP multi-model mean total column ozone (TCO) trends compare favourably, within uncertainty estimates, against observations. Particularly good agreement is seen in the Antarctic austral spring (-11.9 % dec-1 compared to observed ˜ -13.9 ± 10.4 % dec-1), although larger deviations are found in the Arctic's boreal spring (-2.1 % dec-1 compared to observed ˜ -5.3 ± 3.3 % dec-1). The simulated ozone hole has cooled the lower stratosphere during austral spring in the last few decades (-2.2 K dec-1). This cooling results in Southern Hemisphere summertime tropospheric circulation changes captured by an increase in the Southern Annular Mode (SAM) index (1.3 hPa dec-1). In the future, the interplay between the ozone hole recovery and greenhouse gases (GHGs) concentrations may result in the SAM index returning to pre-ozone hole levels or even with a more positive phase from around the second half of the century (-0.4 and 0.3 hPa dec-1 for the RCP2.6 and RCP8.5, respectively). By 2100, stratospheric ozone sensitivity to GHG concentrations is greatest in the Arctic and Northern Hemisphere midlatitudes (37.7 and 16.1 DU difference between the RCP2.6 and RCP8.5, respectively), and smallest over the tropics and Antarctica continent (2.5 and 8.1 DU respectively). Future TCO changes in the tropics are mainly determined by the upper stratospheric ozone sensitivity to GHG concentrations, due to a large compensation between tropospheric and lower stratospheric column ozone changes in the two RCP scenarios. These results demonstrate how changes in stratospheric ozone are tightly linked to climate and show

  18. Effects of Zonal Wind on Stratospheric Ozone Variations over Nigeria

    NASA Astrophysics Data System (ADS)

    Chidinma Okoro, Eucharia,

    2016-07-01

    The effects of zonal wind on stratospheric ozone variation over Nigeria have been studied. The areas covered in this study include; Maiduguri, Ikeja, Port-Harcourt, Calabar, Makurdi, Ilorin, Akure, Yola, Minna, Jos, Kano and Enugu in Nigeria, from 1986 to 2008. Zonal wind was computed from the iso-velocity map employing MATLAB software. The mean monthly variations of AAM and LOD at pressure levels of 20, 30 and 50 mb in the atmosphere depict a trend of maximum amplitude between April and September, and minimum amplitude between December and March. The trend observed in seasonal variation of O3 column data in the low latitude had maximum amount from May through August and minimum values from December through February. The mean monthly maximum O3 concentrations was found to be 284.70 Du (Kano) occurring in May 1989 while, an average monthly minimum O3 concentration was found to be 235.60 Du (Port-Harcourt and Calabar) occurring in January 1998. It has been established in this study that, the variation in atmospheric angular momentum (AAM) caused by variation of the universal time or length of day (LOD) transfer ozone (O3) by means of zonal wind from the upper troposphere to the lower stratosphere in the stations understudy. The strong effect of the pressure levels of the atmosphere on O3 variation could be attributed to its effect on the AAM and LOD. Variation in the LOD is significant in the tropics, suggesting that, the effects of the extra-tropical suction pump (ETSP) action is not the only driver responsible for O3 transportation from the tropics to extra-tropical zones. Consequently, these findings lead to a deduction that weather pattern alteration observed due to these changes could lead to climate change. Keywords: ozone variations; dynamical processes; harmattan wind; ETSP; and climatic variability

  19. 76 FR 9987 - Protection of Stratospheric Ozone: Amendments to the Section 608 Leak Repair Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... AGENCY 40 CFR Part 82 Protection of Stratospheric Ozone: Amendments to the Section 608 Leak Repair...://epa.gov/ozone/title6/608/leak.html . SUPPLEMENTARY INFORMATION: Background The statutory and... greater than 50 pounds of ozone-depleting substances. This action proposes to streamline existing...

  20. Interactive Ozone and Methane Chemistry in GISS-E2 Historical and Future Climate Simulations

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Pechony, O.; Voulgarakis, A.; Faluvegi, G.; Nazarenko. L.; Lamarque, J.-F.; Bowman, K.; Milly, G.; Kovari, B.; Ruedy, R.; Schmidt, G. A.

    2013-01-01

    The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF) calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016W/sq. m. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18W/ sq. m higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in a slightly stronger

  1. Future Arctic ozone recovery: the importance of chemistry and dynamics

    NASA Astrophysics Data System (ADS)

    Bednarz, Ewa; Maycock, Amanda; Abraham, Luke; Braesicke, Peter; Dessens, Olivier; Pyle, John

    2016-04-01

    Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a 7 member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ~11.5 DU/decade, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ~50-100 DU below the long-term mean to near present day values. Consistent with the global decline in inorganic chlorine over the century, the estimated mean halogen induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of two between 1981-2000 and 2061-2080. However, in the presence of a cold and strong polar vortex elevated halogen losses well above the long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a radiatively-driven cooling trend modelled in the Arctic winter mid- and upper stratosphere, but there is less consistency across the seven ensemble members in the lower stratosphere. This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively-driven stratospheric cooling. However, individual years characterised by significantly suppressed downwelling, reduced transport and low temperatures continue into the future. We conclude that despite the future long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue thereby facilitating episodic reductions in springtime ozone columns. Whilst our results suggest that the relative role of dynamical processes for determining Arctic springtime ozone will increase in the future, halogen chemistry will remain a

  2. A post-Kyoto partner: Considering the stratospheric ozone regime as a tool to manage nitrous oxide

    PubMed Central

    Kanter, David; Mauzerall, Denise L.; Ravishankara, A. R.; Daniel, John S.; Portmann, Robert W.; Grabiel, Peter M.; Moomaw, William R.; Galloway, James N.

    2013-01-01

    Nitrous oxide (N2O) is the largest known remaining anthropogenic threat to the stratospheric ozone layer. However, it is currently only regulated under the 1997 Kyoto Protocol because of its simultaneous ability to warm the climate. The threat N2O poses to the stratospheric ozone layer, coupled with the uncertain future of the international climate regime, motivates our exploration of issues that could be relevant to the Parties to the ozone regime (the 1985 Vienna Convention and its 1987 Montreal Protocol) should they decide to take measures to manage N2O in the future. There are clear legal avenues to regulate N2O under the ozone regime as well as several ways to share authority with the existing and future international climate treaties. N2O mitigation strategies exist to address the most significant anthropogenic sources, including agriculture, where behavioral practices and new technologies could contribute significantly to reducing emissions. Existing policies managing N2O and other forms of reactive nitrogen could be harnessed and built on by the ozone regime to implement N2O controls. There are several challenges and potential cobenefits to N2O control which we discuss here: food security, equity, and implications of the nitrogen cascade. The possible inclusion of N2O in the ozone regime need not be viewed as a sign of failure of the United Nations Framework Convention on Climate Change to adequately deal with climate change. Rather, it could represent an additional valuable tool in sustainable development diplomacy. PMID:23440192

  3. A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide.

    PubMed

    Kanter, David; Mauzerall, Denise L; Ravishankara, A R; Daniel, John S; Portmann, Robert W; Grabiel, Peter M; Moomaw, William R; Galloway, James N

    2013-03-19

    Nitrous oxide (N2O) is the largest known remaining anthropogenic threat to the stratospheric ozone layer. However, it is currently only regulated under the 1997 Kyoto Protocol because of its simultaneous ability to warm the climate. The threat N2O poses to the stratospheric ozone layer, coupled with the uncertain future of the international climate regime, motivates our exploration of issues that could be relevant to the Parties to the ozone regime (the 1985 Vienna Convention and its 1987 Montreal Protocol) should they decide to take measures to manage N2O in the future. There are clear legal avenues to regulate N2O under the ozone regime as well as several ways to share authority with the existing and future international climate treaties. N2O mitigation strategies exist to address the most significant anthropogenic sources, including agriculture, where behavioral practices and new technologies could contribute significantly to reducing emissions. Existing policies managing N2O and other forms of reactive nitrogen could be harnessed and built on by the ozone regime to implement N2O controls. There are several challenges and potential cobenefits to N2O control which we discuss here: food security, equity, and implications of the nitrogen cascade. The possible inclusion of N2O in the ozone regime need not be viewed as a sign of failure of the United Nations Framework Convention on Climate Change to adequately deal with climate change. Rather, it could represent an additional valuable tool in sustainable development diplomacy.

  4. Sensitivity of Lower Stratospheric Assimilated Ozone on Error Covariance Modeling and Data Selection

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Rood, Richard B.; Winslow, Nathan; Wargan, Krzysztof; Pawson, Steven

    2002-01-01

    Assimilated ozone is produced at the NASA/Goddard Data Assimilation Office by blending ozone retrieved from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument and the Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) measurements into an off-line transport model. The current system tends to overestimate the amount of lower stratospheric ozone. This is a region where ozone plays a key role in the forcing of climate. A biased ozone field in this region will adversely impact calculations of the stratosphere-troposphere exchange and, when used as a first guess in retrievals, the values determined from satellite observations. Since these are all important applications of assimilated ozone products, effort is being directed towards reducing this bias. The SBUV ozone data have a coarse vertical resolution with increased uncertainty below the ozone maximum, and TOMS provides only total ozone columns. Thus, the assimilated ozone in the lower stratosphere, and its vertical distribution in particular, are only weakly constrained by the incoming SBUV and TOMS data. Consequently, the assimilated ozone distribution should be sensitive to changes in inputs to the statistical analysis scheme. Accordingly, the sensitivity of the assimilated lower stratospheric ozone fields to changes in the TOMS error-covariance modeling and the SBUV data selection has been investigated. The use of a spatially correlated TOMS error covariance model led to improvements in the product. However, withholding the SBUV/2 data for the layer between 63 and 126 hPa typically degraded the product, a result which vindicates the use of this layer ozone product, despite its known errors. These efforts to improve the lower stratospheric distribution will be extended to include a more advanced forecast error covariance model, and by assimilating ozone products from new instruments on Envisat and EOS Aura.

  5. Stratospheric impact on tropospheric ozone variability and trends: 1990-2009

    NASA Astrophysics Data System (ADS)

    Hess, P. G.; Zbinden, R.

    2013-01-01

    The influence of stratospheric ozone on the interannual variability and trends in tropospheric ozone is evaluated between 30 and 90° N from 1990-2009 using ozone measurements and a global chemical transport model, the Community Atmospheric Model with chemistry (CAM-chem). Long-term measurements from ozonesondes, at 150 and 500 hPa, and the Measurements of OZone and water vapour by in-service Airbus aircraft programme (MOZAIC), at 500 hPa, are analyzed over Japan, Canada, the Eastern US and Northern and Central Europe. The measurements generally emphasize northern latitudes, although the simulation suggests that measurements over the Canadian, Northern and Central European regions are representative of the large-scale interannual ozone variability from 30 to 90° N at 500 hPa. CAM-chem is run with input meteorology from the National Center for Environmental Prediction; a tagging methodology is used to identify the stratospheric contribution to tropospheric ozone concentrations. A variant of the synthetic ozone tracer (synoz) is used to represent stratospheric ozone. Both the model and measurements indicate that on large spatial scales stratospheric interannual ozone variability drives significant tropospheric variability at 500 hPa and the surface. In particular, the simulation and the measurements suggest large stratospheric influence at the surface sites of Mace Head (Ireland) and Jungfraujoch (Switzerland) as well as many 500 hPa measurement locations. Both the measurements and simulation suggest the stratosphere has contributed to tropospheric ozone trends. In many locations between 30-90° N 500 hPa ozone significantly increased from 1990-2000, but has leveled off since (from 2000-2009). The simulated global ozone budget suggests global stratosphere-troposphere exchange increased in 1998-1999 in association with a global ozone anomaly. Discrepancies between the simulated and measured ozone budget include a large underestimation of measured ozone variability

  6. Impact of Very Short-live Halogens on Stratospheric Ozone Abundance (and UV radiation) in a Geo-engineered Atmosphere

    NASA Astrophysics Data System (ADS)

    Tilmes, Simone; Kinnison, Doug; Garcia, Rolando; Salawitch, Ross; Lee-Taylor, Julia

    2010-05-01

    In this study we used the Whole Atmosphere Community Climate Model (WACCM) to explore the impact of very short-lived (VSL) bromocarbons on stratospheric ozone abundance and surface UV radiation under the influence of geoengineered aerosols. VSL bromocarbons have by definition a chemical lifetime of less than 0.5 years (WMO, 2006). In contrast to long-lived bromocarbons (e.g., CH3Br plus halons), these VSL bromocarbons have natural sources (e.g., oceanic emissions) and their abundance will therefore not decrease in the future due to international protocols. They are eventually oxidized via reactions with OH and photolysis to form inorganic bromine product gases and get transported into the stratosphere. Observations suggest that VSL bromocarbons add an additional 4-10 pptv volume mixing ratios to the total stratospheric inorganic bromine abundance. Since inorganic bromine is ~60 times more efficient (relative to inorganic chlorine) at catalytic destroying ozone, this additional inorganic bromine loading could significantly affect stratospheric ozone. This is especially true in the Arctic, where the coupled BrO/ClO catalytic ozone loss cycle is as important as the ClO dimer ozone loss cycle. The chemical activation of chlorine is highly dependent on the amount of sulfate aerosol and VSL bromine provides a reaction partner for activated chlorine, resulting in a significant increase of ozone depletion in a geo-engineered aerosol environment in high latitudes. An additional impact of short-lived bromocarbons on the ozone abundance is expected and was not considered in earlier studies.

  7. Future Arctic ozone recovery: the importance of chemistry and dynamics

    NASA Astrophysics Data System (ADS)

    Bednarz, Ewa M.; Maycock, Amanda C.; Abraham, N. Luke; Braesicke, Peter; Dessens, Olivier; Pyle, John A.

    2016-09-01

    Future trends in Arctic springtime total column ozone, and its chemical and dynamical drivers, are assessed using a seven-member ensemble from the Met Office Unified Model with United Kingdom Chemistry and Aerosols (UM-UKCA) simulating the period 1960-2100. The Arctic mean March total column ozone increases throughout the 21st century at a rate of ˜ 11.5 DU decade-1, and is projected to return to the 1980 level in the late 2030s. However, the integrations show that even past 2060 springtime Arctic ozone can episodically drop by ˜ 50-100 DU below the corresponding long-term ensemble mean for that period, reaching values characteristic of the near-present-day average level. Consistent with the global decline in inorganic chlorine (Cly) over the century, the estimated mean halogen-induced chemical ozone loss in the Arctic lower atmosphere in spring decreases by around a factor of 2 between the periods 2001-2020 and 2061-2080. However, in the presence of a cold and strong polar vortex, elevated halogen-induced ozone losses well above the corresponding long-term mean continue to occur in the simulations into the second part of the century. The ensemble shows a significant cooling trend in the Arctic winter mid- and upper stratosphere, but there is less confidence in the projected temperature trends in the lower stratosphere (100-50 hPa). This is partly due to an increase in downwelling over the Arctic polar cap in winter, which increases transport of ozone into the polar region as well as drives adiabatic warming that partly offsets the radiatively driven stratospheric cooling. However, individual winters characterised by significantly suppressed downwelling, reduced transport and anomalously low temperatures continue to occur in the future. We conclude that, despite the projected long-term recovery of Arctic ozone, the large interannual dynamical variability is expected to continue in the future, thereby facilitating episodic reductions in springtime ozone columns

  8. Mitigation of 21st century Antarctic sea ice loss by stratospheric ozone recovery

    NASA Astrophysics Data System (ADS)

    Smith, Karen L.; Polvani, Lorenzo M.; Marsh, Daniel R.

    2012-10-01

    We investigate the effect of stratospheric ozone recovery on Antarctic sea ice in the next half-century, by comparing two ensembles of integrations of the Whole Atmosphere Community Climate Model, from 2001 to 2065. One ensemble is performed by specifying all forcings as per the Representative Concentration Pathway 4.5; the second ensemble is identical in all respects, except for the surface concentrations of ozone depleting substances, which are held fixed at year 2000 levels, thus preventing stratospheric ozone recovery. Sea ice extent declines in both ensembles, as a consequence of increasing greenhouse gas concentrations. However, we find that sea ice loss is ∼33% greater for the ensemble in which stratospheric ozone recovery does not take place, and that this effect is statistically significant. Our results, which confirm a previous study dealing with ozone depletion, suggest that ozone recovery will substantially mitigate Antarctic sea ice loss in the coming decades.

  9. Relationship between total ozone amounts and stratospheric temperature at Syowa, Antarctica

    SciTech Connect

    Shigeru Chubachi )

    1993-02-20

    Using statistical methods, the relationship has been studied between total ozone and 100-mbar temperatures at Syowa Station, Antarctica (69[degrees]S, 40[degrees]E), based on data obtained in 1961-1981 and 1982-1988, the time of ozone depletion in Antarctica. Results indicate a strong, positive correlation between total ozone and 100-mbar stratospheric temperatures during September-March for all years, but lower ozone values at 100-mbar stratospheric temperatures colder than about [minus]60[degrees]C during the 1982-1988 period. Ozone destruction by heterogeneous photochemical processes is the main cause of ozone depletion over Syowa during the 1980's, with a lesser contribution from a change in air dynamics (heat, ozone, and momentum transport to Antarctica during the austral spring) that increased polar vortex stability, thereby promoting photochemical ozone depression within the vortex. 27 refs., 9 figs., 2 tabs.

  10. Export of Ozone-Poor Air from the Lower Tropical Stratosphere to Mid-latitudes

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Weinstock, E. M.; Anderson, J. G.

    2002-05-01

    Analysis of ozonesonde profiles shows a decline in ozone of 7 to 9%/decade during the past 20 to 30 years in the northern mid-latitude lower stratosphere [Logan et al., 1999], exposing the large population at these latitudes to increased health risks. Heterogeneous processing leading to halogen-catalyzed ozone loss is not expected to occur in the mid-latitude lower stratosphere because in situ measurements indicate the air is consistently undersaturated and low in ClO in this region [Smith et al., 2001]. Furthermore, in situ measurements acquired aboard the NASA ER-2 aircraft during SOLVE (SAGE III Ozone Loss and Validation Experiment) suggest that equatorward mixing of ozone-depleted air from the Arctic vortex does not contribute significantly to declines in mid-latitude lower stratospheric ozone. Instead, tracer-tracer correlations from SOLVE indicate that rapid isentropic transport from the lower tropical stratosphere coupled with diabatic descent in mid-latitudes delivers very young, ozone-poor air to the lowermost stratosphere (θ < 380 K) during northern winter. Given this result, we hypothesize that the seasonal and interannual variability in the strength of this transport from the lower tropical stratosphere modulates mid-latitude lower stratospheric ozone. We investigate methods of using in situ observations to test this hypothesis. Logan, J.A., et al., Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data, Journal of Geophysical Research, 104, 26373-26399, 1999. Smith, J.B., et al., Mechanisms for midlatitude ozone loss: Heterogeneous chemistry in the lowermost stratosphere?, Journal of Geophysical Research, 106, 1297-1309, 2001.

  11. Role of Stratospheric Air in a Severe Weather Event: Analysis of Potential Vorticity and Total Ozone

    NASA Technical Reports Server (NTRS)

    Goering, Melissa A.; Gallus, William A., Jr.; Olsen, Mark A.; Stanford, John L.

    2001-01-01

    The role of dry stratospheric air descending to low and middle tropospheric levels in a severe weather outbreak in the midwestern United States is examined using ACCEPT Eta model output, Rapid Update Cycle (RUC) analyses, and Earth probe Total Ozone Mapping Spectrometer (EP/TOMS) total ozone data. While stratospheric air was not found to play a direct role in the convection, backward trajectories show stratospheric air descended to 800 hPa just west of the convection. Damaging surface winds not associated with thunderstorms also occurred in the region of greatest stratospheric descent. Small-scale features in the high-resolution total ozone data compare favorably with geopotential heights and potential vorticity fields, supporting the notion that stratospheric air descended to near the surface. A detailed vertical structure in the potential vorticity appears to be captured by small-scale total ozone variations. The capability of the total ozone to identify mesoscale features assists model verification. The total ozone data suggest biases in the RUC analysis and Eta forecast of this event. The total ozone is also useful in determining whether potential vorticity is of stratospheric origin or is diabatically generated in the troposphere.

  12. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  13. Altitude dependence of stratospheric ozone trends based on Nimbus 7 SBUV data

    NASA Technical Reports Server (NTRS)

    Hood, Lon L.; Mcpeters, Richard D.; Mccormack, John P.; Flynn, Lawrence E.; Hollandsworth, Stacey M.; Gleason, James F.

    1993-01-01

    A multiple regression statistical model is applied to estimate the altitude, latitude, and seasonal dependences of stratospheric ozone trends using 11.5 years of Nimbus 7 SBUV data for the period November 1978 to June 1990. In the upper stratosphere, the derived trends agree in both latitude dependence and approximate amplitude with published predictions from stratospheric models that consider gas-phase chemical processes together with the observed approx. 0.1 ppbV per year increase in tropospheric chlorine. The dominant contribution to column ozone trends occurs in the lower stratosphere where significant negative trends are present at latitudes greater than 20 deg in both hemispheres. The observed latitude dependence is qualitatively consistent with model predictions that include the effects of heterogeneous chemical ozone losses on lower stratospheric aerosols.

  14. Altitude dependence of stratospheric ozone trends based on Nimbus 7 SBUV data

    SciTech Connect

    Hood, L.L.; McCormack, J.P. ); McPeters, R.D.; Gleason, J.F. ); Flynn, L.E. ); Hollandsworth, S.M. )

    1993-12-14

    A multiple regression statistical model is applied to estimate the altitude, latitude, and seasonal dependences of stratospheric ozone trends using 11.5 years of Nimbus 7 SBUV data for the period November 1978 to June 1990. In the upper stratosphere, the derived trends agree in both latitude dependence and approximate amplitude with published predictions from stratospheric models that consider gas-phase chemical processes together with the observed [approximately]0.1 ppbV per year increase in tropospheric chlorine. The dominant contribution to column ozone trends occurs in the lower stratosphere where significant negative trends are present at latitudes >20[degrees] in both hemispheres. The observed latitude dependence is qualitatively consistent with model predictions that include the effects of heterogeneous chemical ozone losses on lower stratospheric aerosols.

  15. The features of ozone quasi-biennial oscillation in tropical stratosphere and its numerical simulation

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Zheng, B.; Zhang, H.

    The interannual variation of the vertical distribiltion of ozone in the tropical stratosphere and its quasi-biennial oscillation (QBO) is analyzed Using HALOE data. The results are compared with the wind QBO. A numerical experiment is carried out to study the effects of wind QBO on the distribution, and variation OF ozone in the stratosphere by using the NCAR interactive chemical, dynamical, and radiative two-dimensional model (SOCRATES). Data analysis shows that the location of the maximum ozone mixing ratio in the stratosphere changes in the meridional and vertical directions, and assumes a quasi-biennial period, The meridional and vertical motion of the maximum mixing ratio leads to a QBO of column ozone and its hemispheric asymmetry. The QBO of the location of the maximum is closely connected with the zonal wind QBO. The data analysis also shows that in the tropical region, the phase of the QBO For ozone density changes many times with height. Numerical simulation shows that the meridional circulation induced by the wind QBO includes three pairs of cells in the stratosphere, which have hemispheric symmetry. The transport of ozone by the induced meridional circulation in various latitudes and heights is the main dynamic cause for the ozone QBO. Cells of the induced circulation in the middle stratosphere (25-35 km) play an important role in producing the ozone QBO.

  16. The features of ozone quasi—biennial oscillation in tropical stratosphere and its numerical simulation

    NASA Astrophysics Data System (ADS)

    Yucjuan, Chen; Bin, Zheng; Hong, Zhang

    2002-09-01

    The inlcrunnual variation of the vertical distribution of ozone in the tropical stratosphere and its quasi—biennial oscillation (QBO) is analyzed using HALOE data. The results are compared with the wind QBO. A numerical experiment is carried out to study the effects of wind QBO on the distribution, and variation of ozone in the stratosphere by using (he NCAR interactive chemical, dynamical, and radiative two—dimensional model (SOCRATES). Data analysis shows that the location of the maximum ozone mixing ratio in the stratosphere changes in the meridional and vertical directions, and assumes a quasi—biennial period. The meridional and vertical motion of the maximum mixing ratio leads to a QBO of column ozone and its hemispheric asymmetry. The QBO of the location of the maximum is closely connected with the zonal wind QBO. The data analysis also shows that in the tropical region, the phase of the QBO for ozone density changes many times with height. Numerical simulation shows that the meridional circulation induced by the wind QBO includes three pairs of cells in the stratosphere, which have hemispheric symmetry. The transport of ozone by the induced meridional circulation in various latitudes and heights is the main dynamic cause for the ozone QBO. Cells of the induced circulation in the middle stratosphere (25-35 km) play an important role in producing the ozone QBO.

  17. Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Newman, P. A.; Song, I. S.

    2011-01-01

    A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.

  18. Distinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Polvani, Lorenzo M.; Solomon, Susan

    2014-04-01

    Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we provide evidence that changes in the concentrations of ozone-depleting substances (ODS), not WMGHG, have been the primary driver of observed Arctic lower stratospheric trends in both ozone and temperature. We do so by analyzing polar cap ozone and temperature trends in reanalysis data: these clearly suggest that both trends are mainly driven by ODS in the lower stratosphere. This observation-based finding is supported by results from a stratosphere-resolving chemistry-climate model driven with time-varying ODS and WMGHG, specified in isolation and in combination. Taken together, these results provide strong evidence that ODS are the main driver of changes in the Arctic lower stratospheric temperatures and ozone, whereas WMGHG are the primary driver of changes in the upper stratosphere.

  19. A Discussion of Upper Stratospheric Ozone Asymmetry and Ozone Trend Changes

    NASA Technical Reports Server (NTRS)

    Li, Jinlong; Cunnold, Derek M.; Wang, Hsiang-Jui; Yang, Eun-Su; Newchurch, Mike J.

    2002-01-01

    Analyses from SAGE I/II version 6.0 data exhibit upper stratospheric ozone trends which are not significantly different from those in version 5.96 data. Trend calculations show larger downward trends at mid-high latitudes in the Southern Hemisphere than in the Northern Hemisphere, particularly in 1980s. There are also indications of decreasing downward trends with time from 1979 to 1999. We have used a chemical box model and the UARS measurements of long lived gases, CH4, H2O, NO(x), and temperature to show that, with a constant Cl(sub y) trend, a hemispheric ozone trend asymmetry of 1%/decade at 45 deg. around 43 km is expected due to the hemispheric differences of temperature and CH4 during late winter/early. Also ozone trends should have been approximately 1%/decade more negative from 1979-1989 than from 1989-1999 because of the chemical feedbacks. The model results further indicate that both the reported decrease in CH4 and the increase in H2O in HALOE measurements will result in a larger downward ozone trend and a decrease in the hemispheric ozone trend asymmetry.

  20. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  1. 77 FR 16988 - Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... procedure, Air pollution control, Reporting and recordkeeping requirements, Stratospheric ozone layer. Dated... AGENCY 40 CFR Part 82 RIN 2060-AR20 Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule... substitute for ozone- depleting substances (ODSs) in the motor vehicle air conditioning end- use within...

  2. 77 FR 17344 - Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... control, Incorporation by reference, Reporting and recordkeeping requirements, Stratospheric ozone layer... AGENCY 40 CFR Part 82 RIN-2060-AR20 Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule...-tetrafluoroprop-1-ene), a substitute for ozone-depleting substances (ODSs) in the motor vehicle air...

  3. Reduced Southern Hemispheric circulation response to quadrupled CO2 due to stratospheric ozone feedback

    NASA Astrophysics Data System (ADS)

    Chiodo, Gabriel; Polvani, Lorenzo M.

    2017-01-01

    Due to computational constraints, interactive stratospheric ozone chemistry is commonly neglected in most climate models participating in intercomparison projects. The impact of this simplification on the modeled response to external forcings remains unexplored. In this work, we examine the importance of including interactive stratospheric ozone chemistry on the Southern Hemispheric circulation response to an abrupt quadrupling of CO2. We find that including interactive ozone significantly reduces (by 20%) the response of the midlatitude jet to CO2, even though it does not alter the surface temperature response. The reduction of the tropospheric circulation response is due to CO2 induced ozone changes and their effects on the meridional temperature gradient near the tropopause. Our findings suggest that neglecting this stratospheric ozone feedback results in an overestimate of the circulation response to increased CO2. This has important implications for climate projections of the Southern Hemispheric circulation response to CO2.

  4. Stratospheric ozone variations in the equatorial region as seen in Stratiospheric Aerosol and Gas Experiment data

    NASA Technical Reports Server (NTRS)

    Shiotani, Masato; Hasebe, Fumio

    1994-01-01

    An analysis is made of equatorial ozone variations for 5 years, 1984-1989, using the ozone profile data derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) instrument. Attention is focused on the annual cycle and also on interannual variability, particularly the quasi-biennial oscillation (QBO) and El Nino-Southern Oscillation (ENSO) variations in the lower stratosphere, where the largest contribution to total column ozone takes place. The annual variation in zonal mean total ozone around the equator is composed of symmetric and asymmetric modes with respect to the equator, with maximum contributions being around 19 km for the symmetric mode and around 25 km for the asymmetric mode. The persistent zonal wavenumber 1 structure observed by the total ozone mapping spectrometer over the equator is almost missing in the SAGE-derived column amounts integrated in the stratosphere, suggesting a significant contribution from tropospheric ozone. Interannual variations in the equatorial ozone are dominated by the QBO above 20 km and the ENSO-related variation below 20 km. The ozone QBO is characterized by zonally uniform phase changes in association with the zonal wind QBO in the equatorial lower stratosphere. The ENSO-related ozone variation consists of both the east-west vacillation and the zonally uniform phase variation. During the El Nino event, the east-west contrast with positive (negative) deviations in the eastern (western) hemisphere is conspicuous, while the decreasing tendency of the zonal mean values is maximum at the same time.

  5. Fiber-Optic Coupled Lidar Receiver System to Measure Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Harper, David Brent; Elsayed-Ali, Hani

    1998-01-01

    The measurement of ozone in the atmosphere has become increasingly important over the past two decades. Significant increases of ozone concentrations in the lower atmosphere, or troposphere, and decreases in the upper atmosphere, or stratosphere, have been attributed to man-made causes. High ozone concentrations in the troposphere pose a health hazard to plants and animals and can add to global warming. On the other hand, ozone in the stratosphere serves as a protective barrier against strong ultraviolet (UV) radiation from the sun. Man-made CFC's (chlorofluorocarbons) act as a catalyst with a free oxygen atom and an ozone molecule to produce two oxygen molecules therefore depleting the protective layer of ozone in the stratosphere. The beneficial and harmful effects of ozone require the study of ozone creation and destruction processes in the atmosphere. Therefore, to provide an accurate model of these processes, an ozone lidar system must be able to be used frequently with as large a measurement range as possible. Various methods can be used to measure atmospheric ozone concentrations. These include different airborne and balloon measurements, solar occulation satellite techniques, and the use of lasers in lidar (high detection and ranging,) systems to probe the atmosphere. Typical devices such as weather balloons can only measure within the direct vicinity of the instrument and are therefore used infrequently. Satellites use solar occulation techniques that yield low horizontal and vertical resolution column densities of ozone.

  6. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.

    2006-01-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.

  7. Evaluation of Upper-Tropospheric and Lower-Stratospheric Ozone Profiles from a Global Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Stajner, Ivanka; Phelps, Carrie; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Data Assimilation Office at NASA's Goddard Space Flight Center provides global 3D ozone fields at six-hour time intervals. Data from Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument are used in the assimilation. TOMS provides total column information and SBUV provides profile information, primarily above the ozone peak. Information below the ozone peak comes from the model. This paper will explore the realism of the assimilated ozone in the upper troposphere and lower stratosphere through validation with ozonesondes, Halogen Occultation Experiment (HALOE), and Polar Ozone and Aerosol Measurement (POAM) observations. This work is in preparation of using the assimilated ozone in the radiative calculation for the meteorological assimilation as well as in the derivation of tropospheric ozone.

  8. Multi-Model Assessment of the Factors Driving Stratospheric Ozone Evolution Over the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; Eyring, V.; Frith, S.; Hardiman, S. C.; Kinnison, D. E.; Lamarque, J. F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Nakamura T.

    2010-01-01

    The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21st century, and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to continue increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression, we find decreasing halogens and increasing greenhouse gases contribute almost equally to increases in the upper stratospheric ozone. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century and returns to 1960 levels.

  9. The Interdecadal Pacific Oscillation and mid-stratospheric tropical ozone trends

    NASA Astrophysics Data System (ADS)

    Iglesias-Suarez, Fernando; Young, Paul J.; Wild, Oliver; Kinnison, Douglas E.

    2016-04-01

    In recent years, the global ozone layer has started to show the first signs of recovery, but puzzlingly tropical mid-stratospheric ozone has decreased since the beginning of the 90s. This is a key region of the stratosphere where most ozone is produced. Previous studies have shown that interannual variability in the troposphere (e.g. El Nino-Southern Oscillation) can affect the lower stratosphere, both dynamics and composition. Here for the first time, we show how multidecadal internal climate variability - in the Pacific Ocean's sea surface temperatures (i.e. the Interdecadal Pacific Oscillation, IPO) - have an impact in mid-stratospheric tropical ozone, and account for the observed trends. We suggest a mechanism that involves dynamical (i.e. Brewer Dobson circulation) and chemical (i.e. ozone loss chemistry via NOy chemistry) processes to explain this IPO-ozone link. Understanding internally generated multidecadal variability in this region of the stratosphere is crucial to distinguish between forced and unforced signals and better describe ozone recovery.

  10. Numerical simulation of global variations of temperature, ozone, and trace species in the stratosphere

    SciTech Connect

    Smith, A.K.

    1995-01-01

    A three-dimensional dynamical chemical model of the middle atmosphere is used to examine the global response to planetary waves in the middle and high latitudes of the northern hemisphere. The model indicates that larger wave activity in the lower stratosphere at 60 deg N is correlated with decreasing zonal mean temperatures throughout the tropical and summer hemisphere stratosphere as a result of an induced global-scale circulation. The tendency of mean ozone is positively correlated with the temperature tendency in the lower stratosphere and negatively correlated in the upper stratosphere. In the upper stratosphere, the anticorrelation of mean ozone and temperature is due primarily to the temperature dependence of many of the reaction rates. The quantitative agreement of the model results with available observations is better when the dependence of the ozone-temperature relation on the mean zone amount is removed (by taking the log of ozone) because the model ozone differs from the observed. A model run in which the atmospheric chlorine is removed indicates that the magnitude of the ozone change for a given temperature change can be substantial for modifications in the model photochemistry. Another run tested a more realistic change in which a key reaction rate is modified; the results indicate differences of greater than 10% in the ratio of ozone to temperature changes. With improved measurement capabilities differences of this order may now or soon be detectable. The variations of other chemical species in the model with temperature are also presented.

  11. Mechanisms and Feedbacks Causing Changes in Upper Stratospheric Ozone in the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Waugh, D. W.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.

    2009-01-01

    Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantity the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM), using multiple linear regression analysis applied to simulations using either Alb or A2 greenhouse gas (GHG) scenarios. In both these scenarios upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the Alb GHG scenario, this increase is determined by the decrease in halogen amounts and the greenhouse gas induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase due to cooler temperatures. The resulting ozone evolutions are similar in the A2 and Alb simulations. The response of ozone due to feedbacks from temperature and HOx changes, related to changing halogen concentrations, are also quantified using simulations with fixed halogen concentrations.

  12. Chlorine catalyzed destruction of ozone: Implications for ozone variability in the upper stratosphere

    SciTech Connect

    Chandra, S.; Jackman, C.H.; Douglass, A.R. ); Fleming, E.L.; Considine, D.B. )

    1993-03-05

    The annual mean and the annual amplitude of ozone have been derived from ozone measurements from the SBUV and SBUV/2 spectrometers on board the Nimbus-7 and NOAA-11 satellites. These values differ significantly from values calculated using a two-dimensional model of stratospheric photochemistry and dynamics with standard chemistry. The authors have found that the differences between the calculated and data-derived values are considerably improved by changing the partitioning in the Cl[sub y] family to create a larger reservoir of HCl and reducing ClO. This is accomplished by including a channel for the products HCl+O[sub 2], from the reaction ClO+OH in addition to the products Cl+HO[sub 2]. This partitioning also improves the agreement between the calculated and measured values or ClO/HCl ratio. 18 refs., 6 figs.

  13. Ozone and nitrogen dioxide changes in the stratosphere during 1979-84

    NASA Technical Reports Server (NTRS)

    Callis, Linwood B.; Natarajan, Murali

    1986-01-01

    Analyses of stratospheric nitrogen dioxide distributions as measured by four different satellite experiments indicate midlatitude increases of up to 75 percent during the 1979-84 period. These increases are attributed to enhanced upper atmospheric formation of odd nitrogen during solar cycle 21 with downward transport to the stratosphere. The increases in NO2 provide an explanation for the recently observed dramatic springtime minima in the Antarctic ozone and suggest the reason for the reported midlatitude stratospheric ozone decreases observed by satellite and ground-based stations since the mid 1970s.

  14. An Estimation of the Climatic Effects of Stratospheric Ozone Losses during the 1980s. Appendix K

    NASA Technical Reports Server (NTRS)

    MacKay, Robert M.; Ko, Malcolm K. W.; Shia, Run-Lie; Yang, Yajaing; Zhou, Shuntai; Molnar, Gyula

    1997-01-01

    In order to study the potential climatic effects of the ozone hole more directly and to assess the validity of previous lower resolution model results, the latest high spatial resolution version of the Atmospheric and Environmental Research, Inc., seasonal radiative dynamical climate model is used to simulate the climatic effects of ozone changes relative to the other greenhouse gases. The steady-state climatic effect of a sustained decrease in lower stratospheric ozone, similar in magnitude to the observed 1979-90 decrease, is estimated by comparing three steady-state climate simulations: 1) 1979 greenhouse gas concentrations and 1979 ozone, II) 1990 greenhouse gas concentrations with 1979 ozone, and III) 1990 greenhouse gas concentrations with 1990 ozone. The simulated increase in surface air temperature resulting from nonozone greenhouse gases is 0.272 K. When changes in lower stratospheric ozone are included, the greenhouse warming is 0.165 K, which is approximately 39% lower than when ozone is fixed at the 1979 concentrations. Ozone perturbations at high latitudes result in a cooling of the surface-troposphere system that is greater (by a factor of 2.8) than that estimated from the change in radiative forcing resulting from ozone depiction and the model's 2 x CO, climate sensitivity. The results suggest that changes in meridional heat transport from low to high latitudes combined with the decrease in the infrared opacity of the lower stratosphere are very important in determining the steady-state response to high latitude ozone losses. The 39% compensation in greenhouse warming resulting from lower stratospheric ozone losses is also larger than the 28% compensation simulated previously by the lower resolution model. The higher resolution model is able to resolve the high latitude features of the assumed ozone perturbation, which are important in determining the overall climate sensitivity to these perturbations.

  15. In-situ measurements of tropospheric and stratospheric ozone over Hyderabad

    NASA Astrophysics Data System (ADS)

    Manchanda, R. K.; Sreenivasan, S.; Sinha, P. R.

    The Study of the ozone concentration and its variability is one of the key indexes for environmental and ecological degradation While the stratospheric ozone absorbs the harmful ultraviolet radiation between 280-320 nm band, the tropospheric ozone is formed in the elevated layers up to 10km above ground level through the photochemical decomposition of the precursor gases like NOx, VOCs and non-methane hydrocarbons (NMHCs) released from the earth surface. Ozone studies are also vital for the understanding of solar terrestrial coupling as well as the ozone chemistry on a given site and its surroundings. Continuous measurements of vertical profile of ozone and various meteorological parameters (i.e. temperature, pressure, humidity, wind speed and direction) over one year period were made over Hyderabad using high altitude plastic balloons, in order to investigate i. variations of ozone in the troposphere and stratosphere, ii. stratospheric warming iii. coupling between upper troposphere and lower stratosphere (UTLS) region. Ozonesonde (Electro Chemical Cell) coupled with GPS RS80-15N radiosonde was used for the measurement of Ozone and meteorological parameters.

  16. 76 FR 44001 - Protection of Stratospheric Ozone: Request for Applications for Essential Use Allowances for 2013...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... that Deplete the Ozone Layer. The U.S. Government will use the applications received in response to... AGENCY Protection of Stratospheric Ozone: Request for Applications for Essential Use Allowances for 2013.... Essential use allowances provide exemptions from the phaseout of production and import of...

  17. 75 FR 34017 - Protection of Stratospheric Ozone: Notice 25 for Significant New Alternatives Policy Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and the CAA, HCFCs are... AGENCY 40 CFR Part 82 RIN 2060-AG12 Protection of Stratospheric Ozone: Notice 25 for Significant New... Acceptability. SUMMARY: This Determination of Acceptability expands the list of acceptable substitutes for...

  18. 75 FR 25780 - Protection of Stratospheric Ozone: Allocation of Essential Use Allowances for Calendar Year 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ....S. Government and by the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer... AGENCY 40 CFR Part 82 RIN-2060-AP59 Protection of Stratospheric Ozone: Allocation of Essential Use...: With this action, EPA is allocating essential use allowances for import and production of Class I...

  19. 75 FR 42747 - Protection of Stratospheric Ozone: Request for Applications for Essential Use Allowances for 2012...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... that Deplete the Ozone Layer. The U.S. Government will use the applications received in response to... AGENCY Protection of Stratospheric Ozone: Request for Applications for Essential Use Allowances for 2012.... Essential use allowances provide exemptions from the phaseout of production and import of...

  20. Study of the lower stratospheric thermal structure and total ozone from Nimbus-4 IRIS

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.

    1976-01-01

    The global distribution of temperature in the stratosphere from 100 to 10 mbar and the total ozone in the atmosphere are remotely sensed from the Nimbus-4 IRIS measurements for a period of about one year. The temperature and ozone data are presented in the form of monthly mean global maps. The standard deviations of temperature and ozone with respect to zonal averages are calculated. The mean and the variable state of the stratosphere are discussed with the help of these observations. The lower stratosphere in the tropical regions reveals a significant wave number one pattern in the circulation. The Arctic and Antarctic stratospheric winter circulation regimes display a different behavior apparently due to the ocean and orographic differences.

  1. Short-lived halocarbons efficient at influencing climate through ozone loss in the upper troposphere-lower stratosphere

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn; Montzka, Steven; Rap, Alex; Dhomse, Sandip; Feng, Wuhu

    2015-04-01

    Halogenated very short-lived substances (VSLS) of both natural and anthropogenic origin are a significant source of atmospheric bromine, chlorine and iodine. Due to relatively short atmospheric lifetimes (typically <6 months), VSLS breakdown in the upper troposphere-lower stratosphere (UTLS), where ozone perturbations drive a disproportionately large climate impact compared to other altitudes. Here we present chemical transport model simulations that quantify VSLS-driven ozone loss in the UTLS and infer the climate relevance of these ozone perturbations using a radiative transfer model. Our results indicate that through their impact on UTLS ozone, VSLS are efficient at influencing climate. We calculate a whole atmosphere global mean radiative effect (RE) of -0.20 (-0.16 to -0.23) Wm-2 from natural and anthropogenic VSLS-driven ozone loss, including a tropospheric contribution of -0.12 Wm-2. In the stratosphere, the RE due to ozone loss from natural bromine-containing VSLS (e.g. CHBr3, CH2Br2) is almost half of that from long-lived anthropogenic compounds (e.g. CFCs) and normalized by equivalent chlorine is ~4 times larger. We show that the anthropogenic chlorine-containing VSLS, not regulated by the Montreal Protocol, also contribute to ozone loss in the UTLS and that the atmospheric concentration of dichloromethane (CH2Cl2), the most abundant of these, is increasing rapidly. Finally, we present evidence that VSLS have made a small yet previously unrecognized contribution to the ozone-driven radiative forcing of climate since pre-industrial times of -0.02 (-0.01 to -0.03) Wm-2. Given the climate leverage that VSLS possess, future increases to their emissions, either through continued industrial or altered natural processes, may be important for future climate forcing.

  2. Influence of polar stratospheric clouds on the depletion of Antarctic ozone

    NASA Technical Reports Server (NTRS)

    Salawitch, Ross J.; Wofsy, Steven C.; Mcelroy, Michael B.

    1988-01-01

    Precipitation of nitrate in polar stratospheric clouds (PSCs) can provide a significant sink for Antarctic stratospheric odd nitrogen. It is argued that the depth of the Ozone Hole is sensitive to the occurrence of temperatures below about 196 K. An increase in the prevalence of temperatures below 196 K would enhance ozone loss by increasing the spatial extent and persistence of PSCs, and by decreasing the level of HNO3 that remains following PSC evaporation. Concentrations of halogen gases in the 1960s and earlier were insufficient to support major ozone loss, even if thermal conditions were favorable.

  3. Natural variability of tropical upper stratospheric ozone inferred from the Atmosphere Explorer backscatter ultraviolet experiment

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Abrams, R. B.; Dasgupta, R.; Guenther, B.

    1981-01-01

    Analysis of backscattered ultraviolet radiances observed at tropical latitudes by the Atmosphere Explorer-E satellite reveals both annual and semiannual cycles in upper stratospheric ozone. The annual variation dominates the signal at wavelengths which sense ozone primarily above 45 km while below this, to the lowest altitude sensed, 35 km, the semiannual component has comparable amplitude. Comparison of radiance measurements taken with the same instrument at solar minimum during 1976 and solar maximum in 1979 show no significant differences. This suggests that variations in upper stratospheric ozone over the solar cycle are small, although the data presently available do not allow a definite conclusion.

  4. Measurement intercomparison of the JPL and GSFC stratospheric ozone lidar systems.

    PubMed

    McDermid, I S; Godin, S M; Lindqvist, L O; Walsh, T D; Burris, J; Butler, J; Ferrare, R; Whiteman, D; McGee, T J

    1990-11-01

    For approximately one month during October and November 1988 the NASA Goddard Space Flight Center mobile lidar system was brought to the Jet Propulsion Laboratory, Table Mountain Facility, to make side-byside measurements with the JPL lidar of stratospheric ozone concentration profiles. Measurements were made by both excimer laser DIAL systems on fifteen nights during this period. The results showed good agreement of the ozone profiles measured between 20- and 40-km altitude. This is the first (to the best of our knowledge) reported side-by-side measurement intercomparison of two stratospheric ozone lidar systems.

  5. Ozone in the stratosphere. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning empirical and theoretical studies and analyses of stratospheric ozone. The processing of upper atmospheric ozone concentrations that vary with ozone transport, formation, and depletion, and data collection using ground-based, airborne and satellite-borne instrumentation and sensors are examined. Citations cover studies on atmospheric composition, reaction kinetics, particle physics, chemical reactions, photochemistry, and atmospheric models of ozone. Investigations are based on the photochemistry, ozone constituents, and long-term measurement data. References to the Antarctic October depletion phenomenon are included. (Contains 250 citations and includes a subject term index and title list.)

  6. Ozone in the stratosphere. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning empirical and theoretical studies and analyses of stratospheric ozone. The processing of upper atmospheric ozone concentrations that vary with ozone transport, formation, and depletion, and data collection using ground-based, airborne and satellite-borne instrumentation and sensors are examined. Citations cover studies on atmospheric composition, reaction kinetics, particle physics, chemical reactions, photochemistry, and atmospheric models of ozone. Investigations are based on the photochemistry, ozone constituents, and long-term measurement data. References to the Antarctic October depletion phenomenon are included. (Contains 250 citations and includes a subject term index and title list.)

  7. Changes in the Ozone Content over Central Europe During Reversals of Stratospheric Circulation in Late Winter

    NASA Technical Reports Server (NTRS)

    Entzian, G.; Grasnick, K. H.

    1984-01-01

    A superposed epoch analysis during late winter zonal wind reversals was carried out from 18 year observation series (1963 to 1980) of the meridional geopotential height gradient in the 30 mb level (latitude mean) and of the ozone content over central Europe. Experimental data suggest that if planetary waves are responsible for the additional meridional ozone transport during stratospheric warmings, this transport has to take place at heights other than those up to the ozone maximum in the middle latitudes.

  8. Stratospheric ozone with added water vapor: influence of high-altitude aircraft.

    PubMed

    Harrison, H

    1970-11-13

    Simple, steady-state models for ozone photochemistry, radiative heat balance, and eddy-diffusive mass transport can be combined to estimate water-induced changes in the stratospheric ozone concentrations and temperatures, the integrated ozone column, the solar power transmitted to the earth's surface, and the surface temperature. These changes have been computed parametrically for mixing fractions of water vapor between 3 x 10(-6) and 6.5 x 10(-6). With added water from the exhausts of projected fleets of stratospheric aircraft, the ozone column may diminish by 3.8 percent, the transmitted solar power increase by 0.07 percent, and the surface temperature rise by 0.04 degrees K in the Northern Hemisphere. Due to a cancellation of terms, temperatures in the lower stratosphere remain essentially unchanged. These results are sensitive to the form of the water profile and emphasize the potential role of convective transients near 30 kilometers.

  9. Identification of Stratospheric Waves in Ozone in the Tropics from OMI High Spectral Resolution Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Liu, X.; Bhartia, P. K.

    2007-01-01

    Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.

  10. Inter-Annual and Decadal Changes in Tropospheric and Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, Jr. R.; Chandra, S.

    2011-01-01

    Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and studying their long-term changes. Using this technique, we have produced a 32-year (1979-2010) long record of tropospheric and stratospheric ozone from the combined Total Ozone Mapping Spectrometer (Toms) and OMI. The analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual changes of 30-40 Dobson Units (DU). Tropospheric ozone also indicates a QBO signal in the peak to peak changes varying from 2 to 7 DU. Decadal changes in global stratospheric ozone indicate a turnaround in ozone loss around mid 1990's with most of these changes occurring in the Northern Hemisphere from the subtropics to high latitudes. The trend results are generally consistent with the prediction of chemistry climate models which include the reduction of ozone destroying substances beginning in the late 1980's mandated by the Montreal Protocol.

  11. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    NASA Technical Reports Server (NTRS)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  12. Effect of vibrationally excited oxygen on ozone production in the stratosphere

    NASA Technical Reports Server (NTRS)

    Patten, K. O., Jr.; Connell, P. S.; Kinnison, D. E.; Wuebbles, D. J.; Slanger, T. G.; Froidevaux, L.

    1994-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory two-dimensional zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based on recent information on vibrational distributions of excited oxygen and on preliminary studies of energy transfer from the excited oxygen. When energy transfer rate constants similar to those of Toumi et al. (1991) are assumed, increases in model ozone concentrations of up to 4.0% in the upper stratosphere are found, and the model ozone concentrations are found to agree slightly better with measurements, including recent data from the Upper Atmosphere Research Satellite. However, the ozone increase is only 0.3% when the larger energy transfer rate constants indicated by recent experimental work are applied to the model. An ozone increase of 1% at 50 km requires energy transfer rate constants one-twentieth those of the preliminary observations. As a result, vibrationally excited oxygen processes probably do not contribute enough ozone to be significant in models of the upper stratosphere.

  13. Effect of vibrationally excited oxygen on ozone production in the stratosphere

    SciTech Connect

    Patten, K.O. Jr.; Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J.; Slanger, T.G.; Froidevaux, L.

    1994-01-20

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory two-dimensional zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based on recent information on vibrational distributions of excited oxygen and on preliminary studies of energy transfer from the excited oxygen. When energy transfer rate constants similar to those of Toumi et al. (1991) are assumed, increases in model ozone concentrations of up to 4.0% in the upper stratosphere are found, and the model ozone concentrations are found to agree slightly better with measurements, including recent data from the Upper Atmosphere Research Satellite. However, the ozone increase is only 0.3% when the larger energy transfer rate constants indicated by recent experimental work are applied to the model. An ozone increase of 1% at 50 km requires energy transfer rate constants one-twentieth those of the preliminary observations. As a result, vibrationally excited oxygen processes probably do not contribute enough ozone to be significant in models of the upper stratosphere. 41 refs., 10 figs., 3 tabs.

  14. The impact of high altitude aircraft on the ozone layer in the stratosphere

    NASA Technical Reports Server (NTRS)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  15. Stratospheric contribution to surface ozone in the desert Southwest during the 2013 Las Vegas Ozone Study

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II; Brioude, J. F.; Cooper, O. R.; Holloway, J. S.; Lin, M.; Marchbanks, R.; Pierce, R. B.; Reddy, P. J.; Sandberg, S.; Weickmann, A. M.; Williams, E. J.; Gustin, M. S.; Iraci, L. T.; Leblanc, T.; Yates, E. L.

    2014-12-01

    The 2013 Las Vegas Ozone Study (LVOS) was designed to investigate the potential impact of stratosphere-troposphere transport (STT) and long-range transport of pollution from Asia on surface O3 concentrations in Clark County, NV. This measurement campaign, which took place in May and June of 2013, was conducted at Angel Peak, NV, a high elevation site about 2.8 km above mean sea level and 45 km west of Las Vegas. The study was organized around the NOAA ESRL truck-based TOPAZ scanning ozone lidar with collocated in situ sampling of O3, CO, and meteorological parameters. These measurements were supported by the NOAA/NESDIS real time modelling system (RAQMS), FLEXPART particle dispersion model, and the NOAA GFDL AM3 model. In this talk, I will describe one of several STT events that occurred during the LVOS campaign. This intrusion, which was profiled by TOPAZ on the night of May 24-25, was also sampled by the NASA Alpha Jet, the Table Mountain ozone lidar, and by an ozonesonde flying above southern California. This event also led to significant ozone increases at surface monitors operated by Clark County, the California Air Resources Board, the U.S. National Park Service, and the Nevada Rural Ozone Initiative (NRVOI), and resulted in exceedances of the 2008 75 ppbv O3 NAAQS both in Clark County and in surrounding areas of Nevada and southern California. The potential implications of this and similar events for air quality compliance in the western U.S. will be discussed.

  16. Distribution of stratospheric column ozone (SCO) determined from satellite observations: Validation of solar backscattered ultraviolet (SBUV) measurements in support of the tropospheric ozone residual (TOR) method

    NASA Astrophysics Data System (ADS)

    Wozniak, Amy E.; Fishman, Jack; Wang, Pi-Huan; Creilson, John K.

    2005-10-01

    The global (50°N-50°S) distribution of stratospheric column ozone (SCO) is derived using solar backscattered ultraviolet (SBUV) profiles and compared with SCO amounts derived from Stratospheric Aerosol and Gas Experiment (SAGE) and ground-based measurements. An evaluation of archived SBUV (version 6) ozone profiles with ozonesonde profiles shows that the low resolution of the SBUV instrument in the troposphere and lower stratosphere leads to a low bias in the SBUV profile in the troposphere and a high bias in the lower stratosphere in regions where anthropogenic tropospheric ozone production influences the climatology. An empirical correction applied to the SBUV profile prior to separating the stratosphere from the troposphere reduces the bias in the lower stratosphere and results in a SCO distribution in good agreement with SCO derived from SAGE ozone profiles. Because the empirical correction is most pronounced at northern middle latitudes, we compare these resultant SCO values with those measured at two northern middle latitude sites (Wallops Island and Hohenpeissenberg) using concurrent measurements from Dobson spectrophotometers and ozonesondes. Our analysis shows that the empirically corrected SCO at these sites captures the seasonal cycle of SCO as well as the seasonal cycle derived from SAGE stratospheric ozone profiles. These results have important implications for the derivation of tropospheric ozone from SBUV ozone profiles in conjunction with Total Ozone Mapping Spectrometer (TOMS) total ozone measurements using the tropospheric ozone residual (TOR) methodology.

  17. An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

    NASA Astrophysics Data System (ADS)

    Hocke, Klemens; Schranz, Franziska; Maillard Barras, Eliane; Moreira, Lorena; Kämpfer, Niklaus

    2017-03-01

    Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s-1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.

  18. Impact of a potential 21st century "grand solar minimum" on surface temperatures and stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Rozanov, E. V.; Muthers, S.; Peter, T.; BröNnimann, S.; Arfeuille, F.; Beer, J.; Shapiro, A. I.; Raible, C. C.; Steinhilber, F.; Schmutz, W. K.

    2013-08-01

    We investigate the effects of a recently proposed 21st century Dalton minimum like decline of solar activity on the evolution of Earth's climate and ozone layer. Three sets of two member ensemble simulations, radiatively forced by a midlevel emission scenario (Intergovernmental Panel on Climate Change RCP4.5), are performed with the atmosphere-ocean chemistry-climate model AOCCM SOCOL3-MPIOM, one with constant solar activity, the other two with reduced solar activity and different strength of the solar irradiance forcing. A future grand solar minimum will reduce the global mean surface warming of 2 K between 1986-2005 and 2081-2100 by 0.2 to 0.3 K. Furthermore, the decrease in solar UV radiation leads to a significant delay of stratospheric ozone recovery by 10 years and longer. Therefore, the effects of a solar activity minimum, should it occur, may interfere with international efforts for the protection of global climate and the ozone layer.

  19. 76 FR 23769 - Protection of Stratospheric Ozone: The 2011 Critical Use Exemption From the Phaseout of Methyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... consensus decision taken by the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer... Stratospheric Ozone Protection regulations, the science of ozone layer depletion, and related topics... Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol). The Montreal Protocol...

  20. 77 FR 29218 - Protection of Stratospheric Ozone: The 2012 Critical Use Exemption From the Phaseout of Methyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... decision by the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer at the Twenty... NW., Washington, DC 20460. You may also visit the methyl bromide section of the ozone layer... exemption, other stratospheric ozone protection regulations, the science of ozone layer depletion,...

  1. 76 FR 60736 - Protection of Stratospheric Ozone: The 2011 Critical Use Exemption From the Phaseout of Methyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... decision taken by the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer at the..., NW., Washington, DC 20460. You may also visit the methyl bromide section of the ozone layer... use exemption, other stratospheric ozone protection regulations, the science of ozone layer...

  2. Arctic stratospheric ozone depletion and increased UVB radiation: potential impacts to human health.

    PubMed

    De Fabo, Edward C

    2005-12-01

    Contrary to popular belief, stratospheric ozone depletion, and the resultant increase in solar UV-B (280-320 nm), are unlikely to fully recover soon. Notwithstanding the success of the Montreal Protocol in reducing the amount of ozone destroying chemicals into the stratosphere, the life-times of these compounds are such that even with full compliance with the Protocol by all countries, it will be decades before stratospheric ozone could return to pre-1980 levels. This raises the question, therefore, of what will happen to biological processes essential to the maintenance of life on earth which are sensitive to damage by increased UV-B radiation, particularly those involved with human health? The polar regions, because of the vagaries of climate and weather, are the bellwether for stratospheric ozone depletion and will, therefore, be the first to experience impacts due to increases in solar UV-B radiation. The impacts of these are incompletely understood and cannot be predicted with certainty. While some UV-B impacts on human health are recognized, much is unknown, unclear and uncertain. Thus, this paper attempts, as a first approximation, to point out potential impacts to the health and welfare of human inhabitants of the Arctic due to increased solar UV-B radiation associated with stratospheric ozone depletion. As will be seen, much more data is critically needed before adequate risk assessment can occur.

  3. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    NASA Technical Reports Server (NTRS)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  4. Simulation of stratospheric ozone in global forecast model using linear photochemistry parameterization

    NASA Astrophysics Data System (ADS)

    Jeong, Gill-Ran; Monge-Sanz, Beatriz M.; Lee, Eun-Hee; Ziemke, Jerald R.

    2016-11-01

    The two types of ozone, the simulation with interactive (prognostic) ozone using linear photochemistry parameterization (LPP) (INTR) and the simulation with non-interactive ozone using ozone climatology (CLIM), were used in the global forecast model. These two types of ozone were compared with ozone observations from the Aura Microwave Lim Sounder (MLS) and ozonesondes from 16-30 September 2008. The INTR is sensitive to LPP schemes while less sensitive to the time average of initial ozone data. Among three LPP schemes, CARIOLLE, COPCAT, and LINOZ, the COPCAT produces ozone profiles with least differences from MLS and ozonesondes. CLIM overestimates MLS at 200-20 hPa while INTR with COPCAT scheme underestimates MLS ozone above 5 hPa. Over the Antarctic in the lower stratosphere CLIM overestimates MLS and ozonesondes whereas INTR underestimates MLS but overestimates the ozonesonde data. Thus, COPCAT agrees better with ozonesonde data than any other LPP schemes and CLIM. Changing the ozone distribution from CLIM to INTR affects temperature profiles mainly through the modification of differential radiative fluxes. The correlations between ozone, differential radiative fluxes, and temperature are distinguished by altitude (or pressure levels). The correlations are strong or moderate between 3-1000 hPa (lower atmosphere) and weak above 3 hPa (upper atmosphere). This study demonstrates that the simulation of ozone using an appropriate LPP scheme is excellent in overcoming the drawbacks of using climatological ozone profiles that poorly agree with observations in extreme ozone hole events.

  5. The Hole in the Ozone Layer.

    ERIC Educational Resources Information Center

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  6. On the Validation of the Nimbus 7 LIMS Version 6 Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Remsberg, E.; Natarajan, M.; Thomason, L.; Lingenfelser, G.

    2005-12-01

    The Nimbus 7 LIMS experiment obtained daily distributions of ozone from late October 1978 through late May 1979 and with good vertical resolution and spatial sampling along its orbital tangent tracks. The historic LIMS Version 5 (V5) dataset was archived in 1982. Studies of those data revealed detailed information about the roles of chemistry and transport on the distribution of ozone in the stratosphere for the latitudes of 64S to 84N. Although its profiles were of good quality throughout most of the stratosphere, both the simulation and validation studies indicated that the accuracy of the V5 ozone became less good below about the 30-hPa level at low latitudes and below the 50-hPa level at middle and high latitudes, especially during polar winter. A LIMS Version 6 (V6) algorithm was developed some years later, in part, to improve on the quality of the ozone profiles in the lower stratosphere. That V6 profile dataset was created in 2001 and archived in 2002. In this paper we present comparisons of the LIMS V6 ozone with the SBUV Version 8 (V8) data, with the preliminary SAGE I Version 6 data, and with balloon ECC ozonesonde soundings from several stations. The findings indicate significant improvements in accuracy for LIMS V6 ozone in the lower stratosphere and better vertical and horizontal sampling for the changes in ozone at polar latitudes and throughout the Arctic winter period. This revised ozone dataset should provide for a better assessment of the effects of chemistry and transport on polar and middle latitude ozone for the Northern Hemisphere winter of 1978-79, when the loss of ozone due to reactive chlorine from heterogeneous processes was not as significant as it is today.

  7. Rapid Transport of Stratospheric Ozone into the Planetary Boundary Layer over the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Skerlak, B.; Sprenger, M.; Pfahl, S.; Wernli, H.

    2013-12-01

    Stratosphere-troposphere exchange (STE) has important impacts on atmospheric chemistry: it changes the oxidative capacity of the troposphere and affects the climate system through the exchange of water vapor and ozone. Although a large part of tropospheric ozone is produced photochemically, significant amounts of stratospheric ozone can be brought into the troposphere during STE events. The relative importance of these two sources depends on the location of interest and transport characteristics. Of particular interest are so-called deep exchange events where ozone-rich stratospheric air reaches the planetary boundary layer (PBL) within a few days (deep STT). This rapid vertical transport can contribute to ozone concentrations at ground level which can impair plant and human physiology. It is therefore not only important to quantify the ozone flux across the tropopause but also to investigate the transport pathways after the crossing to identify affected areas at ground. Using a Lagrangian methodology and 33 years of ERA-Interim reanalysis data, we have compiled a global climatology of STE from which the mountainous areas in western North America can be identified as a 'hot spot' of deep STT, especially in boreal spring. To address the question of how the stratospheric air masses are transported into the PBL in more detail, we investigate case studies in this region with the mesoscale numerical weather prediction model COSMO. On this account, we initialize a passive tracer in the stratosphere using an elaborated 3D-labeling algorithm which applies the dynamical 2 pvu/380 K tropopause definition. This tracer is then advected by both resolved and parameterized processes and allows us to follow the stratospheric air masses along their journey into the mountainous PBL. Although this tracer does not directly represent a specific chemical species, its concentrations at the lowest model level can indicate when and where ozone levels at ground are likely to be influenced

  8. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1996-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HOx and NOx species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences.

  9. On the ambiguous nature of the 11-year solar cycle signal profile in stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Chipperfield, Martyn; Damadeo, Robert; Zawodny, Joe; Ball, William; Feng, Wuhu; Hossaini, Ryan; Mann, Graham; Haigh, Joana

    2016-04-01

    We use three satellite datasets and simulations from a 3-D chemical transport model, forced by three different solar flux datasets, to diagnose the 11-year solar cycle signal (SCS) in stratospheric ozone. Our analysis shows that compared to SAGE II v6.2, a reduced upper stratospheric SCS in SAGE II v7.0 is due to a more realistic ozone-temperature anti-correlation. Overall, all model simulations show a positive SCS in the lower and middle stratosphere and negligible SCS in the upper stratosphere in agreement with SAGE v7.0, HALOE and MLS data. The model simulations show a differently structured SCS over different time periods covered by the satellite datasets, which helps to resolve some observed differences. However, despite the improvements to the SAGE II data, due to remaining biases in current observational and reanalysis datasets, accurate quantification of the influence of solar flux variability on the climate system remains an open scientific question.

  10. A Long Data Record (1979-2003) of Stratospheric Ozone Derived from TOMS Cloud Slicing: Comparison with SAGE and Implications for Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerry R.; Chandra, Sushil; Bhartia, Pawan K.

    2004-01-01

    It is generally recognized that Stratospheric Aerosols and Gas Experiment (SAGE) stratospheric ozone data have become a standard long-record reference field for comparison with other stratospheric ozone measurements. This study demonstrates that stratospheric column ozone (SCO) derived from total ozone mapping spectrometer (TOMS) Cloud Slicing may be used to supplement SAGE data as a stand-alone long- record reference field in the tropics extending to middle and high latitudes over the Pacific. Comparisons of SAGE I1 version 6.2 SCO and TOMS version 8 Cloud Slicing SCO for 1984-2003 exhibit remarkable agreement in monthly ensemble means to within 1-3 DU (1 - 1.5% of SCO) despite being independently-calibrated measurements. An important component of our study is to incorporate these column ozone measurements to investigate long-term trends for the period 1979-2003. Our study includes Solar Backscatter Ultraviolet (SBW) version 8 measurements of upper stratospheric column ozone (i.e., zero to 32 hPa column ozone) to characterize seasonal cycles and seasonal trends in this region, as well as the lower stratosphere and troposphere when combined with TOMS SCO and total column ozone. The trend analyses suggest that most ozone reduction in the atmosphere since 1979 in mid-to-high latitudes has occurred in the Lower stratosphere below approx. 25 km. The delineation of upper and lower stratospheric column ozone indicate that trends in the upper stratosphere during the latter half of the 1979-2003 period have reduced to near zero globally, while trends in the lower stratosphere have become larger by approx. 5 DU decade%om the tropics extending to mid-latitudes in both hemispheres. For TCO, the trend analyses suggest moderate increases over the 25-year time record in the extra-tropics of both hemispheres of around 4-6 DU (Northern Hemisphere) and 6-8 DU (Southern Hemisphere).

  11. Study of Vertical Ozone Distributions in the Stratosphere and Mesosphere at the Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Solomonov, S. V.; Kropotkina, E. P.; Rozanov, S. B.

    2003-08-01

    We present the results of stratospheric and mesospheric ozone observations at the millimeter wavelengths. It is shown that the microwave remote sensing methods are important for studying the physical and chemical processes which play a significant role in the ozone-layer depletion. Examples of the results of ozone observations at 142.2 GHz by the spectrometer of the P. N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS) illustrate the high efficiency of radiophysical techniques for atmospheric-ozone research.

  12. Simulation of Stratospheric Ozone in the KIAPSGM NWP model using linear photochemistry parameterization

    NASA Astrophysics Data System (ADS)

    Jeong, G. R.; Monge-Sanz, B.; Cariolle, D.; Lee, E. H.; Jin, E. K.

    2014-12-01

    Stratospheric ozone plays important roles in the Earth's weather and climate systems due to its physiochemical properties and a wide range of spectral absorption. Because of complicated chemical equations and expensive computational cost, NWP community has introduced a linear photochemistry parameterization (LPP) that Cariolle and Déqué suggested in 1986 with an insight of ozone-temperature relationships, to weather forecasting system. In this study, we simulated stratospheric ozone using recent LPP coefficients in a numerical weather prediction (NWP) model, the KIAPS-GM (Korea Institute of Atmospheric Prediction Systems - Global Model), and evaluated model results with observations. The KIAPS-GM uses three dimensional hydrostatic dynamical core based on the High-Order Method Modeling Environment (HOMME) in cubed sphere with a horizontal resolution of ne30np4 and 70 vertical layers up to 85km. LPP scheme was fully implemented into the KIAPS-GM including the ozone tracer advection. Prognostic ozone was estimated through interaction with local ozone field, temperature field, and radiation field as those physics fields were updated while climatological ozone (Fortuin and Kelder, 1998) was constantly fed into radiation fields in every month. ERA-interim ozone and meteorological data (Dee et al., 2011) were used as initial data. Simulation period was year 2008 when larger ozone hole events occurred than usual. We compared interactive ozone case with climatological ozone case. For the sensitivity studies to initial ozone fields and LPP coefficients, ERA-interim hourly and monthly ozone data were used; and LPP coefficients such as Cariolle and Teyssadre (2007) and Monge-Sanz et al. (2011) were interpolated into instantaneous pressure levels, respectively. Preliminary results show that the ozone concentration in interactive ozone case is higher than climatological one in the lower stratosphere and troposphere while the former is lower than the latter in the upper

  13. NOx Catalyzed Pathway of Stratospheric Ozone Depletion: A Coupled Cluster Investigation.

    PubMed

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2012-06-12

    We report a theoretical investigation on the NOx catalyzed pathways of stratospheric ozone depletion using highly accurate coupled cluster methods. These catalytic reactions represent a great challenge to state-of-the-art ab initio methods, while their mechanisms remain unclear to both experimentalists and theoreticians. In this work, we have used the so-called "gold standard of quantum chemistry," the CCSD(T) method, to identify the saddle points on NOx-based reaction pathways of ozone hole formation. Energies of the saddle points are calculated using the multireference variants of coupled cluster methods. The calculated activation energies and rate constants show good agreement with available experimental results. Tropospheric precursors to stratospheric NOx radicals have been identified, and their potential importance in stratospheric chemistry has been discussed. Our calculations resolve previous conflicts between ab initio and experimental results for a trans nitro peroxide intermediate, in the NOx catalyzed pathway of ozone depletion.

  14. A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Allen, Mark

    1993-01-01

    The global measurements of temperature, ozone, water vapor, and nitrogen dioxide acquired by the Limb Infrared Monitor of the Stratosphere (LIMS), supplemented by a precomputed distribution of chlorine monoxide, are used to test the balance between odd oxygen production and loss in the upper stratosphere and lower mesosphere. An efficient photochemical equilibrium model, whose validity is ascertained by comparison with the results from a fully time-dependent one-dimensional model at selected latitudes, is used in the calculations. The computed ozone abundances are systematically lower than observations for May 1-7, 1979, which suggests, contrary to the conclusions of other recent studies, a real problem in model simulations of stratospheric ozone.

  15. Recent lidar measurements of stratospheric ozone and temperature within the network for the detection of stratospheric change

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Ferrare, Richard; Butler, James J.; Frost, Robert L.; Gross, Michael; Margitan, James

    1991-01-01

    The Goddard mobile lidar was deployed at Cannon Air Force Base near Clovis, New Mexico during the Spring of 1990. Measurements of stratospheric ozone and temperature were made over a period of six weeks. Data from the lidar system is compared with data from a balloon-borne, ultraviolet instrument launched from nearby Ft. Sumner, New Mexico. Along with several improvements to this instrument which are now underway, a second lidar dedicated to temperature and aerosol measurements is now being developed.

  16. On the transfer of stratospheric ozone into the troposphere near the North Pole

    NASA Technical Reports Server (NTRS)

    Oltmans, Samuel J.; Raatz, Wolfgang E.; Komhyr, Walter D.

    1989-01-01

    A series of nearly daily ozone vertical profiles obtained at station T-3 on Fletcher's Ice Island (about 85 deg N, about 90 deg W) during the period January-March 1971 shows several significant ozone intrusions into the troposphere. These intrusions are not only associated with enhanced ozone amounts in the stratosphere but also require tropopause folding events to transport ozone into the troposphere. These folds in the arctic tropopause appear to be capable of contributing significantly to the ozone budget of the arctic troposphere during the late winter and spring seasons. The importance of tropopause folding for bringing ozone into the troposphere seen in the daily ozone profiles confirms the results found in the Arctic Gas and Aerosol Sampling Program aircraft flights.

  17. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  18. Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Ko, M. K.; Reimann, S.; Strahan, S. E.; Atlas, E. L.; Burkholder, J. B.; Chipperfield, M.; Engel, A.; Liang, Q.; Plumb, R. A.; Stolarski, R. S.

    2013-12-01

    Estimating the average lifetime of a chemical in the atmosphere is crucial to understanding its current and future atmospheric concentration. Furthermore, for both ozone depleting substances (ODSs) and greenhouse gases, information on their lifetimes is of paramount importance for obtaining future estimates for ozone depletion and climate forcing. The 'Lifetimes of Stratospheric Ozone-Depleting Substances, Their Replacements, and Related Species', under the World Climate Research Programme/Stratospheric Processes And their Role in Climate project, was completed in August 2013. The goal was to estimate both lifetimes and uncertainties. In this presentation we will provide: 1) an overview of key aspects of the definitions of lifetimes, 2) discuss the extensively revised photochemical values and uncertainties for obtaining lifetimes, 3) show new observational and 4) modeling estimates of lifetimes, and finally, 5) show new recommendations for the steady-state atmospheric lifetimes of 27 long-lived species. New findings include: * New chemical kinetic and photochemical information on the uncertainties associated with the Lyman-a absorption cross-sections, and revisions of absorption cross-section parameterizations for several chlorofluorocarbons. * State-of-the-art chemistry-climate models (CCMs) were used to estimate lifetimes over the course of the 21st century. Projected increases of the Brewer-Dobson circulation suggest that lifetimes should be shorter during the 21st century. However, the recovery of ozone in the CCMs shows that the photolysis of many species will decline, yielding only small changes in lifetimes of most species * The CFC-11 recommended lifetime increases to 52 years from the WMO (2011) value of 45 years. The most likely range is narrowed to 43-67 years. * The 44 year steady-state lifetime of CCl4 due to atmospheric loss determined in this report is substantially longer than the 35 years from WMO (2011). However, inclusion of the land and ocean

  19. Implications of smaller concentrations of stratospheric OH - A two-dimensional model study of ozone perturbations

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Woodward, H. T.; Capone, L. A.; Riegel, C. A.; Turco, R. P.; Poppoff, I. G.; Santhanam, K.

    1981-01-01

    There is growing observational evidence that stratospheric OH concentrations are smaller than models have been predicting. Using very recent HOx reaction rate coefficient measurements in a two-dimensional photochemical model, results which support these observations are obtained. As a consequence of smaller OH concentrations, we show that perturbations of stratospheric ozone by NOx (SST emissions and nitrogen fertilizers) may be larger than expected, while perturbations due to added water vapor and chlorine (SSTs and chlorofluoromethanes, respectively) may be smaller.

  20. Unraveling the empirical relationship between Arctic stratospheric ozone loss and temperature

    NASA Astrophysics Data System (ADS)

    von Hobe, Marc; Grooß, Jens-Uwe; Müller, Rolf

    2014-05-01

    Ever since the discovery of the Antarctic ozone hole it has been recognized that cold temperatures play a key role in fostering strong ozone depletion in the polar stratosphere. Compact negative correlations between total winter ozone loss and vortex area exposed to temperatures below certain threshold values have been demonstrated (e.g. Harris et al., 2010; Rex et al., 2006; Rex et al., 2004). The most commonly used threshold is the NAT equilibrium temperature, but other choices have been suggested, such as the temperature when the rate of chlorine activation on liquid aerosols exceeds a certain limit. Interestingly, both thresholds relate to critical temperatures in the context of heterogeneous chlorine activation, and Harris et al., 2010, stated that original activation (i.e. the activation in early winter) is the most important factor influencing ozone loss. But at least two other key processes - catalytic ozone loss and denitrification - depend directly on temperature, and temperature also controls the stability and therefore the persistence of the polar vortex. Here, we investigate such "vortex area" correlations for a number of different temperature thresholds, as well as direct correlations with vortex mean temperature and with the date of the final warming. We also carry out sensitivity studies using the Chemical Lagrangian Model of the Stratosphere (CLaMS) to investigate the response of ozone loss to temperature modifications for particle formation and growth, surface reaction probabilities and gas phase reactivity separately. Rex et al., Arctic ozone loss and climate change, Geophys. Res. Lett., 31, L04116, 2004. Rex et al., Arctic winter 2005: Implications for stratospheric ozone loss and climate change, Geophys. Res. Lett., 33, L23808, 2006. Harris et al., A closer look at Arctic ozone loss and polar stratospheric clouds, Atmos. Chem. Phys., 10, 8499-8510, 2010.

  1. Impacts of the production and consumption of biofuels on stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Revell, Laura E.; Bodeker, Greg E.; Huck, Petra E.; Williamson, Bryce E.

    2012-05-01

    Biofuels are becoming increasingly popular sources of renewable energy as economic pressures and environmental consequences encourage the use of alternatives to fossil fuels. However, growing crops destined for use as biofuels incurs large N2O emissions associated with the use of nitrogen-based fertilizers. Besides being a greenhouse gas, N2O is also the primary source of stratospheric NOx (NO + NO2) which leads to stratospheric ozone depletion. In this paper, the potential effects on the ozone layer of a large-scale shift away from fossil fuel use to biofuels consumption over the 21st century are examined. Under such a scenario, global-mean column ozone decreases by 2.6 DU between 2010 and 2100 in contrast to a 0.7 DU decrease under a control simulation (the IPCC SRES B1 scenario for greenhouse gases) and a 9.1 DU increase under the more commonly used SRES A1B scenario. Two factors cause the decrease in ozone in the biofuels simulation: 1) large N2O emissions lead to faster rates of the ozone-depleting NOx cycles and; 2) reduced CO2 emissions (due to less fossil fuel burning) lead to relatively less stratospheric cooling over the 21st century, which decreases ozone abundances. Reducing CO2 emissions while neglecting to reduce N2O emissions could therefore be damaging to the ozone layer.

  2. Changes in stratospheric ozone and temperature due to the eruptions of Mt. Pinatubo

    SciTech Connect

    Chandra, S. )

    1993-01-08

    The impact of the Mt. Pinatubo eruptions on the total column ozone measured from the Nimbus 7 TOMS and the NOAA-11 SBUV/2 spectrometers has been studied. The ozone anomalies inferred from the two instruments agree within 1-2% in the presence of large volcanic clouds produced by Pinatubo. The Pinatubo eruptions took place on June 15-16, 1991 during the easterly phase of the quasi biennial oscillations (QBO) and as such present a different dynamical scenario for the changes in stratospheric ozone compared to the El Chichon eruptions which took place during the westerly phase of the QBO. Within a few months after the eruptions, the total column ozone decreased by 5-6% in the tropics, 3 to 4% at mid-latitudes and 6-9% at high latitudes in the northern hemisphere. However, after the effects of QBO and interannual variability are taken into account, the decrease in the column ozone attributed to volcanic eruptions at these latitudes may not be more than 2-4% - a conclusion in general agreement with a similar study of the El Chichon effects on the stratospheric ozone. The most noticeable effect of the Pinatubo eruptions, as observed during the El Chichon period, is the breakdown of the phase relation between ozone and temperature. This is attributed to additional heating in the lower stratosphere caused by volcanic aerosols. 19 refs., 4 figs.

  3. Tropospheric temperature response to stratospheric ozone recovery in the 21st century

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Xia, Y.; Fu, Q.

    2011-08-01

    Recent simulations predicted that the stratospheric ozone layer will likely return to pre-1980 levels in the middle of the 21st century, as a result of the decline of ozone depleting substances under the Montreal Protocol. Since the ozone layer is an important component in determining stratospheric and tropospheric-surface energy balance, the recovery of stratospheric ozone may have significant impact on tropospheric-surface climate. Here, using multi-model results from both the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR4) models and coupled chemistry-climate models, we show that as ozone recovery is considered, the troposphere is warmed more than that without considering ozone recovery, suggesting an enhancement of tropospheric warming due to ozone recovery. It is found that the enhanced tropospheric warming is mostly significant in the upper troposphere, with a global and annual mean magnitude of ~0.41 K for 2001-2050. We also find that relatively large enhanced warming occurs in the extratropics and polar regions in summer and autumn in both hemispheres, while the enhanced warming is stronger in the Northern Hemisphere than in the Southern Hemisphere. Enhanced warming is also found at the surface. The global and annual mean enhancement of surface warming is about 0.16 K for 2001-2050, with maximum enhancement in the winter Arctic.

  4. Relationship between ozone and temperature trends in the lower stratosphere: Latitude and seasonal dependences

    SciTech Connect

    McCormack, J.P.; Hood, H.L.

    1994-07-15

    A one-dimensional radiative transfer model with fixed dynamical heating is used to calculate the approximate latitude and seasonal dependences of lower stratospheric temperature changes associated with observed ozone trends. The spatial and temporal distribution of ozone profile trends in the lower stratosphere is estimated from a combination of Nimbus 7 Solar Backscattered Ultraviolet (SBUV) global measurements of the ozone column below 32 mbar for the period 1979-1990 and balloon ozonesonde profile trends at northern middle latitudes. The calculated temperature trends near 100 mbar compare favorably with those recently derived by Randel and Cobb using data from Channel 4 of the Microwave Sounding Unit (MSU) on the NOAA operational satellites, although a number of quantitative differences are found. An independent analysis reported here of 100 mbar temperatures derived from northern hemisphere radiosonde data at the Free University of Berlin supports the validity of the satellite-derived lower stratospheric temperature trends. These results are therefore generally consistent with the hypothesis that observed lower stratospheric cooling trends are predominantly determined by reductions in radiative heating associated with stratospheric ozone depletion. 16 refs., 4 figs., 1 tab.

  5. Stratospheric dynamical effects of solar ultraviolet variations: Evidence from zonal mean ozone and temperature data

    SciTech Connect

    Hood, L.L.; Jirikowic, J.L. )

    1991-04-20

    Cross-spectral analysis of low-altitude average Nimbus 7 stratospheric and mesospheric sounder (SAMS) temperature deviations versus Nimbus 7 solar backscattered ultraviolet (SBUV) solar 205 nm flux measurements in the 1-3 mbar pressure range yields significant coherence at periods near 27 and 13 days. This supports earlier correlative evidence that the ozone response to solar ultraviolet variations is supplemented by a coupled temperature response in the upper stratosphere. Comparisons of improved one-dimensional radiative photochemical model calculations with ozone and temperature response measurements at low latitudes yields agreement only in the case of ozone at levels below 3 mbar. An additional, presumably dynamical, component of the upper stratospheric response is suggested. Cross-spectral analysis of low-latitude average SAMS temperature deviations versus higher-latitude temperature fluctuations of opposite sign in the winter hemisphere also yields significant coherency at periods near 27 and 13 days. Latitudinal temperature oscillations of this type result from interference between stationary and traveling wave components at stratospheric heights. It is therefore hypothesized that solar ultraviolet variations may force or modulate traveling waves with periods near 27 and 13 days in the upper stratosphere. The existence of such waves with higher amplitude near solar maximum than near solar minimum may help to explain observed solar cycle variations of zonally averaged winds and temperature in the upper stratosphere.

  6. Effect of stratospheric aerosol layers on the TOMS/SBUV ozone retrieval

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahmad, Zia; Pan, L.; Herman, J. R.; Bhartia, P. K.; Mcpeters, R.

    1994-01-01

    An evaluation of the optical effects of stratospheric aerosol layers on total ozone retrieval from space by the TOMS/SBUV type instruments is presented here. Using the Dave radiative transfer model we estimate the magnitude of the errors in the retrieved ozone when polar stratospheric clouds (PSC's) or volcanic aerosol layers interfere with the measurements. The largest errors are produced by optically thick water ice PSC's. Results of simulation experiments on the effect of the Pinatubo aerosol cloud on the Nimbus-7 and Meteor-3 TOMS products are presented.

  7. Recovery of stratospheric ozone over the United States in the winter of 1993-1994

    SciTech Connect

    Hofmann, D.J.; Oltmans, S.J.; Harris, J.M.; Lathrop, J.A.; Koenig, G.L.; Komhyr, W.D.; Evans, R.D.; Quincy, D.M.; Deshler, T.; Johnson, B.J.

    1994-08-15

    Total ozone levels, which were 10-15% below normal over the US during the winter of 1992-1993, returned to levels slightly above normal during the winter of 1993-1994. Investigation of ozone vertical profiles indicates that in the region where severe depletion occurred in 1992-1993 (25% reductions at 12-22 km), ozone had returned to normal, while above this region, ozone was abnormally high. Thus total ozone was also high. Low ozone values in 1992-1993 were believed to be related to heterogeneous chemistry on the Pinatubo volcanic aerosol. This interpretation is strengthened by these observations since the particle surface area available for heterogeneous processes in the stratosphere diminished substantially at midlatitudes during 1993 and was not replenished by transport from the equatorial reservoir during the winter as had occurred during the previous winter. However, the observation of continued unusually high ozone above 24 km in winter suggests that this phenomenon, thought to also have been at least partially due to heterogeneous chemistry, is mainly related to dynamics. Unusually high total ozone levels in high northerly latitudes during the winter of 1993-1994 and especially in early February, associated with warm stratospheric temperatures during December and January, are probably the source of high ozone above 24 km in midlatitudes at this time. 16 refs., 4 figs.

  8. Comparisons between Stratospheric Aerosol and Gas Experiment II and microwave limb sounder ozone measurements and aliasing of SAGE II ozone trends in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Cunnold, D. M.; Wang, H.; Chu, W. P.; Froidevaux, L.

    1996-04-01

    SAGE II ozone measurements are compared with coincident microwave limb sounder (MLS) measurements over the period September 1991 to December 1993. Between 1.5 and 10 mbar the MLS ozone values are approximately 5% larger than the Stratospheric Aerosol and Gas Experiment (SAGE) II values. These differences are remarkably systematic in space and time. At 1 mbar the mean differences are zero and the mean differences oscillate with level at lower pressures. A month of comparisons against Halogen Occultation Experiment ozone measurements suggests that the differences at pressures less than 1.5 mbar are a feature of the MLS measurements. There are also differences between SAGE II sunrise and sunset measurements at 1 mbar which may be associated with the diurnal tide. At pressures greater than 10 mbar the comparisons indicate that the SAGE II ozone retrievals are being biased by the large aerosol concentrations resulting from the Mount Pinatubo eruption. For a fixed aerosol extinction the SAGE II/MLS difference (ppm) is larger at higher altitudes. It also depends nonlinearly on the aerosol extinction at pressures greater than 20 mbar. These effects are probably caused by the interpolation of the SAGE II aerosol extinction to 0.6 μm and by the evolution of the aerosol size distribution. For UARS layer aerosol optical depths less than 2 × 10-3 at 1.02 μm, the aerosol effect on the SAGE II ozone retrievals is inferred to be 3 × 1010 cm-3/10-3 aerosol layer optical depth at pressures greater than 20 mbar. This is equivalent to approximately 3% of the aerosol extinction at 0.6 μm being interpreted as ozone. At low aerosol concentrations and between 10 and 31 mbar, MLS ozone values are found to be approximately 5% larger than SAGE II ozone values (in agreement with the higher-altitude differences). Atmospheric aerosol concentrations prior to the Mount Pinatubo eruption were large enough, particularly in the tropics after Ruiz in 1985, that long-term trends in SAGE II ozone

  9. Multiple trajectory analysis of MLS observed stratospheric chemical ozone loss in Arctic winter 1995/96

    NASA Astrophysics Data System (ADS)

    Lemmen, C.; Riese, R.; Grooss, J.-U.; Mueller, R.

    2003-04-01

    Daily ozone loss rates and total chemical ozone depletion during Arctic winter 1995/96 were evaluated based on ozone measurements by the Microwave Limb Sounder (MLS) instrument onboard the Upper Atmosphere Research Satellite (UARS). Employing the 3-dimensional transport scheme of the Chemical Lagrangian Model of the Stratosphere (CLaMS), trajectories from successive satellite measurements were compared with each other using a variation of the Match technique, such that ozone concentration differences between double sounded (``matched'') air parcels represent chemical ozone loss. The ensemble average of many (typically 30--150) matches yields an average ozone depletion rate for the area covered by the trajectories. Total ozone loss from late December to early March was 1.4 ppmv at the 475 K isentropic level within the vortex core (PV > 45 PVU at 475 K). Ozone loss decreased towards the edge of the vortex, no significant ozone loss could be observed in the outer vortex edge (between ≈ 27 and ≈ 35 PVU). Daily ozone loss was found to average 10 ppbv/day throughout January and throughout the extended vortex area. For the month of February daily ozone loss rates were highly variable and peaked at 40 ppbv/day in the vortex (≈ 35 PVU). In this study, no chemical ozone loss could be observed in the outer vortex edge region during February, which suggests that the dynamically defined vortex boundary separated two different chemical regimes during February, but not in January.

  10. Transport of ozone in the middle stratosphere - Evidence for planetary wave breaking

    NASA Astrophysics Data System (ADS)

    Leovy, C. B.; Sun, C.-R.; Hitchman, M. H.; Remsberg, E. E.; Russell, J. M., III; Gordley, L. L.; Gille, J. C.; Lyjak, L. V.

    1985-02-01

    Data from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) for the period October 25, 1978-May 28, 1979 are used in a descriptive study of ozone variations in the middle stratosphere. It is shown that the ozone distribution is strongly influenced by irreversible deformation associated with large amplitude planetary-scale waves. This process, which has been described by McIntyre and Palmer as planetary wave breaking, takes place throughout the 3-30 mb layer, and poleward transport of ozone within this layer occurs in narrow tongues drawn on the tropics and subtropics in association with major and minor warming events. These events complement the zonal mean diabatic circulation in producing significant changes in the total column amount of ozone.

  11. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    PubMed

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR

  12. Ozone depletion in the upper stratosphere estimated from satellite and Space Shuttle data

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Cebula, Richard P.; Jackman, Charles H.

    1992-01-01

    Shuttle Solar Backscatter Ultraviolet (SSBUV) spectrometer observations of ozone concentrations in the upper stratosphere made in October 1989 are combined here with measurements made in October 1980 by the similar SBUV instruments on NASA's Nimbus-7 satellite. It is shown that the ozone concentration near 45 km has decreased during this period by about 7 +/- 2 percent. The trend is consistent with predictions of a 2D photochemical model.

  13. EOS Aura and Future Satellite Studies of the Ozone Layer

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2007-01-01

    The EOS Aura mission, launched in 2004, provides a comprehensive assessment of the stratospheric dynamics and chemistry. This talk will focus on results from Aura including the chemistry of polar ozone depletion. The data from Aura can be directly linked to UARS data to produce long term trends in stratospheric trace gases.

  14. Coupled stratospheric ozone and temperature responses to short-term changes in solar ultraviolet flux - An analysis of Nimbus 7 SBUV and SAMS data. [stratosphere and mesosphere sounder

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1986-01-01

    Earlier studies of solar-induced variations in stratospheric parameters have been mainly concerned with observed ozone responses. In the present investigation, attention is given to temperature responses as well as ozone responses at low latitudes, taking into account 22 months of Nimbus 7 solar backscattered ultraviolet (SBUV) ozone and stratospheric and mesospheric sounder temperature data. A data description is provided, and cross-correlation and regression analyses are conducted. An extension is considered of an analytic model, which was derived by Frederick (1981) for the coupled behavior of ozone and temperature perturbations in the upper stratosphere and lower mesosphere. The extended model is applied to the results of the analyses. The obtained data provide statistical evidence for ozone and temperature responses to changes in solar ultraviolet flux on the time scale of the solar rotation period.

  15. Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate

    NASA Astrophysics Data System (ADS)

    Ivy, Diane J.; Solomon, Susan; Calvo, Natalia; Thompson, David W. J.

    2017-02-01

    We present observational evidence for linkages between extreme Arctic stratospheric ozone anomalies in March and Northern Hemisphere tropospheric climate in spring (March–April). Springs characterized by low Arctic ozone anomalies in March are associated with a stronger, colder polar vortex and circulation anomalies consistent with the positive polarity of the Northern Annular Mode/North Atlantic Oscillation in March and April. The associated spring tropospheric circulation anomalies indicate a poleward shift of zonal winds at 500 hPa over the North Atlantic. Furthermore, correlations between March Arctic ozone and March–April surface temperatures reveal certain regions where a surprisingly large fraction of the interannual variability in spring surface temperatures is associated with interannual variability in ozone. We also find that years with low March Arctic ozone in the stratosphere display surface maximum daily temperatures in March–April that are colder than normal over southeastern Europe and southern Asia, but warmer than normal over northern Asia, adding to the warming from increasing well-mixed greenhouse gases in those locations. The results shown here do not establish causality, but nevertheless suggest that March stratospheric ozone is a useful indicator of spring averaged (March–April) tropospheric climate in certain Northern Hemispheric regions.

  16. Relative effects on stratospheric ozone of halogenated methanes and ethanes of social and industrial interest

    NASA Technical Reports Server (NTRS)

    Fisher, Donald A.; Hales, Charles H.; Filkin, David L.; Ko, Malcolm K. W.; Sze, N. Dak; Connell, Peter S.; Wuebbles, Donald J.; Isaksen, Ivar S. A.; Stordal, Frode

    1990-01-01

    Four atmospheric modeling groups have calculated relative effects of several halocarbons (chlorofluorocarbons (CFC's)-11, 12, 113, 114, and 115; hydrochlorofluorocarbons (HCFC's) 22, 123, 124, 141b, and 142b; hydrofluorocarbons (HFC's) 125, 134a, 143a, and 152a, carbon tetrachloride; and methyl chloroform) on stratospheric ozone. Effects on stratospheric ozone were calculated for each compound and normalized relative to the effect of CFC-11. These models include the representations for homogeneous physical and chemical processes in the middle atmosphere but do no account for either heterogeneous chemistry or polar dynamics which are important in the spring time loss of ozone over Antarctica. Relative calculated effects using a range of models compare reasonably well. Within the limits of the uncertainties of these model results, compounds now under consideration as functional replacements for fully halogenated compounds have modeled stratospheric ozone reductions of 10 percent or less of that of CFC-11. Sensitivity analyses examined the sensitivity of relative calculated effects to levels of other trace gases, assumed transport in the models, and latitudinal and seasonal local dependencies. Relative effects on polar ozone are discussed in the context of evolving information on the special processes affecting ozone, especially during polar winter-springtime. Lastly, the time dependency of relative effects were calculated.

  17. Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality

    NASA Astrophysics Data System (ADS)

    Nowack, Peer Johannes; Abraham, Nathan Luke; Braesicke, Peter; Pyle, John Adrian

    2016-03-01

    Various forms of geoengineering have been proposed to counter anthropogenic climate change. Methods which aim to modify the Earth's energy balance by reducing insolation are often subsumed under the term solar radiation management (SRM). Here, we present results of a standard SRM modelling experiment in which the incoming solar irradiance is reduced to offset the global mean warming induced by a quadrupling of atmospheric carbon dioxide. For the first time in an atmosphere-ocean coupled climate model, we include atmospheric composition feedbacks for this experiment. While the SRM scheme considered here could offset greenhouse gas induced global mean surface warming, it leads to important changes in atmospheric composition. We find large stratospheric ozone increases that induce significant reductions in surface UV-B irradiance, which would have implications for vitamin D production. In addition, the higher stratospheric ozone levels lead to decreased ozone photolysis in the troposphere. In combination with lower atmospheric specific humidity under SRM, this results in overall surface ozone concentration increases in the idealized G1 experiment. Both UV-B and surface ozone changes are important for human health. We therefore highlight that both stratospheric and tropospheric ozone changes must be considered in the assessment of any SRM scheme, due to their important roles in regulating UV exposure and air quality.

  18. Asymmetries in ozone depressions between the polar stratospheres following a solar proton event

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Heath, D. F.

    1978-01-01

    Ozone depletions in the polar stratosphere during the energetic solar proton event on 4 August 1972 were observed by the backscattered ultraviolet (BUV) experiments on the Nimbus 4 satellite. The observed ozone contents, the ozone depressions and their temporal variations above the 4 mb level exhibited distinct asymmetries between the northern and southern hemispheres. Since the ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres, due to the geomagnetic dipole field, it is suggested that these asymmetries may be explained in terms of the differences in dynamics between the summer and the winter polar atmospheres. In the summer (northern) hemisphere, the stratospheric and mesospheric ozone depletion and recovery are smooth functions of time due to the preponderance of undistributed orderly flow in this region. On the other hand, the temporal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) exhibits large amplitude irregularities. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperatures and winds observed by balloons and rocket soundings.

  19. Optical effects of polar stratospheric clouds on the retrieval of TOMS total ozone

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahmad, Z.; Herman, J. R.

    1992-01-01

    Small areas of sharply reduced ozone density appear frequently in the maps produced from polar region total ozone mapping spectrometer (TOMS) data. These mini-holes are of the order of 1000 km in extent with a lifetime of a few days. On the basis of measurements from ground-based instruments, balloon-borne ozonesondes, and simultaneous measurements of aerosol and ozone concentrations during aircraft flights in the Arctic and Antarctic regions, the appearance of polar stratospheric clouds (PSCs) are frequently associated with false reductions in ozone derived from the TOMS albedo data. By combining radiative transfer calculations with the observed PSC and ozone data, it is shown that PSCs located near or above the ozone density maximum (with optical thickness greater than 0.1) can explain most of the differences between TOMS ozone data and ground or in situ ozone measurements. Several examples of real and false TOMS mini-hole phenomenon are investigated using data from the 1989 Airborne Arctic Stratospheric Expedition (AASE) and from balloon flights over Norway and Sweden.

  20. The evolution of the ozone collar in the Antarctic lower stratosphere during early August 1994

    SciTech Connect

    Mariotti, A.; Mechoso, C.R.; Legras, B.; Daniel, V.

    2000-02-01

    The ozone evolution in the lower stratosphere of the Southern Hemisphere during the period 5--10 August 1994 is analyzed. The analysis focuses on the ozone collar (the band of maximum values in ozone mixing ratio around the Antarctic ozone hole at these altitudes) and the development of collar filaments. Ozone mixing ratios provided by the Microwave Limb Sounder (MLS) on board the Upper Atmosphere Research Satellite and by an ER-2 aircraft participating in the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of stratospheric Aircraft campaign are compared with values at corresponding locations in high-resolution isentropic maps obtained by using the numerical scheme of contour advection with surgery (CAS). The CAS reconstructed ozone maps provide a view of the way in which air masses are exported from the outskirts of the collar to form the tongues of higher mixing ratios observed at lower latitudes on MLS synoptic maps. There is an overall consistency between the datasets insofar as the collar location is concerned. This location seems to be primarily defined by the local properties of the flow. Nevertheless the CAS reconstructed collar tends to become weaker than that depicted by MLS data. By means of radioactive calculation estimates, it is argued that diabatic descent may be responsible for maintaining the ozone concentration approximately constant in the collar while filaments isentropically disperse collarlike mixing ratios from this region toward lower latitudes.

  1. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    NASA Astrophysics Data System (ADS)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  2. Coherent variations of monthly mean total ozone and lower stratospheric temperature

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Cobb, Janel B.

    1994-01-01

    Space-time patterns of correlation between total ozone and lower stratospheric temperature are documented, based on 14 years (1979-1992) of global monthly mean observations. Data are obtained from the total ozone mapping spectrometer (TOMS) and microwave sounding unit (MSU) channel 4, the latter being a weighted mean temperature of the 150- to 50-mbar layer. These data are analyzed (separately) for linear trend, solar cycle, quasi-biennial oscillation (QBO), and El Nino-Southern Oscillation (ENSO) variations via linear regression: significant signals are identified for each term, and the corresponding structures in ozone and temperature are found to be highly coherent. The temperature trends derived here show significant cooling of the lower stratosphere over Northern Hemisphere (NH) midlatitudes in winter-spring and over Antarctica in Southern Hemisphere (SH) spring; the overall space-time patterns are similar to those determined for ozone trends. Interestingly, temperatures do not decrease over SH midlatitudes during midwinter, in spite of large ozone losses. These data furthermore show globally coherent ozone and temperature perturbations associated with both QBO and ENSO variations; a new result here show large total ozone anomalies in middle-to-high latitudes of both hemispheres associated with ENSO events. Residuals from the ozone and temperature time series (defined as the deseasonalized total minus the regression fits) show strong positive correlation in middle-to-high latitudes but weak correlations in the trop ics. Time periods following the volcanic eruptions of El Chichon and Pinatubo are clearly identified from the coupled signatures of decreased ozone and increased temperature, opposite to the positive ozone-temperature correlations observed at other times. The ratios of ozone to temperature anomalies derived here show quantitative signatures indicating that either radiative (trend, solar, and QBO) or dynamical (ENSO and residuals) processes are

  3. Diverse policy implications for future ozone and surface UV in a changing climate

    NASA Astrophysics Data System (ADS)

    Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.

    2016-06-01

    Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.

  4. Stratospheric ClO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Froidevaux, L.; Read, W. G.; Manney, G. L.; Elson, L. S.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.

    1993-01-01

    Concentrations of atmospheric ozone and of ClO (the predominant form of reactive chlorine responsible for stratospheric ozone depletion) are reported for both the Arctic and Antarctic winters of the past 18 months. Chlorine in the lower stratosphere was almost completely converted to chemically reactive forms in both the northern and southern polar winter vortices. This occurred in the south long before the development of the Antarctic ozone hole, suggesting that ozone loss can be masked by influx of ozone-rich air.

  5. Global normal-mode Rossby waves observed in stratospheric ozone data

    SciTech Connect

    Randel, W.J. )

    1993-02-01

    Westward-propagating Rossby normal-mode planetary waves are documented in stratospheric ozone data using Solar Backscatter Ultraviolet (SBUV) satellite measurements. These modes are evidenced by enhanced spectral power and near-global coherence for westward-traveling zonal wave 1 oscillations with periods of 5-10 days. The ozone waves have maxima in high latitudes of the middle stratosphere (due to transport) and over midlatitudes in the upper stratosphere (due to photochemistry). These modes are nearly continuous throughout the eight years of SBUV observations, with maximum global coherence during the equinoxes. The upper-stratospheric waves are symmetric (in phase) between hemispheres, even for modes previously identified as antisymmetric in geopotential height. This behavior is due to differing wave vertical structure in each hemisphere: the planetary temperature waves are nearly in phase in the upper stratosphere, even though the height waves are out of phase. The observed ozone waves are furthermore compared to calculations based on linear wave transport and photochemistry, incorporating derived wind and temperature fields. Good agreement is found, showing that normal modes provide an idealized context to study the linear wave behavior of trace constituents in the real atmosphere. 23 refs., 17 figs.

  6. Identifying and forecasting deep stratospheric ozone intrusions over the western United States from space

    NASA Astrophysics Data System (ADS)

    Lin, M.; Fiore, A. M.; Horowitz, L. W.; Cooper, O. R.; Langford, A. O.; Pan, L.; Liu, X.; Reddy, P. J.

    2012-12-01

    Recent studies have shown that deep stratospheric ozone intrusions can episodically enhance ground-level ozone above the health-based standard over the western U.S. in spring. Advanced warning of incoming intrusions could be used by state agencies to inform the public about poor air quality days. Here we explore the potential for using total ozone retrievals (version 5.2, level 3) at twice daily near global coverage from the AIRS instrument aboard the NASA Aqua satellite to identify stratospheric intrusions and forecast the eventual surface destination of transported stratospheric ozone. The method involves the correlation of AIRS daily total ozone columns at each 1ox1o grid box ~1-3 days prior to stratospheric enhancements to daily maximum 8-hour average ozone at a selected surface site using datasets from April to June in 2003-2011. The surface stratospheric enhancements are estimated by the GFDL AM3 chemistry-climate model which includes full stratospheric and tropospheric chemistry and is nudged to reanalysis winds. Our earlier work shows that the model presents deep stratospheric intrusions over the Western U.S. consistently with observations from AIRS, surface networks, daily ozone sondes, and aircraft lidar available in spring of 2010 during the NOAA CalNex field campaign. For the 15 surface sites in the U.S. Mountain West considered, a correlation coefficient of 0.4-0.7 emerges with AIRS ozone columns over 30o-50oN latitudes and 125o-105oW longitudes - variability in the AIRS column within this spatial domain indicates incoming intrusions. For each "surface receptor site", the spatial domain can narrow to an area ~5ox5o northwest of the individual site, with the strong correlation (0.5-0.7) occurring when the AIRS data is lagged by 1 day from the AM3 stratospheric enhancements in surface air. The spatial pattern of correlations is consistent with our process-oriented understanding developed from case studies of extreme intrusions. Surface observations

  7. An investigation of the processes controlling ozone in the upper stratosphere

    SciTech Connect

    Patten, K.O. Jr.; Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J. ); Waters, J.; Froidevaux, L. ); Slanger, T.G. )

    1992-07-05

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties, particularly the state-specific energy transfer rate constants, to evaluation of tills precess for stratospheric modeling.

  8. An investigation of the processes controlling ozone in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Patten, Kenneth O., Jr.; Connell, Peter S.; Kinnison, Douglas E.; Wuebbles, Donald J.; Waters, Joe; Froidevaux, Lucien; Slanger, Tom G.

    1994-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties to evaluation of this process for stratospheric modelling.

  9. Lidar measurements of stratospheric ozone at Table Mountain, California, since 1988

    NASA Technical Reports Server (NTRS)

    Mcdermid, I. Stuart; Schmoe, Martha; Walsh, T. Daniel

    1994-01-01

    Regular measurements of stratospheric ozone concentration profiles have been made at Table Mountain, California, since January 1988. During the period to December 1991, 435 independent profiles were measured by the differential absorption lidar technique. These long-term results, and an evaluation of their quality, is presented in this paper.

  10. 76 FR 17487 - Protection of Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... March 29, 2011 Part II Environmental Protection Agency 40 CFR Part 82 Protection of Stratospheric Ozone... / Rules and Regulations#0;#0; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 82 RIN 2060-AP11 Protection of... Alternatives Policy (SNAP) Program AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule....

  11. Evaluating the importance of innovative heterogeneous chemistry to explain observed stratospheric ozone depletion

    SciTech Connect

    Kinnison, D.E.; Connell, P.S.

    1996-02-27

    Currently, there is a widespread search for additional heterogeneous reactions or combination of heterogeneous and homogeneous (gas-phase) reactions that could catalytically reduce ozone to observed levels. In 1992, Burley and Johnston proposed that nitrosyl sulfuric acid (NSA) NOHSO{sub 4}, is a promising heterogeneous reactant for activating HCl in sulfuric acid particles. They list several sources for producing it in the stratosphere and they carried out thermodynamic and chemical kinetic calculations at one stratospheric altitude and at one latitude. NSA has been overlooked in all previous stratospheric model calculations, even though it has been observed in stratospheric sulfate aerosols. This study makes large scale atmospheric model calculations to test the proposal by Burley and Johnston that a promising heterogeneous process for activating HCl in sulfuric acid particles is a catalytic coupled based on nitrosyl sulfuric acid (NSA). This mechanism is examined under non-volcanic and volcanic conditions representative of the recent eruption of Mt. Pinatubo. The calculations set firm limits on the range of kinetic parameters over which this heterogeneous processes would be important in the global ozone balance, and thus is a guide for where laboratory work is needed. In addition, they have derived a preliminary time-dependent integration (1980--1994) to represent the observed trend in ozone. Comparison between model-derived and the observed ozone trend will be compared.

  12. The natural oscillations in stratospheric ozone observed by the GROMOS microwave radiometer at the NDACC station Bern

    NASA Astrophysics Data System (ADS)

    Moreira, Lorena; Hocke, Klemens; Navas-Guzmán, Francisco; Eckert, Ellen; von Clarmann, Thomas; Kämpfer, Niklaus

    2016-08-01

    A multilinear parametric regression analysis was performed to assess the seasonal and interannual variations of stratospheric ozone profiles from the GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) microwave radiometer at Bern, Switzerland (46.95° N, 7.44° E; 577 m). GROMOS takes part in the Network for the Detection of Atmospheric Composition Change (NDACC). The study covers the stratosphere from 50 to 0.5 hPa (from 21 to 53 km) and extends over the period from January 1997 to January 2015. The natural variability was fitted during the regression analysis through the annual and semi-annual oscillations (AO, SAO), the quasi-biennial oscillation (QBO), the El Niño-Southern Oscillation (ENSO) and the solar activity cycle. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the upper stratosphere. Regarding the interannual variations, they are primarily present in the lower and middle stratosphere. In the lower and middle stratosphere, ozone variations are controlled predominantly by transport processes, due to the long lifetime of ozone, whereas in the upper stratosphere its lifetime is relatively short and ozone is controlled mainly by photochemistry. The present study shows agreement in the observed naturally induced ozone signatures with other studies. Further, we present an overview of the possible causes of the effects observed in stratospheric ozone due to natural oscillations at a northern midlatitude station. For instance regarding the SAO, we find that polar winter stratopause warmings contribute to the strength of this oscillation since these temperature enhancements lead to a reduction in upper stratospheric ozone. We have detected a strong peak amplitude of about 5 % for the solar cycle in lower stratospheric ozone for our 1.5 cycles of solar activity. Though the 11-year ozone oscillation above Bern is in phase with the solar cycle, we suppose that the strong amplitude is

  13. Effects of a polar stratosphere cloud parameterization on ozone depletion due to stratospheric aircraft in a two-dimensional model

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Douglass, Anne R.; Jackman, Charles H.

    1994-01-01

    A parameterization of Type 1 and 2 polar stratospheric cloud (PSC) formation is presented which is appropriate for use in two-dimensional (2-D) photochemical models of the stratosphere. The calculations of PSC frequency of occurrence and surface area density uses climatological temperature probability distributions obtained from National Meteorological Center data to avoid using zonal mean temperatures, which are not good predictors of PSC behavior. The parameterization does not attempt to model the microphysics of PSCs. The parameterization predicts changes in PSC formation and heterogeneous processing due to perturbations of stratospheric trace constituents. It is therefore useful in assessing the potential effects of a fleet of stratospheric aircraft (high speed civil transports, or HSCTs) on stratospheric composition. the model calculated frequency of PSC occurrence agrees well with a climatology based on stratospheric aerosol measurement (SAM) 2 observations. PSCs are predicted to occur in the tropics. Their vertical range is narrow, however, and their impact on model O3 fields is small. When PSC and sulfate aerosol heterogeneous processes are included in the model calculations, the O3 change for 1980 - 1990 is in substantially better agreement with the total ozone mapping spectrometer (TOMS)-derived O3 trend than otherwise. The overall changes in model O3 response to standard HSCT perturbation scenarios produced by the parameterization are small and tend to decrease the model sensitivity to the HSCT perturbation. However, in the southern hemisphere spring a significant increase in O3 sensitivity to HSCT perturbations is found. At this location and time, increased PSC formation leads to increased levels of active chlorine, which produce the O3 decreases.

  14. Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high-speed civil transport aircraft

    SciTech Connect

    Rind, D.; Lonergan, P.

    1995-04-20

    Ozone and water vapor perturbations are explored in a series of experiments with the Goddard Institute for Space Studies climate/middle atmosphere model. Large perturbations, and realistic perturbations, to stratospheric ozone and water vapor are investigated, with and without allowing sea surface temperatures to change, to illuminate the nature of the dynamic and climatic impact. Removing ozone in the lower stratosphere without allowing sea surface temperatures to change results in in situ cooling of up to 10{degrees}C in the tropical lower stratosphere, with radiative warming about half as large in the middle stratosphere. The temperature changes induce increases in tropospheric and lower stratospheric eddy energy and in the lower stratosphere residual circulation of the order of 10%. When sea surface temperatures are allowed to respond to this forcing, the global, annual-average surface air temperature cools by about 1{degrees}C as a result of the decreased ozone greenhouse capacity, reduced tropospheric water vapor, and increased cloud cover. For more realistic ozone changes, as defined in the High-Speed Research Program/Atmospheric Effects of Stratospheric Aircraft reports, the stratosphere generally cools by a few tenths degrees Celsius. In this case, the surface air temperature change is not significant, due to the conflicting influences of stratospheric ozone reduction and tropospheric ozone increase, although high-latitude cooling of close to 0.5{degrees}C does occur consistently. With a more realistic increase of stratospheric water vapor of 7%, the middle atmosphere cools by 0.5{degrees}C or less, and the surface temperature change is neither significant nor consistent. Overall, the experiments emphasize that stratospheric changes affect tropospheric dynamics, and that tropospheric feedback processes and natural variability are important when assessing the climatic response to aircraft emissions. 21 refs., 20 figs., 3 tabs.

  15. Laboratory studies of chemical and photochemical processes relevant to stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1994-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(sub x) and NO(sub x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO2 radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. In this annual report, we focus on our recent accomplishments in the quantitative spectroscopy of the HO2 radical. This report details the measurements of the broadening coefficients for the v(sub 2) vibrational band. Further measurements of the vapor pressures of nitric acid hydrates relevant to the polar stratospheric cloud formation indicate the importance of metastable crystalline phases of H2SO4, HNO3, and H2O. Large particles produced from these metastable phases may provide a removal mechanism for HNO3 in the polar stratosphere.

  16. Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.

    1994-01-01

    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.

  17. Ozone and aerosol changes during the 1991-1992 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Buller, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Schoeberl, Mark R.; Toon, Owen B.; Loewenstein, Max; Podolske, James R.

    1993-01-01

    Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.

  18. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Villalta, Peter W.; Zahniser, Mark S.; Nelson, David D.; Kolb, Charles E.

    1997-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(x) and NO(x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. The second year's effort has focussed the design and construction of the proposed high pressure flow reactor on three separate areas: (1) the construction of the high pressure flow reactor; (2) characterization of the turbulent flow profile; and (3) demonstration of the instrument by measuring HO2 + NO2 and HO2 + NO reaction rate coefficients.

  19. A connection from Arctic stratospheric ozone to El Niño-Southern oscillation

    NASA Astrophysics Data System (ADS)

    Xie, Fei; Li, Jianping; Tian, Wenshou; Fu, Qiang; Jin, Fei-Fei; Hu, Yongyun; Zhang, Jiankai; Wang, Wuke; Sun, Cheng; Feng, Juan; Yang, Yun; Ding, Ruiqiang

    2016-12-01

    Antarctic stratospheric ozone depletion is thought to influence the Southern Hemisphere tropospheric climate. Recently, Arctic stratospheric ozone (ASO) variations have been found to affect the middle-high latitude tropospheric climate in the Northern Hemisphere. This paper demonstrates that the impact of ASO can extend to the tropics, with the ASO variations leading El Niño-Southern Oscillation (ENSO) events by about 20 months. Using observations, analysis, and simulations, the connection between ASO and ENSO is established by combining the high-latitude stratosphere to troposphere pathway with the extratropical to tropical climate teleconnection. This shows that the ASO radiative anomalies influence the North Pacific Oscillation (NPO), and the anomalous NPO and induced Victoria Mode anomalies link to the North Pacific circulation that then influences ENSO. Our results imply that incorporating realistic and time-varying ASO into climate system models may help to improve ENSO predictions.

  20. Ozone and aerosol changes during the 1991-1992 Airborne Arctic Stratospheric Expedition

    SciTech Connect

    Browell, E.V.; Grant, W.B.; Ismail, S. ); Butler, C.F.; Fenn, M.A. ); Schoeberl, M.R. ); Toon, O.B.; Loewenstein, M.; Podolske, J.R. )

    1993-08-27

    Stratospheric ozone and aerosol distributions were measured across the wintertime Arctic vortex from January to March 1992 with an airborne lidar system as part of the 1992 Airborne Arctic Stratospheric Expedition (AASE II). Aerosols from the Mount Pinatubo eruption were found outside and inside the vortex with distinctly different distributions that clearly identified the dynamics of the vortex. Changes in aerosols inside the vortex indicated advection of air from outside to inside the vortex below 16 kilometers. No polar stratospheric clouds were observed and no evidence was found for frozen volcanic aerosols inside the vortex. Between January and March, ozone depletion was observed inside the vortex from 14 to 20 kilometers with a maximum average loss of about 23 percent near 18 kilometers.

  1. Correction of DIAL Stratospheric Ozone Measurements in the Presence of Pinatubo Aerosols

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Ismail, Syed; Browell, Edward V.; Butler, Carolyn F.

    1992-01-01

    NASA Langley's airborne lidar system measured aerosol and ozone distributions in the stratosphere from Jan. - Mar. 1992 as part of the Airborne Arctic Stratospheric expedition (AASE-2). The eruption of Mount Pinatubo in Jun. 1991 has increased the aerosol burden of the stratosphere and thereby increased the importance of applying an aerosol correction to the ozone measurements. The correction relies on a Bernoulli solution to derive a backscatter correction to the differential absorption lidar (DIAL) returns at two wavelengths in the ultraviolet spectral region (lambda(sub on) = 301.5 nm, lambda(sub off) = 310.87 nm) as described in earlier works. This paper discusses how the parameters for the correction were optimized for application to the AASE-2 data set.

  2. Quantifying Stratospheric Ozone in the Upper Troposphere Using in situ Measurements of HCl

    SciTech Connect

    Atherton, C S; Bergmann, D J; Marcy, T P; Fahey, D W; Gao, R S; Popp, P J; Richard, E C; Thompson, T L; Rosenlof, K H; Ray, E A; Salawitch, R J; Ridley, B A; . Weinheimer, A J; Loewenstein, M; Weinstock, E M; Mahoney, M J

    2004-03-08

    A chemical ionization mass spectrometry (CIMS) technique has been developed for precise in situ measurements of hydrochloric acid (HCl) from a high-altitude aircraft. In measurements at subtropical latitudes, minimum HCl values found in the upper troposphere (UT) are often near or below the 0.005-ppbv detection limit of the measurements, indicating that background HCl values are much lower than a global mean estimate. However, significant abundances of HCl were observed in many UT air parcels as a result of stratosphere-to-troposphere transport events. A method for diagnosing the amount of stratospheric ozone in these UT parcels was developed using the compact linear correlation of HCl with ozone found throughout the lower stratosphere (LS). Expanded use of this method will lead to improved quantification of cross-tropopause transport events and validation of global chemical transport models.

  3. Strong modification of stratospheric ozone forcing by cloud and sea-ice adjustments

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Hu, Yongyun; Huang, Yi

    2016-06-01

    We investigate the climatic impact of stratospheric ozone recovery (SOR), with a focus on the surface temperature change in atmosphere-slab ocean coupled climate simulations. We find that although SOR would cause significant surface warming (global mean: 0.2 K) in a climate free of clouds and sea ice, it causes surface cooling (-0.06 K) in the real climate. The results here are especially interesting in that the stratosphere-adjusted radiative forcing is positive in both cases. Radiation diagnosis shows that the surface cooling is mainly due to a strong radiative effect resulting from significant reduction of global high clouds and, to a lesser extent, from an increase in high-latitude sea ice. Our simulation experiments suggest that clouds and sea ice are sensitive to stratospheric ozone perturbation, which constitutes a significant radiative adjustment that influences the sign and magnitude of the global surface temperature change.

  4. Quantifying stratospheric ozone in the upper troposphere with in situ measurements of HCl.

    PubMed

    Marcy, T P; Fahey, D W; Gao, R S; Popp, P J; Richard, E C; Thompson, T L; Rosenlof, K H; Ray, E A; Salawitch, R J; Atherton, C S; Bergmann, D J; Ridley, B A; Weinheimer, A J; Loewenstein, M; Weinstock, E M; Mahoney, M J

    2004-04-09

    We have developed a chemical ionization mass spectrometry technique for precise in situ measurements of hydrochloric acid (HCl) from a high-altitude aircraft. In measurements at subtropical latitudes, minimum HCl values found in the upper troposphere (UT) were often near or below the detection limit of the measurements (0.005 parts per billion by volume), indicating that background HCl values are much lower than a global mean estimate. However, significant abundances of HCl were observed in many UT air parcels, as a result of stratosphere-to-troposphere transport events. We developed a method for diagnosing the amount of stratospheric ozone in these UT parcels using the compact linear correlation of HCl with ozone found throughout the lower stratosphere (LS). Expanded use of this method will lead to improved quantification of cross-tropopause transport events and validation of global chemical transport models.

  5. Climatology of stratospheric ozone based on SBUV and SBUV/2 data: 1978-1994. Technical note

    SciTech Connect

    Randel, W.J.; Wu, F.

    1995-04-01

    This atlas presents climatological stratospheric ozone statistics derived from nearly sixteen years (1978-1994) of daily global satellite observations. Data from Nimbus 7 Solar Backscatter Ultraviolet (SBUV) (covering November 1978-June 1990) and NOAA 11 SBUV/2 (January 1989-April 1994) are combined into a continuous time series; both column ozone profile information over 25-50 km is presented. The long term record is used to document climatological means, along with daily and interannual variability statistics, for zonal mean and planetary wave variations in ozone column and profile data. Monthly mean cross sections are presented, along with climatological latitude-time and height-time sections.

  6. Occurrence of ozone laminae near the boundary of the stratospheric polar vortex

    SciTech Connect

    Reid, S.J.; Vaughan, G. ); Kyro, E. )

    1993-05-20

    The authors report on observations of laminae in ozone distributions observed at high northern latitudes near the polar vortex. Regions of enhanced and depleted ozone density are observed. Data from ozonesonde collections and lidar measurements during the Airborne Arctic Stratosphere Expedition (AASE) are analyzed, and compared with earlier work. The ozonesonde archives of the World Meteorological Organization are also examined in this analysis. The laminae are observed to distribute differently as a function of season, and with the potential temperature. Transport of ozone equatorward is also found with a class of these laminae.

  7. Statistical analysis of stratospheric temperature and ozone profile data for trends and model comparison

    NASA Technical Reports Server (NTRS)

    Tiao, G. C.

    1992-01-01

    Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.

  8. A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven

    2005-01-01

    We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.

  9. Recent trends in ozone in the upper stratosphere: Implications for chlorine chemistry

    NASA Technical Reports Server (NTRS)

    Chandra, Sushil; Jackman, Charles H.; Fleming, Eric L.

    1995-01-01

    We have studied the implications of recent trends in the annual mean and the amplitude of the annual harmonic of ozone in the upper stratosphere from the 15 years of the combined data from the Nimbus-7 SBUV and the NOAA-11 SBUV/2 instruments. This was done in the context of the GSFC 2D model predictions of these trends which are based on plausible scenarios of anthropogenic Cly increase in the atmosphere. The comparison of the observed and model-estimated annual mean ozone trends show some similarity in their latitude and altitude characteristics. Both the model and data show a maximum ozone decrease of -6 to -10 % per decade at high latitudes in the upper stratosphere. However, there are also significant differences between the observed and computed trends which may be related to both the model uncertainty and the uncertainty in correcting for the long term instrument drift. The observations also suggest a decrease of 10-25 % per decade in the annual amplitude of ozone at 2 mb between 40 deg - 60 deg in both hemispheres, with a relatively larger interannual variability in the northern hemisphere. These values are in general agreement with the model predictions and thus provide additional support in favor of the chlorine induced changes in ozone in the upper stratosphere.

  10. Observations of stratospheric temperature changes coincident with the recent Antarctic ozone depletions

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Newman, Paul A.

    1988-01-01

    A high degree of correlation between the recent decline in Antarctic total ozone and cooling of the stratosphere during Austral spring has been noted in several recent studies (e.g., Sekiguchi, 1986; Angel, 1986). This study analyzes the observed temperature trends in detail, focusing on the spatial and temporal aspects of the observed cooling. Ozone losses and stratospheric cooling can be correlated for several reasons: (1) ozone losses (from an unspecified cause) will directly reduce temperatures due to decreased solar ultraviolet absorption (Shine, 1986), and/or (2) changes in both ozone and temperature structure due to modification of stratospheric circulation patterns (Mahlman and Fels, 1986). In order to scrutinize various ozone depletion scenarios, detailed information on the observed temperature changes is necessary; the goal is to provide such data. The data used are National Meteorological Center (NMC) Climate Analysis Center (CAC) derived temperatures, covering 1000 to 1 mb (0 to 48 km), for the period 1979 to 1987. Discussions on data origin and quality (assessed by extensive comparisons with radiosonde observations), along with other details of these observations, can be found in Newman and Randel (1988).

  11. Recent trends in ozone in the upper stratosphere: Implications for chlorine chemistry

    SciTech Connect

    Chandra, S.; Jackman, C.H.; Fleming, E.L.

    1995-04-01

    The authors have studied the implications of recent trends in the annual mean and the amplitude of the annual harmonic of ozone in the upper stratosphere from the 15 years of the combined data from the Nimbus-7 SBUV and the NOAA-11 SBUV/2 instruments. This was done in the context of the GSFC 2D model predictions of these trends which are based on plausible scenarios of anthropogenic Cl{sub y} increase in the atmosphere. The comparison of the observed and model-estimated annual mean ozone trends show some similarity in their latitude and altitude characteristics. Both the model and data show a maximum ozone decrease of {minus}6 to {minus}10% per decade at high latitudes in the upper stratosphere. However, there are also significant differences between the observed and computed trends which may be related to both the model uncertainty and the uncertainty in correcting for the long term instrument drift. The observations also suggest a decrease of 10-25% per decade in the annual amplitude of ozone at 2 mb between 40{degrees}-60{degrees} in both hemispheres, with a relatively larger interannual variability in the northern hemisphere. These values are in general agreement with the model predictions and thus provide additional support in favor of the chlorine induced changes in ozone in the upper stratosphere. 13 refs., 3 figs.

  12. Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.

    1994-01-01

    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.

  13. Polar stratospheric ozone: interactions with climate change, results from the EU project RECONCILE, and the 2010/11 Arctic ozone hole

    NASA Astrophysics Data System (ADS)

    von Hobe, Marc

    2013-04-01

    One of the most profound and well known examples of human impacts on atmospheric chemistry is the so called ozone hole. During the second half of the 20th century, anthropogenic emissions of chlorofluorocarbons (CFCs) led to a significant increase in stratospheric chlorine levels and hence the rate of ozone removal by catalytic cycles involving chlorine. While CFCs were essentially banned by the 1987 Montreal Protocol and its subsequent amendments, and stratospheric chlorine levels have recently started to decline again, another anthropogenic influence may at least delay the recovery of the stratospheric ozone layer: climate change, with little doubt a result of human emissions of carbon dioxide and other greenhouse gases, has led to changes in stratospheric temperature and circulation. The large ozone losses that typically occur in polar regions in spring are particularly affected by these changes. Here, we give an overview of the ozone-climate interactions affecting polar stratospheric ozone loss, and present latest results from the international research project RECONCILE funded by the European Commission. Remaining open questions will be discussed including the possible impacts of recently suggested geoengineering concepts to artificially enhance the stratospheric aerosol loading. A special focus will also be put on the 2010/11 Arctic winter that saw the first Arctic Ozone hole, including an impact study on surface UV radiation in the densely populated northern mid-latitudes.

  14. Decadal-Scale Responses in Middle and Upper Stratospheric Ozone From SAGE II Version 7 Data

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    2014-01-01

    Stratospheric Aerosol and Gas Experiment (SAGE II) version 7 (v7) ozone profiles are analyzed for their decadal-scale responses in the middle and upper stratosphere for 1991 and 1992-2005 and compared with those from its previous version 6.2 (v6.2). Multiple linear regression (MLR) analysis is applied to time series of its ozone number density vs. altitude data for a range of latitudes and altitudes. The MLR models that are fit to the time series data include a periodic 11 yr term, and it is in-phase with that of the 11 yr, solar UV (Ultraviolet)-flux throughout most of the latitude/ altitude domain of the middle and upper stratosphere. Several regions that have a response that is not quite in-phase are interpreted as being affected by decadal-scale, dynamical forcings. The maximum minus minimum, solar cycle (SClike) responses for the ozone at the low latitudes are similar from the two SAGE II data versions and vary from about 5 to 2.5% from 35 to 50 km, although they are resolved better with v7. SAGE II v7 ozone is also analyzed for 1984-1998, in order to mitigate effects of end-point anomalies that bias its ozone in 1991 and the analyzed results for 1991-2005 or following the Pinatubo eruption. Its SC-like ozone response in the upper stratosphere is of the order of 4%for 1984-1998 vs. 2.5 to 3%for 1991-2005. The SAGE II v7 results are also recompared with the responses in ozone from the Halogen Occultation Experiment (HALOE) that are in terms of mixing ratio vs. pressure for 1991-2005 and then for late 1992- 2005 to avoid any effects following Pinatubo. Shapes of their respective response profiles agree very well for 1992-2005. The associated linear trends of the ozone are not as negative in 1992-2005 as in 1984-1998, in accord with a leveling off of the effects of reactive chlorine on ozone. It is concluded that the SAGE II v7 ozone yields SC-like ozone responses and trends that are of better quality than those from v6.2.

  15. An assessment of the effect of supersonic aircraft operations on the stratospheric ozone content

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Whitten, R. C.; Turco, R. P.; Capone, L. A.

    1978-01-01

    An assessment of the potential effect on stratospheric ozone of an advanced supersonic transport operations is presented. This assessment, which was undertaken because of NASA's desire for an up-to-date evaluation to guide programs for the development of supersonic technology and improved aircraft engine designs, uses the most recent chemical reaction rate data. From the results of the present assessment it would appear that realistic fleet sizes should not cause concern with regard to the depletion of the total ozone overburden. For example, the NOx emission of one type designed to cruise at 20 km altitude will cause the ozone overburden to increase by 0.03% to 0.12%, depending upon which vertical transport is used. These ozone changes can be compared with the predictions of a 1.74% ozone decrease (for 100 Large SST's flying at 20 km) made in 1974 by the FAA's Climatic Impact Assessment Program.

  16. Measurement of ozone concentration in the lower stratosphere and upper troposhere

    NASA Astrophysics Data System (ADS)

    Nevzorov, A. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. V.; Romanovskii, O. A.; Gridnev, Yu. V.

    2015-11-01

    We describe an ozone lidar and consider an algorithm for retrieving the ozone concentration, taking into consideration the aerosol correction. Results of lidar measurements at wavelengths 299 and 341 nm well agree with model estimates, indicating that ozone is sensed with acceptable accuracies in the altitude range of about 6-18 km. It should be noted that the retrieved profiles of altitude distribution of ozone concentration more closely resemble those from satellite data than according to Krueger model. A lidar is developed and put into operation at Siberian Lidar Station (SLS) to measure the vertical ozone distribution (VOD) in the upper troposphere-lower stratosphere. Sensing is performed according to the method of differential absorption and scattering at wavelength pair 299/341 nm, which are respectively the first and second Stokes components of stimulated Raman scattering (SRS) conversion of the fourth harmonic of Nd:YAG laser (266 nm) in hydrogen.

  17. Ozone budget in the upper stratosphere: Model studies using the reprocessed LIMS and the HALOE datasets

    NASA Astrophysics Data System (ADS)

    Natarajan, Murali; Remsberg, Ellis E.; Gordley, Larry L.

    2002-04-01

    Recently reprocessed LIMS dataset has been used with a contemporary photochemical model to study the balance between photochemical production and destruction of ozone in the upper stratosphere. Model results corresponding to January 1979 indicate that the ozone deficit is less than 15% in the pressure range of 5 to 0.5 mb between 50°S and 50°N latitude. The imbalance at 40 km is much smaller than reported by the earliest studies with the archived LIMS data. The same model, when initialized with HALOE (version 19) data for January, 1996, shows similar results with peak ozone deficits being less than 10%. For both cases, the model shows a near balance in the ozone budget above 1 mb, contrary to recent studies based on balloon-borne measurements. The magnitude of the ozone imbalance seen in this study is within the uncertainties of the data and model.

  18. An Evaluation of the Quality of Halogen Occultation Experiment Ozone Profiles in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Bhatt, Praful P.; Remsberg, Ellis E.; Gordley, Larry L.; McInerney, Joseph M.; Brackett, Vince G.; Russell, James M., III

    1999-01-01

    The archived ozone profiles from the Halogen Occultation Experiment (HALOE) have already been corrected for the effects of the spectrally varying, interfering absorption due to aerosols composed of aqueous sulfuric acid, and agreement with correlative measurements in the stratosphere is generally excellent. However, comparisons of sets of coincident HALOE and ozonesonde profiles indicate occasional large differences at the lowest levels of the stratosphere. Most of those instances occur at altitudes just below a well-defined minimum in the 5.26 microns channel aerosol extinction profile, whose wavelength dependence is not represented by a sulfuric acid aerosol model. Further, when the aerosol extinction exceeds about 10(exp 3)/ km, the aerosol correction to the ozone channel transmittances is both large and uncertain. After screening out the HALOE ozone profile segments whose corresponding aerosol/cirrus corrections are likely uncertain and after averaging lie ozonesonde profiles into 2.5 km thick layers, we find that the HALOE ozone areas, on average, to within 10% of their coincident ozonesonde measurements down to 100 hPa at tropical/subtropical latitudes and to 200 hPa at extratropical latitudes. A tightening of the coincidence criteria for the comparisons does not improve the mean differences for the sets nearly as much. Part of the variance of the paired differences was also accounted for when the ozonesonde profile values were integrated into those 2.5 km layers, prior to taking differences. This improvement is due mainly to the vertical averaging of the local, higher-resolution ozonesonde data, matching the lower resolution for HALOE ozone in the lower stratosphere. It is concluded that HALOE is providing accurate ozone profiles throughout the lower stratosphere, when its correction for interfering aerosols has been well characterized and when cirrus layers are not indicated.

  19. Analysis of the vertically resolved ozone and temperature evolution in the lower and middle stratosphere

    NASA Astrophysics Data System (ADS)

    Brunner, Lukas; Steiner, Andrea Karin; Scherllin-Pirscher, Barbara; Kirchengast, Gottfried

    2014-05-01

    The stratospheric ozone layer transforms energy-rich UV radiation into heat and has therefore a strong impact on the temperature in this region. Ozone has been investigated closely since the detection of ozone loss through anthropogenic ozone-depleting substances. Recently the decrease of total ozone has slowed down or even reversed due to emission restrictions by the Montreal Protocol and follow-up agreements. Although a range of global, vertically resolved ozone measurements exist, most of them were not intended for long-term use. In order to receive reliable trends from these data careful inter-calibration and drift corrections need to be applied. We use ozone climatologies from the Solar Backscatter Ultraviolet (SBUV) instrument series, from the Global Ozone And Related trace gas Data records for the Stratosphere (GOZCARDS), and from four instruments presented in the HARMonized dataset of Ozone profiles (HARMOZ). For temperature we use a dataset provided by GPS radio occultation (RO). RO is a relatively new method with favorable properties like long-term stability, high vertical resolution, and no need for satellite inter-calibration. We use the recently reprocessed WEGC RO record, which includes measurements from the CHAMP, GRACE, and Formosat-3/COSMIC missions from 2001 to 2012. For comparison and for the analysis of longer time series of up to three decades we also look at radiosonde temperature data. Radiosondes also have high vertical resolution but sparse and irregular global coverage. Finally, we use re-analysis fields from the European Centre for Medium Range Weather Forecasts for both, ozone and temperature. We focus on the multi-dataset comparison of interannual variability and trends of ozone and temperature. The analysis is based on monthly zonal mean climatologies with a latitudinal resolution of 10 degrees. Interannual variability and trends are computed by applying a regression model to the de-seasonalized monthly climatologies, which includes

  20. Temperature Trends in the Tropical Upper Troposphere and Lower Stratosphere: Connections with Sea Surface Temperatures and Implications for Water Vapor and Ozone

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.

    2013-01-01

    Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.

  1. Effects of model chemistry and data biases on stratospheric ozone assimilation

    NASA Astrophysics Data System (ADS)

    Coy, L.; Allen, D. R.; Eckermann, S. D.; McCormack, J. P.; Stajner, I.; Hogan, T. F.

    2007-06-01

    The innovations or observation minus forecast (O-F) residuals produced by a data assimilation system provide a convenient metric of evaluating global analyses. In this study, O-F statistics from the Global Ozone Assimilation Testing System (GOATS) are used to examine how ozone assimilation products and their associated O-F statistics depend on input data biases and ozone photochemistry parameterizations (OPP). All the GOATS results shown are based on a 6-h forecast and analysis cycle using observations from SBUV/2 (Solar Backscatter UltraViolet instrument-2) during September-October 2002. Results show that zonal mean ozone analyses are more independent of observation biases and drifts when using an OPP, while the mean ozone O-Fs are more sensitive to observation drifts when using an OPP. In addition, SD O-Fs (standard deviations) are reduced in the upper stratosphere when using an OPP due to a reduction of forecast model noise and to increased covariance between the forecast model and the observations. Experiments that changed the OPP reference state to match the observations by using an "adaptive" OPP scheme reduced the mean ozone O-Fs at the expense of zonal mean ozone analyses being more susceptible to data biases and drifts. Additional experiments showed that the upper boundary of the ozone DAS can affect the quality of the ozone analysis and therefore should be placed well above (at least a scale height) the region of interest.

  2. Effects of model chemistry and data biases on stratospheric ozone assimilation

    NASA Astrophysics Data System (ADS)

    Coy, L.; Allen, D. R.; Eckermann, S. D.; McCormack, J. P.; Stajner, I.; Hogan, T. F.

    2007-01-01

    The innovations or observation minus forecast (O-F) residuals produced by a data assimilation system provide a convenient metric of evaluating global analyses. In this study, O-F statistics from the Global Ozone Assimilation Testing System (GOATS) are used to examine how ozone assimilation products and their associated O-F statistics depend on input data biases and ozone photochemistry parameterizations (OPP). All the GOATS results shown are based on a 6-h forecast and analysis cycle using observations from SBUV/2 (Solar Backscatter UltraViolet instrument-2) during September-October 2002. Results show that zonal mean ozone analyses are more independent of observation biases and drifts when using an OPP, while the mean ozone O-Fs are more sensitive to observation drifts when using an OPP. In addition, SD O-Fs (standard deviations) are reduced in the upper stratosphere when using an OPP due to a reduction of forecast model noise and to increased covariance between the forecast model and the observations. Experiments that changed the OPP reference state to match the observations by using an "adaptive" OPP scheme reduced the mean ozone O-Fs at the expense of zonal mean ozone analyses being more susceptible to data biases and drifts. Additional experiments showed that the upper boundary of the ozone DAS can affect the quality of the ozone analysis and therefore should be placed well above (at least a scale height) the region of interest.

  3. Coherence of longterm stratospheric ozone time series for the study of ozone recovery in the northern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Nair, Prijitha J.; Godin-Beekmann, Sophie; Pazmino, Andrea

    2010-05-01

    Since mid-to late 1980s decreasing amounts of ozone concentration has been observed in northern mid-latitudes mainly due to the ozone depleting chlorofluorocarbon loading in the stratosphere. Recent works indicate the stabilization of ozone loss in the mid-latitudes, in the upper stratosphere in particular. In order to further investigate the evolution of ozone in the mid-latitudes, a coherent dataset is required. As a first step, we diagnose the long term evolution of ozone at Observatoire de Haute Provence (OHP - 43.93°N, 5.71°E), one of the northern mid-latitude stations. In this study, we present the inter comparison of ozone measurements from OHP LIDAR with collocated SBUV, SAGEII, HALOE, MLS and GOMOS satellite observations as well as the ground based Ozonesondes and Umkehr measurements. A detailed statistical study on the relative differences of the compared measurements is performed to check any specific drifts with time. In addition, the seasonal and annual averages of the relative deviations are also checked to quantify agreement among the data. On average, all instruments show their best agreement with LIDAR between 20 and 40 km, where the differences are within 5%. The agreement with SAGEII measurements are remarkably good since it falls within 1% at 17-41 km. A similar result is also found from the Ozonesondes comparison at 22-31 km. Most comparisons exhibit slightly larger deviations below 20 and above 42 km, of about 10%. The LIDAR masurements are also compared to Umkehr measurements by converting its ozone number density to Dobson units for each Umkehr layer. The analysis reveals a negative bias in Umkehr data within -10% except at layer 6 (around 30 km).

  4. On the age of stratospheric air and ozone depletion potentials in polar regions

    NASA Technical Reports Server (NTRS)

    Pollock, W. H.; Heidt, L. E.; Lueb, R. A.; Vedder, J. F.; Mills, M. J.; Solomon, S.

    1992-01-01

    Observations of the nearly inert, man-made chlorofluorocarbon CFC-115 obtained during January 1989 are used to infer the age of air in the lower stratosphere. These observations together with estimated release rates suggest an average age of high-latitude air at pressure altitudes near 17-21 km of about 3 to 5 yr. This information is used together with direct measurements of HCFC-22, HCFC-142b, CH3Br, H-1301, H-1211, and H-2402 to examine the fractional dissociation of these species within the Arctic polar lower stratosphere compared to that of CFC-11 and hence to estimate their local ozone depletion potentials in this region. It is shown that these HCFCs are much less efficiently dissociated within the stratosphere than CFC-11, lowering their ozone depletion potentials to only about 30-40 percent of their chlorine loading potentials. In contrast, the observations of CH3Br and the Halons considered confirm that they are rapidly dissociated within the stratosphere, with important implications for their ozone depletion potentials.

  5. Comparisons of observed ozone trends in the stratosphere through examination of Umkehr and balloon ozonesonde data

    SciTech Connect

    Miller, A.J.; Nagatani, R.M.; Tiao, G.C.

    1995-06-20

    During the past several years, several authors have published results of the annual and seasonal trends depicted in the total ozone data from both satellite and ground-based observations. The examination of the vertical profile data available from the balloon ozonesonde and Umkehr observations, however, has been generally restricted to limited periods and to nonseasonal trend calculations. Within this study, the authors have examined the nonseasonal and the seasonal trend behavior of the ozone profile data from both ozonesonde and Umkehr measurements in a consistent manner, covering the same extended time period, 1968-1991, thus providing the first overall comparison of results. Their results reaffirm the observation of significant negative ozone trends in both the lower stratosphere (15-20 km), about {minus}6% per decade, and upper stratosphere (35-50 km), about {minus}6% per decade, separated by a nodal point in the region of 25-30 km. The upper stratosphere decrease is, apparently, associated with the classic gas phase chemical effect of the chlorofluorocarbons, whereas the cause of the lower stratospheric decline is still under investigation, but may well be associated with the chlorine and bromine chemistry in this region. 27 refs., 9 figs., 4 tabs.

  6. Water Vapour, Ozone and Cirrus In The Tropical Lower Stratosphere Observed By Uars

    NASA Astrophysics Data System (ADS)

    Clark, H. L.; Harwood, R. S.; Pumphrey, H. C.

    The Upper Atmosphere Research Satellite (UARS) was launched on 19th September 1991 to make measurements of a variety of atmospheric constituents. The Microwave Limb Sounder (MLS), an instrument on UARS, is sensitive to water vapour and ozone in the lower stratosphere and made coincident, daily measurements of the two species in the tropical region until April 1993. The Cryogenic Limb Array Etalon Spectrom- eter (CLAES), another of the instruments on UARS has a similar spatial and tempo- ral coverage to that of MLS and can be used to indicate the presence of cirrus. We use measurements of water vapour and ozone and data from the European Centre for Medium Range Weather Forecasts to investigate the transport of air in the regions of cirrus formation and describe the chemical and physical environment in which they are found. Ozone mixing ratios have a tendency to be lower in such regions suggesting that the air has entered the stratosphere relatively recently. The importance of cirrus in dehydrating the lower stratosphere and the consequences of cirrus formation within the context of stratosphere-troposphere exchange are discussed.

  7. Stratospheric Ozone Reactive Chemicals Generated by Space Launches Worldwide.

    DTIC Science & Technology

    1994-11-01

    I ODCs). Their carbon - chlorine bond is severed in the stratosphere by solar photolysis or reaction. Once the carbon-chlorine bond is broken, the...include the Russian Proton and Energia , and the Chinese Long March series. Roughly half (seven per year) of the Ariane 4 launches use two solid strap-ons

  8. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH

    EPA Science Inventory

    In September of 1987 the United States, along with 26 other countries, signed a landmark treaty to limit and subsequently, through revisions, phase out the production of all significant ozone depleting substances. Many researchers suspected that these chemicals, especially chl...

  9. Future Changes in Major Stratospheric Warmings in CCMI Models

    NASA Technical Reports Server (NTRS)

    Ayarzaguena, B.; Langematz, U.; Polvani, L. M; Abalichin, J.; Akiyoshi, H.; Klekociuk, A.; Michou, M.; Morgenstern, O.; Oman, L.

    2015-01-01

    Major stratospheric warmings (MSWs) are one of the most important phenomena of wintertime Arctic stratospheric variability. They consist of a warming of the Arctic stratosphere and a deceleration of the polar night jet, triggered by an anomalously high injection of tropospheric wave activity into the stratosphere. Due to the relevance and the impact of MSWs on the tropospheric circulation, several model studies have investigated their potential responses to climate change. However, a wide range of results has been obtained, extending from a future increase in the frequency of MSWs to a decrease. These discrepancies might be explained by different factors such as a competition of radiative and dynamical contributors with opposite effects on the Arctic polar vortex, biases of models to reproduce the related processes, or the metric chosen for the identification of MSWs. In this study, future changes in wintertime Arctic stratospheric variability are examined in order to obtaina more precise picture of future changes in the occurrence of MSWs. In particular, transient REFC2 simulations of different CCMs involved in the Chemistry Climate Model Initiative (CCMI) are used. These simulations extend from 1960 to 2100 and include forcings by halogens and greenhouse gases following the specifications of the CCMI-REF-C2 scenario. Sea surface temperatures (SSTs) and sea-ice distributions are either prescribed from coupled climate model integrations or calculated internally in the case of fully coupled atmosphere-ocean CCMs. Potential changes in the frequency and main characteristics of MSWs in the future are investigated with special focus on the dependence of the results on the criterion for the identification of MSWs and the tropospheric forcing of these phenomena.

  10. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  11. The capability of satellite borne remote sensors to measure stratospheric trace constituents. Volume 2: Ozone and aerosol related missions

    NASA Technical Reports Server (NTRS)

    Keitz, E. L.

    1978-01-01

    Stratospheric trace constituent measurement requirements are separated into two somewhat overlapping areas. In the first area, it is assumed that the only problem of interest is ozone; its chemistry chain, environmental effects and measurement requirements. In like manner, in the second area it is assumed that the only problem of interest is stratospheric aerosols; their chemistry, effects and measurement requirements.

  12. Impact of interactive chemistry of stratospheric ozone on Southern Hemisphere paleoclimate simulation

    NASA Astrophysics Data System (ADS)

    Noda, Satoshi; Kodera, Kunihiko; Adachi, Yukimasa; Deushi, Makoto; Kitoh, Akio; Mizuta, Ryo; Murakami, Shigenori; Yoshida, Kohei; Yoden, Shigeo

    2017-01-01

    A series of numerical simulations of the mid-Holocene (6 kyr B.P.) climate are performed by using an Earth System Model of the Meteorological Research Institute of the Japan Meteorological Agency to investigate the impact of stratospheric ozone distribution, which is modulated by the change in orbital elements of the Earth, on the surface climate. The results of interactive ozone chemistry calculations for the mid-Holocene and preindustrial periods are compared with those of the corresponding experiments in the fifth Coupled Model Intercomparison Project (CMIP5), in which the ozone distribution was prescribed to the 1850 Common Era level. The contribution of the interactive ozone chemistry in a quasi-equilibrium state reveals a significant anomaly of up to +1.7 K in the Antarctic region for the annual mean zonal mean surface air temperature. This impact on the surface climate is explained by a similar mechanism to the cooling influence of the Antarctic ozone hole but opposite in sign: Weakening of the westerly jet associated with the Southern Annular Mode provides weakening of equatorward ocean surface current, sea ice retreat, and then warm sea surface temperature and surface air temperature. All the mid-Holocene runs by CMIP5 models with the prescribed ozone had cold bias in sea surface temperature when compared with geological proxy data, whereas the bias is reduced in our simulations by using interactive ozone chemistry. We recommend that climate models include interactive sea ice and ozone distribution that are consistent with paleosolar insolation.

  13. Total ozone, ozone vertical distributions, and stratospheric temperatures at South Pole, Antarctica, in 1986 and 1987

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Grass, R. D.; Reitelbach, P. J.; Franchois, P. R.; Kuester, S. E.

    1988-01-01

    Seventy-six electrochemical cell (ECC) ozonesondes were flown at South Pole, Antarctica, during 1987 in a continuing program to document year-round changes in Antarctica ozone that are dynamically and photochemically induced. Dobson spectrophotometer total ozone observations were also made. For the twilight months of March and September when Dobson instrument observations cannot be made at South Pole, total ozone amounts were deduced from the ECC ozonesonde soundings. ECC sonde total ozone data obtained during the polar night (April to August), supplemented the sparse total ozone data obtained from Dobson instrument moon observations. Similar ozone profile and total ozone observations were made at South Pole in 1986.

  14. Solar Cycle Spectral Irradiance Variation and Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Stolarski, R. S.; Swartz, W. H.; Jackman, C. H.; Fleming, E. L.

    2011-12-01

    Recent measurements from the SIM instrument on the SORCE satellite have been interpreted by Harder et al (Geophys. Res. Lett., 36, L07801, doi:10.1029/2008GL036797, 2009) as implying a different spectral irradiance variation over the solar cycle than that put forward by Lean (Geophys. Res. Lett., 27, 2425-2428, 2000). When we inserted this new wavelength dependent solar cycle variation into our 3D CCM we found a different solar cycle dependence of the ozone concentration as a function of altitude from that we derived using the traditional Lean wavelength dependence. Examination of these results led us to realize that the main issue is the solar cycle variation of radiation at wavelengths less than 240 nm versus the solar cycle variation of radiation at wavelengths between 240 nm and 300 nm. The impact of wavelengths less than 240 nm occurs through photodissociation of O2 leading to the production of ozone. The impact of wavelengths between 240 nm and 300 nm occurs through photodissociation of O3 leading to an increase in O atoms and enhanced ozone destruction. Thus one wavelength region gives an in-phase relationship of ozone with the solar cycle while the other wavelength region gives an out-of-phase relationship of ozone with the solar cycle. We have used the Goddard two-dimensional (2D) photochemistry transport model to examine this relationship in more detail. We calculate the altitude and latitude sensitivity of ozone to changes in the solar UV irradiance as a function of wavelength. These results can be used to construct the ozone response to arbitrary wavelength dependencies of solar UV variation.

  15. Satellite observation and mapping of wintertime ozone variability in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Geller, M. A.; Chi, Yuechen; Rood, R. B.; Douglass, A. R.; Kaye, J. A.; Allen, D. J.

    1993-06-01

    Comparison is made between 30 mbar ozone fields that are generated by a transport chemistry model utilizing the winds from the Goddard Space Flight Center stratospheric data assimilation system (STRATAN), observations from the LIMS instrument on Nimbus-7, and the ozone fields that result from 'flying' a mathematical simulation of LIMS observations through the transport chemistry model ozone fields. The modeled ozone fields were found to resemble the LIMS observations, but the model fields show much more temporal and spatial structure than do the LIMS observations. The 'satellite mapped' model results resemble the LIMS observations much more closely. These results are very consistent with the earlier discussions of satellite space-time sampling by Salby.

  16. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  17. Seasonal Variation of Ozone in the Tropical Lower Stratosphere: Southern Tropics are Different from Northern Tropics

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Waugh, Darryn W.; Wang, Lei,; Oman, Luke D.; Douglass, Anne R.; Newman, Paul A.

    2014-01-01

    We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.

  18. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Lawrence, Zachary D.

    2016-12-01

    The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS) show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5-6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW) began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers) show rapid vortex erosion and extensive mixing during

  19. Toward a Better Quantitative Understanding of Polar Stratospheric Ozone Loss

    NASA Technical Reports Server (NTRS)

    Frieler, K.; Rex, M.; Salawitch, R. J.; Canty, T.; Streibel, M.; Stimpfle, R. M.; Pfeilsticker, K.; Dorf, M.; Weisenstein, D. K.; Godin-Beekmann, S.

    2006-01-01

    Previous studies have shown that observed large O3 loss rates in cold Arctic Januaries cannot be explained with current understanding of the loss processes, recommended reaction kinetics, and standard assumptions about total stratospheric chlorine and bromine. Studies based on data collected during recent field campaigns suggest faster rates of photolysis and thermal decomposition of ClOOCl and higher stratospheric bromine concentrations than previously assumed. We show that a model accounting for these kinetic changes and higher levels of BrO can largely resolve the January Arctic O3 loss problem and closely reproduces observed Arctic O3 loss while being consistent with observed levels of ClO and ClOOCl. The model also suggests that bromine catalyzed O3 loss is more important relative to chlorine catalyzed loss than previously thought.

  20. Results from the 1995 Stratospheric Ozone Profile Intercomparison at Mauna Loa (MLO3)

    NASA Technical Reports Server (NTRS)

    McPeters, R. D.; Hofmann, D. J.; Clark, M.; Flynn, L.; Froidevaux, L.; Gross, M.; Johnson, B.; Koenig, G.; Liu, X.; McDermid, S.; McGee, T.; Murcray, F.; Newchurch, M. J.; Oltmans, S.; Parrish, A.; Schnell, R.; Singh, U.; Tsou, J. J.; Walsh, T.; Zawodny, J. M.

    1998-01-01

    In August 1995 multiple instruments that measure the stratospheric ozone vertical distribution were intercompared at the Mauna Loa Observatory, Hawaii, under the auspices of the Network for the Detection of Stratospheric Change. The instruments included two UV lidar systems, one from JPL and the other from Goddard Space Flight Center, ECC balloon-sondes, a ground-based microwave instrument, Umkehr measurements, and a new ground-based FTIR instrument. The MLS instrument on the UARS satellite provided correlative profiles of ozone, and there was one close overpass of the SAGE II instrument. The results show that much better consistency among instruments is being achieved than even a few years ago, usually to within the instrument uncertainties. The different measurement techniques in this comparison agree to within +/-10% at almost all altitudes, and in the 20 km to 45 km region most agreed within +/-5%. The results show that the current generation of lidars are capable of accurate measurement of the ozone profile to a maximum altitude of 50 km. SAGE agreed well with both lidar and balloon-sonde down to at least 17 km. The ground-based microwave measurement agreed with other measurements from 22 km to above 50 km. One minor source of disagreement continues to be the pressure-altitude conversion needed to compare a measurement of ozone density versus altitude with a measurement of ozone mixing ratio versus pressure.

  1. Stratospheric Ozone Variations Caused by Solar Proton Events between 1963 and the Present

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Fleming, Eric L.

    2007-01-01

    Solar proton fluxes have been measured by satellites for over forty years (1963-present). Several satellites, including the Interplanetary Monitoring Platforms (1963-1993) and the NOAA Geostationary Operational Environmental Satellites (1994-present), have been used to compile this long-term dataset. Some solar storms lead to solar proton events (SPEs) at the Earth, which typically last a few days. High energy solar protons associated with SPEs precipitate on the Earth's atmosphere and cause increases in odd hydrogen (HO(x)) and odd nitrogen (NO(y)) in the polar cap region (>60 degrees geomagnetic). The enhanced HO(x) leads to short-lived ozone depletion (-days) due to the short lifetime of HOx constituents. The enhanced NO(y) leads to long-lived ozone changes because of the long lifetime of the NO(y) family in the stratosphere and lower mesosphere. Very large SPEs occurred in 1972, 1989, 2000, 2001, and 2003 and were predicted to cause significant polar upper stratospheric ozone depletion (>10%), which lasted for several weeks past the events. Several satellite instruments (BUV, SBUV, SBUV/2, SAGE II, HALOE, SCIAMACHY, MIPAS, GOMOS, etc.) have measured ozone changes as a result of SPEs. The long-term influence of SPEs on ozone will be discussed in this presentation.

  2. Radiative heating rates during AAOE and AASE. [Airborne Antarctic Ozone Experiment and Airborne Arctic Stratospheric Experiment

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1990-01-01

    Radiative transit computations of heating rates utilizing data from the 1987 Airborne Antarctic Ozone Experiment (AAOE) (Tuck et al., 1989) and the 1989 Airborne Arctic Stratospheric Experiment (AASE) (Turco et al., 1990) are described. Observed temperature and ozone profiles and a radiative transfer model are used to compute the heating rates for the Southern Hemisphere during AAOE and the Northern Hemisphere during AASE. The AASE average cooling rates computed inside the vortex are in good agreement with the diabatic cooling rates estimated from the ER-2 profile data for N2O for the AASE period (Schoeberl et al., 1989).

  3. Long-term Evolution of Upper Stratospheric Ozone at Selected Stations of the Network for the Detection of Stratospheric Change (NDSC)

    NASA Technical Reports Server (NTRS)

    Steinbrecht, W.; Claude, H.; Schoenenborn, F.; McDermid, I. S.; LeBlanc, T.; Godin, S.; Swart, D. P. J.; Meijer, Y. J.; Bodecker, G. E.; Connor, B. J.; Kaempfer, N.; Hocke, K.; Calisesi, Y.; delaNoee; Parrish, A. D.; Boyd, I. S.; Bruehl, C.; Steil, B.; Manzini, E.; Thomason, L. W.; Zawodny, J. M.; McCormick, M. P.; Russell, J. M., III; Bhartia, P. K.; Stolarski, R. S.

    2006-01-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE), and Halogen Occultation Experiment (HALOE). Climatological mean differences between these instruments are typically smaller than 5% between 25 and 50 km. Ozone anomaly time series from all instruments, averaged from 35 to 45 km altitude, track each other very well and typically agree within 3 to 5%. SBUV seems to have a slight positive drift against the other instruments. The corresponding 1979 to 1999 period from a transient simulation by the fully coupled MAECHAM4-CHEM chemistry climate model reproduces many features of the observed anomalies. However, in the upper stratosphere the model shows too low ozone values and too negative ozone trends, probably due to an underestimation of methane and a consequent overestimation of ClO. The combination of all observational data sets provides a very consistent picture, with a long-term stability of 2% or better. Upper stratospheric ozone shows three main features: (1) a decline by 10 to 15% since 1980, due to chemical destruction by chlorine; (2) two to three year fluctuations by 5 to 10%, due to the Quasi-Biennial Oscillation (QBO); (3) an 11-year oscillation by about 5%, due to the 11-year solar cycle. The 1979 to 1997 ozone trends are larger at the southern mid-latitude station Lauder (45 S), reaching 8%/decade, compared to only about 6%/decade at Table Mountain (35 N), Haute Provence/Bordeaux (approximately equal to 45 N), and Hohenpeissenberg/Bern(approximately equal to 47 N). At Lauder, Hawaii (20 N), Table Mountain, and Haute Provence, ozone residuals after subtraction of QBO- and solar cycle effects have levelled off in recent years, or are even increasing. Assuming a turning point in January 1997, the

  4. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    NASA Technical Reports Server (NTRS)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  5. Ground-based microwave observations of ozone in the upper stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Connor, Brian J.; Siskind, David E.; Tsou, J. J.; Parrish, Alan; Remsberg, Ellis E.

    1994-08-01

    A 9-month-long series of measurements of ozone in the upper stratosphere and mesosphere is reported. The measurements are presented as monthly averages of profiles in blocks of roughly 20 min local time and as night-to-day ratios. An error analysis predicts accuracies of 5-26% for the monthly profiles and 2.5-9% for the ratios. The data are compared to historical data from SME and limb infrared monitor of the stratosphere (LIMS), and it is shown how to remove the effect of different vertical resolution from the comparisons. The microwave data typically agree to better than 10% with SME and nighttime LIMS ozone at all altitudes below the 0.1-mbar surface. Comparison of the microwave night-to-day ratio with the corresponding ratio from LIMS suggests that nonlocal thermodynamic equilibrium effects in the LIMS daytime data exceed 10% at all pressures less than or equal to 1 mbar.

  6. Stratospheric Sulfuric Acid and Black Carbon Aerosol Measured During POLARIS and its Role in Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Pueschel, R. F.; Drdla, K.; Verma, S.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosol can affect the environment in three ways. Sulfuric acid aerosol have been shown to act as sites for the reduction of reactive nitrogen and chlorine and as condensation sites to form Polar Stratospheric Clouds, under very cold conditions, which facilitate ozone depletion. Recently, modeling studies have suggested a link between BCA (Black Carbon Aerosol) and ozone chemistry. These studies suggest that HNO3, NO2, and O3 may be reduced heterogeneously on BCA particles. The ozone reaction converts ozone to oxygen molecules, while HNO3 and NO2 react to form NOx. Finally, a buildup of BCA could reduce the single-scatter albedo of aerosol below a value of 0.98, a critical value that has been postulated to change the effect of stratospheric aerosol from cooling to warming. Correlations between measured BCA amounts and aircraft usage have been reported. Attempts to link BCA to ozone chemistry and other stratospheric processes have been hindered by questions concerning the amount of BCA that exists in the stratosphere, the magnitude of reaction probabilities, and the scarcity of BCA measurements. The Ames Wire Impactors (AWI) participated in POLARIS as part of the complement of experiments on the NASA ER-2. One of our main objectives was to determine the amount of aerosol surface area, particularly BCA, available for reaction with stratospheric constituents and assess if possible, the importance of these reactions. The AWI collects aerosol and BCA particles on thin Palladium wires that are exposed to the ambient air in a controlled manner. The samples are returned to the laboratory for subsequent analysis. The product of the AWI analysis is the size, surface area, and volume distributions, morphology and elemental composition of aerosol and BCA. This paper presents results from our experiments during POLARIS and puts these measurements in the context of POLARIS and other missions in which we have participated. It describes modifications to the AWI data

  7. More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.

    1992-01-01

    The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.

  8. Kinetics of the BrO + ClO reaction and implications for stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Hills, Alan J.; Cicerone, Ralph J.; Calvert, Jack G.; Birks, John W.

    1987-01-01

    The first direct measurements of the rate constant and product distribution of the BrO + ClO reaction as a function of temperature is reported. It is shown that this reaction could account for a large fraction of the springtime ozone depletion over Antarctica and provide a source of chlorine dioxide of sufficient magnitude to explain the recent measurements of this species in the Antarctic atmosphere, provided that the stratosphere contains a sufficient quantity of bromine.

  9. Aircraft HO sub x and NO sub x emission effects on stratospheric ozone and temperature

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Widhopf, G. F.

    1978-01-01

    A simplified two-dimensional steady-state photochemical model of the atmosphere was developed. The model was used to study the effect on the thermal and chemical structure of the atmosphere of two types of pollution cases: (1) injection of NOx and HOx from a hypothetical fleet of supersonic and subsonic aircraft and (2) injection of HOx from a hypothetical fleet of liquid-fueled hydrogen aircraft. The results are discussed with regard to stratospheric perturbations in ozone, water vapor and temperature.

  10. On a period with very low ozone concentrations within the lower stratosphere

    SciTech Connect

    Wege, K.; Claude, H. )

    1994-06-22

    This paper presents a summary of ozone measurements made above Hohenpeissenberg (48[degrees]N) during the winter of 1991-1992. The column measurements were down by roughly 10 percent, while densities in the lower stratosphere were down by 25 percent. Possible causes of these decreases, including increased freon concentrations, or the presence of meteorological disturbances over the area have been eliminated as possible causes. The presence of aerosol layers from the Mt. Pinatubo eruptions are a possible explanation for these observations.

  11. Stratospheric photochemical studies using Nimbus 7 data. I - Ozone photochemistry. II - Development of inferred trace specie distributions

    NASA Astrophysics Data System (ADS)

    Natarajan, M.; Lambeth, J. D.; Callis, L. B.; Boughner, R. E.; Russell, J. M., III

    1986-01-01

    The present investigation has the objective to make use of the limb infrared monitor of the stratosphere (LIMS) data set in conducting stratospheric photochemical studies. A description of the data is provided. The data are utilized in a zero-dimensional model incorporating the relevant chemistry. The chemical reaction scheme considered is a subset of the scheme used in the Langley one-dimensional model discussed by Callis et al. (1983). Attention is given to a comparison of model results and data, a model uncertainty analysis, model response to modifications in rate data, the ozone-temperature relationship, and the diurnal variation in the upper stratospheric ozone.

  12. An upper-branch Brewer-Dobson circulation index for attribution of stratospheric variability and improved ozone and temperature trend analysis

    NASA Astrophysics Data System (ADS)

    Ball, William T.; Kuchař, Aleš; Rozanov, Eugene V.; Staehelin, Johannes; Tummon, Fiona; Smith, Anne K.; Sukhodolov, Timofei; Stenke, Andrea; Revell, Laura; Coulon, Ancelin; Schmutz, Werner; Peter, Thomas

    2016-12-01

    We find that wintertime temperature anomalies near 4 hPa and 50° N/S are related, through dynamics, to anomalies in ozone and temperature, particularly in the tropical stratosphere but also throughout the upper stratosphere and mesosphere. These mid-latitude anomalies occur on timescales of up to a month, and are related to changes in wave forcing. A change in the meridional Brewer-Dobson circulation extends from the middle stratosphere into the mesosphere and forms a temperature-change quadrupole from Equator to pole. We develop a dynamical index based on detrended, deseasonalised mid-latitude temperature. When employed in multiple linear regression, this index can account for up to 60 % of the total variability of temperature, peaking at ˜ 5 hPa and dropping to 0 at ˜ 50 and ˜ 0.5 hPa, respectively, and increasing again into the mesosphere. Ozone similarly sees up to an additional 50 % of variability accounted for, with a slightly higher maximum and strong altitude dependence, with zero improvement found at 10 hPa. Further, the uncertainty on all equatorial multiple-linear regression coefficients can be reduced by up to 35 and 20 % in temperature and ozone, respectively, and so this index is an important tool for quantifying current and future ozone recovery.

  13. Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions.

    PubMed

    Lin, Meiyun; Fiore, Arlene M; Horowitz, Larry W; Langford, Andrew O; Oltmans, Samuel J; Tarasick, David; Rieder, Harald E

    2015-05-12

    Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as 'exceptional events', which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<-1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events.

  14. North-south asymmetries of solar particle events in upper stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Heath, D. F.; Aruga, T.

    1984-01-01

    Stratospheric ozone depressions, following intense solar particle events (SPE) observed by the backscattered ultraviolet (BUV) experiment on the Nimbus-4 satellite, indicate the existence of distinct asymmetries between the Northern and Southern Hemispheres. These asymmetries are observed in the magnitude of the depressions above the 5-mb level, their temporal variations, and the spatial (i.e., latitude and longitude) dependence of these variations. Possible causes of asymmetries, shown by two events on August 4, 1972 and January 25, 1971, can be attributed to: (1) tilt of the interplanetary magnetic field (IMF) with respect to the earth's dipole magnetic field which influences the precipitation of energetic solar particles into the polar atmospheres; (2) differences in ozone chemistry caused by the large change in atmospheric temperature between summer and winter hemispheres; (3) seasonal differences of the stratosphere's dynamic states which are affected by upward propagating planetary waves in winter in contrast to the relatively undisturbed zonal flows in summer; and (4) topographic asymmetry between Northern and Southern Hemispheres. These effects are shown by three-dimensional plots of the events in geographic coordinates and by color contour plots of the stratospheric ozone distributions in geomagnetic and geographic polar coordinates, respectively.

  15. Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions

    PubMed Central

    Lin, Meiyun; Fiore, Arlene M.; Horowitz, Larry W.; Langford, Andrew O.; Oltmans, Samuel J.; Tarasick, David; Rieder, Harald E.

    2015-01-01

    Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as ‘exceptional events', which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<−1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events. PMID:25964012

  16. Lidar Measurements of Stratospheric Ozone, Aerosols and Temperature during the SAUNA Campaign at Sodankyla, Finland

    NASA Technical Reports Server (NTRS)

    McGee, T.; Twigg, L.; Sumnicht, G.; McPeters, R.; Bojkov, B.; Kivi, R.

    2008-01-01

    The Sodankyla Total Column Ozone Intercomparison (SAUNA) campaign took place at the Finnish Meteorological Institute Arctic Research Center (FMI-ARC) at Sodankyla, Finland (67.37 N) in two separate phases during early spring 2006, and winter 2007. These campaigns has several goals: to determine and improve the accuracy of total column ozone measurements during periods of low solar zenith angle and high total column ozone; to determine the effect of ozone profile shape on the total column retrieval; and to make validate satellite ozone measurements under these same conditions. The GSFC Stratospheric Ozone Lidar (STROZ), which makes profile measurements of ozone temperature, aerosols and water vapor participated in both phases of the campaign. During the deployments, more than 30 profile measurements were made by the lidar instrument, along with Dobson, Brewer, DOAS, ozonesonde, and satellite measurements. The presentation will concentrate on STROZ lidar results from the second phase of the campaign and comparisons with other instruments will be discussed. This will include both ground-based and satellite comparisons.

  17. Global Assimilation of EOS-Aura Data as a Means of Mapping Ozone Distribution in the Lower Stratosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Olsen, M.; Douglass, A.; Witte, J.; Strahan, S.; Livesey, N.

    2012-01-01

    Ozone in the lower stratosphere and the troposphere plays an important role in forcing the climate. However, the global ozone distribution in this region is not well known because of the sparse distribution of in-situ data and the poor sensitivity of satellite based observations to the lowermost of the atmosphere. The Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) instruments on EOS-Aura provide information on the total ozone column and the stratospheric ozone profile. This data has been assimilated into NASA s Global Earth Observing System, Version 5 (GEOS-5) data assimilation system (DAS). We will discuss the results of assimilating three years of OMI and MLS data into GEOS-5. This data was assimilated alongside meteorological observations from both conventional sources and satellite instruments. Previous studies have shown that combining observations from these instruments through the Trajectory Tropospheric Ozone Residual methodology (TTOR) or using data assimilation can yield useful, yet low biased, estimates of the tropospheric ozone budget. We show that the assimilated ozone fields in this updated version of GEOS-5 exhibit an excellent agreement with ozone sonde and High Resolution Dynamics Limb Sounder (HIRDLS) data in the lower stratosphere in terms of spatial and temporal variability as well as integrated ozone abundances. Good representation of small-scale vertical features follows from combining the MLS data with the assimilated meteorological fields. We then demonstrate how this information can be used to calculate the Stratosphere - Troposphere Exchange of ozone and its contribution to the tropospheric ozone column in GEOS-5. Evaluations of tropospheric ozone distributions from the assimilation will be made by comparisons with sonde and other in-situ observations.

  18. A New NASA Data Product: Tropospheric and Stratospheric Column Ozone in the Tropics Derived from TOMS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.; Bhartia, P. K.

    1999-01-01

    Tropospheric column ozone (TCO) and stratospheric column ozone (SCO) gridded data in the tropics for 1979-present are now available from NASA Goddard Space Flight Center via either direct ftp, world-NN,ide-NN,eb, or electronic mail. This note provides a brief overview of the method used to derive the data set including validation and adjustments.

  19. Effects of variation in cloudiness and stratospheric aerosol scattering upon tropospheric UV flux, photolysis rates, and the ozone urban plume.

    PubMed

    Matloff, G L

    1981-11-15

    Using a radiative transfer model, the sensitivity of tropospheric UV flux and photolysis rates for NO(2) and HNO(2) to variations in cloudiness and stratospheric aerosol scattering are evaluated. A lumped parameter ozone plume model combining photochemistry and diffusion is then utilized to investigate variations in downwind ozone concentrations caused by variations in cloudiness.

  20. The Influence of Ozone Change on the Cooling of the Tropical Lower Stratosphere: a Modeling Study

    NASA Astrophysics Data System (ADS)

    Huang, X.; Schwarzkopf, M. D.; Ramaswamy, V.

    2005-12-01

    Recent observational analysis indicates that the annual-mean tropical lower stratosphere (TLS) has been cooling faster than the extratropical counterparts in last two decades. Both tropical and extratropical ozone changes can potentially contribute to the cooling in the TLS - by directly change the local heating rate and by remotely change the strength of the Brewer-Dobson circulation, respectively. We use AM2, the new generation of atmospheric global circulation model developed at GFDL, to investigate the relative contribution of tropical and extratropical ozone changes to the cooling in the TLS. Three numerical experiments are carried out: (a) when observed time-varying ozone field from 1979 to 2000 is used to force AM2, the simulated cooling trend in the TLS is significant and larger than its counterparts in the extratropics; (b) When tropical ozone field is prescribed at the level of 1970s and the extratropical ozone field changes as observed, no significant trend can be detected from the time series of the annual-mean TLS temperature; (c) when extratropical ozone field is prescribed at the level of 1970s and the tropical ozone field changes as observed, the simulated cooling trend in the TLS is significant and, to a large extent, agrees with the trend in (a) in both the magnitude and the spatial distribution. These results indicate that the tropical ozone change is more responsible for the cooling in the TLS than the extratropical ozone change. We also examine the trends month by month. The results are consistent with what we conclude in the previous paragraph. The cooling induced by tropical ozone change is strong and significant in June and July as well as November and December. This is different from observation in which the strongest cooling happens in December and January. This suggests that additional physical processes have to bee taken into account to fully explain the cooling in the TLS and the contrast between tropics and extratropics.

  1. An intercomparison of model ozone deficits in the upper stratosphere and mesosphere from two data sets

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Connor, Brian J.; Eckman, Richard S.; Remsberg, Ellis E.; Tsou, J. J.; Parrish, Alan

    1995-06-01

    We have compared a diurnal photochemical model of ozone with nighttime data from the limb infrared monitor of the stratosphere (LIMS) and ground-based microwave observations. Consistent with previous studies, the model underpredicts the observations by about 10-30%. This agreement is strong confirmation that the model ozone deficit is not simply an artifact of observational error since it is unlikely to occur for two completely different ozone data sets. We have also examined the seasonal, altitudinal, and diurnal morphology of the ozone deficit. Both comparisons show a deficit that peaks in the upper stratosphere (2-3 mbar) and goes through a minimum in the lower mesosphere from 1.0 to 0.4 mbar. At lower pressures (<0.2 mbar) the deficit appears to increase again. The seasonal variation of the deficit is less consistent. The deficit with respect to the LIMS data is least in winter while with respect to the microwave data, the deficit shows little seasonal variation. Finally, the night-to-day ratio in our model is in generally good agreement with that seen in the microwave experiment. Increasing the rate coefficient for the reaction O + O2 + M → O3 + M improves the fit, while a very large (50%) decrease in the HOx catalytic cycle is not consistent with our observations. Increasing the atomic oxygen recombination rate also improves the overall agreement with both data sets; however, a residual discrepancy still remains. There appears to be no single chemical parameter which, when modified, can simultaneously resolve both the stratospheric and mesospheric ozone deficits.

  2. The stratosphere-troposphere exchange of ozone and aerosols over Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y. K.; Lee, H. W.; Park, J. K.; Moon, Y. S.

    Vertical profiles of ozone, partial pressure, and meteorological parameter are obtained from ozonesondes and rawinsondes launched at Pohang (36.03°N, 129.40°E) in Korea. Stratosphere-troposphere exchanges (STE) of ozone and aerosols associated with the upper trough/surface high pressure system have been analyzed by TOMS data, and reanalyzed data of NCEP/NCAR and meteorological mesoscale model such as potential temperature, geopotential height, potential vorticity, and ageostrophic and vertical wind velocity. The secondary ozone peak in the upper troposphere over Pohang corresponded to the central axis of the jet stream near the tropopause, and then an enhancement of ozone in the upper troposphere was observed when the jet stream with a cut-off low was located over Korea. The maximum flux of ozone by STE over Korea occurs in wintertime and springtime. It was estimated that the downward fluxes observed in winter and spring for the period of 5 yr (1995-1998) at Pohang were the source of -7.72×10 7 ozone molecules/cm 2 s between 100 and 300 hPa, and 5.72×10 7 ozone molecules/cm 2 s between 300 and 500 hPa. The annual average flux during the period also was presented as a decrease of 3×10 7 ozone molecules/cm 2 s between 100 and 500 hPa. It indicates that ozone flux is decreasing in the lower stratosphere and increasing in the troposphere. The gradients of potential temperature and isentropic potential vorticity near the upper troposphere in east Asia sloped steeply like the frontal zone between the polar and the subtropical jet core. Therefore, it was regarded that ozone and aerosols of the upper level over east Asia penetrated into the lower level or the ground over Korea because of the downstream due to tropopause folding near the jet streams and the sinking of surface high pressure. In particular, yellow-sand occurring in springtime in east Asia was determined by the distribution of weather systems associated with STE. The results of observation and modeling

  3. SAGE (version 5.96) Ozone Trends in the Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Cunnold, D. M.; Wang, H. J.; Thomason, L. W.; Zawodny, J. M.; Logan, J. A.; Megretkaia, I. A.

    2002-01-01

    Ozone retrievals from Stratospheric Aerosol and Gas Experiment (SAGE) II version 5.96 (v5.96) below approx. 25 km altitude are discussed. This version of the algorithm includes improved constraints on the wavelength dependence of aerosol extinctions based on the ensemble of aerosol size distribution measurements. This results in a reduction of SAGE ozone errors in the 2 years after the Mount Pinatubo eruption. However, SAGE ozone concentrations are still approx. 10% larger than ozonesonde and Halogen Occultation Experiment (HALOE) measurements below 20 km altitude under nonvolcanic conditions (and by more than this in the tropics). The analysis by Steele and Turco suggests that the SAGE ozone overpredictions are in the wrong direction to be explained by aerosol extinction extrapolation errors. Moreover, preliminary SAGE 11 v6.0a retrievals suggest that they are partially accounted for by geometric difficulties at low altitudes in v5.96 and prior retrievals. SAGE ozone trends for the 1979-1996 and 1984-1996 periods are calculated and compared, and the sources of trend errors are discussed. These calculations are made after filtering out ozone data during periods of high, local aerosol extinctions. In the lower stratosphere, below approx. 28 km altitude, there is shown to be excellent agreement in the altitudinal structure of ozone decreases at 45 deg N between SAGE and ozonesondes with the largest decrease in both between 1979 and 1996 having occurred below 20 km altitude, amounting to 0.9 +/- 0.7% yr (2sigma) at 16 km altitude. However, in contrast to the fairly steady decreases at 45 deg N, both SAGE measurements and Lauder ozonesondes show ozone increases at 45 deg S over the period from the mid-1980s to 1996 of 0.2 +/- 0.5%/yr (2sigma) from 15 to 20 km altitude. The SAGE data suggest that this increase is a wintertime phenomenon which occurs in the 15-20 km height range. Changes in dynamics are suggested as the most likely cause of this increase. These

  4. Diurnal variation of stratospheric chlorine monoxide: a critical test of chlorine chemistry in the ozone layer.

    PubMed

    Solomon, P M; de Zafra, R; Parrish, A; Barrett, J W

    1984-06-15

    This article reports measurements of the column density of stratospheric chlorine monoxide and presents a complete diurnal record of its variation (with 2-hour resolution) obtained from ground-based observations of a millimeter-wave spectral line at 278 gigahertz. Observations were carried out during October and December 1982 from Mauna Kea, Hawaii. The results reported here indicate that the mixing ratio and column density of chlorine monoxide above 30 kilometers during the daytime are approximately 20 percent lower than model predictions based on 2.1 parts per billion of total stratospheric chlorine. The observed day-to-night variation of chlorine monoxide is, however, in good agreement with recent model predictions, confirms the existence of a nighttime reservoir for chlorine, and verifies the predicted general rate of its storage and retrieval. From this evidence, it appears that the chlorine chemistry above 30 kilometers is close to being understood in current stratospheric models. Models based on this chemistry and measured reaction rates predict a reduction in the total stratospheric ozone content in the range of 3 to 5 percent in the final steady state for an otherwise unperturbed atmosphere, although the percentage decrease in the upper stratosphere is much higher.

  5. Effects of Stratospheric Ozone Depletion the Environment and Agriculture

    NASA Astrophysics Data System (ADS)

    Ali, S. M.; Dash, Nutan Ku; Pradhan, Arjyadhara; Mishra, Sthita Prajna

    2012-09-01

    Ozone depletion results in greater amounts of UV-B radiation that had an impact on terrestrial and aquatic biogeochemical systems. Biogeochemical cycles were the complex interactions of physical, chemical, geological and biological processes that control the transport and transformation of substances in the natural environment and therefore the conditions that humans experience in Earth's system. The increased UV-B radiation impinging on terrestrial and aquatic systems, due to ozone depletion, results in changes in the trace gas exchange between the continents, oceans and the atmosphere. This had result in complex alterations to atmospheric chemistry, the global elemental cycles such as the carbon cycle, and had an impact on the survival and health of all organisms on Earth, including humans.

  6. Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Stolarksi, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2008-01-01

    Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspects of our understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to simulate these processes in numerical models of chemistry and transport. The fidelity of the models is assessed in comparison with a wide range of observations. These models depend on laboratory-measured kinetic reaction rates and photolysis cross sections to simulate molecular interactions. A typical stratospheric chemistry mechanism has on the order of 50- 100 species undergoing over a hundred intermolecular reactions and several tens of photolysis reactions. The rates of all of these reactions are subject to uncertainty, some substantial. Given the complexity of the models, however, it is difficult to quantify uncertainties in many aspects of system. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluations are applied in random combinations. We determine the key reactions and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.

  7. Arctic winter 2005: Implications for stratospheric ozone loss and climate change

    NASA Astrophysics Data System (ADS)

    Rex, M.; Salawitch, R. J.; Deckelmann, H.; von der Gathen, P.; Harris, N. R. P.; Chipperfield, M. P.; Naujokat, B.; Reimer, E.; Allaart, M.; Andersen, S. B.; Bevilacqua, R.; Braathen, G. O.; Claude, H.; Davies, J.; De Backer, H.; Dier, H.; Dorokhov, V.; Fast, H.; Gerding, M.; Godin-Beekmann, S.; Hoppel, K.; Johnson, B.; Kyrö, E.; Litynska, Z.; Moore, D.; Nakane, H.; Parrondo, M. C.; Risley, A. D.; Skrivankova, P.; Stübi, R.; Viatte, P.; Yushkov, V.; Zerefos, C.

    2006-12-01

    The Arctic polar vortex exhibited widespread regions of low temperatures during the winter of 2005, resulting in significant ozone depletion by chlorine and bromine species. We show that chemical loss of column ozone (ΔO3) and the volume of Arctic vortex air cold enough to support the existence of polar stratospheric clouds (VPSC) both exceed levels found for any other Arctic winter during the past 40 years. Cold conditions and ozone loss in the lowermost Arctic stratosphere (e.g., between potential temperatures of 360 to 400 K) were particularly unusual compared to previous years. Measurements indicate ΔO3 = 121 +/- 20 DU and that ΔO3 versus VPSC lies along an extension of the compact, near linear relation observed for previous Arctic winters. The maximum value of VPSC during five to ten year intervals exhibits a steady, monotonic increase over the past four decades, indicating that the coldest Arctic winters have become significantly colder, and hence are more conducive to ozone depletion by anthropogenic halogens.

  8. Ozone variability in the troposphere and the stratosphere from the first 6 years of IASI observations (2008-2013)

    NASA Astrophysics Data System (ADS)

    Wespes, Catherine; Hurtmans, Daniel; Emmons, Louisa K.; Safieddine, Sarah; Clerbaux, Cathy; Edwards, David P.; Coheur, Pierre-François

    2016-05-01

    In this paper, we assess how daily ozone (O3) measurements from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A platform can contribute to the analyses of the processes driving O3 variability in the troposphere and the stratosphere and, in the future, to the monitoring of long-term trends. The temporal evolution of O3 during the first 6 years of IASI (2008-2013) operation is investigated with multivariate regressions separately in four different layers (ground-300, 300-150, 150-25, 25-3 hPa), by adjusting to the daily time series averaged in 20° zonal bands, seasonal and linear trend terms along with important geophysical drivers of O3 variation (e.g. solar flux, quasi-biennial oscillation (QBO)). The regression model is shown to perform generally very well with a strong dominance of the annual harmonic terms and significant contributions from O3 drivers, in particular in the equatorial region where the QBO and the solar flux contribution dominate. More particularly, despite the short period of the IASI data set available up to now, two noticeable statistically significant apparent trends are inferred from the daily IASI measurements: a positive trend in the upper stratosphere (e.g. 1.74 ± 0.77 DU year-1 between 30 and 50° S), which is consistent with other studies suggesting a turnaround for stratospheric O3 recovery, and a negative trend in the troposphere at the mid-latitudes and high northern latitudes (e.g. -0.26 ± 0.11 DU year-1 between 30 and 50° N), especially during summer and probably linked to the impact of decreasing ozone precursor emissions. The impact of the high temporal sampling of IASI on the uncertainty in the determination of O3 trend has been further explored by performing multivariate regressions on IASI monthly averages and on ground-based Fourier transform infrared (FTIR) measurements.

  9. Long-term observed ozone trends in the free troposphere and lower stratosphere

    NASA Technical Reports Server (NTRS)

    London, Julius

    1994-01-01

    The vertical distributions of ozone trends in the free troposphere and lower stratosphere were derived from ozonesonde observations taken over an average period of approximately 20 years. The results for the annual trends show a consistent pattern of increased ozone of approximately 1 percent/yr to 2 percent/yr up to approximately 300 mb and decreased ozone of approximately -0.6 percent/yr from approximately 100 to 50 mb. Statistically significant positive trends found in midtroposphere (approximately 500 mb) at a set of representative stations in the Northern Hemisphere have little apparent seasonal variation. Negative trends are generally strongest at 50-70 mb with a tendency to be larger during spring. A highly significant negative trend of approximately -5 percent/yr is found near 100 mb over Syowa (69 deg S) during spring.

  10. The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Mcpeters, R. D.

    1994-01-01

    The combined Nimbus 7 solar backscattered ultraviolet (SBUV) and NOAA 11 SBUV/2 ozone data, covering a period of more than a solar cycle (about 15 years), are used to study the UV response of ozone in the stratosphere. The study shows that about 2% change in total column ozone and about 5-7% change in ozone mixing ratio in the upper stratosphere (0.7 to 2 hPa) may be attributed to the change in the solar UV flux over a solar cycle. In the upper stratosphere, where photochemical processes are expected to play a major role, the measured solar cycle variation of ozone is significantly larger than inferred either from the photochemical models or from the ozone response to the 27-day solar UV modulation. For example, the observed solar cycle related change in ozone mixing ratio at 2 hPa is about 1% for 1% change in the solar UV flux near 200 nm. The inferred change in ozone from either the photochemical models or from the 27-day ozone-UV response is about a factor of 2-3 lower than this value.

  11. The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites

    SciTech Connect

    Chandra, S.; Mcpeters, R.D.

    1994-10-01

    The combined Nimbus 7 solar backscattered ultraviolet (SBUV) and NOAA 11 SBUV/2 ozone data, covering a period of more than a solar cycle (about 15 years), are used to study the UV response of ozone in the stratosphere. The study shows that about 2% change in total column ozone and about 5-7% change in ozone mixing ratio in the upper stratosphere (0.7 to 2 hPa) may be attributed to the change in the solar UV flux over a solar cycle. In the upper stratosphere, where photochemical processes are expected to play a major role, the measured solar cycle variation of ozone is significantly larger than inferred either from the photochemical models or from the ozone response to the 27-day solar UV modulation. For example, the observed solar cycle related change in ozone mixing ratio at 2 hPa is about 1% for 1% change in the solar UV flux near 200 nm. The inferred change in ozone from either the photochemical models or from the 27-day ozone-UV response is about a factor of 2-3 lower than this value.

  12. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Cerniglia, Mark C.; Sparling, Lynn C.; Nielsen, J. Eric

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The

  13. Stratospheric Ozone-induced Indirect Radiative Effects on Antarctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Xia, Y.; LIU, J.; Huang, Y.

    2015-12-01

    Recent studies demonstrated that the Antarctic Ozone Hole has important influences on Antarctic sea ice. While all these have focused on stratospheric ozone-induced dynamic effects on sea ice, here we show results that ozone-induced indirect radiative effects have important influences on Antarctic sea ice. Our simulations demonstrate that the recovery of the Antarctic Ozone Hole causes equatorward shift of clouds over the Southern Ocean. The cloud-band shift leads to reduction of downward infrared radiation, which causes surface cooling. On the other hand, it also causes increasing solar radiation on the surface. However, the increase in solar radiation is offset by surface reflection due to increasing sea ice. As a result solar radiation absorbed by the surface is reduced, which also causes surface cooling. Therefore, the overall ozone-induced cloud radiative effect is to cool the surface and causes expansion of sea ice around the Antarctic. As shown in previous studies, the cloud-band shift is associated with the equatorward shift of the westerly jet stream around the Antarctic. Our simulations also demonstrate increasing snow rate near the sea ice edge, which also contributes to Antarctic sea-ice expansion. The ozone-induced cloud radiative effect would mitigate Antarctic sea-ice melting due to greenhouse warming in the 21st century.

  14. Influence of planetary wave activity on the stratospheric final warming and spring ozone

    NASA Astrophysics Data System (ADS)

    Salby, Murry L.; Callaghan, Patrick F.

    2007-10-01

    A three-dimensional model of dynamics and photochemistry is used to investigate the influence of planetary wave activity on the seasonal evolution of the wintertime stratosphere, which dictates springtime conditions. The final warming and springtime ozone are each found to depend strongly upon planetary wave activity during the disturbed season. The integrations reproduce their observed dependence, which enters through anomalous upward Eliassen-Palm (EP) flux from the troposphere and equatorial wind associated with the Quasi-Biennial Oscillation (QBO). Of those major influences, changes of upward EP flux are predominant. Changes representative of those in the observed record alter the timing of the final warming by as much as 1-2 months. Much the same lag distinguishes warm and cold winters in the observed record. Accompanying the shift in the final warming is a change of ozone at spring equinox. Magnified over the Arctic, anomalous springtime ozone develops largely through anomalous isentropic mixing by planetary waves. Such mixing, which precedes the final warming, incorporates ozone-rich air from lower latitude, leading to enriched polar ozone during spring. Relative to disturbed conditions, springtime polar ozone under undisturbed conditions appears depleted by some 60 DU. Derived through anomalous transport, the same difference characterizes observed changes between warm and cold winters. Much of the apparent depletion is eventually eliminated with the onset of isentropic mixing, as it is in the observed record. Together with anomalous dynamical structure, such behavior has implications important to the interpretation of interannual changes.

  15. Stratospheric ozone destruction by aircraft-induced nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Alyea, F. N.; Cunnold, D. M.; Prinn, R. G.

    1975-01-01

    The preliminary results from a three-dimensional dynamic-chemical model applied to the SST-NOx (NO + NO2) problem are reported. Simulations indicate that a depletion of about 12 per cent in total stratospheric O3 would be realized for a continuous NOx injection rate of 1.8 x 10 to the sixth power metric tons per year from a hypothetical fleet of SST's flying at an altitude of 20 km in the midlatitudes of the Northern Hemisphere. Sixteen per cent of the existing O3 would be destroyed on an annual basis. The model assumes a fleet of about 500 aircraft of the now-canceled American Boeing 2707 type; if only present Anglo-French and Russian SST models, which fly at lower, less harmful altitudes, are built, it will take a fleet of a few thousand such craft to attain an effective injection rate equal to the one above.

  16. The stratosphere

    NASA Astrophysics Data System (ADS)

    Taylor, F. W.

    2003-01-01

    The stratosphere is that part of the atmosphere which lies between ca.10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  17. The stratosphere.

    PubMed

    Taylor, F W

    2003-01-15

    The stratosphere is that part of the atmosphere which lies between ca. 10 and 50 km above the surface of the Earth and which contains the ozone layer. It is the seat of much interesting behaviour in terms of dynamics, radiation and chemistry, now revealed in detail by observations from modern space instruments, but still not completely understood. Other planetary atmospheres exhibit stratospheric behaviour which in some ways resembles, and in others contrasts sharply with, that of the Earth. In reviewing these topics, this paper describes some key problems that will be addressed by new measurements from space in the near future.

  18. Contributions of a Tunable Diode Laser Instrument (ATLAS) to the Stratospheric Ozone Depletion Question

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Russell, Philip B. (Technical Monitor)

    1994-01-01

    The Airborne Tunable Laser Absorption Spectrometer - ATLAS - was designed and built at the NASA Ames Research Center and operates on the NASA ER-2 high altitude research aircraft. ATLAS has taken part in a number of important polar and mid-latitude research campaigns, since 1987, focused on various aspects of stratospheric ozone chemistry and dynamics. The chief measurement carried out by the ATLAS second harmonic diode laser spectrometer is of the important atmospheric tracer N2O. Using N2O as an inert tracer we have been able to gain significant new information on polar vortex dynamics and on the correlations of several important long-lived tracers in the stratosphere. The correlation of N2O with NOy (total reactive nitrogen) has been shown to be linear for a great variety of unperturbed stratospheric conditions, and the breakdown of this correlation has been used to detect denitrification by PSCs in the polar vortex, especially in the Antarctic spring. Denitrification is an important step in the process of ozone hole formation in the austral spring. Correlations of N2O with CFCs and CH4 have led to improved estimates of atmospheric lifetimes of these important molecules. Finally the correlation of N2O with CO2, the latter now being measured with great precision by a new instrument on the ER-2, has led to a significant new tool for studying horizontal and vertical mixing in the lower stratosphere, a tool which is very useful in assessing the potential effects of high speed civil transport aircraft in the lower stratosphere. A new, light-weight version of ATLAS is currently being built for unmanned high altitude aircraft, specifically the new Perseus vehicle. We will give a brief description of this effort.

  19. Stratospheric Ozone Response in Experiments G3 and G4 of the Geoengineering Model Intercomparison Project (GeoMIP)

    NASA Technical Reports Server (NTRS)

    Pitari, Giovanni; Aquila, Valentina; Kravitz, Ben; Watanabe, Shingo; Tilmes, Simone; Mancini, Eva; DeLuca, Natalia; DiGenova, Glauco

    2013-01-01

    Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B.

  20. Elevated Tropospheric Ozone Over the South Tropical Atlantic in January-February 1999: An Ozone Paradox Due to Interhemispheric Transport, Lightning, or Stratospheric Exchange?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Doddridge, Bruce G.; Witte, Jacquelyn C.; Hudson, Robert D.; Luke, Winston T.; Johnson, James E.; Johnson, Bryan J.; Oltmans, Samuel J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On this first North American to southern African oceanographic cruise with ozonesonde launches (January and February 1999 on board the NOAA Research Vessel Ronald H Brown between Norfolk, VA, and Cape Town, South Africa) we found: (1) high ozone, CO, and aerosols off northern equatorial Africa from biomass burning, but even higher ozone concentrations off southern Africa which was not burning - an "ozone paradox"; (2) TOMS satellite evidence that south Atlantic elevated ozone in January-February 1999 was a regional feature similar in extent to the well-known September-October ozone maximum. Several mechanisms are considered to explain the "ozone paradox." Convection transporting air from the lower troposphere rich in ozone and/or ozone precursors to the upper troposphere through the ITCZ (intertropical Convergence Zone) may lead to cross-hemisphere transport of pollution. This is supported by trajectory linkage of lower-tropospheric ozone maxima with smoke seen by the TOMS satellite. Lightning-generated NO (nitric oxide) leading to ozone peaks of > 100 ppbv observed at 7-10 km altitude is another explanation. The TRMM (Tropical Rainfall Measuring Mission) Lightning Imaging Sounder shows many lightning flashes over southern Africa, which trajectories link to the high-ozone layers south of the ITCZ. The highest ozone peaks in the middle troposphere correspond to very low water vapor, which may point to photochemical destruction of ozone or subsidence from the upper troposphere which had interacted with stratospheric ozone.

  1. Effects of injected ice particles in the lower stratosphere on the Antarctic ozone hole

    NASA Astrophysics Data System (ADS)

    Nagase, H.; Kinnison, D. E.; Petersen, A. K.; Vitt, F.; Brasseur, G. P.

    2015-05-01

    The Antarctic ozone hole will continue to be observed in the next 35-50 years, although the emissions of chlorofluorocarbons (CFCs) have gradually been phased out during the last two decades. In this paper, we suggest a geo-engineering approach that will remove substantial amounts of hydrogen chloride (HCl) from the lower stratosphere in fall, and hence limit the formation of the Antarctic ozone hole in late winter and early spring. HCl will be removed by ice from the atmosphere at temperatures higher than the threshold under which polar stratospheric clouds (PSCs) are formed if sufficiently large amounts of ice are supplied to produce water saturation. A detailed chemical-climate numerical model is used to assess the expected efficiency of the proposed geo-engineering method, and specifically to calculate the removal of HCl by ice particles. The size of ice particles appears to be a key parameter: larger particles (with a radius between 10 and 100 µm) appear to be most efficient for removing HCl. Sensitivity studies lead to the conclusions that the ozone recovery is effective when ice particles are supplied during May and June in the latitude band ranging from 70°S to 90°S and in the altitude layer ranging from 10 to 26 km. It appears, therefore, that supplying ice particles to the Antarctic lower stratosphere could be effective in reducing the depth of the ozone hole. In addition, photodegradation of CFCs might be accelerated when ice is supplied due to enhanced vertical transport of this efficient greenhouse gas.

  2. Development of algorithms for using satellite meteorological data sets to study global transport of stratospheric aerosols and ozone

    NASA Technical Reports Server (NTRS)

    Want, P. H.; Deepak, A.

    1985-01-01

    The utilization of stratospheric aerosol and ozone measurements obtained from the NASA developed SAM II and SAGE satellite instruments were investigated for their global scale transports. The stratospheric aerosols showed that during the stratospheric warming of the winter 1978 to 1979, the distribution of the zonal mean aerosol extinction ratio in the northern high latitude exhibited distinct changes. Dynamic processes might have played an important role in maintenance role in maintenance of this zonal mean distribution. As to the stratospheric ozone, large poleward ozone transports are shown to occur in the altitude region from 24 km to 38 km near 55N during this warming. This altitude region is shown to be a transition region of the phase relationship between ozone and temperature waves from an in-phase one above 38 km. It is shown that the ozone solar heating in the upper stratosphere might lead to enhancement of the damping rate of the planetary waves due to infrared radiation alone in agreement with theoretical analyses and an earlier observational study.

  3. Evaluation of a Multi-Decadal Simulation of Stratospheric Ozone by Comparison with Total Ozone Mapping Spectrometer (TOMS) Observations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven

    2003-01-01

    One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.

  4. Comparing Simultaneous Stratospheric Aerosol and Ozone Lidar Measurements with SAGE 2 Data after the Mount Pinatubo Eruption

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Poole, L. R.; McCormick, M. P.; Veiga, R. E.; Wang, P.-H.; Rizi, V.; Masci, F.; DAltorio, A.; Visconti, G.

    1995-01-01

    Stratospheric aerosol and ozone profiles obtained simultaneously from the lidar station at the University of L'Aquila (42.35 deg N, 13.33 deg E, 683 m above sea level) during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratospheric Aerosol and Gas Experiment (SAGE) 2 profiles. The agreement between the two data sets is found to be reasonably good. The temporal change of aerosol profiles obtained by both techniques showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concentration profiles derived from an empirical time-series model based on SAGE 2 ozone data obtained before the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentrations measured in January 1992 were reduced relative to time-series model estimates. Possible reasons for the differences between measured and model-based ozone profiles are discussed.

  5. Copernicus atmospheric service for stratospheric ozone: validation and intercomparison of four near real-time analyses, 2009-2012

    NASA Astrophysics Data System (ADS)

    Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.

    2014-05-01

    This paper evaluates the performance of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3 year period between September 2009 and September 2012. Ozone analyses produced by four different chemistry transport models and data assimilation techniques are examined: the ECMWF Integrated Forecast System (IFS) coupled to MOZART-3 (IFS-MOZART), the BIRA-IASB Belgian Assimilation System for Chemical ObsErvations (BASCOE), the DLR/RIU Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA), and the KNMI Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system: SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. The stratospheric ozone analyses are compared to independent ozone observations from ground-based instruments, ozone sondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. All analyses show total column values which are generally in good agreement with groundbased observations (biases <5%) and a realistic seasonal cycle. The only exceptions are found for BASCOE which systematically underestimates total ozone in the Tropics with about 7-10% at Chengkung (Taiwan, 23.1° N/121.365° E), resulting from the fact that BASCOE does not include any tropospheric processes, and for SACADA which overestimates total ozone in the absence of UV observations for the assimilation. Due to the large weight given to column observations in the assimilation procedure, IFS-MOZART is able to reproduce total column observations very well, but alternating positive and negative biases compared to ozonesonde and ACE-FTS satellite data are found in the vertical as well as an overestimation of 30 to 60% in the

  6. Ozone and upper troposphere/lower stratosphere variability and change at southern midlatitudes 1980-2000: Decadal variations

    NASA Astrophysics Data System (ADS)

    Canziani, P. O.; Malanca, F. E.; Agosta, E. A.

    2008-10-01

    Total ozone relationships with selected upper troposphere/lower stratosphere variables (400- and 70-hPa temperatures, tropopause height and temperature, 70-hPa geopotential height, and 340-K potential vorticity), as well as between the variables, are analyzed on decadal scales over Southern Hemisphere midlatitudes for the period 1980-2000. Total Ozone Mapping Spectrometer version 8 total ozone and European Centre for Medium Range Weather Forecast ERA-40 data products for June and October (early winter and spring) are used. Multiple spatial correlation techniques and shared variance estimates are applied to infer relationships between mean fields as well as among decadal difference fields. Wave activity Z and local Eliassen-Palm fluxes were calculated to further analyze the dynamics of the samples and their variability. The statistical studies show that observed total ozone latitudinal and longitudinal decadal variations can be driven by upper tropospheric and stratospheric variability, depending on latitude and season. The sampled regions, divided into subtropical and subpolar, yield differentiated relationships. October ozone decadal variations during the 1980s, particularly at higher latitudes, are attributed primarily to chemical ozone depletion, while there appear to be links between tropospheric decadal change and some of the stratospheric variables and tropopause behavior. In the 1990s, tropospheric contributions decrease, and stratospheric quasi stationary wave 1 plays a major role. In June, tropospheric change/variability appears to be more important than stratospheric driving, which nevertheless also contributes to change. Ozone change in the 1990s responded more to stratospheric dynamic change at higher latitudes, but despite reduced contributions, the troposphere remains a driver of variation at the lower latitudes of the sample.

  7. Reevaluation of Stratospheric Ozone Trends From SAGE II Data Using a Simultaneous Temporal and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.

  8. Subsidence of aircraft engine exhaust in the stratosphere: Implications for calculated ozone depletions

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.

    1994-01-01

    The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.

  9. Stratospheric ozone in boreal fire plumes - the 2013 smoke season over central Europe

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Vogelmann, H.; Flentje, H.; Ries, L.

    2015-08-01

    In July 2013 very strong boreal fire plumes were observed at the northern rim of the Alps by lidar and ceilometer measurements of aerosol, ozone and water vapour for about 3 weeks. In addition, some of the lower-tropospheric components of these layers were analysed at the Global Atmosphere Watch laboratory at the Schneefernerhaus high-altitude research station (2650 m a.s.l., located a few hundred metres south-west of the Zugspitze summit). The high amount of particles confirms our hypothesis that fires in the Arctic regions of North America lead to much stronger signatures in the central European atmosphere than the multitude of fires in the USA. This has been ascribed to the prevailing anticyclonic advection pattern during favourable periods and subsidence, in contrast to warm-conveyor-belt export, rainout and dilution frequently found for lower latitudes. A high number of the pronounced aerosol structures were positively correlated with elevated ozone. Chemical ozone formation in boreal fire plumes is known to be rather limited. Indeed, these air masses could be attributed to stratospheric air intrusions descending from remote high-latitude regions, obviously picking up the aerosol on their way across Canada. In one case, subsidence from the stratosphere over Siberia over as many as 15-20 days without increase in humidity was observed although a significant amount of Canadian smoke was trapped. These coherent air streams lead to rather straight and rapid transport of the particles to Europe.

  10. Attenuation by clouds of UV radiation for low stratospheric ozone conditions

    NASA Astrophysics Data System (ADS)

    Orte, Facundo; Wolfram, Elian; Salvador, Jacobo; D'Elia, Raúl; Quiroga, Jonathan; Quel, Eduardo; Mizuno, Akira

    2017-02-01

    Stratospheric poor ozone air masses related to the polar ozone hole overpass subpolar regions in the Southern Hemisphere during spring and summer seasons, resulting in increases of surface Ultraviolet Index (UVI). The impact of these abnormal increases in the ultraviolet radiation could be overestimated if clouds are not taking into account. The aim of this work is to determine the percentage of cases in which cloudiness attenuates the high UV radiation that would reach the surface in low total ozone column situations and in clear sky hypothetical condition for Río Gallegos, Argentina. For this purpose, we analysed UVI data obtained from a multiband filter radiometer GUV-541 (Biospherical Inc.) installed in the Observatorio Atmosférico de la Patagonia Austral (OAPA-UNIDEF (MINDEF - CONICET)) (51 ° 33' S, 69 ° 19' W), Río Gallegos, since 2005. The database used covers the period 2005-2012 for spring seasons. Measured UVI values are compared with UVI calculated using a parametric UV model proposed by Madronich (2007), which is an approximation for the UVI for clear sky, unpolluted atmosphere and low surface albedo condition, using the total ozone column amount, obtained from the OMI database for our case, and the solar zenith angle. It is observed that ˜76% of the total low ozone amount cases, which would result in high and very high UVI categories for a hypothetical (modeled) clear sky condition, are attenuated by clouds, while 91% of hypothetical extremely high UVI category are also attenuated.

  11. On the inclusion of Limb Infrared Monitor of the Stratosphere version 6 ozone in a data assimilation system

    NASA Astrophysics Data System (ADS)

    Remsberg, E.; Natarajan, M.; Fairlie, T. D.; Wargan, K.; Pawson, S.; Coy, L.; Lingenfelser, G.; Kim, G.

    2013-07-01

    Version 6 ozone profiles for 1978-1979 from the Limb Infrared Monitor of the Stratosphere experiment on the NIMBUS 7 satellite (or LIMS v6) are assimilated into an updated version of the GEOS-5 model of NASA. First, an assimilation study is carried out using GEOS-5 version 7.2 (v7.2) and solar backscatter ultraviolet (SBUV) version 8.6 ozone profiles. Then, a second study is conducted that ingests both the LIMS and SBUV ozone, as weighted by their estimated absolute error vectors. Ozone from this second study compares well with independent observations from the Stratospheric Aerosol and Gas Experiment (SAGE I) and from the time series of ozonesonde data at Hohenpeissenberg and at Wallops Island. Assimilation of the LIMS data gives improved ozone distributions in the upper stratosphere (pressure < 5 hPa) and in the polar night region—the latter where solar backscatter ultraviolet (SBUV) is not observed. The LIMS ozone leads to improved total column ozone analyses in winter/spring outside of the tropics, based on independent comparisons with total ozone from the Total Ozone Mapping Spectrometer. The LIMS ozone also adds information in the tropics on coherent structural features at 20-30 hPa, related to the phase transition of the quasi-biennial oscillation wind field. It is affirmed that the process of data assimilation represents a cost-effective way of characterizing new and/or reprocessed satellite ozone data sets. It is concluded that the GEOS-5 v7.2 model with the addition of the LIMS data can improve analyses of ozone in 1978-1979.

  12. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Emili, E.; Barret, B.; Massart, S.; Le Flochmoen, E.; Piacentini, A.; El Amraoui, L.; Pannekoucke, O.; Cariolle, D.

    2014-01-01

    Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. We consider a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE) in combination with a linear ozone chemistry scheme to examine the impact of assimilating observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI). The assimilation of the two instruments is performed by means of a variational algorithm (4D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozonesonde measurements to verify the presence of observations and model biases. Furthermore, a longer analysis of 6 months (July-December 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (root mean square error, RMSE) of the modeled ozone columns from 30 to 15% in the upper troposphere/lower stratosphere (UTLS, 70-225 hPa). The assimilation of IASI tropospheric ozone observations (1000-225 hPa columns, TOC - tropospheric O3 column) decreases the RMSE of the model from 40 to 20% in the tropics (30° S-30° N), whereas it is not effective at higher latitudes. Results are confirmed by a comparison with additional ozone data sets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be insensitive to the assimilation parameters. We conclude that the combination of a simplified ozone chemistry scheme with frequent satellite observations is a valuable tool for the long-term analysis of stratospheric and free-tropospheric ozone.

  13. Future changes in dynamical processes triggering major stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Ayarzagüena, Blanca; Langematz, Ulrike; Meul, Stefanie; Oberländer, Sophie; Abalichin, Janna; Kubin, Anne

    2013-04-01

    One of the most important examples of the coupling between the boreal troposphere and stratosphere is major stratospheric warmings (MSWs). They are initiated by an anomalously high injection of tropospheric wave activity into the stratosphere that leads to a weakening of the polar vortex, a deceleration of the westerly polar night jet and a warming at high latitudes. Some studies have identified future changes in the main features of these phenomena such as the frequency or seasonal distribution, but with no clear consensus among them. Thus, a detailed analysis of possible future changes in the triggering mechanisms of MSWs is still needed. In this study, we examine potential future changes in the nature of the anomalous wave activity that triggers MSWs by means of time-slice simulations under present and projected future conditions using the EMAC Chemistry-Climate-Model. These experiments include climate forcings by halogens, greenhouse gases (GHG), and prescribed sea surface temperatures (SSTs) (including sea ice concentrations). Following the methodology of Smith and Kushner (2012), we decompose the anomalous vertical wave activity preceding MSWs into its different contributors (i.e., the linear term related to the interference between the climatological stationary waves and wave anomalies; and the nonlinear one, associated with the wave anomalies themselves). First results show that the linear term becomes more important in the future than the nonlinear term and it is predominant in the days prior to the occurrence of the MSWs. Moreover, this increase of the interaction term is primarily due to an intensification of wavenumber-1 wave activity. Given that tropical SST variability, in particular the Pacific one, has been already shown to be linked to an amplification of wavenumber-1 stationary waves, its increase in the future could be a signature of the impact of future changes in tropical SSTs on variations in the occurrence of MSWs. These results will be

  14. Observed and Modeled HOCl Profiles in the Midlatitude Stratosphere: Implication for Ozone Loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Jucks, K. W.; Salawitch, R. J.; Toon, G. C.; Blavier, J. F.; Johnson, D. G.; Kleinbohl, A.; Livesey, N. J .; Margitan, J. J.; Pickett, H. M.; Santee, M. L.; Sen, B.; Stachnik, R. A.; Waters, J. W.

    2007-01-01

    Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.

  15. Improved GOMOS/Envisat ozone retrievals in the upper troposphere and the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Sofieva, Viktoria F.; Ialongo, Iolanda; Hakkarainen, Janne; Kyrölä, Erkki; Tamminen, Johanna; Laine, Marko; Hubert, Daan; Hauchecorne, Alain; Dalaudier, Francis; Bertaux, Jean-Loup; Fussen, Didier; Blanot, Laurent; Barrot, Gilbert; Dehn, Angelika

    2017-01-01

    Global Ozone Monitoring by Occultation of Stars (GOMOS) on board Envisat has performed about 440 000 nighttime occultations during 2002-2012. Self-calibrating measurement principle, good vertical resolution, excellent pointing accuracy, and the wide vertical range from the troposphere up to the lower thermosphere make GOMOS profiles interesting for different analyses. The GOMOS ozone data are of high quality in the stratosphere and the mesosphere, but the current operational retrieval algorithm (IPF v6) is not optimized for retrievals in the upper troposphere-lower stratosphere (UTLS). In particular, validation of GOMOS profiles against ozonesonde data has revealed a substantial positive bias (up to 100 %) in the UTLS region. The retrievals in the UTLS are challenging because of low signal-to-noise ratio and the presence of clouds. In this work, we discuss the reasons for the systematic uncertainties in the UTLS with the IPF v6 algorithm or its modifications based on simultaneous retrievals of several constituents using the full visible wavelength range. The main reason is high sensitivity of the UTLS retrieval algorithms to an assumed aerosol extinction model. We have developed a new ozone profile inversion algorithm for GOMOS data (ALGOM2s version 1.0), which is optimized in the UTLS and uses IPF v6 advantages in the middle atmosphere. The ozone retrievals in the whole altitude range from the troposphere to the lower thermosphere are performed in two steps, as in the operational algorithm: spectral inversion followed by the vertical inversion. The spectral inversion is enhanced by using a DOAS-type method at visible wavelengths for the UTLS region. This method uses minimal assumptions about the atmospheric profiles. The vertical inversion is performed as in IPF v6 with the Tikhonov-type regularization according to the target resolution. The validation of new retrieved ozone profiles with ozonesondes shows a dramatic reduction of GOMOS ozone biases in the UTLS

  16. Investigation of the effect of natural phenomena and industrial activity on stratospheric ozone trends. Final report, September 1993--June 1998

    SciTech Connect

    McElroy, M.B.; Schneider, H.R.

    1998-12-01

    The long term goal of this work is to separate the effects of natural variability and anthropogenic emissions on the chemical composition of the atmosphere. In particular, the authors are concerned with the variability of ozone in the stratosphere and the supply of ozone from the stratosphere to the upper troposphere. During the first phase of this project the authors developed an interactive two-dimensional (2D) model of the dynamics, radiation, and chemistry of the stratosphere. The most important features of the model are the use of the full primitive equations in two dimensions, small horizontal mixing in the tropical regions and small mechanical damping in the lower stratosphere. As a result, transport in the tropics and the mass exchange between the tropics and midlatitude are controlled advectively.

  17. Combined MU radar and ozonesonde measurements of turbulence and ozone fluxes in the tropo-stratosphere over Shigaraki, Japan

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. M.; Fukao, S.; Hashiguchi, H.; Kita, K.; Sato, K.; Tomikawa, Y.; Fujiwara, M.

    2006-05-01

    Turbulent diffusivity and turbulent ozone fluxes in the tropo-stratosphere are studied employing simultaneous observations with the Middle and Upper (MU) Atmosphere radar and ozonesondes in Shigaraki, Japan during April 16-24, 1998. A broad region around the tropopause was dynamically active. Maxima of turbulent diffusivity were observed at 8-14 km altitude. Such maxima may produce vertical turbulent ozone fluxes across the tropopause with magnitudes comparable to those required for the global ozone budget. Meso-meteorological ozone intrusions may enhance the fluxes.

  18. Constructing Synoptic Maps of Stratospheric Column Ozone from HALOE, SAGE and Balloonsonde Data Using Potential Vorticity Isentropic Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Stacey M.; Schoeberl, Mark R.; Morris, Gary A.; Long, Craig; Zhou, Shuntai; Miller, Alvin J.

    1999-01-01

    In this study we utilize potential vorticity - isentropic (PVI) coordinate transformations as a means of combining ozone data from different sources to construct daily, synthetic three-dimensional ozone fields. This methodology has been used successfully to reconstruct ozone maps in particular regions from aircraft data over the period of the aircraft campaign. We expand this method to create high-resolution daily global maps of profile ozone data, particularly in the lower stratosphere, where high-resolution ozone data are sparse. Ozone climatologies in PVI-space are constructed from satellite-based SAGE II and UARS/HALOE data, both of which-use solar occultation techniques to make high vertical resolution ozone profile measurements, but with low spatial resolution. A climatology from ground-based balloonsonde data is also created. The climatologies are used to establish the relationship between ozone and dynamical variability, which is defined by the potential vorticity (in the form of equivalent latitude) and potential temperature fields. Once a PVI climatology has been created from data taken by one or more instruments, high-resolution daily profile ozone field estimates are constructed based solely on the PVI fields, which are available on a daily basis from NCEP analysis. These profile ozone maps could be used for a variety of applications, including use in conjunction with total ozone maps to create a daily tropospheric ozone product, as input to forecast models, or as a tool for validating independent ozone measurements when correlative data are not available. This technique is limited to regions where the ozone is a long-term tracer and the flow is adiabatic. We evaluate the internal consistency of the technique by transforming the ozone back to physical space and comparing to the original profiles. Biases in the long-term average of the differences are used to identify regions where the technique is consistently introducing errors. Initial results show

  19. Chemical and dynamical impacts of stratospheric sudden warmings on Arctic ozone variability

    NASA Astrophysics Data System (ADS)

    Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.

    2016-10-01

    We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90°N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 1/3 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.

  20. Summary of the Impact of Launch Vehicle Exhaust and Deorbiting Space and Meteorite Debris on Stratospheric Ozone

    DTIC Science & Technology

    2007-11-02

    strongly influence the attenuation of solar radiation reaching the Earth’s surface. Perturbations in the trace gas composition of the stratosphere...affected by both changes in UV radiation and by changes in the balance of outgoing and incoming long- and short- wave solar radiation, which maintains...degree of solar attenuation. Because it contains halogens (e.g., chlorine, bromine), the aerosol can also perturb the stratosphere’s ozone mass budget

  1. Modeling the interaction of ozone with chloroform and bromoform under conditions close to stratospheric

    NASA Astrophysics Data System (ADS)

    Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.

    2013-02-01

    The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.

  2. Pronounced Minima in Tropospheric Ozone and OH above the Tropical West Pacific and their Role for Stratospheric Composition

    NASA Astrophysics Data System (ADS)

    Rex, M.; Wohltmann, I.; Lehmann, R.; Rosenlof, K. H.; Wennberg, P. O.; Weisenstein, D. K.; Notholt, J.; Krüger, K.; Mohr, V.; Tegtmeier, S.

    2014-12-01

    Hundreds of organic species are emitted into the atmosphere mostly from biogenic processes. The rapid breakdown by reactions with OH radicals prevents most of them from reaching the stratosphere. Hence, the omnipresent layer of OH in the troposphere shields the stratosphere from these emissions and is particularly relevant for those species that do not photolyse efficiently. Reactions involving ozone are a strong source of OH in clean tropical air. Hence the OH concentration is closely coupled to ozone abundances. The Western Pacific warm pool is key for troposphere to stratosphere exchange. We report measurements of 14 ozonesondes launched during the Transbrom ship cruise through the center of the warm pool. During a 2500km portion of the ship track between 10S and 15N we found ozone concentrations below the detection limit of the sondes throughout the troposphere. We will discuss the uncertainties of ozonesonde measurements at very low ozone concentrations, the robustness of our observations and the upper limit of the ozone concentration that would be consistent with our raw data. Based on modelling and measurements of OH on the ER-2 during the STRAT campaign we suggest that there also is a pronounced minimum in the tropospheric column of OH over the tropical West Pacific. We show that this increases the lifetime of chemical species and has the potential to amplify the impact of surface emissions on the stratospheric composition. Specifically, we discuss the role of emissions of biogenic halogenated species from this geographic region for stratospheric ozone depletion. Also, we discuss the potential role of increasing anthropogenic emissions of SO2 in South East Asia or from minor volcanic eruptions for the stratospheric aerosol budget.

  3. Scientific Assessment of Stratospheric Ozone: 1989, volume 2. Appendix: AFEAS Report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results are presented of the Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), which was organized to evaluate the potential effects on the environment of alternate compounds targeted to replace fully halogenated chlorofluorocarbons (CFCs). All relevant current scientific information to determine the environmental acceptability of the alternative fluorocarbons. Special emphasis was placed on: the potential of the compounds to affect stratospheric ozone; their potential to affect tropospheric ozone; their potential to contribute to model calculated global warming; the atmospheric degradation mechanisms of the compounds, in order to identify their products; and the potential environmental effects of the decomposition products. The alternative compounds to be studied were hydrofluorocarbons (HFCs) with one or two carbon atoms and one or more each of fluorine and hydrogen.

  4. Stratospheric ozone depletion over Antarctica - Role of aerosols based on SAGE II satellite observations

    NASA Technical Reports Server (NTRS)

    Lin, N.-H.; Saxena, V. K.

    1992-01-01

    The physical characteristics of the Antarctic stratospheric aerosol are investigated via a comprehensive analysis of the SAGE II data during the most severe ozone depletion episode of October 1987. The aerosol size distribution is found to be bimodal in several instances using the randomized minimization search technique, which suggests that the distribution of a single mode may be used to fit the data in the retrieved size range only at the expense of resolution for the larger particles. On average, in the region below 18 km, a wavelike perturbation with the upstream tilting for the parameters of mass loading, total number, and surface area concentration is found to be located just above the region of the most severe ozone depletion.

  5. Laboratory simulations of the interaction between ozone and chloroacetic acids in the conditions close to stratospheric

    NASA Astrophysics Data System (ADS)

    Strokova, N. E.; Savilov, S. V.; Morozov, I. I.; Yagodovskaya, T. V.; Lunin, V. V.

    2015-01-01

    The interaction between ozone and mono-, di-, and trichloroacetic acids are studied using a flow vacuum gas discharge setup in a regime close to stratospheric conditions (in the temperature range of 77 to 250 K, at pressures of 10-3 to 0 Torr, and in the presence of ice). The interaction between ozone and trichloroacetic acid starts at 77 K, while interaction with monochloroacetic acid begins when the temperature is raised to 200 K. The reactions are assumed to proceed via different mechanisms: chlorine oxides of different composition are the reaction products, as is shown using low-temperature IR spectroscopy. Preliminary adsorption of the acids on a surface of ice raises the temperature of interaction to 190 K.

  6. Effects of energetic particles precipitation on stratospheric ozone in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Zossi de Artigas, Marta; Zotto, Elda M.; Mansilla, Gustavo A.; Fernandez de Campra, Patricia

    2016-11-01

    Measurements from TOMS and UARS-HALOE are used to estimate the effects of energetic particle precipitation (EPP) over the stratosphere during two geomagnetic storms occurred in November of the years 2003 and 2004. The EPP couples the solar wind to the Earth's atmosphere and indirectly to the Earth's climate. Due to particle precipitation, the ionization and dissociation increase, and create odd nitrogen (NOx) and odd hydrogen (HOx) in the upper atmosphere, which can affect ozone chemistry. In this paper, statistically significant variation in total ozone content at middle latitudes of the Southern Hemisphere is observed. The variations depend on the intensity of geomagnetic disturbances and the geomagnetic longitude. A significant variation in NOx concentration at altitudes from 30 to 50 km is observed from the profiles analysis.

  7. Model/data comparisons of ozone in the upper stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Siskind, David E.; Remsberg, Ellis E.; Eckman, Richard S.; Connor, Brian J.; Tsou, J. J.; Parrish, Alan

    1994-01-01

    We compare ground-based microwave observations of ozone in the upper stratosphere and mesosphere with daytime observations made from the SME (Solar Mesosphere Explorer) satellite, with nighttime data from the LIMS instrument, and with a diurnal photochemical model. The results suggest that the data are all in reasonable agreement and that the model-data discrepancy is much less than previously thought, particularly in the mesosphere. This appears to be due to the fact that the latest data are lower than earlier reports and the updated model predicts more ozone than older versions. The model and the data agree to within a factor of 1.5 at all altitudes and typically are within 20 percent.

  8. Measured and modeled HOCl profiles in the mid-latitude stratosphere : implication for ozone loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Salawitch, R. J.; Blavier, J. -F.; Sen, B.; Toon, G. C.; Jucks, K. W.; Johnson, D. G.; Stachnik, R. A.; Margitan, J. J.

    2004-01-01

    The HOCl catalytic cycle is an efficient ozone loss mechanism in the lower mid-latitude stratosphere. We use a diurnal steady-state photochemical model to calculate profiles of HOCl for conditions encountered by a number of high-altitude balloon flights. To assess how well this model represents ozone loss by the HOCl cycle, we compare our calculations of HOCl and its precursors Cl0 and HO2 with measurements obtained by an FTIR solar absorption spectrometer (MkIV), a far-infrared emission spectrometer (FIRS-2), and a submillimetenvave limb sounder (SLS). We then evaluate these comparisons in light of a number of recent laboratory studies of the main formation mechanism of HOCl, the reaction of Cl0 + HO2. Those studies measured both the reaction rate constant and the quantum yield for a second product pathway, formation of HCl.

  9. Model/data comparisons of ozone in the upper stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Remsberg, Ellis E.; Eckman, Richard S.; Connor, Brian J.; Tsou, J. J.; Parrish, Alan

    1994-04-01

    We compare ground-based microwave observations of ozone in the upper stratosphere and mesosphere with daytime observations made from the SME (Solar Mesosphere Explorer) satellite, with nighttime data from the LIMS instrument, and with a diurnal photochemical model. The results suggest that the data are all in reasonable agreement and that the model-data discrepancy is much less than previously thought, particularly in the mesosphere. This appears to be due to the fact that the latest data are lower than earlier reports and the updated model predicts more ozone than older versions. The model and the data agree to within a factor of 1.5 at all altitudes and typically are within 20 percent.

  10. Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Parrish, A.; Dezafra, R.; Solomon, P.

    1981-01-01

    The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.

  11. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C..; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE] on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [about 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  12. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C.; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE) on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [approximately 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  13. A general circulation model study of the climatic effect of observed stratospheric ozone depletion between 1980 and 1990

    NASA Technical Reports Server (NTRS)

    Dudek, Michael P.; Wang, Wei-Chyung; Liang, Xin-Zhong; Li, Zhu

    1994-01-01

    The total ozone mapping spectrometer (TOMS) and stratospheric aerosol and gas experiment (SAGE) measurements show a significant reduction in the stratospheric ozone over the middle and high latitudes of both hemispheres between the years 1979 and 1991 (WMO, 1992). This change in ozone will effect both the solar and longwave radiation with climate implications. However, recent studies (Ramaswamy et al., 1992; WMO, 1992) indicate that the net effect depends not only on latitudes and seasons, but also on the response of the lower stratospheric temperature. In this study we use a general circulation model (GCM) to calculate the climatic effect due to stratospheric ozone depletion and compare the effect with that due to observed increases of trace gases CO2, CH4, N2O, and CFC's for the period 1980-1990. In the simulations, we use the observed changes in ozone derived from the TOMS data. The GCM used is a version of the NCAR community climate model referenced in Wang et al. (1991). For the present study we run the model in perpetual January and perpetual July modes in which the incoming solar radiation and climatological sea surface temperatures are held constant.

  14. The Met Office HadGEM3-ES chemistry-climate model: evaluation of stratospheric dynamics and its impact on ozone

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Butchart, Neal; O'Connor, Fiona M.; Rumbold, Steven T.

    2017-03-01

    Free-running and nudged versions of a Met Office chemistry-climate model are evaluated and used to investigate the impact of dynamics versus transport and chemistry within the model on the simulated evolution of stratospheric ozone. Metrics of the dynamical processes relevant for simulating stratospheric ozone are calculated, and the free-running model is found to outperform the previous model version in 10 of the 14 metrics. In particular, large biases in stratospheric transport and tropical tropopause temperature, which existed in the previous model version, are substantially reduced, making the current model more suitable for the simulation of stratospheric ozone. The spatial structure of the ozone hole, the area of polar stratospheric clouds, and the increased ozone concentrations in the Northern Hemisphere winter stratosphere following sudden stratospheric warmings, were all found to be sensitive to the accuracy of the dynamics and were better simulated in the nudged model than in the free-running model. Whilst nudging can, in general, provide a useful tool for removing the influence of dynamical biases from the evolution of chemical fields, this study shows that issues can remain in the climatology of nudged models. Significant biases in stratospheric vertical velocities, age of air, water vapour, and total column ozone still exist in the Met Office nudged model. Further, these can lead to biases in the downward flux of ozone into the troposphere.

  15. Recent and Future Stratospheric Balloon Activities at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Kemi, Stig

    Esrange Space Center located in northern Sweden has during 45 years been a leading launch site for both sounding rockets and stratospheric balloons. We have a unique combination of maintaining both stratospheric balloons and sounding rockets launch operations. Most balloon flights are normally handled inside Scandinavia but since 2005 PersonNamesemi-circular flights are performed with recovery in northern Canada. The Swedish Government and Swedish National Space Board are now finaliz-ing an agreement with Russia for peaceful uPersonNamese of space, which will permit circumpolar balloon flights. Within this agreement we will soon be able to of-fer the science community long duration balloon flights with durations for PersonNameseveral weeks. The balloon operations at Esrange Space Center are yearly expanding. Both NASA and CNES have long term plans for balloon flights from northern Sweden. We have also received a request from JAXA for future balloon missions. To handle balloon campaigns with large numbers of payloads or build up for two different campaigns a new big assembly hall will be ready for use at the beginning of 2011. January 24 we made an historical balloon flight in a very cold stratosphere with a Zodiac metricconverterProductID402?000 m3402ü ınbsp;000 m3402 000 m3 balloon carrying a 750kg gondola with the German Mipas-B/Telis instrument. The balloon reached 34kms alti-tude after a carefully piloted ascent in temperature levels down to -89 degrees Centigrade. The scientists received unique data during the 13 hours and 30 minutes long sailing at different altitudes during slow descent. The payload was recovered in very good condition 80 kms from the border between country-regionFinland and Russia.

  16. Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2008-01-01

    Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspect of out understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to to simulate these process in numerical models of chemistry and transport. These models depend on laboratory-measured kinetic reaction rates and photlysis cross section to simulate molecular interactions. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluation are applied in random combinations. We determine the key reaction and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.

  17. Springtime measurements of ozone-related compounds in the antarctic stratosphere

    SciTech Connect

    Murcray, D.G. )

    1987-09-01

    The springtime decrease of atmospheric ozone over Antarctica has been observed over Halley Bay and over Syowa and South Pole Stations and has been recorded by satellites over a wide area of the continent. Current photochemical models did not predict these observations nor do the models explain the decrease. Several explanations for the decrease have been advanced; each explanation assumes that concentrations of other compounds in the atmosphere would change along with the concentration of ozone. However, verification of these hypotheses requires atmospheric chemical data obtained during the antarctic spring. In support of the National Ozone Expedition II, the author will obtain infrared solar spectra from ground-based stations at McMurdo and South Pole. These spectra, which contain thousands of absorption lines produced by compounds present in the atmosphere, can provide information about atmospheric chemistry at the time that the measurements were made. Because they respond to molecules anywhere along the optical path, this technique yields information on the total column density of compounds present in the stratosphere. At McMurdo Station from late August until mid October, the author will take measurements near Arrival Heights and later will continue his observations at Amundsen-Scott South Pole Station. The measurements will be analyzed for total column density of hydrochloric acid, nitric acid, nitrogen dioxide, chlorofluorocarbon gases F-11 and F-12, ozone, methane, and nitrous oxide. With these data, he hopes to follow the change in total column density for these compounds from late winter through early spring.

  18. Stratospheric Ozone Variations Caused by Solar Proton Events between 1963 and 2005

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Fleming, Eric L.

    2006-01-01

    Solar proton fluxes have been measured by satellites for over forty years (1963-2005). Several satellites, including the NASA Interplanetary Monitoring Platforms (1963-1993) and the NOAA Geostationary Operational Environmental Satellites (1994-2005), have been used to compile this long-term dataset. Some solar eruptions lead to solar proton events (SPEs) at the Earth, which typically last a few days. High energy solar protons associated with SPEs precipitate on the Earth's atmosphere and cause increases in odd hydrogen (HOx) and odd nitrogen (NOy) in the polar cap regions (greater than 60 degrees geomagnetic). The enhanced HOx leads to short-lived ozone depletion (days) due to the short lifetime of HOx constituents. The enhanced NOy leads to long-lived ozone changes because of the long lifetime of the NOy family in the stratosphere and lower mesosphere. Very large SPEs occurred in 1972, 1989, 2000, 2001, and 2003 and were predicted to cause maximum total ozone depletions of 1-3%, which lasted for several months to years past the events. These long-term ozone changes caused by SPES are discussed.

  19. Rocket measurements of ozone concentrations in the stratosphere and mesosphere over Thumba

    NASA Astrophysics Data System (ADS)

    Subbaraya, B. H.; Lal, Shyam

    1981-07-01

    A rocket-borne solar middle ultraviolet photometer has been developed at the Physical Research Laboratory, Ahmedabad for the measurement of ozone concentrations at stratospheric and mesospheric heights. The instrument has now been flown successfully several times from thumba and ozone concentrations determined over an altitude range of 15 to 80 km. This paper describes the instrumentation, data analysis technique as well as the laboratory calibration procedures. Also presented are the results from four successful rocket experiments conducted during equinoctial months under an Indo-USSR collaborative programme for strato-mesospheric studies. The results show that at Thumba peak ozone concentrations vary between 2·2 and 3·1×1012 molecules per cc and the peak altitude varies from 25 to 29 km from flight to flight. In the altitude region above about 40 km the ozone concentrations over Thumba are lower than the standard mid-latitude model values, by a factor lying between 1·5 and 2·5.

  20. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  1. The discrepancy between stratospheric ozone profiles from balloon soundings and from other techniques: A possible explanation

    NASA Technical Reports Server (NTRS)

    Demuer, Dirk; Debacker, Hugo

    1994-01-01

    Regular balloon ozone soundings with electrochemical sondes have been performed at Uccle since 1969. More than 450 ozone soundings between 1985 and 1989 were used to calculate the altitudes Zs from the VIZ radiosonde data and the altitudes Zr deduced from the tracking of the balloon train with a primary wind-finding radar. The values of Zs at fixed times appeared to be systematically too low as compared to Zr. The differences Zr-Zs increase with altitude; at 30 km the annual mean values of Zr-Zs (plus or minus standard deviation) vary between 590 plus or minus 910 m and 1410 plus or minus 1160 m, according to the pressure calibration of different manufacturing series of radiosondes. From these results it is found that around the 30 km level the ozone concentrations calculated from soundings with VIZ sondes are too low by 7.5 to 14 percent, depending upon the manufacturing series of radiosondes. At least part of the discrepancy which has often been found between ozone profiles from balloon soundings and from other techniques such as rocket observations or Umkehr measurements may be explained by this effect. An altitude correction would have important consequences as to the climatology of ozone in the middle stratosphere as adopted at the moment. About half of the day-to-day variability of ozone observed from soundings with VIZ radiosondes above the 30 km level, is induced by the variability of Zr-Zs. The agreement between altitudes calculated from radar data and Vaisala radiosondes is much better; from 34 comparative soundings a mean difference (plus or minus standard deviation) of about -300 plus/minus 180 m was found at 30 km.

  2. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a

  3. Stratospheric ozone, global warming, and the principle of unintended consequences-An ongoing science and policy success story.

    PubMed

    Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan

    2013-06-01

    In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after, scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C. [Box

  4. Stratospheric ozone, global warming, and the principle of unintended consequences--an ongoing science and policy success story.

    PubMed

    Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan

    2013-06-01

    In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most, ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C.

  5. Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure

    NASA Astrophysics Data System (ADS)

    Meul, Stefanie; Dameris, Martin; Langematz, Ulrike; Abalichin, Janna; Kerschbaumer, Andreas; Kubin, Anne; Oberländer-Hayn, Sophie

    2016-03-01

    Future projections of tropical total column ozone (TCO) are challenging, as its evolution is affected not only by the expected decline of ozone depleting substances but also by the uncertain increase of greenhouse gas (GHG) emissions. To assess the range of tropical TCO projections, we analyze simulations with a chemistry-climate model forced by three different GHG scenarios (Representative Concentration Pathway (RCP) 4.5, RCP6.0, and RCP8.5). We find that tropical TCO will be lower by the end of the 21st century compared to the 1960s in all scenarios with the largest decrease in the medium RCP6.0 scenario. Uncertainties of the projected TCO changes arise from the magnitude of stratospheric column decrease and tropospheric ozone increase which both strongly vary between the scenarios. In the three scenario simulations the stratospheric column decrease is not compensated by the increase in tropospheric ozone. The concomitant increase in harmful ultraviolet irradiance reaches up to 15% in specific regions in the RCP6.0 scenario.

  6. Effects of wind-powered hydrogen fuel cell vehicles on stratospheric ozone and global climate

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2008-10-01

    Converting the world's fossil-fuel onroad vehicles (FFOV) to hydrogen fuel cell vehicles (HFCV), where the H2 is produced by wind-powered electrolysis, is estimated to reduce global fossil, biofuel, and biomass-burning emissions of CO2 by ~13.4%, NOx ~23.0%, nonmethane organic gases ~18.9%, black carbon ~8% H2 ~3.2% (at 3% leakage), and H2O ~0.2%. Over 10 years, such reductions were calculated to reduce tropospheric CO ~5%, NOx ~5-13%, most organic gases ~3-15%, OH ~4%, ozone ~6%, and PAN ~13%, but to increase tropospheric CH4 ~0.25% due to the lower OH. Lower OH also increased upper tropospheric/lower stratospheric ozone, increasing its global column by ~0.41%. WHFCV cooled the troposphere and warmed the stratosphere, reduced aerosol and cloud surface areas, and increased precipitation. Other renewable-powered HFCV or battery electric vehicles should have similar impacts.

  7. Long-term evolution of upper stratospheric ozone at selected stations of the Network for the Detection of Stratospheric Change (NDSC)

    NASA Astrophysics Data System (ADS)

    Steinbrecht, W.; Claude, H.; SchöNenborn, F.; McDermid, I. S.; Leblanc, T.; Godin, S.; Song, T.; Swart, D. P. J.; Meijer, Y. J.; Bodeker, G. E.; Connor, B. J.; KäMpfer, N.; Hocke, K.; Calisesi, Y.; Schneider, N.; de La Noë, J.; Parrish, A. D.; Boyd, I. S.; Brühl, C.; Steil, B.; Giorgetta, M. A.; Manzini, E.; Thomason, L. W.; Zawodny, J. M.; McCormick, M. P.; Russell, J. M.; Bhartia, P. K.; Stolarski, R. S.; Hollandsworth-Frith, S. M.

    2006-05-01

    The long-term evolution of upper stratospheric ozone has been recorded by lidars and microwave radiometers within the ground-based Network for the Detection of Stratospheric Change (NDSC), and by the space-borne Solar Backscatter Ultra-Violet instruments (SBUV), Stratospheric Aerosol and Gas Experiment (SAGE), and Halogen Occultation Experiment (HALOE). Climatological mean differences between these instruments are typically smaller than 5% between 25 and 50 km. Ozone anomaly time series from all instruments, averaged from 35 to 45 km altitude, track each other very well and typically agree within 3 to 5%. SBUV seems to have a slight positive drift against the other instruments. The corresponding 1979 to 1999 period from a transient simulation by the fully coupled MAECHAM4-CHEM chemistry climate model reproduces many features of the observed anomalies. However, in the upper stratosphere the model shows too low ozone values and too negative ozone trends, probably due to an underestimation of methane and a consequent overestimation of ClO. The combination of all observational data sets provides a very consistent picture, with a long-term stability of 2% or better. Upper stratospheric ozone shows three main features: (1) a decline by 10 to 15% since 1980, due to chemical destruction by chlorine; (2) two to three year fluctuations by 5 to 10%, due to the Quasi-Biennial Oscillation (QBO); (3) an 11-year oscillation by about 5%, due to the 11-year solar cycle. The 1979 to 1997 ozone trends are larger at the southern mid-latitude station Lauder (45°S), reaching -8%/decade, compared to only about -6%/decade at Table Mountain (35°N), Haute Provence/Bordeaux (≈45°N), and Hohenpeissenberg/Bern(≈47°N). At Lauder, Hawaii (20°N), Table Mountain, and Haute Provence, ozone residuals after subtraction of QBO- and solar cycle effects have levelled off in recent years, or are even increasing. Assuming a turning point in January 1997, the change of trend is largest at southern

  8. Photochemical modeling of the Antarctic stratosphere: Observational constraints from the airborne Antarctic ozone experiment and implications for ozone behavior

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose M.; Sze, Nien-Dak; Ko, Malcolm K. W.

    1988-01-01

    The rapid decrease in O3 column densities observed during Antarctic spring has been attributed to several chemical mechanisms involving nitrogen, bromine, or chlorine species, to dynamical mechanisms, or to a combination of the above. Chlorine-related theories, in particular, predict greatly elevated concentrations of ClO and OClO and suppressed abundances of NO2 below 22 km. The heterogeneous reactions and phase transitions proposed by these theories could also impact the concentrations of HCl, ClNO3 and HNO3 in this region. Observations of the above species have been carried out from the ground by the National Ozone Expedition (NOZE-I, 1986, and NOZE-II, 1987), and from aircrafts by the Airborne Antarctic Ozone Experiment (AAOE) during the austral spring of 1987. Observations of aerosol concentrations, size distribution and backscattering ratio from AAOE, and of aerosol extinction coefficients from the SAM-II satellite can also be used to deduce the altitude and temporal behavior of surfaces which catalyze heterogeneous mechanisms. All these observations provide important constraints on the photochemical processes suggested for the spring Antarctic stratosphere. Results are presented for the concentrations and time development of key trace gases in the Antarctic stratosphere, utilizing the AER photochemical model. This model includes complete gas-phase photochemistry, as well as heterogeneous reactions. Heterogeneous chemistry is parameterized in terms of surface concentrations of aerosols, collision frequencies between gas molecules and aerosol surfaces, concentrations of HCl/H2O in the frozen particles, and probability of reaction per collision (gamma). Values of gamma are taken from the latest laboratory measurements. The heterogeneous chemistry and phase transitions are assumed to occur between 12 and 22 km. The behavior of trace species at higher altitudes is calculated by the AER 2-D model without heterogeneous chemistry. Calculations are performed for

  9. Ozone Destruction in the Upper Troposphere/Lower Stratosphere from Short-Lived Halogens and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn; Montzka, Stephen; Rap, Alex; Dhomse, Sandip; Feng, Wuhu

    2014-05-01

    Halogens released from very short-lived substances (VSLS) can deplete ozone in the upper-troposphere and lower stratosphere where the perturbation can exert a large climate impact. In addition to the known ozone loss from natural biogenic bromine VSLS, such as bromoform (CHBr3), using a global atmospheric model we show that anthropogenic chlorine VSLS such as dichloromethane (CH2Cl2) - not regulated by the Montreal Protocol - also contribute. Although this impact is small compared to bromine VSLS at present, CH2Cl2 has industrial sources and observations show its atmospheric loading is increasing rapidly. We estimate a significant radiative effect of the bromine and chlorine VSLS-driven lower stratospheric ozone destruction of -0.11 Wm-2. The largest impact comes from ozone loss at high latitudes, where column ozone decreases due to VSLS are up to 6%. The trend in anthropogenic chlorine VSLS could cause a significant radiative forcing, especially if augmented by any trend in natural bromine VSLS. We also used the model to study the impact of iodine-containing VSLS such as methyl iodide (CH3I). Of the three halogens iodine has the largest leverage to destroy lower stratospheric ozone, but current limits based on IO observations indicate only a minor impact at present.

  10. Trend analysis of the 20-year time series of stratospheric ozone profiles observed by the GROMOS microwave radiometer at Bern

    NASA Astrophysics Data System (ADS)

    Moreira, L.; Hocke, K.; Eckert, E.; von Clarmann, T.; Kämpfer, N.

    2015-10-01

    The ozone radiometer GROMOS (GROund-based Millimeter-wave Ozone Spectrometer) has been performing continuous observations of stratospheric ozone profiles since 1994 above Bern, Switzerland (46.95° N, 7.44° E, 577 m). GROMOS is part of the Network for the Detection of Atmospheric Composition Change (NDACC). From November 1994 to October 2011, the ozone line spectra were measured by a filter bench (FB). In July 2009, a fast Fourier transform spectrometer (FFTS) was added as a back end to GROMOS. The new FFTS and the original FB measured in parallel for over 2 years. The ozone profiles retrieved separately from the ozone line spectra of FB and FFTS agree within 5 % at pressure levels from 30 to 0.5 hPa, from October 2009 to August 2011. A careful harmonisation of both time series has been carried out by taking the FFTS as the reference instrument for the FB. This enables us to assess the long-term trend derived from stratospheric ozone observations at Bern. The trend analysis was performed by using a robust multilinear parametric trend model which includes a linear term, the solar variability, the El Niño-Southern Oscillation (ENSO) index, the quasi-biennial oscillation (QBO), the annual and semi-annual oscillation and several harmonics with period lengths between 3 and 24 months. Over the last years, some experimental and modelling trend studies have shown that the stratospheric ozone trend is levelling off or even turning positive. With our observed ozone profiles, we are able to support this statement by reporting a statistically significant trend of +3.14 % decade-1 at 4.36 hPa (37.76 km), covering the period from January 1997 to January 2015, above Bern. Additionally, we have estimated a negative trend over this period of -3.94 % decade-1 at 0.2 hPa (59 km).

  11. Trend analysis of the 20 years time series of stratospheric ozone profiles observed by the GROMOS microwave radiometer at Bern

    NASA Astrophysics Data System (ADS)

    Moreira, L.; Hocke, K.; Eckert, E.; von Clarmann, T.; Kämpfer, N.

    2015-06-01

    The ozone radiometer GROMOS (GROund-based Millimeterwave Ozone Spectrometer) performs continuous observations of stratospheric ozone profiles since 1994 above Bern, Switzerland. GROMOS is part of the Network for the Detection of Atmospheric Composition Change (NDACC). From November 1994 to October 2011, the ozone line spectra were measured by a filter bench (FB). In July 2009, a Fast-Fourier-Transform spectrometer (FFTS) has been added as backend to GROMOS. The new FFTS and the original FB measured in parallel for over two years. The ozone profiles retrieved separately from the ozone line spectra of FB and FFTS agree within 5 % at pressure levels from 30 to 0.5 hPa, from October 2009 to August 2011. A careful harmonisation of both time series has been carried out by taking the FFTS as the reference instrument for the FB. This enables us to assess the long-term trend derived from more than 20 years of stratospheric ozone observations at Bern. The trend analysis has been performed by using a robust multilinear parametric trend model which includes a linear term, the solar variability, the El Niño-Southern Oscillation (ENSO) index, the quasi-biennial oscillation (QBO), the annual and semi-annual oscillation and several harmonics with period lengths between 3 and 24 months. Over the last years, some experimental and modelling trend studies have shown that the stratospheric ozone trend is levelling off or even turning positive. With our observed ozone profiles, we are able to support this statement by reporting a statistically significant trend of +3.14 % decade-1 at 4.36 hPa, covering the period from January 1997 to January 2015, above Bern. Additionally, we have estimated a negative trend over this period of -3.94 % decade-1 at 0.2 hPa.

  12. Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone

    SciTech Connect

    Steinbrecht, W.; Carswell, A.I.

    1995-01-01

    Substantially increased aerosol backscattering and extinction after a major volcanic eruption can lead to errors in differential absorption lidar (DIAL) measurements of stratospheric ozone. Mie calculations, performed for the wavelengths 308 and 353 nm and based on size distributions measured over Laramie, Wyoming (41 deg), were used to assess size and temporal evolution of these errors. In many situations, neglecting the different aerosol backscattering at the absorption and reference wavelengths can lead to relative errors in the ozone concentration larger than 100% for the 308-, 353-nm pair. The error due to neglecting the differential aerosol extinction, however, will rarely exceed 2%. A correction for this differential extinction should only be attempted when high concentrations (greater than 100/cu cm) of small aerosol particles with radii below 0.1 micrometers are present, e.g., shortly after an eruption. A correction for the differential backscatter can be made by using additional lidar measurements at a second reference wavelength or by having general size distribution information on the aerosol. Possible corrections were tested and will usually reduce the error in the ozone concentration considerably. For the 308-, 353-nm pair, both Mie calculations and a comparison with ozone profiles from electrochemical cell sondes show, however, that even after the correction the uncertainty in the ozone concentration within some regions of the strongly enhanced Mt. Pinatubo aerosol layer can still be substantial, of the order of 10-50%. Wavelength separation smaller than 40 nm or use of wavelengths shorter than 300 nm will reduce the error. The best solution seems to be the addition of Raman channels. It avoids the large error due to the differential backscatter term.

  13. Distribution of the Effect of Solar Proton Flux And Geomagnetic Activity on the Stratospheric Ozone Profile

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Tassev, Y.; Yanev, T.; Tomova, D.

    Two-way MANOVA was used to examine the impact of two factors: 1) the proton flux intensity and 2) the geomagnetic activity on the dependant variable "ozone mixing ratio" which characterizes the stratospheric ozone profiles. The examination was carried out with fixed levels of two other factors: a) the heights at which the "ozone mixing ratio" was recorded, i,e, 35 km, 30.2 km, 24.5 km, 18.4 km, 15.6 km and b) the energetic intervals within which the proton flux was measured, i.e. =0,6-4,2 MeV; 4,2-8,7 MeV; 8,7-14,5 MeV; 15-44 MeV; 39-82 MeV; 84-200 MeV; 110-500 MeV. The analysis was performed for all combinations of levels of the factors a) and b) for which data was available. It was aimed at revealing which of the factors 1) and 2) were dominating with different combinations of the factors a) and b) with fixed levels. For this purpose a post hoc analysis was performed as well. The main results are as follows: factors 1) and 2) exert statistically significant impact on the dependant variable at all of the heights examined, but not for all of energetic intervals; increase of the ozone mixing ratio was observed as a main effect of the proton flux intensity at heights 24.5 km, 18.4 km, 15.6 km, but the analysis of the simultaneous acting of factors 1) and 2) revealed a decrease of the dependant variable at these heights; these effects possibly indicate the existence of two different mechanisms of impact on the ozone mixing ratio; the afore- discussed effects decrease with the height and therefore their graphical image was named "Christmas tree".

  14. Three dimensional model calculations of the global dispersion of high speed aircraft exhaust and implications for stratospheric ozone loss

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Rood, Richard B.; Jackman, Charles H.; Weaver, Clark J.

    1994-01-01

    Two-dimensional (zonally averaged) photochemical models are commonly used for calculations of ozone changes due to various perturbations. These include calculating the ozone change expected as a result of change in the lower stratospheric composition due to the exhaust of a fleet of supersonic aircraft flying in the lower stratosphere. However, zonal asymmetries are anticipated to be important to this sort of calculation. The aircraft are expected to be restricted from flying over land at supersonic speed due to sonic booms, thus the pollutant source will not be zonally symmetric. There is loss of pollutant through stratosphere/troposphere exchange, but these processes are spatially and temporally inhomogeneous. Asymmetry in the pollutant distribution contributes to the uncertainty in the ozone changes calculated with two dimensional models. Pollutant distributions for integrations of at least 1 year of continuous pollutant emissions along flight corridors are calculated using a three dimensional chemistry and transport model. These distributions indicate the importance of asymmetry in the pollutant distributions to evaluation of the impact of stratospheric aircraft on ozone. The implications of such pollutant asymmetries to assessment calculations are discussed, considering both homogeneous and heterogeneous reactions.

  15. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Emili, Emanuele; Barret, Brice; Massart, Sebastien; Piacentini, Andrea; Pannekoucke, Olivier; Cariolle, Daniel

    2013-04-01

    Ozone acts as the main shield against UV radiation in the stratosphere, it contributes to the greenhouse effect in the troposphere and it is a major pollutant in the planetary boundary layer. In the last decades models and satellite observations reached a mature level, providing estimates of ozone with an accuracy of few percents in the stratosphere. On the other hand, tropospheric ozone still represents a challenge, because its signal is less detectable by space-borne sensors, its modelling depends on the knowledge of gaseous emissions at the surface, and stratosphere/troposphere exchanges might rapidly increase its abundance by several times. Moreover there is generally lack of in-situ observations of tropospheric ozone in many regions of the world. For these reasons the assimilation of satellite data into chemical transport models represents a promising technique to overcome limitations of both satellites and models. The objective of this study is to assess the value of vertically resolved observations from the Infrared Atmospheric Sounding Interferometer (IASI) and the Microwave Limb Sounder (MLS) to constrain both the tropospheric and stratospheric ozone profile in a global model. While ozone total columns and stratospheric profiles from UV and microwave sensors are nowadays routinely assimilated in operational models, still few studies have explored the assimilation of ozone products from IR sensors such as IASI, which provide better sensitivity in the troposphere. We assimilate both MLS ozone profiles and IASI tropospheric (1000-225 hPa) ozone columns in the Météo France chemical transport model MOCAGE for 2008. The model predicts ozone concentrations on a 2x2 degree global grid and for 60 vertical levels, ranging from the surface up to 0.1 hPa. The assimilation is based on a 4D-VAR algorithm, employs a linear chemistry scheme and accounts for the satellite vertical sensitivity via the averaging kernels. The assimilation of the two products is first tested

  16. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies

    NASA Astrophysics Data System (ADS)

    Davis, Sean M.; Rosenlof, Karen H.; Hassler, Birgit; Hurst, Dale F.; Read, William G.; Vömel, Holger; Selkirk, Henry; Fujiwara, Masatomo; Damadeo, Robert

    2016-09-01

    In this paper, we describe the construction of the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database, which includes vertically resolved ozone and water vapor data from a subset of the limb profiling satellite instruments operating since the 1980s. The primary SWOOSH products are zonal-mean monthly-mean time series of water vapor and ozone mixing ratio on pressure levels (12 levels per decade from 316 to 1 hPa). The SWOOSH pressure level products are provided on several independent zonal-mean grids (2.5, 5, and 10°), and additional products include two coarse 3-D griddings (30° long × 10° lat, 20° × 5°) as well as a zonal-mean isentropic product. SWOOSH includes both individual satellite source data as well as a merged data product. A key aspect of the merged product is that the source records are homogenized to account for inter-satellite biases and to minimize artificial jumps in the record. We describe the SWOOSH homogenization process, which involves adjusting the satellite data records to a "reference" satellite using coincident observations during time periods of instrument overlap. The reference satellite is chosen based on the best agreement with independent balloon-based sounding measurements, with the goal of producing a long-term data record that is both homogeneous (i.e., with minimal artificial jumps in time) and accurate (i.e., unbiased). This paper details the choice of reference measurements, homogenization, and gridding process involved in the construction of the combined SWOOSH product and also presents the ancillary information stored in SWOOSH that can be used in future studies of water vapor and ozone variability. Furthermore, a discussion of uncertainties in the combined SWOOSH record is presented, and examples of the SWOOSH record are provided to illustrate its use for studies of ozone and water vapor variability on interannual to decadal timescales. The version 2.5 SWOOSH data are publicly available at

  17. The Latitude Dependence of the Effect of Pinatubo on Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.

    2004-01-01

    Statistical analysis of TOMS and SBLT total ozone data indicate that the eruption of Pinatubo in 1991 led to a significant decrease in ozone at northern midlatitudes with little or no effect at southern midlatitudes. We argue that this puzzling absence of a southern hemisphere effect may be an artifact of the statistical analysis. We have run a 3D CTM simulation of the past 30 years of stratospheric photochemistry with variable forcing due to chlorine/bromine compounds, solar ultraviolet radiation, and volcanic aerosols. This integration used winds from the FVGCM, which has similar interannual variability to the atmosphere. When this CTM output was examined with a standard time-series analysis, we found an effect of Pinatubo in the southern hemisphere, but not in the northern hemisphere. We then reran the CTM without volcanic aerosols. The subtraction of the two simulations indicated that, as expected, that Pinatubo affected both hemispheres in the model. This means that the northern hemisphere effect was in the model but did not show up in the statistical analysis. We also had an on-line parameterized chemical ozone tracer with seasonally repeating production and loss over the simulation. We used this as a dynamical surrogate to remove interannual variability from the original model output. The residual time series was then analyzed for the Pinatubo effect and we were able to find it in both hemispheres. We suggest that the combination of the two volcanoes, El Chichon and Pinatubo, with the solar cycle and interannual variability led to this problem of analysis in the northern hemisphere of our model. We furthermore suggest that a similar think may be occurring in the southern hemisphere of the data. An analysis of the atmosphere's southern hemisphere with a good dynamical surrogate may solve the mystery of the missing southern hemisphere effect of Pinatubo on ozone.

  18. From stratospheric ozone to climate change: historical perspective on precaution and scientific responsibility.

    PubMed

    Mégie, Gérard

    2006-10-01

    The issue of the impact of human activities on the stratospheric ozone layer emerged in the early 1970s. But international regulations to mitigate the most serious effects were not adopted until the mid-1980s. This case holds lessons for addressing more complex environmental problems. Concepts that should inform discussion include 'latency,' 'counter-factual scenario based on the Precautionary Principle,' 'inter-generational burden sharing,' and 'estimating global costs under factual and counter-factual regulatory scenarios.' Stringent regulations were adopted when large scientific uncertainty existed, and the environmental problem would have been prevented or more rapidly mitigated, at relatively modest incremental price, but for a time delay before more rigorous Precautionary measures were implemented. Will history repeat itself in the case of climate change?

  19. Stratospheric ozone chemistry in the Antarctic: what controls the lowest values that can be reached and their recovery?

    NASA Astrophysics Data System (ADS)

    Grooß, J.-U.; Brautzsch, K.; Pommrich, R.; Solomon, S.; Müller, R.

    2011-08-01

    Balloon-borne observations of ozone from Antarctic stations have been reported to reach ozone mixing ratios as low as about 10 ppbv at the 70 hPa level by late September. After reaching a minimum, ozone mixing ratios then increase to the ppmv level by late December. While the basic mechanisms causing the ozone hole have been known for more than 20 yr, the detailed chemical processes controlling how low the local concentration can fall, and how it recovers from the minimum have not been explored so far. Both of these aspects are investigated here by analysing results from the Chemical Lagrangian Model of the Stratosphere (CLaMS). We discuss the processes responsible for stopping of the catalytic ozone depletion. We show that an irreversible chlorine deactivation into HCl can occur either when ozone drops to very low values or by temperatures increasing above the PSC threshold in these simulations. As a consequence, the timing and mixing ratio of the minimum depends sensitively on model parameters including the ozone initialisation. The subsequent observed ozone increase between October and December is linked not only to transport, but also to photochemical ozone production, caused by oxygen photolysis and by the oxidation of carbon monoxide and methane.

  20. Airborne stratospheric observations of major volcanic eruptions: past and future

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Aquila, V.; Colarco, P. R.

    2015-12-01

    Major volcanic eruptions (e.g. the 1991 eruption of Mt. Pinatubo) lead to a surface cooling and disruptions of the chemistry of the stratosphere. In this presentation, we will show model simulations of Mt. Pinatubo that can be used to devise a strategy for answering specific science questions. In particular, what is the initial mass injection, how is the cloud spreading, how are the stratospheric aerosols evolving, what is the impact on stratospheric chemistry, and how will climate be affected? We will also review previous stratospheric airborne observations of volcanic clouds using NASA sub-orbital assets, and discuss our present capabilities to observe the evolution of a stratospheric volcanic plume. These capabilities include aircraft such as the NASA ER-2, WB-57f, and Global Hawk. In addition, the NASA DC-8 and P-3 can be used to perform remote sensing. Balloon assets have also been employed, and new instrumentation is now available for volcanic work.

  1. The stratospheric ozone response to a discrepancy of the SSI data

    NASA Astrophysics Data System (ADS)

    Rozanov, E.; Shapiro, A. V.; Harder, J. W.; Egorova, T. A.; Schmutz, W. K.; Peter, T.

    2011-12-01

    The solar radiation, which is the main energy source in the Earth atmosphere, is highly variable especially at the ultraviolet region of the solar spectrum. The UV radiation penetrates down to the stratosphere and its variability can lead to the substantial response of the atmosphere. In particular, the variability of the irradiance in Herzberg continuum (200-242 nm) and Hartley band (200-300 nm) strongly influences the ozone concentration. The recent SIM and SOLSTICE measurements onboard SORCE satellite show absolutely unexpected behavior of solar irradiance variability. The 11-year activity trends of the solar irradiance have different signs in the visible and UV regions. Besides the variability in UV is several times higher than all recent estimates (e.g., Lean et. al., 2005). Moreover the irradiance variability measured by SIM is different from measured by SOLSTICE in their common spectral part. To investigate an influence of these discrepancies to the ozone response we run 3D climate-chemistry model SOCOL forced by the different SSI datasets. The SSI input for the SOCOL model is the spectral solar irradiance from 121 to 750 nm. We used three different datasets reconstructed by Lean 2005 and two composites of measurements. First one is based on SOLSTICE measurements up to 210 nm and SIM outwards (SIM dominated dataset) and the second one is based on SOLSTICE measurements up to 290 nm and SIM outwards (SOLSTICE dominated dataset). We have simulated atmospheric response for period from May 2004 to February 2009. We have analyzed the ozone response using multiple regression analysis and found that the response strongly depends on the applied SSI dataset. The data should be analyzed with a special care as both solar irradiance and chlorine family concentration have downtrend during the period of simulation. Both these factors strongly influence the ozone concentration so they have to be separated. To investigate ozone response to the chlorine changes we have made

  2. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Villalta, P. W.; Zahniser, M. S.; Nelson, D. D.; Kolb, C. E.

    1998-01-01

    This is the final report for this project. Its purpose is to reduce the uncertainty in rate coefficients for key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring the rate coefficients for the reactions of HO2 + O3, and HO2 + NO2 in the temperature range (200-240 K) relevant to the lower stratosphere. In order to accomplish this, a high pressure turbulent flow tube reactor was built and its flow characteristics were quantified. The instrument was coupled with tunable diode laser spectroscopy for HO2 detection. Room temperature measurements of the HO2 + NO2 rate coefficients over the pressure range of 50-300 torr agree well with previous measurements. Preliminary measurements of the HO2 + O, rate coefficients at 50 - 300 Torr over the temperature range of 208-294 K agree with the NASA evaluation from 294-225 K but deviate significantly (50 % higher) at approximately 210 K.

  3. Airborne lidar measurements of ozone during the 1989 airborne Arctic stratospheric expedition

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Kooi, Susan A.

    1991-01-01

    The NASA/NOAA Airborne Arctic Stratospheric Expedition (AASE) was conducted during the winter to study the conditions leading to possible ozone (O3) destruction in the wintertime Arctic stratosphere. As part of this experiment, the NASA-Langley airborne differential absorption lidar (DIAL) system was configured for operation on the NASA-Ames DS-8 aircraft to make measurements of O3 profiles from about 1 km above the aircraft to altitudes of 22 to 26 km. The airborne DIAL system remotely sensed O3 above the DC-8 by transmitting two laser beams at 10 Hz using wavelengths of 301.5 and 311 nm. Large scale distributions of O3 were obtained on 15 long range flights into the polar vortex during the AASE. Selected data samples are presented of O3 observed during these flights, general trends observed in O3 distributions, and correlations between these measurements and meteorological and chemical parameters. The O3 distribution observed on the first flight of the DC-8 into the polar vortex on Jan. 6 reflected the result of diabatic cooling of the air inside the vortex during the winter compared to the warmer air outside the vortex. On a potential temperature surface, the O3 mixing ratio generally increases when going from outside to inside the vortex.

  4. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Emili, E.; Barret, B.; Massart, S.; Le Flochmoen, E.; Piacentini, A.; El Amraoui, L.; Pannekoucke, O.; Cariolle, D.

    2013-08-01

    Accurate and temporally resolved fields of free-troposphere ozone are of major importance to quantify the intercontinental transport of pollution and the ozone radiative forcing. In this study we examine the impact of assimilating ozone observations from the Microwave Limb Sounder (MLS) and the Infrared Atmospheric Sounding Interferometer (IASI) in a global chemical transport model (MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE). The assimilation of the two instruments is performed by means of a variational algorithm (4-D-VAR) and allows to constrain stratospheric and tropospheric ozone simultaneously. The analysis is first computed for the months of August and November 2008 and validated against ozone-sondes measurements to verify the presence of observations and model biases. It is found that the IASI Tropospheric Ozone Column (TOC, 1000-225 hPa) should be bias-corrected prior to assimilation and MLS lowermost level (215 hPa) excluded from the analysis. Furthermore, a longer analysis of 6 months (July-August 2008) showed that the combined assimilation of MLS and IASI is able to globally reduce the uncertainty (Root Mean Square Error, RMSE) of the modeled ozone columns from 30% to 15% in the Upper-Troposphere/Lower-Stratosphere (UTLS, 70-225 hPa) and from 25% to 20% in the free troposphere. The positive effect of assimilating IASI tropospheric observations is very significant at low latitudes (30° S-30° N), whereas it is not demonstrated at higher latitudes. Results are confirmed by a comparison with additional ozone datasets like the Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC) data, the Ozone Monitoring Instrument (OMI) total ozone columns and several high-altitude surface measurements. Finally, the analysis is found to be little sensitive to the assimilation parameters and the model chemical scheme, due to the high frequency of satellite observations compared to the average life-time of free-troposphere/low-stratosphere

  5. Influence of transport and mixing in autumn on stratospheric ozone variability over the Arctic in early winter

    NASA Astrophysics Data System (ADS)

    Blessmann, D.; Wohltmann, I.; Rex, M.

    2012-09-01

    Early winter ozone mixing ratios in the Arctic middle stratosphere show an interannual variability of about 10%. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the chemistry and transport model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are correlated with a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence (in a Lagrangian sense). As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from September to November. In the lower stratosphere, this quantity correlates well with the origin of air enclosed in the vortex and reasonably well with the ozone amount in early winter.

  6. Influence of transport and mixing in autumn on stratospheric ozone variability over the Arctic in early winter

    NASA Astrophysics Data System (ADS)

    Blessmann, D.; Wohltmann, I.; Rex, M.

    2012-06-01

    Early winter ozone mixing ratios in the Arctic middle stratosphere show a fair amount of interannual variability. We show that ozone variability in early January is caused by dynamical processes during Arctic polar vortex formation in autumn (September to December). Observational data from satellites and ozone sondes are used in conjunction with simulations of the Chemistry and Transport Model ATLAS to examine the relationship between the meridional and vertical origin of air enclosed in the polar vortex and its ozone amount. For this, we use a set of artificial model tracers to deduce the origin of the air masses in the vortex in January in latitude and altitude in September. High vortex mean ozone mixing ratios are related to a high fraction of air from low latitudes enclosed in the vortex and a high fraction of air that experienced small net subsidence. As a measure for the strength of the Brewer-Dobson circulation and meridional mixing in autumn, we use the Eliassen-Palm flux through the mid-latitude tropopause averaged from August to November. In the lower stratosphere, this quantity correlates well with both the ozone amount in early winter and the origin of air enclosed in the vortex.

  7. Investigation of Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    NASA Technical Reports Server (NTRS)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2015-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOS-chem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7 and 7.6, respectively) compared to that from LT (64.1), but the relative ozone concentration coming from LS and UT is high (38.4 and 20.95, respectively) compared to that from LT (17.7). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  8. Investigating Ozone Sources in California Using AJAX Airborne Measurements and Models: Implications for Stratospheric Intrusion and Long Range Transport

    NASA Technical Reports Server (NTRS)

    Ryoo, Ju-Mee; Johnson, Matthew S.; Iraci, Laura T.; Yates, Emma L.; Pierce, R. Bradley; Tanaka, Tomoaki; Gore, Warren

    2016-01-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOSchem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7% and 7.6%, respectively) compared to that from LT (64.1%), but the relative ozone concentration coming from LS and UT is high (38.4% and 20.95%, respectively) compared to that from LT (17.7%). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  9. Investigation of ozone sources in California using AJAX airborne measurements and models: Implications for stratospheric intrusion and long range transport

    NASA Astrophysics Data System (ADS)

    Ryoo, J. M.; Johnson, M. S.; Iraci, L. T.; Yates, E. L.; Pierce, R. B.; Tanaka, T.; Gore, W.

    2015-12-01

    High ozone concentrations at low altitudes near the surface were detected from airborne Alpha Jet Atmospheric eXperiment (AJAX) measurements on May 30, 2012. We investigate the causes of the elevated ozone concentrations using the airborne measurements and various models. GEOS-chem and WRF-STILT model simulations show that the contribution from local sources is small. From MERRA reanalysis, it is found that high potential vorticity (PV) is observed at low altitudes. This high PV appears to be only partially coming through the stratospheric intrusions because the air inside the high PV region is moist, which shows that mixing appears to be enhanced in the low altitudes. Considering that diabatic heating can also produce high PV in the lower troposphere, high ozone is partially coming through stratospheric intrusion, but this cannot explain the whole ozone concentration in the target areas of the western U.S. A back-trajectory model is utilized to see where the air masses originated. The air masses of the target areas came from the lower stratosphere (LS), upper (UT), mid- (MT), and lower troposphere (LT). The relative number of trajectories coming from LS and UT is low (7.7% and 7.6%, respectively) compared to that from LT (64.1%), but the relative ozone concentration coming from LS and UT is high (38.4% and 20.95%, respectively) compared to that from LT (17.7%). The air mass coming from LT appears to be mostly coming from Asia. Q diagnostics show that there is sufficient mixing along the trajectory to indicate that ozone from the different origins is mixed and transported to the western U.S. This study shows that high ozone concentrations can be detected by airborne measurements, which can be analyzed by integrated platforms such as models, reanalysis, and satellite data.

  10. Ozone variability in the troposphere and the stratosphere from six years of IASI observations (2008-2013)

    NASA Astrophysics Data System (ADS)

    Wespes, C.; Coheur, P. F.; Emmons, L. K.; Tilmes, S.; Safieddine, S.; Hurtmans, D.; Clerbaux, C.; Edwards, D. P.

    2014-12-01

    In this study, we present daytime observations of ozone (O3) measured during 6 years (2008-2013) by the thermal infrared IASI remote sensor launched in October 2006 onboard the polar orbiting MetOp-A satellite. Thanks to its high spatiotemporal coverage along with its radiometric stability, IASI provides a unique dataset of vertically-resolved profiles for investigating global distributions, time series and climatology. We analyze the time development of O3 by fitting constant, annual and semi-annual terms, solar flux and quasi biennial oscillation proxies to the IASI time series on a large spatial scale (20-degree latitudinal bands), separately in different layers over the stratosphere and the troposphere which help to distinguish the chemical and dynamical contributions to the O3 total columns variations. Based on the fitting procedure, the ozone time development estimation ("trends") is also derived. Despite the short time period of available IASI dataset, statistically significant trends are measured in both the troposphere and the stratosphere. Significant positive trends are obtained in the upper stratosphere, in particular over the highest latitudes, which potentially point out a turnaround for stratospheric O3 recovery, and significant negative trends are observed over the mid-and high northern latitudes during summer which is possibly linked to the decreasing ozone precursor emissions. More specifically, ozone trends are also estimated in the troposphere on a regional scale over and downwind anthropogenic polluted areas. Finally, the influence of the stratosphere on the tropospheric variability as seen from IASI is also evaluated using simulations from global 3-D chemical transport models.

  11. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.

    PubMed

    Tang, X; Wilson, S R; Solomon, K R; Shao, M; Madronich, S

    2011-02-01

    Air pollution will be directly influenced by future changes in emissions of pollutants, climate, and stratospheric ozone, and will have significant consequences for human health and the environment. UV radiation is one of the controlling factors for the formation of photochemical smog, which includes tropospheric ozone (O(3)) and aerosols; it also initiates the production of hydroxyl radicals (˙OH), which control the amount of many climate- and ozone-relevant gases (e.g., methane and HCFCs) in the atmosphere. Numerical models predict that future changes in UV radiation and climate will modify the trends and geographic distribution of ˙OH, thus affecting the formation of photochemical smog in many urban and regional areas. Concentrations of ˙OH are predicted to decrease globally by an average of 20% by 2100, with local concentrations varying by as much as a factor of two above and below current values. However, significant differences between modelled and measured values in a limited number of case studies show that chemistry of hydroxyl radicals in the atmosphere is not fully understood. Photochemically produced tropospheric ozone is projected to increase. If emissions of anthropogenic air pollutants from combustion of fossil fuels, burning of biomass, and agricultural activities continue to increase, concentrations of tropospheric O(3) will tend to increase over the next 20-40 years in certain regions of low and middle latitudes because of interactions of emissions, chemical processes, and climate change. Climate-driven increases in temperature and humidity will also increase production of tropospheric O(3) in polluted regions, but reduce it in more pristine regions. Higher temperatures tend to increase emissions of nitrogen oxides (NO(x)) from some soils and release of biogenic volatile organic compounds (VOCs) from vegetation, leading to greater background concentrations of ozone in the troposphere. The net effects of future changes in UV radiation

  12. Wind extraction potential from ensemble Kalman filter assimilation of stratospheric ozone using a global shallow water model

    NASA Astrophysics Data System (ADS)

    Allen, D. R.; Hoppel, K. W.; Kuhl, D. D.

    2015-02-01

    The feasibility of extracting wind information from stratospheric ozone observations is tested using ensemble Kalman filter (EnKF) data assimilation (DA) and a global shallow water model that includes advection of an ozone-like tracer. Simulated observations are created from a truth run (TR) that resembles the Northern Hemisphere winter stratosphere with a polar vortex disturbed by planetary-scale wave forcing. Ozone observations mimic sampling of a polar-orbiting satellite, while geopotential height observations are randomly placed in space and time. EnKF experiments are performed assimilating ozone, height, or both over a 10 day period. The DA is also implemented using two different pairs of flow variables: zonal and meridional wind (EnKF-uv) and streamfunction and velocity potential (EnKF-ψ χ). Each experiment is tuned for optimal localization length, while the ensemble spread is adaptively inflated using the TR. The experiments are evaluated using the maximum wind extraction potential (WEP). Ozone-only assimilation improves winds (WEP = 46% for EnKF-uv, and 58% for EnKF-ψ χ), but suffers from spurious gravity wave generation. Application of nonlinear normal mode initialization (NMI) greatly reduces the unwanted imbalance and increases the WEP for EnKF-uv (84%) and EnKF-ψ χ (81%). Assimilation of only height observations also improved the winds (WEP = 59% for EnKF-uv, and 67% for EnKF-ψ χ), with much less imbalance compared to the ozone experiment. The assimilation of both height and ozone performed the best, with WEP increasing to ~ 87% (~ 90% with NMI) for both EnKF-uv and EnKF-ψ χ, demonstrating that wind extraction from ozone assimilation can be beneficial even in a data-rich environment. Ozone assimilation particularly improves the tropical winds, which are not well constrained by height observations due to lack of geostrophy.

  13. Wind extraction potential from ensemble Kalman filter assimilation of stratospheric ozone using a global shallow water model

    NASA Astrophysics Data System (ADS)

    Allen, D. R.; Hoppel, K. W.; Kuhl, D. D.

    2015-05-01

    The feasibility of extracting wind information from stratospheric ozone observations is tested using ensemble Kalman filter (EnKF) data assimilation (DA) and a global shallow water model that includes advection of an ozone-like tracer. Simulated observations are created from a truth run (TR) that resembles the Northern Hemisphere winter stratosphere with a polar vortex disturbed by planetary-scale wave forcing. Ozone observations mimic sampling of a polar-orbiting satellite, while geopotential height observations are randomly placed in space and time. EnKF experiments are performed assimilating ozone, height, or both, over a 10-day period. The DA is also implemented using two different pairs of flow variables: zonal and meridional wind (EnKF-uv) and stream function and velocity potential (EnKF-ψχ). Each experiment is tuned for optimal localization length, while the ensemble spread is adaptively inflated using the TR. The experiments are evaluated using the maximum wind extraction potential (WEP). Ozone only assimilation improves winds (WEP = 46% for EnKF-uv, and 58% for EnKF-ψχ), but suffers from spurious gravity wave generation. Application of nonlinear normal mode initialization (NMI) greatly reduces the unwanted imbalance and increases the WEP for EnKF-uv (84%) and EnKF-ψχ (81%). Assimilation of only height observations also improved the winds (WEP = 60% for EnKF-uv, and 69% for EnKF-ψχ), with much less imbalance compared to the ozone experiment. The assimilation of both height and ozone performed the best, with WEP increasing to ~87% (~90% with NMI) for both EnKF-uv and EnKF-ψχ, demonstrating that wind extraction from ozone assimilation can be beneficial even in a data-rich environment. Ozone assimilation particularly improves the tropical winds, which are not well constrained by height observations due to lack of geostrophy.

  14. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  15. The Stratospheric Aerosol and Gas Experiment III - International Space Station: Extending Long-Term Ozone and Aerosol Observations (Invited)

    NASA Astrophysics Data System (ADS)

    Eckman, R.; Zawodny, J. M.; Cisewski, M.; Gasbarre, J.; Flittner, D. E.; Hill, C.; Roell, M.; Moore, J. R.; Hernandez, G.; McCormick, M. P.

    2013-12-01

    The Stratospheric Aerosol and Gas Experiment III - International Space Station (SAGE III on ISS) will extend the global measurements of vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases begun with SAGE I in 1979, enabling the detection of long-term trends. SAGE III on ISS is the fourth in a series of instruments developed for monitoring these constituents in the stratosphere and troposphere. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm, using the heritage occultation technique, utilizing both the sun and the moon. Launch to ISS is planned for early 2015 aboard a Falcon 9 spacecraft. SAGE III will investigate the spatial and temporal variability of the measured species in order to determine their role in climatological processes, biogeochemical cycles, the hydrologic cycle, and atmospheric chemistry. It will characterize tropospheric, as well as stratospheric aerosols and upper tropospheric and stratospheric clouds, and investigate their effects on the Earth's environment including radiative, microphysical, and chemical interactions. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Amongst its key objectives will be to assess the state of the recovery in the distribution of ozone, to reestablish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The ISS is ideal for Earth observing experiments; its mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. In this presentation, we describe the SAGE III on ISS mission, its implementation, current status, and concentrate on its key science objectives.

  16. Stratospheric processes: Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Cox, R. Anthony; Turco, Richard; Brasseur, Guy P.; Matthews, W. Andrew; Zhou, Xiuji; Douglass, Anne; Zander, Rudi J.; Prendez, Margarita; Rodriguez, Jose M.

    1991-01-01

    Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes.

  17. Pollution prevention and stratospheric ozone layer protection through innovative procurement methods: The chiller basic ordering agreement

    SciTech Connect

    Snyder, R.E.; Coyle, J.E.; Guice, J.R. Jr.; Kale, S.H.

    1997-12-31

    The Department of Energy (DOE) and the General Services Administration (GSA) have devised an affirmative procurement vehicle to encourage replacement of chillers using chlorofluorocarbon (CFC) refrigerants harmful to the Earth`s stratospheric ozone layer. Procurement selections are based on lowest life cycle cost. Linked with a DOE-developed Equipment Specification for 100 to 2,000 ton chillers that is crafted broadly enough to address about 90% of the Federal water-cooled chiller procurements, the Basic Ordering Agreement (BOA) process significantly reduces redundant design, procurement, and other costs associated with Federal purchasing of chillers through the cutting of red tape associated with buying industrial equipment. While serving to minimize the release of ozone-depleting substances (about six million tons of CFCs) to the environment, the installation of more energy-efficient chillers also promotes environmental stewardship in that reduced energy consumption translates into reduced emissions of noxious gases from the generation of electricity. Use of the BOA to purchase chillers consistent with Federal energy efficiency standards will contribute to reductions of almost a million tons annually of nitrous oxides, sulfur dioxide, and other pollutants from power plant emissions. Reduced electricity consumption of approximately 1.5 billion kilowatt hours per year by switching to more efficient chillers equates to an annual monetary savings of $75 million.

  18. Recent and future Stratospheric Balloon Activities at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Kemi, Stig

    2012-07-01

    PlaceNameEsrange PlaceNameSpace PlaceTypeCenter located in northern country-regionplaceSweden has during 45 years been a leading launch site for both sounding rockets and stratospheric balloons. We have an unique combination of maintaining both stratospheric balloons and sounding rockets launch operations. Most balloon flights are normally handled inside Scandinavia but since 2005 PersonNamesemi-circular flights are performed with recovery in northern country-regionplaceCanada. The Swedish and Russian Governments have signed an agreement for peaceful exploration of space on 19 March 2010, which will permit circumpolar balloon flights. Within this agreement we are able to offer the science community long duration balloon flights in the Northern Hemisphere with durations for PersonNameseveral weeks. The balloon operations at placePlaceNameEsrange PlaceNameSpace PlaceTypeCenter are yearly expanding. Both NASA and CNES have long term plans for balloon flights from northern country-regionplaceSweden. We have also received requests from placePlaceNameJapanese PlaceTypeUniversities and JAXA for future balloon missions. To handle balloon campaigns with large numbers of payloads or build up for two different campaigns a new big